2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_REBIND = 1 << 5, /* mom is home, come back */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
83 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
87 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
102 RESCUER_NICE_LEVEL = -20,
103 HIGHPRI_NICE_LEVEL = -20,
107 * Structure fields follow one of the following exclusion rules.
109 * I: Modifiable by initialization/destruction paths and read-only for
112 * P: Preemption protected. Disabling preemption is enough and should
113 * only be modified and accessed from the local cpu.
115 * L: gcwq->lock protected. Access with gcwq->lock held.
117 * X: During normal operation, modification requires gcwq->lock and
118 * should be done only from local cpu. Either disabling preemption
119 * on local cpu or grabbing gcwq->lock is enough for read access.
120 * If GCWQ_DISASSOCIATED is set, it's identical to L.
122 * F: wq->flush_mutex protected.
124 * W: workqueue_lock protected.
132 * The poor guys doing the actual heavy lifting. All on-duty workers
133 * are either serving the manager role, on idle list or on busy hash.
136 /* on idle list while idle, on busy hash table while busy */
138 struct list_head entry; /* L: while idle */
139 struct hlist_node hentry; /* L: while busy */
142 struct work_struct *current_work; /* L: work being processed */
143 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
144 struct list_head scheduled; /* L: scheduled works */
145 struct task_struct *task; /* I: worker task */
146 struct worker_pool *pool; /* I: the associated pool */
147 /* 64 bytes boundary on 64bit, 32 on 32bit */
148 unsigned long last_active; /* L: last active timestamp */
149 unsigned int flags; /* X: flags */
150 int id; /* I: worker id */
152 /* for rebinding worker to CPU */
153 struct idle_rebind *idle_rebind; /* L: for idle worker */
154 struct work_struct rebind_work; /* L: for busy worker */
158 struct global_cwq *gcwq; /* I: the owning gcwq */
159 unsigned int flags; /* X: flags */
161 struct list_head worklist; /* L: list of pending works */
162 int nr_workers; /* L: total number of workers */
163 int nr_idle; /* L: currently idle ones */
165 struct list_head idle_list; /* X: list of idle workers */
166 struct timer_list idle_timer; /* L: worker idle timeout */
167 struct timer_list mayday_timer; /* L: SOS timer for workers */
169 struct mutex manager_mutex; /* mutex manager should hold */
170 struct ida worker_ida; /* L: for worker IDs */
174 * Global per-cpu workqueue. There's one and only one for each cpu
175 * and all works are queued and processed here regardless of their
179 spinlock_t lock; /* the gcwq lock */
180 unsigned int cpu; /* I: the associated cpu */
181 unsigned int flags; /* L: GCWQ_* flags */
183 /* workers are chained either in busy_hash or pool idle_list */
184 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
185 /* L: hash of busy workers */
187 struct worker_pool pools[2]; /* normal and highpri pools */
189 wait_queue_head_t rebind_hold; /* rebind hold wait */
190 } ____cacheline_aligned_in_smp;
193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
197 struct cpu_workqueue_struct {
198 struct worker_pool *pool; /* I: the associated pool */
199 struct workqueue_struct *wq; /* I: the owning workqueue */
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
204 int nr_active; /* L: nr of active works */
205 int max_active; /* L: max active works */
206 struct list_head delayed_works; /* L: delayed works */
210 * Structure used to wait for workqueue flush.
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
223 typedef cpumask_var_t mayday_mask_t;
224 #define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
228 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
229 #define free_mayday_mask(mask) free_cpumask_var((mask))
231 typedef unsigned long mayday_mask_t;
232 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235 #define alloc_mayday_mask(maskp, gfp) true
236 #define free_mayday_mask(mask) do { } while (0)
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
243 struct workqueue_struct {
244 unsigned int flags; /* W: WQ_* flags */
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
249 } cpu_wq; /* I: cwq's */
250 struct list_head list; /* W: list of all workqueues */
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
261 struct worker *rescuer; /* I: rescue worker */
263 int nr_drainers; /* W: drain in progress */
264 int saved_max_active; /* W: saved cwq max_active */
265 #ifdef CONFIG_LOCKDEP
266 struct lockdep_map lockdep_map;
268 char name[]; /* I: workqueue name */
271 struct workqueue_struct *system_wq __read_mostly;
272 struct workqueue_struct *system_long_wq __read_mostly;
273 struct workqueue_struct *system_nrt_wq __read_mostly;
274 struct workqueue_struct *system_unbound_wq __read_mostly;
275 struct workqueue_struct *system_freezable_wq __read_mostly;
276 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
277 EXPORT_SYMBOL_GPL(system_wq);
278 EXPORT_SYMBOL_GPL(system_long_wq);
279 EXPORT_SYMBOL_GPL(system_nrt_wq);
280 EXPORT_SYMBOL_GPL(system_unbound_wq);
281 EXPORT_SYMBOL_GPL(system_freezable_wq);
282 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
284 #define CREATE_TRACE_POINTS
285 #include <trace/events/workqueue.h>
287 #define for_each_worker_pool(pool, gcwq) \
288 for ((pool) = &(gcwq)->pools[0]; \
289 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
291 #define for_each_busy_worker(worker, i, pos, gcwq) \
292 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
293 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
295 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
298 if (cpu < nr_cpu_ids) {
300 cpu = cpumask_next(cpu, mask);
301 if (cpu < nr_cpu_ids)
305 return WORK_CPU_UNBOUND;
307 return WORK_CPU_NONE;
310 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 struct workqueue_struct *wq)
313 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
319 * An extra gcwq is defined for an invalid cpu number
320 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321 * specific CPU. The following iterators are similar to
322 * for_each_*_cpu() iterators but also considers the unbound gcwq.
324 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
325 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
326 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
327 * WORK_CPU_UNBOUND for unbound workqueues
329 #define for_each_gcwq_cpu(cpu) \
330 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
331 (cpu) < WORK_CPU_NONE; \
332 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
334 #define for_each_online_gcwq_cpu(cpu) \
335 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
336 (cpu) < WORK_CPU_NONE; \
337 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
339 #define for_each_cwq_cpu(cpu, wq) \
340 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
341 (cpu) < WORK_CPU_NONE; \
342 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
344 #ifdef CONFIG_DEBUG_OBJECTS_WORK
346 static struct debug_obj_descr work_debug_descr;
348 static void *work_debug_hint(void *addr)
350 return ((struct work_struct *) addr)->func;
354 * fixup_init is called when:
355 * - an active object is initialized
357 static int work_fixup_init(void *addr, enum debug_obj_state state)
359 struct work_struct *work = addr;
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
376 static int work_fixup_activate(void *addr, enum debug_obj_state state)
378 struct work_struct *work = addr;
382 case ODEBUG_STATE_NOTAVAILABLE:
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
396 case ODEBUG_STATE_ACTIVE:
405 * fixup_free is called when:
406 * - an active object is freed
408 static int work_fixup_free(void *addr, enum debug_obj_state state)
410 struct work_struct *work = addr;
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
422 static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
424 .debug_hint = work_debug_hint,
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
430 static inline void debug_work_activate(struct work_struct *work)
432 debug_object_activate(work, &work_debug_descr);
435 static inline void debug_work_deactivate(struct work_struct *work)
437 debug_object_deactivate(work, &work_debug_descr);
440 void __init_work(struct work_struct *work, int onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
445 debug_object_init(work, &work_debug_descr);
447 EXPORT_SYMBOL_GPL(__init_work);
449 void destroy_work_on_stack(struct work_struct *work)
451 debug_object_free(work, &work_debug_descr);
453 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
456 static inline void debug_work_activate(struct work_struct *work) { }
457 static inline void debug_work_deactivate(struct work_struct *work) { }
460 /* Serializes the accesses to the list of workqueues. */
461 static DEFINE_SPINLOCK(workqueue_lock);
462 static LIST_HEAD(workqueues);
463 static bool workqueue_freezing; /* W: have wqs started freezing? */
466 * The almighty global cpu workqueues. nr_running is the only field
467 * which is expected to be used frequently by other cpus via
468 * try_to_wake_up(). Put it in a separate cacheline.
470 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
471 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
474 * Global cpu workqueue and nr_running counter for unbound gcwq. The
475 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476 * workers have WORKER_UNBOUND set.
478 static struct global_cwq unbound_global_cwq;
479 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
483 static int worker_thread(void *__worker);
485 static int worker_pool_pri(struct worker_pool *pool)
487 return pool - pool->gcwq->pools;
490 static struct global_cwq *get_gcwq(unsigned int cpu)
492 if (cpu != WORK_CPU_UNBOUND)
493 return &per_cpu(global_cwq, cpu);
495 return &unbound_global_cwq;
498 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
500 int cpu = pool->gcwq->cpu;
501 int idx = worker_pool_pri(pool);
503 if (cpu != WORK_CPU_UNBOUND)
504 return &per_cpu(pool_nr_running, cpu)[idx];
506 return &unbound_pool_nr_running[idx];
509 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 struct workqueue_struct *wq)
512 if (!(wq->flags & WQ_UNBOUND)) {
513 if (likely(cpu < nr_cpu_ids))
514 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
515 } else if (likely(cpu == WORK_CPU_UNBOUND))
516 return wq->cpu_wq.single;
520 static unsigned int work_color_to_flags(int color)
522 return color << WORK_STRUCT_COLOR_SHIFT;
525 static int get_work_color(struct work_struct *work)
527 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
531 static int work_next_color(int color)
533 return (color + 1) % WORK_NR_COLORS;
537 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
538 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
539 * cleared and the work data contains the cpu number it was last on.
541 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
542 * cwq, cpu or clear work->data. These functions should only be
543 * called while the work is owned - ie. while the PENDING bit is set.
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
550 static inline void set_work_data(struct work_struct *work, unsigned long data,
553 BUG_ON(!work_pending(work));
554 atomic_long_set(&work->data, data | flags | work_static(work));
557 static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
561 set_work_data(work, (unsigned long)cwq,
562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
567 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
570 static void clear_work_data(struct work_struct *work)
572 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
575 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
577 unsigned long data = atomic_long_read(&work->data);
579 if (data & WORK_STRUCT_CWQ)
580 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
585 static struct global_cwq *get_work_gcwq(struct work_struct *work)
587 unsigned long data = atomic_long_read(&work->data);
590 if (data & WORK_STRUCT_CWQ)
591 return ((struct cpu_workqueue_struct *)
592 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
594 cpu = data >> WORK_STRUCT_FLAG_BITS;
595 if (cpu == WORK_CPU_NONE)
598 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
599 return get_gcwq(cpu);
603 * Policy functions. These define the policies on how the global worker
604 * pools are managed. Unless noted otherwise, these functions assume that
605 * they're being called with gcwq->lock held.
608 static bool __need_more_worker(struct worker_pool *pool)
610 return !atomic_read(get_pool_nr_running(pool));
614 * Need to wake up a worker? Called from anything but currently
617 * Note that, because unbound workers never contribute to nr_running, this
618 * function will always return %true for unbound gcwq as long as the
619 * worklist isn't empty.
621 static bool need_more_worker(struct worker_pool *pool)
623 return !list_empty(&pool->worklist) && __need_more_worker(pool);
626 /* Can I start working? Called from busy but !running workers. */
627 static bool may_start_working(struct worker_pool *pool)
629 return pool->nr_idle;
632 /* Do I need to keep working? Called from currently running workers. */
633 static bool keep_working(struct worker_pool *pool)
635 atomic_t *nr_running = get_pool_nr_running(pool);
637 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
640 /* Do we need a new worker? Called from manager. */
641 static bool need_to_create_worker(struct worker_pool *pool)
643 return need_more_worker(pool) && !may_start_working(pool);
646 /* Do I need to be the manager? */
647 static bool need_to_manage_workers(struct worker_pool *pool)
649 return need_to_create_worker(pool) ||
650 (pool->flags & POOL_MANAGE_WORKERS);
653 /* Do we have too many workers and should some go away? */
654 static bool too_many_workers(struct worker_pool *pool)
656 bool managing = pool->flags & POOL_MANAGING_WORKERS;
657 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
658 int nr_busy = pool->nr_workers - nr_idle;
660 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
667 /* Return the first worker. Safe with preemption disabled */
668 static struct worker *first_worker(struct worker_pool *pool)
670 if (unlikely(list_empty(&pool->idle_list)))
673 return list_first_entry(&pool->idle_list, struct worker, entry);
677 * wake_up_worker - wake up an idle worker
678 * @pool: worker pool to wake worker from
680 * Wake up the first idle worker of @pool.
683 * spin_lock_irq(gcwq->lock).
685 static void wake_up_worker(struct worker_pool *pool)
687 struct worker *worker = first_worker(pool);
690 wake_up_process(worker->task);
694 * wq_worker_waking_up - a worker is waking up
695 * @task: task waking up
696 * @cpu: CPU @task is waking up to
698 * This function is called during try_to_wake_up() when a worker is
702 * spin_lock_irq(rq->lock)
704 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
706 struct worker *worker = kthread_data(task);
708 if (!(worker->flags & WORKER_NOT_RUNNING))
709 atomic_inc(get_pool_nr_running(worker->pool));
713 * wq_worker_sleeping - a worker is going to sleep
714 * @task: task going to sleep
715 * @cpu: CPU in question, must be the current CPU number
717 * This function is called during schedule() when a busy worker is
718 * going to sleep. Worker on the same cpu can be woken up by
719 * returning pointer to its task.
722 * spin_lock_irq(rq->lock)
725 * Worker task on @cpu to wake up, %NULL if none.
727 struct task_struct *wq_worker_sleeping(struct task_struct *task,
730 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
731 struct worker_pool *pool = worker->pool;
732 atomic_t *nr_running = get_pool_nr_running(pool);
734 if (worker->flags & WORKER_NOT_RUNNING)
737 /* this can only happen on the local cpu */
738 BUG_ON(cpu != raw_smp_processor_id());
741 * The counterpart of the following dec_and_test, implied mb,
742 * worklist not empty test sequence is in insert_work().
743 * Please read comment there.
745 * NOT_RUNNING is clear. This means that we're bound to and
746 * running on the local cpu w/ rq lock held and preemption
747 * disabled, which in turn means that none else could be
748 * manipulating idle_list, so dereferencing idle_list without gcwq
751 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
752 to_wakeup = first_worker(pool);
753 return to_wakeup ? to_wakeup->task : NULL;
757 * worker_set_flags - set worker flags and adjust nr_running accordingly
759 * @flags: flags to set
760 * @wakeup: wakeup an idle worker if necessary
762 * Set @flags in @worker->flags and adjust nr_running accordingly. If
763 * nr_running becomes zero and @wakeup is %true, an idle worker is
767 * spin_lock_irq(gcwq->lock)
769 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
772 struct worker_pool *pool = worker->pool;
774 WARN_ON_ONCE(worker->task != current);
777 * If transitioning into NOT_RUNNING, adjust nr_running and
778 * wake up an idle worker as necessary if requested by
781 if ((flags & WORKER_NOT_RUNNING) &&
782 !(worker->flags & WORKER_NOT_RUNNING)) {
783 atomic_t *nr_running = get_pool_nr_running(pool);
786 if (atomic_dec_and_test(nr_running) &&
787 !list_empty(&pool->worklist))
788 wake_up_worker(pool);
790 atomic_dec(nr_running);
793 worker->flags |= flags;
797 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
799 * @flags: flags to clear
801 * Clear @flags in @worker->flags and adjust nr_running accordingly.
804 * spin_lock_irq(gcwq->lock)
806 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
808 struct worker_pool *pool = worker->pool;
809 unsigned int oflags = worker->flags;
811 WARN_ON_ONCE(worker->task != current);
813 worker->flags &= ~flags;
816 * If transitioning out of NOT_RUNNING, increment nr_running. Note
817 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
818 * of multiple flags, not a single flag.
820 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
821 if (!(worker->flags & WORKER_NOT_RUNNING))
822 atomic_inc(get_pool_nr_running(pool));
826 * busy_worker_head - return the busy hash head for a work
827 * @gcwq: gcwq of interest
828 * @work: work to be hashed
830 * Return hash head of @gcwq for @work.
833 * spin_lock_irq(gcwq->lock).
836 * Pointer to the hash head.
838 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
839 struct work_struct *work)
841 const int base_shift = ilog2(sizeof(struct work_struct));
842 unsigned long v = (unsigned long)work;
844 /* simple shift and fold hash, do we need something better? */
846 v += v >> BUSY_WORKER_HASH_ORDER;
847 v &= BUSY_WORKER_HASH_MASK;
849 return &gcwq->busy_hash[v];
853 * __find_worker_executing_work - find worker which is executing a work
854 * @gcwq: gcwq of interest
855 * @bwh: hash head as returned by busy_worker_head()
856 * @work: work to find worker for
858 * Find a worker which is executing @work on @gcwq. @bwh should be
859 * the hash head obtained by calling busy_worker_head() with the same
863 * spin_lock_irq(gcwq->lock).
866 * Pointer to worker which is executing @work if found, NULL
869 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
870 struct hlist_head *bwh,
871 struct work_struct *work)
873 struct worker *worker;
874 struct hlist_node *tmp;
876 hlist_for_each_entry(worker, tmp, bwh, hentry)
877 if (worker->current_work == work)
883 * find_worker_executing_work - find worker which is executing a work
884 * @gcwq: gcwq of interest
885 * @work: work to find worker for
887 * Find a worker which is executing @work on @gcwq. This function is
888 * identical to __find_worker_executing_work() except that this
889 * function calculates @bwh itself.
892 * spin_lock_irq(gcwq->lock).
895 * Pointer to worker which is executing @work if found, NULL
898 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
899 struct work_struct *work)
901 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
906 * insert_work - insert a work into gcwq
907 * @cwq: cwq @work belongs to
908 * @work: work to insert
909 * @head: insertion point
910 * @extra_flags: extra WORK_STRUCT_* flags to set
912 * Insert @work which belongs to @cwq into @gcwq after @head.
913 * @extra_flags is or'd to work_struct flags.
916 * spin_lock_irq(gcwq->lock).
918 static void insert_work(struct cpu_workqueue_struct *cwq,
919 struct work_struct *work, struct list_head *head,
920 unsigned int extra_flags)
922 struct worker_pool *pool = cwq->pool;
924 /* we own @work, set data and link */
925 set_work_cwq(work, cwq, extra_flags);
928 * Ensure that we get the right work->data if we see the
929 * result of list_add() below, see try_to_grab_pending().
933 list_add_tail(&work->entry, head);
936 * Ensure either worker_sched_deactivated() sees the above
937 * list_add_tail() or we see zero nr_running to avoid workers
938 * lying around lazily while there are works to be processed.
942 if (__need_more_worker(pool))
943 wake_up_worker(pool);
947 * Test whether @work is being queued from another work executing on the
948 * same workqueue. This is rather expensive and should only be used from
951 static bool is_chained_work(struct workqueue_struct *wq)
956 for_each_gcwq_cpu(cpu) {
957 struct global_cwq *gcwq = get_gcwq(cpu);
958 struct worker *worker;
959 struct hlist_node *pos;
962 spin_lock_irqsave(&gcwq->lock, flags);
963 for_each_busy_worker(worker, i, pos, gcwq) {
964 if (worker->task != current)
966 spin_unlock_irqrestore(&gcwq->lock, flags);
968 * I'm @worker, no locking necessary. See if @work
969 * is headed to the same workqueue.
971 return worker->current_cwq->wq == wq;
973 spin_unlock_irqrestore(&gcwq->lock, flags);
978 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
979 struct work_struct *work)
981 struct global_cwq *gcwq;
982 struct cpu_workqueue_struct *cwq;
983 struct list_head *worklist;
984 unsigned int work_flags;
987 debug_work_activate(work);
989 /* if dying, only works from the same workqueue are allowed */
990 if (unlikely(wq->flags & WQ_DRAINING) &&
991 WARN_ON_ONCE(!is_chained_work(wq)))
994 /* determine gcwq to use */
995 if (!(wq->flags & WQ_UNBOUND)) {
996 struct global_cwq *last_gcwq;
998 if (unlikely(cpu == WORK_CPU_UNBOUND))
999 cpu = raw_smp_processor_id();
1002 * It's multi cpu. If @wq is non-reentrant and @work
1003 * was previously on a different cpu, it might still
1004 * be running there, in which case the work needs to
1005 * be queued on that cpu to guarantee non-reentrance.
1007 gcwq = get_gcwq(cpu);
1008 if (wq->flags & WQ_NON_REENTRANT &&
1009 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1010 struct worker *worker;
1012 spin_lock_irqsave(&last_gcwq->lock, flags);
1014 worker = find_worker_executing_work(last_gcwq, work);
1016 if (worker && worker->current_cwq->wq == wq)
1019 /* meh... not running there, queue here */
1020 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1021 spin_lock_irqsave(&gcwq->lock, flags);
1024 spin_lock_irqsave(&gcwq->lock, flags);
1026 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1027 spin_lock_irqsave(&gcwq->lock, flags);
1030 /* gcwq determined, get cwq and queue */
1031 cwq = get_cwq(gcwq->cpu, wq);
1032 trace_workqueue_queue_work(cpu, cwq, work);
1034 if (WARN_ON(!list_empty(&work->entry))) {
1035 spin_unlock_irqrestore(&gcwq->lock, flags);
1039 cwq->nr_in_flight[cwq->work_color]++;
1040 work_flags = work_color_to_flags(cwq->work_color);
1042 if (likely(cwq->nr_active < cwq->max_active)) {
1043 trace_workqueue_activate_work(work);
1045 worklist = &cwq->pool->worklist;
1047 work_flags |= WORK_STRUCT_DELAYED;
1048 worklist = &cwq->delayed_works;
1051 insert_work(cwq, work, worklist, work_flags);
1053 spin_unlock_irqrestore(&gcwq->lock, flags);
1057 * queue_work - queue work on a workqueue
1058 * @wq: workqueue to use
1059 * @work: work to queue
1061 * Returns 0 if @work was already on a queue, non-zero otherwise.
1063 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064 * it can be processed by another CPU.
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1070 ret = queue_work_on(get_cpu(), wq, work);
1075 EXPORT_SYMBOL_GPL(queue_work);
1078 * queue_work_on - queue work on specific cpu
1079 * @cpu: CPU number to execute work on
1080 * @wq: workqueue to use
1081 * @work: work to queue
1083 * Returns 0 if @work was already on a queue, non-zero otherwise.
1085 * We queue the work to a specific CPU, the caller must ensure it
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1093 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 __queue_work(cpu, wq, work);
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1101 static void delayed_work_timer_fn(unsigned long __data)
1103 struct delayed_work *dwork = (struct delayed_work *)__data;
1104 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1106 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1110 * queue_delayed_work - queue work on a workqueue after delay
1111 * @wq: workqueue to use
1112 * @dwork: delayable work to queue
1113 * @delay: number of jiffies to wait before queueing
1115 * Returns 0 if @work was already on a queue, non-zero otherwise.
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 struct delayed_work *dwork, unsigned long delay)
1121 return queue_work(wq, &dwork->work);
1123 return queue_delayed_work_on(-1, wq, dwork, delay);
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1128 * queue_delayed_work_on - queue work on specific CPU after delay
1129 * @cpu: CPU number to execute work on
1130 * @wq: workqueue to use
1131 * @dwork: work to queue
1132 * @delay: number of jiffies to wait before queueing
1134 * Returns 0 if @work was already on a queue, non-zero otherwise.
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 struct delayed_work *dwork, unsigned long delay)
1140 struct timer_list *timer = &dwork->timer;
1141 struct work_struct *work = &dwork->work;
1143 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1146 BUG_ON(timer_pending(timer));
1147 BUG_ON(!list_empty(&work->entry));
1149 timer_stats_timer_set_start_info(&dwork->timer);
1152 * This stores cwq for the moment, for the timer_fn.
1153 * Note that the work's gcwq is preserved to allow
1154 * reentrance detection for delayed works.
1156 if (!(wq->flags & WQ_UNBOUND)) {
1157 struct global_cwq *gcwq = get_work_gcwq(work);
1159 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1162 lcpu = raw_smp_processor_id();
1164 lcpu = WORK_CPU_UNBOUND;
1166 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1168 timer->expires = jiffies + delay;
1169 timer->data = (unsigned long)dwork;
1170 timer->function = delayed_work_timer_fn;
1172 if (unlikely(cpu >= 0))
1173 add_timer_on(timer, cpu);
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1183 * worker_enter_idle - enter idle state
1184 * @worker: worker which is entering idle state
1186 * @worker is entering idle state. Update stats and idle timer if
1190 * spin_lock_irq(gcwq->lock).
1192 static void worker_enter_idle(struct worker *worker)
1194 struct worker_pool *pool = worker->pool;
1195 struct global_cwq *gcwq = pool->gcwq;
1197 BUG_ON(worker->flags & WORKER_IDLE);
1198 BUG_ON(!list_empty(&worker->entry) &&
1199 (worker->hentry.next || worker->hentry.pprev));
1201 /* can't use worker_set_flags(), also called from start_worker() */
1202 worker->flags |= WORKER_IDLE;
1204 worker->last_active = jiffies;
1206 /* idle_list is LIFO */
1207 list_add(&worker->entry, &pool->idle_list);
1209 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1210 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1213 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1214 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1215 * nr_running, the warning may trigger spuriously. Check iff
1216 * unbind is not in progress.
1218 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1219 pool->nr_workers == pool->nr_idle &&
1220 atomic_read(get_pool_nr_running(pool)));
1224 * worker_leave_idle - leave idle state
1225 * @worker: worker which is leaving idle state
1227 * @worker is leaving idle state. Update stats.
1230 * spin_lock_irq(gcwq->lock).
1232 static void worker_leave_idle(struct worker *worker)
1234 struct worker_pool *pool = worker->pool;
1236 BUG_ON(!(worker->flags & WORKER_IDLE));
1237 worker_clr_flags(worker, WORKER_IDLE);
1239 list_del_init(&worker->entry);
1243 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1246 * Works which are scheduled while the cpu is online must at least be
1247 * scheduled to a worker which is bound to the cpu so that if they are
1248 * flushed from cpu callbacks while cpu is going down, they are
1249 * guaranteed to execute on the cpu.
1251 * This function is to be used by rogue workers and rescuers to bind
1252 * themselves to the target cpu and may race with cpu going down or
1253 * coming online. kthread_bind() can't be used because it may put the
1254 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1255 * verbatim as it's best effort and blocking and gcwq may be
1256 * [dis]associated in the meantime.
1258 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1259 * binding against %GCWQ_DISASSOCIATED which is set during
1260 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1261 * enters idle state or fetches works without dropping lock, it can
1262 * guarantee the scheduling requirement described in the first paragraph.
1265 * Might sleep. Called without any lock but returns with gcwq->lock
1269 * %true if the associated gcwq is online (@worker is successfully
1270 * bound), %false if offline.
1272 static bool worker_maybe_bind_and_lock(struct worker *worker)
1273 __acquires(&gcwq->lock)
1275 struct global_cwq *gcwq = worker->pool->gcwq;
1276 struct task_struct *task = worker->task;
1280 * The following call may fail, succeed or succeed
1281 * without actually migrating the task to the cpu if
1282 * it races with cpu hotunplug operation. Verify
1283 * against GCWQ_DISASSOCIATED.
1285 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1286 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1288 spin_lock_irq(&gcwq->lock);
1289 if (gcwq->flags & GCWQ_DISASSOCIATED)
1291 if (task_cpu(task) == gcwq->cpu &&
1292 cpumask_equal(¤t->cpus_allowed,
1293 get_cpu_mask(gcwq->cpu)))
1295 spin_unlock_irq(&gcwq->lock);
1298 * We've raced with CPU hot[un]plug. Give it a breather
1299 * and retry migration. cond_resched() is required here;
1300 * otherwise, we might deadlock against cpu_stop trying to
1301 * bring down the CPU on non-preemptive kernel.
1308 struct idle_rebind {
1309 int cnt; /* # workers to be rebound */
1310 struct completion done; /* all workers rebound */
1314 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1315 * happen synchronously for idle workers. worker_thread() will test
1316 * %WORKER_REBIND before leaving idle and call this function.
1318 static void idle_worker_rebind(struct worker *worker)
1320 struct global_cwq *gcwq = worker->pool->gcwq;
1322 /* CPU must be online at this point */
1323 WARN_ON(!worker_maybe_bind_and_lock(worker));
1324 if (!--worker->idle_rebind->cnt)
1325 complete(&worker->idle_rebind->done);
1326 spin_unlock_irq(&worker->pool->gcwq->lock);
1328 /* we did our part, wait for rebind_workers() to finish up */
1329 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1332 * rebind_workers() shouldn't finish until all workers passed the
1333 * above WORKER_REBIND wait. Tell it when done.
1335 spin_lock_irq(&worker->pool->gcwq->lock);
1336 if (!--worker->idle_rebind->cnt)
1337 complete(&worker->idle_rebind->done);
1338 spin_unlock_irq(&worker->pool->gcwq->lock);
1342 * Function for @worker->rebind.work used to rebind unbound busy workers to
1343 * the associated cpu which is coming back online. This is scheduled by
1344 * cpu up but can race with other cpu hotplug operations and may be
1345 * executed twice without intervening cpu down.
1347 static void busy_worker_rebind_fn(struct work_struct *work)
1349 struct worker *worker = container_of(work, struct worker, rebind_work);
1350 struct global_cwq *gcwq = worker->pool->gcwq;
1352 if (worker_maybe_bind_and_lock(worker))
1353 worker_clr_flags(worker, WORKER_REBIND);
1355 spin_unlock_irq(&gcwq->lock);
1359 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1360 * @gcwq: gcwq of interest
1362 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1363 * is different for idle and busy ones.
1365 * The idle ones should be rebound synchronously and idle rebinding should
1366 * be complete before any worker starts executing work items with
1367 * concurrency management enabled; otherwise, scheduler may oops trying to
1368 * wake up non-local idle worker from wq_worker_sleeping().
1370 * This is achieved by repeatedly requesting rebinding until all idle
1371 * workers are known to have been rebound under @gcwq->lock and holding all
1372 * idle workers from becoming busy until idle rebinding is complete.
1374 * Once idle workers are rebound, busy workers can be rebound as they
1375 * finish executing their current work items. Queueing the rebind work at
1376 * the head of their scheduled lists is enough. Note that nr_running will
1377 * be properbly bumped as busy workers rebind.
1379 * On return, all workers are guaranteed to either be bound or have rebind
1380 * work item scheduled.
1382 static void rebind_workers(struct global_cwq *gcwq)
1383 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1385 struct idle_rebind idle_rebind;
1386 struct worker_pool *pool;
1387 struct worker *worker;
1388 struct hlist_node *pos;
1391 lockdep_assert_held(&gcwq->lock);
1393 for_each_worker_pool(pool, gcwq)
1394 lockdep_assert_held(&pool->manager_mutex);
1397 * Rebind idle workers. Interlocked both ways. We wait for
1398 * workers to rebind via @idle_rebind.done. Workers will wait for
1399 * us to finish up by watching %WORKER_REBIND.
1401 init_completion(&idle_rebind.done);
1403 idle_rebind.cnt = 1;
1404 INIT_COMPLETION(idle_rebind.done);
1406 /* set REBIND and kick idle ones, we'll wait for these later */
1407 for_each_worker_pool(pool, gcwq) {
1408 list_for_each_entry(worker, &pool->idle_list, entry) {
1409 unsigned long worker_flags = worker->flags;
1411 if (worker->flags & WORKER_REBIND)
1414 /* morph UNBOUND to REBIND atomically */
1415 worker_flags &= ~WORKER_UNBOUND;
1416 worker_flags |= WORKER_REBIND;
1417 ACCESS_ONCE(worker->flags) = worker_flags;
1420 worker->idle_rebind = &idle_rebind;
1422 /* worker_thread() will call idle_worker_rebind() */
1423 wake_up_process(worker->task);
1427 if (--idle_rebind.cnt) {
1428 spin_unlock_irq(&gcwq->lock);
1429 wait_for_completion(&idle_rebind.done);
1430 spin_lock_irq(&gcwq->lock);
1431 /* busy ones might have become idle while waiting, retry */
1435 /* all idle workers are rebound, rebind busy workers */
1436 for_each_busy_worker(worker, i, pos, gcwq) {
1437 struct work_struct *rebind_work = &worker->rebind_work;
1438 unsigned long worker_flags = worker->flags;
1440 /* morph UNBOUND to REBIND atomically */
1441 worker_flags &= ~WORKER_UNBOUND;
1442 worker_flags |= WORKER_REBIND;
1443 ACCESS_ONCE(worker->flags) = worker_flags;
1445 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1446 work_data_bits(rebind_work)))
1449 /* wq doesn't matter, use the default one */
1450 debug_work_activate(rebind_work);
1451 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1452 worker->scheduled.next,
1453 work_color_to_flags(WORK_NO_COLOR));
1457 * All idle workers are rebound and waiting for %WORKER_REBIND to
1458 * be cleared inside idle_worker_rebind(). Clear and release.
1459 * Clearing %WORKER_REBIND from this foreign context is safe
1460 * because these workers are still guaranteed to be idle.
1462 * We need to make sure all idle workers passed WORKER_REBIND wait
1463 * in idle_worker_rebind() before returning; otherwise, workers can
1464 * get stuck at the wait if hotplug cycle repeats.
1466 idle_rebind.cnt = 1;
1467 INIT_COMPLETION(idle_rebind.done);
1469 for_each_worker_pool(pool, gcwq) {
1470 list_for_each_entry(worker, &pool->idle_list, entry) {
1471 worker->flags &= ~WORKER_REBIND;
1476 wake_up_all(&gcwq->rebind_hold);
1478 if (--idle_rebind.cnt) {
1479 spin_unlock_irq(&gcwq->lock);
1480 wait_for_completion(&idle_rebind.done);
1481 spin_lock_irq(&gcwq->lock);
1485 static struct worker *alloc_worker(void)
1487 struct worker *worker;
1489 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1491 INIT_LIST_HEAD(&worker->entry);
1492 INIT_LIST_HEAD(&worker->scheduled);
1493 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1494 /* on creation a worker is in !idle && prep state */
1495 worker->flags = WORKER_PREP;
1501 * create_worker - create a new workqueue worker
1502 * @pool: pool the new worker will belong to
1504 * Create a new worker which is bound to @pool. The returned worker
1505 * can be started by calling start_worker() or destroyed using
1509 * Might sleep. Does GFP_KERNEL allocations.
1512 * Pointer to the newly created worker.
1514 static struct worker *create_worker(struct worker_pool *pool)
1516 struct global_cwq *gcwq = pool->gcwq;
1517 const char *pri = worker_pool_pri(pool) ? "H" : "";
1518 struct worker *worker = NULL;
1521 spin_lock_irq(&gcwq->lock);
1522 while (ida_get_new(&pool->worker_ida, &id)) {
1523 spin_unlock_irq(&gcwq->lock);
1524 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1526 spin_lock_irq(&gcwq->lock);
1528 spin_unlock_irq(&gcwq->lock);
1530 worker = alloc_worker();
1534 worker->pool = pool;
1537 if (gcwq->cpu != WORK_CPU_UNBOUND)
1538 worker->task = kthread_create_on_node(worker_thread,
1539 worker, cpu_to_node(gcwq->cpu),
1540 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1542 worker->task = kthread_create(worker_thread, worker,
1543 "kworker/u:%d%s", id, pri);
1544 if (IS_ERR(worker->task))
1547 if (worker_pool_pri(pool))
1548 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1551 * Determine CPU binding of the new worker depending on
1552 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1553 * flag remains stable across this function. See the comments
1554 * above the flag definition for details.
1556 * As an unbound worker may later become a regular one if CPU comes
1557 * online, make sure every worker has %PF_THREAD_BOUND set.
1559 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1560 kthread_bind(worker->task, gcwq->cpu);
1562 worker->task->flags |= PF_THREAD_BOUND;
1563 worker->flags |= WORKER_UNBOUND;
1569 spin_lock_irq(&gcwq->lock);
1570 ida_remove(&pool->worker_ida, id);
1571 spin_unlock_irq(&gcwq->lock);
1578 * start_worker - start a newly created worker
1579 * @worker: worker to start
1581 * Make the gcwq aware of @worker and start it.
1584 * spin_lock_irq(gcwq->lock).
1586 static void start_worker(struct worker *worker)
1588 worker->flags |= WORKER_STARTED;
1589 worker->pool->nr_workers++;
1590 worker_enter_idle(worker);
1591 wake_up_process(worker->task);
1595 * destroy_worker - destroy a workqueue worker
1596 * @worker: worker to be destroyed
1598 * Destroy @worker and adjust @gcwq stats accordingly.
1601 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1603 static void destroy_worker(struct worker *worker)
1605 struct worker_pool *pool = worker->pool;
1606 struct global_cwq *gcwq = pool->gcwq;
1607 int id = worker->id;
1609 /* sanity check frenzy */
1610 BUG_ON(worker->current_work);
1611 BUG_ON(!list_empty(&worker->scheduled));
1613 if (worker->flags & WORKER_STARTED)
1615 if (worker->flags & WORKER_IDLE)
1618 list_del_init(&worker->entry);
1619 worker->flags |= WORKER_DIE;
1621 spin_unlock_irq(&gcwq->lock);
1623 kthread_stop(worker->task);
1626 spin_lock_irq(&gcwq->lock);
1627 ida_remove(&pool->worker_ida, id);
1630 static void idle_worker_timeout(unsigned long __pool)
1632 struct worker_pool *pool = (void *)__pool;
1633 struct global_cwq *gcwq = pool->gcwq;
1635 spin_lock_irq(&gcwq->lock);
1637 if (too_many_workers(pool)) {
1638 struct worker *worker;
1639 unsigned long expires;
1641 /* idle_list is kept in LIFO order, check the last one */
1642 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1643 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1645 if (time_before(jiffies, expires))
1646 mod_timer(&pool->idle_timer, expires);
1648 /* it's been idle for too long, wake up manager */
1649 pool->flags |= POOL_MANAGE_WORKERS;
1650 wake_up_worker(pool);
1654 spin_unlock_irq(&gcwq->lock);
1657 static bool send_mayday(struct work_struct *work)
1659 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1660 struct workqueue_struct *wq = cwq->wq;
1663 if (!(wq->flags & WQ_RESCUER))
1666 /* mayday mayday mayday */
1667 cpu = cwq->pool->gcwq->cpu;
1668 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1669 if (cpu == WORK_CPU_UNBOUND)
1671 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1672 wake_up_process(wq->rescuer->task);
1676 static void gcwq_mayday_timeout(unsigned long __pool)
1678 struct worker_pool *pool = (void *)__pool;
1679 struct global_cwq *gcwq = pool->gcwq;
1680 struct work_struct *work;
1682 spin_lock_irq(&gcwq->lock);
1684 if (need_to_create_worker(pool)) {
1686 * We've been trying to create a new worker but
1687 * haven't been successful. We might be hitting an
1688 * allocation deadlock. Send distress signals to
1691 list_for_each_entry(work, &pool->worklist, entry)
1695 spin_unlock_irq(&gcwq->lock);
1697 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1701 * maybe_create_worker - create a new worker if necessary
1702 * @pool: pool to create a new worker for
1704 * Create a new worker for @pool if necessary. @pool is guaranteed to
1705 * have at least one idle worker on return from this function. If
1706 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1707 * sent to all rescuers with works scheduled on @pool to resolve
1708 * possible allocation deadlock.
1710 * On return, need_to_create_worker() is guaranteed to be false and
1711 * may_start_working() true.
1714 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1715 * multiple times. Does GFP_KERNEL allocations. Called only from
1719 * false if no action was taken and gcwq->lock stayed locked, true
1722 static bool maybe_create_worker(struct worker_pool *pool)
1723 __releases(&gcwq->lock)
1724 __acquires(&gcwq->lock)
1726 struct global_cwq *gcwq = pool->gcwq;
1728 if (!need_to_create_worker(pool))
1731 spin_unlock_irq(&gcwq->lock);
1733 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1734 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1737 struct worker *worker;
1739 worker = create_worker(pool);
1741 del_timer_sync(&pool->mayday_timer);
1742 spin_lock_irq(&gcwq->lock);
1743 start_worker(worker);
1744 BUG_ON(need_to_create_worker(pool));
1748 if (!need_to_create_worker(pool))
1751 __set_current_state(TASK_INTERRUPTIBLE);
1752 schedule_timeout(CREATE_COOLDOWN);
1754 if (!need_to_create_worker(pool))
1758 del_timer_sync(&pool->mayday_timer);
1759 spin_lock_irq(&gcwq->lock);
1760 if (need_to_create_worker(pool))
1766 * maybe_destroy_worker - destroy workers which have been idle for a while
1767 * @pool: pool to destroy workers for
1769 * Destroy @pool workers which have been idle for longer than
1770 * IDLE_WORKER_TIMEOUT.
1773 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1774 * multiple times. Called only from manager.
1777 * false if no action was taken and gcwq->lock stayed locked, true
1780 static bool maybe_destroy_workers(struct worker_pool *pool)
1784 while (too_many_workers(pool)) {
1785 struct worker *worker;
1786 unsigned long expires;
1788 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1789 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1791 if (time_before(jiffies, expires)) {
1792 mod_timer(&pool->idle_timer, expires);
1796 destroy_worker(worker);
1804 * manage_workers - manage worker pool
1807 * Assume the manager role and manage gcwq worker pool @worker belongs
1808 * to. At any given time, there can be only zero or one manager per
1809 * gcwq. The exclusion is handled automatically by this function.
1811 * The caller can safely start processing works on false return. On
1812 * true return, it's guaranteed that need_to_create_worker() is false
1813 * and may_start_working() is true.
1816 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1817 * multiple times. Does GFP_KERNEL allocations.
1820 * false if no action was taken and gcwq->lock stayed locked, true if
1821 * some action was taken.
1823 static bool manage_workers(struct worker *worker)
1825 struct worker_pool *pool = worker->pool;
1828 if (pool->flags & POOL_MANAGING_WORKERS)
1831 pool->flags |= POOL_MANAGING_WORKERS;
1834 * To simplify both worker management and CPU hotplug, hold off
1835 * management while hotplug is in progress. CPU hotplug path can't
1836 * grab %POOL_MANAGING_WORKERS to achieve this because that can
1837 * lead to idle worker depletion (all become busy thinking someone
1838 * else is managing) which in turn can result in deadlock under
1839 * extreme circumstances. Use @pool->manager_mutex to synchronize
1840 * manager against CPU hotplug.
1842 * manager_mutex would always be free unless CPU hotplug is in
1843 * progress. trylock first without dropping @gcwq->lock.
1845 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
1846 spin_unlock_irq(&pool->gcwq->lock);
1847 mutex_lock(&pool->manager_mutex);
1849 * CPU hotplug could have happened while we were waiting
1850 * for manager_mutex. Hotplug itself can't handle us
1851 * because manager isn't either on idle or busy list, and
1852 * @gcwq's state and ours could have deviated.
1854 * As hotplug is now excluded via manager_mutex, we can
1855 * simply try to bind. It will succeed or fail depending
1856 * on @gcwq's current state. Try it and adjust
1857 * %WORKER_UNBOUND accordingly.
1859 if (worker_maybe_bind_and_lock(worker))
1860 worker->flags &= ~WORKER_UNBOUND;
1862 worker->flags |= WORKER_UNBOUND;
1867 pool->flags &= ~POOL_MANAGE_WORKERS;
1870 * Destroy and then create so that may_start_working() is true
1873 ret |= maybe_destroy_workers(pool);
1874 ret |= maybe_create_worker(pool);
1876 pool->flags &= ~POOL_MANAGING_WORKERS;
1877 mutex_unlock(&pool->manager_mutex);
1882 * move_linked_works - move linked works to a list
1883 * @work: start of series of works to be scheduled
1884 * @head: target list to append @work to
1885 * @nextp: out paramter for nested worklist walking
1887 * Schedule linked works starting from @work to @head. Work series to
1888 * be scheduled starts at @work and includes any consecutive work with
1889 * WORK_STRUCT_LINKED set in its predecessor.
1891 * If @nextp is not NULL, it's updated to point to the next work of
1892 * the last scheduled work. This allows move_linked_works() to be
1893 * nested inside outer list_for_each_entry_safe().
1896 * spin_lock_irq(gcwq->lock).
1898 static void move_linked_works(struct work_struct *work, struct list_head *head,
1899 struct work_struct **nextp)
1901 struct work_struct *n;
1904 * Linked worklist will always end before the end of the list,
1905 * use NULL for list head.
1907 list_for_each_entry_safe_from(work, n, NULL, entry) {
1908 list_move_tail(&work->entry, head);
1909 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1914 * If we're already inside safe list traversal and have moved
1915 * multiple works to the scheduled queue, the next position
1916 * needs to be updated.
1922 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1924 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1925 struct work_struct, entry);
1927 trace_workqueue_activate_work(work);
1928 move_linked_works(work, &cwq->pool->worklist, NULL);
1929 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1934 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1935 * @cwq: cwq of interest
1936 * @color: color of work which left the queue
1937 * @delayed: for a delayed work
1939 * A work either has completed or is removed from pending queue,
1940 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1943 * spin_lock_irq(gcwq->lock).
1945 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1948 /* ignore uncolored works */
1949 if (color == WORK_NO_COLOR)
1952 cwq->nr_in_flight[color]--;
1956 if (!list_empty(&cwq->delayed_works)) {
1957 /* one down, submit a delayed one */
1958 if (cwq->nr_active < cwq->max_active)
1959 cwq_activate_first_delayed(cwq);
1963 /* is flush in progress and are we at the flushing tip? */
1964 if (likely(cwq->flush_color != color))
1967 /* are there still in-flight works? */
1968 if (cwq->nr_in_flight[color])
1971 /* this cwq is done, clear flush_color */
1972 cwq->flush_color = -1;
1975 * If this was the last cwq, wake up the first flusher. It
1976 * will handle the rest.
1978 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1979 complete(&cwq->wq->first_flusher->done);
1983 * process_one_work - process single work
1985 * @work: work to process
1987 * Process @work. This function contains all the logics necessary to
1988 * process a single work including synchronization against and
1989 * interaction with other workers on the same cpu, queueing and
1990 * flushing. As long as context requirement is met, any worker can
1991 * call this function to process a work.
1994 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1996 static void process_one_work(struct worker *worker, struct work_struct *work)
1997 __releases(&gcwq->lock)
1998 __acquires(&gcwq->lock)
2000 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2001 struct worker_pool *pool = worker->pool;
2002 struct global_cwq *gcwq = pool->gcwq;
2003 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2004 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2005 work_func_t f = work->func;
2007 struct worker *collision;
2008 #ifdef CONFIG_LOCKDEP
2010 * It is permissible to free the struct work_struct from
2011 * inside the function that is called from it, this we need to
2012 * take into account for lockdep too. To avoid bogus "held
2013 * lock freed" warnings as well as problems when looking into
2014 * work->lockdep_map, make a copy and use that here.
2016 struct lockdep_map lockdep_map;
2018 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2021 * Ensure we're on the correct CPU. DISASSOCIATED test is
2022 * necessary to avoid spurious warnings from rescuers servicing the
2023 * unbound or a disassociated gcwq.
2025 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2026 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2027 raw_smp_processor_id() != gcwq->cpu);
2030 * A single work shouldn't be executed concurrently by
2031 * multiple workers on a single cpu. Check whether anyone is
2032 * already processing the work. If so, defer the work to the
2033 * currently executing one.
2035 collision = __find_worker_executing_work(gcwq, bwh, work);
2036 if (unlikely(collision)) {
2037 move_linked_works(work, &collision->scheduled, NULL);
2041 /* claim and process */
2042 debug_work_deactivate(work);
2043 hlist_add_head(&worker->hentry, bwh);
2044 worker->current_work = work;
2045 worker->current_cwq = cwq;
2046 work_color = get_work_color(work);
2048 /* record the current cpu number in the work data and dequeue */
2049 set_work_cpu(work, gcwq->cpu);
2050 list_del_init(&work->entry);
2053 * CPU intensive works don't participate in concurrency
2054 * management. They're the scheduler's responsibility.
2056 if (unlikely(cpu_intensive))
2057 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2060 * Unbound gcwq isn't concurrency managed and work items should be
2061 * executed ASAP. Wake up another worker if necessary.
2063 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2064 wake_up_worker(pool);
2066 spin_unlock_irq(&gcwq->lock);
2068 work_clear_pending(work);
2069 lock_map_acquire_read(&cwq->wq->lockdep_map);
2070 lock_map_acquire(&lockdep_map);
2071 trace_workqueue_execute_start(work);
2074 * While we must be careful to not use "work" after this, the trace
2075 * point will only record its address.
2077 trace_workqueue_execute_end(work);
2078 lock_map_release(&lockdep_map);
2079 lock_map_release(&cwq->wq->lockdep_map);
2081 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2082 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2084 current->comm, preempt_count(), task_pid_nr(current));
2085 printk(KERN_ERR " last function: ");
2086 print_symbol("%s\n", (unsigned long)f);
2087 debug_show_held_locks(current);
2091 spin_lock_irq(&gcwq->lock);
2093 /* clear cpu intensive status */
2094 if (unlikely(cpu_intensive))
2095 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2097 /* we're done with it, release */
2098 hlist_del_init(&worker->hentry);
2099 worker->current_work = NULL;
2100 worker->current_cwq = NULL;
2101 cwq_dec_nr_in_flight(cwq, work_color, false);
2105 * process_scheduled_works - process scheduled works
2108 * Process all scheduled works. Please note that the scheduled list
2109 * may change while processing a work, so this function repeatedly
2110 * fetches a work from the top and executes it.
2113 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2116 static void process_scheduled_works(struct worker *worker)
2118 while (!list_empty(&worker->scheduled)) {
2119 struct work_struct *work = list_first_entry(&worker->scheduled,
2120 struct work_struct, entry);
2121 process_one_work(worker, work);
2126 * worker_thread - the worker thread function
2129 * The gcwq worker thread function. There's a single dynamic pool of
2130 * these per each cpu. These workers process all works regardless of
2131 * their specific target workqueue. The only exception is works which
2132 * belong to workqueues with a rescuer which will be explained in
2135 static int worker_thread(void *__worker)
2137 struct worker *worker = __worker;
2138 struct worker_pool *pool = worker->pool;
2139 struct global_cwq *gcwq = pool->gcwq;
2141 /* tell the scheduler that this is a workqueue worker */
2142 worker->task->flags |= PF_WQ_WORKER;
2144 spin_lock_irq(&gcwq->lock);
2147 * DIE can be set only while idle and REBIND set while busy has
2148 * @worker->rebind_work scheduled. Checking here is enough.
2150 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2151 spin_unlock_irq(&gcwq->lock);
2153 if (worker->flags & WORKER_DIE) {
2154 worker->task->flags &= ~PF_WQ_WORKER;
2158 idle_worker_rebind(worker);
2162 worker_leave_idle(worker);
2164 /* no more worker necessary? */
2165 if (!need_more_worker(pool))
2168 /* do we need to manage? */
2169 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2173 * ->scheduled list can only be filled while a worker is
2174 * preparing to process a work or actually processing it.
2175 * Make sure nobody diddled with it while I was sleeping.
2177 BUG_ON(!list_empty(&worker->scheduled));
2180 * When control reaches this point, we're guaranteed to have
2181 * at least one idle worker or that someone else has already
2182 * assumed the manager role.
2184 worker_clr_flags(worker, WORKER_PREP);
2187 struct work_struct *work =
2188 list_first_entry(&pool->worklist,
2189 struct work_struct, entry);
2191 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2192 /* optimization path, not strictly necessary */
2193 process_one_work(worker, work);
2194 if (unlikely(!list_empty(&worker->scheduled)))
2195 process_scheduled_works(worker);
2197 move_linked_works(work, &worker->scheduled, NULL);
2198 process_scheduled_works(worker);
2200 } while (keep_working(pool));
2202 worker_set_flags(worker, WORKER_PREP, false);
2204 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2208 * gcwq->lock is held and there's no work to process and no
2209 * need to manage, sleep. Workers are woken up only while
2210 * holding gcwq->lock or from local cpu, so setting the
2211 * current state before releasing gcwq->lock is enough to
2212 * prevent losing any event.
2214 worker_enter_idle(worker);
2215 __set_current_state(TASK_INTERRUPTIBLE);
2216 spin_unlock_irq(&gcwq->lock);
2222 * rescuer_thread - the rescuer thread function
2223 * @__wq: the associated workqueue
2225 * Workqueue rescuer thread function. There's one rescuer for each
2226 * workqueue which has WQ_RESCUER set.
2228 * Regular work processing on a gcwq may block trying to create a new
2229 * worker which uses GFP_KERNEL allocation which has slight chance of
2230 * developing into deadlock if some works currently on the same queue
2231 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2232 * the problem rescuer solves.
2234 * When such condition is possible, the gcwq summons rescuers of all
2235 * workqueues which have works queued on the gcwq and let them process
2236 * those works so that forward progress can be guaranteed.
2238 * This should happen rarely.
2240 static int rescuer_thread(void *__wq)
2242 struct workqueue_struct *wq = __wq;
2243 struct worker *rescuer = wq->rescuer;
2244 struct list_head *scheduled = &rescuer->scheduled;
2245 bool is_unbound = wq->flags & WQ_UNBOUND;
2248 set_user_nice(current, RESCUER_NICE_LEVEL);
2250 set_current_state(TASK_INTERRUPTIBLE);
2252 if (kthread_should_stop())
2256 * See whether any cpu is asking for help. Unbounded
2257 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2259 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2260 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2261 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2262 struct worker_pool *pool = cwq->pool;
2263 struct global_cwq *gcwq = pool->gcwq;
2264 struct work_struct *work, *n;
2266 __set_current_state(TASK_RUNNING);
2267 mayday_clear_cpu(cpu, wq->mayday_mask);
2269 /* migrate to the target cpu if possible */
2270 rescuer->pool = pool;
2271 worker_maybe_bind_and_lock(rescuer);
2274 * Slurp in all works issued via this workqueue and
2277 BUG_ON(!list_empty(&rescuer->scheduled));
2278 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2279 if (get_work_cwq(work) == cwq)
2280 move_linked_works(work, scheduled, &n);
2282 process_scheduled_works(rescuer);
2285 * Leave this gcwq. If keep_working() is %true, notify a
2286 * regular worker; otherwise, we end up with 0 concurrency
2287 * and stalling the execution.
2289 if (keep_working(pool))
2290 wake_up_worker(pool);
2292 spin_unlock_irq(&gcwq->lock);
2300 struct work_struct work;
2301 struct completion done;
2304 static void wq_barrier_func(struct work_struct *work)
2306 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2307 complete(&barr->done);
2311 * insert_wq_barrier - insert a barrier work
2312 * @cwq: cwq to insert barrier into
2313 * @barr: wq_barrier to insert
2314 * @target: target work to attach @barr to
2315 * @worker: worker currently executing @target, NULL if @target is not executing
2317 * @barr is linked to @target such that @barr is completed only after
2318 * @target finishes execution. Please note that the ordering
2319 * guarantee is observed only with respect to @target and on the local
2322 * Currently, a queued barrier can't be canceled. This is because
2323 * try_to_grab_pending() can't determine whether the work to be
2324 * grabbed is at the head of the queue and thus can't clear LINKED
2325 * flag of the previous work while there must be a valid next work
2326 * after a work with LINKED flag set.
2328 * Note that when @worker is non-NULL, @target may be modified
2329 * underneath us, so we can't reliably determine cwq from @target.
2332 * spin_lock_irq(gcwq->lock).
2334 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2335 struct wq_barrier *barr,
2336 struct work_struct *target, struct worker *worker)
2338 struct list_head *head;
2339 unsigned int linked = 0;
2342 * debugobject calls are safe here even with gcwq->lock locked
2343 * as we know for sure that this will not trigger any of the
2344 * checks and call back into the fixup functions where we
2347 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2348 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2349 init_completion(&barr->done);
2352 * If @target is currently being executed, schedule the
2353 * barrier to the worker; otherwise, put it after @target.
2356 head = worker->scheduled.next;
2358 unsigned long *bits = work_data_bits(target);
2360 head = target->entry.next;
2361 /* there can already be other linked works, inherit and set */
2362 linked = *bits & WORK_STRUCT_LINKED;
2363 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2366 debug_work_activate(&barr->work);
2367 insert_work(cwq, &barr->work, head,
2368 work_color_to_flags(WORK_NO_COLOR) | linked);
2372 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2373 * @wq: workqueue being flushed
2374 * @flush_color: new flush color, < 0 for no-op
2375 * @work_color: new work color, < 0 for no-op
2377 * Prepare cwqs for workqueue flushing.
2379 * If @flush_color is non-negative, flush_color on all cwqs should be
2380 * -1. If no cwq has in-flight commands at the specified color, all
2381 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2382 * has in flight commands, its cwq->flush_color is set to
2383 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2384 * wakeup logic is armed and %true is returned.
2386 * The caller should have initialized @wq->first_flusher prior to
2387 * calling this function with non-negative @flush_color. If
2388 * @flush_color is negative, no flush color update is done and %false
2391 * If @work_color is non-negative, all cwqs should have the same
2392 * work_color which is previous to @work_color and all will be
2393 * advanced to @work_color.
2396 * mutex_lock(wq->flush_mutex).
2399 * %true if @flush_color >= 0 and there's something to flush. %false
2402 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2403 int flush_color, int work_color)
2408 if (flush_color >= 0) {
2409 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2410 atomic_set(&wq->nr_cwqs_to_flush, 1);
2413 for_each_cwq_cpu(cpu, wq) {
2414 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2415 struct global_cwq *gcwq = cwq->pool->gcwq;
2417 spin_lock_irq(&gcwq->lock);
2419 if (flush_color >= 0) {
2420 BUG_ON(cwq->flush_color != -1);
2422 if (cwq->nr_in_flight[flush_color]) {
2423 cwq->flush_color = flush_color;
2424 atomic_inc(&wq->nr_cwqs_to_flush);
2429 if (work_color >= 0) {
2430 BUG_ON(work_color != work_next_color(cwq->work_color));
2431 cwq->work_color = work_color;
2434 spin_unlock_irq(&gcwq->lock);
2437 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2438 complete(&wq->first_flusher->done);
2444 * flush_workqueue - ensure that any scheduled work has run to completion.
2445 * @wq: workqueue to flush
2447 * Forces execution of the workqueue and blocks until its completion.
2448 * This is typically used in driver shutdown handlers.
2450 * We sleep until all works which were queued on entry have been handled,
2451 * but we are not livelocked by new incoming ones.
2453 void flush_workqueue(struct workqueue_struct *wq)
2455 struct wq_flusher this_flusher = {
2456 .list = LIST_HEAD_INIT(this_flusher.list),
2458 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2462 lock_map_acquire(&wq->lockdep_map);
2463 lock_map_release(&wq->lockdep_map);
2465 mutex_lock(&wq->flush_mutex);
2468 * Start-to-wait phase
2470 next_color = work_next_color(wq->work_color);
2472 if (next_color != wq->flush_color) {
2474 * Color space is not full. The current work_color
2475 * becomes our flush_color and work_color is advanced
2478 BUG_ON(!list_empty(&wq->flusher_overflow));
2479 this_flusher.flush_color = wq->work_color;
2480 wq->work_color = next_color;
2482 if (!wq->first_flusher) {
2483 /* no flush in progress, become the first flusher */
2484 BUG_ON(wq->flush_color != this_flusher.flush_color);
2486 wq->first_flusher = &this_flusher;
2488 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2490 /* nothing to flush, done */
2491 wq->flush_color = next_color;
2492 wq->first_flusher = NULL;
2497 BUG_ON(wq->flush_color == this_flusher.flush_color);
2498 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2499 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2503 * Oops, color space is full, wait on overflow queue.
2504 * The next flush completion will assign us
2505 * flush_color and transfer to flusher_queue.
2507 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2510 mutex_unlock(&wq->flush_mutex);
2512 wait_for_completion(&this_flusher.done);
2515 * Wake-up-and-cascade phase
2517 * First flushers are responsible for cascading flushes and
2518 * handling overflow. Non-first flushers can simply return.
2520 if (wq->first_flusher != &this_flusher)
2523 mutex_lock(&wq->flush_mutex);
2525 /* we might have raced, check again with mutex held */
2526 if (wq->first_flusher != &this_flusher)
2529 wq->first_flusher = NULL;
2531 BUG_ON(!list_empty(&this_flusher.list));
2532 BUG_ON(wq->flush_color != this_flusher.flush_color);
2535 struct wq_flusher *next, *tmp;
2537 /* complete all the flushers sharing the current flush color */
2538 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2539 if (next->flush_color != wq->flush_color)
2541 list_del_init(&next->list);
2542 complete(&next->done);
2545 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2546 wq->flush_color != work_next_color(wq->work_color));
2548 /* this flush_color is finished, advance by one */
2549 wq->flush_color = work_next_color(wq->flush_color);
2551 /* one color has been freed, handle overflow queue */
2552 if (!list_empty(&wq->flusher_overflow)) {
2554 * Assign the same color to all overflowed
2555 * flushers, advance work_color and append to
2556 * flusher_queue. This is the start-to-wait
2557 * phase for these overflowed flushers.
2559 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2560 tmp->flush_color = wq->work_color;
2562 wq->work_color = work_next_color(wq->work_color);
2564 list_splice_tail_init(&wq->flusher_overflow,
2565 &wq->flusher_queue);
2566 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2569 if (list_empty(&wq->flusher_queue)) {
2570 BUG_ON(wq->flush_color != wq->work_color);
2575 * Need to flush more colors. Make the next flusher
2576 * the new first flusher and arm cwqs.
2578 BUG_ON(wq->flush_color == wq->work_color);
2579 BUG_ON(wq->flush_color != next->flush_color);
2581 list_del_init(&next->list);
2582 wq->first_flusher = next;
2584 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2588 * Meh... this color is already done, clear first
2589 * flusher and repeat cascading.
2591 wq->first_flusher = NULL;
2595 mutex_unlock(&wq->flush_mutex);
2597 EXPORT_SYMBOL_GPL(flush_workqueue);
2600 * drain_workqueue - drain a workqueue
2601 * @wq: workqueue to drain
2603 * Wait until the workqueue becomes empty. While draining is in progress,
2604 * only chain queueing is allowed. IOW, only currently pending or running
2605 * work items on @wq can queue further work items on it. @wq is flushed
2606 * repeatedly until it becomes empty. The number of flushing is detemined
2607 * by the depth of chaining and should be relatively short. Whine if it
2610 void drain_workqueue(struct workqueue_struct *wq)
2612 unsigned int flush_cnt = 0;
2616 * __queue_work() needs to test whether there are drainers, is much
2617 * hotter than drain_workqueue() and already looks at @wq->flags.
2618 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2620 spin_lock(&workqueue_lock);
2621 if (!wq->nr_drainers++)
2622 wq->flags |= WQ_DRAINING;
2623 spin_unlock(&workqueue_lock);
2625 flush_workqueue(wq);
2627 for_each_cwq_cpu(cpu, wq) {
2628 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2631 spin_lock_irq(&cwq->pool->gcwq->lock);
2632 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2633 spin_unlock_irq(&cwq->pool->gcwq->lock);
2638 if (++flush_cnt == 10 ||
2639 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2640 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2641 wq->name, flush_cnt);
2645 spin_lock(&workqueue_lock);
2646 if (!--wq->nr_drainers)
2647 wq->flags &= ~WQ_DRAINING;
2648 spin_unlock(&workqueue_lock);
2650 EXPORT_SYMBOL_GPL(drain_workqueue);
2652 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2653 bool wait_executing)
2655 struct worker *worker = NULL;
2656 struct global_cwq *gcwq;
2657 struct cpu_workqueue_struct *cwq;
2660 gcwq = get_work_gcwq(work);
2664 spin_lock_irq(&gcwq->lock);
2665 if (!list_empty(&work->entry)) {
2667 * See the comment near try_to_grab_pending()->smp_rmb().
2668 * If it was re-queued to a different gcwq under us, we
2669 * are not going to wait.
2672 cwq = get_work_cwq(work);
2673 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2675 } else if (wait_executing) {
2676 worker = find_worker_executing_work(gcwq, work);
2679 cwq = worker->current_cwq;
2683 insert_wq_barrier(cwq, barr, work, worker);
2684 spin_unlock_irq(&gcwq->lock);
2687 * If @max_active is 1 or rescuer is in use, flushing another work
2688 * item on the same workqueue may lead to deadlock. Make sure the
2689 * flusher is not running on the same workqueue by verifying write
2692 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2693 lock_map_acquire(&cwq->wq->lockdep_map);
2695 lock_map_acquire_read(&cwq->wq->lockdep_map);
2696 lock_map_release(&cwq->wq->lockdep_map);
2700 spin_unlock_irq(&gcwq->lock);
2705 * flush_work - wait for a work to finish executing the last queueing instance
2706 * @work: the work to flush
2708 * Wait until @work has finished execution. This function considers
2709 * only the last queueing instance of @work. If @work has been
2710 * enqueued across different CPUs on a non-reentrant workqueue or on
2711 * multiple workqueues, @work might still be executing on return on
2712 * some of the CPUs from earlier queueing.
2714 * If @work was queued only on a non-reentrant, ordered or unbound
2715 * workqueue, @work is guaranteed to be idle on return if it hasn't
2716 * been requeued since flush started.
2719 * %true if flush_work() waited for the work to finish execution,
2720 * %false if it was already idle.
2722 bool flush_work(struct work_struct *work)
2724 struct wq_barrier barr;
2726 lock_map_acquire(&work->lockdep_map);
2727 lock_map_release(&work->lockdep_map);
2729 if (start_flush_work(work, &barr, true)) {
2730 wait_for_completion(&barr.done);
2731 destroy_work_on_stack(&barr.work);
2736 EXPORT_SYMBOL_GPL(flush_work);
2738 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2740 struct wq_barrier barr;
2741 struct worker *worker;
2743 spin_lock_irq(&gcwq->lock);
2745 worker = find_worker_executing_work(gcwq, work);
2746 if (unlikely(worker))
2747 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2749 spin_unlock_irq(&gcwq->lock);
2751 if (unlikely(worker)) {
2752 wait_for_completion(&barr.done);
2753 destroy_work_on_stack(&barr.work);
2759 static bool wait_on_work(struct work_struct *work)
2766 lock_map_acquire(&work->lockdep_map);
2767 lock_map_release(&work->lockdep_map);
2769 for_each_gcwq_cpu(cpu)
2770 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2775 * flush_work_sync - wait until a work has finished execution
2776 * @work: the work to flush
2778 * Wait until @work has finished execution. On return, it's
2779 * guaranteed that all queueing instances of @work which happened
2780 * before this function is called are finished. In other words, if
2781 * @work hasn't been requeued since this function was called, @work is
2782 * guaranteed to be idle on return.
2785 * %true if flush_work_sync() waited for the work to finish execution,
2786 * %false if it was already idle.
2788 bool flush_work_sync(struct work_struct *work)
2790 struct wq_barrier barr;
2791 bool pending, waited;
2793 /* we'll wait for executions separately, queue barr only if pending */
2794 pending = start_flush_work(work, &barr, false);
2796 /* wait for executions to finish */
2797 waited = wait_on_work(work);
2799 /* wait for the pending one */
2801 wait_for_completion(&barr.done);
2802 destroy_work_on_stack(&barr.work);
2805 return pending || waited;
2807 EXPORT_SYMBOL_GPL(flush_work_sync);
2810 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2811 * so this work can't be re-armed in any way.
2813 static int try_to_grab_pending(struct work_struct *work)
2815 struct global_cwq *gcwq;
2818 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2822 * The queueing is in progress, or it is already queued. Try to
2823 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2825 gcwq = get_work_gcwq(work);
2829 spin_lock_irq(&gcwq->lock);
2830 if (!list_empty(&work->entry)) {
2832 * This work is queued, but perhaps we locked the wrong gcwq.
2833 * In that case we must see the new value after rmb(), see
2834 * insert_work()->wmb().
2837 if (gcwq == get_work_gcwq(work)) {
2838 debug_work_deactivate(work);
2839 list_del_init(&work->entry);
2840 cwq_dec_nr_in_flight(get_work_cwq(work),
2841 get_work_color(work),
2842 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2846 spin_unlock_irq(&gcwq->lock);
2851 static bool __cancel_work_timer(struct work_struct *work,
2852 struct timer_list* timer)
2857 ret = (timer && likely(del_timer(timer)));
2859 ret = try_to_grab_pending(work);
2861 } while (unlikely(ret < 0));
2863 clear_work_data(work);
2868 * cancel_work_sync - cancel a work and wait for it to finish
2869 * @work: the work to cancel
2871 * Cancel @work and wait for its execution to finish. This function
2872 * can be used even if the work re-queues itself or migrates to
2873 * another workqueue. On return from this function, @work is
2874 * guaranteed to be not pending or executing on any CPU.
2876 * cancel_work_sync(&delayed_work->work) must not be used for
2877 * delayed_work's. Use cancel_delayed_work_sync() instead.
2879 * The caller must ensure that the workqueue on which @work was last
2880 * queued can't be destroyed before this function returns.
2883 * %true if @work was pending, %false otherwise.
2885 bool cancel_work_sync(struct work_struct *work)
2887 return __cancel_work_timer(work, NULL);
2889 EXPORT_SYMBOL_GPL(cancel_work_sync);
2892 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2893 * @dwork: the delayed work to flush
2895 * Delayed timer is cancelled and the pending work is queued for
2896 * immediate execution. Like flush_work(), this function only
2897 * considers the last queueing instance of @dwork.
2900 * %true if flush_work() waited for the work to finish execution,
2901 * %false if it was already idle.
2903 bool flush_delayed_work(struct delayed_work *dwork)
2905 if (del_timer_sync(&dwork->timer))
2906 __queue_work(raw_smp_processor_id(),
2907 get_work_cwq(&dwork->work)->wq, &dwork->work);
2908 return flush_work(&dwork->work);
2910 EXPORT_SYMBOL(flush_delayed_work);
2913 * flush_delayed_work_sync - wait for a dwork to finish
2914 * @dwork: the delayed work to flush
2916 * Delayed timer is cancelled and the pending work is queued for
2917 * execution immediately. Other than timer handling, its behavior
2918 * is identical to flush_work_sync().
2921 * %true if flush_work_sync() waited for the work to finish execution,
2922 * %false if it was already idle.
2924 bool flush_delayed_work_sync(struct delayed_work *dwork)
2926 if (del_timer_sync(&dwork->timer))
2927 __queue_work(raw_smp_processor_id(),
2928 get_work_cwq(&dwork->work)->wq, &dwork->work);
2929 return flush_work_sync(&dwork->work);
2931 EXPORT_SYMBOL(flush_delayed_work_sync);
2934 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2935 * @dwork: the delayed work cancel
2937 * This is cancel_work_sync() for delayed works.
2940 * %true if @dwork was pending, %false otherwise.
2942 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2944 return __cancel_work_timer(&dwork->work, &dwork->timer);
2946 EXPORT_SYMBOL(cancel_delayed_work_sync);
2949 * schedule_work - put work task in global workqueue
2950 * @work: job to be done
2952 * Returns zero if @work was already on the kernel-global workqueue and
2953 * non-zero otherwise.
2955 * This puts a job in the kernel-global workqueue if it was not already
2956 * queued and leaves it in the same position on the kernel-global
2957 * workqueue otherwise.
2959 int schedule_work(struct work_struct *work)
2961 return queue_work(system_wq, work);
2963 EXPORT_SYMBOL(schedule_work);
2966 * schedule_work_on - put work task on a specific cpu
2967 * @cpu: cpu to put the work task on
2968 * @work: job to be done
2970 * This puts a job on a specific cpu
2972 int schedule_work_on(int cpu, struct work_struct *work)
2974 return queue_work_on(cpu, system_wq, work);
2976 EXPORT_SYMBOL(schedule_work_on);
2979 * schedule_delayed_work - put work task in global workqueue after delay
2980 * @dwork: job to be done
2981 * @delay: number of jiffies to wait or 0 for immediate execution
2983 * After waiting for a given time this puts a job in the kernel-global
2986 int schedule_delayed_work(struct delayed_work *dwork,
2987 unsigned long delay)
2989 return queue_delayed_work(system_wq, dwork, delay);
2991 EXPORT_SYMBOL(schedule_delayed_work);
2994 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2996 * @dwork: job to be done
2997 * @delay: number of jiffies to wait
2999 * After waiting for a given time this puts a job in the kernel-global
3000 * workqueue on the specified CPU.
3002 int schedule_delayed_work_on(int cpu,
3003 struct delayed_work *dwork, unsigned long delay)
3005 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3007 EXPORT_SYMBOL(schedule_delayed_work_on);
3010 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3011 * @func: the function to call
3013 * schedule_on_each_cpu() executes @func on each online CPU using the
3014 * system workqueue and blocks until all CPUs have completed.
3015 * schedule_on_each_cpu() is very slow.
3018 * 0 on success, -errno on failure.
3020 int schedule_on_each_cpu(work_func_t func)
3023 struct work_struct __percpu *works;
3025 works = alloc_percpu(struct work_struct);
3031 for_each_online_cpu(cpu) {
3032 struct work_struct *work = per_cpu_ptr(works, cpu);
3034 INIT_WORK(work, func);
3035 schedule_work_on(cpu, work);
3038 for_each_online_cpu(cpu)
3039 flush_work(per_cpu_ptr(works, cpu));
3047 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3049 * Forces execution of the kernel-global workqueue and blocks until its
3052 * Think twice before calling this function! It's very easy to get into
3053 * trouble if you don't take great care. Either of the following situations
3054 * will lead to deadlock:
3056 * One of the work items currently on the workqueue needs to acquire
3057 * a lock held by your code or its caller.
3059 * Your code is running in the context of a work routine.
3061 * They will be detected by lockdep when they occur, but the first might not
3062 * occur very often. It depends on what work items are on the workqueue and
3063 * what locks they need, which you have no control over.
3065 * In most situations flushing the entire workqueue is overkill; you merely
3066 * need to know that a particular work item isn't queued and isn't running.
3067 * In such cases you should use cancel_delayed_work_sync() or
3068 * cancel_work_sync() instead.
3070 void flush_scheduled_work(void)
3072 flush_workqueue(system_wq);
3074 EXPORT_SYMBOL(flush_scheduled_work);
3077 * execute_in_process_context - reliably execute the routine with user context
3078 * @fn: the function to execute
3079 * @ew: guaranteed storage for the execute work structure (must
3080 * be available when the work executes)
3082 * Executes the function immediately if process context is available,
3083 * otherwise schedules the function for delayed execution.
3085 * Returns: 0 - function was executed
3086 * 1 - function was scheduled for execution
3088 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3090 if (!in_interrupt()) {
3095 INIT_WORK(&ew->work, fn);
3096 schedule_work(&ew->work);
3100 EXPORT_SYMBOL_GPL(execute_in_process_context);
3102 int keventd_up(void)
3104 return system_wq != NULL;
3107 static int alloc_cwqs(struct workqueue_struct *wq)
3110 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3111 * Make sure that the alignment isn't lower than that of
3112 * unsigned long long.
3114 const size_t size = sizeof(struct cpu_workqueue_struct);
3115 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3116 __alignof__(unsigned long long));
3118 if (!(wq->flags & WQ_UNBOUND))
3119 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3124 * Allocate enough room to align cwq and put an extra
3125 * pointer at the end pointing back to the originally
3126 * allocated pointer which will be used for free.
3128 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3130 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3131 *(void **)(wq->cpu_wq.single + 1) = ptr;
3135 /* just in case, make sure it's actually aligned */
3136 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3137 return wq->cpu_wq.v ? 0 : -ENOMEM;
3140 static void free_cwqs(struct workqueue_struct *wq)
3142 if (!(wq->flags & WQ_UNBOUND))
3143 free_percpu(wq->cpu_wq.pcpu);
3144 else if (wq->cpu_wq.single) {
3145 /* the pointer to free is stored right after the cwq */
3146 kfree(*(void **)(wq->cpu_wq.single + 1));
3150 static int wq_clamp_max_active(int max_active, unsigned int flags,
3153 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3155 if (max_active < 1 || max_active > lim)
3156 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3157 "is out of range, clamping between %d and %d\n",
3158 max_active, name, 1, lim);
3160 return clamp_val(max_active, 1, lim);
3163 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3166 struct lock_class_key *key,
3167 const char *lock_name, ...)
3169 va_list args, args1;
3170 struct workqueue_struct *wq;
3174 /* determine namelen, allocate wq and format name */
3175 va_start(args, lock_name);
3176 va_copy(args1, args);
3177 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3179 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3183 vsnprintf(wq->name, namelen, fmt, args1);
3188 * Workqueues which may be used during memory reclaim should
3189 * have a rescuer to guarantee forward progress.
3191 if (flags & WQ_MEM_RECLAIM)
3192 flags |= WQ_RESCUER;
3194 max_active = max_active ?: WQ_DFL_ACTIVE;
3195 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3199 wq->saved_max_active = max_active;
3200 mutex_init(&wq->flush_mutex);
3201 atomic_set(&wq->nr_cwqs_to_flush, 0);
3202 INIT_LIST_HEAD(&wq->flusher_queue);
3203 INIT_LIST_HEAD(&wq->flusher_overflow);
3205 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3206 INIT_LIST_HEAD(&wq->list);
3208 if (alloc_cwqs(wq) < 0)
3211 for_each_cwq_cpu(cpu, wq) {
3212 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3213 struct global_cwq *gcwq = get_gcwq(cpu);
3214 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3216 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3217 cwq->pool = &gcwq->pools[pool_idx];
3219 cwq->flush_color = -1;
3220 cwq->max_active = max_active;
3221 INIT_LIST_HEAD(&cwq->delayed_works);
3224 if (flags & WQ_RESCUER) {
3225 struct worker *rescuer;
3227 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3230 wq->rescuer = rescuer = alloc_worker();
3234 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3236 if (IS_ERR(rescuer->task))
3239 rescuer->task->flags |= PF_THREAD_BOUND;
3240 wake_up_process(rescuer->task);
3244 * workqueue_lock protects global freeze state and workqueues
3245 * list. Grab it, set max_active accordingly and add the new
3246 * workqueue to workqueues list.
3248 spin_lock(&workqueue_lock);
3250 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3251 for_each_cwq_cpu(cpu, wq)
3252 get_cwq(cpu, wq)->max_active = 0;
3254 list_add(&wq->list, &workqueues);
3256 spin_unlock(&workqueue_lock);
3262 free_mayday_mask(wq->mayday_mask);
3268 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3271 * destroy_workqueue - safely terminate a workqueue
3272 * @wq: target workqueue
3274 * Safely destroy a workqueue. All work currently pending will be done first.
3276 void destroy_workqueue(struct workqueue_struct *wq)
3280 /* drain it before proceeding with destruction */
3281 drain_workqueue(wq);
3284 * wq list is used to freeze wq, remove from list after
3285 * flushing is complete in case freeze races us.
3287 spin_lock(&workqueue_lock);
3288 list_del(&wq->list);
3289 spin_unlock(&workqueue_lock);
3292 for_each_cwq_cpu(cpu, wq) {
3293 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3296 for (i = 0; i < WORK_NR_COLORS; i++)
3297 BUG_ON(cwq->nr_in_flight[i]);
3298 BUG_ON(cwq->nr_active);
3299 BUG_ON(!list_empty(&cwq->delayed_works));
3302 if (wq->flags & WQ_RESCUER) {
3303 kthread_stop(wq->rescuer->task);
3304 free_mayday_mask(wq->mayday_mask);
3311 EXPORT_SYMBOL_GPL(destroy_workqueue);
3314 * workqueue_set_max_active - adjust max_active of a workqueue
3315 * @wq: target workqueue
3316 * @max_active: new max_active value.
3318 * Set max_active of @wq to @max_active.
3321 * Don't call from IRQ context.
3323 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3327 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3329 spin_lock(&workqueue_lock);
3331 wq->saved_max_active = max_active;
3333 for_each_cwq_cpu(cpu, wq) {
3334 struct global_cwq *gcwq = get_gcwq(cpu);
3336 spin_lock_irq(&gcwq->lock);
3338 if (!(wq->flags & WQ_FREEZABLE) ||
3339 !(gcwq->flags & GCWQ_FREEZING))
3340 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3342 spin_unlock_irq(&gcwq->lock);
3345 spin_unlock(&workqueue_lock);
3347 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3350 * workqueue_congested - test whether a workqueue is congested
3351 * @cpu: CPU in question
3352 * @wq: target workqueue
3354 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3355 * no synchronization around this function and the test result is
3356 * unreliable and only useful as advisory hints or for debugging.
3359 * %true if congested, %false otherwise.
3361 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3363 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3365 return !list_empty(&cwq->delayed_works);
3367 EXPORT_SYMBOL_GPL(workqueue_congested);
3370 * work_cpu - return the last known associated cpu for @work
3371 * @work: the work of interest
3374 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3376 unsigned int work_cpu(struct work_struct *work)
3378 struct global_cwq *gcwq = get_work_gcwq(work);
3380 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3382 EXPORT_SYMBOL_GPL(work_cpu);
3385 * work_busy - test whether a work is currently pending or running
3386 * @work: the work to be tested
3388 * Test whether @work is currently pending or running. There is no
3389 * synchronization around this function and the test result is
3390 * unreliable and only useful as advisory hints or for debugging.
3391 * Especially for reentrant wqs, the pending state might hide the
3395 * OR'd bitmask of WORK_BUSY_* bits.
3397 unsigned int work_busy(struct work_struct *work)
3399 struct global_cwq *gcwq = get_work_gcwq(work);
3400 unsigned long flags;
3401 unsigned int ret = 0;
3406 spin_lock_irqsave(&gcwq->lock, flags);
3408 if (work_pending(work))
3409 ret |= WORK_BUSY_PENDING;
3410 if (find_worker_executing_work(gcwq, work))
3411 ret |= WORK_BUSY_RUNNING;
3413 spin_unlock_irqrestore(&gcwq->lock, flags);
3417 EXPORT_SYMBOL_GPL(work_busy);
3422 * There are two challenges in supporting CPU hotplug. Firstly, there
3423 * are a lot of assumptions on strong associations among work, cwq and
3424 * gcwq which make migrating pending and scheduled works very
3425 * difficult to implement without impacting hot paths. Secondly,
3426 * gcwqs serve mix of short, long and very long running works making
3427 * blocked draining impractical.
3429 * This is solved by allowing a gcwq to be disassociated from the CPU
3430 * running as an unbound one and allowing it to be reattached later if the
3431 * cpu comes back online.
3434 /* claim manager positions of all pools */
3435 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3437 struct worker_pool *pool;
3439 for_each_worker_pool(pool, gcwq)
3440 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3441 spin_lock_irq(&gcwq->lock);
3444 /* release manager positions */
3445 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3447 struct worker_pool *pool;
3449 spin_unlock_irq(&gcwq->lock);
3450 for_each_worker_pool(pool, gcwq)
3451 mutex_unlock(&pool->manager_mutex);
3454 static void gcwq_unbind_fn(struct work_struct *work)
3456 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3457 struct worker_pool *pool;
3458 struct worker *worker;
3459 struct hlist_node *pos;
3462 BUG_ON(gcwq->cpu != smp_processor_id());
3464 gcwq_claim_management_and_lock(gcwq);
3467 * We've claimed all manager positions. Make all workers unbound
3468 * and set DISASSOCIATED. Before this, all workers except for the
3469 * ones which are still executing works from before the last CPU
3470 * down must be on the cpu. After this, they may become diasporas.
3472 for_each_worker_pool(pool, gcwq)
3473 list_for_each_entry(worker, &pool->idle_list, entry)
3474 worker->flags |= WORKER_UNBOUND;
3476 for_each_busy_worker(worker, i, pos, gcwq)
3477 worker->flags |= WORKER_UNBOUND;
3479 gcwq->flags |= GCWQ_DISASSOCIATED;
3481 gcwq_release_management_and_unlock(gcwq);
3484 * Call schedule() so that we cross rq->lock and thus can guarantee
3485 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3486 * as scheduler callbacks may be invoked from other cpus.
3491 * Sched callbacks are disabled now. Zap nr_running. After this,
3492 * nr_running stays zero and need_more_worker() and keep_working()
3493 * are always true as long as the worklist is not empty. @gcwq now
3494 * behaves as unbound (in terms of concurrency management) gcwq
3495 * which is served by workers tied to the CPU.
3497 * On return from this function, the current worker would trigger
3498 * unbound chain execution of pending work items if other workers
3501 for_each_worker_pool(pool, gcwq)
3502 atomic_set(get_pool_nr_running(pool), 0);
3506 * Workqueues should be brought up before normal priority CPU notifiers.
3507 * This will be registered high priority CPU notifier.
3509 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3510 unsigned long action,
3513 unsigned int cpu = (unsigned long)hcpu;
3514 struct global_cwq *gcwq = get_gcwq(cpu);
3515 struct worker_pool *pool;
3517 switch (action & ~CPU_TASKS_FROZEN) {
3518 case CPU_UP_PREPARE:
3519 for_each_worker_pool(pool, gcwq) {
3520 struct worker *worker;
3522 if (pool->nr_workers)
3525 worker = create_worker(pool);
3529 spin_lock_irq(&gcwq->lock);
3530 start_worker(worker);
3531 spin_unlock_irq(&gcwq->lock);
3535 case CPU_DOWN_FAILED:
3537 gcwq_claim_management_and_lock(gcwq);
3538 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3539 rebind_workers(gcwq);
3540 gcwq_release_management_and_unlock(gcwq);
3547 * Workqueues should be brought down after normal priority CPU notifiers.
3548 * This will be registered as low priority CPU notifier.
3550 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3551 unsigned long action,
3554 unsigned int cpu = (unsigned long)hcpu;
3555 struct work_struct unbind_work;
3557 switch (action & ~CPU_TASKS_FROZEN) {
3558 case CPU_DOWN_PREPARE:
3559 /* unbinding should happen on the local CPU */
3560 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3561 schedule_work_on(cpu, &unbind_work);
3562 flush_work(&unbind_work);
3570 struct work_for_cpu {
3571 struct completion completion;
3577 static int do_work_for_cpu(void *_wfc)
3579 struct work_for_cpu *wfc = _wfc;
3580 wfc->ret = wfc->fn(wfc->arg);
3581 complete(&wfc->completion);
3586 * work_on_cpu - run a function in user context on a particular cpu
3587 * @cpu: the cpu to run on
3588 * @fn: the function to run
3589 * @arg: the function arg
3591 * This will return the value @fn returns.
3592 * It is up to the caller to ensure that the cpu doesn't go offline.
3593 * The caller must not hold any locks which would prevent @fn from completing.
3595 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3597 struct task_struct *sub_thread;
3598 struct work_for_cpu wfc = {
3599 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3604 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3605 if (IS_ERR(sub_thread))
3606 return PTR_ERR(sub_thread);
3607 kthread_bind(sub_thread, cpu);
3608 wake_up_process(sub_thread);
3609 wait_for_completion(&wfc.completion);
3612 EXPORT_SYMBOL_GPL(work_on_cpu);
3613 #endif /* CONFIG_SMP */
3615 #ifdef CONFIG_FREEZER
3618 * freeze_workqueues_begin - begin freezing workqueues
3620 * Start freezing workqueues. After this function returns, all freezable
3621 * workqueues will queue new works to their frozen_works list instead of
3625 * Grabs and releases workqueue_lock and gcwq->lock's.
3627 void freeze_workqueues_begin(void)
3631 spin_lock(&workqueue_lock);
3633 BUG_ON(workqueue_freezing);
3634 workqueue_freezing = true;
3636 for_each_gcwq_cpu(cpu) {
3637 struct global_cwq *gcwq = get_gcwq(cpu);
3638 struct workqueue_struct *wq;
3640 spin_lock_irq(&gcwq->lock);
3642 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3643 gcwq->flags |= GCWQ_FREEZING;
3645 list_for_each_entry(wq, &workqueues, list) {
3646 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3648 if (cwq && wq->flags & WQ_FREEZABLE)
3649 cwq->max_active = 0;
3652 spin_unlock_irq(&gcwq->lock);
3655 spin_unlock(&workqueue_lock);
3659 * freeze_workqueues_busy - are freezable workqueues still busy?
3661 * Check whether freezing is complete. This function must be called
3662 * between freeze_workqueues_begin() and thaw_workqueues().
3665 * Grabs and releases workqueue_lock.
3668 * %true if some freezable workqueues are still busy. %false if freezing
3671 bool freeze_workqueues_busy(void)
3676 spin_lock(&workqueue_lock);
3678 BUG_ON(!workqueue_freezing);
3680 for_each_gcwq_cpu(cpu) {
3681 struct workqueue_struct *wq;
3683 * nr_active is monotonically decreasing. It's safe
3684 * to peek without lock.
3686 list_for_each_entry(wq, &workqueues, list) {
3687 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3689 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3692 BUG_ON(cwq->nr_active < 0);
3693 if (cwq->nr_active) {
3700 spin_unlock(&workqueue_lock);
3705 * thaw_workqueues - thaw workqueues
3707 * Thaw workqueues. Normal queueing is restored and all collected
3708 * frozen works are transferred to their respective gcwq worklists.
3711 * Grabs and releases workqueue_lock and gcwq->lock's.
3713 void thaw_workqueues(void)
3717 spin_lock(&workqueue_lock);
3719 if (!workqueue_freezing)
3722 for_each_gcwq_cpu(cpu) {
3723 struct global_cwq *gcwq = get_gcwq(cpu);
3724 struct worker_pool *pool;
3725 struct workqueue_struct *wq;
3727 spin_lock_irq(&gcwq->lock);
3729 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3730 gcwq->flags &= ~GCWQ_FREEZING;
3732 list_for_each_entry(wq, &workqueues, list) {
3733 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3735 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3738 /* restore max_active and repopulate worklist */
3739 cwq->max_active = wq->saved_max_active;
3741 while (!list_empty(&cwq->delayed_works) &&
3742 cwq->nr_active < cwq->max_active)
3743 cwq_activate_first_delayed(cwq);
3746 for_each_worker_pool(pool, gcwq)
3747 wake_up_worker(pool);
3749 spin_unlock_irq(&gcwq->lock);
3752 workqueue_freezing = false;
3754 spin_unlock(&workqueue_lock);
3756 #endif /* CONFIG_FREEZER */
3758 static int __init init_workqueues(void)
3763 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3764 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3766 /* initialize gcwqs */
3767 for_each_gcwq_cpu(cpu) {
3768 struct global_cwq *gcwq = get_gcwq(cpu);
3769 struct worker_pool *pool;
3771 spin_lock_init(&gcwq->lock);
3773 gcwq->flags |= GCWQ_DISASSOCIATED;
3775 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3776 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3778 for_each_worker_pool(pool, gcwq) {
3780 INIT_LIST_HEAD(&pool->worklist);
3781 INIT_LIST_HEAD(&pool->idle_list);
3783 init_timer_deferrable(&pool->idle_timer);
3784 pool->idle_timer.function = idle_worker_timeout;
3785 pool->idle_timer.data = (unsigned long)pool;
3787 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3788 (unsigned long)pool);
3790 mutex_init(&pool->manager_mutex);
3791 ida_init(&pool->worker_ida);
3794 init_waitqueue_head(&gcwq->rebind_hold);
3797 /* create the initial worker */
3798 for_each_online_gcwq_cpu(cpu) {
3799 struct global_cwq *gcwq = get_gcwq(cpu);
3800 struct worker_pool *pool;
3802 if (cpu != WORK_CPU_UNBOUND)
3803 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3805 for_each_worker_pool(pool, gcwq) {
3806 struct worker *worker;
3808 worker = create_worker(pool);
3810 spin_lock_irq(&gcwq->lock);
3811 start_worker(worker);
3812 spin_unlock_irq(&gcwq->lock);
3816 system_wq = alloc_workqueue("events", 0, 0);
3817 system_long_wq = alloc_workqueue("events_long", 0, 0);
3818 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3819 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3820 WQ_UNBOUND_MAX_ACTIVE);
3821 system_freezable_wq = alloc_workqueue("events_freezable",
3823 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3824 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3825 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3826 !system_unbound_wq || !system_freezable_wq ||
3827 !system_nrt_freezable_wq);
3830 early_initcall(init_workqueues);