]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/time/timekeeping.c
time: Add y2038 safe read_persistent_clock64()
[karo-tx-linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 /* Flag for if there is a persistent clock on this platform */
68 bool __read_mostly persistent_clock_exist = false;
69
70 static inline void tk_normalize_xtime(struct timekeeper *tk)
71 {
72         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
73                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
74                 tk->xtime_sec++;
75         }
76 }
77
78 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
79 {
80         struct timespec64 ts;
81
82         ts.tv_sec = tk->xtime_sec;
83         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
84         return ts;
85 }
86
87 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
88 {
89         tk->xtime_sec = ts->tv_sec;
90         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
91 }
92
93 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
94 {
95         tk->xtime_sec += ts->tv_sec;
96         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
97         tk_normalize_xtime(tk);
98 }
99
100 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
101 {
102         struct timespec64 tmp;
103
104         /*
105          * Verify consistency of: offset_real = -wall_to_monotonic
106          * before modifying anything
107          */
108         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
109                                         -tk->wall_to_monotonic.tv_nsec);
110         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
111         tk->wall_to_monotonic = wtm;
112         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
113         tk->offs_real = timespec64_to_ktime(tmp);
114         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
115 }
116
117 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
118 {
119         tk->offs_boot = ktime_add(tk->offs_boot, delta);
120 }
121
122 #ifdef CONFIG_DEBUG_TIMEKEEPING
123 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
124 /*
125  * These simple flag variables are managed
126  * without locks, which is racy, but ok since
127  * we don't really care about being super
128  * precise about how many events were seen,
129  * just that a problem was observed.
130  */
131 static int timekeeping_underflow_seen;
132 static int timekeeping_overflow_seen;
133
134 /* last_warning is only modified under the timekeeping lock */
135 static long timekeeping_last_warning;
136
137 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
138 {
139
140         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
141         const char *name = tk->tkr_mono.clock->name;
142
143         if (offset > max_cycles) {
144                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
145                                 offset, name, max_cycles);
146                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
147         } else {
148                 if (offset > (max_cycles >> 1)) {
149                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
150                                         offset, name, max_cycles >> 1);
151                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
152                 }
153         }
154
155         if (timekeeping_underflow_seen) {
156                 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
157                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
158                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
159                         printk_deferred("         Your kernel is probably still fine.\n");
160                         timekeeping_last_warning = jiffies;
161                 }
162                 timekeeping_underflow_seen = 0;
163         }
164
165         if (timekeeping_overflow_seen) {
166                 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
167                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
168                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
169                         printk_deferred("         Your kernel is probably still fine.\n");
170                         timekeeping_last_warning = jiffies;
171                 }
172                 timekeeping_overflow_seen = 0;
173         }
174 }
175
176 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
177 {
178         cycle_t now, last, mask, max, delta;
179         unsigned int seq;
180
181         /*
182          * Since we're called holding a seqlock, the data may shift
183          * under us while we're doing the calculation. This can cause
184          * false positives, since we'd note a problem but throw the
185          * results away. So nest another seqlock here to atomically
186          * grab the points we are checking with.
187          */
188         do {
189                 seq = read_seqcount_begin(&tk_core.seq);
190                 now = tkr->read(tkr->clock);
191                 last = tkr->cycle_last;
192                 mask = tkr->mask;
193                 max = tkr->clock->max_cycles;
194         } while (read_seqcount_retry(&tk_core.seq, seq));
195
196         delta = clocksource_delta(now, last, mask);
197
198         /*
199          * Try to catch underflows by checking if we are seeing small
200          * mask-relative negative values.
201          */
202         if (unlikely((~delta & mask) < (mask >> 3))) {
203                 timekeeping_underflow_seen = 1;
204                 delta = 0;
205         }
206
207         /* Cap delta value to the max_cycles values to avoid mult overflows */
208         if (unlikely(delta > max)) {
209                 timekeeping_overflow_seen = 1;
210                 delta = tkr->clock->max_cycles;
211         }
212
213         return delta;
214 }
215 #else
216 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
217 {
218 }
219 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
220 {
221         cycle_t cycle_now, delta;
222
223         /* read clocksource */
224         cycle_now = tkr->read(tkr->clock);
225
226         /* calculate the delta since the last update_wall_time */
227         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
228
229         return delta;
230 }
231 #endif
232
233 /**
234  * tk_setup_internals - Set up internals to use clocksource clock.
235  *
236  * @tk:         The target timekeeper to setup.
237  * @clock:              Pointer to clocksource.
238  *
239  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
240  * pair and interval request.
241  *
242  * Unless you're the timekeeping code, you should not be using this!
243  */
244 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
245 {
246         cycle_t interval;
247         u64 tmp, ntpinterval;
248         struct clocksource *old_clock;
249
250         old_clock = tk->tkr_mono.clock;
251         tk->tkr_mono.clock = clock;
252         tk->tkr_mono.read = clock->read;
253         tk->tkr_mono.mask = clock->mask;
254         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
255
256         tk->tkr_raw.clock = clock;
257         tk->tkr_raw.read = clock->read;
258         tk->tkr_raw.mask = clock->mask;
259         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
260
261         /* Do the ns -> cycle conversion first, using original mult */
262         tmp = NTP_INTERVAL_LENGTH;
263         tmp <<= clock->shift;
264         ntpinterval = tmp;
265         tmp += clock->mult/2;
266         do_div(tmp, clock->mult);
267         if (tmp == 0)
268                 tmp = 1;
269
270         interval = (cycle_t) tmp;
271         tk->cycle_interval = interval;
272
273         /* Go back from cycles -> shifted ns */
274         tk->xtime_interval = (u64) interval * clock->mult;
275         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
276         tk->raw_interval =
277                 ((u64) interval * clock->mult) >> clock->shift;
278
279          /* if changing clocks, convert xtime_nsec shift units */
280         if (old_clock) {
281                 int shift_change = clock->shift - old_clock->shift;
282                 if (shift_change < 0)
283                         tk->tkr_mono.xtime_nsec >>= -shift_change;
284                 else
285                         tk->tkr_mono.xtime_nsec <<= shift_change;
286         }
287         tk->tkr_raw.xtime_nsec = 0;
288
289         tk->tkr_mono.shift = clock->shift;
290         tk->tkr_raw.shift = clock->shift;
291
292         tk->ntp_error = 0;
293         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
294         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
295
296         /*
297          * The timekeeper keeps its own mult values for the currently
298          * active clocksource. These value will be adjusted via NTP
299          * to counteract clock drifting.
300          */
301         tk->tkr_mono.mult = clock->mult;
302         tk->tkr_raw.mult = clock->mult;
303         tk->ntp_err_mult = 0;
304 }
305
306 /* Timekeeper helper functions. */
307
308 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
309 static u32 default_arch_gettimeoffset(void) { return 0; }
310 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
311 #else
312 static inline u32 arch_gettimeoffset(void) { return 0; }
313 #endif
314
315 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
316 {
317         cycle_t delta;
318         s64 nsec;
319
320         delta = timekeeping_get_delta(tkr);
321
322         nsec = delta * tkr->mult + tkr->xtime_nsec;
323         nsec >>= tkr->shift;
324
325         /* If arch requires, add in get_arch_timeoffset() */
326         return nsec + arch_gettimeoffset();
327 }
328
329 /**
330  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331  * @tkr: Timekeeping readout base from which we take the update
332  *
333  * We want to use this from any context including NMI and tracing /
334  * instrumenting the timekeeping code itself.
335  *
336  * So we handle this differently than the other timekeeping accessor
337  * functions which retry when the sequence count has changed. The
338  * update side does:
339  *
340  * smp_wmb();   <- Ensure that the last base[1] update is visible
341  * tkf->seq++;
342  * smp_wmb();   <- Ensure that the seqcount update is visible
343  * update(tkf->base[0], tkr);
344  * smp_wmb();   <- Ensure that the base[0] update is visible
345  * tkf->seq++;
346  * smp_wmb();   <- Ensure that the seqcount update is visible
347  * update(tkf->base[1], tkr);
348  *
349  * The reader side does:
350  *
351  * do {
352  *      seq = tkf->seq;
353  *      smp_rmb();
354  *      idx = seq & 0x01;
355  *      now = now(tkf->base[idx]);
356  *      smp_rmb();
357  * } while (seq != tkf->seq)
358  *
359  * As long as we update base[0] readers are forced off to
360  * base[1]. Once base[0] is updated readers are redirected to base[0]
361  * and the base[1] update takes place.
362  *
363  * So if a NMI hits the update of base[0] then it will use base[1]
364  * which is still consistent. In the worst case this can result is a
365  * slightly wrong timestamp (a few nanoseconds). See
366  * @ktime_get_mono_fast_ns.
367  */
368 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
369 {
370         struct tk_read_base *base = tkf->base;
371
372         /* Force readers off to base[1] */
373         raw_write_seqcount_latch(&tkf->seq);
374
375         /* Update base[0] */
376         memcpy(base, tkr, sizeof(*base));
377
378         /* Force readers back to base[0] */
379         raw_write_seqcount_latch(&tkf->seq);
380
381         /* Update base[1] */
382         memcpy(base + 1, base, sizeof(*base));
383 }
384
385 /**
386  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
387  *
388  * This timestamp is not guaranteed to be monotonic across an update.
389  * The timestamp is calculated by:
390  *
391  *      now = base_mono + clock_delta * slope
392  *
393  * So if the update lowers the slope, readers who are forced to the
394  * not yet updated second array are still using the old steeper slope.
395  *
396  * tmono
397  * ^
398  * |    o  n
399  * |   o n
400  * |  u
401  * | o
402  * |o
403  * |12345678---> reader order
404  *
405  * o = old slope
406  * u = update
407  * n = new slope
408  *
409  * So reader 6 will observe time going backwards versus reader 5.
410  *
411  * While other CPUs are likely to be able observe that, the only way
412  * for a CPU local observation is when an NMI hits in the middle of
413  * the update. Timestamps taken from that NMI context might be ahead
414  * of the following timestamps. Callers need to be aware of that and
415  * deal with it.
416  */
417 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
418 {
419         struct tk_read_base *tkr;
420         unsigned int seq;
421         u64 now;
422
423         do {
424                 seq = raw_read_seqcount(&tkf->seq);
425                 tkr = tkf->base + (seq & 0x01);
426                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
427         } while (read_seqcount_retry(&tkf->seq, seq));
428
429         return now;
430 }
431
432 u64 ktime_get_mono_fast_ns(void)
433 {
434         return __ktime_get_fast_ns(&tk_fast_mono);
435 }
436 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
437
438 u64 ktime_get_raw_fast_ns(void)
439 {
440         return __ktime_get_fast_ns(&tk_fast_raw);
441 }
442 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
443
444 /* Suspend-time cycles value for halted fast timekeeper. */
445 static cycle_t cycles_at_suspend;
446
447 static cycle_t dummy_clock_read(struct clocksource *cs)
448 {
449         return cycles_at_suspend;
450 }
451
452 /**
453  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
454  * @tk: Timekeeper to snapshot.
455  *
456  * It generally is unsafe to access the clocksource after timekeeping has been
457  * suspended, so take a snapshot of the readout base of @tk and use it as the
458  * fast timekeeper's readout base while suspended.  It will return the same
459  * number of cycles every time until timekeeping is resumed at which time the
460  * proper readout base for the fast timekeeper will be restored automatically.
461  */
462 static void halt_fast_timekeeper(struct timekeeper *tk)
463 {
464         static struct tk_read_base tkr_dummy;
465         struct tk_read_base *tkr = &tk->tkr_mono;
466
467         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
468         cycles_at_suspend = tkr->read(tkr->clock);
469         tkr_dummy.read = dummy_clock_read;
470         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
471
472         tkr = &tk->tkr_raw;
473         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
474         tkr_dummy.read = dummy_clock_read;
475         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
476 }
477
478 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
479
480 static inline void update_vsyscall(struct timekeeper *tk)
481 {
482         struct timespec xt, wm;
483
484         xt = timespec64_to_timespec(tk_xtime(tk));
485         wm = timespec64_to_timespec(tk->wall_to_monotonic);
486         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
487                             tk->tkr_mono.cycle_last);
488 }
489
490 static inline void old_vsyscall_fixup(struct timekeeper *tk)
491 {
492         s64 remainder;
493
494         /*
495         * Store only full nanoseconds into xtime_nsec after rounding
496         * it up and add the remainder to the error difference.
497         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
498         * by truncating the remainder in vsyscalls. However, it causes
499         * additional work to be done in timekeeping_adjust(). Once
500         * the vsyscall implementations are converted to use xtime_nsec
501         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
502         * users are removed, this can be killed.
503         */
504         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
505         tk->tkr_mono.xtime_nsec -= remainder;
506         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
507         tk->ntp_error += remainder << tk->ntp_error_shift;
508         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
509 }
510 #else
511 #define old_vsyscall_fixup(tk)
512 #endif
513
514 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
515
516 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
517 {
518         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
519 }
520
521 /**
522  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
523  */
524 int pvclock_gtod_register_notifier(struct notifier_block *nb)
525 {
526         struct timekeeper *tk = &tk_core.timekeeper;
527         unsigned long flags;
528         int ret;
529
530         raw_spin_lock_irqsave(&timekeeper_lock, flags);
531         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
532         update_pvclock_gtod(tk, true);
533         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534
535         return ret;
536 }
537 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
538
539 /**
540  * pvclock_gtod_unregister_notifier - unregister a pvclock
541  * timedata update listener
542  */
543 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
544 {
545         unsigned long flags;
546         int ret;
547
548         raw_spin_lock_irqsave(&timekeeper_lock, flags);
549         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
550         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
551
552         return ret;
553 }
554 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
555
556 /*
557  * Update the ktime_t based scalar nsec members of the timekeeper
558  */
559 static inline void tk_update_ktime_data(struct timekeeper *tk)
560 {
561         u64 seconds;
562         u32 nsec;
563
564         /*
565          * The xtime based monotonic readout is:
566          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
567          * The ktime based monotonic readout is:
568          *      nsec = base_mono + now();
569          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
570          */
571         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
572         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
573         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
574
575         /* Update the monotonic raw base */
576         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
577
578         /*
579          * The sum of the nanoseconds portions of xtime and
580          * wall_to_monotonic can be greater/equal one second. Take
581          * this into account before updating tk->ktime_sec.
582          */
583         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
584         if (nsec >= NSEC_PER_SEC)
585                 seconds++;
586         tk->ktime_sec = seconds;
587 }
588
589 /* must hold timekeeper_lock */
590 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
591 {
592         if (action & TK_CLEAR_NTP) {
593                 tk->ntp_error = 0;
594                 ntp_clear();
595         }
596
597         tk_update_ktime_data(tk);
598
599         update_vsyscall(tk);
600         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
601
602         if (action & TK_MIRROR)
603                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
604                        sizeof(tk_core.timekeeper));
605
606         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
607         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
608 }
609
610 /**
611  * timekeeping_forward_now - update clock to the current time
612  *
613  * Forward the current clock to update its state since the last call to
614  * update_wall_time(). This is useful before significant clock changes,
615  * as it avoids having to deal with this time offset explicitly.
616  */
617 static void timekeeping_forward_now(struct timekeeper *tk)
618 {
619         struct clocksource *clock = tk->tkr_mono.clock;
620         cycle_t cycle_now, delta;
621         s64 nsec;
622
623         cycle_now = tk->tkr_mono.read(clock);
624         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
625         tk->tkr_mono.cycle_last = cycle_now;
626         tk->tkr_raw.cycle_last  = cycle_now;
627
628         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
629
630         /* If arch requires, add in get_arch_timeoffset() */
631         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
632
633         tk_normalize_xtime(tk);
634
635         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
636         timespec64_add_ns(&tk->raw_time, nsec);
637 }
638
639 /**
640  * __getnstimeofday64 - Returns the time of day in a timespec64.
641  * @ts:         pointer to the timespec to be set
642  *
643  * Updates the time of day in the timespec.
644  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
645  */
646 int __getnstimeofday64(struct timespec64 *ts)
647 {
648         struct timekeeper *tk = &tk_core.timekeeper;
649         unsigned long seq;
650         s64 nsecs = 0;
651
652         do {
653                 seq = read_seqcount_begin(&tk_core.seq);
654
655                 ts->tv_sec = tk->xtime_sec;
656                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
657
658         } while (read_seqcount_retry(&tk_core.seq, seq));
659
660         ts->tv_nsec = 0;
661         timespec64_add_ns(ts, nsecs);
662
663         /*
664          * Do not bail out early, in case there were callers still using
665          * the value, even in the face of the WARN_ON.
666          */
667         if (unlikely(timekeeping_suspended))
668                 return -EAGAIN;
669         return 0;
670 }
671 EXPORT_SYMBOL(__getnstimeofday64);
672
673 /**
674  * getnstimeofday64 - Returns the time of day in a timespec64.
675  * @ts:         pointer to the timespec64 to be set
676  *
677  * Returns the time of day in a timespec64 (WARN if suspended).
678  */
679 void getnstimeofday64(struct timespec64 *ts)
680 {
681         WARN_ON(__getnstimeofday64(ts));
682 }
683 EXPORT_SYMBOL(getnstimeofday64);
684
685 ktime_t ktime_get(void)
686 {
687         struct timekeeper *tk = &tk_core.timekeeper;
688         unsigned int seq;
689         ktime_t base;
690         s64 nsecs;
691
692         WARN_ON(timekeeping_suspended);
693
694         do {
695                 seq = read_seqcount_begin(&tk_core.seq);
696                 base = tk->tkr_mono.base;
697                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
698
699         } while (read_seqcount_retry(&tk_core.seq, seq));
700
701         return ktime_add_ns(base, nsecs);
702 }
703 EXPORT_SYMBOL_GPL(ktime_get);
704
705 static ktime_t *offsets[TK_OFFS_MAX] = {
706         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
707         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
708         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
709 };
710
711 ktime_t ktime_get_with_offset(enum tk_offsets offs)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         unsigned int seq;
715         ktime_t base, *offset = offsets[offs];
716         s64 nsecs;
717
718         WARN_ON(timekeeping_suspended);
719
720         do {
721                 seq = read_seqcount_begin(&tk_core.seq);
722                 base = ktime_add(tk->tkr_mono.base, *offset);
723                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
724
725         } while (read_seqcount_retry(&tk_core.seq, seq));
726
727         return ktime_add_ns(base, nsecs);
728
729 }
730 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
731
732 /**
733  * ktime_mono_to_any() - convert mononotic time to any other time
734  * @tmono:      time to convert.
735  * @offs:       which offset to use
736  */
737 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
738 {
739         ktime_t *offset = offsets[offs];
740         unsigned long seq;
741         ktime_t tconv;
742
743         do {
744                 seq = read_seqcount_begin(&tk_core.seq);
745                 tconv = ktime_add(tmono, *offset);
746         } while (read_seqcount_retry(&tk_core.seq, seq));
747
748         return tconv;
749 }
750 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
751
752 /**
753  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
754  */
755 ktime_t ktime_get_raw(void)
756 {
757         struct timekeeper *tk = &tk_core.timekeeper;
758         unsigned int seq;
759         ktime_t base;
760         s64 nsecs;
761
762         do {
763                 seq = read_seqcount_begin(&tk_core.seq);
764                 base = tk->tkr_raw.base;
765                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
766
767         } while (read_seqcount_retry(&tk_core.seq, seq));
768
769         return ktime_add_ns(base, nsecs);
770 }
771 EXPORT_SYMBOL_GPL(ktime_get_raw);
772
773 /**
774  * ktime_get_ts64 - get the monotonic clock in timespec64 format
775  * @ts:         pointer to timespec variable
776  *
777  * The function calculates the monotonic clock from the realtime
778  * clock and the wall_to_monotonic offset and stores the result
779  * in normalized timespec64 format in the variable pointed to by @ts.
780  */
781 void ktime_get_ts64(struct timespec64 *ts)
782 {
783         struct timekeeper *tk = &tk_core.timekeeper;
784         struct timespec64 tomono;
785         s64 nsec;
786         unsigned int seq;
787
788         WARN_ON(timekeeping_suspended);
789
790         do {
791                 seq = read_seqcount_begin(&tk_core.seq);
792                 ts->tv_sec = tk->xtime_sec;
793                 nsec = timekeeping_get_ns(&tk->tkr_mono);
794                 tomono = tk->wall_to_monotonic;
795
796         } while (read_seqcount_retry(&tk_core.seq, seq));
797
798         ts->tv_sec += tomono.tv_sec;
799         ts->tv_nsec = 0;
800         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
801 }
802 EXPORT_SYMBOL_GPL(ktime_get_ts64);
803
804 /**
805  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
806  *
807  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
808  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
809  * works on both 32 and 64 bit systems. On 32 bit systems the readout
810  * covers ~136 years of uptime which should be enough to prevent
811  * premature wrap arounds.
812  */
813 time64_t ktime_get_seconds(void)
814 {
815         struct timekeeper *tk = &tk_core.timekeeper;
816
817         WARN_ON(timekeeping_suspended);
818         return tk->ktime_sec;
819 }
820 EXPORT_SYMBOL_GPL(ktime_get_seconds);
821
822 /**
823  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
824  *
825  * Returns the wall clock seconds since 1970. This replaces the
826  * get_seconds() interface which is not y2038 safe on 32bit systems.
827  *
828  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
829  * 32bit systems the access must be protected with the sequence
830  * counter to provide "atomic" access to the 64bit tk->xtime_sec
831  * value.
832  */
833 time64_t ktime_get_real_seconds(void)
834 {
835         struct timekeeper *tk = &tk_core.timekeeper;
836         time64_t seconds;
837         unsigned int seq;
838
839         if (IS_ENABLED(CONFIG_64BIT))
840                 return tk->xtime_sec;
841
842         do {
843                 seq = read_seqcount_begin(&tk_core.seq);
844                 seconds = tk->xtime_sec;
845
846         } while (read_seqcount_retry(&tk_core.seq, seq));
847
848         return seconds;
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
851
852 #ifdef CONFIG_NTP_PPS
853
854 /**
855  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
856  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
857  * @ts_real:    pointer to the timespec to be set to the time of day
858  *
859  * This function reads both the time of day and raw monotonic time at the
860  * same time atomically and stores the resulting timestamps in timespec
861  * format.
862  */
863 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
864 {
865         struct timekeeper *tk = &tk_core.timekeeper;
866         unsigned long seq;
867         s64 nsecs_raw, nsecs_real;
868
869         WARN_ON_ONCE(timekeeping_suspended);
870
871         do {
872                 seq = read_seqcount_begin(&tk_core.seq);
873
874                 *ts_raw = timespec64_to_timespec(tk->raw_time);
875                 ts_real->tv_sec = tk->xtime_sec;
876                 ts_real->tv_nsec = 0;
877
878                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
879                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
880
881         } while (read_seqcount_retry(&tk_core.seq, seq));
882
883         timespec_add_ns(ts_raw, nsecs_raw);
884         timespec_add_ns(ts_real, nsecs_real);
885 }
886 EXPORT_SYMBOL(getnstime_raw_and_real);
887
888 #endif /* CONFIG_NTP_PPS */
889
890 /**
891  * do_gettimeofday - Returns the time of day in a timeval
892  * @tv:         pointer to the timeval to be set
893  *
894  * NOTE: Users should be converted to using getnstimeofday()
895  */
896 void do_gettimeofday(struct timeval *tv)
897 {
898         struct timespec64 now;
899
900         getnstimeofday64(&now);
901         tv->tv_sec = now.tv_sec;
902         tv->tv_usec = now.tv_nsec/1000;
903 }
904 EXPORT_SYMBOL(do_gettimeofday);
905
906 /**
907  * do_settimeofday64 - Sets the time of day.
908  * @ts:     pointer to the timespec64 variable containing the new time
909  *
910  * Sets the time of day to the new time and update NTP and notify hrtimers
911  */
912 int do_settimeofday64(const struct timespec64 *ts)
913 {
914         struct timekeeper *tk = &tk_core.timekeeper;
915         struct timespec64 ts_delta, xt;
916         unsigned long flags;
917
918         if (!timespec64_valid_strict(ts))
919                 return -EINVAL;
920
921         raw_spin_lock_irqsave(&timekeeper_lock, flags);
922         write_seqcount_begin(&tk_core.seq);
923
924         timekeeping_forward_now(tk);
925
926         xt = tk_xtime(tk);
927         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
928         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
929
930         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
931
932         tk_set_xtime(tk, ts);
933
934         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
935
936         write_seqcount_end(&tk_core.seq);
937         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
938
939         /* signal hrtimers about time change */
940         clock_was_set();
941
942         return 0;
943 }
944 EXPORT_SYMBOL(do_settimeofday64);
945
946 /**
947  * timekeeping_inject_offset - Adds or subtracts from the current time.
948  * @tv:         pointer to the timespec variable containing the offset
949  *
950  * Adds or subtracts an offset value from the current time.
951  */
952 int timekeeping_inject_offset(struct timespec *ts)
953 {
954         struct timekeeper *tk = &tk_core.timekeeper;
955         unsigned long flags;
956         struct timespec64 ts64, tmp;
957         int ret = 0;
958
959         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
960                 return -EINVAL;
961
962         ts64 = timespec_to_timespec64(*ts);
963
964         raw_spin_lock_irqsave(&timekeeper_lock, flags);
965         write_seqcount_begin(&tk_core.seq);
966
967         timekeeping_forward_now(tk);
968
969         /* Make sure the proposed value is valid */
970         tmp = timespec64_add(tk_xtime(tk),  ts64);
971         if (!timespec64_valid_strict(&tmp)) {
972                 ret = -EINVAL;
973                 goto error;
974         }
975
976         tk_xtime_add(tk, &ts64);
977         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
978
979 error: /* even if we error out, we forwarded the time, so call update */
980         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
981
982         write_seqcount_end(&tk_core.seq);
983         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
984
985         /* signal hrtimers about time change */
986         clock_was_set();
987
988         return ret;
989 }
990 EXPORT_SYMBOL(timekeeping_inject_offset);
991
992
993 /**
994  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
995  *
996  */
997 s32 timekeeping_get_tai_offset(void)
998 {
999         struct timekeeper *tk = &tk_core.timekeeper;
1000         unsigned int seq;
1001         s32 ret;
1002
1003         do {
1004                 seq = read_seqcount_begin(&tk_core.seq);
1005                 ret = tk->tai_offset;
1006         } while (read_seqcount_retry(&tk_core.seq, seq));
1007
1008         return ret;
1009 }
1010
1011 /**
1012  * __timekeeping_set_tai_offset - Lock free worker function
1013  *
1014  */
1015 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1016 {
1017         tk->tai_offset = tai_offset;
1018         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1019 }
1020
1021 /**
1022  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1023  *
1024  */
1025 void timekeeping_set_tai_offset(s32 tai_offset)
1026 {
1027         struct timekeeper *tk = &tk_core.timekeeper;
1028         unsigned long flags;
1029
1030         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1031         write_seqcount_begin(&tk_core.seq);
1032         __timekeeping_set_tai_offset(tk, tai_offset);
1033         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1034         write_seqcount_end(&tk_core.seq);
1035         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1036         clock_was_set();
1037 }
1038
1039 /**
1040  * change_clocksource - Swaps clocksources if a new one is available
1041  *
1042  * Accumulates current time interval and initializes new clocksource
1043  */
1044 static int change_clocksource(void *data)
1045 {
1046         struct timekeeper *tk = &tk_core.timekeeper;
1047         struct clocksource *new, *old;
1048         unsigned long flags;
1049
1050         new = (struct clocksource *) data;
1051
1052         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053         write_seqcount_begin(&tk_core.seq);
1054
1055         timekeeping_forward_now(tk);
1056         /*
1057          * If the cs is in module, get a module reference. Succeeds
1058          * for built-in code (owner == NULL) as well.
1059          */
1060         if (try_module_get(new->owner)) {
1061                 if (!new->enable || new->enable(new) == 0) {
1062                         old = tk->tkr_mono.clock;
1063                         tk_setup_internals(tk, new);
1064                         if (old->disable)
1065                                 old->disable(old);
1066                         module_put(old->owner);
1067                 } else {
1068                         module_put(new->owner);
1069                 }
1070         }
1071         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1072
1073         write_seqcount_end(&tk_core.seq);
1074         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1075
1076         return 0;
1077 }
1078
1079 /**
1080  * timekeeping_notify - Install a new clock source
1081  * @clock:              pointer to the clock source
1082  *
1083  * This function is called from clocksource.c after a new, better clock
1084  * source has been registered. The caller holds the clocksource_mutex.
1085  */
1086 int timekeeping_notify(struct clocksource *clock)
1087 {
1088         struct timekeeper *tk = &tk_core.timekeeper;
1089
1090         if (tk->tkr_mono.clock == clock)
1091                 return 0;
1092         stop_machine(change_clocksource, clock, NULL);
1093         tick_clock_notify();
1094         return tk->tkr_mono.clock == clock ? 0 : -1;
1095 }
1096
1097 /**
1098  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1099  * @ts:         pointer to the timespec64 to be set
1100  *
1101  * Returns the raw monotonic time (completely un-modified by ntp)
1102  */
1103 void getrawmonotonic64(struct timespec64 *ts)
1104 {
1105         struct timekeeper *tk = &tk_core.timekeeper;
1106         struct timespec64 ts64;
1107         unsigned long seq;
1108         s64 nsecs;
1109
1110         do {
1111                 seq = read_seqcount_begin(&tk_core.seq);
1112                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1113                 ts64 = tk->raw_time;
1114
1115         } while (read_seqcount_retry(&tk_core.seq, seq));
1116
1117         timespec64_add_ns(&ts64, nsecs);
1118         *ts = ts64;
1119 }
1120 EXPORT_SYMBOL(getrawmonotonic64);
1121
1122
1123 /**
1124  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1125  */
1126 int timekeeping_valid_for_hres(void)
1127 {
1128         struct timekeeper *tk = &tk_core.timekeeper;
1129         unsigned long seq;
1130         int ret;
1131
1132         do {
1133                 seq = read_seqcount_begin(&tk_core.seq);
1134
1135                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1136
1137         } while (read_seqcount_retry(&tk_core.seq, seq));
1138
1139         return ret;
1140 }
1141
1142 /**
1143  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1144  */
1145 u64 timekeeping_max_deferment(void)
1146 {
1147         struct timekeeper *tk = &tk_core.timekeeper;
1148         unsigned long seq;
1149         u64 ret;
1150
1151         do {
1152                 seq = read_seqcount_begin(&tk_core.seq);
1153
1154                 ret = tk->tkr_mono.clock->max_idle_ns;
1155
1156         } while (read_seqcount_retry(&tk_core.seq, seq));
1157
1158         return ret;
1159 }
1160
1161 /**
1162  * read_persistent_clock -  Return time from the persistent clock.
1163  *
1164  * Weak dummy function for arches that do not yet support it.
1165  * Reads the time from the battery backed persistent clock.
1166  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1167  *
1168  *  XXX - Do be sure to remove it once all arches implement it.
1169  */
1170 void __weak read_persistent_clock(struct timespec *ts)
1171 {
1172         ts->tv_sec = 0;
1173         ts->tv_nsec = 0;
1174 }
1175
1176 void __weak read_persistent_clock64(struct timespec64 *ts64)
1177 {
1178         struct timespec ts;
1179
1180         read_persistent_clock(&ts);
1181         *ts64 = timespec_to_timespec64(ts);
1182 }
1183
1184 /**
1185  * read_boot_clock -  Return time of the system start.
1186  *
1187  * Weak dummy function for arches that do not yet support it.
1188  * Function to read the exact time the system has been started.
1189  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1190  *
1191  *  XXX - Do be sure to remove it once all arches implement it.
1192  */
1193 void __weak read_boot_clock(struct timespec *ts)
1194 {
1195         ts->tv_sec = 0;
1196         ts->tv_nsec = 0;
1197 }
1198
1199 void __weak read_boot_clock64(struct timespec64 *ts64)
1200 {
1201         struct timespec ts;
1202
1203         read_boot_clock(&ts);
1204         *ts64 = timespec_to_timespec64(ts);
1205 }
1206
1207 /*
1208  * timekeeping_init - Initializes the clocksource and common timekeeping values
1209  */
1210 void __init timekeeping_init(void)
1211 {
1212         struct timekeeper *tk = &tk_core.timekeeper;
1213         struct clocksource *clock;
1214         unsigned long flags;
1215         struct timespec64 now, boot, tmp;
1216
1217         read_persistent_clock64(&now);
1218         if (!timespec64_valid_strict(&now)) {
1219                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1220                         "         Check your CMOS/BIOS settings.\n");
1221                 now.tv_sec = 0;
1222                 now.tv_nsec = 0;
1223         } else if (now.tv_sec || now.tv_nsec)
1224                 persistent_clock_exist = true;
1225
1226         read_boot_clock64(&boot);
1227         if (!timespec64_valid_strict(&boot)) {
1228                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1229                         "         Check your CMOS/BIOS settings.\n");
1230                 boot.tv_sec = 0;
1231                 boot.tv_nsec = 0;
1232         }
1233
1234         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1235         write_seqcount_begin(&tk_core.seq);
1236         ntp_init();
1237
1238         clock = clocksource_default_clock();
1239         if (clock->enable)
1240                 clock->enable(clock);
1241         tk_setup_internals(tk, clock);
1242
1243         tk_set_xtime(tk, &now);
1244         tk->raw_time.tv_sec = 0;
1245         tk->raw_time.tv_nsec = 0;
1246         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1247                 boot = tk_xtime(tk);
1248
1249         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1250         tk_set_wall_to_mono(tk, tmp);
1251
1252         timekeeping_update(tk, TK_MIRROR);
1253
1254         write_seqcount_end(&tk_core.seq);
1255         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1256 }
1257
1258 /* time in seconds when suspend began */
1259 static struct timespec64 timekeeping_suspend_time;
1260
1261 /**
1262  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1263  * @delta: pointer to a timespec delta value
1264  *
1265  * Takes a timespec offset measuring a suspend interval and properly
1266  * adds the sleep offset to the timekeeping variables.
1267  */
1268 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1269                                            struct timespec64 *delta)
1270 {
1271         if (!timespec64_valid_strict(delta)) {
1272                 printk_deferred(KERN_WARNING
1273                                 "__timekeeping_inject_sleeptime: Invalid "
1274                                 "sleep delta value!\n");
1275                 return;
1276         }
1277         tk_xtime_add(tk, delta);
1278         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1279         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1280         tk_debug_account_sleep_time(delta);
1281 }
1282
1283 /**
1284  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1285  * @delta: pointer to a timespec64 delta value
1286  *
1287  * This hook is for architectures that cannot support read_persistent_clock64
1288  * because their RTC/persistent clock is only accessible when irqs are enabled.
1289  *
1290  * This function should only be called by rtc_resume(), and allows
1291  * a suspend offset to be injected into the timekeeping values.
1292  */
1293 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1294 {
1295         struct timekeeper *tk = &tk_core.timekeeper;
1296         unsigned long flags;
1297
1298         /*
1299          * Make sure we don't set the clock twice, as timekeeping_resume()
1300          * already did it
1301          */
1302         if (has_persistent_clock())
1303                 return;
1304
1305         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1306         write_seqcount_begin(&tk_core.seq);
1307
1308         timekeeping_forward_now(tk);
1309
1310         __timekeeping_inject_sleeptime(tk, delta);
1311
1312         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1313
1314         write_seqcount_end(&tk_core.seq);
1315         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1316
1317         /* signal hrtimers about time change */
1318         clock_was_set();
1319 }
1320
1321 /**
1322  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1323  *
1324  * This is for the generic clocksource timekeeping.
1325  * xtime/wall_to_monotonic/jiffies/etc are
1326  * still managed by arch specific suspend/resume code.
1327  */
1328 void timekeeping_resume(void)
1329 {
1330         struct timekeeper *tk = &tk_core.timekeeper;
1331         struct clocksource *clock = tk->tkr_mono.clock;
1332         unsigned long flags;
1333         struct timespec64 ts_new, ts_delta;
1334         cycle_t cycle_now, cycle_delta;
1335         bool suspendtime_found = false;
1336
1337         read_persistent_clock64(&ts_new);
1338
1339         clockevents_resume();
1340         clocksource_resume();
1341
1342         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1343         write_seqcount_begin(&tk_core.seq);
1344
1345         /*
1346          * After system resumes, we need to calculate the suspended time and
1347          * compensate it for the OS time. There are 3 sources that could be
1348          * used: Nonstop clocksource during suspend, persistent clock and rtc
1349          * device.
1350          *
1351          * One specific platform may have 1 or 2 or all of them, and the
1352          * preference will be:
1353          *      suspend-nonstop clocksource -> persistent clock -> rtc
1354          * The less preferred source will only be tried if there is no better
1355          * usable source. The rtc part is handled separately in rtc core code.
1356          */
1357         cycle_now = tk->tkr_mono.read(clock);
1358         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1359                 cycle_now > tk->tkr_mono.cycle_last) {
1360                 u64 num, max = ULLONG_MAX;
1361                 u32 mult = clock->mult;
1362                 u32 shift = clock->shift;
1363                 s64 nsec = 0;
1364
1365                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1366                                                 tk->tkr_mono.mask);
1367
1368                 /*
1369                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1370                  * suspended time is too long. In that case we need do the
1371                  * 64 bits math carefully
1372                  */
1373                 do_div(max, mult);
1374                 if (cycle_delta > max) {
1375                         num = div64_u64(cycle_delta, max);
1376                         nsec = (((u64) max * mult) >> shift) * num;
1377                         cycle_delta -= num * max;
1378                 }
1379                 nsec += ((u64) cycle_delta * mult) >> shift;
1380
1381                 ts_delta = ns_to_timespec64(nsec);
1382                 suspendtime_found = true;
1383         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1384                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1385                 suspendtime_found = true;
1386         }
1387
1388         if (suspendtime_found)
1389                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1390
1391         /* Re-base the last cycle value */
1392         tk->tkr_mono.cycle_last = cycle_now;
1393         tk->tkr_raw.cycle_last  = cycle_now;
1394
1395         tk->ntp_error = 0;
1396         timekeeping_suspended = 0;
1397         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1398         write_seqcount_end(&tk_core.seq);
1399         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1400
1401         touch_softlockup_watchdog();
1402
1403         tick_resume();
1404         hrtimers_resume();
1405 }
1406
1407 int timekeeping_suspend(void)
1408 {
1409         struct timekeeper *tk = &tk_core.timekeeper;
1410         unsigned long flags;
1411         struct timespec64               delta, delta_delta;
1412         static struct timespec64        old_delta;
1413
1414         read_persistent_clock64(&timekeeping_suspend_time);
1415
1416         /*
1417          * On some systems the persistent_clock can not be detected at
1418          * timekeeping_init by its return value, so if we see a valid
1419          * value returned, update the persistent_clock_exists flag.
1420          */
1421         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1422                 persistent_clock_exist = true;
1423
1424         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1425         write_seqcount_begin(&tk_core.seq);
1426         timekeeping_forward_now(tk);
1427         timekeeping_suspended = 1;
1428
1429         /*
1430          * To avoid drift caused by repeated suspend/resumes,
1431          * which each can add ~1 second drift error,
1432          * try to compensate so the difference in system time
1433          * and persistent_clock time stays close to constant.
1434          */
1435         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1436         delta_delta = timespec64_sub(delta, old_delta);
1437         if (abs(delta_delta.tv_sec)  >= 2) {
1438                 /*
1439                  * if delta_delta is too large, assume time correction
1440                  * has occured and set old_delta to the current delta.
1441                  */
1442                 old_delta = delta;
1443         } else {
1444                 /* Otherwise try to adjust old_system to compensate */
1445                 timekeeping_suspend_time =
1446                         timespec64_add(timekeeping_suspend_time, delta_delta);
1447         }
1448
1449         timekeeping_update(tk, TK_MIRROR);
1450         halt_fast_timekeeper(tk);
1451         write_seqcount_end(&tk_core.seq);
1452         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1453
1454         tick_suspend();
1455         clocksource_suspend();
1456         clockevents_suspend();
1457
1458         return 0;
1459 }
1460
1461 /* sysfs resume/suspend bits for timekeeping */
1462 static struct syscore_ops timekeeping_syscore_ops = {
1463         .resume         = timekeeping_resume,
1464         .suspend        = timekeeping_suspend,
1465 };
1466
1467 static int __init timekeeping_init_ops(void)
1468 {
1469         register_syscore_ops(&timekeeping_syscore_ops);
1470         return 0;
1471 }
1472 device_initcall(timekeeping_init_ops);
1473
1474 /*
1475  * Apply a multiplier adjustment to the timekeeper
1476  */
1477 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1478                                                          s64 offset,
1479                                                          bool negative,
1480                                                          int adj_scale)
1481 {
1482         s64 interval = tk->cycle_interval;
1483         s32 mult_adj = 1;
1484
1485         if (negative) {
1486                 mult_adj = -mult_adj;
1487                 interval = -interval;
1488                 offset  = -offset;
1489         }
1490         mult_adj <<= adj_scale;
1491         interval <<= adj_scale;
1492         offset <<= adj_scale;
1493
1494         /*
1495          * So the following can be confusing.
1496          *
1497          * To keep things simple, lets assume mult_adj == 1 for now.
1498          *
1499          * When mult_adj != 1, remember that the interval and offset values
1500          * have been appropriately scaled so the math is the same.
1501          *
1502          * The basic idea here is that we're increasing the multiplier
1503          * by one, this causes the xtime_interval to be incremented by
1504          * one cycle_interval. This is because:
1505          *      xtime_interval = cycle_interval * mult
1506          * So if mult is being incremented by one:
1507          *      xtime_interval = cycle_interval * (mult + 1)
1508          * Its the same as:
1509          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1510          * Which can be shortened to:
1511          *      xtime_interval += cycle_interval
1512          *
1513          * So offset stores the non-accumulated cycles. Thus the current
1514          * time (in shifted nanoseconds) is:
1515          *      now = (offset * adj) + xtime_nsec
1516          * Now, even though we're adjusting the clock frequency, we have
1517          * to keep time consistent. In other words, we can't jump back
1518          * in time, and we also want to avoid jumping forward in time.
1519          *
1520          * So given the same offset value, we need the time to be the same
1521          * both before and after the freq adjustment.
1522          *      now = (offset * adj_1) + xtime_nsec_1
1523          *      now = (offset * adj_2) + xtime_nsec_2
1524          * So:
1525          *      (offset * adj_1) + xtime_nsec_1 =
1526          *              (offset * adj_2) + xtime_nsec_2
1527          * And we know:
1528          *      adj_2 = adj_1 + 1
1529          * So:
1530          *      (offset * adj_1) + xtime_nsec_1 =
1531          *              (offset * (adj_1+1)) + xtime_nsec_2
1532          *      (offset * adj_1) + xtime_nsec_1 =
1533          *              (offset * adj_1) + offset + xtime_nsec_2
1534          * Canceling the sides:
1535          *      xtime_nsec_1 = offset + xtime_nsec_2
1536          * Which gives us:
1537          *      xtime_nsec_2 = xtime_nsec_1 - offset
1538          * Which simplfies to:
1539          *      xtime_nsec -= offset
1540          *
1541          * XXX - TODO: Doc ntp_error calculation.
1542          */
1543         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1544                 /* NTP adjustment caused clocksource mult overflow */
1545                 WARN_ON_ONCE(1);
1546                 return;
1547         }
1548
1549         tk->tkr_mono.mult += mult_adj;
1550         tk->xtime_interval += interval;
1551         tk->tkr_mono.xtime_nsec -= offset;
1552         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1553 }
1554
1555 /*
1556  * Calculate the multiplier adjustment needed to match the frequency
1557  * specified by NTP
1558  */
1559 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1560                                                         s64 offset)
1561 {
1562         s64 interval = tk->cycle_interval;
1563         s64 xinterval = tk->xtime_interval;
1564         s64 tick_error;
1565         bool negative;
1566         u32 adj;
1567
1568         /* Remove any current error adj from freq calculation */
1569         if (tk->ntp_err_mult)
1570                 xinterval -= tk->cycle_interval;
1571
1572         tk->ntp_tick = ntp_tick_length();
1573
1574         /* Calculate current error per tick */
1575         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1576         tick_error -= (xinterval + tk->xtime_remainder);
1577
1578         /* Don't worry about correcting it if its small */
1579         if (likely((tick_error >= 0) && (tick_error <= interval)))
1580                 return;
1581
1582         /* preserve the direction of correction */
1583         negative = (tick_error < 0);
1584
1585         /* Sort out the magnitude of the correction */
1586         tick_error = abs(tick_error);
1587         for (adj = 0; tick_error > interval; adj++)
1588                 tick_error >>= 1;
1589
1590         /* scale the corrections */
1591         timekeeping_apply_adjustment(tk, offset, negative, adj);
1592 }
1593
1594 /*
1595  * Adjust the timekeeper's multiplier to the correct frequency
1596  * and also to reduce the accumulated error value.
1597  */
1598 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1599 {
1600         /* Correct for the current frequency error */
1601         timekeeping_freqadjust(tk, offset);
1602
1603         /* Next make a small adjustment to fix any cumulative error */
1604         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1605                 tk->ntp_err_mult = 1;
1606                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1607         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1608                 /* Undo any existing error adjustment */
1609                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1610                 tk->ntp_err_mult = 0;
1611         }
1612
1613         if (unlikely(tk->tkr_mono.clock->maxadj &&
1614                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1615                         > tk->tkr_mono.clock->maxadj))) {
1616                 printk_once(KERN_WARNING
1617                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1618                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1619                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1620         }
1621
1622         /*
1623          * It may be possible that when we entered this function, xtime_nsec
1624          * was very small.  Further, if we're slightly speeding the clocksource
1625          * in the code above, its possible the required corrective factor to
1626          * xtime_nsec could cause it to underflow.
1627          *
1628          * Now, since we already accumulated the second, cannot simply roll
1629          * the accumulated second back, since the NTP subsystem has been
1630          * notified via second_overflow. So instead we push xtime_nsec forward
1631          * by the amount we underflowed, and add that amount into the error.
1632          *
1633          * We'll correct this error next time through this function, when
1634          * xtime_nsec is not as small.
1635          */
1636         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1637                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1638                 tk->tkr_mono.xtime_nsec = 0;
1639                 tk->ntp_error += neg << tk->ntp_error_shift;
1640         }
1641 }
1642
1643 /**
1644  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1645  *
1646  * Helper function that accumulates a the nsecs greater then a second
1647  * from the xtime_nsec field to the xtime_secs field.
1648  * It also calls into the NTP code to handle leapsecond processing.
1649  *
1650  */
1651 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1652 {
1653         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1654         unsigned int clock_set = 0;
1655
1656         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1657                 int leap;
1658
1659                 tk->tkr_mono.xtime_nsec -= nsecps;
1660                 tk->xtime_sec++;
1661
1662                 /* Figure out if its a leap sec and apply if needed */
1663                 leap = second_overflow(tk->xtime_sec);
1664                 if (unlikely(leap)) {
1665                         struct timespec64 ts;
1666
1667                         tk->xtime_sec += leap;
1668
1669                         ts.tv_sec = leap;
1670                         ts.tv_nsec = 0;
1671                         tk_set_wall_to_mono(tk,
1672                                 timespec64_sub(tk->wall_to_monotonic, ts));
1673
1674                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1675
1676                         clock_set = TK_CLOCK_WAS_SET;
1677                 }
1678         }
1679         return clock_set;
1680 }
1681
1682 /**
1683  * logarithmic_accumulation - shifted accumulation of cycles
1684  *
1685  * This functions accumulates a shifted interval of cycles into
1686  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1687  * loop.
1688  *
1689  * Returns the unconsumed cycles.
1690  */
1691 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1692                                                 u32 shift,
1693                                                 unsigned int *clock_set)
1694 {
1695         cycle_t interval = tk->cycle_interval << shift;
1696         u64 raw_nsecs;
1697
1698         /* If the offset is smaller then a shifted interval, do nothing */
1699         if (offset < interval)
1700                 return offset;
1701
1702         /* Accumulate one shifted interval */
1703         offset -= interval;
1704         tk->tkr_mono.cycle_last += interval;
1705         tk->tkr_raw.cycle_last  += interval;
1706
1707         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1708         *clock_set |= accumulate_nsecs_to_secs(tk);
1709
1710         /* Accumulate raw time */
1711         raw_nsecs = (u64)tk->raw_interval << shift;
1712         raw_nsecs += tk->raw_time.tv_nsec;
1713         if (raw_nsecs >= NSEC_PER_SEC) {
1714                 u64 raw_secs = raw_nsecs;
1715                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1716                 tk->raw_time.tv_sec += raw_secs;
1717         }
1718         tk->raw_time.tv_nsec = raw_nsecs;
1719
1720         /* Accumulate error between NTP and clock interval */
1721         tk->ntp_error += tk->ntp_tick << shift;
1722         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1723                                                 (tk->ntp_error_shift + shift);
1724
1725         return offset;
1726 }
1727
1728 /**
1729  * update_wall_time - Uses the current clocksource to increment the wall time
1730  *
1731  */
1732 void update_wall_time(void)
1733 {
1734         struct timekeeper *real_tk = &tk_core.timekeeper;
1735         struct timekeeper *tk = &shadow_timekeeper;
1736         cycle_t offset;
1737         int shift = 0, maxshift;
1738         unsigned int clock_set = 0;
1739         unsigned long flags;
1740
1741         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1742
1743         /* Make sure we're fully resumed: */
1744         if (unlikely(timekeeping_suspended))
1745                 goto out;
1746
1747 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1748         offset = real_tk->cycle_interval;
1749 #else
1750         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1751                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1752 #endif
1753
1754         /* Check if there's really nothing to do */
1755         if (offset < real_tk->cycle_interval)
1756                 goto out;
1757
1758         /* Do some additional sanity checking */
1759         timekeeping_check_update(real_tk, offset);
1760
1761         /*
1762          * With NO_HZ we may have to accumulate many cycle_intervals
1763          * (think "ticks") worth of time at once. To do this efficiently,
1764          * we calculate the largest doubling multiple of cycle_intervals
1765          * that is smaller than the offset.  We then accumulate that
1766          * chunk in one go, and then try to consume the next smaller
1767          * doubled multiple.
1768          */
1769         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1770         shift = max(0, shift);
1771         /* Bound shift to one less than what overflows tick_length */
1772         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1773         shift = min(shift, maxshift);
1774         while (offset >= tk->cycle_interval) {
1775                 offset = logarithmic_accumulation(tk, offset, shift,
1776                                                         &clock_set);
1777                 if (offset < tk->cycle_interval<<shift)
1778                         shift--;
1779         }
1780
1781         /* correct the clock when NTP error is too big */
1782         timekeeping_adjust(tk, offset);
1783
1784         /*
1785          * XXX This can be killed once everyone converts
1786          * to the new update_vsyscall.
1787          */
1788         old_vsyscall_fixup(tk);
1789
1790         /*
1791          * Finally, make sure that after the rounding
1792          * xtime_nsec isn't larger than NSEC_PER_SEC
1793          */
1794         clock_set |= accumulate_nsecs_to_secs(tk);
1795
1796         write_seqcount_begin(&tk_core.seq);
1797         /*
1798          * Update the real timekeeper.
1799          *
1800          * We could avoid this memcpy by switching pointers, but that
1801          * requires changes to all other timekeeper usage sites as
1802          * well, i.e. move the timekeeper pointer getter into the
1803          * spinlocked/seqcount protected sections. And we trade this
1804          * memcpy under the tk_core.seq against one before we start
1805          * updating.
1806          */
1807         memcpy(real_tk, tk, sizeof(*tk));
1808         timekeeping_update(real_tk, clock_set);
1809         write_seqcount_end(&tk_core.seq);
1810 out:
1811         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1812         if (clock_set)
1813                 /* Have to call _delayed version, since in irq context*/
1814                 clock_was_set_delayed();
1815 }
1816
1817 /**
1818  * getboottime64 - Return the real time of system boot.
1819  * @ts:         pointer to the timespec64 to be set
1820  *
1821  * Returns the wall-time of boot in a timespec64.
1822  *
1823  * This is based on the wall_to_monotonic offset and the total suspend
1824  * time. Calls to settimeofday will affect the value returned (which
1825  * basically means that however wrong your real time clock is at boot time,
1826  * you get the right time here).
1827  */
1828 void getboottime64(struct timespec64 *ts)
1829 {
1830         struct timekeeper *tk = &tk_core.timekeeper;
1831         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1832
1833         *ts = ktime_to_timespec64(t);
1834 }
1835 EXPORT_SYMBOL_GPL(getboottime64);
1836
1837 unsigned long get_seconds(void)
1838 {
1839         struct timekeeper *tk = &tk_core.timekeeper;
1840
1841         return tk->xtime_sec;
1842 }
1843 EXPORT_SYMBOL(get_seconds);
1844
1845 struct timespec __current_kernel_time(void)
1846 {
1847         struct timekeeper *tk = &tk_core.timekeeper;
1848
1849         return timespec64_to_timespec(tk_xtime(tk));
1850 }
1851
1852 struct timespec current_kernel_time(void)
1853 {
1854         struct timekeeper *tk = &tk_core.timekeeper;
1855         struct timespec64 now;
1856         unsigned long seq;
1857
1858         do {
1859                 seq = read_seqcount_begin(&tk_core.seq);
1860
1861                 now = tk_xtime(tk);
1862         } while (read_seqcount_retry(&tk_core.seq, seq));
1863
1864         return timespec64_to_timespec(now);
1865 }
1866 EXPORT_SYMBOL(current_kernel_time);
1867
1868 struct timespec64 get_monotonic_coarse64(void)
1869 {
1870         struct timekeeper *tk = &tk_core.timekeeper;
1871         struct timespec64 now, mono;
1872         unsigned long seq;
1873
1874         do {
1875                 seq = read_seqcount_begin(&tk_core.seq);
1876
1877                 now = tk_xtime(tk);
1878                 mono = tk->wall_to_monotonic;
1879         } while (read_seqcount_retry(&tk_core.seq, seq));
1880
1881         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1882                                 now.tv_nsec + mono.tv_nsec);
1883
1884         return now;
1885 }
1886
1887 /*
1888  * Must hold jiffies_lock
1889  */
1890 void do_timer(unsigned long ticks)
1891 {
1892         jiffies_64 += ticks;
1893         calc_global_load(ticks);
1894 }
1895
1896 /**
1897  * ktime_get_update_offsets_tick - hrtimer helper
1898  * @offs_real:  pointer to storage for monotonic -> realtime offset
1899  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1900  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1901  *
1902  * Returns monotonic time at last tick and various offsets
1903  */
1904 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1905                                                         ktime_t *offs_tai)
1906 {
1907         struct timekeeper *tk = &tk_core.timekeeper;
1908         unsigned int seq;
1909         ktime_t base;
1910         u64 nsecs;
1911
1912         do {
1913                 seq = read_seqcount_begin(&tk_core.seq);
1914
1915                 base = tk->tkr_mono.base;
1916                 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1917
1918                 *offs_real = tk->offs_real;
1919                 *offs_boot = tk->offs_boot;
1920                 *offs_tai = tk->offs_tai;
1921         } while (read_seqcount_retry(&tk_core.seq, seq));
1922
1923         return ktime_add_ns(base, nsecs);
1924 }
1925
1926 #ifdef CONFIG_HIGH_RES_TIMERS
1927 /**
1928  * ktime_get_update_offsets_now - hrtimer helper
1929  * @offs_real:  pointer to storage for monotonic -> realtime offset
1930  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1931  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1932  *
1933  * Returns current monotonic time and updates the offsets
1934  * Called from hrtimer_interrupt() or retrigger_next_event()
1935  */
1936 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1937                                                         ktime_t *offs_tai)
1938 {
1939         struct timekeeper *tk = &tk_core.timekeeper;
1940         unsigned int seq;
1941         ktime_t base;
1942         u64 nsecs;
1943
1944         do {
1945                 seq = read_seqcount_begin(&tk_core.seq);
1946
1947                 base = tk->tkr_mono.base;
1948                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1949
1950                 *offs_real = tk->offs_real;
1951                 *offs_boot = tk->offs_boot;
1952                 *offs_tai = tk->offs_tai;
1953         } while (read_seqcount_retry(&tk_core.seq, seq));
1954
1955         return ktime_add_ns(base, nsecs);
1956 }
1957 #endif
1958
1959 /**
1960  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1961  */
1962 int do_adjtimex(struct timex *txc)
1963 {
1964         struct timekeeper *tk = &tk_core.timekeeper;
1965         unsigned long flags;
1966         struct timespec64 ts;
1967         s32 orig_tai, tai;
1968         int ret;
1969
1970         /* Validate the data before disabling interrupts */
1971         ret = ntp_validate_timex(txc);
1972         if (ret)
1973                 return ret;
1974
1975         if (txc->modes & ADJ_SETOFFSET) {
1976                 struct timespec delta;
1977                 delta.tv_sec  = txc->time.tv_sec;
1978                 delta.tv_nsec = txc->time.tv_usec;
1979                 if (!(txc->modes & ADJ_NANO))
1980                         delta.tv_nsec *= 1000;
1981                 ret = timekeeping_inject_offset(&delta);
1982                 if (ret)
1983                         return ret;
1984         }
1985
1986         getnstimeofday64(&ts);
1987
1988         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1989         write_seqcount_begin(&tk_core.seq);
1990
1991         orig_tai = tai = tk->tai_offset;
1992         ret = __do_adjtimex(txc, &ts, &tai);
1993
1994         if (tai != orig_tai) {
1995                 __timekeeping_set_tai_offset(tk, tai);
1996                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1997         }
1998         write_seqcount_end(&tk_core.seq);
1999         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2000
2001         if (tai != orig_tai)
2002                 clock_was_set();
2003
2004         ntp_notify_cmos_timer();
2005
2006         return ret;
2007 }
2008
2009 #ifdef CONFIG_NTP_PPS
2010 /**
2011  * hardpps() - Accessor function to NTP __hardpps function
2012  */
2013 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2014 {
2015         unsigned long flags;
2016
2017         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2018         write_seqcount_begin(&tk_core.seq);
2019
2020         __hardpps(phase_ts, raw_ts);
2021
2022         write_seqcount_end(&tk_core.seq);
2023         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2024 }
2025 EXPORT_SYMBOL(hardpps);
2026 #endif
2027
2028 /**
2029  * xtime_update() - advances the timekeeping infrastructure
2030  * @ticks:      number of ticks, that have elapsed since the last call.
2031  *
2032  * Must be called with interrupts disabled.
2033  */
2034 void xtime_update(unsigned long ticks)
2035 {
2036         write_seqlock(&jiffies_lock);
2037         do_timer(ticks);
2038         write_sequnlock(&jiffies_lock);
2039         update_wall_time();
2040 }