]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/sched_fair.c
sched: apply RCU protection to wake_affine()
[karo-tx-linux.git] / kernel / sched_fair.c
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22
23 #include <linux/latencytop.h>
24
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28  *
29  * NOTE: this latency value is not the same as the concept of
30  * 'timeslice length' - timeslices in CFS are of variable length
31  * and have no persistent notion like in traditional, time-slice
32  * based scheduling concepts.
33  *
34  * (to see the precise effective timeslice length of your workload,
35  *  run vmstat and monitor the context-switches (cs) field)
36  */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
39
40 /*
41  * Minimal preemption granularity for CPU-bound tasks:
42  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
43  */
44 unsigned int sysctl_sched_min_granularity = 1000000ULL;
45 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
46
47 /*
48  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
49  */
50 static unsigned int sched_nr_latency = 5;
51
52 /*
53  * After fork, child runs first. If set to 0 (default) then
54  * parent will (try to) run first.
55  */
56 unsigned int sysctl_sched_child_runs_first __read_mostly;
57
58 /*
59  * sys_sched_yield() compat mode
60  *
61  * This option switches the agressive yield implementation of the
62  * old scheduler back on.
63  */
64 unsigned int __read_mostly sysctl_sched_compat_yield;
65
66 /*
67  * SCHED_OTHER wake-up granularity.
68  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
69  *
70  * This option delays the preemption effects of decoupled workloads
71  * and reduces their over-scheduling. Synchronous workloads will still
72  * have immediate wakeup/sleep latencies.
73  */
74 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
75 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
76
77 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
78
79 static const struct sched_class fair_sched_class;
80
81 /**************************************************************
82  * CFS operations on generic schedulable entities:
83  */
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90         return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se)      (!se->my_q)
95
96 static inline struct task_struct *task_of(struct sched_entity *se)
97 {
98 #ifdef CONFIG_SCHED_DEBUG
99         WARN_ON_ONCE(!entity_is_task(se));
100 #endif
101         return container_of(se, struct task_struct, se);
102 }
103
104 /* Walk up scheduling entities hierarchy */
105 #define for_each_sched_entity(se) \
106                 for (; se; se = se->parent)
107
108 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
109 {
110         return p->se.cfs_rq;
111 }
112
113 /* runqueue on which this entity is (to be) queued */
114 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
115 {
116         return se->cfs_rq;
117 }
118
119 /* runqueue "owned" by this group */
120 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
121 {
122         return grp->my_q;
123 }
124
125 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
126  * another cpu ('this_cpu')
127  */
128 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
129 {
130         return cfs_rq->tg->cfs_rq[this_cpu];
131 }
132
133 /* Iterate thr' all leaf cfs_rq's on a runqueue */
134 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
135         list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
136
137 /* Do the two (enqueued) entities belong to the same group ? */
138 static inline int
139 is_same_group(struct sched_entity *se, struct sched_entity *pse)
140 {
141         if (se->cfs_rq == pse->cfs_rq)
142                 return 1;
143
144         return 0;
145 }
146
147 static inline struct sched_entity *parent_entity(struct sched_entity *se)
148 {
149         return se->parent;
150 }
151
152 /* return depth at which a sched entity is present in the hierarchy */
153 static inline int depth_se(struct sched_entity *se)
154 {
155         int depth = 0;
156
157         for_each_sched_entity(se)
158                 depth++;
159
160         return depth;
161 }
162
163 static void
164 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
165 {
166         int se_depth, pse_depth;
167
168         /*
169          * preemption test can be made between sibling entities who are in the
170          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
171          * both tasks until we find their ancestors who are siblings of common
172          * parent.
173          */
174
175         /* First walk up until both entities are at same depth */
176         se_depth = depth_se(*se);
177         pse_depth = depth_se(*pse);
178
179         while (se_depth > pse_depth) {
180                 se_depth--;
181                 *se = parent_entity(*se);
182         }
183
184         while (pse_depth > se_depth) {
185                 pse_depth--;
186                 *pse = parent_entity(*pse);
187         }
188
189         while (!is_same_group(*se, *pse)) {
190                 *se = parent_entity(*se);
191                 *pse = parent_entity(*pse);
192         }
193 }
194
195 #else   /* !CONFIG_FAIR_GROUP_SCHED */
196
197 static inline struct task_struct *task_of(struct sched_entity *se)
198 {
199         return container_of(se, struct task_struct, se);
200 }
201
202 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
203 {
204         return container_of(cfs_rq, struct rq, cfs);
205 }
206
207 #define entity_is_task(se)      1
208
209 #define for_each_sched_entity(se) \
210                 for (; se; se = NULL)
211
212 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
213 {
214         return &task_rq(p)->cfs;
215 }
216
217 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
218 {
219         struct task_struct *p = task_of(se);
220         struct rq *rq = task_rq(p);
221
222         return &rq->cfs;
223 }
224
225 /* runqueue "owned" by this group */
226 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
227 {
228         return NULL;
229 }
230
231 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
232 {
233         return &cpu_rq(this_cpu)->cfs;
234 }
235
236 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
237                 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
238
239 static inline int
240 is_same_group(struct sched_entity *se, struct sched_entity *pse)
241 {
242         return 1;
243 }
244
245 static inline struct sched_entity *parent_entity(struct sched_entity *se)
246 {
247         return NULL;
248 }
249
250 static inline void
251 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
252 {
253 }
254
255 #endif  /* CONFIG_FAIR_GROUP_SCHED */
256
257
258 /**************************************************************
259  * Scheduling class tree data structure manipulation methods:
260  */
261
262 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
263 {
264         s64 delta = (s64)(vruntime - min_vruntime);
265         if (delta > 0)
266                 min_vruntime = vruntime;
267
268         return min_vruntime;
269 }
270
271 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
272 {
273         s64 delta = (s64)(vruntime - min_vruntime);
274         if (delta < 0)
275                 min_vruntime = vruntime;
276
277         return min_vruntime;
278 }
279
280 static inline int entity_before(struct sched_entity *a,
281                                 struct sched_entity *b)
282 {
283         return (s64)(a->vruntime - b->vruntime) < 0;
284 }
285
286 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
287 {
288         return se->vruntime - cfs_rq->min_vruntime;
289 }
290
291 static void update_min_vruntime(struct cfs_rq *cfs_rq)
292 {
293         u64 vruntime = cfs_rq->min_vruntime;
294
295         if (cfs_rq->curr)
296                 vruntime = cfs_rq->curr->vruntime;
297
298         if (cfs_rq->rb_leftmost) {
299                 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
300                                                    struct sched_entity,
301                                                    run_node);
302
303                 if (!cfs_rq->curr)
304                         vruntime = se->vruntime;
305                 else
306                         vruntime = min_vruntime(vruntime, se->vruntime);
307         }
308
309         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
310 }
311
312 /*
313  * Enqueue an entity into the rb-tree:
314  */
315 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
316 {
317         struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
318         struct rb_node *parent = NULL;
319         struct sched_entity *entry;
320         s64 key = entity_key(cfs_rq, se);
321         int leftmost = 1;
322
323         /*
324          * Find the right place in the rbtree:
325          */
326         while (*link) {
327                 parent = *link;
328                 entry = rb_entry(parent, struct sched_entity, run_node);
329                 /*
330                  * We dont care about collisions. Nodes with
331                  * the same key stay together.
332                  */
333                 if (key < entity_key(cfs_rq, entry)) {
334                         link = &parent->rb_left;
335                 } else {
336                         link = &parent->rb_right;
337                         leftmost = 0;
338                 }
339         }
340
341         /*
342          * Maintain a cache of leftmost tree entries (it is frequently
343          * used):
344          */
345         if (leftmost)
346                 cfs_rq->rb_leftmost = &se->run_node;
347
348         rb_link_node(&se->run_node, parent, link);
349         rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
350 }
351
352 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
353 {
354         if (cfs_rq->rb_leftmost == &se->run_node) {
355                 struct rb_node *next_node;
356
357                 next_node = rb_next(&se->run_node);
358                 cfs_rq->rb_leftmost = next_node;
359         }
360
361         rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
362 }
363
364 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
365 {
366         struct rb_node *left = cfs_rq->rb_leftmost;
367
368         if (!left)
369                 return NULL;
370
371         return rb_entry(left, struct sched_entity, run_node);
372 }
373
374 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
375 {
376         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
377
378         if (!last)
379                 return NULL;
380
381         return rb_entry(last, struct sched_entity, run_node);
382 }
383
384 /**************************************************************
385  * Scheduling class statistics methods:
386  */
387
388 #ifdef CONFIG_SCHED_DEBUG
389 int sched_nr_latency_handler(struct ctl_table *table, int write,
390                 void __user *buffer, size_t *lenp,
391                 loff_t *ppos)
392 {
393         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
394
395         if (ret || !write)
396                 return ret;
397
398         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
399                                         sysctl_sched_min_granularity);
400
401         return 0;
402 }
403 #endif
404
405 /*
406  * delta /= w
407  */
408 static inline unsigned long
409 calc_delta_fair(unsigned long delta, struct sched_entity *se)
410 {
411         if (unlikely(se->load.weight != NICE_0_LOAD))
412                 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
413
414         return delta;
415 }
416
417 /*
418  * The idea is to set a period in which each task runs once.
419  *
420  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
421  * this period because otherwise the slices get too small.
422  *
423  * p = (nr <= nl) ? l : l*nr/nl
424  */
425 static u64 __sched_period(unsigned long nr_running)
426 {
427         u64 period = sysctl_sched_latency;
428         unsigned long nr_latency = sched_nr_latency;
429
430         if (unlikely(nr_running > nr_latency)) {
431                 period = sysctl_sched_min_granularity;
432                 period *= nr_running;
433         }
434
435         return period;
436 }
437
438 /*
439  * We calculate the wall-time slice from the period by taking a part
440  * proportional to the weight.
441  *
442  * s = p*P[w/rw]
443  */
444 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
445 {
446         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
447
448         for_each_sched_entity(se) {
449                 struct load_weight *load;
450                 struct load_weight lw;
451
452                 cfs_rq = cfs_rq_of(se);
453                 load = &cfs_rq->load;
454
455                 if (unlikely(!se->on_rq)) {
456                         lw = cfs_rq->load;
457
458                         update_load_add(&lw, se->load.weight);
459                         load = &lw;
460                 }
461                 slice = calc_delta_mine(slice, se->load.weight, load);
462         }
463         return slice;
464 }
465
466 /*
467  * We calculate the vruntime slice of a to be inserted task
468  *
469  * vs = s/w
470  */
471 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
472 {
473         return calc_delta_fair(sched_slice(cfs_rq, se), se);
474 }
475
476 /*
477  * Update the current task's runtime statistics. Skip current tasks that
478  * are not in our scheduling class.
479  */
480 static inline void
481 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
482               unsigned long delta_exec)
483 {
484         unsigned long delta_exec_weighted;
485
486         schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
487
488         curr->sum_exec_runtime += delta_exec;
489         schedstat_add(cfs_rq, exec_clock, delta_exec);
490         delta_exec_weighted = calc_delta_fair(delta_exec, curr);
491
492         curr->vruntime += delta_exec_weighted;
493         update_min_vruntime(cfs_rq);
494 }
495
496 static void update_curr(struct cfs_rq *cfs_rq)
497 {
498         struct sched_entity *curr = cfs_rq->curr;
499         u64 now = rq_of(cfs_rq)->clock;
500         unsigned long delta_exec;
501
502         if (unlikely(!curr))
503                 return;
504
505         /*
506          * Get the amount of time the current task was running
507          * since the last time we changed load (this cannot
508          * overflow on 32 bits):
509          */
510         delta_exec = (unsigned long)(now - curr->exec_start);
511         if (!delta_exec)
512                 return;
513
514         __update_curr(cfs_rq, curr, delta_exec);
515         curr->exec_start = now;
516
517         if (entity_is_task(curr)) {
518                 struct task_struct *curtask = task_of(curr);
519
520                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
521                 cpuacct_charge(curtask, delta_exec);
522                 account_group_exec_runtime(curtask, delta_exec);
523         }
524 }
525
526 static inline void
527 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529         schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
530 }
531
532 /*
533  * Task is being enqueued - update stats:
534  */
535 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
536 {
537         /*
538          * Are we enqueueing a waiting task? (for current tasks
539          * a dequeue/enqueue event is a NOP)
540          */
541         if (se != cfs_rq->curr)
542                 update_stats_wait_start(cfs_rq, se);
543 }
544
545 static void
546 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548         schedstat_set(se->wait_max, max(se->wait_max,
549                         rq_of(cfs_rq)->clock - se->wait_start));
550         schedstat_set(se->wait_count, se->wait_count + 1);
551         schedstat_set(se->wait_sum, se->wait_sum +
552                         rq_of(cfs_rq)->clock - se->wait_start);
553 #ifdef CONFIG_SCHEDSTATS
554         if (entity_is_task(se)) {
555                 trace_sched_stat_wait(task_of(se),
556                         rq_of(cfs_rq)->clock - se->wait_start);
557         }
558 #endif
559         schedstat_set(se->wait_start, 0);
560 }
561
562 static inline void
563 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
564 {
565         /*
566          * Mark the end of the wait period if dequeueing a
567          * waiting task:
568          */
569         if (se != cfs_rq->curr)
570                 update_stats_wait_end(cfs_rq, se);
571 }
572
573 /*
574  * We are picking a new current task - update its stats:
575  */
576 static inline void
577 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
578 {
579         /*
580          * We are starting a new run period:
581          */
582         se->exec_start = rq_of(cfs_rq)->clock;
583 }
584
585 /**************************************************
586  * Scheduling class queueing methods:
587  */
588
589 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
590 static void
591 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
592 {
593         cfs_rq->task_weight += weight;
594 }
595 #else
596 static inline void
597 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
598 {
599 }
600 #endif
601
602 static void
603 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
604 {
605         update_load_add(&cfs_rq->load, se->load.weight);
606         if (!parent_entity(se))
607                 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
608         if (entity_is_task(se)) {
609                 add_cfs_task_weight(cfs_rq, se->load.weight);
610                 list_add(&se->group_node, &cfs_rq->tasks);
611         }
612         cfs_rq->nr_running++;
613         se->on_rq = 1;
614 }
615
616 static void
617 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
618 {
619         update_load_sub(&cfs_rq->load, se->load.weight);
620         if (!parent_entity(se))
621                 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
622         if (entity_is_task(se)) {
623                 add_cfs_task_weight(cfs_rq, -se->load.weight);
624                 list_del_init(&se->group_node);
625         }
626         cfs_rq->nr_running--;
627         se->on_rq = 0;
628 }
629
630 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
631 {
632 #ifdef CONFIG_SCHEDSTATS
633         struct task_struct *tsk = NULL;
634
635         if (entity_is_task(se))
636                 tsk = task_of(se);
637
638         if (se->sleep_start) {
639                 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
640
641                 if ((s64)delta < 0)
642                         delta = 0;
643
644                 if (unlikely(delta > se->sleep_max))
645                         se->sleep_max = delta;
646
647                 se->sleep_start = 0;
648                 se->sum_sleep_runtime += delta;
649
650                 if (tsk) {
651                         account_scheduler_latency(tsk, delta >> 10, 1);
652                         trace_sched_stat_sleep(tsk, delta);
653                 }
654         }
655         if (se->block_start) {
656                 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
657
658                 if ((s64)delta < 0)
659                         delta = 0;
660
661                 if (unlikely(delta > se->block_max))
662                         se->block_max = delta;
663
664                 se->block_start = 0;
665                 se->sum_sleep_runtime += delta;
666
667                 if (tsk) {
668                         if (tsk->in_iowait) {
669                                 se->iowait_sum += delta;
670                                 se->iowait_count++;
671                                 trace_sched_stat_iowait(tsk, delta);
672                         }
673
674                         /*
675                          * Blocking time is in units of nanosecs, so shift by
676                          * 20 to get a milliseconds-range estimation of the
677                          * amount of time that the task spent sleeping:
678                          */
679                         if (unlikely(prof_on == SLEEP_PROFILING)) {
680                                 profile_hits(SLEEP_PROFILING,
681                                                 (void *)get_wchan(tsk),
682                                                 delta >> 20);
683                         }
684                         account_scheduler_latency(tsk, delta >> 10, 0);
685                 }
686         }
687 #endif
688 }
689
690 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
691 {
692 #ifdef CONFIG_SCHED_DEBUG
693         s64 d = se->vruntime - cfs_rq->min_vruntime;
694
695         if (d < 0)
696                 d = -d;
697
698         if (d > 3*sysctl_sched_latency)
699                 schedstat_inc(cfs_rq, nr_spread_over);
700 #endif
701 }
702
703 static void
704 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
705 {
706         u64 vruntime = cfs_rq->min_vruntime;
707
708         /*
709          * The 'current' period is already promised to the current tasks,
710          * however the extra weight of the new task will slow them down a
711          * little, place the new task so that it fits in the slot that
712          * stays open at the end.
713          */
714         if (initial && sched_feat(START_DEBIT))
715                 vruntime += sched_vslice(cfs_rq, se);
716
717         /* sleeps up to a single latency don't count. */
718         if (!initial && sched_feat(FAIR_SLEEPERS)) {
719                 unsigned long thresh = sysctl_sched_latency;
720
721                 /*
722                  * Convert the sleeper threshold into virtual time.
723                  * SCHED_IDLE is a special sub-class.  We care about
724                  * fairness only relative to other SCHED_IDLE tasks,
725                  * all of which have the same weight.
726                  */
727                 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
728                                  task_of(se)->policy != SCHED_IDLE))
729                         thresh = calc_delta_fair(thresh, se);
730
731                 /*
732                  * Halve their sleep time's effect, to allow
733                  * for a gentler effect of sleepers:
734                  */
735                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
736                         thresh >>= 1;
737
738                 vruntime -= thresh;
739         }
740
741         /* ensure we never gain time by being placed backwards. */
742         vruntime = max_vruntime(se->vruntime, vruntime);
743
744         se->vruntime = vruntime;
745 }
746
747 #define ENQUEUE_WAKEUP  1
748 #define ENQUEUE_MIGRATE 2
749
750 static void
751 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
752 {
753         /*
754          * Update the normalized vruntime before updating min_vruntime
755          * through callig update_curr().
756          */
757         if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
758                 se->vruntime += cfs_rq->min_vruntime;
759
760         /*
761          * Update run-time statistics of the 'current'.
762          */
763         update_curr(cfs_rq);
764         account_entity_enqueue(cfs_rq, se);
765
766         if (flags & ENQUEUE_WAKEUP) {
767                 place_entity(cfs_rq, se, 0);
768                 enqueue_sleeper(cfs_rq, se);
769         }
770
771         update_stats_enqueue(cfs_rq, se);
772         check_spread(cfs_rq, se);
773         if (se != cfs_rq->curr)
774                 __enqueue_entity(cfs_rq, se);
775 }
776
777 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
778 {
779         if (!se || cfs_rq->last == se)
780                 cfs_rq->last = NULL;
781
782         if (!se || cfs_rq->next == se)
783                 cfs_rq->next = NULL;
784 }
785
786 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788         for_each_sched_entity(se)
789                 __clear_buddies(cfs_rq_of(se), se);
790 }
791
792 static void
793 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
794 {
795         /*
796          * Update run-time statistics of the 'current'.
797          */
798         update_curr(cfs_rq);
799
800         update_stats_dequeue(cfs_rq, se);
801         if (sleep) {
802 #ifdef CONFIG_SCHEDSTATS
803                 if (entity_is_task(se)) {
804                         struct task_struct *tsk = task_of(se);
805
806                         if (tsk->state & TASK_INTERRUPTIBLE)
807                                 se->sleep_start = rq_of(cfs_rq)->clock;
808                         if (tsk->state & TASK_UNINTERRUPTIBLE)
809                                 se->block_start = rq_of(cfs_rq)->clock;
810                 }
811 #endif
812         }
813
814         clear_buddies(cfs_rq, se);
815
816         if (se != cfs_rq->curr)
817                 __dequeue_entity(cfs_rq, se);
818         account_entity_dequeue(cfs_rq, se);
819         update_min_vruntime(cfs_rq);
820
821         /*
822          * Normalize the entity after updating the min_vruntime because the
823          * update can refer to the ->curr item and we need to reflect this
824          * movement in our normalized position.
825          */
826         if (!sleep)
827                 se->vruntime -= cfs_rq->min_vruntime;
828 }
829
830 /*
831  * Preempt the current task with a newly woken task if needed:
832  */
833 static void
834 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
835 {
836         unsigned long ideal_runtime, delta_exec;
837
838         ideal_runtime = sched_slice(cfs_rq, curr);
839         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
840         if (delta_exec > ideal_runtime) {
841                 resched_task(rq_of(cfs_rq)->curr);
842                 /*
843                  * The current task ran long enough, ensure it doesn't get
844                  * re-elected due to buddy favours.
845                  */
846                 clear_buddies(cfs_rq, curr);
847                 return;
848         }
849
850         /*
851          * Ensure that a task that missed wakeup preemption by a
852          * narrow margin doesn't have to wait for a full slice.
853          * This also mitigates buddy induced latencies under load.
854          */
855         if (!sched_feat(WAKEUP_PREEMPT))
856                 return;
857
858         if (delta_exec < sysctl_sched_min_granularity)
859                 return;
860
861         if (cfs_rq->nr_running > 1) {
862                 struct sched_entity *se = __pick_next_entity(cfs_rq);
863                 s64 delta = curr->vruntime - se->vruntime;
864
865                 if (delta > ideal_runtime)
866                         resched_task(rq_of(cfs_rq)->curr);
867         }
868 }
869
870 static void
871 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
872 {
873         /* 'current' is not kept within the tree. */
874         if (se->on_rq) {
875                 /*
876                  * Any task has to be enqueued before it get to execute on
877                  * a CPU. So account for the time it spent waiting on the
878                  * runqueue.
879                  */
880                 update_stats_wait_end(cfs_rq, se);
881                 __dequeue_entity(cfs_rq, se);
882         }
883
884         update_stats_curr_start(cfs_rq, se);
885         cfs_rq->curr = se;
886 #ifdef CONFIG_SCHEDSTATS
887         /*
888          * Track our maximum slice length, if the CPU's load is at
889          * least twice that of our own weight (i.e. dont track it
890          * when there are only lesser-weight tasks around):
891          */
892         if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
893                 se->slice_max = max(se->slice_max,
894                         se->sum_exec_runtime - se->prev_sum_exec_runtime);
895         }
896 #endif
897         se->prev_sum_exec_runtime = se->sum_exec_runtime;
898 }
899
900 static int
901 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
902
903 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
904 {
905         struct sched_entity *se = __pick_next_entity(cfs_rq);
906         struct sched_entity *left = se;
907
908         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
909                 se = cfs_rq->next;
910
911         /*
912          * Prefer last buddy, try to return the CPU to a preempted task.
913          */
914         if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
915                 se = cfs_rq->last;
916
917         clear_buddies(cfs_rq, se);
918
919         return se;
920 }
921
922 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
923 {
924         /*
925          * If still on the runqueue then deactivate_task()
926          * was not called and update_curr() has to be done:
927          */
928         if (prev->on_rq)
929                 update_curr(cfs_rq);
930
931         check_spread(cfs_rq, prev);
932         if (prev->on_rq) {
933                 update_stats_wait_start(cfs_rq, prev);
934                 /* Put 'current' back into the tree. */
935                 __enqueue_entity(cfs_rq, prev);
936         }
937         cfs_rq->curr = NULL;
938 }
939
940 static void
941 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
942 {
943         /*
944          * Update run-time statistics of the 'current'.
945          */
946         update_curr(cfs_rq);
947
948 #ifdef CONFIG_SCHED_HRTICK
949         /*
950          * queued ticks are scheduled to match the slice, so don't bother
951          * validating it and just reschedule.
952          */
953         if (queued) {
954                 resched_task(rq_of(cfs_rq)->curr);
955                 return;
956         }
957         /*
958          * don't let the period tick interfere with the hrtick preemption
959          */
960         if (!sched_feat(DOUBLE_TICK) &&
961                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
962                 return;
963 #endif
964
965         if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
966                 check_preempt_tick(cfs_rq, curr);
967 }
968
969 /**************************************************
970  * CFS operations on tasks:
971  */
972
973 #ifdef CONFIG_SCHED_HRTICK
974 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
975 {
976         struct sched_entity *se = &p->se;
977         struct cfs_rq *cfs_rq = cfs_rq_of(se);
978
979         WARN_ON(task_rq(p) != rq);
980
981         if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
982                 u64 slice = sched_slice(cfs_rq, se);
983                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
984                 s64 delta = slice - ran;
985
986                 if (delta < 0) {
987                         if (rq->curr == p)
988                                 resched_task(p);
989                         return;
990                 }
991
992                 /*
993                  * Don't schedule slices shorter than 10000ns, that just
994                  * doesn't make sense. Rely on vruntime for fairness.
995                  */
996                 if (rq->curr != p)
997                         delta = max_t(s64, 10000LL, delta);
998
999                 hrtick_start(rq, delta);
1000         }
1001 }
1002
1003 /*
1004  * called from enqueue/dequeue and updates the hrtick when the
1005  * current task is from our class and nr_running is low enough
1006  * to matter.
1007  */
1008 static void hrtick_update(struct rq *rq)
1009 {
1010         struct task_struct *curr = rq->curr;
1011
1012         if (curr->sched_class != &fair_sched_class)
1013                 return;
1014
1015         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1016                 hrtick_start_fair(rq, curr);
1017 }
1018 #else /* !CONFIG_SCHED_HRTICK */
1019 static inline void
1020 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1021 {
1022 }
1023
1024 static inline void hrtick_update(struct rq *rq)
1025 {
1026 }
1027 #endif
1028
1029 /*
1030  * The enqueue_task method is called before nr_running is
1031  * increased. Here we update the fair scheduling stats and
1032  * then put the task into the rbtree:
1033  */
1034 static void
1035 enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1036 {
1037         struct cfs_rq *cfs_rq;
1038         struct sched_entity *se = &p->se;
1039         int flags = 0;
1040
1041         if (wakeup)
1042                 flags |= ENQUEUE_WAKEUP;
1043         if (p->state == TASK_WAKING)
1044                 flags |= ENQUEUE_MIGRATE;
1045
1046         for_each_sched_entity(se) {
1047                 if (se->on_rq)
1048                         break;
1049                 cfs_rq = cfs_rq_of(se);
1050                 enqueue_entity(cfs_rq, se, flags);
1051                 flags = ENQUEUE_WAKEUP;
1052         }
1053
1054         hrtick_update(rq);
1055 }
1056
1057 /*
1058  * The dequeue_task method is called before nr_running is
1059  * decreased. We remove the task from the rbtree and
1060  * update the fair scheduling stats:
1061  */
1062 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1063 {
1064         struct cfs_rq *cfs_rq;
1065         struct sched_entity *se = &p->se;
1066
1067         for_each_sched_entity(se) {
1068                 cfs_rq = cfs_rq_of(se);
1069                 dequeue_entity(cfs_rq, se, sleep);
1070                 /* Don't dequeue parent if it has other entities besides us */
1071                 if (cfs_rq->load.weight)
1072                         break;
1073                 sleep = 1;
1074         }
1075
1076         hrtick_update(rq);
1077 }
1078
1079 /*
1080  * sched_yield() support is very simple - we dequeue and enqueue.
1081  *
1082  * If compat_yield is turned on then we requeue to the end of the tree.
1083  */
1084 static void yield_task_fair(struct rq *rq)
1085 {
1086         struct task_struct *curr = rq->curr;
1087         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1088         struct sched_entity *rightmost, *se = &curr->se;
1089
1090         /*
1091          * Are we the only task in the tree?
1092          */
1093         if (unlikely(cfs_rq->nr_running == 1))
1094                 return;
1095
1096         clear_buddies(cfs_rq, se);
1097
1098         if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1099                 update_rq_clock(rq);
1100                 /*
1101                  * Update run-time statistics of the 'current'.
1102                  */
1103                 update_curr(cfs_rq);
1104
1105                 return;
1106         }
1107         /*
1108          * Find the rightmost entry in the rbtree:
1109          */
1110         rightmost = __pick_last_entity(cfs_rq);
1111         /*
1112          * Already in the rightmost position?
1113          */
1114         if (unlikely(!rightmost || entity_before(rightmost, se)))
1115                 return;
1116
1117         /*
1118          * Minimally necessary key value to be last in the tree:
1119          * Upon rescheduling, sched_class::put_prev_task() will place
1120          * 'current' within the tree based on its new key value.
1121          */
1122         se->vruntime = rightmost->vruntime + 1;
1123 }
1124
1125 #ifdef CONFIG_SMP
1126
1127 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1128 {
1129         struct sched_entity *se = &p->se;
1130         struct cfs_rq *cfs_rq = cfs_rq_of(se);
1131
1132         se->vruntime -= cfs_rq->min_vruntime;
1133 }
1134
1135 #ifdef CONFIG_FAIR_GROUP_SCHED
1136 /*
1137  * effective_load() calculates the load change as seen from the root_task_group
1138  *
1139  * Adding load to a group doesn't make a group heavier, but can cause movement
1140  * of group shares between cpus. Assuming the shares were perfectly aligned one
1141  * can calculate the shift in shares.
1142  *
1143  * The problem is that perfectly aligning the shares is rather expensive, hence
1144  * we try to avoid doing that too often - see update_shares(), which ratelimits
1145  * this change.
1146  *
1147  * We compensate this by not only taking the current delta into account, but
1148  * also considering the delta between when the shares were last adjusted and
1149  * now.
1150  *
1151  * We still saw a performance dip, some tracing learned us that between
1152  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1153  * significantly. Therefore try to bias the error in direction of failing
1154  * the affine wakeup.
1155  *
1156  */
1157 static long effective_load(struct task_group *tg, int cpu,
1158                 long wl, long wg)
1159 {
1160         struct sched_entity *se = tg->se[cpu];
1161
1162         if (!tg->parent)
1163                 return wl;
1164
1165         /*
1166          * By not taking the decrease of shares on the other cpu into
1167          * account our error leans towards reducing the affine wakeups.
1168          */
1169         if (!wl && sched_feat(ASYM_EFF_LOAD))
1170                 return wl;
1171
1172         for_each_sched_entity(se) {
1173                 long S, rw, s, a, b;
1174                 long more_w;
1175
1176                 /*
1177                  * Instead of using this increment, also add the difference
1178                  * between when the shares were last updated and now.
1179                  */
1180                 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1181                 wl += more_w;
1182                 wg += more_w;
1183
1184                 S = se->my_q->tg->shares;
1185                 s = se->my_q->shares;
1186                 rw = se->my_q->rq_weight;
1187
1188                 a = S*(rw + wl);
1189                 b = S*rw + s*wg;
1190
1191                 wl = s*(a-b);
1192
1193                 if (likely(b))
1194                         wl /= b;
1195
1196                 /*
1197                  * Assume the group is already running and will
1198                  * thus already be accounted for in the weight.
1199                  *
1200                  * That is, moving shares between CPUs, does not
1201                  * alter the group weight.
1202                  */
1203                 wg = 0;
1204         }
1205
1206         return wl;
1207 }
1208
1209 #else
1210
1211 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1212                 unsigned long wl, unsigned long wg)
1213 {
1214         return wl;
1215 }
1216
1217 #endif
1218
1219 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1220 {
1221         struct task_struct *curr = current;
1222         unsigned long this_load, load;
1223         int idx, this_cpu, prev_cpu;
1224         unsigned long tl_per_task;
1225         unsigned int imbalance;
1226         struct task_group *tg;
1227         unsigned long weight;
1228         int balanced;
1229
1230         idx       = sd->wake_idx;
1231         this_cpu  = smp_processor_id();
1232         prev_cpu  = task_cpu(p);
1233         load      = source_load(prev_cpu, idx);
1234         this_load = target_load(this_cpu, idx);
1235
1236         if (sync) {
1237                if (sched_feat(SYNC_LESS) &&
1238                    (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1239                     p->se.avg_overlap > sysctl_sched_migration_cost))
1240                        sync = 0;
1241         } else {
1242                 if (sched_feat(SYNC_MORE) &&
1243                     (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1244                      p->se.avg_overlap < sysctl_sched_migration_cost))
1245                         sync = 1;
1246         }
1247
1248         /*
1249          * If sync wakeup then subtract the (maximum possible)
1250          * effect of the currently running task from the load
1251          * of the current CPU:
1252          */
1253         rcu_read_lock();
1254         if (sync) {
1255                 tg = task_group(current);
1256                 weight = current->se.load.weight;
1257
1258                 this_load += effective_load(tg, this_cpu, -weight, -weight);
1259                 load += effective_load(tg, prev_cpu, 0, -weight);
1260         }
1261
1262         tg = task_group(p);
1263         weight = p->se.load.weight;
1264
1265         imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1266
1267         /*
1268          * In low-load situations, where prev_cpu is idle and this_cpu is idle
1269          * due to the sync cause above having dropped this_load to 0, we'll
1270          * always have an imbalance, but there's really nothing you can do
1271          * about that, so that's good too.
1272          *
1273          * Otherwise check if either cpus are near enough in load to allow this
1274          * task to be woken on this_cpu.
1275          */
1276         balanced = !this_load ||
1277                 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1278                 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1279         rcu_read_unlock();
1280
1281         /*
1282          * If the currently running task will sleep within
1283          * a reasonable amount of time then attract this newly
1284          * woken task:
1285          */
1286         if (sync && balanced)
1287                 return 1;
1288
1289         schedstat_inc(p, se.nr_wakeups_affine_attempts);
1290         tl_per_task = cpu_avg_load_per_task(this_cpu);
1291
1292         if (balanced ||
1293             (this_load <= load &&
1294              this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1295                 /*
1296                  * This domain has SD_WAKE_AFFINE and
1297                  * p is cache cold in this domain, and
1298                  * there is no bad imbalance.
1299                  */
1300                 schedstat_inc(sd, ttwu_move_affine);
1301                 schedstat_inc(p, se.nr_wakeups_affine);
1302
1303                 return 1;
1304         }
1305         return 0;
1306 }
1307
1308 /*
1309  * find_idlest_group finds and returns the least busy CPU group within the
1310  * domain.
1311  */
1312 static struct sched_group *
1313 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314                   int this_cpu, int load_idx)
1315 {
1316         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1317         unsigned long min_load = ULONG_MAX, this_load = 0;
1318         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1319
1320         do {
1321                 unsigned long load, avg_load;
1322                 int local_group;
1323                 int i;
1324
1325                 /* Skip over this group if it has no CPUs allowed */
1326                 if (!cpumask_intersects(sched_group_cpus(group),
1327                                         &p->cpus_allowed))
1328                         continue;
1329
1330                 local_group = cpumask_test_cpu(this_cpu,
1331                                                sched_group_cpus(group));
1332
1333                 /* Tally up the load of all CPUs in the group */
1334                 avg_load = 0;
1335
1336                 for_each_cpu(i, sched_group_cpus(group)) {
1337                         /* Bias balancing toward cpus of our domain */
1338                         if (local_group)
1339                                 load = source_load(i, load_idx);
1340                         else
1341                                 load = target_load(i, load_idx);
1342
1343                         avg_load += load;
1344                 }
1345
1346                 /* Adjust by relative CPU power of the group */
1347                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1348
1349                 if (local_group) {
1350                         this_load = avg_load;
1351                         this = group;
1352                 } else if (avg_load < min_load) {
1353                         min_load = avg_load;
1354                         idlest = group;
1355                 }
1356         } while (group = group->next, group != sd->groups);
1357
1358         if (!idlest || 100*this_load < imbalance*min_load)
1359                 return NULL;
1360         return idlest;
1361 }
1362
1363 /*
1364  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1365  */
1366 static int
1367 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1368 {
1369         unsigned long load, min_load = ULONG_MAX;
1370         int idlest = -1;
1371         int i;
1372
1373         /* Traverse only the allowed CPUs */
1374         for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1375                 load = weighted_cpuload(i);
1376
1377                 if (load < min_load || (load == min_load && i == this_cpu)) {
1378                         min_load = load;
1379                         idlest = i;
1380                 }
1381         }
1382
1383         return idlest;
1384 }
1385
1386 /*
1387  * sched_balance_self: balance the current task (running on cpu) in domains
1388  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1389  * SD_BALANCE_EXEC.
1390  *
1391  * Balance, ie. select the least loaded group.
1392  *
1393  * Returns the target CPU number, or the same CPU if no balancing is needed.
1394  *
1395  * preempt must be disabled.
1396  */
1397 static int
1398 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1399 {
1400         struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1401         int cpu = smp_processor_id();
1402         int prev_cpu = task_cpu(p);
1403         int new_cpu = cpu;
1404         int want_affine = 0;
1405         int want_sd = 1;
1406         int sync = wake_flags & WF_SYNC;
1407
1408         if (sd_flag & SD_BALANCE_WAKE) {
1409                 if (sched_feat(AFFINE_WAKEUPS) &&
1410                     cpumask_test_cpu(cpu, &p->cpus_allowed))
1411                         want_affine = 1;
1412                 new_cpu = prev_cpu;
1413         }
1414
1415         for_each_domain(cpu, tmp) {
1416                 if (!(tmp->flags & SD_LOAD_BALANCE))
1417                         continue;
1418
1419                 /*
1420                  * If power savings logic is enabled for a domain, see if we
1421                  * are not overloaded, if so, don't balance wider.
1422                  */
1423                 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1424                         unsigned long power = 0;
1425                         unsigned long nr_running = 0;
1426                         unsigned long capacity;
1427                         int i;
1428
1429                         for_each_cpu(i, sched_domain_span(tmp)) {
1430                                 power += power_of(i);
1431                                 nr_running += cpu_rq(i)->cfs.nr_running;
1432                         }
1433
1434                         capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1435
1436                         if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1437                                 nr_running /= 2;
1438
1439                         if (nr_running < capacity)
1440                                 want_sd = 0;
1441                 }
1442
1443                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE)) {
1444                         int candidate = -1, i;
1445
1446                         if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1447                                 candidate = cpu;
1448
1449                         /*
1450                          * Check for an idle shared cache.
1451                          */
1452                         if (tmp->flags & SD_PREFER_SIBLING) {
1453                                 if (candidate == cpu) {
1454                                         if (!cpu_rq(prev_cpu)->cfs.nr_running)
1455                                                 candidate = prev_cpu;
1456                                 }
1457
1458                                 if (candidate == -1 || candidate == cpu) {
1459                                         for_each_cpu(i, sched_domain_span(tmp)) {
1460                                                 if (!cpumask_test_cpu(i, &p->cpus_allowed))
1461                                                         continue;
1462                                                 if (!cpu_rq(i)->cfs.nr_running) {
1463                                                         candidate = i;
1464                                                         break;
1465                                                 }
1466                                         }
1467                                 }
1468                         }
1469
1470                         if (candidate >= 0) {
1471                                 affine_sd = tmp;
1472                                 want_affine = 0;
1473                                 cpu = candidate;
1474                         }
1475                 }
1476
1477                 if (!want_sd && !want_affine)
1478                         break;
1479
1480                 if (!(tmp->flags & sd_flag))
1481                         continue;
1482
1483                 if (want_sd)
1484                         sd = tmp;
1485         }
1486
1487         if (sched_feat(LB_SHARES_UPDATE)) {
1488                 /*
1489                  * Pick the largest domain to update shares over
1490                  */
1491                 tmp = sd;
1492                 if (affine_sd && (!tmp ||
1493                                   cpumask_weight(sched_domain_span(affine_sd)) >
1494                                   cpumask_weight(sched_domain_span(sd))))
1495                         tmp = affine_sd;
1496
1497                 if (tmp) {
1498                         spin_unlock(&rq->lock);
1499                         update_shares(tmp);
1500                         spin_lock(&rq->lock);
1501                 }
1502         }
1503
1504         if (affine_sd && wake_affine(affine_sd, p, sync))
1505                 return cpu;
1506
1507         while (sd) {
1508                 int load_idx = sd->forkexec_idx;
1509                 struct sched_group *group;
1510                 int weight;
1511
1512                 if (!(sd->flags & sd_flag)) {
1513                         sd = sd->child;
1514                         continue;
1515                 }
1516
1517                 if (sd_flag & SD_BALANCE_WAKE)
1518                         load_idx = sd->wake_idx;
1519
1520                 group = find_idlest_group(sd, p, cpu, load_idx);
1521                 if (!group) {
1522                         sd = sd->child;
1523                         continue;
1524                 }
1525
1526                 new_cpu = find_idlest_cpu(group, p, cpu);
1527                 if (new_cpu == -1 || new_cpu == cpu) {
1528                         /* Now try balancing at a lower domain level of cpu */
1529                         sd = sd->child;
1530                         continue;
1531                 }
1532
1533                 /* Now try balancing at a lower domain level of new_cpu */
1534                 cpu = new_cpu;
1535                 weight = cpumask_weight(sched_domain_span(sd));
1536                 sd = NULL;
1537                 for_each_domain(cpu, tmp) {
1538                         if (weight <= cpumask_weight(sched_domain_span(tmp)))
1539                                 break;
1540                         if (tmp->flags & sd_flag)
1541                                 sd = tmp;
1542                 }
1543                 /* while loop will break here if sd == NULL */
1544         }
1545
1546         return new_cpu;
1547 }
1548 #endif /* CONFIG_SMP */
1549
1550 /*
1551  * Adaptive granularity
1552  *
1553  * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1554  * with the limit of wakeup_gran -- when it never does a wakeup.
1555  *
1556  * So the smaller avg_wakeup is the faster we want this task to preempt,
1557  * but we don't want to treat the preemptee unfairly and therefore allow it
1558  * to run for at least the amount of time we'd like to run.
1559  *
1560  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1561  *
1562  * NOTE: we use *nr_running to scale with load, this nicely matches the
1563  *       degrading latency on load.
1564  */
1565 static unsigned long
1566 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1567 {
1568         u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1569         u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1570         u64 gran = 0;
1571
1572         if (this_run < expected_wakeup)
1573                 gran = expected_wakeup - this_run;
1574
1575         return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1576 }
1577
1578 static unsigned long
1579 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1580 {
1581         unsigned long gran = sysctl_sched_wakeup_granularity;
1582
1583         if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1584                 gran = adaptive_gran(curr, se);
1585
1586         /*
1587          * Since its curr running now, convert the gran from real-time
1588          * to virtual-time in his units.
1589          */
1590         if (sched_feat(ASYM_GRAN)) {
1591                 /*
1592                  * By using 'se' instead of 'curr' we penalize light tasks, so
1593                  * they get preempted easier. That is, if 'se' < 'curr' then
1594                  * the resulting gran will be larger, therefore penalizing the
1595                  * lighter, if otoh 'se' > 'curr' then the resulting gran will
1596                  * be smaller, again penalizing the lighter task.
1597                  *
1598                  * This is especially important for buddies when the leftmost
1599                  * task is higher priority than the buddy.
1600                  */
1601                 if (unlikely(se->load.weight != NICE_0_LOAD))
1602                         gran = calc_delta_fair(gran, se);
1603         } else {
1604                 if (unlikely(curr->load.weight != NICE_0_LOAD))
1605                         gran = calc_delta_fair(gran, curr);
1606         }
1607
1608         return gran;
1609 }
1610
1611 /*
1612  * Should 'se' preempt 'curr'.
1613  *
1614  *             |s1
1615  *        |s2
1616  *   |s3
1617  *         g
1618  *      |<--->|c
1619  *
1620  *  w(c, s1) = -1
1621  *  w(c, s2) =  0
1622  *  w(c, s3) =  1
1623  *
1624  */
1625 static int
1626 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1627 {
1628         s64 gran, vdiff = curr->vruntime - se->vruntime;
1629
1630         if (vdiff <= 0)
1631                 return -1;
1632
1633         gran = wakeup_gran(curr, se);
1634         if (vdiff > gran)
1635                 return 1;
1636
1637         return 0;
1638 }
1639
1640 static void set_last_buddy(struct sched_entity *se)
1641 {
1642         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1643                 for_each_sched_entity(se)
1644                         cfs_rq_of(se)->last = se;
1645         }
1646 }
1647
1648 static void set_next_buddy(struct sched_entity *se)
1649 {
1650         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1651                 for_each_sched_entity(se)
1652                         cfs_rq_of(se)->next = se;
1653         }
1654 }
1655
1656 /*
1657  * Preempt the current task with a newly woken task if needed:
1658  */
1659 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1660 {
1661         struct task_struct *curr = rq->curr;
1662         struct sched_entity *se = &curr->se, *pse = &p->se;
1663         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1664         int sync = wake_flags & WF_SYNC;
1665         int scale = cfs_rq->nr_running >= sched_nr_latency;
1666
1667         update_curr(cfs_rq);
1668
1669         if (unlikely(rt_prio(p->prio))) {
1670                 resched_task(curr);
1671                 return;
1672         }
1673
1674         if (unlikely(p->sched_class != &fair_sched_class))
1675                 return;
1676
1677         if (unlikely(se == pse))
1678                 return;
1679
1680         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1681                 set_next_buddy(pse);
1682
1683         /*
1684          * We can come here with TIF_NEED_RESCHED already set from new task
1685          * wake up path.
1686          */
1687         if (test_tsk_need_resched(curr))
1688                 return;
1689
1690         /*
1691          * Batch and idle tasks do not preempt (their preemption is driven by
1692          * the tick):
1693          */
1694         if (unlikely(p->policy != SCHED_NORMAL))
1695                 return;
1696
1697         /* Idle tasks are by definition preempted by everybody. */
1698         if (unlikely(curr->policy == SCHED_IDLE)) {
1699                 resched_task(curr);
1700                 return;
1701         }
1702
1703         if ((sched_feat(WAKEUP_SYNC) && sync) ||
1704             (sched_feat(WAKEUP_OVERLAP) &&
1705              (se->avg_overlap < sysctl_sched_migration_cost &&
1706               pse->avg_overlap < sysctl_sched_migration_cost))) {
1707                 resched_task(curr);
1708                 return;
1709         }
1710
1711         if (sched_feat(WAKEUP_RUNNING)) {
1712                 if (pse->avg_running < se->avg_running) {
1713                         set_next_buddy(pse);
1714                         resched_task(curr);
1715                         return;
1716                 }
1717         }
1718
1719         if (!sched_feat(WAKEUP_PREEMPT))
1720                 return;
1721
1722         find_matching_se(&se, &pse);
1723
1724         BUG_ON(!pse);
1725
1726         if (wakeup_preempt_entity(se, pse) == 1) {
1727                 resched_task(curr);
1728                 /*
1729                  * Only set the backward buddy when the current task is still
1730                  * on the rq. This can happen when a wakeup gets interleaved
1731                  * with schedule on the ->pre_schedule() or idle_balance()
1732                  * point, either of which can * drop the rq lock.
1733                  *
1734                  * Also, during early boot the idle thread is in the fair class,
1735                  * for obvious reasons its a bad idea to schedule back to it.
1736                  */
1737                 if (unlikely(!se->on_rq || curr == rq->idle))
1738                         return;
1739                 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1740                         set_last_buddy(se);
1741         }
1742 }
1743
1744 static struct task_struct *pick_next_task_fair(struct rq *rq)
1745 {
1746         struct task_struct *p;
1747         struct cfs_rq *cfs_rq = &rq->cfs;
1748         struct sched_entity *se;
1749
1750         if (unlikely(!cfs_rq->nr_running))
1751                 return NULL;
1752
1753         do {
1754                 se = pick_next_entity(cfs_rq);
1755                 set_next_entity(cfs_rq, se);
1756                 cfs_rq = group_cfs_rq(se);
1757         } while (cfs_rq);
1758
1759         p = task_of(se);
1760         hrtick_start_fair(rq, p);
1761
1762         return p;
1763 }
1764
1765 /*
1766  * Account for a descheduled task:
1767  */
1768 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1769 {
1770         struct sched_entity *se = &prev->se;
1771         struct cfs_rq *cfs_rq;
1772
1773         for_each_sched_entity(se) {
1774                 cfs_rq = cfs_rq_of(se);
1775                 put_prev_entity(cfs_rq, se);
1776         }
1777 }
1778
1779 #ifdef CONFIG_SMP
1780 /**************************************************
1781  * Fair scheduling class load-balancing methods:
1782  */
1783
1784 /*
1785  * Load-balancing iterator. Note: while the runqueue stays locked
1786  * during the whole iteration, the current task might be
1787  * dequeued so the iterator has to be dequeue-safe. Here we
1788  * achieve that by always pre-iterating before returning
1789  * the current task:
1790  */
1791 static struct task_struct *
1792 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1793 {
1794         struct task_struct *p = NULL;
1795         struct sched_entity *se;
1796
1797         if (next == &cfs_rq->tasks)
1798                 return NULL;
1799
1800         se = list_entry(next, struct sched_entity, group_node);
1801         p = task_of(se);
1802         cfs_rq->balance_iterator = next->next;
1803
1804         return p;
1805 }
1806
1807 static struct task_struct *load_balance_start_fair(void *arg)
1808 {
1809         struct cfs_rq *cfs_rq = arg;
1810
1811         return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1812 }
1813
1814 static struct task_struct *load_balance_next_fair(void *arg)
1815 {
1816         struct cfs_rq *cfs_rq = arg;
1817
1818         return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1819 }
1820
1821 static unsigned long
1822 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1823                 unsigned long max_load_move, struct sched_domain *sd,
1824                 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1825                 struct cfs_rq *cfs_rq)
1826 {
1827         struct rq_iterator cfs_rq_iterator;
1828
1829         cfs_rq_iterator.start = load_balance_start_fair;
1830         cfs_rq_iterator.next = load_balance_next_fair;
1831         cfs_rq_iterator.arg = cfs_rq;
1832
1833         return balance_tasks(this_rq, this_cpu, busiest,
1834                         max_load_move, sd, idle, all_pinned,
1835                         this_best_prio, &cfs_rq_iterator);
1836 }
1837
1838 #ifdef CONFIG_FAIR_GROUP_SCHED
1839 static unsigned long
1840 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1841                   unsigned long max_load_move,
1842                   struct sched_domain *sd, enum cpu_idle_type idle,
1843                   int *all_pinned, int *this_best_prio)
1844 {
1845         long rem_load_move = max_load_move;
1846         int busiest_cpu = cpu_of(busiest);
1847         struct task_group *tg;
1848
1849         rcu_read_lock();
1850         update_h_load(busiest_cpu);
1851
1852         list_for_each_entry_rcu(tg, &task_groups, list) {
1853                 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1854                 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1855                 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1856                 u64 rem_load, moved_load;
1857
1858                 /*
1859                  * empty group
1860                  */
1861                 if (!busiest_cfs_rq->task_weight)
1862                         continue;
1863
1864                 rem_load = (u64)rem_load_move * busiest_weight;
1865                 rem_load = div_u64(rem_load, busiest_h_load + 1);
1866
1867                 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1868                                 rem_load, sd, idle, all_pinned, this_best_prio,
1869                                 tg->cfs_rq[busiest_cpu]);
1870
1871                 if (!moved_load)
1872                         continue;
1873
1874                 moved_load *= busiest_h_load;
1875                 moved_load = div_u64(moved_load, busiest_weight + 1);
1876
1877                 rem_load_move -= moved_load;
1878                 if (rem_load_move < 0)
1879                         break;
1880         }
1881         rcu_read_unlock();
1882
1883         return max_load_move - rem_load_move;
1884 }
1885 #else
1886 static unsigned long
1887 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1888                   unsigned long max_load_move,
1889                   struct sched_domain *sd, enum cpu_idle_type idle,
1890                   int *all_pinned, int *this_best_prio)
1891 {
1892         return __load_balance_fair(this_rq, this_cpu, busiest,
1893                         max_load_move, sd, idle, all_pinned,
1894                         this_best_prio, &busiest->cfs);
1895 }
1896 #endif
1897
1898 static int
1899 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1900                    struct sched_domain *sd, enum cpu_idle_type idle)
1901 {
1902         struct cfs_rq *busy_cfs_rq;
1903         struct rq_iterator cfs_rq_iterator;
1904
1905         cfs_rq_iterator.start = load_balance_start_fair;
1906         cfs_rq_iterator.next = load_balance_next_fair;
1907
1908         for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1909                 /*
1910                  * pass busy_cfs_rq argument into
1911                  * load_balance_[start|next]_fair iterators
1912                  */
1913                 cfs_rq_iterator.arg = busy_cfs_rq;
1914                 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1915                                        &cfs_rq_iterator))
1916                     return 1;
1917         }
1918
1919         return 0;
1920 }
1921
1922 static void rq_online_fair(struct rq *rq)
1923 {
1924         update_sysctl();
1925 }
1926
1927 static void rq_offline_fair(struct rq *rq)
1928 {
1929         update_sysctl();
1930 }
1931
1932 #endif /* CONFIG_SMP */
1933
1934 /*
1935  * scheduler tick hitting a task of our scheduling class:
1936  */
1937 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1938 {
1939         struct cfs_rq *cfs_rq;
1940         struct sched_entity *se = &curr->se;
1941
1942         for_each_sched_entity(se) {
1943                 cfs_rq = cfs_rq_of(se);
1944                 entity_tick(cfs_rq, se, queued);
1945         }
1946 }
1947
1948 /*
1949  * called on fork with the child task as argument from the parent's context
1950  *  - child not yet on the tasklist
1951  *  - preemption disabled
1952  */
1953 static void task_fork_fair(struct task_struct *p)
1954 {
1955         struct cfs_rq *cfs_rq = task_cfs_rq(current);
1956         struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1957         int this_cpu = smp_processor_id();
1958         struct rq *rq = this_rq();
1959         unsigned long flags;
1960
1961         spin_lock_irqsave(&rq->lock, flags);
1962
1963         update_rq_clock(rq);
1964
1965         if (unlikely(task_cpu(p) != this_cpu))
1966                 __set_task_cpu(p, this_cpu);
1967
1968         update_curr(cfs_rq);
1969
1970         if (curr)
1971                 se->vruntime = curr->vruntime;
1972         place_entity(cfs_rq, se, 1);
1973
1974         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
1975                 /*
1976                  * Upon rescheduling, sched_class::put_prev_task() will place
1977                  * 'current' within the tree based on its new key value.
1978                  */
1979                 swap(curr->vruntime, se->vruntime);
1980                 resched_task(rq->curr);
1981         }
1982
1983         se->vruntime -= cfs_rq->min_vruntime;
1984
1985         spin_unlock_irqrestore(&rq->lock, flags);
1986 }
1987
1988 /*
1989  * Priority of the task has changed. Check to see if we preempt
1990  * the current task.
1991  */
1992 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1993                               int oldprio, int running)
1994 {
1995         /*
1996          * Reschedule if we are currently running on this runqueue and
1997          * our priority decreased, or if we are not currently running on
1998          * this runqueue and our priority is higher than the current's
1999          */
2000         if (running) {
2001                 if (p->prio > oldprio)
2002                         resched_task(rq->curr);
2003         } else
2004                 check_preempt_curr(rq, p, 0);
2005 }
2006
2007 /*
2008  * We switched to the sched_fair class.
2009  */
2010 static void switched_to_fair(struct rq *rq, struct task_struct *p,
2011                              int running)
2012 {
2013         /*
2014          * We were most likely switched from sched_rt, so
2015          * kick off the schedule if running, otherwise just see
2016          * if we can still preempt the current task.
2017          */
2018         if (running)
2019                 resched_task(rq->curr);
2020         else
2021                 check_preempt_curr(rq, p, 0);
2022 }
2023
2024 /* Account for a task changing its policy or group.
2025  *
2026  * This routine is mostly called to set cfs_rq->curr field when a task
2027  * migrates between groups/classes.
2028  */
2029 static void set_curr_task_fair(struct rq *rq)
2030 {
2031         struct sched_entity *se = &rq->curr->se;
2032
2033         for_each_sched_entity(se)
2034                 set_next_entity(cfs_rq_of(se), se);
2035 }
2036
2037 #ifdef CONFIG_FAIR_GROUP_SCHED
2038 static void moved_group_fair(struct task_struct *p, int on_rq)
2039 {
2040         struct cfs_rq *cfs_rq = task_cfs_rq(p);
2041
2042         update_curr(cfs_rq);
2043         if (!on_rq)
2044                 place_entity(cfs_rq, &p->se, 1);
2045 }
2046 #endif
2047
2048 unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2049 {
2050         struct sched_entity *se = &task->se;
2051         unsigned int rr_interval = 0;
2052
2053         /*
2054          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2055          * idle runqueue:
2056          */
2057         if (rq->cfs.load.weight)
2058                 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2059
2060         return rr_interval;
2061 }
2062
2063 /*
2064  * All the scheduling class methods:
2065  */
2066 static const struct sched_class fair_sched_class = {
2067         .next                   = &idle_sched_class,
2068         .enqueue_task           = enqueue_task_fair,
2069         .dequeue_task           = dequeue_task_fair,
2070         .yield_task             = yield_task_fair,
2071
2072         .check_preempt_curr     = check_preempt_wakeup,
2073
2074         .pick_next_task         = pick_next_task_fair,
2075         .put_prev_task          = put_prev_task_fair,
2076
2077 #ifdef CONFIG_SMP
2078         .select_task_rq         = select_task_rq_fair,
2079
2080         .load_balance           = load_balance_fair,
2081         .move_one_task          = move_one_task_fair,
2082         .rq_online              = rq_online_fair,
2083         .rq_offline             = rq_offline_fair,
2084
2085         .task_waking            = task_waking_fair,
2086 #endif
2087
2088         .set_curr_task          = set_curr_task_fair,
2089         .task_tick              = task_tick_fair,
2090         .task_fork              = task_fork_fair,
2091
2092         .prio_changed           = prio_changed_fair,
2093         .switched_to            = switched_to_fair,
2094
2095         .get_rr_interval        = get_rr_interval_fair,
2096
2097 #ifdef CONFIG_FAIR_GROUP_SCHED
2098         .moved_group            = moved_group_fair,
2099 #endif
2100 };
2101
2102 #ifdef CONFIG_SCHED_DEBUG
2103 static void print_cfs_stats(struct seq_file *m, int cpu)
2104 {
2105         struct cfs_rq *cfs_rq;
2106
2107         rcu_read_lock();
2108         for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2109                 print_cfs_rq(m, cpu, cfs_rq);
2110         rcu_read_unlock();
2111 }
2112 #endif