]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/time/tick-broadcast.c
Merge branch 'stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux...
[karo-tx-linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22
23 #include "tick-internal.h"
24
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29
30 static struct tick_device tick_broadcast_device;
31 /* FIXME: Use cpumask_var_t. */
32 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
33 static DECLARE_BITMAP(tmpmask, NR_CPUS);
34 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35 static int tick_broadcast_force;
36
37 #ifdef CONFIG_TICK_ONESHOT
38 static void tick_broadcast_clear_oneshot(int cpu);
39 #else
40 static inline void tick_broadcast_clear_oneshot(int cpu) { }
41 #endif
42
43 /*
44  * Debugging: see timer_list.c
45  */
46 struct tick_device *tick_get_broadcast_device(void)
47 {
48         return &tick_broadcast_device;
49 }
50
51 struct cpumask *tick_get_broadcast_mask(void)
52 {
53         return to_cpumask(tick_broadcast_mask);
54 }
55
56 /*
57  * Start the device in periodic mode
58  */
59 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
60 {
61         if (bc)
62                 tick_setup_periodic(bc, 1);
63 }
64
65 /*
66  * Check, if the device can be utilized as broadcast device:
67  */
68 int tick_check_broadcast_device(struct clock_event_device *dev)
69 {
70         if ((dev->features & CLOCK_EVT_FEAT_DUMMY) ||
71             (tick_broadcast_device.evtdev &&
72              tick_broadcast_device.evtdev->rating >= dev->rating) ||
73              (dev->features & CLOCK_EVT_FEAT_C3STOP))
74                 return 0;
75
76         clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
77         tick_broadcast_device.evtdev = dev;
78         if (!cpumask_empty(tick_get_broadcast_mask()))
79                 tick_broadcast_start_periodic(dev);
80         return 1;
81 }
82
83 /*
84  * Check, if the device is the broadcast device
85  */
86 int tick_is_broadcast_device(struct clock_event_device *dev)
87 {
88         return (dev && tick_broadcast_device.evtdev == dev);
89 }
90
91 static void err_broadcast(const struct cpumask *mask)
92 {
93         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
94 }
95
96 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
97 {
98         if (!dev->broadcast)
99                 dev->broadcast = tick_broadcast;
100         if (!dev->broadcast) {
101                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
102                              dev->name);
103                 dev->broadcast = err_broadcast;
104         }
105 }
106
107 /*
108  * Check, if the device is disfunctional and a place holder, which
109  * needs to be handled by the broadcast device.
110  */
111 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
112 {
113         unsigned long flags;
114         int ret = 0;
115
116         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
117
118         /*
119          * Devices might be registered with both periodic and oneshot
120          * mode disabled. This signals, that the device needs to be
121          * operated from the broadcast device and is a placeholder for
122          * the cpu local device.
123          */
124         if (!tick_device_is_functional(dev)) {
125                 dev->event_handler = tick_handle_periodic;
126                 tick_device_setup_broadcast_func(dev);
127                 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
128                 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
129                 ret = 1;
130         } else {
131                 /*
132                  * When the new device is not affected by the stop
133                  * feature and the cpu is marked in the broadcast mask
134                  * then clear the broadcast bit.
135                  */
136                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
137                         int cpu = smp_processor_id();
138                         cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
139                         tick_broadcast_clear_oneshot(cpu);
140                 } else {
141                         tick_device_setup_broadcast_func(dev);
142                 }
143         }
144         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
145         return ret;
146 }
147
148 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
149 int tick_receive_broadcast(void)
150 {
151         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
152         struct clock_event_device *evt = td->evtdev;
153
154         if (!evt)
155                 return -ENODEV;
156
157         if (!evt->event_handler)
158                 return -EINVAL;
159
160         evt->event_handler(evt);
161         return 0;
162 }
163 #endif
164
165 /*
166  * Broadcast the event to the cpus, which are set in the mask (mangled).
167  */
168 static void tick_do_broadcast(struct cpumask *mask)
169 {
170         int cpu = smp_processor_id();
171         struct tick_device *td;
172
173         /*
174          * Check, if the current cpu is in the mask
175          */
176         if (cpumask_test_cpu(cpu, mask)) {
177                 cpumask_clear_cpu(cpu, mask);
178                 td = &per_cpu(tick_cpu_device, cpu);
179                 td->evtdev->event_handler(td->evtdev);
180         }
181
182         if (!cpumask_empty(mask)) {
183                 /*
184                  * It might be necessary to actually check whether the devices
185                  * have different broadcast functions. For now, just use the
186                  * one of the first device. This works as long as we have this
187                  * misfeature only on x86 (lapic)
188                  */
189                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
190                 td->evtdev->broadcast(mask);
191         }
192 }
193
194 /*
195  * Periodic broadcast:
196  * - invoke the broadcast handlers
197  */
198 static void tick_do_periodic_broadcast(void)
199 {
200         raw_spin_lock(&tick_broadcast_lock);
201
202         cpumask_and(to_cpumask(tmpmask),
203                     cpu_online_mask, tick_get_broadcast_mask());
204         tick_do_broadcast(to_cpumask(tmpmask));
205
206         raw_spin_unlock(&tick_broadcast_lock);
207 }
208
209 /*
210  * Event handler for periodic broadcast ticks
211  */
212 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
213 {
214         ktime_t next;
215
216         tick_do_periodic_broadcast();
217
218         /*
219          * The device is in periodic mode. No reprogramming necessary:
220          */
221         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
222                 return;
223
224         /*
225          * Setup the next period for devices, which do not have
226          * periodic mode. We read dev->next_event first and add to it
227          * when the event already expired. clockevents_program_event()
228          * sets dev->next_event only when the event is really
229          * programmed to the device.
230          */
231         for (next = dev->next_event; ;) {
232                 next = ktime_add(next, tick_period);
233
234                 if (!clockevents_program_event(dev, next, false))
235                         return;
236                 tick_do_periodic_broadcast();
237         }
238 }
239
240 /*
241  * Powerstate information: The system enters/leaves a state, where
242  * affected devices might stop
243  */
244 static void tick_do_broadcast_on_off(unsigned long *reason)
245 {
246         struct clock_event_device *bc, *dev;
247         struct tick_device *td;
248         unsigned long flags;
249         int cpu, bc_stopped;
250
251         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
252
253         cpu = smp_processor_id();
254         td = &per_cpu(tick_cpu_device, cpu);
255         dev = td->evtdev;
256         bc = tick_broadcast_device.evtdev;
257
258         /*
259          * Is the device not affected by the powerstate ?
260          */
261         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
262                 goto out;
263
264         if (!tick_device_is_functional(dev))
265                 goto out;
266
267         bc_stopped = cpumask_empty(tick_get_broadcast_mask());
268
269         switch (*reason) {
270         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
271         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
272                 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
273                         cpumask_set_cpu(cpu, tick_get_broadcast_mask());
274                         if (tick_broadcast_device.mode ==
275                             TICKDEV_MODE_PERIODIC)
276                                 clockevents_shutdown(dev);
277                 }
278                 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
279                         tick_broadcast_force = 1;
280                 break;
281         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
282                 if (!tick_broadcast_force &&
283                     cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
284                         cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
285                         if (tick_broadcast_device.mode ==
286                             TICKDEV_MODE_PERIODIC)
287                                 tick_setup_periodic(dev, 0);
288                 }
289                 break;
290         }
291
292         if (cpumask_empty(tick_get_broadcast_mask())) {
293                 if (!bc_stopped)
294                         clockevents_shutdown(bc);
295         } else if (bc_stopped) {
296                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
297                         tick_broadcast_start_periodic(bc);
298                 else
299                         tick_broadcast_setup_oneshot(bc);
300         }
301 out:
302         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
303 }
304
305 /*
306  * Powerstate information: The system enters/leaves a state, where
307  * affected devices might stop.
308  */
309 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
310 {
311         if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
312                 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
313                        "offline CPU #%d\n", *oncpu);
314         else
315                 tick_do_broadcast_on_off(&reason);
316 }
317
318 /*
319  * Set the periodic handler depending on broadcast on/off
320  */
321 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
322 {
323         if (!broadcast)
324                 dev->event_handler = tick_handle_periodic;
325         else
326                 dev->event_handler = tick_handle_periodic_broadcast;
327 }
328
329 /*
330  * Remove a CPU from broadcasting
331  */
332 void tick_shutdown_broadcast(unsigned int *cpup)
333 {
334         struct clock_event_device *bc;
335         unsigned long flags;
336         unsigned int cpu = *cpup;
337
338         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339
340         bc = tick_broadcast_device.evtdev;
341         cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
342
343         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
344                 if (bc && cpumask_empty(tick_get_broadcast_mask()))
345                         clockevents_shutdown(bc);
346         }
347
348         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
349 }
350
351 void tick_suspend_broadcast(void)
352 {
353         struct clock_event_device *bc;
354         unsigned long flags;
355
356         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
357
358         bc = tick_broadcast_device.evtdev;
359         if (bc)
360                 clockevents_shutdown(bc);
361
362         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
363 }
364
365 int tick_resume_broadcast(void)
366 {
367         struct clock_event_device *bc;
368         unsigned long flags;
369         int broadcast = 0;
370
371         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
372
373         bc = tick_broadcast_device.evtdev;
374
375         if (bc) {
376                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
377
378                 switch (tick_broadcast_device.mode) {
379                 case TICKDEV_MODE_PERIODIC:
380                         if (!cpumask_empty(tick_get_broadcast_mask()))
381                                 tick_broadcast_start_periodic(bc);
382                         broadcast = cpumask_test_cpu(smp_processor_id(),
383                                                      tick_get_broadcast_mask());
384                         break;
385                 case TICKDEV_MODE_ONESHOT:
386                         if (!cpumask_empty(tick_get_broadcast_mask()))
387                                 broadcast = tick_resume_broadcast_oneshot(bc);
388                         break;
389                 }
390         }
391         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
392
393         return broadcast;
394 }
395
396
397 #ifdef CONFIG_TICK_ONESHOT
398
399 /* FIXME: use cpumask_var_t. */
400 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
401
402 /*
403  * Exposed for debugging: see timer_list.c
404  */
405 struct cpumask *tick_get_broadcast_oneshot_mask(void)
406 {
407         return to_cpumask(tick_broadcast_oneshot_mask);
408 }
409
410 static int tick_broadcast_set_event(ktime_t expires, int force)
411 {
412         struct clock_event_device *bc = tick_broadcast_device.evtdev;
413
414         if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
415                 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
416
417         return clockevents_program_event(bc, expires, force);
418 }
419
420 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
421 {
422         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
423         return 0;
424 }
425
426 /*
427  * Called from irq_enter() when idle was interrupted to reenable the
428  * per cpu device.
429  */
430 void tick_check_oneshot_broadcast(int cpu)
431 {
432         if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
433                 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
434
435                 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
436         }
437 }
438
439 /*
440  * Handle oneshot mode broadcasting
441  */
442 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
443 {
444         struct tick_device *td;
445         ktime_t now, next_event;
446         int cpu;
447
448         raw_spin_lock(&tick_broadcast_lock);
449 again:
450         dev->next_event.tv64 = KTIME_MAX;
451         next_event.tv64 = KTIME_MAX;
452         cpumask_clear(to_cpumask(tmpmask));
453         now = ktime_get();
454         /* Find all expired events */
455         for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
456                 td = &per_cpu(tick_cpu_device, cpu);
457                 if (td->evtdev->next_event.tv64 <= now.tv64)
458                         cpumask_set_cpu(cpu, to_cpumask(tmpmask));
459                 else if (td->evtdev->next_event.tv64 < next_event.tv64)
460                         next_event.tv64 = td->evtdev->next_event.tv64;
461         }
462
463         /*
464          * Wakeup the cpus which have an expired event.
465          */
466         tick_do_broadcast(to_cpumask(tmpmask));
467
468         /*
469          * Two reasons for reprogram:
470          *
471          * - The global event did not expire any CPU local
472          * events. This happens in dyntick mode, as the maximum PIT
473          * delta is quite small.
474          *
475          * - There are pending events on sleeping CPUs which were not
476          * in the event mask
477          */
478         if (next_event.tv64 != KTIME_MAX) {
479                 /*
480                  * Rearm the broadcast device. If event expired,
481                  * repeat the above
482                  */
483                 if (tick_broadcast_set_event(next_event, 0))
484                         goto again;
485         }
486         raw_spin_unlock(&tick_broadcast_lock);
487 }
488
489 /*
490  * Powerstate information: The system enters/leaves a state, where
491  * affected devices might stop
492  */
493 void tick_broadcast_oneshot_control(unsigned long reason)
494 {
495         struct clock_event_device *bc, *dev;
496         struct tick_device *td;
497         unsigned long flags;
498         int cpu;
499
500         /*
501          * Periodic mode does not care about the enter/exit of power
502          * states
503          */
504         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
505                 return;
506
507         /*
508          * We are called with preemtion disabled from the depth of the
509          * idle code, so we can't be moved away.
510          */
511         cpu = smp_processor_id();
512         td = &per_cpu(tick_cpu_device, cpu);
513         dev = td->evtdev;
514
515         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
516                 return;
517
518         bc = tick_broadcast_device.evtdev;
519
520         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
521         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
522                 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
523                         cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
524                         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
525                         if (dev->next_event.tv64 < bc->next_event.tv64)
526                                 tick_broadcast_set_event(dev->next_event, 1);
527                 }
528         } else {
529                 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
530                         cpumask_clear_cpu(cpu,
531                                           tick_get_broadcast_oneshot_mask());
532                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
533                         if (dev->next_event.tv64 != KTIME_MAX)
534                                 tick_program_event(dev->next_event, 1);
535                 }
536         }
537         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
538 }
539
540 /*
541  * Reset the one shot broadcast for a cpu
542  *
543  * Called with tick_broadcast_lock held
544  */
545 static void tick_broadcast_clear_oneshot(int cpu)
546 {
547         cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
548 }
549
550 static void tick_broadcast_init_next_event(struct cpumask *mask,
551                                            ktime_t expires)
552 {
553         struct tick_device *td;
554         int cpu;
555
556         for_each_cpu(cpu, mask) {
557                 td = &per_cpu(tick_cpu_device, cpu);
558                 if (td->evtdev)
559                         td->evtdev->next_event = expires;
560         }
561 }
562
563 /**
564  * tick_broadcast_setup_oneshot - setup the broadcast device
565  */
566 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
567 {
568         int cpu = smp_processor_id();
569
570         /* Set it up only once ! */
571         if (bc->event_handler != tick_handle_oneshot_broadcast) {
572                 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
573
574                 bc->event_handler = tick_handle_oneshot_broadcast;
575
576                 /* Take the do_timer update */
577                 tick_do_timer_cpu = cpu;
578
579                 /*
580                  * We must be careful here. There might be other CPUs
581                  * waiting for periodic broadcast. We need to set the
582                  * oneshot_mask bits for those and program the
583                  * broadcast device to fire.
584                  */
585                 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
586                 cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
587                 cpumask_or(tick_get_broadcast_oneshot_mask(),
588                            tick_get_broadcast_oneshot_mask(),
589                            to_cpumask(tmpmask));
590
591                 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
592                         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
593                         tick_broadcast_init_next_event(to_cpumask(tmpmask),
594                                                        tick_next_period);
595                         tick_broadcast_set_event(tick_next_period, 1);
596                 } else
597                         bc->next_event.tv64 = KTIME_MAX;
598         } else {
599                 /*
600                  * The first cpu which switches to oneshot mode sets
601                  * the bit for all other cpus which are in the general
602                  * (periodic) broadcast mask. So the bit is set and
603                  * would prevent the first broadcast enter after this
604                  * to program the bc device.
605                  */
606                 tick_broadcast_clear_oneshot(cpu);
607         }
608 }
609
610 /*
611  * Select oneshot operating mode for the broadcast device
612  */
613 void tick_broadcast_switch_to_oneshot(void)
614 {
615         struct clock_event_device *bc;
616         unsigned long flags;
617
618         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
619
620         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
621         bc = tick_broadcast_device.evtdev;
622         if (bc)
623                 tick_broadcast_setup_oneshot(bc);
624
625         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
626 }
627
628
629 /*
630  * Remove a dead CPU from broadcasting
631  */
632 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
633 {
634         unsigned long flags;
635         unsigned int cpu = *cpup;
636
637         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
638
639         /*
640          * Clear the broadcast mask flag for the dead cpu, but do not
641          * stop the broadcast device!
642          */
643         cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
644
645         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
646 }
647
648 /*
649  * Check, whether the broadcast device is in one shot mode
650  */
651 int tick_broadcast_oneshot_active(void)
652 {
653         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
654 }
655
656 /*
657  * Check whether the broadcast device supports oneshot.
658  */
659 bool tick_broadcast_oneshot_available(void)
660 {
661         struct clock_event_device *bc = tick_broadcast_device.evtdev;
662
663         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
664 }
665
666 #endif