]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/rcu/tree_plugin.h
rcu: Use funnel locking for synchronize_rcu_expedited()'s polling loop
[karo-tx-linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.  If you like #ifdef, you
67  * will love this function.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71         if (IS_ENABLED(CONFIG_RCU_TRACE))
72                 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76                        RCU_FANOUT);
77         if (rcu_fanout_exact)
78                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81         if (IS_ENABLED(CONFIG_PROVE_RCU))
82                 pr_info("\tRCU lockdep checking is enabled.\n");
83         if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84                 pr_info("\tRCU torture testing starts during boot.\n");
85         if (RCU_NUM_LVLS >= 4)
86                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87         if (RCU_FANOUT_LEAF != 16)
88                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89                         RCU_FANOUT_LEAF);
90         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92         if (nr_cpu_ids != NR_CPUS)
93                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94         if (IS_ENABLED(CONFIG_RCU_BOOST))
95                 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97
98 #ifdef CONFIG_PREEMPT_RCU
99
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103
104 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
106                                bool wake);
107
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113         pr_info("Preemptible hierarchical RCU implementation.\n");
114         rcu_bootup_announce_oddness();
115 }
116
117 /*
118  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119  * that this just means that the task currently running on the CPU is
120  * not in a quiescent state.  There might be any number of tasks blocked
121  * while in an RCU read-side critical section.
122  *
123  * As with the other rcu_*_qs() functions, callers to this function
124  * must disable preemption.
125  */
126 static void rcu_preempt_qs(void)
127 {
128         if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129                 trace_rcu_grace_period(TPS("rcu_preempt"),
130                                        __this_cpu_read(rcu_data_p->gpnum),
131                                        TPS("cpuqs"));
132                 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
133                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
134                 current->rcu_read_unlock_special.b.need_qs = false;
135         }
136 }
137
138 /*
139  * We have entered the scheduler, and the current task might soon be
140  * context-switched away from.  If this task is in an RCU read-side
141  * critical section, we will no longer be able to rely on the CPU to
142  * record that fact, so we enqueue the task on the blkd_tasks list.
143  * The task will dequeue itself when it exits the outermost enclosing
144  * RCU read-side critical section.  Therefore, the current grace period
145  * cannot be permitted to complete until the blkd_tasks list entries
146  * predating the current grace period drain, in other words, until
147  * rnp->gp_tasks becomes NULL.
148  *
149  * Caller must disable preemption.
150  */
151 static void rcu_preempt_note_context_switch(void)
152 {
153         struct task_struct *t = current;
154         unsigned long flags;
155         struct rcu_data *rdp;
156         struct rcu_node *rnp;
157
158         if (t->rcu_read_lock_nesting > 0 &&
159             !t->rcu_read_unlock_special.b.blocked) {
160
161                 /* Possibly blocking in an RCU read-side critical section. */
162                 rdp = this_cpu_ptr(rcu_state_p->rda);
163                 rnp = rdp->mynode;
164                 raw_spin_lock_irqsave(&rnp->lock, flags);
165                 smp_mb__after_unlock_lock();
166                 t->rcu_read_unlock_special.b.blocked = true;
167                 t->rcu_blocked_node = rnp;
168
169                 /*
170                  * If this CPU has already checked in, then this task
171                  * will hold up the next grace period rather than the
172                  * current grace period.  Queue the task accordingly.
173                  * If the task is queued for the current grace period
174                  * (i.e., this CPU has not yet passed through a quiescent
175                  * state for the current grace period), then as long
176                  * as that task remains queued, the current grace period
177                  * cannot end.  Note that there is some uncertainty as
178                  * to exactly when the current grace period started.
179                  * We take a conservative approach, which can result
180                  * in unnecessarily waiting on tasks that started very
181                  * slightly after the current grace period began.  C'est
182                  * la vie!!!
183                  *
184                  * But first, note that the current CPU must still be
185                  * on line!
186                  */
187                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
190                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
191                         rnp->gp_tasks = &t->rcu_node_entry;
192                         if (IS_ENABLED(CONFIG_RCU_BOOST) &&
193                             rnp->boost_tasks != NULL)
194                                 rnp->boost_tasks = rnp->gp_tasks;
195                 } else {
196                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197                         if (rnp->qsmask & rdp->grpmask)
198                                 rnp->gp_tasks = &t->rcu_node_entry;
199                 }
200                 trace_rcu_preempt_task(rdp->rsp->name,
201                                        t->pid,
202                                        (rnp->qsmask & rdp->grpmask)
203                                        ? rnp->gpnum
204                                        : rnp->gpnum + 1);
205                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
206         } else if (t->rcu_read_lock_nesting < 0 &&
207                    t->rcu_read_unlock_special.s) {
208
209                 /*
210                  * Complete exit from RCU read-side critical section on
211                  * behalf of preempted instance of __rcu_read_unlock().
212                  */
213                 rcu_read_unlock_special(t);
214         }
215
216         /*
217          * Either we were not in an RCU read-side critical section to
218          * begin with, or we have now recorded that critical section
219          * globally.  Either way, we can now note a quiescent state
220          * for this CPU.  Again, if we were in an RCU read-side critical
221          * section, and if that critical section was blocking the current
222          * grace period, then the fact that the task has been enqueued
223          * means that we continue to block the current grace period.
224          */
225         rcu_preempt_qs();
226 }
227
228 /*
229  * Check for preempted RCU readers blocking the current grace period
230  * for the specified rcu_node structure.  If the caller needs a reliable
231  * answer, it must hold the rcu_node's ->lock.
232  */
233 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234 {
235         return rnp->gp_tasks != NULL;
236 }
237
238 /*
239  * Advance a ->blkd_tasks-list pointer to the next entry, instead
240  * returning NULL if at the end of the list.
241  */
242 static struct list_head *rcu_next_node_entry(struct task_struct *t,
243                                              struct rcu_node *rnp)
244 {
245         struct list_head *np;
246
247         np = t->rcu_node_entry.next;
248         if (np == &rnp->blkd_tasks)
249                 np = NULL;
250         return np;
251 }
252
253 /*
254  * Return true if the specified rcu_node structure has tasks that were
255  * preempted within an RCU read-side critical section.
256  */
257 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
258 {
259         return !list_empty(&rnp->blkd_tasks);
260 }
261
262 /*
263  * Handle special cases during rcu_read_unlock(), such as needing to
264  * notify RCU core processing or task having blocked during the RCU
265  * read-side critical section.
266  */
267 void rcu_read_unlock_special(struct task_struct *t)
268 {
269         bool empty_exp;
270         bool empty_norm;
271         bool empty_exp_now;
272         unsigned long flags;
273         struct list_head *np;
274         bool drop_boost_mutex = false;
275         struct rcu_node *rnp;
276         union rcu_special special;
277
278         /* NMI handlers cannot block and cannot safely manipulate state. */
279         if (in_nmi())
280                 return;
281
282         local_irq_save(flags);
283
284         /*
285          * If RCU core is waiting for this CPU to exit critical section,
286          * let it know that we have done so.  Because irqs are disabled,
287          * t->rcu_read_unlock_special cannot change.
288          */
289         special = t->rcu_read_unlock_special;
290         if (special.b.need_qs) {
291                 rcu_preempt_qs();
292                 t->rcu_read_unlock_special.b.need_qs = false;
293                 if (!t->rcu_read_unlock_special.s) {
294                         local_irq_restore(flags);
295                         return;
296                 }
297         }
298
299         /* Hardware IRQ handlers cannot block, complain if they get here. */
300         if (in_irq() || in_serving_softirq()) {
301                 lockdep_rcu_suspicious(__FILE__, __LINE__,
302                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
303                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
304                          t->rcu_read_unlock_special.s,
305                          t->rcu_read_unlock_special.b.blocked,
306                          t->rcu_read_unlock_special.b.need_qs);
307                 local_irq_restore(flags);
308                 return;
309         }
310
311         /* Clean up if blocked during RCU read-side critical section. */
312         if (special.b.blocked) {
313                 t->rcu_read_unlock_special.b.blocked = false;
314
315                 /*
316                  * Remove this task from the list it blocked on.  The task
317                  * now remains queued on the rcu_node corresponding to
318                  * the CPU it first blocked on, so the first attempt to
319                  * acquire the task's rcu_node's ->lock will succeed.
320                  * Keep the loop and add a WARN_ON() out of sheer paranoia.
321                  */
322                 for (;;) {
323                         rnp = t->rcu_blocked_node;
324                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325                         smp_mb__after_unlock_lock();
326                         if (rnp == t->rcu_blocked_node)
327                                 break;
328                         WARN_ON_ONCE(1);
329                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330                 }
331                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332                 empty_exp = !rcu_preempted_readers_exp(rnp);
333                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334                 np = rcu_next_node_entry(t, rnp);
335                 list_del_init(&t->rcu_node_entry);
336                 t->rcu_blocked_node = NULL;
337                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338                                                 rnp->gpnum, t->pid);
339                 if (&t->rcu_node_entry == rnp->gp_tasks)
340                         rnp->gp_tasks = np;
341                 if (&t->rcu_node_entry == rnp->exp_tasks)
342                         rnp->exp_tasks = np;
343                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
344                         if (&t->rcu_node_entry == rnp->boost_tasks)
345                                 rnp->boost_tasks = np;
346                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
347                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
348                 }
349
350                 /*
351                  * If this was the last task on the current list, and if
352                  * we aren't waiting on any CPUs, report the quiescent state.
353                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
354                  * so we must take a snapshot of the expedited state.
355                  */
356                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
357                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359                                                          rnp->gpnum,
360                                                          0, rnp->qsmask,
361                                                          rnp->level,
362                                                          rnp->grplo,
363                                                          rnp->grphi,
364                                                          !!rnp->gp_tasks);
365                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366                 } else {
367                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
368                 }
369
370                 /* Unboost if we were boosted. */
371                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372                         rt_mutex_unlock(&rnp->boost_mtx);
373
374                 /*
375                  * If this was the last task on the expedited lists,
376                  * then we need to report up the rcu_node hierarchy.
377                  */
378                 if (!empty_exp && empty_exp_now)
379                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
380         } else {
381                 local_irq_restore(flags);
382         }
383 }
384
385 /*
386  * Dump detailed information for all tasks blocking the current RCU
387  * grace period on the specified rcu_node structure.
388  */
389 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
390 {
391         unsigned long flags;
392         struct task_struct *t;
393
394         raw_spin_lock_irqsave(&rnp->lock, flags);
395         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
396                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
397                 return;
398         }
399         t = list_entry(rnp->gp_tasks->prev,
400                        struct task_struct, rcu_node_entry);
401         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
402                 sched_show_task(t);
403         raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 }
405
406 /*
407  * Dump detailed information for all tasks blocking the current RCU
408  * grace period.
409  */
410 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
411 {
412         struct rcu_node *rnp = rcu_get_root(rsp);
413
414         rcu_print_detail_task_stall_rnp(rnp);
415         rcu_for_each_leaf_node(rsp, rnp)
416                 rcu_print_detail_task_stall_rnp(rnp);
417 }
418
419 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
420 {
421         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422                rnp->level, rnp->grplo, rnp->grphi);
423 }
424
425 static void rcu_print_task_stall_end(void)
426 {
427         pr_cont("\n");
428 }
429
430 /*
431  * Scan the current list of tasks blocked within RCU read-side critical
432  * sections, printing out the tid of each.
433  */
434 static int rcu_print_task_stall(struct rcu_node *rnp)
435 {
436         struct task_struct *t;
437         int ndetected = 0;
438
439         if (!rcu_preempt_blocked_readers_cgp(rnp))
440                 return 0;
441         rcu_print_task_stall_begin(rnp);
442         t = list_entry(rnp->gp_tasks->prev,
443                        struct task_struct, rcu_node_entry);
444         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445                 pr_cont(" P%d", t->pid);
446                 ndetected++;
447         }
448         rcu_print_task_stall_end();
449         return ndetected;
450 }
451
452 /*
453  * Check that the list of blocked tasks for the newly completed grace
454  * period is in fact empty.  It is a serious bug to complete a grace
455  * period that still has RCU readers blocked!  This function must be
456  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
457  * must be held by the caller.
458  *
459  * Also, if there are blocked tasks on the list, they automatically
460  * block the newly created grace period, so set up ->gp_tasks accordingly.
461  */
462 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
463 {
464         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465         if (rcu_preempt_has_tasks(rnp))
466                 rnp->gp_tasks = rnp->blkd_tasks.next;
467         WARN_ON_ONCE(rnp->qsmask);
468 }
469
470 /*
471  * Check for a quiescent state from the current CPU.  When a task blocks,
472  * the task is recorded in the corresponding CPU's rcu_node structure,
473  * which is checked elsewhere.
474  *
475  * Caller must disable hard irqs.
476  */
477 static void rcu_preempt_check_callbacks(void)
478 {
479         struct task_struct *t = current;
480
481         if (t->rcu_read_lock_nesting == 0) {
482                 rcu_preempt_qs();
483                 return;
484         }
485         if (t->rcu_read_lock_nesting > 0 &&
486             __this_cpu_read(rcu_data_p->qs_pending) &&
487             !__this_cpu_read(rcu_data_p->passed_quiesce))
488                 t->rcu_read_unlock_special.b.need_qs = true;
489 }
490
491 #ifdef CONFIG_RCU_BOOST
492
493 static void rcu_preempt_do_callbacks(void)
494 {
495         rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 }
497
498 #endif /* #ifdef CONFIG_RCU_BOOST */
499
500 /*
501  * Queue a preemptible-RCU callback for invocation after a grace period.
502  */
503 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
504 {
505         __call_rcu(head, func, rcu_state_p, -1, 0);
506 }
507 EXPORT_SYMBOL_GPL(call_rcu);
508
509 /**
510  * synchronize_rcu - wait until a grace period has elapsed.
511  *
512  * Control will return to the caller some time after a full grace
513  * period has elapsed, in other words after all currently executing RCU
514  * read-side critical sections have completed.  Note, however, that
515  * upon return from synchronize_rcu(), the caller might well be executing
516  * concurrently with new RCU read-side critical sections that began while
517  * synchronize_rcu() was waiting.  RCU read-side critical sections are
518  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519  *
520  * See the description of synchronize_sched() for more detailed information
521  * on memory ordering guarantees.
522  */
523 void synchronize_rcu(void)
524 {
525         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
526                            !lock_is_held(&rcu_lock_map) &&
527                            !lock_is_held(&rcu_sched_lock_map),
528                            "Illegal synchronize_rcu() in RCU read-side critical section");
529         if (!rcu_scheduler_active)
530                 return;
531         if (rcu_gp_is_expedited())
532                 synchronize_rcu_expedited();
533         else
534                 wait_rcu_gp(call_rcu);
535 }
536 EXPORT_SYMBOL_GPL(synchronize_rcu);
537
538 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
539
540 /*
541  * Return non-zero if there are any tasks in RCU read-side critical
542  * sections blocking the current preemptible-RCU expedited grace period.
543  * If there is no preemptible-RCU expedited grace period currently in
544  * progress, returns zero unconditionally.
545  */
546 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
547 {
548         return rnp->exp_tasks != NULL;
549 }
550
551 /*
552  * return non-zero if there is no RCU expedited grace period in progress
553  * for the specified rcu_node structure, in other words, if all CPUs and
554  * tasks covered by the specified rcu_node structure have done their bit
555  * for the current expedited grace period.  Works only for preemptible
556  * RCU -- other RCU implementation use other means.
557  *
558  * Caller must hold the root rcu_node's exp_funnel_mutex.
559  */
560 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
561 {
562         return !rcu_preempted_readers_exp(rnp) &&
563                READ_ONCE(rnp->expmask) == 0;
564 }
565
566 /*
567  * Report the exit from RCU read-side critical section for the last task
568  * that queued itself during or before the current expedited preemptible-RCU
569  * grace period.  This event is reported either to the rcu_node structure on
570  * which the task was queued or to one of that rcu_node structure's ancestors,
571  * recursively up the tree.  (Calm down, calm down, we do the recursion
572  * iteratively!)
573  *
574  * Caller must hold the root rcu_node's exp_funnel_mutex.
575  */
576 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
577                                bool wake)
578 {
579         unsigned long flags;
580         unsigned long mask;
581
582         raw_spin_lock_irqsave(&rnp->lock, flags);
583         smp_mb__after_unlock_lock();
584         for (;;) {
585                 if (!sync_rcu_preempt_exp_done(rnp)) {
586                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
587                         break;
588                 }
589                 if (rnp->parent == NULL) {
590                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
591                         if (wake) {
592                                 smp_mb(); /* EGP done before wake_up(). */
593                                 wake_up(&sync_rcu_preempt_exp_wq);
594                         }
595                         break;
596                 }
597                 mask = rnp->grpmask;
598                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
599                 rnp = rnp->parent;
600                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
601                 smp_mb__after_unlock_lock();
602                 rnp->expmask &= ~mask;
603         }
604 }
605
606 /*
607  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
608  * grace period for the specified rcu_node structure, phase 1.  If there
609  * are such tasks, set the ->expmask bits up the rcu_node tree and also
610  * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
611  * that work is needed here.
612  *
613  * Caller must hold the root rcu_node's exp_funnel_mutex.
614  */
615 static void
616 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
617 {
618         unsigned long flags;
619         unsigned long mask;
620         struct rcu_node *rnp_up;
621
622         raw_spin_lock_irqsave(&rnp->lock, flags);
623         smp_mb__after_unlock_lock();
624         WARN_ON_ONCE(rnp->expmask);
625         WARN_ON_ONCE(rnp->exp_tasks);
626         if (!rcu_preempt_has_tasks(rnp)) {
627                 /* No blocked tasks, nothing to do. */
628                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
629                 return;
630         }
631         /* Call for Phase 2 and propagate ->expmask bits up the tree. */
632         rnp->expmask = 1;
633         rnp_up = rnp;
634         while (rnp_up->parent) {
635                 mask = rnp_up->grpmask;
636                 rnp_up = rnp_up->parent;
637                 if (rnp_up->expmask & mask)
638                         break;
639                 raw_spin_lock(&rnp_up->lock); /* irqs already off */
640                 smp_mb__after_unlock_lock();
641                 rnp_up->expmask |= mask;
642                 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
643         }
644         raw_spin_unlock_irqrestore(&rnp->lock, flags);
645 }
646
647 /*
648  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
649  * grace period for the specified rcu_node structure, phase 2.  If the
650  * leaf rcu_node structure has its ->expmask field set, check for tasks.
651  * If there are some, clear ->expmask and set ->exp_tasks accordingly,
652  * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
653  * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
654  * enabling rcu_read_unlock_special() to do the bit-clearing.
655  *
656  * Caller must hold the root rcu_node's exp_funnel_mutex.
657  */
658 static void
659 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
660 {
661         unsigned long flags;
662
663         raw_spin_lock_irqsave(&rnp->lock, flags);
664         smp_mb__after_unlock_lock();
665         if (!rnp->expmask) {
666                 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
667                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
668                 return;
669         }
670
671         /* Phase 1 is over. */
672         rnp->expmask = 0;
673
674         /*
675          * If there are still blocked tasks, set up ->exp_tasks so that
676          * rcu_read_unlock_special() will wake us and then boost them.
677          */
678         if (rcu_preempt_has_tasks(rnp)) {
679                 rnp->exp_tasks = rnp->blkd_tasks.next;
680                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
681                 return;
682         }
683
684         /* No longer any blocked tasks, so undo bit setting. */
685         raw_spin_unlock_irqrestore(&rnp->lock, flags);
686         rcu_report_exp_rnp(rsp, rnp, false);
687 }
688
689 /**
690  * synchronize_rcu_expedited - Brute-force RCU grace period
691  *
692  * Wait for an RCU-preempt grace period, but expedite it.  The basic
693  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
694  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
695  * significant time on all CPUs and is unfriendly to real-time workloads,
696  * so is thus not recommended for any sort of common-case code.
697  * In fact, if you are using synchronize_rcu_expedited() in a loop,
698  * please restructure your code to batch your updates, and then Use a
699  * single synchronize_rcu() instead.
700  */
701 void synchronize_rcu_expedited(void)
702 {
703         struct rcu_node *rnp;
704         struct rcu_node *rnp_unlock;
705         struct rcu_state *rsp = rcu_state_p;
706         unsigned long s;
707
708         s = rcu_exp_gp_seq_snap(rsp);
709
710         rnp_unlock = exp_funnel_lock(rsp, s);
711         if (rnp_unlock == NULL)
712                 return;  /* Someone else did our work for us. */
713
714         rcu_exp_gp_seq_start(rsp);
715
716         /* force all RCU readers onto ->blkd_tasks lists. */
717         synchronize_sched_expedited();
718
719         /*
720          * Snapshot current state of ->blkd_tasks lists into ->expmask.
721          * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
722          * to start clearing them.  Doing this in one phase leads to
723          * strange races between setting and clearing bits, so just say "no"!
724          */
725         rcu_for_each_leaf_node(rsp, rnp)
726                 sync_rcu_preempt_exp_init1(rsp, rnp);
727         rcu_for_each_leaf_node(rsp, rnp)
728                 sync_rcu_preempt_exp_init2(rsp, rnp);
729
730         /* Wait for snapshotted ->blkd_tasks lists to drain. */
731         rnp = rcu_get_root(rsp);
732         wait_event(sync_rcu_preempt_exp_wq,
733                    sync_rcu_preempt_exp_done(rnp));
734
735         /* Clean up and exit. */
736         rcu_exp_gp_seq_end(rsp);
737         mutex_unlock(&rnp_unlock->exp_funnel_mutex);
738         smp_mb(); /* ensure subsequent action seen after grace period. */
739 }
740 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
741
742 /**
743  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
744  *
745  * Note that this primitive does not necessarily wait for an RCU grace period
746  * to complete.  For example, if there are no RCU callbacks queued anywhere
747  * in the system, then rcu_barrier() is within its rights to return
748  * immediately, without waiting for anything, much less an RCU grace period.
749  */
750 void rcu_barrier(void)
751 {
752         _rcu_barrier(rcu_state_p);
753 }
754 EXPORT_SYMBOL_GPL(rcu_barrier);
755
756 /*
757  * Initialize preemptible RCU's state structures.
758  */
759 static void __init __rcu_init_preempt(void)
760 {
761         rcu_init_one(rcu_state_p, rcu_data_p);
762 }
763
764 /*
765  * Check for a task exiting while in a preemptible-RCU read-side
766  * critical section, clean up if so.  No need to issue warnings,
767  * as debug_check_no_locks_held() already does this if lockdep
768  * is enabled.
769  */
770 void exit_rcu(void)
771 {
772         struct task_struct *t = current;
773
774         if (likely(list_empty(&current->rcu_node_entry)))
775                 return;
776         t->rcu_read_lock_nesting = 1;
777         barrier();
778         t->rcu_read_unlock_special.b.blocked = true;
779         __rcu_read_unlock();
780 }
781
782 #else /* #ifdef CONFIG_PREEMPT_RCU */
783
784 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
785 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
786
787 /*
788  * Tell them what RCU they are running.
789  */
790 static void __init rcu_bootup_announce(void)
791 {
792         pr_info("Hierarchical RCU implementation.\n");
793         rcu_bootup_announce_oddness();
794 }
795
796 /*
797  * Because preemptible RCU does not exist, we never have to check for
798  * CPUs being in quiescent states.
799  */
800 static void rcu_preempt_note_context_switch(void)
801 {
802 }
803
804 /*
805  * Because preemptible RCU does not exist, there are never any preempted
806  * RCU readers.
807  */
808 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
809 {
810         return 0;
811 }
812
813 /*
814  * Because there is no preemptible RCU, there can be no readers blocked.
815  */
816 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
817 {
818         return false;
819 }
820
821 /*
822  * Because preemptible RCU does not exist, we never have to check for
823  * tasks blocked within RCU read-side critical sections.
824  */
825 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
826 {
827 }
828
829 /*
830  * Because preemptible RCU does not exist, we never have to check for
831  * tasks blocked within RCU read-side critical sections.
832  */
833 static int rcu_print_task_stall(struct rcu_node *rnp)
834 {
835         return 0;
836 }
837
838 /*
839  * Because there is no preemptible RCU, there can be no readers blocked,
840  * so there is no need to check for blocked tasks.  So check only for
841  * bogus qsmask values.
842  */
843 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
844 {
845         WARN_ON_ONCE(rnp->qsmask);
846 }
847
848 /*
849  * Because preemptible RCU does not exist, it never has any callbacks
850  * to check.
851  */
852 static void rcu_preempt_check_callbacks(void)
853 {
854 }
855
856 /*
857  * Wait for an rcu-preempt grace period, but make it happen quickly.
858  * But because preemptible RCU does not exist, map to rcu-sched.
859  */
860 void synchronize_rcu_expedited(void)
861 {
862         synchronize_sched_expedited();
863 }
864 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
865
866 /*
867  * Because preemptible RCU does not exist, rcu_barrier() is just
868  * another name for rcu_barrier_sched().
869  */
870 void rcu_barrier(void)
871 {
872         rcu_barrier_sched();
873 }
874 EXPORT_SYMBOL_GPL(rcu_barrier);
875
876 /*
877  * Because preemptible RCU does not exist, it need not be initialized.
878  */
879 static void __init __rcu_init_preempt(void)
880 {
881 }
882
883 /*
884  * Because preemptible RCU does not exist, tasks cannot possibly exit
885  * while in preemptible RCU read-side critical sections.
886  */
887 void exit_rcu(void)
888 {
889 }
890
891 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
892
893 #ifdef CONFIG_RCU_BOOST
894
895 #include "../locking/rtmutex_common.h"
896
897 #ifdef CONFIG_RCU_TRACE
898
899 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
900 {
901         if (!rcu_preempt_has_tasks(rnp))
902                 rnp->n_balk_blkd_tasks++;
903         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
904                 rnp->n_balk_exp_gp_tasks++;
905         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
906                 rnp->n_balk_boost_tasks++;
907         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
908                 rnp->n_balk_notblocked++;
909         else if (rnp->gp_tasks != NULL &&
910                  ULONG_CMP_LT(jiffies, rnp->boost_time))
911                 rnp->n_balk_notyet++;
912         else
913                 rnp->n_balk_nos++;
914 }
915
916 #else /* #ifdef CONFIG_RCU_TRACE */
917
918 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
919 {
920 }
921
922 #endif /* #else #ifdef CONFIG_RCU_TRACE */
923
924 static void rcu_wake_cond(struct task_struct *t, int status)
925 {
926         /*
927          * If the thread is yielding, only wake it when this
928          * is invoked from idle
929          */
930         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
931                 wake_up_process(t);
932 }
933
934 /*
935  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
936  * or ->boost_tasks, advancing the pointer to the next task in the
937  * ->blkd_tasks list.
938  *
939  * Note that irqs must be enabled: boosting the task can block.
940  * Returns 1 if there are more tasks needing to be boosted.
941  */
942 static int rcu_boost(struct rcu_node *rnp)
943 {
944         unsigned long flags;
945         struct task_struct *t;
946         struct list_head *tb;
947
948         if (READ_ONCE(rnp->exp_tasks) == NULL &&
949             READ_ONCE(rnp->boost_tasks) == NULL)
950                 return 0;  /* Nothing left to boost. */
951
952         raw_spin_lock_irqsave(&rnp->lock, flags);
953         smp_mb__after_unlock_lock();
954
955         /*
956          * Recheck under the lock: all tasks in need of boosting
957          * might exit their RCU read-side critical sections on their own.
958          */
959         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
960                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
961                 return 0;
962         }
963
964         /*
965          * Preferentially boost tasks blocking expedited grace periods.
966          * This cannot starve the normal grace periods because a second
967          * expedited grace period must boost all blocked tasks, including
968          * those blocking the pre-existing normal grace period.
969          */
970         if (rnp->exp_tasks != NULL) {
971                 tb = rnp->exp_tasks;
972                 rnp->n_exp_boosts++;
973         } else {
974                 tb = rnp->boost_tasks;
975                 rnp->n_normal_boosts++;
976         }
977         rnp->n_tasks_boosted++;
978
979         /*
980          * We boost task t by manufacturing an rt_mutex that appears to
981          * be held by task t.  We leave a pointer to that rt_mutex where
982          * task t can find it, and task t will release the mutex when it
983          * exits its outermost RCU read-side critical section.  Then
984          * simply acquiring this artificial rt_mutex will boost task
985          * t's priority.  (Thanks to tglx for suggesting this approach!)
986          *
987          * Note that task t must acquire rnp->lock to remove itself from
988          * the ->blkd_tasks list, which it will do from exit() if from
989          * nowhere else.  We therefore are guaranteed that task t will
990          * stay around at least until we drop rnp->lock.  Note that
991          * rnp->lock also resolves races between our priority boosting
992          * and task t's exiting its outermost RCU read-side critical
993          * section.
994          */
995         t = container_of(tb, struct task_struct, rcu_node_entry);
996         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
997         raw_spin_unlock_irqrestore(&rnp->lock, flags);
998         /* Lock only for side effect: boosts task t's priority. */
999         rt_mutex_lock(&rnp->boost_mtx);
1000         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1001
1002         return READ_ONCE(rnp->exp_tasks) != NULL ||
1003                READ_ONCE(rnp->boost_tasks) != NULL;
1004 }
1005
1006 /*
1007  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1008  * root rcu_node.
1009  */
1010 static int rcu_boost_kthread(void *arg)
1011 {
1012         struct rcu_node *rnp = (struct rcu_node *)arg;
1013         int spincnt = 0;
1014         int more2boost;
1015
1016         trace_rcu_utilization(TPS("Start boost kthread@init"));
1017         for (;;) {
1018                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1019                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1020                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1021                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1022                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1023                 more2boost = rcu_boost(rnp);
1024                 if (more2boost)
1025                         spincnt++;
1026                 else
1027                         spincnt = 0;
1028                 if (spincnt > 10) {
1029                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1030                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1031                         schedule_timeout_interruptible(2);
1032                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1033                         spincnt = 0;
1034                 }
1035         }
1036         /* NOTREACHED */
1037         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1038         return 0;
1039 }
1040
1041 /*
1042  * Check to see if it is time to start boosting RCU readers that are
1043  * blocking the current grace period, and, if so, tell the per-rcu_node
1044  * kthread to start boosting them.  If there is an expedited grace
1045  * period in progress, it is always time to boost.
1046  *
1047  * The caller must hold rnp->lock, which this function releases.
1048  * The ->boost_kthread_task is immortal, so we don't need to worry
1049  * about it going away.
1050  */
1051 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1052         __releases(rnp->lock)
1053 {
1054         struct task_struct *t;
1055
1056         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1057                 rnp->n_balk_exp_gp_tasks++;
1058                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1059                 return;
1060         }
1061         if (rnp->exp_tasks != NULL ||
1062             (rnp->gp_tasks != NULL &&
1063              rnp->boost_tasks == NULL &&
1064              rnp->qsmask == 0 &&
1065              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1066                 if (rnp->exp_tasks == NULL)
1067                         rnp->boost_tasks = rnp->gp_tasks;
1068                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1069                 t = rnp->boost_kthread_task;
1070                 if (t)
1071                         rcu_wake_cond(t, rnp->boost_kthread_status);
1072         } else {
1073                 rcu_initiate_boost_trace(rnp);
1074                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1075         }
1076 }
1077
1078 /*
1079  * Wake up the per-CPU kthread to invoke RCU callbacks.
1080  */
1081 static void invoke_rcu_callbacks_kthread(void)
1082 {
1083         unsigned long flags;
1084
1085         local_irq_save(flags);
1086         __this_cpu_write(rcu_cpu_has_work, 1);
1087         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1088             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1089                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1090                               __this_cpu_read(rcu_cpu_kthread_status));
1091         }
1092         local_irq_restore(flags);
1093 }
1094
1095 /*
1096  * Is the current CPU running the RCU-callbacks kthread?
1097  * Caller must have preemption disabled.
1098  */
1099 static bool rcu_is_callbacks_kthread(void)
1100 {
1101         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1102 }
1103
1104 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1105
1106 /*
1107  * Do priority-boost accounting for the start of a new grace period.
1108  */
1109 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1110 {
1111         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1112 }
1113
1114 /*
1115  * Create an RCU-boost kthread for the specified node if one does not
1116  * already exist.  We only create this kthread for preemptible RCU.
1117  * Returns zero if all is well, a negated errno otherwise.
1118  */
1119 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1120                                        struct rcu_node *rnp)
1121 {
1122         int rnp_index = rnp - &rsp->node[0];
1123         unsigned long flags;
1124         struct sched_param sp;
1125         struct task_struct *t;
1126
1127         if (rcu_state_p != rsp)
1128                 return 0;
1129
1130         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1131                 return 0;
1132
1133         rsp->boost = 1;
1134         if (rnp->boost_kthread_task != NULL)
1135                 return 0;
1136         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1137                            "rcub/%d", rnp_index);
1138         if (IS_ERR(t))
1139                 return PTR_ERR(t);
1140         raw_spin_lock_irqsave(&rnp->lock, flags);
1141         smp_mb__after_unlock_lock();
1142         rnp->boost_kthread_task = t;
1143         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144         sp.sched_priority = kthread_prio;
1145         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1146         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1147         return 0;
1148 }
1149
1150 static void rcu_kthread_do_work(void)
1151 {
1152         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1153         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1154         rcu_preempt_do_callbacks();
1155 }
1156
1157 static void rcu_cpu_kthread_setup(unsigned int cpu)
1158 {
1159         struct sched_param sp;
1160
1161         sp.sched_priority = kthread_prio;
1162         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1163 }
1164
1165 static void rcu_cpu_kthread_park(unsigned int cpu)
1166 {
1167         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1168 }
1169
1170 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1171 {
1172         return __this_cpu_read(rcu_cpu_has_work);
1173 }
1174
1175 /*
1176  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1177  * RCU softirq used in flavors and configurations of RCU that do not
1178  * support RCU priority boosting.
1179  */
1180 static void rcu_cpu_kthread(unsigned int cpu)
1181 {
1182         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1183         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1184         int spincnt;
1185
1186         for (spincnt = 0; spincnt < 10; spincnt++) {
1187                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1188                 local_bh_disable();
1189                 *statusp = RCU_KTHREAD_RUNNING;
1190                 this_cpu_inc(rcu_cpu_kthread_loops);
1191                 local_irq_disable();
1192                 work = *workp;
1193                 *workp = 0;
1194                 local_irq_enable();
1195                 if (work)
1196                         rcu_kthread_do_work();
1197                 local_bh_enable();
1198                 if (*workp == 0) {
1199                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1200                         *statusp = RCU_KTHREAD_WAITING;
1201                         return;
1202                 }
1203         }
1204         *statusp = RCU_KTHREAD_YIELDING;
1205         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1206         schedule_timeout_interruptible(2);
1207         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1208         *statusp = RCU_KTHREAD_WAITING;
1209 }
1210
1211 /*
1212  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1213  * served by the rcu_node in question.  The CPU hotplug lock is still
1214  * held, so the value of rnp->qsmaskinit will be stable.
1215  *
1216  * We don't include outgoingcpu in the affinity set, use -1 if there is
1217  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1218  * this function allows the kthread to execute on any CPU.
1219  */
1220 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1221 {
1222         struct task_struct *t = rnp->boost_kthread_task;
1223         unsigned long mask = rcu_rnp_online_cpus(rnp);
1224         cpumask_var_t cm;
1225         int cpu;
1226
1227         if (!t)
1228                 return;
1229         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1230                 return;
1231         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1232                 if ((mask & 0x1) && cpu != outgoingcpu)
1233                         cpumask_set_cpu(cpu, cm);
1234         if (cpumask_weight(cm) == 0)
1235                 cpumask_setall(cm);
1236         set_cpus_allowed_ptr(t, cm);
1237         free_cpumask_var(cm);
1238 }
1239
1240 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1241         .store                  = &rcu_cpu_kthread_task,
1242         .thread_should_run      = rcu_cpu_kthread_should_run,
1243         .thread_fn              = rcu_cpu_kthread,
1244         .thread_comm            = "rcuc/%u",
1245         .setup                  = rcu_cpu_kthread_setup,
1246         .park                   = rcu_cpu_kthread_park,
1247 };
1248
1249 /*
1250  * Spawn boost kthreads -- called as soon as the scheduler is running.
1251  */
1252 static void __init rcu_spawn_boost_kthreads(void)
1253 {
1254         struct rcu_node *rnp;
1255         int cpu;
1256
1257         for_each_possible_cpu(cpu)
1258                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1259         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1260         rcu_for_each_leaf_node(rcu_state_p, rnp)
1261                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262 }
1263
1264 static void rcu_prepare_kthreads(int cpu)
1265 {
1266         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1267         struct rcu_node *rnp = rdp->mynode;
1268
1269         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1270         if (rcu_scheduler_fully_active)
1271                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1272 }
1273
1274 #else /* #ifdef CONFIG_RCU_BOOST */
1275
1276 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1277         __releases(rnp->lock)
1278 {
1279         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1280 }
1281
1282 static void invoke_rcu_callbacks_kthread(void)
1283 {
1284         WARN_ON_ONCE(1);
1285 }
1286
1287 static bool rcu_is_callbacks_kthread(void)
1288 {
1289         return false;
1290 }
1291
1292 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1293 {
1294 }
1295
1296 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1297 {
1298 }
1299
1300 static void __init rcu_spawn_boost_kthreads(void)
1301 {
1302 }
1303
1304 static void rcu_prepare_kthreads(int cpu)
1305 {
1306 }
1307
1308 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1309
1310 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1311
1312 /*
1313  * Check to see if any future RCU-related work will need to be done
1314  * by the current CPU, even if none need be done immediately, returning
1315  * 1 if so.  This function is part of the RCU implementation; it is -not-
1316  * an exported member of the RCU API.
1317  *
1318  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1319  * any flavor of RCU.
1320  */
1321 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1322 {
1323         *nextevt = KTIME_MAX;
1324         return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1325                ? 0 : rcu_cpu_has_callbacks(NULL);
1326 }
1327
1328 /*
1329  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1330  * after it.
1331  */
1332 static void rcu_cleanup_after_idle(void)
1333 {
1334 }
1335
1336 /*
1337  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1338  * is nothing.
1339  */
1340 static void rcu_prepare_for_idle(void)
1341 {
1342 }
1343
1344 /*
1345  * Don't bother keeping a running count of the number of RCU callbacks
1346  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1347  */
1348 static void rcu_idle_count_callbacks_posted(void)
1349 {
1350 }
1351
1352 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1353
1354 /*
1355  * This code is invoked when a CPU goes idle, at which point we want
1356  * to have the CPU do everything required for RCU so that it can enter
1357  * the energy-efficient dyntick-idle mode.  This is handled by a
1358  * state machine implemented by rcu_prepare_for_idle() below.
1359  *
1360  * The following three proprocessor symbols control this state machine:
1361  *
1362  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1363  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1364  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1365  *      benchmarkers who might otherwise be tempted to set this to a large
1366  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1367  *      system.  And if you are -that- concerned about energy efficiency,
1368  *      just power the system down and be done with it!
1369  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1370  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1371  *      callbacks pending.  Setting this too high can OOM your system.
1372  *
1373  * The values below work well in practice.  If future workloads require
1374  * adjustment, they can be converted into kernel config parameters, though
1375  * making the state machine smarter might be a better option.
1376  */
1377 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1378 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1379
1380 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1381 module_param(rcu_idle_gp_delay, int, 0644);
1382 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1383 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1384
1385 /*
1386  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1387  * only if it has been awhile since the last time we did so.  Afterwards,
1388  * if there are any callbacks ready for immediate invocation, return true.
1389  */
1390 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1391 {
1392         bool cbs_ready = false;
1393         struct rcu_data *rdp;
1394         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1395         struct rcu_node *rnp;
1396         struct rcu_state *rsp;
1397
1398         /* Exit early if we advanced recently. */
1399         if (jiffies == rdtp->last_advance_all)
1400                 return false;
1401         rdtp->last_advance_all = jiffies;
1402
1403         for_each_rcu_flavor(rsp) {
1404                 rdp = this_cpu_ptr(rsp->rda);
1405                 rnp = rdp->mynode;
1406
1407                 /*
1408                  * Don't bother checking unless a grace period has
1409                  * completed since we last checked and there are
1410                  * callbacks not yet ready to invoke.
1411                  */
1412                 if ((rdp->completed != rnp->completed ||
1413                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1414                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1415                         note_gp_changes(rsp, rdp);
1416
1417                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1418                         cbs_ready = true;
1419         }
1420         return cbs_ready;
1421 }
1422
1423 /*
1424  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1425  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1426  * caller to set the timeout based on whether or not there are non-lazy
1427  * callbacks.
1428  *
1429  * The caller must have disabled interrupts.
1430  */
1431 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1432 {
1433         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1434         unsigned long dj;
1435
1436         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1437                 *nextevt = KTIME_MAX;
1438                 return 0;
1439         }
1440
1441         /* Snapshot to detect later posting of non-lazy callback. */
1442         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1443
1444         /* If no callbacks, RCU doesn't need the CPU. */
1445         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1446                 *nextevt = KTIME_MAX;
1447                 return 0;
1448         }
1449
1450         /* Attempt to advance callbacks. */
1451         if (rcu_try_advance_all_cbs()) {
1452                 /* Some ready to invoke, so initiate later invocation. */
1453                 invoke_rcu_core();
1454                 return 1;
1455         }
1456         rdtp->last_accelerate = jiffies;
1457
1458         /* Request timer delay depending on laziness, and round. */
1459         if (!rdtp->all_lazy) {
1460                 dj = round_up(rcu_idle_gp_delay + jiffies,
1461                                rcu_idle_gp_delay) - jiffies;
1462         } else {
1463                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1464         }
1465         *nextevt = basemono + dj * TICK_NSEC;
1466         return 0;
1467 }
1468
1469 /*
1470  * Prepare a CPU for idle from an RCU perspective.  The first major task
1471  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1472  * The second major task is to check to see if a non-lazy callback has
1473  * arrived at a CPU that previously had only lazy callbacks.  The third
1474  * major task is to accelerate (that is, assign grace-period numbers to)
1475  * any recently arrived callbacks.
1476  *
1477  * The caller must have disabled interrupts.
1478  */
1479 static void rcu_prepare_for_idle(void)
1480 {
1481         bool needwake;
1482         struct rcu_data *rdp;
1483         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1484         struct rcu_node *rnp;
1485         struct rcu_state *rsp;
1486         int tne;
1487
1488         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1489                 return;
1490
1491         /* Handle nohz enablement switches conservatively. */
1492         tne = READ_ONCE(tick_nohz_active);
1493         if (tne != rdtp->tick_nohz_enabled_snap) {
1494                 if (rcu_cpu_has_callbacks(NULL))
1495                         invoke_rcu_core(); /* force nohz to see update. */
1496                 rdtp->tick_nohz_enabled_snap = tne;
1497                 return;
1498         }
1499         if (!tne)
1500                 return;
1501
1502         /* If this is a no-CBs CPU, no callbacks, just return. */
1503         if (rcu_is_nocb_cpu(smp_processor_id()))
1504                 return;
1505
1506         /*
1507          * If a non-lazy callback arrived at a CPU having only lazy
1508          * callbacks, invoke RCU core for the side-effect of recalculating
1509          * idle duration on re-entry to idle.
1510          */
1511         if (rdtp->all_lazy &&
1512             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1513                 rdtp->all_lazy = false;
1514                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1515                 invoke_rcu_core();
1516                 return;
1517         }
1518
1519         /*
1520          * If we have not yet accelerated this jiffy, accelerate all
1521          * callbacks on this CPU.
1522          */
1523         if (rdtp->last_accelerate == jiffies)
1524                 return;
1525         rdtp->last_accelerate = jiffies;
1526         for_each_rcu_flavor(rsp) {
1527                 rdp = this_cpu_ptr(rsp->rda);
1528                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1529                         continue;
1530                 rnp = rdp->mynode;
1531                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1532                 smp_mb__after_unlock_lock();
1533                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1534                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1535                 if (needwake)
1536                         rcu_gp_kthread_wake(rsp);
1537         }
1538 }
1539
1540 /*
1541  * Clean up for exit from idle.  Attempt to advance callbacks based on
1542  * any grace periods that elapsed while the CPU was idle, and if any
1543  * callbacks are now ready to invoke, initiate invocation.
1544  */
1545 static void rcu_cleanup_after_idle(void)
1546 {
1547         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1548             rcu_is_nocb_cpu(smp_processor_id()))
1549                 return;
1550         if (rcu_try_advance_all_cbs())
1551                 invoke_rcu_core();
1552 }
1553
1554 /*
1555  * Keep a running count of the number of non-lazy callbacks posted
1556  * on this CPU.  This running counter (which is never decremented) allows
1557  * rcu_prepare_for_idle() to detect when something out of the idle loop
1558  * posts a callback, even if an equal number of callbacks are invoked.
1559  * Of course, callbacks should only be posted from within a trace event
1560  * designed to be called from idle or from within RCU_NONIDLE().
1561  */
1562 static void rcu_idle_count_callbacks_posted(void)
1563 {
1564         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1565 }
1566
1567 /*
1568  * Data for flushing lazy RCU callbacks at OOM time.
1569  */
1570 static atomic_t oom_callback_count;
1571 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1572
1573 /*
1574  * RCU OOM callback -- decrement the outstanding count and deliver the
1575  * wake-up if we are the last one.
1576  */
1577 static void rcu_oom_callback(struct rcu_head *rhp)
1578 {
1579         if (atomic_dec_and_test(&oom_callback_count))
1580                 wake_up(&oom_callback_wq);
1581 }
1582
1583 /*
1584  * Post an rcu_oom_notify callback on the current CPU if it has at
1585  * least one lazy callback.  This will unnecessarily post callbacks
1586  * to CPUs that already have a non-lazy callback at the end of their
1587  * callback list, but this is an infrequent operation, so accept some
1588  * extra overhead to keep things simple.
1589  */
1590 static void rcu_oom_notify_cpu(void *unused)
1591 {
1592         struct rcu_state *rsp;
1593         struct rcu_data *rdp;
1594
1595         for_each_rcu_flavor(rsp) {
1596                 rdp = raw_cpu_ptr(rsp->rda);
1597                 if (rdp->qlen_lazy != 0) {
1598                         atomic_inc(&oom_callback_count);
1599                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1600                 }
1601         }
1602 }
1603
1604 /*
1605  * If low on memory, ensure that each CPU has a non-lazy callback.
1606  * This will wake up CPUs that have only lazy callbacks, in turn
1607  * ensuring that they free up the corresponding memory in a timely manner.
1608  * Because an uncertain amount of memory will be freed in some uncertain
1609  * timeframe, we do not claim to have freed anything.
1610  */
1611 static int rcu_oom_notify(struct notifier_block *self,
1612                           unsigned long notused, void *nfreed)
1613 {
1614         int cpu;
1615
1616         /* Wait for callbacks from earlier instance to complete. */
1617         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1618         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1619
1620         /*
1621          * Prevent premature wakeup: ensure that all increments happen
1622          * before there is a chance of the counter reaching zero.
1623          */
1624         atomic_set(&oom_callback_count, 1);
1625
1626         get_online_cpus();
1627         for_each_online_cpu(cpu) {
1628                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1629                 cond_resched_rcu_qs();
1630         }
1631         put_online_cpus();
1632
1633         /* Unconditionally decrement: no need to wake ourselves up. */
1634         atomic_dec(&oom_callback_count);
1635
1636         return NOTIFY_OK;
1637 }
1638
1639 static struct notifier_block rcu_oom_nb = {
1640         .notifier_call = rcu_oom_notify
1641 };
1642
1643 static int __init rcu_register_oom_notifier(void)
1644 {
1645         register_oom_notifier(&rcu_oom_nb);
1646         return 0;
1647 }
1648 early_initcall(rcu_register_oom_notifier);
1649
1650 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1651
1652 #ifdef CONFIG_RCU_FAST_NO_HZ
1653
1654 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1655 {
1656         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1657         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1658
1659         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1660                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1661                 ulong2long(nlpd),
1662                 rdtp->all_lazy ? 'L' : '.',
1663                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1664 }
1665
1666 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1667
1668 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1669 {
1670         *cp = '\0';
1671 }
1672
1673 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1674
1675 /* Initiate the stall-info list. */
1676 static void print_cpu_stall_info_begin(void)
1677 {
1678         pr_cont("\n");
1679 }
1680
1681 /*
1682  * Print out diagnostic information for the specified stalled CPU.
1683  *
1684  * If the specified CPU is aware of the current RCU grace period
1685  * (flavor specified by rsp), then print the number of scheduling
1686  * clock interrupts the CPU has taken during the time that it has
1687  * been aware.  Otherwise, print the number of RCU grace periods
1688  * that this CPU is ignorant of, for example, "1" if the CPU was
1689  * aware of the previous grace period.
1690  *
1691  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1692  */
1693 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1694 {
1695         char fast_no_hz[72];
1696         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1697         struct rcu_dynticks *rdtp = rdp->dynticks;
1698         char *ticks_title;
1699         unsigned long ticks_value;
1700
1701         if (rsp->gpnum == rdp->gpnum) {
1702                 ticks_title = "ticks this GP";
1703                 ticks_value = rdp->ticks_this_gp;
1704         } else {
1705                 ticks_title = "GPs behind";
1706                 ticks_value = rsp->gpnum - rdp->gpnum;
1707         }
1708         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1709         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1710                cpu, ticks_value, ticks_title,
1711                atomic_read(&rdtp->dynticks) & 0xfff,
1712                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1713                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1714                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1715                fast_no_hz);
1716 }
1717
1718 /* Terminate the stall-info list. */
1719 static void print_cpu_stall_info_end(void)
1720 {
1721         pr_err("\t");
1722 }
1723
1724 /* Zero ->ticks_this_gp for all flavors of RCU. */
1725 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1726 {
1727         rdp->ticks_this_gp = 0;
1728         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1729 }
1730
1731 /* Increment ->ticks_this_gp for all flavors of RCU. */
1732 static void increment_cpu_stall_ticks(void)
1733 {
1734         struct rcu_state *rsp;
1735
1736         for_each_rcu_flavor(rsp)
1737                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1738 }
1739
1740 #ifdef CONFIG_RCU_NOCB_CPU
1741
1742 /*
1743  * Offload callback processing from the boot-time-specified set of CPUs
1744  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1745  * kthread created that pulls the callbacks from the corresponding CPU,
1746  * waits for a grace period to elapse, and invokes the callbacks.
1747  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1748  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1749  * has been specified, in which case each kthread actively polls its
1750  * CPU.  (Which isn't so great for energy efficiency, but which does
1751  * reduce RCU's overhead on that CPU.)
1752  *
1753  * This is intended to be used in conjunction with Frederic Weisbecker's
1754  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1755  * running CPU-bound user-mode computations.
1756  *
1757  * Offloading of callback processing could also in theory be used as
1758  * an energy-efficiency measure because CPUs with no RCU callbacks
1759  * queued are more aggressive about entering dyntick-idle mode.
1760  */
1761
1762
1763 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1764 static int __init rcu_nocb_setup(char *str)
1765 {
1766         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1767         have_rcu_nocb_mask = true;
1768         cpulist_parse(str, rcu_nocb_mask);
1769         return 1;
1770 }
1771 __setup("rcu_nocbs=", rcu_nocb_setup);
1772
1773 static int __init parse_rcu_nocb_poll(char *arg)
1774 {
1775         rcu_nocb_poll = 1;
1776         return 0;
1777 }
1778 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1779
1780 /*
1781  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1782  * grace period.
1783  */
1784 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1785 {
1786         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1787 }
1788
1789 /*
1790  * Set the root rcu_node structure's ->need_future_gp field
1791  * based on the sum of those of all rcu_node structures.  This does
1792  * double-count the root rcu_node structure's requests, but this
1793  * is necessary to handle the possibility of a rcu_nocb_kthread()
1794  * having awakened during the time that the rcu_node structures
1795  * were being updated for the end of the previous grace period.
1796  */
1797 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1798 {
1799         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1800 }
1801
1802 static void rcu_init_one_nocb(struct rcu_node *rnp)
1803 {
1804         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1805         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1806 }
1807
1808 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1809 /* Is the specified CPU a no-CBs CPU? */
1810 bool rcu_is_nocb_cpu(int cpu)
1811 {
1812         if (have_rcu_nocb_mask)
1813                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1814         return false;
1815 }
1816 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1817
1818 /*
1819  * Kick the leader kthread for this NOCB group.
1820  */
1821 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1822 {
1823         struct rcu_data *rdp_leader = rdp->nocb_leader;
1824
1825         if (!READ_ONCE(rdp_leader->nocb_kthread))
1826                 return;
1827         if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1828                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1829                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1830                 wake_up(&rdp_leader->nocb_wq);
1831         }
1832 }
1833
1834 /*
1835  * Does the specified CPU need an RCU callback for the specified flavor
1836  * of rcu_barrier()?
1837  */
1838 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1839 {
1840         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1841         unsigned long ret;
1842 #ifdef CONFIG_PROVE_RCU
1843         struct rcu_head *rhp;
1844 #endif /* #ifdef CONFIG_PROVE_RCU */
1845
1846         /*
1847          * Check count of all no-CBs callbacks awaiting invocation.
1848          * There needs to be a barrier before this function is called,
1849          * but associated with a prior determination that no more
1850          * callbacks would be posted.  In the worst case, the first
1851          * barrier in _rcu_barrier() suffices (but the caller cannot
1852          * necessarily rely on this, not a substitute for the caller
1853          * getting the concurrency design right!).  There must also be
1854          * a barrier between the following load an posting of a callback
1855          * (if a callback is in fact needed).  This is associated with an
1856          * atomic_inc() in the caller.
1857          */
1858         ret = atomic_long_read(&rdp->nocb_q_count);
1859
1860 #ifdef CONFIG_PROVE_RCU
1861         rhp = READ_ONCE(rdp->nocb_head);
1862         if (!rhp)
1863                 rhp = READ_ONCE(rdp->nocb_gp_head);
1864         if (!rhp)
1865                 rhp = READ_ONCE(rdp->nocb_follower_head);
1866
1867         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1868         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1869             rcu_scheduler_fully_active) {
1870                 /* RCU callback enqueued before CPU first came online??? */
1871                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1872                        cpu, rhp->func);
1873                 WARN_ON_ONCE(1);
1874         }
1875 #endif /* #ifdef CONFIG_PROVE_RCU */
1876
1877         return !!ret;
1878 }
1879
1880 /*
1881  * Enqueue the specified string of rcu_head structures onto the specified
1882  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1883  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1884  * counts are supplied by rhcount and rhcount_lazy.
1885  *
1886  * If warranted, also wake up the kthread servicing this CPUs queues.
1887  */
1888 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1889                                     struct rcu_head *rhp,
1890                                     struct rcu_head **rhtp,
1891                                     int rhcount, int rhcount_lazy,
1892                                     unsigned long flags)
1893 {
1894         int len;
1895         struct rcu_head **old_rhpp;
1896         struct task_struct *t;
1897
1898         /* Enqueue the callback on the nocb list and update counts. */
1899         atomic_long_add(rhcount, &rdp->nocb_q_count);
1900         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1901         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1902         WRITE_ONCE(*old_rhpp, rhp);
1903         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1904         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1905
1906         /* If we are not being polled and there is a kthread, awaken it ... */
1907         t = READ_ONCE(rdp->nocb_kthread);
1908         if (rcu_nocb_poll || !t) {
1909                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1910                                     TPS("WakeNotPoll"));
1911                 return;
1912         }
1913         len = atomic_long_read(&rdp->nocb_q_count);
1914         if (old_rhpp == &rdp->nocb_head) {
1915                 if (!irqs_disabled_flags(flags)) {
1916                         /* ... if queue was empty ... */
1917                         wake_nocb_leader(rdp, false);
1918                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1919                                             TPS("WakeEmpty"));
1920                 } else {
1921                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1922                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1923                                             TPS("WakeEmptyIsDeferred"));
1924                 }
1925                 rdp->qlen_last_fqs_check = 0;
1926         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1927                 /* ... or if many callbacks queued. */
1928                 if (!irqs_disabled_flags(flags)) {
1929                         wake_nocb_leader(rdp, true);
1930                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1931                                             TPS("WakeOvf"));
1932                 } else {
1933                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1934                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1935                                             TPS("WakeOvfIsDeferred"));
1936                 }
1937                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1938         } else {
1939                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1940         }
1941         return;
1942 }
1943
1944 /*
1945  * This is a helper for __call_rcu(), which invokes this when the normal
1946  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1947  * function returns failure back to __call_rcu(), which can complain
1948  * appropriately.
1949  *
1950  * Otherwise, this function queues the callback where the corresponding
1951  * "rcuo" kthread can find it.
1952  */
1953 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1954                             bool lazy, unsigned long flags)
1955 {
1956
1957         if (!rcu_is_nocb_cpu(rdp->cpu))
1958                 return false;
1959         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1960         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1961                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1962                                          (unsigned long)rhp->func,
1963                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
1964                                          -atomic_long_read(&rdp->nocb_q_count));
1965         else
1966                 trace_rcu_callback(rdp->rsp->name, rhp,
1967                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
1968                                    -atomic_long_read(&rdp->nocb_q_count));
1969
1970         /*
1971          * If called from an extended quiescent state with interrupts
1972          * disabled, invoke the RCU core in order to allow the idle-entry
1973          * deferred-wakeup check to function.
1974          */
1975         if (irqs_disabled_flags(flags) &&
1976             !rcu_is_watching() &&
1977             cpu_online(smp_processor_id()))
1978                 invoke_rcu_core();
1979
1980         return true;
1981 }
1982
1983 /*
1984  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1985  * not a no-CBs CPU.
1986  */
1987 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1988                                                      struct rcu_data *rdp,
1989                                                      unsigned long flags)
1990 {
1991         long ql = rsp->qlen;
1992         long qll = rsp->qlen_lazy;
1993
1994         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1995         if (!rcu_is_nocb_cpu(smp_processor_id()))
1996                 return false;
1997         rsp->qlen = 0;
1998         rsp->qlen_lazy = 0;
1999
2000         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2001         if (rsp->orphan_donelist != NULL) {
2002                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2003                                         rsp->orphan_donetail, ql, qll, flags);
2004                 ql = qll = 0;
2005                 rsp->orphan_donelist = NULL;
2006                 rsp->orphan_donetail = &rsp->orphan_donelist;
2007         }
2008         if (rsp->orphan_nxtlist != NULL) {
2009                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2010                                         rsp->orphan_nxttail, ql, qll, flags);
2011                 ql = qll = 0;
2012                 rsp->orphan_nxtlist = NULL;
2013                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2014         }
2015         return true;
2016 }
2017
2018 /*
2019  * If necessary, kick off a new grace period, and either way wait
2020  * for a subsequent grace period to complete.
2021  */
2022 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2023 {
2024         unsigned long c;
2025         bool d;
2026         unsigned long flags;
2027         bool needwake;
2028         struct rcu_node *rnp = rdp->mynode;
2029
2030         raw_spin_lock_irqsave(&rnp->lock, flags);
2031         smp_mb__after_unlock_lock();
2032         needwake = rcu_start_future_gp(rnp, rdp, &c);
2033         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2034         if (needwake)
2035                 rcu_gp_kthread_wake(rdp->rsp);
2036
2037         /*
2038          * Wait for the grace period.  Do so interruptibly to avoid messing
2039          * up the load average.
2040          */
2041         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2042         for (;;) {
2043                 wait_event_interruptible(
2044                         rnp->nocb_gp_wq[c & 0x1],
2045                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2046                 if (likely(d))
2047                         break;
2048                 WARN_ON(signal_pending(current));
2049                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2050         }
2051         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2052         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2053 }
2054
2055 /*
2056  * Leaders come here to wait for additional callbacks to show up.
2057  * This function does not return until callbacks appear.
2058  */
2059 static void nocb_leader_wait(struct rcu_data *my_rdp)
2060 {
2061         bool firsttime = true;
2062         bool gotcbs;
2063         struct rcu_data *rdp;
2064         struct rcu_head **tail;
2065
2066 wait_again:
2067
2068         /* Wait for callbacks to appear. */
2069         if (!rcu_nocb_poll) {
2070                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2071                 wait_event_interruptible(my_rdp->nocb_wq,
2072                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2073                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2074         } else if (firsttime) {
2075                 firsttime = false; /* Don't drown trace log with "Poll"! */
2076                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2077         }
2078
2079         /*
2080          * Each pass through the following loop checks a follower for CBs.
2081          * We are our own first follower.  Any CBs found are moved to
2082          * nocb_gp_head, where they await a grace period.
2083          */
2084         gotcbs = false;
2085         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2086                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2087                 if (!rdp->nocb_gp_head)
2088                         continue;  /* No CBs here, try next follower. */
2089
2090                 /* Move callbacks to wait-for-GP list, which is empty. */
2091                 WRITE_ONCE(rdp->nocb_head, NULL);
2092                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2093                 gotcbs = true;
2094         }
2095
2096         /*
2097          * If there were no callbacks, sleep a bit, rescan after a
2098          * memory barrier, and go retry.
2099          */
2100         if (unlikely(!gotcbs)) {
2101                 if (!rcu_nocb_poll)
2102                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2103                                             "WokeEmpty");
2104                 WARN_ON(signal_pending(current));
2105                 schedule_timeout_interruptible(1);
2106
2107                 /* Rescan in case we were a victim of memory ordering. */
2108                 my_rdp->nocb_leader_sleep = true;
2109                 smp_mb();  /* Ensure _sleep true before scan. */
2110                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2111                         if (READ_ONCE(rdp->nocb_head)) {
2112                                 /* Found CB, so short-circuit next wait. */
2113                                 my_rdp->nocb_leader_sleep = false;
2114                                 break;
2115                         }
2116                 goto wait_again;
2117         }
2118
2119         /* Wait for one grace period. */
2120         rcu_nocb_wait_gp(my_rdp);
2121
2122         /*
2123          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2124          * We set it now, but recheck for new callbacks while
2125          * traversing our follower list.
2126          */
2127         my_rdp->nocb_leader_sleep = true;
2128         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2129
2130         /* Each pass through the following loop wakes a follower, if needed. */
2131         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2132                 if (READ_ONCE(rdp->nocb_head))
2133                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2134                 if (!rdp->nocb_gp_head)
2135                         continue; /* No CBs, so no need to wake follower. */
2136
2137                 /* Append callbacks to follower's "done" list. */
2138                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2139                 *tail = rdp->nocb_gp_head;
2140                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2141                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2142                         /*
2143                          * List was empty, wake up the follower.
2144                          * Memory barriers supplied by atomic_long_add().
2145                          */
2146                         wake_up(&rdp->nocb_wq);
2147                 }
2148         }
2149
2150         /* If we (the leader) don't have CBs, go wait some more. */
2151         if (!my_rdp->nocb_follower_head)
2152                 goto wait_again;
2153 }
2154
2155 /*
2156  * Followers come here to wait for additional callbacks to show up.
2157  * This function does not return until callbacks appear.
2158  */
2159 static void nocb_follower_wait(struct rcu_data *rdp)
2160 {
2161         bool firsttime = true;
2162
2163         for (;;) {
2164                 if (!rcu_nocb_poll) {
2165                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2166                                             "FollowerSleep");
2167                         wait_event_interruptible(rdp->nocb_wq,
2168                                                  READ_ONCE(rdp->nocb_follower_head));
2169                 } else if (firsttime) {
2170                         /* Don't drown trace log with "Poll"! */
2171                         firsttime = false;
2172                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2173                 }
2174                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2175                         /* ^^^ Ensure CB invocation follows _head test. */
2176                         return;
2177                 }
2178                 if (!rcu_nocb_poll)
2179                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2180                                             "WokeEmpty");
2181                 WARN_ON(signal_pending(current));
2182                 schedule_timeout_interruptible(1);
2183         }
2184 }
2185
2186 /*
2187  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2188  * callbacks queued by the corresponding no-CBs CPU, however, there is
2189  * an optional leader-follower relationship so that the grace-period
2190  * kthreads don't have to do quite so many wakeups.
2191  */
2192 static int rcu_nocb_kthread(void *arg)
2193 {
2194         int c, cl;
2195         struct rcu_head *list;
2196         struct rcu_head *next;
2197         struct rcu_head **tail;
2198         struct rcu_data *rdp = arg;
2199
2200         /* Each pass through this loop invokes one batch of callbacks */
2201         for (;;) {
2202                 /* Wait for callbacks. */
2203                 if (rdp->nocb_leader == rdp)
2204                         nocb_leader_wait(rdp);
2205                 else
2206                         nocb_follower_wait(rdp);
2207
2208                 /* Pull the ready-to-invoke callbacks onto local list. */
2209                 list = READ_ONCE(rdp->nocb_follower_head);
2210                 BUG_ON(!list);
2211                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2212                 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2213                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2214
2215                 /* Each pass through the following loop invokes a callback. */
2216                 trace_rcu_batch_start(rdp->rsp->name,
2217                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2218                                       atomic_long_read(&rdp->nocb_q_count), -1);
2219                 c = cl = 0;
2220                 while (list) {
2221                         next = list->next;
2222                         /* Wait for enqueuing to complete, if needed. */
2223                         while (next == NULL && &list->next != tail) {
2224                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2225                                                     TPS("WaitQueue"));
2226                                 schedule_timeout_interruptible(1);
2227                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2228                                                     TPS("WokeQueue"));
2229                                 next = list->next;
2230                         }
2231                         debug_rcu_head_unqueue(list);
2232                         local_bh_disable();
2233                         if (__rcu_reclaim(rdp->rsp->name, list))
2234                                 cl++;
2235                         c++;
2236                         local_bh_enable();
2237                         list = next;
2238                 }
2239                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2240                 smp_mb__before_atomic();  /* _add after CB invocation. */
2241                 atomic_long_add(-c, &rdp->nocb_q_count);
2242                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2243                 rdp->n_nocbs_invoked += c;
2244         }
2245         return 0;
2246 }
2247
2248 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2249 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2250 {
2251         return READ_ONCE(rdp->nocb_defer_wakeup);
2252 }
2253
2254 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2255 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2256 {
2257         int ndw;
2258
2259         if (!rcu_nocb_need_deferred_wakeup(rdp))
2260                 return;
2261         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2262         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2263         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2264         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2265 }
2266
2267 void __init rcu_init_nohz(void)
2268 {
2269         int cpu;
2270         bool need_rcu_nocb_mask = true;
2271         struct rcu_state *rsp;
2272
2273 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2274         need_rcu_nocb_mask = false;
2275 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2276
2277 #if defined(CONFIG_NO_HZ_FULL)
2278         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2279                 need_rcu_nocb_mask = true;
2280 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2281
2282         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2283                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2284                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2285                         return;
2286                 }
2287                 have_rcu_nocb_mask = true;
2288         }
2289         if (!have_rcu_nocb_mask)
2290                 return;
2291
2292 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2293         pr_info("\tOffload RCU callbacks from CPU 0\n");
2294         cpumask_set_cpu(0, rcu_nocb_mask);
2295 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2296 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2297         pr_info("\tOffload RCU callbacks from all CPUs\n");
2298         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2299 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2300 #if defined(CONFIG_NO_HZ_FULL)
2301         if (tick_nohz_full_running)
2302                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2303 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2304
2305         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2306                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2307                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2308                             rcu_nocb_mask);
2309         }
2310         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2311                 cpumask_pr_args(rcu_nocb_mask));
2312         if (rcu_nocb_poll)
2313                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2314
2315         for_each_rcu_flavor(rsp) {
2316                 for_each_cpu(cpu, rcu_nocb_mask)
2317                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2318                 rcu_organize_nocb_kthreads(rsp);
2319         }
2320 }
2321
2322 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2323 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2324 {
2325         rdp->nocb_tail = &rdp->nocb_head;
2326         init_waitqueue_head(&rdp->nocb_wq);
2327         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2328 }
2329
2330 /*
2331  * If the specified CPU is a no-CBs CPU that does not already have its
2332  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2333  * brought online out of order, this can require re-organizing the
2334  * leader-follower relationships.
2335  */
2336 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2337 {
2338         struct rcu_data *rdp;
2339         struct rcu_data *rdp_last;
2340         struct rcu_data *rdp_old_leader;
2341         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2342         struct task_struct *t;
2343
2344         /*
2345          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2346          * then nothing to do.
2347          */
2348         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2349                 return;
2350
2351         /* If we didn't spawn the leader first, reorganize! */
2352         rdp_old_leader = rdp_spawn->nocb_leader;
2353         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2354                 rdp_last = NULL;
2355                 rdp = rdp_old_leader;
2356                 do {
2357                         rdp->nocb_leader = rdp_spawn;
2358                         if (rdp_last && rdp != rdp_spawn)
2359                                 rdp_last->nocb_next_follower = rdp;
2360                         if (rdp == rdp_spawn) {
2361                                 rdp = rdp->nocb_next_follower;
2362                         } else {
2363                                 rdp_last = rdp;
2364                                 rdp = rdp->nocb_next_follower;
2365                                 rdp_last->nocb_next_follower = NULL;
2366                         }
2367                 } while (rdp);
2368                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2369         }
2370
2371         /* Spawn the kthread for this CPU and RCU flavor. */
2372         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2373                         "rcuo%c/%d", rsp->abbr, cpu);
2374         BUG_ON(IS_ERR(t));
2375         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2376 }
2377
2378 /*
2379  * If the specified CPU is a no-CBs CPU that does not already have its
2380  * rcuo kthreads, spawn them.
2381  */
2382 static void rcu_spawn_all_nocb_kthreads(int cpu)
2383 {
2384         struct rcu_state *rsp;
2385
2386         if (rcu_scheduler_fully_active)
2387                 for_each_rcu_flavor(rsp)
2388                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2389 }
2390
2391 /*
2392  * Once the scheduler is running, spawn rcuo kthreads for all online
2393  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2394  * non-boot CPUs come online -- if this changes, we will need to add
2395  * some mutual exclusion.
2396  */
2397 static void __init rcu_spawn_nocb_kthreads(void)
2398 {
2399         int cpu;
2400
2401         for_each_online_cpu(cpu)
2402                 rcu_spawn_all_nocb_kthreads(cpu);
2403 }
2404
2405 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2406 static int rcu_nocb_leader_stride = -1;
2407 module_param(rcu_nocb_leader_stride, int, 0444);
2408
2409 /*
2410  * Initialize leader-follower relationships for all no-CBs CPU.
2411  */
2412 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2413 {
2414         int cpu;
2415         int ls = rcu_nocb_leader_stride;
2416         int nl = 0;  /* Next leader. */
2417         struct rcu_data *rdp;
2418         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2419         struct rcu_data *rdp_prev = NULL;
2420
2421         if (!have_rcu_nocb_mask)
2422                 return;
2423         if (ls == -1) {
2424                 ls = int_sqrt(nr_cpu_ids);
2425                 rcu_nocb_leader_stride = ls;
2426         }
2427
2428         /*
2429          * Each pass through this loop sets up one rcu_data structure and
2430          * spawns one rcu_nocb_kthread().
2431          */
2432         for_each_cpu(cpu, rcu_nocb_mask) {
2433                 rdp = per_cpu_ptr(rsp->rda, cpu);
2434                 if (rdp->cpu >= nl) {
2435                         /* New leader, set up for followers & next leader. */
2436                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2437                         rdp->nocb_leader = rdp;
2438                         rdp_leader = rdp;
2439                 } else {
2440                         /* Another follower, link to previous leader. */
2441                         rdp->nocb_leader = rdp_leader;
2442                         rdp_prev->nocb_next_follower = rdp;
2443                 }
2444                 rdp_prev = rdp;
2445         }
2446 }
2447
2448 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2449 static bool init_nocb_callback_list(struct rcu_data *rdp)
2450 {
2451         if (!rcu_is_nocb_cpu(rdp->cpu))
2452                 return false;
2453
2454         /* If there are early-boot callbacks, move them to nocb lists. */
2455         if (rdp->nxtlist) {
2456                 rdp->nocb_head = rdp->nxtlist;
2457                 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2458                 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2459                 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2460                 rdp->nxtlist = NULL;
2461                 rdp->qlen = 0;
2462                 rdp->qlen_lazy = 0;
2463         }
2464         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2465         return true;
2466 }
2467
2468 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2469
2470 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2471 {
2472         WARN_ON_ONCE(1); /* Should be dead code. */
2473         return false;
2474 }
2475
2476 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2477 {
2478 }
2479
2480 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2481 {
2482 }
2483
2484 static void rcu_init_one_nocb(struct rcu_node *rnp)
2485 {
2486 }
2487
2488 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2489                             bool lazy, unsigned long flags)
2490 {
2491         return false;
2492 }
2493
2494 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2495                                                      struct rcu_data *rdp,
2496                                                      unsigned long flags)
2497 {
2498         return false;
2499 }
2500
2501 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2502 {
2503 }
2504
2505 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2506 {
2507         return false;
2508 }
2509
2510 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2511 {
2512 }
2513
2514 static void rcu_spawn_all_nocb_kthreads(int cpu)
2515 {
2516 }
2517
2518 static void __init rcu_spawn_nocb_kthreads(void)
2519 {
2520 }
2521
2522 static bool init_nocb_callback_list(struct rcu_data *rdp)
2523 {
2524         return false;
2525 }
2526
2527 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2528
2529 /*
2530  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2531  * arbitrarily long period of time with the scheduling-clock tick turned
2532  * off.  RCU will be paying attention to this CPU because it is in the
2533  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2534  * machine because the scheduling-clock tick has been disabled.  Therefore,
2535  * if an adaptive-ticks CPU is failing to respond to the current grace
2536  * period and has not be idle from an RCU perspective, kick it.
2537  */
2538 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2539 {
2540 #ifdef CONFIG_NO_HZ_FULL
2541         if (tick_nohz_full_cpu(cpu))
2542                 smp_send_reschedule(cpu);
2543 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2544 }
2545
2546
2547 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2548
2549 static int full_sysidle_state;          /* Current system-idle state. */
2550 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2551 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2552 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2553 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2554 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2555
2556 /*
2557  * Invoked to note exit from irq or task transition to idle.  Note that
2558  * usermode execution does -not- count as idle here!  After all, we want
2559  * to detect full-system idle states, not RCU quiescent states and grace
2560  * periods.  The caller must have disabled interrupts.
2561  */
2562 static void rcu_sysidle_enter(int irq)
2563 {
2564         unsigned long j;
2565         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2566
2567         /* If there are no nohz_full= CPUs, no need to track this. */
2568         if (!tick_nohz_full_enabled())
2569                 return;
2570
2571         /* Adjust nesting, check for fully idle. */
2572         if (irq) {
2573                 rdtp->dynticks_idle_nesting--;
2574                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2575                 if (rdtp->dynticks_idle_nesting != 0)
2576                         return;  /* Still not fully idle. */
2577         } else {
2578                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2579                     DYNTICK_TASK_NEST_VALUE) {
2580                         rdtp->dynticks_idle_nesting = 0;
2581                 } else {
2582                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2583                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2584                         return;  /* Still not fully idle. */
2585                 }
2586         }
2587
2588         /* Record start of fully idle period. */
2589         j = jiffies;
2590         WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2591         smp_mb__before_atomic();
2592         atomic_inc(&rdtp->dynticks_idle);
2593         smp_mb__after_atomic();
2594         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2595 }
2596
2597 /*
2598  * Unconditionally force exit from full system-idle state.  This is
2599  * invoked when a normal CPU exits idle, but must be called separately
2600  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2601  * is that the timekeeping CPU is permitted to take scheduling-clock
2602  * interrupts while the system is in system-idle state, and of course
2603  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2604  * interrupt from any other type of interrupt.
2605  */
2606 void rcu_sysidle_force_exit(void)
2607 {
2608         int oldstate = READ_ONCE(full_sysidle_state);
2609         int newoldstate;
2610
2611         /*
2612          * Each pass through the following loop attempts to exit full
2613          * system-idle state.  If contention proves to be a problem,
2614          * a trylock-based contention tree could be used here.
2615          */
2616         while (oldstate > RCU_SYSIDLE_SHORT) {
2617                 newoldstate = cmpxchg(&full_sysidle_state,
2618                                       oldstate, RCU_SYSIDLE_NOT);
2619                 if (oldstate == newoldstate &&
2620                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2621                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2622                         return; /* We cleared it, done! */
2623                 }
2624                 oldstate = newoldstate;
2625         }
2626         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2627 }
2628
2629 /*
2630  * Invoked to note entry to irq or task transition from idle.  Note that
2631  * usermode execution does -not- count as idle here!  The caller must
2632  * have disabled interrupts.
2633  */
2634 static void rcu_sysidle_exit(int irq)
2635 {
2636         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2637
2638         /* If there are no nohz_full= CPUs, no need to track this. */
2639         if (!tick_nohz_full_enabled())
2640                 return;
2641
2642         /* Adjust nesting, check for already non-idle. */
2643         if (irq) {
2644                 rdtp->dynticks_idle_nesting++;
2645                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2646                 if (rdtp->dynticks_idle_nesting != 1)
2647                         return; /* Already non-idle. */
2648         } else {
2649                 /*
2650                  * Allow for irq misnesting.  Yes, it really is possible
2651                  * to enter an irq handler then never leave it, and maybe
2652                  * also vice versa.  Handle both possibilities.
2653                  */
2654                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2655                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2656                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2657                         return; /* Already non-idle. */
2658                 } else {
2659                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2660                 }
2661         }
2662
2663         /* Record end of idle period. */
2664         smp_mb__before_atomic();
2665         atomic_inc(&rdtp->dynticks_idle);
2666         smp_mb__after_atomic();
2667         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2668
2669         /*
2670          * If we are the timekeeping CPU, we are permitted to be non-idle
2671          * during a system-idle state.  This must be the case, because
2672          * the timekeeping CPU has to take scheduling-clock interrupts
2673          * during the time that the system is transitioning to full
2674          * system-idle state.  This means that the timekeeping CPU must
2675          * invoke rcu_sysidle_force_exit() directly if it does anything
2676          * more than take a scheduling-clock interrupt.
2677          */
2678         if (smp_processor_id() == tick_do_timer_cpu)
2679                 return;
2680
2681         /* Update system-idle state: We are clearly no longer fully idle! */
2682         rcu_sysidle_force_exit();
2683 }
2684
2685 /*
2686  * Check to see if the current CPU is idle.  Note that usermode execution
2687  * does not count as idle.  The caller must have disabled interrupts,
2688  * and must be running on tick_do_timer_cpu.
2689  */
2690 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2691                                   unsigned long *maxj)
2692 {
2693         int cur;
2694         unsigned long j;
2695         struct rcu_dynticks *rdtp = rdp->dynticks;
2696
2697         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2698         if (!tick_nohz_full_enabled())
2699                 return;
2700
2701         /*
2702          * If some other CPU has already reported non-idle, if this is
2703          * not the flavor of RCU that tracks sysidle state, or if this
2704          * is an offline or the timekeeping CPU, nothing to do.
2705          */
2706         if (!*isidle || rdp->rsp != rcu_state_p ||
2707             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2708                 return;
2709         /* Verify affinity of current kthread. */
2710         WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2711
2712         /* Pick up current idle and NMI-nesting counter and check. */
2713         cur = atomic_read(&rdtp->dynticks_idle);
2714         if (cur & 0x1) {
2715                 *isidle = false; /* We are not idle! */
2716                 return;
2717         }
2718         smp_mb(); /* Read counters before timestamps. */
2719
2720         /* Pick up timestamps. */
2721         j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2722         /* If this CPU entered idle more recently, update maxj timestamp. */
2723         if (ULONG_CMP_LT(*maxj, j))
2724                 *maxj = j;
2725 }
2726
2727 /*
2728  * Is this the flavor of RCU that is handling full-system idle?
2729  */
2730 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2731 {
2732         return rsp == rcu_state_p;
2733 }
2734
2735 /*
2736  * Return a delay in jiffies based on the number of CPUs, rcu_node
2737  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2738  * systems more time to transition to full-idle state in order to
2739  * avoid the cache thrashing that otherwise occur on the state variable.
2740  * Really small systems (less than a couple of tens of CPUs) should
2741  * instead use a single global atomically incremented counter, and later
2742  * versions of this will automatically reconfigure themselves accordingly.
2743  */
2744 static unsigned long rcu_sysidle_delay(void)
2745 {
2746         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2747                 return 0;
2748         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2749 }
2750
2751 /*
2752  * Advance the full-system-idle state.  This is invoked when all of
2753  * the non-timekeeping CPUs are idle.
2754  */
2755 static void rcu_sysidle(unsigned long j)
2756 {
2757         /* Check the current state. */
2758         switch (READ_ONCE(full_sysidle_state)) {
2759         case RCU_SYSIDLE_NOT:
2760
2761                 /* First time all are idle, so note a short idle period. */
2762                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2763                 break;
2764
2765         case RCU_SYSIDLE_SHORT:
2766
2767                 /*
2768                  * Idle for a bit, time to advance to next state?
2769                  * cmpxchg failure means race with non-idle, let them win.
2770                  */
2771                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2772                         (void)cmpxchg(&full_sysidle_state,
2773                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2774                 break;
2775
2776         case RCU_SYSIDLE_LONG:
2777
2778                 /*
2779                  * Do an additional check pass before advancing to full.
2780                  * cmpxchg failure means race with non-idle, let them win.
2781                  */
2782                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2783                         (void)cmpxchg(&full_sysidle_state,
2784                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2785                 break;
2786
2787         default:
2788                 break;
2789         }
2790 }
2791
2792 /*
2793  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2794  * back to the beginning.
2795  */
2796 static void rcu_sysidle_cancel(void)
2797 {
2798         smp_mb();
2799         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2800                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2801 }
2802
2803 /*
2804  * Update the sysidle state based on the results of a force-quiescent-state
2805  * scan of the CPUs' dyntick-idle state.
2806  */
2807 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2808                                unsigned long maxj, bool gpkt)
2809 {
2810         if (rsp != rcu_state_p)
2811                 return;  /* Wrong flavor, ignore. */
2812         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2813                 return;  /* Running state machine from timekeeping CPU. */
2814         if (isidle)
2815                 rcu_sysidle(maxj);    /* More idle! */
2816         else
2817                 rcu_sysidle_cancel(); /* Idle is over. */
2818 }
2819
2820 /*
2821  * Wrapper for rcu_sysidle_report() when called from the grace-period
2822  * kthread's context.
2823  */
2824 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2825                                   unsigned long maxj)
2826 {
2827         /* If there are no nohz_full= CPUs, no need to track this. */
2828         if (!tick_nohz_full_enabled())
2829                 return;
2830
2831         rcu_sysidle_report(rsp, isidle, maxj, true);
2832 }
2833
2834 /* Callback and function for forcing an RCU grace period. */
2835 struct rcu_sysidle_head {
2836         struct rcu_head rh;
2837         int inuse;
2838 };
2839
2840 static void rcu_sysidle_cb(struct rcu_head *rhp)
2841 {
2842         struct rcu_sysidle_head *rshp;
2843
2844         /*
2845          * The following memory barrier is needed to replace the
2846          * memory barriers that would normally be in the memory
2847          * allocator.
2848          */
2849         smp_mb();  /* grace period precedes setting inuse. */
2850
2851         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2852         WRITE_ONCE(rshp->inuse, 0);
2853 }
2854
2855 /*
2856  * Check to see if the system is fully idle, other than the timekeeping CPU.
2857  * The caller must have disabled interrupts.  This is not intended to be
2858  * called unless tick_nohz_full_enabled().
2859  */
2860 bool rcu_sys_is_idle(void)
2861 {
2862         static struct rcu_sysidle_head rsh;
2863         int rss = READ_ONCE(full_sysidle_state);
2864
2865         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2866                 return false;
2867
2868         /* Handle small-system case by doing a full scan of CPUs. */
2869         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2870                 int oldrss = rss - 1;
2871
2872                 /*
2873                  * One pass to advance to each state up to _FULL.
2874                  * Give up if any pass fails to advance the state.
2875                  */
2876                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2877                         int cpu;
2878                         bool isidle = true;
2879                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2880                         struct rcu_data *rdp;
2881
2882                         /* Scan all the CPUs looking for nonidle CPUs. */
2883                         for_each_possible_cpu(cpu) {
2884                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2885                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2886                                 if (!isidle)
2887                                         break;
2888                         }
2889                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2890                         oldrss = rss;
2891                         rss = READ_ONCE(full_sysidle_state);
2892                 }
2893         }
2894
2895         /* If this is the first observation of an idle period, record it. */
2896         if (rss == RCU_SYSIDLE_FULL) {
2897                 rss = cmpxchg(&full_sysidle_state,
2898                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2899                 return rss == RCU_SYSIDLE_FULL;
2900         }
2901
2902         smp_mb(); /* ensure rss load happens before later caller actions. */
2903
2904         /* If already fully idle, tell the caller (in case of races). */
2905         if (rss == RCU_SYSIDLE_FULL_NOTED)
2906                 return true;
2907
2908         /*
2909          * If we aren't there yet, and a grace period is not in flight,
2910          * initiate a grace period.  Either way, tell the caller that
2911          * we are not there yet.  We use an xchg() rather than an assignment
2912          * to make up for the memory barriers that would otherwise be
2913          * provided by the memory allocator.
2914          */
2915         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2916             !rcu_gp_in_progress(rcu_state_p) &&
2917             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2918                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2919         return false;
2920 }
2921
2922 /*
2923  * Initialize dynticks sysidle state for CPUs coming online.
2924  */
2925 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2926 {
2927         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2928 }
2929
2930 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2931
2932 static void rcu_sysidle_enter(int irq)
2933 {
2934 }
2935
2936 static void rcu_sysidle_exit(int irq)
2937 {
2938 }
2939
2940 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2941                                   unsigned long *maxj)
2942 {
2943 }
2944
2945 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2946 {
2947         return false;
2948 }
2949
2950 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2951                                   unsigned long maxj)
2952 {
2953 }
2954
2955 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2956 {
2957 }
2958
2959 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2960
2961 /*
2962  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2963  * grace-period kthread will do force_quiescent_state() processing?
2964  * The idea is to avoid waking up RCU core processing on such a
2965  * CPU unless the grace period has extended for too long.
2966  *
2967  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2968  * CONFIG_RCU_NOCB_CPU CPUs.
2969  */
2970 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2971 {
2972 #ifdef CONFIG_NO_HZ_FULL
2973         if (tick_nohz_full_cpu(smp_processor_id()) &&
2974             (!rcu_gp_in_progress(rsp) ||
2975              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2976                 return true;
2977 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2978         return false;
2979 }
2980
2981 /*
2982  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2983  * timekeeping CPU.
2984  */
2985 static void rcu_bind_gp_kthread(void)
2986 {
2987         int __maybe_unused cpu;
2988
2989         if (!tick_nohz_full_enabled())
2990                 return;
2991 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2992         cpu = tick_do_timer_cpu;
2993         if (cpu >= 0 && cpu < nr_cpu_ids)
2994                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2995 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2996         housekeeping_affine(current);
2997 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2998 }
2999
3000 /* Record the current task on dyntick-idle entry. */
3001 static void rcu_dynticks_task_enter(void)
3002 {
3003 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3004         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3005 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3006 }
3007
3008 /* Record no current task on dyntick-idle exit. */
3009 static void rcu_dynticks_task_exit(void)
3010 {
3011 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3012         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3013 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3014 }