]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/compaction.c
mm, compaction: reduce spurious pcplist drains
[karo-tx-linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28         count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33         count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52         struct page *page, *next;
53         unsigned long high_pfn = 0;
54
55         list_for_each_entry_safe(page, next, freelist, lru) {
56                 unsigned long pfn = page_to_pfn(page);
57                 list_del(&page->lru);
58                 __free_page(page);
59                 if (pfn > high_pfn)
60                         high_pfn = pfn;
61         }
62
63         return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68         struct page *page;
69
70         list_for_each_entry(page, list, lru) {
71                 arch_alloc_page(page, 0);
72                 kernel_map_pages(page, 1, 1);
73                 kasan_alloc_pages(page, 0);
74         }
75 }
76
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81
82 #ifdef CONFIG_COMPACTION
83
84 /* Do not skip compaction more than 64 times */
85 #define COMPACT_MAX_DEFER_SHIFT 6
86
87 /*
88  * Compaction is deferred when compaction fails to result in a page
89  * allocation success. 1 << compact_defer_limit compactions are skipped up
90  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
91  */
92 void defer_compaction(struct zone *zone, int order)
93 {
94         zone->compact_considered = 0;
95         zone->compact_defer_shift++;
96
97         if (order < zone->compact_order_failed)
98                 zone->compact_order_failed = order;
99
100         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
101                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
102
103         trace_mm_compaction_defer_compaction(zone, order);
104 }
105
106 /* Returns true if compaction should be skipped this time */
107 bool compaction_deferred(struct zone *zone, int order)
108 {
109         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
110
111         if (order < zone->compact_order_failed)
112                 return false;
113
114         /* Avoid possible overflow */
115         if (++zone->compact_considered > defer_limit)
116                 zone->compact_considered = defer_limit;
117
118         if (zone->compact_considered >= defer_limit)
119                 return false;
120
121         trace_mm_compaction_deferred(zone, order);
122
123         return true;
124 }
125
126 /*
127  * Update defer tracking counters after successful compaction of given order,
128  * which means an allocation either succeeded (alloc_success == true) or is
129  * expected to succeed.
130  */
131 void compaction_defer_reset(struct zone *zone, int order,
132                 bool alloc_success)
133 {
134         if (alloc_success) {
135                 zone->compact_considered = 0;
136                 zone->compact_defer_shift = 0;
137         }
138         if (order >= zone->compact_order_failed)
139                 zone->compact_order_failed = order + 1;
140
141         trace_mm_compaction_defer_reset(zone, order);
142 }
143
144 /* Returns true if restarting compaction after many failures */
145 bool compaction_restarting(struct zone *zone, int order)
146 {
147         if (order < zone->compact_order_failed)
148                 return false;
149
150         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
151                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
152 }
153
154 /* Returns true if the pageblock should be scanned for pages to isolate. */
155 static inline bool isolation_suitable(struct compact_control *cc,
156                                         struct page *page)
157 {
158         if (cc->ignore_skip_hint)
159                 return true;
160
161         return !get_pageblock_skip(page);
162 }
163
164 static void reset_cached_positions(struct zone *zone)
165 {
166         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
167         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168         zone->compact_cached_free_pfn =
169                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 }
171
172 /*
173  * This function is called to clear all cached information on pageblocks that
174  * should be skipped for page isolation when the migrate and free page scanner
175  * meet.
176  */
177 static void __reset_isolation_suitable(struct zone *zone)
178 {
179         unsigned long start_pfn = zone->zone_start_pfn;
180         unsigned long end_pfn = zone_end_pfn(zone);
181         unsigned long pfn;
182
183         zone->compact_blockskip_flush = false;
184
185         /* Walk the zone and mark every pageblock as suitable for isolation */
186         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
187                 struct page *page;
188
189                 cond_resched();
190
191                 if (!pfn_valid(pfn))
192                         continue;
193
194                 page = pfn_to_page(pfn);
195                 if (zone != page_zone(page))
196                         continue;
197
198                 clear_pageblock_skip(page);
199         }
200
201         reset_cached_positions(zone);
202 }
203
204 void reset_isolation_suitable(pg_data_t *pgdat)
205 {
206         int zoneid;
207
208         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
209                 struct zone *zone = &pgdat->node_zones[zoneid];
210                 if (!populated_zone(zone))
211                         continue;
212
213                 /* Only flush if a full compaction finished recently */
214                 if (zone->compact_blockskip_flush)
215                         __reset_isolation_suitable(zone);
216         }
217 }
218
219 /*
220  * If no pages were isolated then mark this pageblock to be skipped in the
221  * future. The information is later cleared by __reset_isolation_suitable().
222  */
223 static void update_pageblock_skip(struct compact_control *cc,
224                         struct page *page, unsigned long nr_isolated,
225                         bool migrate_scanner)
226 {
227         struct zone *zone = cc->zone;
228         unsigned long pfn;
229
230         if (cc->ignore_skip_hint)
231                 return;
232
233         if (!page)
234                 return;
235
236         if (nr_isolated)
237                 return;
238
239         set_pageblock_skip(page);
240
241         pfn = page_to_pfn(page);
242
243         /* Update where async and sync compaction should restart */
244         if (migrate_scanner) {
245                 if (pfn > zone->compact_cached_migrate_pfn[0])
246                         zone->compact_cached_migrate_pfn[0] = pfn;
247                 if (cc->mode != MIGRATE_ASYNC &&
248                     pfn > zone->compact_cached_migrate_pfn[1])
249                         zone->compact_cached_migrate_pfn[1] = pfn;
250         } else {
251                 if (pfn < zone->compact_cached_free_pfn)
252                         zone->compact_cached_free_pfn = pfn;
253         }
254 }
255 #else
256 static inline bool isolation_suitable(struct compact_control *cc,
257                                         struct page *page)
258 {
259         return true;
260 }
261
262 static void update_pageblock_skip(struct compact_control *cc,
263                         struct page *page, unsigned long nr_isolated,
264                         bool migrate_scanner)
265 {
266 }
267 #endif /* CONFIG_COMPACTION */
268
269 /*
270  * Compaction requires the taking of some coarse locks that are potentially
271  * very heavily contended. For async compaction, back out if the lock cannot
272  * be taken immediately. For sync compaction, spin on the lock if needed.
273  *
274  * Returns true if the lock is held
275  * Returns false if the lock is not held and compaction should abort
276  */
277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
278                                                 struct compact_control *cc)
279 {
280         if (cc->mode == MIGRATE_ASYNC) {
281                 if (!spin_trylock_irqsave(lock, *flags)) {
282                         cc->contended = COMPACT_CONTENDED_LOCK;
283                         return false;
284                 }
285         } else {
286                 spin_lock_irqsave(lock, *flags);
287         }
288
289         return true;
290 }
291
292 /*
293  * Compaction requires the taking of some coarse locks that are potentially
294  * very heavily contended. The lock should be periodically unlocked to avoid
295  * having disabled IRQs for a long time, even when there is nobody waiting on
296  * the lock. It might also be that allowing the IRQs will result in
297  * need_resched() becoming true. If scheduling is needed, async compaction
298  * aborts. Sync compaction schedules.
299  * Either compaction type will also abort if a fatal signal is pending.
300  * In either case if the lock was locked, it is dropped and not regained.
301  *
302  * Returns true if compaction should abort due to fatal signal pending, or
303  *              async compaction due to need_resched()
304  * Returns false when compaction can continue (sync compaction might have
305  *              scheduled)
306  */
307 static bool compact_unlock_should_abort(spinlock_t *lock,
308                 unsigned long flags, bool *locked, struct compact_control *cc)
309 {
310         if (*locked) {
311                 spin_unlock_irqrestore(lock, flags);
312                 *locked = false;
313         }
314
315         if (fatal_signal_pending(current)) {
316                 cc->contended = COMPACT_CONTENDED_SCHED;
317                 return true;
318         }
319
320         if (need_resched()) {
321                 if (cc->mode == MIGRATE_ASYNC) {
322                         cc->contended = COMPACT_CONTENDED_SCHED;
323                         return true;
324                 }
325                 cond_resched();
326         }
327
328         return false;
329 }
330
331 /*
332  * Aside from avoiding lock contention, compaction also periodically checks
333  * need_resched() and either schedules in sync compaction or aborts async
334  * compaction. This is similar to what compact_unlock_should_abort() does, but
335  * is used where no lock is concerned.
336  *
337  * Returns false when no scheduling was needed, or sync compaction scheduled.
338  * Returns true when async compaction should abort.
339  */
340 static inline bool compact_should_abort(struct compact_control *cc)
341 {
342         /* async compaction aborts if contended */
343         if (need_resched()) {
344                 if (cc->mode == MIGRATE_ASYNC) {
345                         cc->contended = COMPACT_CONTENDED_SCHED;
346                         return true;
347                 }
348
349                 cond_resched();
350         }
351
352         return false;
353 }
354
355 /*
356  * Isolate free pages onto a private freelist. If @strict is true, will abort
357  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
358  * (even though it may still end up isolating some pages).
359  */
360 static unsigned long isolate_freepages_block(struct compact_control *cc,
361                                 unsigned long *start_pfn,
362                                 unsigned long end_pfn,
363                                 struct list_head *freelist,
364                                 bool strict)
365 {
366         int nr_scanned = 0, total_isolated = 0;
367         struct page *cursor, *valid_page = NULL;
368         unsigned long flags = 0;
369         bool locked = false;
370         unsigned long blockpfn = *start_pfn;
371
372         cursor = pfn_to_page(blockpfn);
373
374         /* Isolate free pages. */
375         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
376                 int isolated, i;
377                 struct page *page = cursor;
378
379                 /*
380                  * Periodically drop the lock (if held) regardless of its
381                  * contention, to give chance to IRQs. Abort if fatal signal
382                  * pending or async compaction detects need_resched()
383                  */
384                 if (!(blockpfn % SWAP_CLUSTER_MAX)
385                     && compact_unlock_should_abort(&cc->zone->lock, flags,
386                                                                 &locked, cc))
387                         break;
388
389                 nr_scanned++;
390                 if (!pfn_valid_within(blockpfn))
391                         goto isolate_fail;
392
393                 if (!valid_page)
394                         valid_page = page;
395
396                 /*
397                  * For compound pages such as THP and hugetlbfs, we can save
398                  * potentially a lot of iterations if we skip them at once.
399                  * The check is racy, but we can consider only valid values
400                  * and the only danger is skipping too much.
401                  */
402                 if (PageCompound(page)) {
403                         unsigned int comp_order = compound_order(page);
404
405                         if (likely(comp_order < MAX_ORDER)) {
406                                 blockpfn += (1UL << comp_order) - 1;
407                                 cursor += (1UL << comp_order) - 1;
408                         }
409
410                         goto isolate_fail;
411                 }
412
413                 if (!PageBuddy(page))
414                         goto isolate_fail;
415
416                 /*
417                  * If we already hold the lock, we can skip some rechecking.
418                  * Note that if we hold the lock now, checked_pageblock was
419                  * already set in some previous iteration (or strict is true),
420                  * so it is correct to skip the suitable migration target
421                  * recheck as well.
422                  */
423                 if (!locked) {
424                         /*
425                          * The zone lock must be held to isolate freepages.
426                          * Unfortunately this is a very coarse lock and can be
427                          * heavily contended if there are parallel allocations
428                          * or parallel compactions. For async compaction do not
429                          * spin on the lock and we acquire the lock as late as
430                          * possible.
431                          */
432                         locked = compact_trylock_irqsave(&cc->zone->lock,
433                                                                 &flags, cc);
434                         if (!locked)
435                                 break;
436
437                         /* Recheck this is a buddy page under lock */
438                         if (!PageBuddy(page))
439                                 goto isolate_fail;
440                 }
441
442                 /* Found a free page, break it into order-0 pages */
443                 isolated = split_free_page(page);
444                 total_isolated += isolated;
445                 for (i = 0; i < isolated; i++) {
446                         list_add(&page->lru, freelist);
447                         page++;
448                 }
449
450                 /* If a page was split, advance to the end of it */
451                 if (isolated) {
452                         cc->nr_freepages += isolated;
453                         if (!strict &&
454                                 cc->nr_migratepages <= cc->nr_freepages) {
455                                 blockpfn += isolated;
456                                 break;
457                         }
458
459                         blockpfn += isolated - 1;
460                         cursor += isolated - 1;
461                         continue;
462                 }
463
464 isolate_fail:
465                 if (strict)
466                         break;
467                 else
468                         continue;
469
470         }
471
472         /*
473          * There is a tiny chance that we have read bogus compound_order(),
474          * so be careful to not go outside of the pageblock.
475          */
476         if (unlikely(blockpfn > end_pfn))
477                 blockpfn = end_pfn;
478
479         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
480                                         nr_scanned, total_isolated);
481
482         /* Record how far we have got within the block */
483         *start_pfn = blockpfn;
484
485         /*
486          * If strict isolation is requested by CMA then check that all the
487          * pages requested were isolated. If there were any failures, 0 is
488          * returned and CMA will fail.
489          */
490         if (strict && blockpfn < end_pfn)
491                 total_isolated = 0;
492
493         if (locked)
494                 spin_unlock_irqrestore(&cc->zone->lock, flags);
495
496         /* Update the pageblock-skip if the whole pageblock was scanned */
497         if (blockpfn == end_pfn)
498                 update_pageblock_skip(cc, valid_page, total_isolated, false);
499
500         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
501         if (total_isolated)
502                 count_compact_events(COMPACTISOLATED, total_isolated);
503         return total_isolated;
504 }
505
506 /**
507  * isolate_freepages_range() - isolate free pages.
508  * @start_pfn: The first PFN to start isolating.
509  * @end_pfn:   The one-past-last PFN.
510  *
511  * Non-free pages, invalid PFNs, or zone boundaries within the
512  * [start_pfn, end_pfn) range are considered errors, cause function to
513  * undo its actions and return zero.
514  *
515  * Otherwise, function returns one-past-the-last PFN of isolated page
516  * (which may be greater then end_pfn if end fell in a middle of
517  * a free page).
518  */
519 unsigned long
520 isolate_freepages_range(struct compact_control *cc,
521                         unsigned long start_pfn, unsigned long end_pfn)
522 {
523         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
524         LIST_HEAD(freelist);
525
526         pfn = start_pfn;
527         block_start_pfn = pageblock_start_pfn(pfn);
528         if (block_start_pfn < cc->zone->zone_start_pfn)
529                 block_start_pfn = cc->zone->zone_start_pfn;
530         block_end_pfn = pageblock_end_pfn(pfn);
531
532         for (; pfn < end_pfn; pfn += isolated,
533                                 block_start_pfn = block_end_pfn,
534                                 block_end_pfn += pageblock_nr_pages) {
535                 /* Protect pfn from changing by isolate_freepages_block */
536                 unsigned long isolate_start_pfn = pfn;
537
538                 block_end_pfn = min(block_end_pfn, end_pfn);
539
540                 /*
541                  * pfn could pass the block_end_pfn if isolated freepage
542                  * is more than pageblock order. In this case, we adjust
543                  * scanning range to right one.
544                  */
545                 if (pfn >= block_end_pfn) {
546                         block_start_pfn = pageblock_start_pfn(pfn);
547                         block_end_pfn = pageblock_end_pfn(pfn);
548                         block_end_pfn = min(block_end_pfn, end_pfn);
549                 }
550
551                 if (!pageblock_pfn_to_page(block_start_pfn,
552                                         block_end_pfn, cc->zone))
553                         break;
554
555                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
556                                                 block_end_pfn, &freelist, true);
557
558                 /*
559                  * In strict mode, isolate_freepages_block() returns 0 if
560                  * there are any holes in the block (ie. invalid PFNs or
561                  * non-free pages).
562                  */
563                 if (!isolated)
564                         break;
565
566                 /*
567                  * If we managed to isolate pages, it is always (1 << n) *
568                  * pageblock_nr_pages for some non-negative n.  (Max order
569                  * page may span two pageblocks).
570                  */
571         }
572
573         /* split_free_page does not map the pages */
574         map_pages(&freelist);
575
576         if (pfn < end_pfn) {
577                 /* Loop terminated early, cleanup. */
578                 release_freepages(&freelist);
579                 return 0;
580         }
581
582         /* We don't use freelists for anything. */
583         return pfn;
584 }
585
586 /* Update the number of anon and file isolated pages in the zone */
587 static void acct_isolated(struct zone *zone, struct compact_control *cc)
588 {
589         struct page *page;
590         unsigned int count[2] = { 0, };
591
592         if (list_empty(&cc->migratepages))
593                 return;
594
595         list_for_each_entry(page, &cc->migratepages, lru)
596                 count[!!page_is_file_cache(page)]++;
597
598         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
599         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
600 }
601
602 /* Similar to reclaim, but different enough that they don't share logic */
603 static bool too_many_isolated(struct zone *zone)
604 {
605         unsigned long active, inactive, isolated;
606
607         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
608                                         zone_page_state(zone, NR_INACTIVE_ANON);
609         active = zone_page_state(zone, NR_ACTIVE_FILE) +
610                                         zone_page_state(zone, NR_ACTIVE_ANON);
611         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
612                                         zone_page_state(zone, NR_ISOLATED_ANON);
613
614         return isolated > (inactive + active) / 2;
615 }
616
617 /**
618  * isolate_migratepages_block() - isolate all migrate-able pages within
619  *                                a single pageblock
620  * @cc:         Compaction control structure.
621  * @low_pfn:    The first PFN to isolate
622  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
623  * @isolate_mode: Isolation mode to be used.
624  *
625  * Isolate all pages that can be migrated from the range specified by
626  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
627  * Returns zero if there is a fatal signal pending, otherwise PFN of the
628  * first page that was not scanned (which may be both less, equal to or more
629  * than end_pfn).
630  *
631  * The pages are isolated on cc->migratepages list (not required to be empty),
632  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
633  * is neither read nor updated.
634  */
635 static unsigned long
636 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
637                         unsigned long end_pfn, isolate_mode_t isolate_mode)
638 {
639         struct zone *zone = cc->zone;
640         unsigned long nr_scanned = 0, nr_isolated = 0;
641         struct list_head *migratelist = &cc->migratepages;
642         struct lruvec *lruvec;
643         unsigned long flags = 0;
644         bool locked = false;
645         struct page *page = NULL, *valid_page = NULL;
646         unsigned long start_pfn = low_pfn;
647
648         /*
649          * Ensure that there are not too many pages isolated from the LRU
650          * list by either parallel reclaimers or compaction. If there are,
651          * delay for some time until fewer pages are isolated
652          */
653         while (unlikely(too_many_isolated(zone))) {
654                 /* async migration should just abort */
655                 if (cc->mode == MIGRATE_ASYNC)
656                         return 0;
657
658                 congestion_wait(BLK_RW_ASYNC, HZ/10);
659
660                 if (fatal_signal_pending(current))
661                         return 0;
662         }
663
664         if (compact_should_abort(cc))
665                 return 0;
666
667         /* Time to isolate some pages for migration */
668         for (; low_pfn < end_pfn; low_pfn++) {
669                 bool is_lru;
670
671                 /*
672                  * Periodically drop the lock (if held) regardless of its
673                  * contention, to give chance to IRQs. Abort async compaction
674                  * if contended.
675                  */
676                 if (!(low_pfn % SWAP_CLUSTER_MAX)
677                     && compact_unlock_should_abort(&zone->lru_lock, flags,
678                                                                 &locked, cc))
679                         break;
680
681                 if (!pfn_valid_within(low_pfn))
682                         continue;
683                 nr_scanned++;
684
685                 page = pfn_to_page(low_pfn);
686
687                 if (!valid_page)
688                         valid_page = page;
689
690                 /*
691                  * Skip if free. We read page order here without zone lock
692                  * which is generally unsafe, but the race window is small and
693                  * the worst thing that can happen is that we skip some
694                  * potential isolation targets.
695                  */
696                 if (PageBuddy(page)) {
697                         unsigned long freepage_order = page_order_unsafe(page);
698
699                         /*
700                          * Without lock, we cannot be sure that what we got is
701                          * a valid page order. Consider only values in the
702                          * valid order range to prevent low_pfn overflow.
703                          */
704                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
705                                 low_pfn += (1UL << freepage_order) - 1;
706                         continue;
707                 }
708
709                 /*
710                  * Check may be lockless but that's ok as we recheck later.
711                  * It's possible to migrate LRU pages and balloon pages
712                  * Skip any other type of page
713                  */
714                 is_lru = PageLRU(page);
715                 if (!is_lru) {
716                         if (unlikely(balloon_page_movable(page))) {
717                                 if (balloon_page_isolate(page)) {
718                                         /* Successfully isolated */
719                                         goto isolate_success;
720                                 }
721                         }
722                 }
723
724                 /*
725                  * Regardless of being on LRU, compound pages such as THP and
726                  * hugetlbfs are not to be compacted. We can potentially save
727                  * a lot of iterations if we skip them at once. The check is
728                  * racy, but we can consider only valid values and the only
729                  * danger is skipping too much.
730                  */
731                 if (PageCompound(page)) {
732                         unsigned int comp_order = compound_order(page);
733
734                         if (likely(comp_order < MAX_ORDER))
735                                 low_pfn += (1UL << comp_order) - 1;
736
737                         continue;
738                 }
739
740                 if (!is_lru)
741                         continue;
742
743                 /*
744                  * Migration will fail if an anonymous page is pinned in memory,
745                  * so avoid taking lru_lock and isolating it unnecessarily in an
746                  * admittedly racy check.
747                  */
748                 if (!page_mapping(page) &&
749                     page_count(page) > page_mapcount(page))
750                         continue;
751
752                 /* If we already hold the lock, we can skip some rechecking */
753                 if (!locked) {
754                         locked = compact_trylock_irqsave(&zone->lru_lock,
755                                                                 &flags, cc);
756                         if (!locked)
757                                 break;
758
759                         /* Recheck PageLRU and PageCompound under lock */
760                         if (!PageLRU(page))
761                                 continue;
762
763                         /*
764                          * Page become compound since the non-locked check,
765                          * and it's on LRU. It can only be a THP so the order
766                          * is safe to read and it's 0 for tail pages.
767                          */
768                         if (unlikely(PageCompound(page))) {
769                                 low_pfn += (1UL << compound_order(page)) - 1;
770                                 continue;
771                         }
772                 }
773
774                 lruvec = mem_cgroup_page_lruvec(page, zone);
775
776                 /* Try isolate the page */
777                 if (__isolate_lru_page(page, isolate_mode) != 0)
778                         continue;
779
780                 VM_BUG_ON_PAGE(PageCompound(page), page);
781
782                 /* Successfully isolated */
783                 del_page_from_lru_list(page, lruvec, page_lru(page));
784
785 isolate_success:
786                 list_add(&page->lru, migratelist);
787                 cc->nr_migratepages++;
788                 nr_isolated++;
789
790                 /*
791                  * Record where we could have freed pages by migration and not
792                  * yet flushed them to buddy allocator.
793                  * - this is the lowest page that was isolated and likely be
794                  * then freed by migration.
795                  */
796                 if (!cc->last_migrated_pfn)
797                         cc->last_migrated_pfn = low_pfn;
798
799                 /* Avoid isolating too much */
800                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
801                         ++low_pfn;
802                         break;
803                 }
804         }
805
806         /*
807          * The PageBuddy() check could have potentially brought us outside
808          * the range to be scanned.
809          */
810         if (unlikely(low_pfn > end_pfn))
811                 low_pfn = end_pfn;
812
813         if (locked)
814                 spin_unlock_irqrestore(&zone->lru_lock, flags);
815
816         /*
817          * Update the pageblock-skip information and cached scanner pfn,
818          * if the whole pageblock was scanned without isolating any page.
819          */
820         if (low_pfn == end_pfn)
821                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
822
823         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
824                                                 nr_scanned, nr_isolated);
825
826         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
827         if (nr_isolated)
828                 count_compact_events(COMPACTISOLATED, nr_isolated);
829
830         return low_pfn;
831 }
832
833 /**
834  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
835  * @cc:        Compaction control structure.
836  * @start_pfn: The first PFN to start isolating.
837  * @end_pfn:   The one-past-last PFN.
838  *
839  * Returns zero if isolation fails fatally due to e.g. pending signal.
840  * Otherwise, function returns one-past-the-last PFN of isolated page
841  * (which may be greater than end_pfn if end fell in a middle of a THP page).
842  */
843 unsigned long
844 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
845                                                         unsigned long end_pfn)
846 {
847         unsigned long pfn, block_start_pfn, block_end_pfn;
848
849         /* Scan block by block. First and last block may be incomplete */
850         pfn = start_pfn;
851         block_start_pfn = pageblock_start_pfn(pfn);
852         if (block_start_pfn < cc->zone->zone_start_pfn)
853                 block_start_pfn = cc->zone->zone_start_pfn;
854         block_end_pfn = pageblock_end_pfn(pfn);
855
856         for (; pfn < end_pfn; pfn = block_end_pfn,
857                                 block_start_pfn = block_end_pfn,
858                                 block_end_pfn += pageblock_nr_pages) {
859
860                 block_end_pfn = min(block_end_pfn, end_pfn);
861
862                 if (!pageblock_pfn_to_page(block_start_pfn,
863                                         block_end_pfn, cc->zone))
864                         continue;
865
866                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
867                                                         ISOLATE_UNEVICTABLE);
868
869                 if (!pfn)
870                         break;
871
872                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
873                         break;
874         }
875         acct_isolated(cc->zone, cc);
876
877         return pfn;
878 }
879
880 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
881 #ifdef CONFIG_COMPACTION
882
883 /* Returns true if the page is within a block suitable for migration to */
884 static bool suitable_migration_target(struct page *page)
885 {
886         /* If the page is a large free page, then disallow migration */
887         if (PageBuddy(page)) {
888                 /*
889                  * We are checking page_order without zone->lock taken. But
890                  * the only small danger is that we skip a potentially suitable
891                  * pageblock, so it's not worth to check order for valid range.
892                  */
893                 if (page_order_unsafe(page) >= pageblock_order)
894                         return false;
895         }
896
897         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
898         if (migrate_async_suitable(get_pageblock_migratetype(page)))
899                 return true;
900
901         /* Otherwise skip the block */
902         return false;
903 }
904
905 /*
906  * Test whether the free scanner has reached the same or lower pageblock than
907  * the migration scanner, and compaction should thus terminate.
908  */
909 static inline bool compact_scanners_met(struct compact_control *cc)
910 {
911         return (cc->free_pfn >> pageblock_order)
912                 <= (cc->migrate_pfn >> pageblock_order);
913 }
914
915 /*
916  * Based on information in the current compact_control, find blocks
917  * suitable for isolating free pages from and then isolate them.
918  */
919 static void isolate_freepages(struct compact_control *cc)
920 {
921         struct zone *zone = cc->zone;
922         struct page *page;
923         unsigned long block_start_pfn;  /* start of current pageblock */
924         unsigned long isolate_start_pfn; /* exact pfn we start at */
925         unsigned long block_end_pfn;    /* end of current pageblock */
926         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
927         struct list_head *freelist = &cc->freepages;
928
929         /*
930          * Initialise the free scanner. The starting point is where we last
931          * successfully isolated from, zone-cached value, or the end of the
932          * zone when isolating for the first time. For looping we also need
933          * this pfn aligned down to the pageblock boundary, because we do
934          * block_start_pfn -= pageblock_nr_pages in the for loop.
935          * For ending point, take care when isolating in last pageblock of a
936          * a zone which ends in the middle of a pageblock.
937          * The low boundary is the end of the pageblock the migration scanner
938          * is using.
939          */
940         isolate_start_pfn = cc->free_pfn;
941         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
942         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
943                                                 zone_end_pfn(zone));
944         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
945
946         /*
947          * Isolate free pages until enough are available to migrate the
948          * pages on cc->migratepages. We stop searching if the migrate
949          * and free page scanners meet or enough free pages are isolated.
950          */
951         for (; block_start_pfn >= low_pfn;
952                                 block_end_pfn = block_start_pfn,
953                                 block_start_pfn -= pageblock_nr_pages,
954                                 isolate_start_pfn = block_start_pfn) {
955
956                 /*
957                  * This can iterate a massively long zone without finding any
958                  * suitable migration targets, so periodically check if we need
959                  * to schedule, or even abort async compaction.
960                  */
961                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
962                                                 && compact_should_abort(cc))
963                         break;
964
965                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
966                                                                         zone);
967                 if (!page)
968                         continue;
969
970                 /* Check the block is suitable for migration */
971                 if (!suitable_migration_target(page))
972                         continue;
973
974                 /* If isolation recently failed, do not retry */
975                 if (!isolation_suitable(cc, page))
976                         continue;
977
978                 /* Found a block suitable for isolating free pages from. */
979                 isolate_freepages_block(cc, &isolate_start_pfn,
980                                         block_end_pfn, freelist, false);
981
982                 /*
983                  * If we isolated enough freepages, or aborted due to async
984                  * compaction being contended, terminate the loop.
985                  * Remember where the free scanner should restart next time,
986                  * which is where isolate_freepages_block() left off.
987                  * But if it scanned the whole pageblock, isolate_start_pfn
988                  * now points at block_end_pfn, which is the start of the next
989                  * pageblock.
990                  * In that case we will however want to restart at the start
991                  * of the previous pageblock.
992                  */
993                 if ((cc->nr_freepages >= cc->nr_migratepages)
994                                                         || cc->contended) {
995                         if (isolate_start_pfn >= block_end_pfn)
996                                 isolate_start_pfn =
997                                         block_start_pfn - pageblock_nr_pages;
998                         break;
999                 } else {
1000                         /*
1001                          * isolate_freepages_block() should not terminate
1002                          * prematurely unless contended, or isolated enough
1003                          */
1004                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1005                 }
1006         }
1007
1008         /* split_free_page does not map the pages */
1009         map_pages(freelist);
1010
1011         /*
1012          * Record where the free scanner will restart next time. Either we
1013          * broke from the loop and set isolate_start_pfn based on the last
1014          * call to isolate_freepages_block(), or we met the migration scanner
1015          * and the loop terminated due to isolate_start_pfn < low_pfn
1016          */
1017         cc->free_pfn = isolate_start_pfn;
1018 }
1019
1020 /*
1021  * This is a migrate-callback that "allocates" freepages by taking pages
1022  * from the isolated freelists in the block we are migrating to.
1023  */
1024 static struct page *compaction_alloc(struct page *migratepage,
1025                                         unsigned long data,
1026                                         int **result)
1027 {
1028         struct compact_control *cc = (struct compact_control *)data;
1029         struct page *freepage;
1030
1031         /*
1032          * Isolate free pages if necessary, and if we are not aborting due to
1033          * contention.
1034          */
1035         if (list_empty(&cc->freepages)) {
1036                 if (!cc->contended)
1037                         isolate_freepages(cc);
1038
1039                 if (list_empty(&cc->freepages))
1040                         return NULL;
1041         }
1042
1043         freepage = list_entry(cc->freepages.next, struct page, lru);
1044         list_del(&freepage->lru);
1045         cc->nr_freepages--;
1046
1047         return freepage;
1048 }
1049
1050 /*
1051  * This is a migrate-callback that "frees" freepages back to the isolated
1052  * freelist.  All pages on the freelist are from the same zone, so there is no
1053  * special handling needed for NUMA.
1054  */
1055 static void compaction_free(struct page *page, unsigned long data)
1056 {
1057         struct compact_control *cc = (struct compact_control *)data;
1058
1059         list_add(&page->lru, &cc->freepages);
1060         cc->nr_freepages++;
1061 }
1062
1063 /* possible outcome of isolate_migratepages */
1064 typedef enum {
1065         ISOLATE_ABORT,          /* Abort compaction now */
1066         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1067         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1068 } isolate_migrate_t;
1069
1070 /*
1071  * Allow userspace to control policy on scanning the unevictable LRU for
1072  * compactable pages.
1073  */
1074 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1075
1076 /*
1077  * Isolate all pages that can be migrated from the first suitable block,
1078  * starting at the block pointed to by the migrate scanner pfn within
1079  * compact_control.
1080  */
1081 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1082                                         struct compact_control *cc)
1083 {
1084         unsigned long block_start_pfn;
1085         unsigned long block_end_pfn;
1086         unsigned long low_pfn;
1087         struct page *page;
1088         const isolate_mode_t isolate_mode =
1089                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1090                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1091
1092         /*
1093          * Start at where we last stopped, or beginning of the zone as
1094          * initialized by compact_zone()
1095          */
1096         low_pfn = cc->migrate_pfn;
1097         block_start_pfn = pageblock_start_pfn(low_pfn);
1098         if (block_start_pfn < zone->zone_start_pfn)
1099                 block_start_pfn = zone->zone_start_pfn;
1100
1101         /* Only scan within a pageblock boundary */
1102         block_end_pfn = pageblock_end_pfn(low_pfn);
1103
1104         /*
1105          * Iterate over whole pageblocks until we find the first suitable.
1106          * Do not cross the free scanner.
1107          */
1108         for (; block_end_pfn <= cc->free_pfn;
1109                         low_pfn = block_end_pfn,
1110                         block_start_pfn = block_end_pfn,
1111                         block_end_pfn += pageblock_nr_pages) {
1112
1113                 /*
1114                  * This can potentially iterate a massively long zone with
1115                  * many pageblocks unsuitable, so periodically check if we
1116                  * need to schedule, or even abort async compaction.
1117                  */
1118                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1119                                                 && compact_should_abort(cc))
1120                         break;
1121
1122                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1123                                                                         zone);
1124                 if (!page)
1125                         continue;
1126
1127                 /* If isolation recently failed, do not retry */
1128                 if (!isolation_suitable(cc, page))
1129                         continue;
1130
1131                 /*
1132                  * For async compaction, also only scan in MOVABLE blocks.
1133                  * Async compaction is optimistic to see if the minimum amount
1134                  * of work satisfies the allocation.
1135                  */
1136                 if (cc->mode == MIGRATE_ASYNC &&
1137                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1138                         continue;
1139
1140                 /* Perform the isolation */
1141                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1142                                                 block_end_pfn, isolate_mode);
1143
1144                 if (!low_pfn || cc->contended) {
1145                         acct_isolated(zone, cc);
1146                         return ISOLATE_ABORT;
1147                 }
1148
1149                 /*
1150                  * Either we isolated something and proceed with migration. Or
1151                  * we failed and compact_zone should decide if we should
1152                  * continue or not.
1153                  */
1154                 break;
1155         }
1156
1157         acct_isolated(zone, cc);
1158         /* Record where migration scanner will be restarted. */
1159         cc->migrate_pfn = low_pfn;
1160
1161         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1162 }
1163
1164 /*
1165  * order == -1 is expected when compacting via
1166  * /proc/sys/vm/compact_memory
1167  */
1168 static inline bool is_via_compact_memory(int order)
1169 {
1170         return order == -1;
1171 }
1172
1173 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1174                             const int migratetype)
1175 {
1176         unsigned int order;
1177         unsigned long watermark;
1178
1179         if (cc->contended || fatal_signal_pending(current))
1180                 return COMPACT_CONTENDED;
1181
1182         /* Compaction run completes if the migrate and free scanner meet */
1183         if (compact_scanners_met(cc)) {
1184                 /* Let the next compaction start anew. */
1185                 reset_cached_positions(zone);
1186
1187                 /*
1188                  * Mark that the PG_migrate_skip information should be cleared
1189                  * by kswapd when it goes to sleep. kcompactd does not set the
1190                  * flag itself as the decision to be clear should be directly
1191                  * based on an allocation request.
1192                  */
1193                 if (cc->direct_compaction)
1194                         zone->compact_blockskip_flush = true;
1195
1196                 return COMPACT_COMPLETE;
1197         }
1198
1199         if (is_via_compact_memory(cc->order))
1200                 return COMPACT_CONTINUE;
1201
1202         /* Compaction run is not finished if the watermark is not met */
1203         watermark = low_wmark_pages(zone);
1204
1205         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1206                                                         cc->alloc_flags))
1207                 return COMPACT_CONTINUE;
1208
1209         /* Direct compactor: Is a suitable page free? */
1210         for (order = cc->order; order < MAX_ORDER; order++) {
1211                 struct free_area *area = &zone->free_area[order];
1212                 bool can_steal;
1213
1214                 /* Job done if page is free of the right migratetype */
1215                 if (!list_empty(&area->free_list[migratetype]))
1216                         return COMPACT_PARTIAL;
1217
1218 #ifdef CONFIG_CMA
1219                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1220                 if (migratetype == MIGRATE_MOVABLE &&
1221                         !list_empty(&area->free_list[MIGRATE_CMA]))
1222                         return COMPACT_PARTIAL;
1223 #endif
1224                 /*
1225                  * Job done if allocation would steal freepages from
1226                  * other migratetype buddy lists.
1227                  */
1228                 if (find_suitable_fallback(area, order, migratetype,
1229                                                 true, &can_steal) != -1)
1230                         return COMPACT_PARTIAL;
1231         }
1232
1233         return COMPACT_NO_SUITABLE_PAGE;
1234 }
1235
1236 static int compact_finished(struct zone *zone, struct compact_control *cc,
1237                             const int migratetype)
1238 {
1239         int ret;
1240
1241         ret = __compact_finished(zone, cc, migratetype);
1242         trace_mm_compaction_finished(zone, cc->order, ret);
1243         if (ret == COMPACT_NO_SUITABLE_PAGE)
1244                 ret = COMPACT_CONTINUE;
1245
1246         return ret;
1247 }
1248
1249 /*
1250  * compaction_suitable: Is this suitable to run compaction on this zone now?
1251  * Returns
1252  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1253  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1254  *   COMPACT_CONTINUE - If compaction should run now
1255  */
1256 static unsigned long __compaction_suitable(struct zone *zone, int order,
1257                                         int alloc_flags, int classzone_idx)
1258 {
1259         int fragindex;
1260         unsigned long watermark;
1261
1262         if (is_via_compact_memory(order))
1263                 return COMPACT_CONTINUE;
1264
1265         watermark = low_wmark_pages(zone);
1266         /*
1267          * If watermarks for high-order allocation are already met, there
1268          * should be no need for compaction at all.
1269          */
1270         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1271                                                                 alloc_flags))
1272                 return COMPACT_PARTIAL;
1273
1274         /*
1275          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1276          * This is because during migration, copies of pages need to be
1277          * allocated and for a short time, the footprint is higher
1278          */
1279         watermark += (2UL << order);
1280         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1281                 return COMPACT_SKIPPED;
1282
1283         /*
1284          * fragmentation index determines if allocation failures are due to
1285          * low memory or external fragmentation
1286          *
1287          * index of -1000 would imply allocations might succeed depending on
1288          * watermarks, but we already failed the high-order watermark check
1289          * index towards 0 implies failure is due to lack of memory
1290          * index towards 1000 implies failure is due to fragmentation
1291          *
1292          * Only compact if a failure would be due to fragmentation.
1293          */
1294         fragindex = fragmentation_index(zone, order);
1295         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1296                 return COMPACT_NOT_SUITABLE_ZONE;
1297
1298         return COMPACT_CONTINUE;
1299 }
1300
1301 unsigned long compaction_suitable(struct zone *zone, int order,
1302                                         int alloc_flags, int classzone_idx)
1303 {
1304         unsigned long ret;
1305
1306         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1307         trace_mm_compaction_suitable(zone, order, ret);
1308         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1309                 ret = COMPACT_SKIPPED;
1310
1311         return ret;
1312 }
1313
1314 static int compact_zone(struct zone *zone, struct compact_control *cc)
1315 {
1316         int ret;
1317         unsigned long start_pfn = zone->zone_start_pfn;
1318         unsigned long end_pfn = zone_end_pfn(zone);
1319         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1320         const bool sync = cc->mode != MIGRATE_ASYNC;
1321
1322         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1323                                                         cc->classzone_idx);
1324         switch (ret) {
1325         case COMPACT_PARTIAL:
1326         case COMPACT_SKIPPED:
1327                 /* Compaction is likely to fail */
1328                 return ret;
1329         case COMPACT_CONTINUE:
1330                 /* Fall through to compaction */
1331                 ;
1332         }
1333
1334         /*
1335          * Clear pageblock skip if there were failures recently and compaction
1336          * is about to be retried after being deferred.
1337          */
1338         if (compaction_restarting(zone, cc->order))
1339                 __reset_isolation_suitable(zone);
1340
1341         /*
1342          * Setup to move all movable pages to the end of the zone. Used cached
1343          * information on where the scanners should start but check that it
1344          * is initialised by ensuring the values are within zone boundaries.
1345          */
1346         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1347         cc->free_pfn = zone->compact_cached_free_pfn;
1348         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1349                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1350                 zone->compact_cached_free_pfn = cc->free_pfn;
1351         }
1352         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1353                 cc->migrate_pfn = start_pfn;
1354                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1355                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1356         }
1357         cc->last_migrated_pfn = 0;
1358
1359         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1360                                 cc->free_pfn, end_pfn, sync);
1361
1362         migrate_prep_local();
1363
1364         while ((ret = compact_finished(zone, cc, migratetype)) ==
1365                                                 COMPACT_CONTINUE) {
1366                 int err;
1367
1368                 switch (isolate_migratepages(zone, cc)) {
1369                 case ISOLATE_ABORT:
1370                         ret = COMPACT_CONTENDED;
1371                         putback_movable_pages(&cc->migratepages);
1372                         cc->nr_migratepages = 0;
1373                         goto out;
1374                 case ISOLATE_NONE:
1375                         /*
1376                          * We haven't isolated and migrated anything, but
1377                          * there might still be unflushed migrations from
1378                          * previous cc->order aligned block.
1379                          */
1380                         goto check_drain;
1381                 case ISOLATE_SUCCESS:
1382                         ;
1383                 }
1384
1385                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1386                                 compaction_free, (unsigned long)cc, cc->mode,
1387                                 MR_COMPACTION);
1388
1389                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1390                                                         &cc->migratepages);
1391
1392                 /* All pages were either migrated or will be released */
1393                 cc->nr_migratepages = 0;
1394                 if (err) {
1395                         putback_movable_pages(&cc->migratepages);
1396                         /*
1397                          * migrate_pages() may return -ENOMEM when scanners meet
1398                          * and we want compact_finished() to detect it
1399                          */
1400                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1401                                 ret = COMPACT_CONTENDED;
1402                                 goto out;
1403                         }
1404                 }
1405
1406 check_drain:
1407                 /*
1408                  * Has the migration scanner moved away from the previous
1409                  * cc->order aligned block where we migrated from? If yes,
1410                  * flush the pages that were freed, so that they can merge and
1411                  * compact_finished() can detect immediately if allocation
1412                  * would succeed.
1413                  */
1414                 if (cc->order > 0 && cc->last_migrated_pfn) {
1415                         int cpu;
1416                         unsigned long current_block_start =
1417                                 block_start_pfn(cc->migrate_pfn, cc->order);
1418
1419                         if (cc->last_migrated_pfn < current_block_start) {
1420                                 cpu = get_cpu();
1421                                 lru_add_drain_cpu(cpu);
1422                                 drain_local_pages(zone);
1423                                 put_cpu();
1424                                 /* No more flushing until we migrate again */
1425                                 cc->last_migrated_pfn = 0;
1426                         }
1427                 }
1428
1429         }
1430
1431 out:
1432         /*
1433          * Release free pages and update where the free scanner should restart,
1434          * so we don't leave any returned pages behind in the next attempt.
1435          */
1436         if (cc->nr_freepages > 0) {
1437                 unsigned long free_pfn = release_freepages(&cc->freepages);
1438
1439                 cc->nr_freepages = 0;
1440                 VM_BUG_ON(free_pfn == 0);
1441                 /* The cached pfn is always the first in a pageblock */
1442                 free_pfn = pageblock_start_pfn(free_pfn);
1443                 /*
1444                  * Only go back, not forward. The cached pfn might have been
1445                  * already reset to zone end in compact_finished()
1446                  */
1447                 if (free_pfn > zone->compact_cached_free_pfn)
1448                         zone->compact_cached_free_pfn = free_pfn;
1449         }
1450
1451         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1452                                 cc->free_pfn, end_pfn, sync, ret);
1453
1454         if (ret == COMPACT_CONTENDED)
1455                 ret = COMPACT_PARTIAL;
1456
1457         return ret;
1458 }
1459
1460 static unsigned long compact_zone_order(struct zone *zone, int order,
1461                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1462                 int alloc_flags, int classzone_idx)
1463 {
1464         unsigned long ret;
1465         struct compact_control cc = {
1466                 .nr_freepages = 0,
1467                 .nr_migratepages = 0,
1468                 .order = order,
1469                 .gfp_mask = gfp_mask,
1470                 .zone = zone,
1471                 .mode = mode,
1472                 .alloc_flags = alloc_flags,
1473                 .classzone_idx = classzone_idx,
1474                 .direct_compaction = true,
1475         };
1476         INIT_LIST_HEAD(&cc.freepages);
1477         INIT_LIST_HEAD(&cc.migratepages);
1478
1479         ret = compact_zone(zone, &cc);
1480
1481         VM_BUG_ON(!list_empty(&cc.freepages));
1482         VM_BUG_ON(!list_empty(&cc.migratepages));
1483
1484         *contended = cc.contended;
1485         return ret;
1486 }
1487
1488 int sysctl_extfrag_threshold = 500;
1489
1490 /**
1491  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1492  * @gfp_mask: The GFP mask of the current allocation
1493  * @order: The order of the current allocation
1494  * @alloc_flags: The allocation flags of the current allocation
1495  * @ac: The context of current allocation
1496  * @mode: The migration mode for async, sync light, or sync migration
1497  * @contended: Return value that determines if compaction was aborted due to
1498  *             need_resched() or lock contention
1499  *
1500  * This is the main entry point for direct page compaction.
1501  */
1502 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1503                         int alloc_flags, const struct alloc_context *ac,
1504                         enum migrate_mode mode, int *contended)
1505 {
1506         int may_enter_fs = gfp_mask & __GFP_FS;
1507         int may_perform_io = gfp_mask & __GFP_IO;
1508         struct zoneref *z;
1509         struct zone *zone;
1510         int rc = COMPACT_DEFERRED;
1511         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1512
1513         *contended = COMPACT_CONTENDED_NONE;
1514
1515         /* Check if the GFP flags allow compaction */
1516         if (!order || !may_enter_fs || !may_perform_io)
1517                 return COMPACT_SKIPPED;
1518
1519         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1520
1521         /* Compact each zone in the list */
1522         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1523                                                                 ac->nodemask) {
1524                 int status;
1525                 int zone_contended;
1526
1527                 if (compaction_deferred(zone, order))
1528                         continue;
1529
1530                 status = compact_zone_order(zone, order, gfp_mask, mode,
1531                                 &zone_contended, alloc_flags,
1532                                 ac->classzone_idx);
1533                 rc = max(status, rc);
1534                 /*
1535                  * It takes at least one zone that wasn't lock contended
1536                  * to clear all_zones_contended.
1537                  */
1538                 all_zones_contended &= zone_contended;
1539
1540                 /* If a normal allocation would succeed, stop compacting */
1541                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1542                                         ac->classzone_idx, alloc_flags)) {
1543                         /*
1544                          * We think the allocation will succeed in this zone,
1545                          * but it is not certain, hence the false. The caller
1546                          * will repeat this with true if allocation indeed
1547                          * succeeds in this zone.
1548                          */
1549                         compaction_defer_reset(zone, order, false);
1550                         /*
1551                          * It is possible that async compaction aborted due to
1552                          * need_resched() and the watermarks were ok thanks to
1553                          * somebody else freeing memory. The allocation can
1554                          * however still fail so we better signal the
1555                          * need_resched() contention anyway (this will not
1556                          * prevent the allocation attempt).
1557                          */
1558                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1559                                 *contended = COMPACT_CONTENDED_SCHED;
1560
1561                         goto break_loop;
1562                 }
1563
1564                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1565                         /*
1566                          * We think that allocation won't succeed in this zone
1567                          * so we defer compaction there. If it ends up
1568                          * succeeding after all, it will be reset.
1569                          */
1570                         defer_compaction(zone, order);
1571                 }
1572
1573                 /*
1574                  * We might have stopped compacting due to need_resched() in
1575                  * async compaction, or due to a fatal signal detected. In that
1576                  * case do not try further zones and signal need_resched()
1577                  * contention.
1578                  */
1579                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1580                                         || fatal_signal_pending(current)) {
1581                         *contended = COMPACT_CONTENDED_SCHED;
1582                         goto break_loop;
1583                 }
1584
1585                 continue;
1586 break_loop:
1587                 /*
1588                  * We might not have tried all the zones, so  be conservative
1589                  * and assume they are not all lock contended.
1590                  */
1591                 all_zones_contended = 0;
1592                 break;
1593         }
1594
1595         /*
1596          * If at least one zone wasn't deferred or skipped, we report if all
1597          * zones that were tried were lock contended.
1598          */
1599         if (rc > COMPACT_SKIPPED && all_zones_contended)
1600                 *contended = COMPACT_CONTENDED_LOCK;
1601
1602         return rc;
1603 }
1604
1605
1606 /* Compact all zones within a node */
1607 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1608 {
1609         int zoneid;
1610         struct zone *zone;
1611
1612         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1613
1614                 zone = &pgdat->node_zones[zoneid];
1615                 if (!populated_zone(zone))
1616                         continue;
1617
1618                 cc->nr_freepages = 0;
1619                 cc->nr_migratepages = 0;
1620                 cc->zone = zone;
1621                 INIT_LIST_HEAD(&cc->freepages);
1622                 INIT_LIST_HEAD(&cc->migratepages);
1623
1624                 /*
1625                  * When called via /proc/sys/vm/compact_memory
1626                  * this makes sure we compact the whole zone regardless of
1627                  * cached scanner positions.
1628                  */
1629                 if (is_via_compact_memory(cc->order))
1630                         __reset_isolation_suitable(zone);
1631
1632                 if (is_via_compact_memory(cc->order) ||
1633                                 !compaction_deferred(zone, cc->order))
1634                         compact_zone(zone, cc);
1635
1636                 VM_BUG_ON(!list_empty(&cc->freepages));
1637                 VM_BUG_ON(!list_empty(&cc->migratepages));
1638
1639                 if (is_via_compact_memory(cc->order))
1640                         continue;
1641
1642                 if (zone_watermark_ok(zone, cc->order,
1643                                 low_wmark_pages(zone), 0, 0))
1644                         compaction_defer_reset(zone, cc->order, false);
1645         }
1646 }
1647
1648 void compact_pgdat(pg_data_t *pgdat, int order)
1649 {
1650         struct compact_control cc = {
1651                 .order = order,
1652                 .mode = MIGRATE_ASYNC,
1653         };
1654
1655         if (!order)
1656                 return;
1657
1658         __compact_pgdat(pgdat, &cc);
1659 }
1660
1661 static void compact_node(int nid)
1662 {
1663         struct compact_control cc = {
1664                 .order = -1,
1665                 .mode = MIGRATE_SYNC,
1666                 .ignore_skip_hint = true,
1667         };
1668
1669         __compact_pgdat(NODE_DATA(nid), &cc);
1670 }
1671
1672 /* Compact all nodes in the system */
1673 static void compact_nodes(void)
1674 {
1675         int nid;
1676
1677         /* Flush pending updates to the LRU lists */
1678         lru_add_drain_all();
1679
1680         for_each_online_node(nid)
1681                 compact_node(nid);
1682 }
1683
1684 /* The written value is actually unused, all memory is compacted */
1685 int sysctl_compact_memory;
1686
1687 /*
1688  * This is the entry point for compacting all nodes via
1689  * /proc/sys/vm/compact_memory
1690  */
1691 int sysctl_compaction_handler(struct ctl_table *table, int write,
1692                         void __user *buffer, size_t *length, loff_t *ppos)
1693 {
1694         if (write)
1695                 compact_nodes();
1696
1697         return 0;
1698 }
1699
1700 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1701                         void __user *buffer, size_t *length, loff_t *ppos)
1702 {
1703         proc_dointvec_minmax(table, write, buffer, length, ppos);
1704
1705         return 0;
1706 }
1707
1708 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1709 static ssize_t sysfs_compact_node(struct device *dev,
1710                         struct device_attribute *attr,
1711                         const char *buf, size_t count)
1712 {
1713         int nid = dev->id;
1714
1715         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1716                 /* Flush pending updates to the LRU lists */
1717                 lru_add_drain_all();
1718
1719                 compact_node(nid);
1720         }
1721
1722         return count;
1723 }
1724 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1725
1726 int compaction_register_node(struct node *node)
1727 {
1728         return device_create_file(&node->dev, &dev_attr_compact);
1729 }
1730
1731 void compaction_unregister_node(struct node *node)
1732 {
1733         return device_remove_file(&node->dev, &dev_attr_compact);
1734 }
1735 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1736
1737 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1738 {
1739         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1740 }
1741
1742 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1743 {
1744         int zoneid;
1745         struct zone *zone;
1746         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1747
1748         for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
1749                 zone = &pgdat->node_zones[zoneid];
1750
1751                 if (!populated_zone(zone))
1752                         continue;
1753
1754                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1755                                         classzone_idx) == COMPACT_CONTINUE)
1756                         return true;
1757         }
1758
1759         return false;
1760 }
1761
1762 static void kcompactd_do_work(pg_data_t *pgdat)
1763 {
1764         /*
1765          * With no special task, compact all zones so that a page of requested
1766          * order is allocatable.
1767          */
1768         int zoneid;
1769         struct zone *zone;
1770         struct compact_control cc = {
1771                 .order = pgdat->kcompactd_max_order,
1772                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1773                 .mode = MIGRATE_SYNC_LIGHT,
1774                 .ignore_skip_hint = true,
1775
1776         };
1777         bool success = false;
1778
1779         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1780                                                         cc.classzone_idx);
1781         count_vm_event(KCOMPACTD_WAKE);
1782
1783         for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
1784                 int status;
1785
1786                 zone = &pgdat->node_zones[zoneid];
1787                 if (!populated_zone(zone))
1788                         continue;
1789
1790                 if (compaction_deferred(zone, cc.order))
1791                         continue;
1792
1793                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1794                                                         COMPACT_CONTINUE)
1795                         continue;
1796
1797                 cc.nr_freepages = 0;
1798                 cc.nr_migratepages = 0;
1799                 cc.zone = zone;
1800                 INIT_LIST_HEAD(&cc.freepages);
1801                 INIT_LIST_HEAD(&cc.migratepages);
1802
1803                 if (kthread_should_stop())
1804                         return;
1805                 status = compact_zone(zone, &cc);
1806
1807                 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1808                                                 cc.classzone_idx, 0)) {
1809                         success = true;
1810                         compaction_defer_reset(zone, cc.order, false);
1811                 } else if (status == COMPACT_COMPLETE) {
1812                         /*
1813                          * We use sync migration mode here, so we defer like
1814                          * sync direct compaction does.
1815                          */
1816                         defer_compaction(zone, cc.order);
1817                 }
1818
1819                 VM_BUG_ON(!list_empty(&cc.freepages));
1820                 VM_BUG_ON(!list_empty(&cc.migratepages));
1821         }
1822
1823         /*
1824          * Regardless of success, we are done until woken up next. But remember
1825          * the requested order/classzone_idx in case it was higher/tighter than
1826          * our current ones
1827          */
1828         if (pgdat->kcompactd_max_order <= cc.order)
1829                 pgdat->kcompactd_max_order = 0;
1830         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1831                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1832 }
1833
1834 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1835 {
1836         if (!order)
1837                 return;
1838
1839         if (pgdat->kcompactd_max_order < order)
1840                 pgdat->kcompactd_max_order = order;
1841
1842         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1843                 pgdat->kcompactd_classzone_idx = classzone_idx;
1844
1845         if (!waitqueue_active(&pgdat->kcompactd_wait))
1846                 return;
1847
1848         if (!kcompactd_node_suitable(pgdat))
1849                 return;
1850
1851         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1852                                                         classzone_idx);
1853         wake_up_interruptible(&pgdat->kcompactd_wait);
1854 }
1855
1856 /*
1857  * The background compaction daemon, started as a kernel thread
1858  * from the init process.
1859  */
1860 static int kcompactd(void *p)
1861 {
1862         pg_data_t *pgdat = (pg_data_t*)p;
1863         struct task_struct *tsk = current;
1864
1865         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1866
1867         if (!cpumask_empty(cpumask))
1868                 set_cpus_allowed_ptr(tsk, cpumask);
1869
1870         set_freezable();
1871
1872         pgdat->kcompactd_max_order = 0;
1873         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1874
1875         while (!kthread_should_stop()) {
1876                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1877                 wait_event_freezable(pgdat->kcompactd_wait,
1878                                 kcompactd_work_requested(pgdat));
1879
1880                 kcompactd_do_work(pgdat);
1881         }
1882
1883         return 0;
1884 }
1885
1886 /*
1887  * This kcompactd start function will be called by init and node-hot-add.
1888  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
1889  */
1890 int kcompactd_run(int nid)
1891 {
1892         pg_data_t *pgdat = NODE_DATA(nid);
1893         int ret = 0;
1894
1895         if (pgdat->kcompactd)
1896                 return 0;
1897
1898         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
1899         if (IS_ERR(pgdat->kcompactd)) {
1900                 pr_err("Failed to start kcompactd on node %d\n", nid);
1901                 ret = PTR_ERR(pgdat->kcompactd);
1902                 pgdat->kcompactd = NULL;
1903         }
1904         return ret;
1905 }
1906
1907 /*
1908  * Called by memory hotplug when all memory in a node is offlined. Caller must
1909  * hold mem_hotplug_begin/end().
1910  */
1911 void kcompactd_stop(int nid)
1912 {
1913         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
1914
1915         if (kcompactd) {
1916                 kthread_stop(kcompactd);
1917                 NODE_DATA(nid)->kcompactd = NULL;
1918         }
1919 }
1920
1921 /*
1922  * It's optimal to keep kcompactd on the same CPUs as their memory, but
1923  * not required for correctness. So if the last cpu in a node goes
1924  * away, we get changed to run anywhere: as the first one comes back,
1925  * restore their cpu bindings.
1926  */
1927 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
1928                         void *hcpu)
1929 {
1930         int nid;
1931
1932         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1933                 for_each_node_state(nid, N_MEMORY) {
1934                         pg_data_t *pgdat = NODE_DATA(nid);
1935                         const struct cpumask *mask;
1936
1937                         mask = cpumask_of_node(pgdat->node_id);
1938
1939                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1940                                 /* One of our CPUs online: restore mask */
1941                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
1942                 }
1943         }
1944         return NOTIFY_OK;
1945 }
1946
1947 static int __init kcompactd_init(void)
1948 {
1949         int nid;
1950
1951         for_each_node_state(nid, N_MEMORY)
1952                 kcompactd_run(nid);
1953         hotcpu_notifier(cpu_callback, 0);
1954         return 0;
1955 }
1956 subsys_initcall(kcompactd_init)
1957
1958 #endif /* CONFIG_COMPACTION */