]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/rcu/tree_plugin.h
rcu: Stop disabling CPU hotplug in synchronize_rcu_expedited()
[karo-tx-linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.  If you like #ifdef, you
67  * will love this function.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71         if (IS_ENABLED(CONFIG_RCU_TRACE))
72                 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76                        RCU_FANOUT);
77         if (rcu_fanout_exact)
78                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81         if (IS_ENABLED(CONFIG_PROVE_RCU))
82                 pr_info("\tRCU lockdep checking is enabled.\n");
83         if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84                 pr_info("\tRCU torture testing starts during boot.\n");
85         if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
86                 pr_info("\tAdditional per-CPU info printed with stalls.\n");
87         if (RCU_NUM_LVLS >= 4)
88                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
89         if (RCU_FANOUT_LEAF != 16)
90                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
91                         RCU_FANOUT_LEAF);
92         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
93                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
94         if (nr_cpu_ids != NR_CPUS)
95                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
96         if (IS_ENABLED(CONFIG_RCU_BOOST))
97                 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
98 }
99
100 #ifdef CONFIG_PREEMPT_RCU
101
102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
104 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
105
106 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
107 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
108                                bool wake);
109
110 /*
111  * Tell them what RCU they are running.
112  */
113 static void __init rcu_bootup_announce(void)
114 {
115         pr_info("Preemptible hierarchical RCU implementation.\n");
116         rcu_bootup_announce_oddness();
117 }
118
119 /*
120  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
121  * that this just means that the task currently running on the CPU is
122  * not in a quiescent state.  There might be any number of tasks blocked
123  * while in an RCU read-side critical section.
124  *
125  * As with the other rcu_*_qs() functions, callers to this function
126  * must disable preemption.
127  */
128 static void rcu_preempt_qs(void)
129 {
130         if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
131                 trace_rcu_grace_period(TPS("rcu_preempt"),
132                                        __this_cpu_read(rcu_data_p->gpnum),
133                                        TPS("cpuqs"));
134                 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
135                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
136                 current->rcu_read_unlock_special.b.need_qs = false;
137         }
138 }
139
140 /*
141  * We have entered the scheduler, and the current task might soon be
142  * context-switched away from.  If this task is in an RCU read-side
143  * critical section, we will no longer be able to rely on the CPU to
144  * record that fact, so we enqueue the task on the blkd_tasks list.
145  * The task will dequeue itself when it exits the outermost enclosing
146  * RCU read-side critical section.  Therefore, the current grace period
147  * cannot be permitted to complete until the blkd_tasks list entries
148  * predating the current grace period drain, in other words, until
149  * rnp->gp_tasks becomes NULL.
150  *
151  * Caller must disable preemption.
152  */
153 static void rcu_preempt_note_context_switch(void)
154 {
155         struct task_struct *t = current;
156         unsigned long flags;
157         struct rcu_data *rdp;
158         struct rcu_node *rnp;
159
160         if (t->rcu_read_lock_nesting > 0 &&
161             !t->rcu_read_unlock_special.b.blocked) {
162
163                 /* Possibly blocking in an RCU read-side critical section. */
164                 rdp = this_cpu_ptr(rcu_state_p->rda);
165                 rnp = rdp->mynode;
166                 raw_spin_lock_irqsave(&rnp->lock, flags);
167                 smp_mb__after_unlock_lock();
168                 t->rcu_read_unlock_special.b.blocked = true;
169                 t->rcu_blocked_node = rnp;
170
171                 /*
172                  * If this CPU has already checked in, then this task
173                  * will hold up the next grace period rather than the
174                  * current grace period.  Queue the task accordingly.
175                  * If the task is queued for the current grace period
176                  * (i.e., this CPU has not yet passed through a quiescent
177                  * state for the current grace period), then as long
178                  * as that task remains queued, the current grace period
179                  * cannot end.  Note that there is some uncertainty as
180                  * to exactly when the current grace period started.
181                  * We take a conservative approach, which can result
182                  * in unnecessarily waiting on tasks that started very
183                  * slightly after the current grace period began.  C'est
184                  * la vie!!!
185                  *
186                  * But first, note that the current CPU must still be
187                  * on line!
188                  */
189                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
190                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
191                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
192                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
193                         rnp->gp_tasks = &t->rcu_node_entry;
194                         if (IS_ENABLED(CONFIG_RCU_BOOST) &&
195                             rnp->boost_tasks != NULL)
196                                 rnp->boost_tasks = rnp->gp_tasks;
197                 } else {
198                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
199                         if (rnp->qsmask & rdp->grpmask)
200                                 rnp->gp_tasks = &t->rcu_node_entry;
201                 }
202                 trace_rcu_preempt_task(rdp->rsp->name,
203                                        t->pid,
204                                        (rnp->qsmask & rdp->grpmask)
205                                        ? rnp->gpnum
206                                        : rnp->gpnum + 1);
207                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
208         } else if (t->rcu_read_lock_nesting < 0 &&
209                    t->rcu_read_unlock_special.s) {
210
211                 /*
212                  * Complete exit from RCU read-side critical section on
213                  * behalf of preempted instance of __rcu_read_unlock().
214                  */
215                 rcu_read_unlock_special(t);
216         }
217
218         /*
219          * Either we were not in an RCU read-side critical section to
220          * begin with, or we have now recorded that critical section
221          * globally.  Either way, we can now note a quiescent state
222          * for this CPU.  Again, if we were in an RCU read-side critical
223          * section, and if that critical section was blocking the current
224          * grace period, then the fact that the task has been enqueued
225          * means that we continue to block the current grace period.
226          */
227         rcu_preempt_qs();
228 }
229
230 /*
231  * Check for preempted RCU readers blocking the current grace period
232  * for the specified rcu_node structure.  If the caller needs a reliable
233  * answer, it must hold the rcu_node's ->lock.
234  */
235 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
236 {
237         return rnp->gp_tasks != NULL;
238 }
239
240 /*
241  * Advance a ->blkd_tasks-list pointer to the next entry, instead
242  * returning NULL if at the end of the list.
243  */
244 static struct list_head *rcu_next_node_entry(struct task_struct *t,
245                                              struct rcu_node *rnp)
246 {
247         struct list_head *np;
248
249         np = t->rcu_node_entry.next;
250         if (np == &rnp->blkd_tasks)
251                 np = NULL;
252         return np;
253 }
254
255 /*
256  * Return true if the specified rcu_node structure has tasks that were
257  * preempted within an RCU read-side critical section.
258  */
259 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
260 {
261         return !list_empty(&rnp->blkd_tasks);
262 }
263
264 /*
265  * Handle special cases during rcu_read_unlock(), such as needing to
266  * notify RCU core processing or task having blocked during the RCU
267  * read-side critical section.
268  */
269 void rcu_read_unlock_special(struct task_struct *t)
270 {
271         bool empty_exp;
272         bool empty_norm;
273         bool empty_exp_now;
274         unsigned long flags;
275         struct list_head *np;
276         bool drop_boost_mutex = false;
277         struct rcu_node *rnp;
278         union rcu_special special;
279
280         /* NMI handlers cannot block and cannot safely manipulate state. */
281         if (in_nmi())
282                 return;
283
284         local_irq_save(flags);
285
286         /*
287          * If RCU core is waiting for this CPU to exit critical section,
288          * let it know that we have done so.  Because irqs are disabled,
289          * t->rcu_read_unlock_special cannot change.
290          */
291         special = t->rcu_read_unlock_special;
292         if (special.b.need_qs) {
293                 rcu_preempt_qs();
294                 t->rcu_read_unlock_special.b.need_qs = false;
295                 if (!t->rcu_read_unlock_special.s) {
296                         local_irq_restore(flags);
297                         return;
298                 }
299         }
300
301         /* Hardware IRQ handlers cannot block, complain if they get here. */
302         if (in_irq() || in_serving_softirq()) {
303                 lockdep_rcu_suspicious(__FILE__, __LINE__,
304                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
305                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
306                          t->rcu_read_unlock_special.s,
307                          t->rcu_read_unlock_special.b.blocked,
308                          t->rcu_read_unlock_special.b.need_qs);
309                 local_irq_restore(flags);
310                 return;
311         }
312
313         /* Clean up if blocked during RCU read-side critical section. */
314         if (special.b.blocked) {
315                 t->rcu_read_unlock_special.b.blocked = false;
316
317                 /*
318                  * Remove this task from the list it blocked on.  The task
319                  * now remains queued on the rcu_node corresponding to
320                  * the CPU it first blocked on, so the first attempt to
321                  * acquire the task's rcu_node's ->lock will succeed.
322                  * Keep the loop and add a WARN_ON() out of sheer paranoia.
323                  */
324                 for (;;) {
325                         rnp = t->rcu_blocked_node;
326                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
327                         smp_mb__after_unlock_lock();
328                         if (rnp == t->rcu_blocked_node)
329                                 break;
330                         WARN_ON_ONCE(1);
331                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
332                 }
333                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
334                 empty_exp = !rcu_preempted_readers_exp(rnp);
335                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
336                 np = rcu_next_node_entry(t, rnp);
337                 list_del_init(&t->rcu_node_entry);
338                 t->rcu_blocked_node = NULL;
339                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
340                                                 rnp->gpnum, t->pid);
341                 if (&t->rcu_node_entry == rnp->gp_tasks)
342                         rnp->gp_tasks = np;
343                 if (&t->rcu_node_entry == rnp->exp_tasks)
344                         rnp->exp_tasks = np;
345                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
346                         if (&t->rcu_node_entry == rnp->boost_tasks)
347                                 rnp->boost_tasks = np;
348                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
349                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
350                 }
351
352                 /*
353                  * If this was the last task on the current list, and if
354                  * we aren't waiting on any CPUs, report the quiescent state.
355                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
356                  * so we must take a snapshot of the expedited state.
357                  */
358                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
359                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
360                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
361                                                          rnp->gpnum,
362                                                          0, rnp->qsmask,
363                                                          rnp->level,
364                                                          rnp->grplo,
365                                                          rnp->grphi,
366                                                          !!rnp->gp_tasks);
367                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
368                 } else {
369                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
370                 }
371
372                 /* Unboost if we were boosted. */
373                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
374                         rt_mutex_unlock(&rnp->boost_mtx);
375
376                 /*
377                  * If this was the last task on the expedited lists,
378                  * then we need to report up the rcu_node hierarchy.
379                  */
380                 if (!empty_exp && empty_exp_now)
381                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
382         } else {
383                 local_irq_restore(flags);
384         }
385 }
386
387 /*
388  * Dump detailed information for all tasks blocking the current RCU
389  * grace period on the specified rcu_node structure.
390  */
391 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
392 {
393         unsigned long flags;
394         struct task_struct *t;
395
396         raw_spin_lock_irqsave(&rnp->lock, flags);
397         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
398                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
399                 return;
400         }
401         t = list_entry(rnp->gp_tasks->prev,
402                        struct task_struct, rcu_node_entry);
403         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
404                 sched_show_task(t);
405         raw_spin_unlock_irqrestore(&rnp->lock, flags);
406 }
407
408 /*
409  * Dump detailed information for all tasks blocking the current RCU
410  * grace period.
411  */
412 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
413 {
414         struct rcu_node *rnp = rcu_get_root(rsp);
415
416         rcu_print_detail_task_stall_rnp(rnp);
417         rcu_for_each_leaf_node(rsp, rnp)
418                 rcu_print_detail_task_stall_rnp(rnp);
419 }
420
421 #ifdef CONFIG_RCU_CPU_STALL_INFO
422
423 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
424 {
425         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
426                rnp->level, rnp->grplo, rnp->grphi);
427 }
428
429 static void rcu_print_task_stall_end(void)
430 {
431         pr_cont("\n");
432 }
433
434 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
435
436 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
437 {
438 }
439
440 static void rcu_print_task_stall_end(void)
441 {
442 }
443
444 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
445
446 /*
447  * Scan the current list of tasks blocked within RCU read-side critical
448  * sections, printing out the tid of each.
449  */
450 static int rcu_print_task_stall(struct rcu_node *rnp)
451 {
452         struct task_struct *t;
453         int ndetected = 0;
454
455         if (!rcu_preempt_blocked_readers_cgp(rnp))
456                 return 0;
457         rcu_print_task_stall_begin(rnp);
458         t = list_entry(rnp->gp_tasks->prev,
459                        struct task_struct, rcu_node_entry);
460         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
461                 pr_cont(" P%d", t->pid);
462                 ndetected++;
463         }
464         rcu_print_task_stall_end();
465         return ndetected;
466 }
467
468 /*
469  * Check that the list of blocked tasks for the newly completed grace
470  * period is in fact empty.  It is a serious bug to complete a grace
471  * period that still has RCU readers blocked!  This function must be
472  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
473  * must be held by the caller.
474  *
475  * Also, if there are blocked tasks on the list, they automatically
476  * block the newly created grace period, so set up ->gp_tasks accordingly.
477  */
478 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
479 {
480         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
481         if (rcu_preempt_has_tasks(rnp))
482                 rnp->gp_tasks = rnp->blkd_tasks.next;
483         WARN_ON_ONCE(rnp->qsmask);
484 }
485
486 /*
487  * Check for a quiescent state from the current CPU.  When a task blocks,
488  * the task is recorded in the corresponding CPU's rcu_node structure,
489  * which is checked elsewhere.
490  *
491  * Caller must disable hard irqs.
492  */
493 static void rcu_preempt_check_callbacks(void)
494 {
495         struct task_struct *t = current;
496
497         if (t->rcu_read_lock_nesting == 0) {
498                 rcu_preempt_qs();
499                 return;
500         }
501         if (t->rcu_read_lock_nesting > 0 &&
502             __this_cpu_read(rcu_data_p->qs_pending) &&
503             !__this_cpu_read(rcu_data_p->passed_quiesce))
504                 t->rcu_read_unlock_special.b.need_qs = true;
505 }
506
507 #ifdef CONFIG_RCU_BOOST
508
509 static void rcu_preempt_do_callbacks(void)
510 {
511         rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
512 }
513
514 #endif /* #ifdef CONFIG_RCU_BOOST */
515
516 /*
517  * Queue a preemptible-RCU callback for invocation after a grace period.
518  */
519 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
520 {
521         __call_rcu(head, func, rcu_state_p, -1, 0);
522 }
523 EXPORT_SYMBOL_GPL(call_rcu);
524
525 /**
526  * synchronize_rcu - wait until a grace period has elapsed.
527  *
528  * Control will return to the caller some time after a full grace
529  * period has elapsed, in other words after all currently executing RCU
530  * read-side critical sections have completed.  Note, however, that
531  * upon return from synchronize_rcu(), the caller might well be executing
532  * concurrently with new RCU read-side critical sections that began while
533  * synchronize_rcu() was waiting.  RCU read-side critical sections are
534  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
535  *
536  * See the description of synchronize_sched() for more detailed information
537  * on memory ordering guarantees.
538  */
539 void synchronize_rcu(void)
540 {
541         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
542                            !lock_is_held(&rcu_lock_map) &&
543                            !lock_is_held(&rcu_sched_lock_map),
544                            "Illegal synchronize_rcu() in RCU read-side critical section");
545         if (!rcu_scheduler_active)
546                 return;
547         if (rcu_gp_is_expedited())
548                 synchronize_rcu_expedited();
549         else
550                 wait_rcu_gp(call_rcu);
551 }
552 EXPORT_SYMBOL_GPL(synchronize_rcu);
553
554 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
555 static unsigned long sync_rcu_preempt_exp_count;
556 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
557
558 /*
559  * Return non-zero if there are any tasks in RCU read-side critical
560  * sections blocking the current preemptible-RCU expedited grace period.
561  * If there is no preemptible-RCU expedited grace period currently in
562  * progress, returns zero unconditionally.
563  */
564 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
565 {
566         return rnp->exp_tasks != NULL;
567 }
568
569 /*
570  * return non-zero if there is no RCU expedited grace period in progress
571  * for the specified rcu_node structure, in other words, if all CPUs and
572  * tasks covered by the specified rcu_node structure have done their bit
573  * for the current expedited grace period.  Works only for preemptible
574  * RCU -- other RCU implementation use other means.
575  *
576  * Caller must hold sync_rcu_preempt_exp_mutex.
577  */
578 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
579 {
580         return !rcu_preempted_readers_exp(rnp) &&
581                READ_ONCE(rnp->expmask) == 0;
582 }
583
584 /*
585  * Report the exit from RCU read-side critical section for the last task
586  * that queued itself during or before the current expedited preemptible-RCU
587  * grace period.  This event is reported either to the rcu_node structure on
588  * which the task was queued or to one of that rcu_node structure's ancestors,
589  * recursively up the tree.  (Calm down, calm down, we do the recursion
590  * iteratively!)
591  *
592  * Caller must hold sync_rcu_preempt_exp_mutex.
593  */
594 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
595                                bool wake)
596 {
597         unsigned long flags;
598         unsigned long mask;
599
600         raw_spin_lock_irqsave(&rnp->lock, flags);
601         smp_mb__after_unlock_lock();
602         for (;;) {
603                 if (!sync_rcu_preempt_exp_done(rnp)) {
604                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
605                         break;
606                 }
607                 if (rnp->parent == NULL) {
608                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
609                         if (wake) {
610                                 smp_mb(); /* EGP done before wake_up(). */
611                                 wake_up(&sync_rcu_preempt_exp_wq);
612                         }
613                         break;
614                 }
615                 mask = rnp->grpmask;
616                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
617                 rnp = rnp->parent;
618                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
619                 smp_mb__after_unlock_lock();
620                 rnp->expmask &= ~mask;
621         }
622 }
623
624 /*
625  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
626  * grace period for the specified rcu_node structure, phase 1.  If there
627  * are such tasks, set the ->expmask bits up the rcu_node tree and also
628  * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
629  * that work is needed here.
630  *
631  * Caller must hold sync_rcu_preempt_exp_mutex.
632  */
633 static void
634 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
635 {
636         unsigned long flags;
637         unsigned long mask;
638         struct rcu_node *rnp_up;
639
640         raw_spin_lock_irqsave(&rnp->lock, flags);
641         smp_mb__after_unlock_lock();
642         WARN_ON_ONCE(rnp->expmask);
643         WARN_ON_ONCE(rnp->exp_tasks);
644         if (!rcu_preempt_has_tasks(rnp)) {
645                 /* No blocked tasks, nothing to do. */
646                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
647                 return;
648         }
649         /* Call for Phase 2 and propagate ->expmask bits up the tree. */
650         rnp->expmask = 1;
651         rnp_up = rnp;
652         while (rnp_up->parent) {
653                 mask = rnp_up->grpmask;
654                 rnp_up = rnp_up->parent;
655                 if (rnp_up->expmask & mask)
656                         break;
657                 raw_spin_lock(&rnp_up->lock); /* irqs already off */
658                 smp_mb__after_unlock_lock();
659                 rnp_up->expmask |= mask;
660                 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
661         }
662         raw_spin_unlock_irqrestore(&rnp->lock, flags);
663 }
664
665 /*
666  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
667  * grace period for the specified rcu_node structure, phase 2.  If the
668  * leaf rcu_node structure has its ->expmask field set, check for tasks.
669  * If there are some, clear ->expmask and set ->exp_tasks accordingly,
670  * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
671  * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
672  * enabling rcu_read_unlock_special() to do the bit-clearing.
673  *
674  * Caller must hold sync_rcu_preempt_exp_mutex.
675  */
676 static void
677 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
678 {
679         unsigned long flags;
680
681         raw_spin_lock_irqsave(&rnp->lock, flags);
682         smp_mb__after_unlock_lock();
683         if (!rnp->expmask) {
684                 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
685                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
686                 return;
687         }
688
689         /* Phase 1 is over. */
690         rnp->expmask = 0;
691
692         /*
693          * If there are still blocked tasks, set up ->exp_tasks so that
694          * rcu_read_unlock_special() will wake us and then boost them.
695          */
696         if (rcu_preempt_has_tasks(rnp)) {
697                 rnp->exp_tasks = rnp->blkd_tasks.next;
698                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
699                 return;
700         }
701
702         /* No longer any blocked tasks, so undo bit setting. */
703         raw_spin_unlock_irqrestore(&rnp->lock, flags);
704         rcu_report_exp_rnp(rsp, rnp, false);
705 }
706
707 /**
708  * synchronize_rcu_expedited - Brute-force RCU grace period
709  *
710  * Wait for an RCU-preempt grace period, but expedite it.  The basic
711  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
712  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
713  * significant time on all CPUs and is unfriendly to real-time workloads,
714  * so is thus not recommended for any sort of common-case code.
715  * In fact, if you are using synchronize_rcu_expedited() in a loop,
716  * please restructure your code to batch your updates, and then Use a
717  * single synchronize_rcu() instead.
718  */
719 void synchronize_rcu_expedited(void)
720 {
721         struct rcu_node *rnp;
722         struct rcu_state *rsp = rcu_state_p;
723         unsigned long snap;
724         int trycount = 0;
725
726         smp_mb(); /* Caller's modifications seen first by other CPUs. */
727         snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
728         smp_mb(); /* Above access cannot bleed into critical section. */
729
730         /*
731          * Acquire lock, falling back to synchronize_rcu() if too many
732          * lock-acquisition failures.  Of course, if someone does the
733          * expedited grace period for us, just leave.
734          */
735         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
736                 if (ULONG_CMP_LT(snap,
737                     READ_ONCE(sync_rcu_preempt_exp_count)))
738                         goto mb_ret; /* Others did our work for us. */
739                 if (trycount++ < 10) {
740                         udelay(trycount * num_online_cpus());
741                 } else {
742                         wait_rcu_gp(call_rcu);
743                         return;
744                 }
745         }
746         if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count)))
747                 goto unlock_mb_ret; /* Others did our work for us. */
748
749         /* force all RCU readers onto ->blkd_tasks lists. */
750         synchronize_sched_expedited();
751
752         /*
753          * Snapshot current state of ->blkd_tasks lists into ->expmask.
754          * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
755          * to start clearing them.  Doing this in one phase leads to
756          * strange races between setting and clearing bits, so just say "no"!
757          */
758         rcu_for_each_leaf_node(rsp, rnp)
759                 sync_rcu_preempt_exp_init1(rsp, rnp);
760         rcu_for_each_leaf_node(rsp, rnp)
761                 sync_rcu_preempt_exp_init2(rsp, rnp);
762
763         /* Wait for snapshotted ->blkd_tasks lists to drain. */
764         rnp = rcu_get_root(rsp);
765         wait_event(sync_rcu_preempt_exp_wq,
766                    sync_rcu_preempt_exp_done(rnp));
767
768         /* Clean up and exit. */
769         smp_mb(); /* ensure expedited GP seen before counter increment. */
770         WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
771 unlock_mb_ret:
772         mutex_unlock(&sync_rcu_preempt_exp_mutex);
773 mb_ret:
774         smp_mb(); /* ensure subsequent action seen after grace period. */
775 }
776 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
777
778 /**
779  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
780  *
781  * Note that this primitive does not necessarily wait for an RCU grace period
782  * to complete.  For example, if there are no RCU callbacks queued anywhere
783  * in the system, then rcu_barrier() is within its rights to return
784  * immediately, without waiting for anything, much less an RCU grace period.
785  */
786 void rcu_barrier(void)
787 {
788         _rcu_barrier(rcu_state_p);
789 }
790 EXPORT_SYMBOL_GPL(rcu_barrier);
791
792 /*
793  * Initialize preemptible RCU's state structures.
794  */
795 static void __init __rcu_init_preempt(void)
796 {
797         rcu_init_one(rcu_state_p, rcu_data_p);
798 }
799
800 /*
801  * Check for a task exiting while in a preemptible-RCU read-side
802  * critical section, clean up if so.  No need to issue warnings,
803  * as debug_check_no_locks_held() already does this if lockdep
804  * is enabled.
805  */
806 void exit_rcu(void)
807 {
808         struct task_struct *t = current;
809
810         if (likely(list_empty(&current->rcu_node_entry)))
811                 return;
812         t->rcu_read_lock_nesting = 1;
813         barrier();
814         t->rcu_read_unlock_special.b.blocked = true;
815         __rcu_read_unlock();
816 }
817
818 #else /* #ifdef CONFIG_PREEMPT_RCU */
819
820 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
821 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
822
823 /*
824  * Tell them what RCU they are running.
825  */
826 static void __init rcu_bootup_announce(void)
827 {
828         pr_info("Hierarchical RCU implementation.\n");
829         rcu_bootup_announce_oddness();
830 }
831
832 /*
833  * Because preemptible RCU does not exist, we never have to check for
834  * CPUs being in quiescent states.
835  */
836 static void rcu_preempt_note_context_switch(void)
837 {
838 }
839
840 /*
841  * Because preemptible RCU does not exist, there are never any preempted
842  * RCU readers.
843  */
844 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
845 {
846         return 0;
847 }
848
849 /*
850  * Because there is no preemptible RCU, there can be no readers blocked.
851  */
852 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
853 {
854         return false;
855 }
856
857 /*
858  * Because preemptible RCU does not exist, we never have to check for
859  * tasks blocked within RCU read-side critical sections.
860  */
861 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
862 {
863 }
864
865 /*
866  * Because preemptible RCU does not exist, we never have to check for
867  * tasks blocked within RCU read-side critical sections.
868  */
869 static int rcu_print_task_stall(struct rcu_node *rnp)
870 {
871         return 0;
872 }
873
874 /*
875  * Because there is no preemptible RCU, there can be no readers blocked,
876  * so there is no need to check for blocked tasks.  So check only for
877  * bogus qsmask values.
878  */
879 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
880 {
881         WARN_ON_ONCE(rnp->qsmask);
882 }
883
884 /*
885  * Because preemptible RCU does not exist, it never has any callbacks
886  * to check.
887  */
888 static void rcu_preempt_check_callbacks(void)
889 {
890 }
891
892 /*
893  * Wait for an rcu-preempt grace period, but make it happen quickly.
894  * But because preemptible RCU does not exist, map to rcu-sched.
895  */
896 void synchronize_rcu_expedited(void)
897 {
898         synchronize_sched_expedited();
899 }
900 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
901
902 /*
903  * Because preemptible RCU does not exist, rcu_barrier() is just
904  * another name for rcu_barrier_sched().
905  */
906 void rcu_barrier(void)
907 {
908         rcu_barrier_sched();
909 }
910 EXPORT_SYMBOL_GPL(rcu_barrier);
911
912 /*
913  * Because preemptible RCU does not exist, it need not be initialized.
914  */
915 static void __init __rcu_init_preempt(void)
916 {
917 }
918
919 /*
920  * Because preemptible RCU does not exist, tasks cannot possibly exit
921  * while in preemptible RCU read-side critical sections.
922  */
923 void exit_rcu(void)
924 {
925 }
926
927 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
928
929 #ifdef CONFIG_RCU_BOOST
930
931 #include "../locking/rtmutex_common.h"
932
933 #ifdef CONFIG_RCU_TRACE
934
935 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
936 {
937         if (!rcu_preempt_has_tasks(rnp))
938                 rnp->n_balk_blkd_tasks++;
939         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
940                 rnp->n_balk_exp_gp_tasks++;
941         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
942                 rnp->n_balk_boost_tasks++;
943         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
944                 rnp->n_balk_notblocked++;
945         else if (rnp->gp_tasks != NULL &&
946                  ULONG_CMP_LT(jiffies, rnp->boost_time))
947                 rnp->n_balk_notyet++;
948         else
949                 rnp->n_balk_nos++;
950 }
951
952 #else /* #ifdef CONFIG_RCU_TRACE */
953
954 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
955 {
956 }
957
958 #endif /* #else #ifdef CONFIG_RCU_TRACE */
959
960 static void rcu_wake_cond(struct task_struct *t, int status)
961 {
962         /*
963          * If the thread is yielding, only wake it when this
964          * is invoked from idle
965          */
966         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
967                 wake_up_process(t);
968 }
969
970 /*
971  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
972  * or ->boost_tasks, advancing the pointer to the next task in the
973  * ->blkd_tasks list.
974  *
975  * Note that irqs must be enabled: boosting the task can block.
976  * Returns 1 if there are more tasks needing to be boosted.
977  */
978 static int rcu_boost(struct rcu_node *rnp)
979 {
980         unsigned long flags;
981         struct task_struct *t;
982         struct list_head *tb;
983
984         if (READ_ONCE(rnp->exp_tasks) == NULL &&
985             READ_ONCE(rnp->boost_tasks) == NULL)
986                 return 0;  /* Nothing left to boost. */
987
988         raw_spin_lock_irqsave(&rnp->lock, flags);
989         smp_mb__after_unlock_lock();
990
991         /*
992          * Recheck under the lock: all tasks in need of boosting
993          * might exit their RCU read-side critical sections on their own.
994          */
995         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
996                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
997                 return 0;
998         }
999
1000         /*
1001          * Preferentially boost tasks blocking expedited grace periods.
1002          * This cannot starve the normal grace periods because a second
1003          * expedited grace period must boost all blocked tasks, including
1004          * those blocking the pre-existing normal grace period.
1005          */
1006         if (rnp->exp_tasks != NULL) {
1007                 tb = rnp->exp_tasks;
1008                 rnp->n_exp_boosts++;
1009         } else {
1010                 tb = rnp->boost_tasks;
1011                 rnp->n_normal_boosts++;
1012         }
1013         rnp->n_tasks_boosted++;
1014
1015         /*
1016          * We boost task t by manufacturing an rt_mutex that appears to
1017          * be held by task t.  We leave a pointer to that rt_mutex where
1018          * task t can find it, and task t will release the mutex when it
1019          * exits its outermost RCU read-side critical section.  Then
1020          * simply acquiring this artificial rt_mutex will boost task
1021          * t's priority.  (Thanks to tglx for suggesting this approach!)
1022          *
1023          * Note that task t must acquire rnp->lock to remove itself from
1024          * the ->blkd_tasks list, which it will do from exit() if from
1025          * nowhere else.  We therefore are guaranteed that task t will
1026          * stay around at least until we drop rnp->lock.  Note that
1027          * rnp->lock also resolves races between our priority boosting
1028          * and task t's exiting its outermost RCU read-side critical
1029          * section.
1030          */
1031         t = container_of(tb, struct task_struct, rcu_node_entry);
1032         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1033         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1034         /* Lock only for side effect: boosts task t's priority. */
1035         rt_mutex_lock(&rnp->boost_mtx);
1036         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1037
1038         return READ_ONCE(rnp->exp_tasks) != NULL ||
1039                READ_ONCE(rnp->boost_tasks) != NULL;
1040 }
1041
1042 /*
1043  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1044  * root rcu_node.
1045  */
1046 static int rcu_boost_kthread(void *arg)
1047 {
1048         struct rcu_node *rnp = (struct rcu_node *)arg;
1049         int spincnt = 0;
1050         int more2boost;
1051
1052         trace_rcu_utilization(TPS("Start boost kthread@init"));
1053         for (;;) {
1054                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1055                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1056                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1057                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1058                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1059                 more2boost = rcu_boost(rnp);
1060                 if (more2boost)
1061                         spincnt++;
1062                 else
1063                         spincnt = 0;
1064                 if (spincnt > 10) {
1065                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1066                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1067                         schedule_timeout_interruptible(2);
1068                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1069                         spincnt = 0;
1070                 }
1071         }
1072         /* NOTREACHED */
1073         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1074         return 0;
1075 }
1076
1077 /*
1078  * Check to see if it is time to start boosting RCU readers that are
1079  * blocking the current grace period, and, if so, tell the per-rcu_node
1080  * kthread to start boosting them.  If there is an expedited grace
1081  * period in progress, it is always time to boost.
1082  *
1083  * The caller must hold rnp->lock, which this function releases.
1084  * The ->boost_kthread_task is immortal, so we don't need to worry
1085  * about it going away.
1086  */
1087 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1088         __releases(rnp->lock)
1089 {
1090         struct task_struct *t;
1091
1092         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1093                 rnp->n_balk_exp_gp_tasks++;
1094                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1095                 return;
1096         }
1097         if (rnp->exp_tasks != NULL ||
1098             (rnp->gp_tasks != NULL &&
1099              rnp->boost_tasks == NULL &&
1100              rnp->qsmask == 0 &&
1101              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1102                 if (rnp->exp_tasks == NULL)
1103                         rnp->boost_tasks = rnp->gp_tasks;
1104                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1105                 t = rnp->boost_kthread_task;
1106                 if (t)
1107                         rcu_wake_cond(t, rnp->boost_kthread_status);
1108         } else {
1109                 rcu_initiate_boost_trace(rnp);
1110                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1111         }
1112 }
1113
1114 /*
1115  * Wake up the per-CPU kthread to invoke RCU callbacks.
1116  */
1117 static void invoke_rcu_callbacks_kthread(void)
1118 {
1119         unsigned long flags;
1120
1121         local_irq_save(flags);
1122         __this_cpu_write(rcu_cpu_has_work, 1);
1123         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1124             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1125                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1126                               __this_cpu_read(rcu_cpu_kthread_status));
1127         }
1128         local_irq_restore(flags);
1129 }
1130
1131 /*
1132  * Is the current CPU running the RCU-callbacks kthread?
1133  * Caller must have preemption disabled.
1134  */
1135 static bool rcu_is_callbacks_kthread(void)
1136 {
1137         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1138 }
1139
1140 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1141
1142 /*
1143  * Do priority-boost accounting for the start of a new grace period.
1144  */
1145 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1146 {
1147         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1148 }
1149
1150 /*
1151  * Create an RCU-boost kthread for the specified node if one does not
1152  * already exist.  We only create this kthread for preemptible RCU.
1153  * Returns zero if all is well, a negated errno otherwise.
1154  */
1155 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1156                                        struct rcu_node *rnp)
1157 {
1158         int rnp_index = rnp - &rsp->node[0];
1159         unsigned long flags;
1160         struct sched_param sp;
1161         struct task_struct *t;
1162
1163         if (rcu_state_p != rsp)
1164                 return 0;
1165
1166         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1167                 return 0;
1168
1169         rsp->boost = 1;
1170         if (rnp->boost_kthread_task != NULL)
1171                 return 0;
1172         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1173                            "rcub/%d", rnp_index);
1174         if (IS_ERR(t))
1175                 return PTR_ERR(t);
1176         raw_spin_lock_irqsave(&rnp->lock, flags);
1177         smp_mb__after_unlock_lock();
1178         rnp->boost_kthread_task = t;
1179         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180         sp.sched_priority = kthread_prio;
1181         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1182         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1183         return 0;
1184 }
1185
1186 static void rcu_kthread_do_work(void)
1187 {
1188         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1189         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1190         rcu_preempt_do_callbacks();
1191 }
1192
1193 static void rcu_cpu_kthread_setup(unsigned int cpu)
1194 {
1195         struct sched_param sp;
1196
1197         sp.sched_priority = kthread_prio;
1198         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1199 }
1200
1201 static void rcu_cpu_kthread_park(unsigned int cpu)
1202 {
1203         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1204 }
1205
1206 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1207 {
1208         return __this_cpu_read(rcu_cpu_has_work);
1209 }
1210
1211 /*
1212  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1213  * RCU softirq used in flavors and configurations of RCU that do not
1214  * support RCU priority boosting.
1215  */
1216 static void rcu_cpu_kthread(unsigned int cpu)
1217 {
1218         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1219         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1220         int spincnt;
1221
1222         for (spincnt = 0; spincnt < 10; spincnt++) {
1223                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1224                 local_bh_disable();
1225                 *statusp = RCU_KTHREAD_RUNNING;
1226                 this_cpu_inc(rcu_cpu_kthread_loops);
1227                 local_irq_disable();
1228                 work = *workp;
1229                 *workp = 0;
1230                 local_irq_enable();
1231                 if (work)
1232                         rcu_kthread_do_work();
1233                 local_bh_enable();
1234                 if (*workp == 0) {
1235                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1236                         *statusp = RCU_KTHREAD_WAITING;
1237                         return;
1238                 }
1239         }
1240         *statusp = RCU_KTHREAD_YIELDING;
1241         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1242         schedule_timeout_interruptible(2);
1243         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1244         *statusp = RCU_KTHREAD_WAITING;
1245 }
1246
1247 /*
1248  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1249  * served by the rcu_node in question.  The CPU hotplug lock is still
1250  * held, so the value of rnp->qsmaskinit will be stable.
1251  *
1252  * We don't include outgoingcpu in the affinity set, use -1 if there is
1253  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1254  * this function allows the kthread to execute on any CPU.
1255  */
1256 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1257 {
1258         struct task_struct *t = rnp->boost_kthread_task;
1259         unsigned long mask = rcu_rnp_online_cpus(rnp);
1260         cpumask_var_t cm;
1261         int cpu;
1262
1263         if (!t)
1264                 return;
1265         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1266                 return;
1267         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1268                 if ((mask & 0x1) && cpu != outgoingcpu)
1269                         cpumask_set_cpu(cpu, cm);
1270         if (cpumask_weight(cm) == 0)
1271                 cpumask_setall(cm);
1272         set_cpus_allowed_ptr(t, cm);
1273         free_cpumask_var(cm);
1274 }
1275
1276 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1277         .store                  = &rcu_cpu_kthread_task,
1278         .thread_should_run      = rcu_cpu_kthread_should_run,
1279         .thread_fn              = rcu_cpu_kthread,
1280         .thread_comm            = "rcuc/%u",
1281         .setup                  = rcu_cpu_kthread_setup,
1282         .park                   = rcu_cpu_kthread_park,
1283 };
1284
1285 /*
1286  * Spawn boost kthreads -- called as soon as the scheduler is running.
1287  */
1288 static void __init rcu_spawn_boost_kthreads(void)
1289 {
1290         struct rcu_node *rnp;
1291         int cpu;
1292
1293         for_each_possible_cpu(cpu)
1294                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1295         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1296         rcu_for_each_leaf_node(rcu_state_p, rnp)
1297                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1298 }
1299
1300 static void rcu_prepare_kthreads(int cpu)
1301 {
1302         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1303         struct rcu_node *rnp = rdp->mynode;
1304
1305         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1306         if (rcu_scheduler_fully_active)
1307                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1308 }
1309
1310 #else /* #ifdef CONFIG_RCU_BOOST */
1311
1312 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1313         __releases(rnp->lock)
1314 {
1315         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1316 }
1317
1318 static void invoke_rcu_callbacks_kthread(void)
1319 {
1320         WARN_ON_ONCE(1);
1321 }
1322
1323 static bool rcu_is_callbacks_kthread(void)
1324 {
1325         return false;
1326 }
1327
1328 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1329 {
1330 }
1331
1332 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1333 {
1334 }
1335
1336 static void __init rcu_spawn_boost_kthreads(void)
1337 {
1338 }
1339
1340 static void rcu_prepare_kthreads(int cpu)
1341 {
1342 }
1343
1344 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1345
1346 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1347
1348 /*
1349  * Check to see if any future RCU-related work will need to be done
1350  * by the current CPU, even if none need be done immediately, returning
1351  * 1 if so.  This function is part of the RCU implementation; it is -not-
1352  * an exported member of the RCU API.
1353  *
1354  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1355  * any flavor of RCU.
1356  */
1357 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1358 {
1359         *nextevt = KTIME_MAX;
1360         return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1361                ? 0 : rcu_cpu_has_callbacks(NULL);
1362 }
1363
1364 /*
1365  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1366  * after it.
1367  */
1368 static void rcu_cleanup_after_idle(void)
1369 {
1370 }
1371
1372 /*
1373  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1374  * is nothing.
1375  */
1376 static void rcu_prepare_for_idle(void)
1377 {
1378 }
1379
1380 /*
1381  * Don't bother keeping a running count of the number of RCU callbacks
1382  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1383  */
1384 static void rcu_idle_count_callbacks_posted(void)
1385 {
1386 }
1387
1388 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1389
1390 /*
1391  * This code is invoked when a CPU goes idle, at which point we want
1392  * to have the CPU do everything required for RCU so that it can enter
1393  * the energy-efficient dyntick-idle mode.  This is handled by a
1394  * state machine implemented by rcu_prepare_for_idle() below.
1395  *
1396  * The following three proprocessor symbols control this state machine:
1397  *
1398  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1399  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1400  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1401  *      benchmarkers who might otherwise be tempted to set this to a large
1402  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1403  *      system.  And if you are -that- concerned about energy efficiency,
1404  *      just power the system down and be done with it!
1405  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1406  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1407  *      callbacks pending.  Setting this too high can OOM your system.
1408  *
1409  * The values below work well in practice.  If future workloads require
1410  * adjustment, they can be converted into kernel config parameters, though
1411  * making the state machine smarter might be a better option.
1412  */
1413 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1414 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1415
1416 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1417 module_param(rcu_idle_gp_delay, int, 0644);
1418 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1419 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1420
1421 /*
1422  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1423  * only if it has been awhile since the last time we did so.  Afterwards,
1424  * if there are any callbacks ready for immediate invocation, return true.
1425  */
1426 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1427 {
1428         bool cbs_ready = false;
1429         struct rcu_data *rdp;
1430         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1431         struct rcu_node *rnp;
1432         struct rcu_state *rsp;
1433
1434         /* Exit early if we advanced recently. */
1435         if (jiffies == rdtp->last_advance_all)
1436                 return false;
1437         rdtp->last_advance_all = jiffies;
1438
1439         for_each_rcu_flavor(rsp) {
1440                 rdp = this_cpu_ptr(rsp->rda);
1441                 rnp = rdp->mynode;
1442
1443                 /*
1444                  * Don't bother checking unless a grace period has
1445                  * completed since we last checked and there are
1446                  * callbacks not yet ready to invoke.
1447                  */
1448                 if ((rdp->completed != rnp->completed ||
1449                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1450                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1451                         note_gp_changes(rsp, rdp);
1452
1453                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1454                         cbs_ready = true;
1455         }
1456         return cbs_ready;
1457 }
1458
1459 /*
1460  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1461  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1462  * caller to set the timeout based on whether or not there are non-lazy
1463  * callbacks.
1464  *
1465  * The caller must have disabled interrupts.
1466  */
1467 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1468 {
1469         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1470         unsigned long dj;
1471
1472         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1473                 *nextevt = KTIME_MAX;
1474                 return 0;
1475         }
1476
1477         /* Snapshot to detect later posting of non-lazy callback. */
1478         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1479
1480         /* If no callbacks, RCU doesn't need the CPU. */
1481         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1482                 *nextevt = KTIME_MAX;
1483                 return 0;
1484         }
1485
1486         /* Attempt to advance callbacks. */
1487         if (rcu_try_advance_all_cbs()) {
1488                 /* Some ready to invoke, so initiate later invocation. */
1489                 invoke_rcu_core();
1490                 return 1;
1491         }
1492         rdtp->last_accelerate = jiffies;
1493
1494         /* Request timer delay depending on laziness, and round. */
1495         if (!rdtp->all_lazy) {
1496                 dj = round_up(rcu_idle_gp_delay + jiffies,
1497                                rcu_idle_gp_delay) - jiffies;
1498         } else {
1499                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1500         }
1501         *nextevt = basemono + dj * TICK_NSEC;
1502         return 0;
1503 }
1504
1505 /*
1506  * Prepare a CPU for idle from an RCU perspective.  The first major task
1507  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1508  * The second major task is to check to see if a non-lazy callback has
1509  * arrived at a CPU that previously had only lazy callbacks.  The third
1510  * major task is to accelerate (that is, assign grace-period numbers to)
1511  * any recently arrived callbacks.
1512  *
1513  * The caller must have disabled interrupts.
1514  */
1515 static void rcu_prepare_for_idle(void)
1516 {
1517         bool needwake;
1518         struct rcu_data *rdp;
1519         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1520         struct rcu_node *rnp;
1521         struct rcu_state *rsp;
1522         int tne;
1523
1524         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1525                 return;
1526
1527         /* Handle nohz enablement switches conservatively. */
1528         tne = READ_ONCE(tick_nohz_active);
1529         if (tne != rdtp->tick_nohz_enabled_snap) {
1530                 if (rcu_cpu_has_callbacks(NULL))
1531                         invoke_rcu_core(); /* force nohz to see update. */
1532                 rdtp->tick_nohz_enabled_snap = tne;
1533                 return;
1534         }
1535         if (!tne)
1536                 return;
1537
1538         /* If this is a no-CBs CPU, no callbacks, just return. */
1539         if (rcu_is_nocb_cpu(smp_processor_id()))
1540                 return;
1541
1542         /*
1543          * If a non-lazy callback arrived at a CPU having only lazy
1544          * callbacks, invoke RCU core for the side-effect of recalculating
1545          * idle duration on re-entry to idle.
1546          */
1547         if (rdtp->all_lazy &&
1548             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1549                 rdtp->all_lazy = false;
1550                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1551                 invoke_rcu_core();
1552                 return;
1553         }
1554
1555         /*
1556          * If we have not yet accelerated this jiffy, accelerate all
1557          * callbacks on this CPU.
1558          */
1559         if (rdtp->last_accelerate == jiffies)
1560                 return;
1561         rdtp->last_accelerate = jiffies;
1562         for_each_rcu_flavor(rsp) {
1563                 rdp = this_cpu_ptr(rsp->rda);
1564                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1565                         continue;
1566                 rnp = rdp->mynode;
1567                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1568                 smp_mb__after_unlock_lock();
1569                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1570                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1571                 if (needwake)
1572                         rcu_gp_kthread_wake(rsp);
1573         }
1574 }
1575
1576 /*
1577  * Clean up for exit from idle.  Attempt to advance callbacks based on
1578  * any grace periods that elapsed while the CPU was idle, and if any
1579  * callbacks are now ready to invoke, initiate invocation.
1580  */
1581 static void rcu_cleanup_after_idle(void)
1582 {
1583         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1584             rcu_is_nocb_cpu(smp_processor_id()))
1585                 return;
1586         if (rcu_try_advance_all_cbs())
1587                 invoke_rcu_core();
1588 }
1589
1590 /*
1591  * Keep a running count of the number of non-lazy callbacks posted
1592  * on this CPU.  This running counter (which is never decremented) allows
1593  * rcu_prepare_for_idle() to detect when something out of the idle loop
1594  * posts a callback, even if an equal number of callbacks are invoked.
1595  * Of course, callbacks should only be posted from within a trace event
1596  * designed to be called from idle or from within RCU_NONIDLE().
1597  */
1598 static void rcu_idle_count_callbacks_posted(void)
1599 {
1600         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1601 }
1602
1603 /*
1604  * Data for flushing lazy RCU callbacks at OOM time.
1605  */
1606 static atomic_t oom_callback_count;
1607 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1608
1609 /*
1610  * RCU OOM callback -- decrement the outstanding count and deliver the
1611  * wake-up if we are the last one.
1612  */
1613 static void rcu_oom_callback(struct rcu_head *rhp)
1614 {
1615         if (atomic_dec_and_test(&oom_callback_count))
1616                 wake_up(&oom_callback_wq);
1617 }
1618
1619 /*
1620  * Post an rcu_oom_notify callback on the current CPU if it has at
1621  * least one lazy callback.  This will unnecessarily post callbacks
1622  * to CPUs that already have a non-lazy callback at the end of their
1623  * callback list, but this is an infrequent operation, so accept some
1624  * extra overhead to keep things simple.
1625  */
1626 static void rcu_oom_notify_cpu(void *unused)
1627 {
1628         struct rcu_state *rsp;
1629         struct rcu_data *rdp;
1630
1631         for_each_rcu_flavor(rsp) {
1632                 rdp = raw_cpu_ptr(rsp->rda);
1633                 if (rdp->qlen_lazy != 0) {
1634                         atomic_inc(&oom_callback_count);
1635                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1636                 }
1637         }
1638 }
1639
1640 /*
1641  * If low on memory, ensure that each CPU has a non-lazy callback.
1642  * This will wake up CPUs that have only lazy callbacks, in turn
1643  * ensuring that they free up the corresponding memory in a timely manner.
1644  * Because an uncertain amount of memory will be freed in some uncertain
1645  * timeframe, we do not claim to have freed anything.
1646  */
1647 static int rcu_oom_notify(struct notifier_block *self,
1648                           unsigned long notused, void *nfreed)
1649 {
1650         int cpu;
1651
1652         /* Wait for callbacks from earlier instance to complete. */
1653         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1654         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1655
1656         /*
1657          * Prevent premature wakeup: ensure that all increments happen
1658          * before there is a chance of the counter reaching zero.
1659          */
1660         atomic_set(&oom_callback_count, 1);
1661
1662         get_online_cpus();
1663         for_each_online_cpu(cpu) {
1664                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1665                 cond_resched_rcu_qs();
1666         }
1667         put_online_cpus();
1668
1669         /* Unconditionally decrement: no need to wake ourselves up. */
1670         atomic_dec(&oom_callback_count);
1671
1672         return NOTIFY_OK;
1673 }
1674
1675 static struct notifier_block rcu_oom_nb = {
1676         .notifier_call = rcu_oom_notify
1677 };
1678
1679 static int __init rcu_register_oom_notifier(void)
1680 {
1681         register_oom_notifier(&rcu_oom_nb);
1682         return 0;
1683 }
1684 early_initcall(rcu_register_oom_notifier);
1685
1686 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1687
1688 #ifdef CONFIG_RCU_CPU_STALL_INFO
1689
1690 #ifdef CONFIG_RCU_FAST_NO_HZ
1691
1692 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1693 {
1694         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1695         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1696
1697         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1698                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1699                 ulong2long(nlpd),
1700                 rdtp->all_lazy ? 'L' : '.',
1701                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1702 }
1703
1704 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1705
1706 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1707 {
1708         *cp = '\0';
1709 }
1710
1711 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1712
1713 /* Initiate the stall-info list. */
1714 static void print_cpu_stall_info_begin(void)
1715 {
1716         pr_cont("\n");
1717 }
1718
1719 /*
1720  * Print out diagnostic information for the specified stalled CPU.
1721  *
1722  * If the specified CPU is aware of the current RCU grace period
1723  * (flavor specified by rsp), then print the number of scheduling
1724  * clock interrupts the CPU has taken during the time that it has
1725  * been aware.  Otherwise, print the number of RCU grace periods
1726  * that this CPU is ignorant of, for example, "1" if the CPU was
1727  * aware of the previous grace period.
1728  *
1729  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1730  */
1731 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1732 {
1733         char fast_no_hz[72];
1734         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1735         struct rcu_dynticks *rdtp = rdp->dynticks;
1736         char *ticks_title;
1737         unsigned long ticks_value;
1738
1739         if (rsp->gpnum == rdp->gpnum) {
1740                 ticks_title = "ticks this GP";
1741                 ticks_value = rdp->ticks_this_gp;
1742         } else {
1743                 ticks_title = "GPs behind";
1744                 ticks_value = rsp->gpnum - rdp->gpnum;
1745         }
1746         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1747         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1748                cpu, ticks_value, ticks_title,
1749                atomic_read(&rdtp->dynticks) & 0xfff,
1750                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1751                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1752                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1753                fast_no_hz);
1754 }
1755
1756 /* Terminate the stall-info list. */
1757 static void print_cpu_stall_info_end(void)
1758 {
1759         pr_err("\t");
1760 }
1761
1762 /* Zero ->ticks_this_gp for all flavors of RCU. */
1763 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1764 {
1765         rdp->ticks_this_gp = 0;
1766         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1767 }
1768
1769 /* Increment ->ticks_this_gp for all flavors of RCU. */
1770 static void increment_cpu_stall_ticks(void)
1771 {
1772         struct rcu_state *rsp;
1773
1774         for_each_rcu_flavor(rsp)
1775                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1776 }
1777
1778 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1779
1780 static void print_cpu_stall_info_begin(void)
1781 {
1782         pr_cont(" {");
1783 }
1784
1785 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1786 {
1787         pr_cont(" %d", cpu);
1788 }
1789
1790 static void print_cpu_stall_info_end(void)
1791 {
1792         pr_cont("} ");
1793 }
1794
1795 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1796 {
1797 }
1798
1799 static void increment_cpu_stall_ticks(void)
1800 {
1801 }
1802
1803 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1804
1805 #ifdef CONFIG_RCU_NOCB_CPU
1806
1807 /*
1808  * Offload callback processing from the boot-time-specified set of CPUs
1809  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1810  * kthread created that pulls the callbacks from the corresponding CPU,
1811  * waits for a grace period to elapse, and invokes the callbacks.
1812  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1813  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1814  * has been specified, in which case each kthread actively polls its
1815  * CPU.  (Which isn't so great for energy efficiency, but which does
1816  * reduce RCU's overhead on that CPU.)
1817  *
1818  * This is intended to be used in conjunction with Frederic Weisbecker's
1819  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1820  * running CPU-bound user-mode computations.
1821  *
1822  * Offloading of callback processing could also in theory be used as
1823  * an energy-efficiency measure because CPUs with no RCU callbacks
1824  * queued are more aggressive about entering dyntick-idle mode.
1825  */
1826
1827
1828 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1829 static int __init rcu_nocb_setup(char *str)
1830 {
1831         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1832         have_rcu_nocb_mask = true;
1833         cpulist_parse(str, rcu_nocb_mask);
1834         return 1;
1835 }
1836 __setup("rcu_nocbs=", rcu_nocb_setup);
1837
1838 static int __init parse_rcu_nocb_poll(char *arg)
1839 {
1840         rcu_nocb_poll = 1;
1841         return 0;
1842 }
1843 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1844
1845 /*
1846  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1847  * grace period.
1848  */
1849 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1850 {
1851         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1852 }
1853
1854 /*
1855  * Set the root rcu_node structure's ->need_future_gp field
1856  * based on the sum of those of all rcu_node structures.  This does
1857  * double-count the root rcu_node structure's requests, but this
1858  * is necessary to handle the possibility of a rcu_nocb_kthread()
1859  * having awakened during the time that the rcu_node structures
1860  * were being updated for the end of the previous grace period.
1861  */
1862 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1863 {
1864         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1865 }
1866
1867 static void rcu_init_one_nocb(struct rcu_node *rnp)
1868 {
1869         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1870         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1871 }
1872
1873 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1874 /* Is the specified CPU a no-CBs CPU? */
1875 bool rcu_is_nocb_cpu(int cpu)
1876 {
1877         if (have_rcu_nocb_mask)
1878                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1879         return false;
1880 }
1881 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1882
1883 /*
1884  * Kick the leader kthread for this NOCB group.
1885  */
1886 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1887 {
1888         struct rcu_data *rdp_leader = rdp->nocb_leader;
1889
1890         if (!READ_ONCE(rdp_leader->nocb_kthread))
1891                 return;
1892         if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1893                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1894                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1895                 wake_up(&rdp_leader->nocb_wq);
1896         }
1897 }
1898
1899 /*
1900  * Does the specified CPU need an RCU callback for the specified flavor
1901  * of rcu_barrier()?
1902  */
1903 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1904 {
1905         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1906         unsigned long ret;
1907 #ifdef CONFIG_PROVE_RCU
1908         struct rcu_head *rhp;
1909 #endif /* #ifdef CONFIG_PROVE_RCU */
1910
1911         /*
1912          * Check count of all no-CBs callbacks awaiting invocation.
1913          * There needs to be a barrier before this function is called,
1914          * but associated with a prior determination that no more
1915          * callbacks would be posted.  In the worst case, the first
1916          * barrier in _rcu_barrier() suffices (but the caller cannot
1917          * necessarily rely on this, not a substitute for the caller
1918          * getting the concurrency design right!).  There must also be
1919          * a barrier between the following load an posting of a callback
1920          * (if a callback is in fact needed).  This is associated with an
1921          * atomic_inc() in the caller.
1922          */
1923         ret = atomic_long_read(&rdp->nocb_q_count);
1924
1925 #ifdef CONFIG_PROVE_RCU
1926         rhp = READ_ONCE(rdp->nocb_head);
1927         if (!rhp)
1928                 rhp = READ_ONCE(rdp->nocb_gp_head);
1929         if (!rhp)
1930                 rhp = READ_ONCE(rdp->nocb_follower_head);
1931
1932         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1933         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1934             rcu_scheduler_fully_active) {
1935                 /* RCU callback enqueued before CPU first came online??? */
1936                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1937                        cpu, rhp->func);
1938                 WARN_ON_ONCE(1);
1939         }
1940 #endif /* #ifdef CONFIG_PROVE_RCU */
1941
1942         return !!ret;
1943 }
1944
1945 /*
1946  * Enqueue the specified string of rcu_head structures onto the specified
1947  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1948  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1949  * counts are supplied by rhcount and rhcount_lazy.
1950  *
1951  * If warranted, also wake up the kthread servicing this CPUs queues.
1952  */
1953 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1954                                     struct rcu_head *rhp,
1955                                     struct rcu_head **rhtp,
1956                                     int rhcount, int rhcount_lazy,
1957                                     unsigned long flags)
1958 {
1959         int len;
1960         struct rcu_head **old_rhpp;
1961         struct task_struct *t;
1962
1963         /* Enqueue the callback on the nocb list and update counts. */
1964         atomic_long_add(rhcount, &rdp->nocb_q_count);
1965         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1966         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1967         WRITE_ONCE(*old_rhpp, rhp);
1968         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1969         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1970
1971         /* If we are not being polled and there is a kthread, awaken it ... */
1972         t = READ_ONCE(rdp->nocb_kthread);
1973         if (rcu_nocb_poll || !t) {
1974                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1975                                     TPS("WakeNotPoll"));
1976                 return;
1977         }
1978         len = atomic_long_read(&rdp->nocb_q_count);
1979         if (old_rhpp == &rdp->nocb_head) {
1980                 if (!irqs_disabled_flags(flags)) {
1981                         /* ... if queue was empty ... */
1982                         wake_nocb_leader(rdp, false);
1983                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1984                                             TPS("WakeEmpty"));
1985                 } else {
1986                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1987                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1988                                             TPS("WakeEmptyIsDeferred"));
1989                 }
1990                 rdp->qlen_last_fqs_check = 0;
1991         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1992                 /* ... or if many callbacks queued. */
1993                 if (!irqs_disabled_flags(flags)) {
1994                         wake_nocb_leader(rdp, true);
1995                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1996                                             TPS("WakeOvf"));
1997                 } else {
1998                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1999                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2000                                             TPS("WakeOvfIsDeferred"));
2001                 }
2002                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2003         } else {
2004                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2005         }
2006         return;
2007 }
2008
2009 /*
2010  * This is a helper for __call_rcu(), which invokes this when the normal
2011  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2012  * function returns failure back to __call_rcu(), which can complain
2013  * appropriately.
2014  *
2015  * Otherwise, this function queues the callback where the corresponding
2016  * "rcuo" kthread can find it.
2017  */
2018 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2019                             bool lazy, unsigned long flags)
2020 {
2021
2022         if (!rcu_is_nocb_cpu(rdp->cpu))
2023                 return false;
2024         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2025         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2026                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2027                                          (unsigned long)rhp->func,
2028                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2029                                          -atomic_long_read(&rdp->nocb_q_count));
2030         else
2031                 trace_rcu_callback(rdp->rsp->name, rhp,
2032                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2033                                    -atomic_long_read(&rdp->nocb_q_count));
2034
2035         /*
2036          * If called from an extended quiescent state with interrupts
2037          * disabled, invoke the RCU core in order to allow the idle-entry
2038          * deferred-wakeup check to function.
2039          */
2040         if (irqs_disabled_flags(flags) &&
2041             !rcu_is_watching() &&
2042             cpu_online(smp_processor_id()))
2043                 invoke_rcu_core();
2044
2045         return true;
2046 }
2047
2048 /*
2049  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2050  * not a no-CBs CPU.
2051  */
2052 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2053                                                      struct rcu_data *rdp,
2054                                                      unsigned long flags)
2055 {
2056         long ql = rsp->qlen;
2057         long qll = rsp->qlen_lazy;
2058
2059         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2060         if (!rcu_is_nocb_cpu(smp_processor_id()))
2061                 return false;
2062         rsp->qlen = 0;
2063         rsp->qlen_lazy = 0;
2064
2065         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2066         if (rsp->orphan_donelist != NULL) {
2067                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2068                                         rsp->orphan_donetail, ql, qll, flags);
2069                 ql = qll = 0;
2070                 rsp->orphan_donelist = NULL;
2071                 rsp->orphan_donetail = &rsp->orphan_donelist;
2072         }
2073         if (rsp->orphan_nxtlist != NULL) {
2074                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2075                                         rsp->orphan_nxttail, ql, qll, flags);
2076                 ql = qll = 0;
2077                 rsp->orphan_nxtlist = NULL;
2078                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2079         }
2080         return true;
2081 }
2082
2083 /*
2084  * If necessary, kick off a new grace period, and either way wait
2085  * for a subsequent grace period to complete.
2086  */
2087 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2088 {
2089         unsigned long c;
2090         bool d;
2091         unsigned long flags;
2092         bool needwake;
2093         struct rcu_node *rnp = rdp->mynode;
2094
2095         raw_spin_lock_irqsave(&rnp->lock, flags);
2096         smp_mb__after_unlock_lock();
2097         needwake = rcu_start_future_gp(rnp, rdp, &c);
2098         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2099         if (needwake)
2100                 rcu_gp_kthread_wake(rdp->rsp);
2101
2102         /*
2103          * Wait for the grace period.  Do so interruptibly to avoid messing
2104          * up the load average.
2105          */
2106         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2107         for (;;) {
2108                 wait_event_interruptible(
2109                         rnp->nocb_gp_wq[c & 0x1],
2110                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2111                 if (likely(d))
2112                         break;
2113                 WARN_ON(signal_pending(current));
2114                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2115         }
2116         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2117         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2118 }
2119
2120 /*
2121  * Leaders come here to wait for additional callbacks to show up.
2122  * This function does not return until callbacks appear.
2123  */
2124 static void nocb_leader_wait(struct rcu_data *my_rdp)
2125 {
2126         bool firsttime = true;
2127         bool gotcbs;
2128         struct rcu_data *rdp;
2129         struct rcu_head **tail;
2130
2131 wait_again:
2132
2133         /* Wait for callbacks to appear. */
2134         if (!rcu_nocb_poll) {
2135                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2136                 wait_event_interruptible(my_rdp->nocb_wq,
2137                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2138                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2139         } else if (firsttime) {
2140                 firsttime = false; /* Don't drown trace log with "Poll"! */
2141                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2142         }
2143
2144         /*
2145          * Each pass through the following loop checks a follower for CBs.
2146          * We are our own first follower.  Any CBs found are moved to
2147          * nocb_gp_head, where they await a grace period.
2148          */
2149         gotcbs = false;
2150         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2151                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2152                 if (!rdp->nocb_gp_head)
2153                         continue;  /* No CBs here, try next follower. */
2154
2155                 /* Move callbacks to wait-for-GP list, which is empty. */
2156                 WRITE_ONCE(rdp->nocb_head, NULL);
2157                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2158                 gotcbs = true;
2159         }
2160
2161         /*
2162          * If there were no callbacks, sleep a bit, rescan after a
2163          * memory barrier, and go retry.
2164          */
2165         if (unlikely(!gotcbs)) {
2166                 if (!rcu_nocb_poll)
2167                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2168                                             "WokeEmpty");
2169                 WARN_ON(signal_pending(current));
2170                 schedule_timeout_interruptible(1);
2171
2172                 /* Rescan in case we were a victim of memory ordering. */
2173                 my_rdp->nocb_leader_sleep = true;
2174                 smp_mb();  /* Ensure _sleep true before scan. */
2175                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2176                         if (READ_ONCE(rdp->nocb_head)) {
2177                                 /* Found CB, so short-circuit next wait. */
2178                                 my_rdp->nocb_leader_sleep = false;
2179                                 break;
2180                         }
2181                 goto wait_again;
2182         }
2183
2184         /* Wait for one grace period. */
2185         rcu_nocb_wait_gp(my_rdp);
2186
2187         /*
2188          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2189          * We set it now, but recheck for new callbacks while
2190          * traversing our follower list.
2191          */
2192         my_rdp->nocb_leader_sleep = true;
2193         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2194
2195         /* Each pass through the following loop wakes a follower, if needed. */
2196         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2197                 if (READ_ONCE(rdp->nocb_head))
2198                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2199                 if (!rdp->nocb_gp_head)
2200                         continue; /* No CBs, so no need to wake follower. */
2201
2202                 /* Append callbacks to follower's "done" list. */
2203                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2204                 *tail = rdp->nocb_gp_head;
2205                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2206                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2207                         /*
2208                          * List was empty, wake up the follower.
2209                          * Memory barriers supplied by atomic_long_add().
2210                          */
2211                         wake_up(&rdp->nocb_wq);
2212                 }
2213         }
2214
2215         /* If we (the leader) don't have CBs, go wait some more. */
2216         if (!my_rdp->nocb_follower_head)
2217                 goto wait_again;
2218 }
2219
2220 /*
2221  * Followers come here to wait for additional callbacks to show up.
2222  * This function does not return until callbacks appear.
2223  */
2224 static void nocb_follower_wait(struct rcu_data *rdp)
2225 {
2226         bool firsttime = true;
2227
2228         for (;;) {
2229                 if (!rcu_nocb_poll) {
2230                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2231                                             "FollowerSleep");
2232                         wait_event_interruptible(rdp->nocb_wq,
2233                                                  READ_ONCE(rdp->nocb_follower_head));
2234                 } else if (firsttime) {
2235                         /* Don't drown trace log with "Poll"! */
2236                         firsttime = false;
2237                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2238                 }
2239                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2240                         /* ^^^ Ensure CB invocation follows _head test. */
2241                         return;
2242                 }
2243                 if (!rcu_nocb_poll)
2244                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2245                                             "WokeEmpty");
2246                 WARN_ON(signal_pending(current));
2247                 schedule_timeout_interruptible(1);
2248         }
2249 }
2250
2251 /*
2252  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2253  * callbacks queued by the corresponding no-CBs CPU, however, there is
2254  * an optional leader-follower relationship so that the grace-period
2255  * kthreads don't have to do quite so many wakeups.
2256  */
2257 static int rcu_nocb_kthread(void *arg)
2258 {
2259         int c, cl;
2260         struct rcu_head *list;
2261         struct rcu_head *next;
2262         struct rcu_head **tail;
2263         struct rcu_data *rdp = arg;
2264
2265         /* Each pass through this loop invokes one batch of callbacks */
2266         for (;;) {
2267                 /* Wait for callbacks. */
2268                 if (rdp->nocb_leader == rdp)
2269                         nocb_leader_wait(rdp);
2270                 else
2271                         nocb_follower_wait(rdp);
2272
2273                 /* Pull the ready-to-invoke callbacks onto local list. */
2274                 list = READ_ONCE(rdp->nocb_follower_head);
2275                 BUG_ON(!list);
2276                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2277                 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2278                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2279
2280                 /* Each pass through the following loop invokes a callback. */
2281                 trace_rcu_batch_start(rdp->rsp->name,
2282                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2283                                       atomic_long_read(&rdp->nocb_q_count), -1);
2284                 c = cl = 0;
2285                 while (list) {
2286                         next = list->next;
2287                         /* Wait for enqueuing to complete, if needed. */
2288                         while (next == NULL && &list->next != tail) {
2289                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2290                                                     TPS("WaitQueue"));
2291                                 schedule_timeout_interruptible(1);
2292                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2293                                                     TPS("WokeQueue"));
2294                                 next = list->next;
2295                         }
2296                         debug_rcu_head_unqueue(list);
2297                         local_bh_disable();
2298                         if (__rcu_reclaim(rdp->rsp->name, list))
2299                                 cl++;
2300                         c++;
2301                         local_bh_enable();
2302                         list = next;
2303                 }
2304                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2305                 smp_mb__before_atomic();  /* _add after CB invocation. */
2306                 atomic_long_add(-c, &rdp->nocb_q_count);
2307                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2308                 rdp->n_nocbs_invoked += c;
2309         }
2310         return 0;
2311 }
2312
2313 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2314 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2315 {
2316         return READ_ONCE(rdp->nocb_defer_wakeup);
2317 }
2318
2319 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2320 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2321 {
2322         int ndw;
2323
2324         if (!rcu_nocb_need_deferred_wakeup(rdp))
2325                 return;
2326         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2327         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2328         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2329         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2330 }
2331
2332 void __init rcu_init_nohz(void)
2333 {
2334         int cpu;
2335         bool need_rcu_nocb_mask = true;
2336         struct rcu_state *rsp;
2337
2338 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2339         need_rcu_nocb_mask = false;
2340 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2341
2342 #if defined(CONFIG_NO_HZ_FULL)
2343         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2344                 need_rcu_nocb_mask = true;
2345 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2346
2347         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2348                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2349                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2350                         return;
2351                 }
2352                 have_rcu_nocb_mask = true;
2353         }
2354         if (!have_rcu_nocb_mask)
2355                 return;
2356
2357 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2358         pr_info("\tOffload RCU callbacks from CPU 0\n");
2359         cpumask_set_cpu(0, rcu_nocb_mask);
2360 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2361 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2362         pr_info("\tOffload RCU callbacks from all CPUs\n");
2363         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2364 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2365 #if defined(CONFIG_NO_HZ_FULL)
2366         if (tick_nohz_full_running)
2367                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2368 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2369
2370         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2371                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2372                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2373                             rcu_nocb_mask);
2374         }
2375         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2376                 cpumask_pr_args(rcu_nocb_mask));
2377         if (rcu_nocb_poll)
2378                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2379
2380         for_each_rcu_flavor(rsp) {
2381                 for_each_cpu(cpu, rcu_nocb_mask)
2382                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2383                 rcu_organize_nocb_kthreads(rsp);
2384         }
2385 }
2386
2387 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2388 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2389 {
2390         rdp->nocb_tail = &rdp->nocb_head;
2391         init_waitqueue_head(&rdp->nocb_wq);
2392         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2393 }
2394
2395 /*
2396  * If the specified CPU is a no-CBs CPU that does not already have its
2397  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2398  * brought online out of order, this can require re-organizing the
2399  * leader-follower relationships.
2400  */
2401 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2402 {
2403         struct rcu_data *rdp;
2404         struct rcu_data *rdp_last;
2405         struct rcu_data *rdp_old_leader;
2406         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2407         struct task_struct *t;
2408
2409         /*
2410          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2411          * then nothing to do.
2412          */
2413         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2414                 return;
2415
2416         /* If we didn't spawn the leader first, reorganize! */
2417         rdp_old_leader = rdp_spawn->nocb_leader;
2418         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2419                 rdp_last = NULL;
2420                 rdp = rdp_old_leader;
2421                 do {
2422                         rdp->nocb_leader = rdp_spawn;
2423                         if (rdp_last && rdp != rdp_spawn)
2424                                 rdp_last->nocb_next_follower = rdp;
2425                         if (rdp == rdp_spawn) {
2426                                 rdp = rdp->nocb_next_follower;
2427                         } else {
2428                                 rdp_last = rdp;
2429                                 rdp = rdp->nocb_next_follower;
2430                                 rdp_last->nocb_next_follower = NULL;
2431                         }
2432                 } while (rdp);
2433                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2434         }
2435
2436         /* Spawn the kthread for this CPU and RCU flavor. */
2437         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2438                         "rcuo%c/%d", rsp->abbr, cpu);
2439         BUG_ON(IS_ERR(t));
2440         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2441 }
2442
2443 /*
2444  * If the specified CPU is a no-CBs CPU that does not already have its
2445  * rcuo kthreads, spawn them.
2446  */
2447 static void rcu_spawn_all_nocb_kthreads(int cpu)
2448 {
2449         struct rcu_state *rsp;
2450
2451         if (rcu_scheduler_fully_active)
2452                 for_each_rcu_flavor(rsp)
2453                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2454 }
2455
2456 /*
2457  * Once the scheduler is running, spawn rcuo kthreads for all online
2458  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2459  * non-boot CPUs come online -- if this changes, we will need to add
2460  * some mutual exclusion.
2461  */
2462 static void __init rcu_spawn_nocb_kthreads(void)
2463 {
2464         int cpu;
2465
2466         for_each_online_cpu(cpu)
2467                 rcu_spawn_all_nocb_kthreads(cpu);
2468 }
2469
2470 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2471 static int rcu_nocb_leader_stride = -1;
2472 module_param(rcu_nocb_leader_stride, int, 0444);
2473
2474 /*
2475  * Initialize leader-follower relationships for all no-CBs CPU.
2476  */
2477 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2478 {
2479         int cpu;
2480         int ls = rcu_nocb_leader_stride;
2481         int nl = 0;  /* Next leader. */
2482         struct rcu_data *rdp;
2483         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2484         struct rcu_data *rdp_prev = NULL;
2485
2486         if (!have_rcu_nocb_mask)
2487                 return;
2488         if (ls == -1) {
2489                 ls = int_sqrt(nr_cpu_ids);
2490                 rcu_nocb_leader_stride = ls;
2491         }
2492
2493         /*
2494          * Each pass through this loop sets up one rcu_data structure and
2495          * spawns one rcu_nocb_kthread().
2496          */
2497         for_each_cpu(cpu, rcu_nocb_mask) {
2498                 rdp = per_cpu_ptr(rsp->rda, cpu);
2499                 if (rdp->cpu >= nl) {
2500                         /* New leader, set up for followers & next leader. */
2501                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2502                         rdp->nocb_leader = rdp;
2503                         rdp_leader = rdp;
2504                 } else {
2505                         /* Another follower, link to previous leader. */
2506                         rdp->nocb_leader = rdp_leader;
2507                         rdp_prev->nocb_next_follower = rdp;
2508                 }
2509                 rdp_prev = rdp;
2510         }
2511 }
2512
2513 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2514 static bool init_nocb_callback_list(struct rcu_data *rdp)
2515 {
2516         if (!rcu_is_nocb_cpu(rdp->cpu))
2517                 return false;
2518
2519         /* If there are early-boot callbacks, move them to nocb lists. */
2520         if (rdp->nxtlist) {
2521                 rdp->nocb_head = rdp->nxtlist;
2522                 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2523                 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2524                 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2525                 rdp->nxtlist = NULL;
2526                 rdp->qlen = 0;
2527                 rdp->qlen_lazy = 0;
2528         }
2529         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2530         return true;
2531 }
2532
2533 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2534
2535 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2536 {
2537         WARN_ON_ONCE(1); /* Should be dead code. */
2538         return false;
2539 }
2540
2541 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2542 {
2543 }
2544
2545 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2546 {
2547 }
2548
2549 static void rcu_init_one_nocb(struct rcu_node *rnp)
2550 {
2551 }
2552
2553 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2554                             bool lazy, unsigned long flags)
2555 {
2556         return false;
2557 }
2558
2559 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2560                                                      struct rcu_data *rdp,
2561                                                      unsigned long flags)
2562 {
2563         return false;
2564 }
2565
2566 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2567 {
2568 }
2569
2570 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2571 {
2572         return false;
2573 }
2574
2575 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2576 {
2577 }
2578
2579 static void rcu_spawn_all_nocb_kthreads(int cpu)
2580 {
2581 }
2582
2583 static void __init rcu_spawn_nocb_kthreads(void)
2584 {
2585 }
2586
2587 static bool init_nocb_callback_list(struct rcu_data *rdp)
2588 {
2589         return false;
2590 }
2591
2592 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2593
2594 /*
2595  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2596  * arbitrarily long period of time with the scheduling-clock tick turned
2597  * off.  RCU will be paying attention to this CPU because it is in the
2598  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2599  * machine because the scheduling-clock tick has been disabled.  Therefore,
2600  * if an adaptive-ticks CPU is failing to respond to the current grace
2601  * period and has not be idle from an RCU perspective, kick it.
2602  */
2603 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2604 {
2605 #ifdef CONFIG_NO_HZ_FULL
2606         if (tick_nohz_full_cpu(cpu))
2607                 smp_send_reschedule(cpu);
2608 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2609 }
2610
2611
2612 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2613
2614 static int full_sysidle_state;          /* Current system-idle state. */
2615 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2616 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2617 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2618 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2619 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2620
2621 /*
2622  * Invoked to note exit from irq or task transition to idle.  Note that
2623  * usermode execution does -not- count as idle here!  After all, we want
2624  * to detect full-system idle states, not RCU quiescent states and grace
2625  * periods.  The caller must have disabled interrupts.
2626  */
2627 static void rcu_sysidle_enter(int irq)
2628 {
2629         unsigned long j;
2630         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2631
2632         /* If there are no nohz_full= CPUs, no need to track this. */
2633         if (!tick_nohz_full_enabled())
2634                 return;
2635
2636         /* Adjust nesting, check for fully idle. */
2637         if (irq) {
2638                 rdtp->dynticks_idle_nesting--;
2639                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2640                 if (rdtp->dynticks_idle_nesting != 0)
2641                         return;  /* Still not fully idle. */
2642         } else {
2643                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2644                     DYNTICK_TASK_NEST_VALUE) {
2645                         rdtp->dynticks_idle_nesting = 0;
2646                 } else {
2647                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2648                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2649                         return;  /* Still not fully idle. */
2650                 }
2651         }
2652
2653         /* Record start of fully idle period. */
2654         j = jiffies;
2655         WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2656         smp_mb__before_atomic();
2657         atomic_inc(&rdtp->dynticks_idle);
2658         smp_mb__after_atomic();
2659         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2660 }
2661
2662 /*
2663  * Unconditionally force exit from full system-idle state.  This is
2664  * invoked when a normal CPU exits idle, but must be called separately
2665  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2666  * is that the timekeeping CPU is permitted to take scheduling-clock
2667  * interrupts while the system is in system-idle state, and of course
2668  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2669  * interrupt from any other type of interrupt.
2670  */
2671 void rcu_sysidle_force_exit(void)
2672 {
2673         int oldstate = READ_ONCE(full_sysidle_state);
2674         int newoldstate;
2675
2676         /*
2677          * Each pass through the following loop attempts to exit full
2678          * system-idle state.  If contention proves to be a problem,
2679          * a trylock-based contention tree could be used here.
2680          */
2681         while (oldstate > RCU_SYSIDLE_SHORT) {
2682                 newoldstate = cmpxchg(&full_sysidle_state,
2683                                       oldstate, RCU_SYSIDLE_NOT);
2684                 if (oldstate == newoldstate &&
2685                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2686                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2687                         return; /* We cleared it, done! */
2688                 }
2689                 oldstate = newoldstate;
2690         }
2691         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2692 }
2693
2694 /*
2695  * Invoked to note entry to irq or task transition from idle.  Note that
2696  * usermode execution does -not- count as idle here!  The caller must
2697  * have disabled interrupts.
2698  */
2699 static void rcu_sysidle_exit(int irq)
2700 {
2701         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2702
2703         /* If there are no nohz_full= CPUs, no need to track this. */
2704         if (!tick_nohz_full_enabled())
2705                 return;
2706
2707         /* Adjust nesting, check for already non-idle. */
2708         if (irq) {
2709                 rdtp->dynticks_idle_nesting++;
2710                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2711                 if (rdtp->dynticks_idle_nesting != 1)
2712                         return; /* Already non-idle. */
2713         } else {
2714                 /*
2715                  * Allow for irq misnesting.  Yes, it really is possible
2716                  * to enter an irq handler then never leave it, and maybe
2717                  * also vice versa.  Handle both possibilities.
2718                  */
2719                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2720                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2721                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2722                         return; /* Already non-idle. */
2723                 } else {
2724                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2725                 }
2726         }
2727
2728         /* Record end of idle period. */
2729         smp_mb__before_atomic();
2730         atomic_inc(&rdtp->dynticks_idle);
2731         smp_mb__after_atomic();
2732         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2733
2734         /*
2735          * If we are the timekeeping CPU, we are permitted to be non-idle
2736          * during a system-idle state.  This must be the case, because
2737          * the timekeeping CPU has to take scheduling-clock interrupts
2738          * during the time that the system is transitioning to full
2739          * system-idle state.  This means that the timekeeping CPU must
2740          * invoke rcu_sysidle_force_exit() directly if it does anything
2741          * more than take a scheduling-clock interrupt.
2742          */
2743         if (smp_processor_id() == tick_do_timer_cpu)
2744                 return;
2745
2746         /* Update system-idle state: We are clearly no longer fully idle! */
2747         rcu_sysidle_force_exit();
2748 }
2749
2750 /*
2751  * Check to see if the current CPU is idle.  Note that usermode execution
2752  * does not count as idle.  The caller must have disabled interrupts,
2753  * and must be running on tick_do_timer_cpu.
2754  */
2755 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2756                                   unsigned long *maxj)
2757 {
2758         int cur;
2759         unsigned long j;
2760         struct rcu_dynticks *rdtp = rdp->dynticks;
2761
2762         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2763         if (!tick_nohz_full_enabled())
2764                 return;
2765
2766         /*
2767          * If some other CPU has already reported non-idle, if this is
2768          * not the flavor of RCU that tracks sysidle state, or if this
2769          * is an offline or the timekeeping CPU, nothing to do.
2770          */
2771         if (!*isidle || rdp->rsp != rcu_state_p ||
2772             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2773                 return;
2774         /* Verify affinity of current kthread. */
2775         WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2776
2777         /* Pick up current idle and NMI-nesting counter and check. */
2778         cur = atomic_read(&rdtp->dynticks_idle);
2779         if (cur & 0x1) {
2780                 *isidle = false; /* We are not idle! */
2781                 return;
2782         }
2783         smp_mb(); /* Read counters before timestamps. */
2784
2785         /* Pick up timestamps. */
2786         j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2787         /* If this CPU entered idle more recently, update maxj timestamp. */
2788         if (ULONG_CMP_LT(*maxj, j))
2789                 *maxj = j;
2790 }
2791
2792 /*
2793  * Is this the flavor of RCU that is handling full-system idle?
2794  */
2795 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2796 {
2797         return rsp == rcu_state_p;
2798 }
2799
2800 /*
2801  * Return a delay in jiffies based on the number of CPUs, rcu_node
2802  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2803  * systems more time to transition to full-idle state in order to
2804  * avoid the cache thrashing that otherwise occur on the state variable.
2805  * Really small systems (less than a couple of tens of CPUs) should
2806  * instead use a single global atomically incremented counter, and later
2807  * versions of this will automatically reconfigure themselves accordingly.
2808  */
2809 static unsigned long rcu_sysidle_delay(void)
2810 {
2811         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2812                 return 0;
2813         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2814 }
2815
2816 /*
2817  * Advance the full-system-idle state.  This is invoked when all of
2818  * the non-timekeeping CPUs are idle.
2819  */
2820 static void rcu_sysidle(unsigned long j)
2821 {
2822         /* Check the current state. */
2823         switch (READ_ONCE(full_sysidle_state)) {
2824         case RCU_SYSIDLE_NOT:
2825
2826                 /* First time all are idle, so note a short idle period. */
2827                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2828                 break;
2829
2830         case RCU_SYSIDLE_SHORT:
2831
2832                 /*
2833                  * Idle for a bit, time to advance to next state?
2834                  * cmpxchg failure means race with non-idle, let them win.
2835                  */
2836                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2837                         (void)cmpxchg(&full_sysidle_state,
2838                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2839                 break;
2840
2841         case RCU_SYSIDLE_LONG:
2842
2843                 /*
2844                  * Do an additional check pass before advancing to full.
2845                  * cmpxchg failure means race with non-idle, let them win.
2846                  */
2847                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2848                         (void)cmpxchg(&full_sysidle_state,
2849                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2850                 break;
2851
2852         default:
2853                 break;
2854         }
2855 }
2856
2857 /*
2858  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2859  * back to the beginning.
2860  */
2861 static void rcu_sysidle_cancel(void)
2862 {
2863         smp_mb();
2864         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2865                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2866 }
2867
2868 /*
2869  * Update the sysidle state based on the results of a force-quiescent-state
2870  * scan of the CPUs' dyntick-idle state.
2871  */
2872 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2873                                unsigned long maxj, bool gpkt)
2874 {
2875         if (rsp != rcu_state_p)
2876                 return;  /* Wrong flavor, ignore. */
2877         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2878                 return;  /* Running state machine from timekeeping CPU. */
2879         if (isidle)
2880                 rcu_sysidle(maxj);    /* More idle! */
2881         else
2882                 rcu_sysidle_cancel(); /* Idle is over. */
2883 }
2884
2885 /*
2886  * Wrapper for rcu_sysidle_report() when called from the grace-period
2887  * kthread's context.
2888  */
2889 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2890                                   unsigned long maxj)
2891 {
2892         /* If there are no nohz_full= CPUs, no need to track this. */
2893         if (!tick_nohz_full_enabled())
2894                 return;
2895
2896         rcu_sysidle_report(rsp, isidle, maxj, true);
2897 }
2898
2899 /* Callback and function for forcing an RCU grace period. */
2900 struct rcu_sysidle_head {
2901         struct rcu_head rh;
2902         int inuse;
2903 };
2904
2905 static void rcu_sysidle_cb(struct rcu_head *rhp)
2906 {
2907         struct rcu_sysidle_head *rshp;
2908
2909         /*
2910          * The following memory barrier is needed to replace the
2911          * memory barriers that would normally be in the memory
2912          * allocator.
2913          */
2914         smp_mb();  /* grace period precedes setting inuse. */
2915
2916         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2917         WRITE_ONCE(rshp->inuse, 0);
2918 }
2919
2920 /*
2921  * Check to see if the system is fully idle, other than the timekeeping CPU.
2922  * The caller must have disabled interrupts.  This is not intended to be
2923  * called unless tick_nohz_full_enabled().
2924  */
2925 bool rcu_sys_is_idle(void)
2926 {
2927         static struct rcu_sysidle_head rsh;
2928         int rss = READ_ONCE(full_sysidle_state);
2929
2930         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2931                 return false;
2932
2933         /* Handle small-system case by doing a full scan of CPUs. */
2934         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2935                 int oldrss = rss - 1;
2936
2937                 /*
2938                  * One pass to advance to each state up to _FULL.
2939                  * Give up if any pass fails to advance the state.
2940                  */
2941                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2942                         int cpu;
2943                         bool isidle = true;
2944                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2945                         struct rcu_data *rdp;
2946
2947                         /* Scan all the CPUs looking for nonidle CPUs. */
2948                         for_each_possible_cpu(cpu) {
2949                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2950                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2951                                 if (!isidle)
2952                                         break;
2953                         }
2954                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2955                         oldrss = rss;
2956                         rss = READ_ONCE(full_sysidle_state);
2957                 }
2958         }
2959
2960         /* If this is the first observation of an idle period, record it. */
2961         if (rss == RCU_SYSIDLE_FULL) {
2962                 rss = cmpxchg(&full_sysidle_state,
2963                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2964                 return rss == RCU_SYSIDLE_FULL;
2965         }
2966
2967         smp_mb(); /* ensure rss load happens before later caller actions. */
2968
2969         /* If already fully idle, tell the caller (in case of races). */
2970         if (rss == RCU_SYSIDLE_FULL_NOTED)
2971                 return true;
2972
2973         /*
2974          * If we aren't there yet, and a grace period is not in flight,
2975          * initiate a grace period.  Either way, tell the caller that
2976          * we are not there yet.  We use an xchg() rather than an assignment
2977          * to make up for the memory barriers that would otherwise be
2978          * provided by the memory allocator.
2979          */
2980         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2981             !rcu_gp_in_progress(rcu_state_p) &&
2982             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2983                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2984         return false;
2985 }
2986
2987 /*
2988  * Initialize dynticks sysidle state for CPUs coming online.
2989  */
2990 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2991 {
2992         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2993 }
2994
2995 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2996
2997 static void rcu_sysidle_enter(int irq)
2998 {
2999 }
3000
3001 static void rcu_sysidle_exit(int irq)
3002 {
3003 }
3004
3005 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3006                                   unsigned long *maxj)
3007 {
3008 }
3009
3010 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3011 {
3012         return false;
3013 }
3014
3015 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3016                                   unsigned long maxj)
3017 {
3018 }
3019
3020 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3021 {
3022 }
3023
3024 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3025
3026 /*
3027  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3028  * grace-period kthread will do force_quiescent_state() processing?
3029  * The idea is to avoid waking up RCU core processing on such a
3030  * CPU unless the grace period has extended for too long.
3031  *
3032  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3033  * CONFIG_RCU_NOCB_CPU CPUs.
3034  */
3035 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3036 {
3037 #ifdef CONFIG_NO_HZ_FULL
3038         if (tick_nohz_full_cpu(smp_processor_id()) &&
3039             (!rcu_gp_in_progress(rsp) ||
3040              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3041                 return true;
3042 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3043         return false;
3044 }
3045
3046 /*
3047  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3048  * timekeeping CPU.
3049  */
3050 static void rcu_bind_gp_kthread(void)
3051 {
3052         int __maybe_unused cpu;
3053
3054         if (!tick_nohz_full_enabled())
3055                 return;
3056 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3057         cpu = tick_do_timer_cpu;
3058         if (cpu >= 0 && cpu < nr_cpu_ids)
3059                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3060 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3061         housekeeping_affine(current);
3062 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3063 }
3064
3065 /* Record the current task on dyntick-idle entry. */
3066 static void rcu_dynticks_task_enter(void)
3067 {
3068 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3069         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3070 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3071 }
3072
3073 /* Record no current task on dyntick-idle exit. */
3074 static void rcu_dynticks_task_exit(void)
3075 {
3076 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3077         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3078 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3079 }