4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
33 * FIXME: remove all knowledge of the buffer layer from the core VM
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
37 #include <asm/uaccess.h>
41 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42 loff_t offset, unsigned long nr_segs);
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * Shared mappings now work. 15.8.1995 Bruno.
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * ->i_mmap_lock (vmtruncate)
60 * ->private_lock (__free_pte->__set_page_dirty_buffers)
61 * ->swap_lock (exclusive_swap_page, others)
62 * ->mapping->tree_lock
65 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->page_table_lock or pte_lock (various, mainly in memory.c)
70 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 * ->lock_page (access_process_vm)
79 * ->i_alloc_sem (various)
82 * ->sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
86 * ->anon_vma.lock (vma_adjust)
89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 * ->page_table_lock or pte_lock
92 * ->swap_lock (try_to_unmap_one)
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * ->inode_lock (page_remove_rmap->set_page_dirty)
99 * ->inode_lock (zap_pte_range->set_page_dirty)
100 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 * ->dcache_lock (proc_pid_lookup)
107 * Remove a page from the page cache and free it. Caller has to make
108 * sure the page is locked and that nobody else uses it - or that usage
109 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
111 void __remove_from_page_cache(struct page *page)
113 struct address_space *mapping = page->mapping;
115 radix_tree_delete(&mapping->page_tree, page->index);
116 page->mapping = NULL;
121 void remove_from_page_cache(struct page *page)
123 struct address_space *mapping = page->mapping;
125 BUG_ON(!PageLocked(page));
127 write_lock_irq(&mapping->tree_lock);
128 __remove_from_page_cache(page);
129 write_unlock_irq(&mapping->tree_lock);
132 static int sync_page(void *word)
134 struct address_space *mapping;
137 page = container_of((unsigned long *)word, struct page, flags);
140 * page_mapping() is being called without PG_locked held.
141 * Some knowledge of the state and use of the page is used to
142 * reduce the requirements down to a memory barrier.
143 * The danger here is of a stale page_mapping() return value
144 * indicating a struct address_space different from the one it's
145 * associated with when it is associated with one.
146 * After smp_mb(), it's either the correct page_mapping() for
147 * the page, or an old page_mapping() and the page's own
148 * page_mapping() has gone NULL.
149 * The ->sync_page() address_space operation must tolerate
150 * page_mapping() going NULL. By an amazing coincidence,
151 * this comes about because none of the users of the page
152 * in the ->sync_page() methods make essential use of the
153 * page_mapping(), merely passing the page down to the backing
154 * device's unplug functions when it's non-NULL, which in turn
155 * ignore it for all cases but swap, where only page_private(page) is
156 * of interest. When page_mapping() does go NULL, the entire
157 * call stack gracefully ignores the page and returns.
161 mapping = page_mapping(page);
162 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163 mapping->a_ops->sync_page(page);
169 * filemap_fdatawrite_range - start writeback against all of a mapping's
170 * dirty pages that lie within the byte offsets <start, end>
171 * @mapping: address space structure to write
172 * @start: offset in bytes where the range starts
173 * @end: offset in bytes where the range ends
174 * @sync_mode: enable synchronous operation
176 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177 * opposed to a regular memory * cleansing writeback. The difference between
178 * these two operations is that if a dirty page/buffer is encountered, it must
179 * be waited upon, and not just skipped over.
181 static int __filemap_fdatawrite_range(struct address_space *mapping,
182 loff_t start, loff_t end, int sync_mode)
185 struct writeback_control wbc = {
186 .sync_mode = sync_mode,
187 .nr_to_write = mapping->nrpages * 2,
192 if (!mapping_cap_writeback_dirty(mapping))
195 ret = do_writepages(mapping, &wbc);
199 static inline int __filemap_fdatawrite(struct address_space *mapping,
202 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
205 int filemap_fdatawrite(struct address_space *mapping)
207 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
209 EXPORT_SYMBOL(filemap_fdatawrite);
211 static int filemap_fdatawrite_range(struct address_space *mapping,
212 loff_t start, loff_t end)
214 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
218 * This is a mostly non-blocking flush. Not suitable for data-integrity
219 * purposes - I/O may not be started against all dirty pages.
221 int filemap_flush(struct address_space *mapping)
223 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
225 EXPORT_SYMBOL(filemap_flush);
228 * Wait for writeback to complete against pages indexed by start->end
231 static int wait_on_page_writeback_range(struct address_space *mapping,
232 pgoff_t start, pgoff_t end)
242 pagevec_init(&pvec, 0);
244 while ((index <= end) &&
245 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246 PAGECACHE_TAG_WRITEBACK,
247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
250 for (i = 0; i < nr_pages; i++) {
251 struct page *page = pvec.pages[i];
253 /* until radix tree lookup accepts end_index */
254 if (page->index > end)
257 wait_on_page_writeback(page);
261 pagevec_release(&pvec);
265 /* Check for outstanding write errors */
266 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
268 if (test_and_clear_bit(AS_EIO, &mapping->flags))
275 * Write and wait upon all the pages in the passed range. This is a "data
276 * integrity" operation. It waits upon in-flight writeout before starting and
277 * waiting upon new writeout. If there was an IO error, return it.
279 * We need to re-take i_sem during the generic_osync_inode list walk because
280 * it is otherwise livelockable.
282 int sync_page_range(struct inode *inode, struct address_space *mapping,
283 loff_t pos, size_t count)
285 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
289 if (!mapping_cap_writeback_dirty(mapping) || !count)
291 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
294 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
298 ret = wait_on_page_writeback_range(mapping, start, end);
301 EXPORT_SYMBOL(sync_page_range);
304 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
305 * as it forces O_SYNC writers to different parts of the same file
306 * to be serialised right until io completion.
308 static int sync_page_range_nolock(struct inode *inode,
309 struct address_space *mapping,
310 loff_t pos, size_t count)
312 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
313 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
316 if (!mapping_cap_writeback_dirty(mapping) || !count)
318 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
320 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
322 ret = wait_on_page_writeback_range(mapping, start, end);
327 * filemap_fdatawait - walk the list of under-writeback pages of the given
328 * address space and wait for all of them.
330 * @mapping: address space structure to wait for
332 int filemap_fdatawait(struct address_space *mapping)
334 loff_t i_size = i_size_read(mapping->host);
339 return wait_on_page_writeback_range(mapping, 0,
340 (i_size - 1) >> PAGE_CACHE_SHIFT);
342 EXPORT_SYMBOL(filemap_fdatawait);
344 int filemap_write_and_wait(struct address_space *mapping)
348 if (mapping->nrpages) {
349 retval = filemap_fdatawrite(mapping);
351 retval = filemap_fdatawait(mapping);
356 int filemap_write_and_wait_range(struct address_space *mapping,
357 loff_t lstart, loff_t lend)
361 if (mapping->nrpages) {
362 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
365 retval = wait_on_page_writeback_range(mapping,
366 lstart >> PAGE_CACHE_SHIFT,
367 lend >> PAGE_CACHE_SHIFT);
373 * This function is used to add newly allocated pagecache pages:
374 * the page is new, so we can just run SetPageLocked() against it.
375 * The other page state flags were set by rmqueue().
377 * This function does not add the page to the LRU. The caller must do that.
379 int add_to_page_cache(struct page *page, struct address_space *mapping,
380 pgoff_t offset, gfp_t gfp_mask)
382 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
385 write_lock_irq(&mapping->tree_lock);
386 error = radix_tree_insert(&mapping->page_tree, offset, page);
388 page_cache_get(page);
390 page->mapping = mapping;
391 page->index = offset;
395 write_unlock_irq(&mapping->tree_lock);
396 radix_tree_preload_end();
401 EXPORT_SYMBOL(add_to_page_cache);
403 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
404 pgoff_t offset, gfp_t gfp_mask)
406 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
413 * In order to wait for pages to become available there must be
414 * waitqueues associated with pages. By using a hash table of
415 * waitqueues where the bucket discipline is to maintain all
416 * waiters on the same queue and wake all when any of the pages
417 * become available, and for the woken contexts to check to be
418 * sure the appropriate page became available, this saves space
419 * at a cost of "thundering herd" phenomena during rare hash
422 static wait_queue_head_t *page_waitqueue(struct page *page)
424 const struct zone *zone = page_zone(page);
426 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
429 static inline void wake_up_page(struct page *page, int bit)
431 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
434 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
436 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
438 if (test_bit(bit_nr, &page->flags))
439 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
440 TASK_UNINTERRUPTIBLE);
442 EXPORT_SYMBOL(wait_on_page_bit);
445 * unlock_page() - unlock a locked page
449 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
450 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
451 * mechananism between PageLocked pages and PageWriteback pages is shared.
452 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
454 * The first mb is necessary to safely close the critical section opened by the
455 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
456 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
457 * parallel wait_on_page_locked()).
459 void fastcall unlock_page(struct page *page)
461 smp_mb__before_clear_bit();
462 if (!TestClearPageLocked(page))
464 smp_mb__after_clear_bit();
465 wake_up_page(page, PG_locked);
467 EXPORT_SYMBOL(unlock_page);
470 * End writeback against a page.
472 void end_page_writeback(struct page *page)
474 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
475 if (!test_clear_page_writeback(page))
478 smp_mb__after_clear_bit();
479 wake_up_page(page, PG_writeback);
481 EXPORT_SYMBOL(end_page_writeback);
484 * Get a lock on the page, assuming we need to sleep to get it.
486 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
487 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
488 * chances are that on the second loop, the block layer's plug list is empty,
489 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
491 void fastcall __lock_page(struct page *page)
493 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
495 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
496 TASK_UNINTERRUPTIBLE);
498 EXPORT_SYMBOL(__lock_page);
501 * a rather lightweight function, finding and getting a reference to a
502 * hashed page atomically.
504 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
508 read_lock_irq(&mapping->tree_lock);
509 page = radix_tree_lookup(&mapping->page_tree, offset);
511 page_cache_get(page);
512 read_unlock_irq(&mapping->tree_lock);
516 EXPORT_SYMBOL(find_get_page);
519 * Same as above, but trylock it instead of incrementing the count.
521 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
525 read_lock_irq(&mapping->tree_lock);
526 page = radix_tree_lookup(&mapping->page_tree, offset);
527 if (page && TestSetPageLocked(page))
529 read_unlock_irq(&mapping->tree_lock);
533 EXPORT_SYMBOL(find_trylock_page);
536 * find_lock_page - locate, pin and lock a pagecache page
538 * @mapping: the address_space to search
539 * @offset: the page index
541 * Locates the desired pagecache page, locks it, increments its reference
542 * count and returns its address.
544 * Returns zero if the page was not present. find_lock_page() may sleep.
546 struct page *find_lock_page(struct address_space *mapping,
547 unsigned long offset)
551 read_lock_irq(&mapping->tree_lock);
553 page = radix_tree_lookup(&mapping->page_tree, offset);
555 page_cache_get(page);
556 if (TestSetPageLocked(page)) {
557 read_unlock_irq(&mapping->tree_lock);
559 read_lock_irq(&mapping->tree_lock);
561 /* Has the page been truncated while we slept? */
562 if (page->mapping != mapping || page->index != offset) {
564 page_cache_release(page);
569 read_unlock_irq(&mapping->tree_lock);
573 EXPORT_SYMBOL(find_lock_page);
576 * find_or_create_page - locate or add a pagecache page
578 * @mapping: the page's address_space
579 * @index: the page's index into the mapping
580 * @gfp_mask: page allocation mode
582 * Locates a page in the pagecache. If the page is not present, a new page
583 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
584 * LRU list. The returned page is locked and has its reference count
587 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
590 * find_or_create_page() returns the desired page's address, or zero on
593 struct page *find_or_create_page(struct address_space *mapping,
594 unsigned long index, gfp_t gfp_mask)
596 struct page *page, *cached_page = NULL;
599 page = find_lock_page(mapping, index);
602 cached_page = alloc_page(gfp_mask);
606 err = add_to_page_cache_lru(cached_page, mapping,
611 } else if (err == -EEXIST)
615 page_cache_release(cached_page);
619 EXPORT_SYMBOL(find_or_create_page);
622 * find_get_pages - gang pagecache lookup
623 * @mapping: The address_space to search
624 * @start: The starting page index
625 * @nr_pages: The maximum number of pages
626 * @pages: Where the resulting pages are placed
628 * find_get_pages() will search for and return a group of up to
629 * @nr_pages pages in the mapping. The pages are placed at @pages.
630 * find_get_pages() takes a reference against the returned pages.
632 * The search returns a group of mapping-contiguous pages with ascending
633 * indexes. There may be holes in the indices due to not-present pages.
635 * find_get_pages() returns the number of pages which were found.
637 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
638 unsigned int nr_pages, struct page **pages)
643 read_lock_irq(&mapping->tree_lock);
644 ret = radix_tree_gang_lookup(&mapping->page_tree,
645 (void **)pages, start, nr_pages);
646 for (i = 0; i < ret; i++)
647 page_cache_get(pages[i]);
648 read_unlock_irq(&mapping->tree_lock);
653 * Like find_get_pages, except we only return pages which are tagged with
654 * `tag'. We update *index to index the next page for the traversal.
656 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
657 int tag, unsigned int nr_pages, struct page **pages)
662 read_lock_irq(&mapping->tree_lock);
663 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
664 (void **)pages, *index, nr_pages, tag);
665 for (i = 0; i < ret; i++)
666 page_cache_get(pages[i]);
668 *index = pages[ret - 1]->index + 1;
669 read_unlock_irq(&mapping->tree_lock);
674 * Same as grab_cache_page, but do not wait if the page is unavailable.
675 * This is intended for speculative data generators, where the data can
676 * be regenerated if the page couldn't be grabbed. This routine should
677 * be safe to call while holding the lock for another page.
679 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
680 * and deadlock against the caller's locked page.
683 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
685 struct page *page = find_get_page(mapping, index);
689 if (!TestSetPageLocked(page))
691 page_cache_release(page);
694 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
695 page = alloc_pages(gfp_mask, 0);
696 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
697 page_cache_release(page);
703 EXPORT_SYMBOL(grab_cache_page_nowait);
706 * This is a generic file read routine, and uses the
707 * mapping->a_ops->readpage() function for the actual low-level
710 * This is really ugly. But the goto's actually try to clarify some
711 * of the logic when it comes to error handling etc.
713 * Note the struct file* is only passed for the use of readpage. It may be
716 void do_generic_mapping_read(struct address_space *mapping,
717 struct file_ra_state *_ra,
720 read_descriptor_t *desc,
723 struct inode *inode = mapping->host;
725 unsigned long end_index;
726 unsigned long offset;
727 unsigned long last_index;
728 unsigned long next_index;
729 unsigned long prev_index;
731 struct page *cached_page;
733 struct file_ra_state ra = *_ra;
736 index = *ppos >> PAGE_CACHE_SHIFT;
738 prev_index = ra.prev_page;
739 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
740 offset = *ppos & ~PAGE_CACHE_MASK;
742 isize = i_size_read(inode);
746 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
749 unsigned long nr, ret;
751 /* nr is the maximum number of bytes to copy from this page */
752 nr = PAGE_CACHE_SIZE;
753 if (index >= end_index) {
754 if (index > end_index)
756 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
764 if (index == next_index)
765 next_index = page_cache_readahead(mapping, &ra, filp,
766 index, last_index - index);
769 page = find_get_page(mapping, index);
770 if (unlikely(page == NULL)) {
771 handle_ra_miss(mapping, &ra, index);
774 if (!PageUptodate(page))
775 goto page_not_up_to_date;
778 /* If users can be writing to this page using arbitrary
779 * virtual addresses, take care about potential aliasing
780 * before reading the page on the kernel side.
782 if (mapping_writably_mapped(mapping))
783 flush_dcache_page(page);
786 * When (part of) the same page is read multiple times
787 * in succession, only mark it as accessed the first time.
789 if (prev_index != index)
790 mark_page_accessed(page);
794 * Ok, we have the page, and it's up-to-date, so
795 * now we can copy it to user space...
797 * The actor routine returns how many bytes were actually used..
798 * NOTE! This may not be the same as how much of a user buffer
799 * we filled up (we may be padding etc), so we can only update
800 * "pos" here (the actor routine has to update the user buffer
801 * pointers and the remaining count).
803 ret = actor(desc, page, offset, nr);
805 index += offset >> PAGE_CACHE_SHIFT;
806 offset &= ~PAGE_CACHE_MASK;
808 page_cache_release(page);
809 if (ret == nr && desc->count)
814 /* Get exclusive access to the page ... */
817 /* Did it get unhashed before we got the lock? */
818 if (!page->mapping) {
820 page_cache_release(page);
824 /* Did somebody else fill it already? */
825 if (PageUptodate(page)) {
831 /* Start the actual read. The read will unlock the page. */
832 error = mapping->a_ops->readpage(filp, page);
834 if (unlikely(error)) {
835 if (error == AOP_TRUNCATED_PAGE) {
836 page_cache_release(page);
842 if (!PageUptodate(page)) {
844 if (!PageUptodate(page)) {
845 if (page->mapping == NULL) {
847 * invalidate_inode_pages got it
850 page_cache_release(page);
861 * i_size must be checked after we have done ->readpage.
863 * Checking i_size after the readpage allows us to calculate
864 * the correct value for "nr", which means the zero-filled
865 * part of the page is not copied back to userspace (unless
866 * another truncate extends the file - this is desired though).
868 isize = i_size_read(inode);
869 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
870 if (unlikely(!isize || index > end_index)) {
871 page_cache_release(page);
875 /* nr is the maximum number of bytes to copy from this page */
876 nr = PAGE_CACHE_SIZE;
877 if (index == end_index) {
878 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
880 page_cache_release(page);
888 /* UHHUH! A synchronous read error occurred. Report it */
890 page_cache_release(page);
895 * Ok, it wasn't cached, so we need to create a new
899 cached_page = page_cache_alloc_cold(mapping);
901 desc->error = -ENOMEM;
905 error = add_to_page_cache_lru(cached_page, mapping,
908 if (error == -EEXIST)
921 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
923 page_cache_release(cached_page);
928 EXPORT_SYMBOL(do_generic_mapping_read);
930 int file_read_actor(read_descriptor_t *desc, struct page *page,
931 unsigned long offset, unsigned long size)
934 unsigned long left, count = desc->count;
940 * Faults on the destination of a read are common, so do it before
943 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
944 kaddr = kmap_atomic(page, KM_USER0);
945 left = __copy_to_user_inatomic(desc->arg.buf,
946 kaddr + offset, size);
947 kunmap_atomic(kaddr, KM_USER0);
952 /* Do it the slow way */
954 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
959 desc->error = -EFAULT;
962 desc->count = count - size;
963 desc->written += size;
964 desc->arg.buf += size;
969 * This is the "read()" routine for all filesystems
970 * that can use the page cache directly.
973 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
974 unsigned long nr_segs, loff_t *ppos)
976 struct file *filp = iocb->ki_filp;
982 for (seg = 0; seg < nr_segs; seg++) {
983 const struct iovec *iv = &iov[seg];
986 * If any segment has a negative length, or the cumulative
987 * length ever wraps negative then return -EINVAL.
989 count += iv->iov_len;
990 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
992 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
997 count -= iv->iov_len; /* This segment is no good */
1001 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1002 if (filp->f_flags & O_DIRECT) {
1003 loff_t pos = *ppos, size;
1004 struct address_space *mapping;
1005 struct inode *inode;
1007 mapping = filp->f_mapping;
1008 inode = mapping->host;
1011 goto out; /* skip atime */
1012 size = i_size_read(inode);
1014 retval = generic_file_direct_IO(READ, iocb,
1016 if (retval > 0 && !is_sync_kiocb(iocb))
1017 retval = -EIOCBQUEUED;
1019 *ppos = pos + retval;
1021 file_accessed(filp);
1027 for (seg = 0; seg < nr_segs; seg++) {
1028 read_descriptor_t desc;
1031 desc.arg.buf = iov[seg].iov_base;
1032 desc.count = iov[seg].iov_len;
1033 if (desc.count == 0)
1036 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1037 retval += desc.written;
1039 retval = retval ?: desc.error;
1048 EXPORT_SYMBOL(__generic_file_aio_read);
1051 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1053 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1055 BUG_ON(iocb->ki_pos != pos);
1056 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1059 EXPORT_SYMBOL(generic_file_aio_read);
1062 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1064 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1068 init_sync_kiocb(&kiocb, filp);
1069 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1070 if (-EIOCBQUEUED == ret)
1071 ret = wait_on_sync_kiocb(&kiocb);
1075 EXPORT_SYMBOL(generic_file_read);
1077 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1080 unsigned long count = desc->count;
1081 struct file *file = desc->arg.data;
1086 written = file->f_op->sendpage(file, page, offset,
1087 size, &file->f_pos, size<count);
1089 desc->error = written;
1092 desc->count = count - written;
1093 desc->written += written;
1097 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1098 size_t count, read_actor_t actor, void *target)
1100 read_descriptor_t desc;
1107 desc.arg.data = target;
1110 do_generic_file_read(in_file, ppos, &desc, actor);
1112 return desc.written;
1116 EXPORT_SYMBOL(generic_file_sendfile);
1119 do_readahead(struct address_space *mapping, struct file *filp,
1120 unsigned long index, unsigned long nr)
1122 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1125 force_page_cache_readahead(mapping, filp, index,
1126 max_sane_readahead(nr));
1130 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1138 if (file->f_mode & FMODE_READ) {
1139 struct address_space *mapping = file->f_mapping;
1140 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1141 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1142 unsigned long len = end - start + 1;
1143 ret = do_readahead(mapping, file, start, len);
1152 * This adds the requested page to the page cache if it isn't already there,
1153 * and schedules an I/O to read in its contents from disk.
1155 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1156 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1158 struct address_space *mapping = file->f_mapping;
1163 page = page_cache_alloc_cold(mapping);
1167 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1169 ret = mapping->a_ops->readpage(file, page);
1170 else if (ret == -EEXIST)
1171 ret = 0; /* losing race to add is OK */
1173 page_cache_release(page);
1175 } while (ret == AOP_TRUNCATED_PAGE);
1180 #define MMAP_LOTSAMISS (100)
1183 * filemap_nopage() is invoked via the vma operations vector for a
1184 * mapped memory region to read in file data during a page fault.
1186 * The goto's are kind of ugly, but this streamlines the normal case of having
1187 * it in the page cache, and handles the special cases reasonably without
1188 * having a lot of duplicated code.
1190 struct page *filemap_nopage(struct vm_area_struct *area,
1191 unsigned long address, int *type)
1194 struct file *file = area->vm_file;
1195 struct address_space *mapping = file->f_mapping;
1196 struct file_ra_state *ra = &file->f_ra;
1197 struct inode *inode = mapping->host;
1199 unsigned long size, pgoff;
1200 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1202 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1205 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1207 goto outside_data_content;
1209 /* If we don't want any read-ahead, don't bother */
1210 if (VM_RandomReadHint(area))
1211 goto no_cached_page;
1214 * The readahead code wants to be told about each and every page
1215 * so it can build and shrink its windows appropriately
1217 * For sequential accesses, we use the generic readahead logic.
1219 if (VM_SequentialReadHint(area))
1220 page_cache_readahead(mapping, ra, file, pgoff, 1);
1223 * Do we have something in the page cache already?
1226 page = find_get_page(mapping, pgoff);
1228 unsigned long ra_pages;
1230 if (VM_SequentialReadHint(area)) {
1231 handle_ra_miss(mapping, ra, pgoff);
1232 goto no_cached_page;
1237 * Do we miss much more than hit in this file? If so,
1238 * stop bothering with read-ahead. It will only hurt.
1240 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1241 goto no_cached_page;
1244 * To keep the pgmajfault counter straight, we need to
1245 * check did_readaround, as this is an inner loop.
1247 if (!did_readaround) {
1248 majmin = VM_FAULT_MAJOR;
1249 inc_page_state(pgmajfault);
1252 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1256 if (pgoff > ra_pages / 2)
1257 start = pgoff - ra_pages / 2;
1258 do_page_cache_readahead(mapping, file, start, ra_pages);
1260 page = find_get_page(mapping, pgoff);
1262 goto no_cached_page;
1265 if (!did_readaround)
1269 * Ok, found a page in the page cache, now we need to check
1270 * that it's up-to-date.
1272 if (!PageUptodate(page))
1273 goto page_not_uptodate;
1277 * Found the page and have a reference on it.
1279 mark_page_accessed(page);
1284 outside_data_content:
1286 * An external ptracer can access pages that normally aren't
1289 if (area->vm_mm == current->mm)
1291 /* Fall through to the non-read-ahead case */
1294 * We're only likely to ever get here if MADV_RANDOM is in
1297 error = page_cache_read(file, pgoff);
1301 * The page we want has now been added to the page cache.
1302 * In the unlikely event that someone removed it in the
1303 * meantime, we'll just come back here and read it again.
1309 * An error return from page_cache_read can result if the
1310 * system is low on memory, or a problem occurs while trying
1313 if (error == -ENOMEM)
1318 if (!did_readaround) {
1319 majmin = VM_FAULT_MAJOR;
1320 inc_page_state(pgmajfault);
1324 /* Did it get unhashed while we waited for it? */
1325 if (!page->mapping) {
1327 page_cache_release(page);
1331 /* Did somebody else get it up-to-date? */
1332 if (PageUptodate(page)) {
1337 error = mapping->a_ops->readpage(file, page);
1339 wait_on_page_locked(page);
1340 if (PageUptodate(page))
1342 } else if (error == AOP_TRUNCATED_PAGE) {
1343 page_cache_release(page);
1348 * Umm, take care of errors if the page isn't up-to-date.
1349 * Try to re-read it _once_. We do this synchronously,
1350 * because there really aren't any performance issues here
1351 * and we need to check for errors.
1355 /* Somebody truncated the page on us? */
1356 if (!page->mapping) {
1358 page_cache_release(page);
1362 /* Somebody else successfully read it in? */
1363 if (PageUptodate(page)) {
1367 ClearPageError(page);
1368 error = mapping->a_ops->readpage(file, page);
1370 wait_on_page_locked(page);
1371 if (PageUptodate(page))
1373 } else if (error == AOP_TRUNCATED_PAGE) {
1374 page_cache_release(page);
1379 * Things didn't work out. Return zero to tell the
1380 * mm layer so, possibly freeing the page cache page first.
1382 page_cache_release(page);
1386 EXPORT_SYMBOL(filemap_nopage);
1388 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1391 struct address_space *mapping = file->f_mapping;
1396 * Do we have something in the page cache already?
1399 page = find_get_page(mapping, pgoff);
1403 goto no_cached_page;
1407 * Ok, found a page in the page cache, now we need to check
1408 * that it's up-to-date.
1410 if (!PageUptodate(page)) {
1412 page_cache_release(page);
1415 goto page_not_uptodate;
1420 * Found the page and have a reference on it.
1422 mark_page_accessed(page);
1426 error = page_cache_read(file, pgoff);
1429 * The page we want has now been added to the page cache.
1430 * In the unlikely event that someone removed it in the
1431 * meantime, we'll just come back here and read it again.
1437 * An error return from page_cache_read can result if the
1438 * system is low on memory, or a problem occurs while trying
1446 /* Did it get unhashed while we waited for it? */
1447 if (!page->mapping) {
1452 /* Did somebody else get it up-to-date? */
1453 if (PageUptodate(page)) {
1458 error = mapping->a_ops->readpage(file, page);
1460 wait_on_page_locked(page);
1461 if (PageUptodate(page))
1463 } else if (error == AOP_TRUNCATED_PAGE) {
1464 page_cache_release(page);
1469 * Umm, take care of errors if the page isn't up-to-date.
1470 * Try to re-read it _once_. We do this synchronously,
1471 * because there really aren't any performance issues here
1472 * and we need to check for errors.
1476 /* Somebody truncated the page on us? */
1477 if (!page->mapping) {
1481 /* Somebody else successfully read it in? */
1482 if (PageUptodate(page)) {
1487 ClearPageError(page);
1488 error = mapping->a_ops->readpage(file, page);
1490 wait_on_page_locked(page);
1491 if (PageUptodate(page))
1493 } else if (error == AOP_TRUNCATED_PAGE) {
1494 page_cache_release(page);
1499 * Things didn't work out. Return zero to tell the
1500 * mm layer so, possibly freeing the page cache page first.
1503 page_cache_release(page);
1508 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1509 unsigned long len, pgprot_t prot, unsigned long pgoff,
1512 struct file *file = vma->vm_file;
1513 struct address_space *mapping = file->f_mapping;
1514 struct inode *inode = mapping->host;
1516 struct mm_struct *mm = vma->vm_mm;
1521 force_page_cache_readahead(mapping, vma->vm_file,
1522 pgoff, len >> PAGE_CACHE_SHIFT);
1525 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1526 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1529 page = filemap_getpage(file, pgoff, nonblock);
1531 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1532 * done in shmem_populate calling shmem_getpage */
1533 if (!page && !nonblock)
1537 err = install_page(mm, vma, addr, page, prot);
1539 page_cache_release(page);
1542 } else if (vma->vm_flags & VM_NONLINEAR) {
1543 /* No page was found just because we can't read it in now (being
1544 * here implies nonblock != 0), but the page may exist, so set
1545 * the PTE to fault it in later. */
1546 err = install_file_pte(mm, vma, addr, pgoff, prot);
1559 EXPORT_SYMBOL(filemap_populate);
1561 struct vm_operations_struct generic_file_vm_ops = {
1562 .nopage = filemap_nopage,
1563 .populate = filemap_populate,
1566 /* This is used for a general mmap of a disk file */
1568 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1570 struct address_space *mapping = file->f_mapping;
1572 if (!mapping->a_ops->readpage)
1574 file_accessed(file);
1575 vma->vm_ops = &generic_file_vm_ops;
1580 * This is for filesystems which do not implement ->writepage.
1582 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1584 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1586 return generic_file_mmap(file, vma);
1589 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1593 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1597 #endif /* CONFIG_MMU */
1599 EXPORT_SYMBOL(generic_file_mmap);
1600 EXPORT_SYMBOL(generic_file_readonly_mmap);
1602 static inline struct page *__read_cache_page(struct address_space *mapping,
1603 unsigned long index,
1604 int (*filler)(void *,struct page*),
1607 struct page *page, *cached_page = NULL;
1610 page = find_get_page(mapping, index);
1613 cached_page = page_cache_alloc_cold(mapping);
1615 return ERR_PTR(-ENOMEM);
1617 err = add_to_page_cache_lru(cached_page, mapping,
1622 /* Presumably ENOMEM for radix tree node */
1623 page_cache_release(cached_page);
1624 return ERR_PTR(err);
1628 err = filler(data, page);
1630 page_cache_release(page);
1631 page = ERR_PTR(err);
1635 page_cache_release(cached_page);
1640 * Read into the page cache. If a page already exists,
1641 * and PageUptodate() is not set, try to fill the page.
1643 struct page *read_cache_page(struct address_space *mapping,
1644 unsigned long index,
1645 int (*filler)(void *,struct page*),
1652 page = __read_cache_page(mapping, index, filler, data);
1655 mark_page_accessed(page);
1656 if (PageUptodate(page))
1660 if (!page->mapping) {
1662 page_cache_release(page);
1665 if (PageUptodate(page)) {
1669 err = filler(data, page);
1671 page_cache_release(page);
1672 page = ERR_PTR(err);
1678 EXPORT_SYMBOL(read_cache_page);
1681 * If the page was newly created, increment its refcount and add it to the
1682 * caller's lru-buffering pagevec. This function is specifically for
1683 * generic_file_write().
1685 static inline struct page *
1686 __grab_cache_page(struct address_space *mapping, unsigned long index,
1687 struct page **cached_page, struct pagevec *lru_pvec)
1692 page = find_lock_page(mapping, index);
1694 if (!*cached_page) {
1695 *cached_page = page_cache_alloc(mapping);
1699 err = add_to_page_cache(*cached_page, mapping,
1704 page = *cached_page;
1705 page_cache_get(page);
1706 if (!pagevec_add(lru_pvec, page))
1707 __pagevec_lru_add(lru_pvec);
1708 *cached_page = NULL;
1715 * The logic we want is
1717 * if suid or (sgid and xgrp)
1720 int remove_suid(struct dentry *dentry)
1722 mode_t mode = dentry->d_inode->i_mode;
1726 /* suid always must be killed */
1727 if (unlikely(mode & S_ISUID))
1728 kill = ATTR_KILL_SUID;
1731 * sgid without any exec bits is just a mandatory locking mark; leave
1732 * it alone. If some exec bits are set, it's a real sgid; kill it.
1734 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1735 kill |= ATTR_KILL_SGID;
1737 if (unlikely(kill && !capable(CAP_FSETID))) {
1738 struct iattr newattrs;
1740 newattrs.ia_valid = ATTR_FORCE | kill;
1741 result = notify_change(dentry, &newattrs);
1745 EXPORT_SYMBOL(remove_suid);
1748 __filemap_copy_from_user_iovec(char *vaddr,
1749 const struct iovec *iov, size_t base, size_t bytes)
1751 size_t copied = 0, left = 0;
1754 char __user *buf = iov->iov_base + base;
1755 int copy = min(bytes, iov->iov_len - base);
1758 left = __copy_from_user_inatomic(vaddr, buf, copy);
1764 if (unlikely(left)) {
1765 /* zero the rest of the target like __copy_from_user */
1767 memset(vaddr, 0, bytes);
1771 return copied - left;
1775 * Performs necessary checks before doing a write
1777 * Can adjust writing position aor amount of bytes to write.
1778 * Returns appropriate error code that caller should return or
1779 * zero in case that write should be allowed.
1781 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1783 struct inode *inode = file->f_mapping->host;
1784 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1786 if (unlikely(*pos < 0))
1790 /* FIXME: this is for backwards compatibility with 2.4 */
1791 if (file->f_flags & O_APPEND)
1792 *pos = i_size_read(inode);
1794 if (limit != RLIM_INFINITY) {
1795 if (*pos >= limit) {
1796 send_sig(SIGXFSZ, current, 0);
1799 if (*count > limit - (typeof(limit))*pos) {
1800 *count = limit - (typeof(limit))*pos;
1808 if (unlikely(*pos + *count > MAX_NON_LFS &&
1809 !(file->f_flags & O_LARGEFILE))) {
1810 if (*pos >= MAX_NON_LFS) {
1811 send_sig(SIGXFSZ, current, 0);
1814 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1815 *count = MAX_NON_LFS - (unsigned long)*pos;
1820 * Are we about to exceed the fs block limit ?
1822 * If we have written data it becomes a short write. If we have
1823 * exceeded without writing data we send a signal and return EFBIG.
1824 * Linus frestrict idea will clean these up nicely..
1826 if (likely(!isblk)) {
1827 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1828 if (*count || *pos > inode->i_sb->s_maxbytes) {
1829 send_sig(SIGXFSZ, current, 0);
1832 /* zero-length writes at ->s_maxbytes are OK */
1835 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1836 *count = inode->i_sb->s_maxbytes - *pos;
1839 if (bdev_read_only(I_BDEV(inode)))
1841 isize = i_size_read(inode);
1842 if (*pos >= isize) {
1843 if (*count || *pos > isize)
1847 if (*pos + *count > isize)
1848 *count = isize - *pos;
1852 EXPORT_SYMBOL(generic_write_checks);
1855 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1856 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1857 size_t count, size_t ocount)
1859 struct file *file = iocb->ki_filp;
1860 struct address_space *mapping = file->f_mapping;
1861 struct inode *inode = mapping->host;
1864 if (count != ocount)
1865 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1867 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1869 loff_t end = pos + written;
1870 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1871 i_size_write(inode, end);
1872 mark_inode_dirty(inode);
1878 * Sync the fs metadata but not the minor inode changes and
1879 * of course not the data as we did direct DMA for the IO.
1880 * i_sem is held, which protects generic_osync_inode() from
1883 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1884 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1888 if (written == count && !is_sync_kiocb(iocb))
1889 written = -EIOCBQUEUED;
1892 EXPORT_SYMBOL(generic_file_direct_write);
1895 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1896 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1897 size_t count, ssize_t written)
1899 struct file *file = iocb->ki_filp;
1900 struct address_space * mapping = file->f_mapping;
1901 struct address_space_operations *a_ops = mapping->a_ops;
1902 struct inode *inode = mapping->host;
1905 struct page *cached_page = NULL;
1907 struct pagevec lru_pvec;
1908 const struct iovec *cur_iov = iov; /* current iovec */
1909 size_t iov_base = 0; /* offset in the current iovec */
1912 pagevec_init(&lru_pvec, 0);
1915 * handle partial DIO write. Adjust cur_iov if needed.
1917 if (likely(nr_segs == 1))
1918 buf = iov->iov_base + written;
1920 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1921 buf = cur_iov->iov_base + iov_base;
1925 unsigned long index;
1926 unsigned long offset;
1927 unsigned long maxlen;
1930 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1931 index = pos >> PAGE_CACHE_SHIFT;
1932 bytes = PAGE_CACHE_SIZE - offset;
1937 * Bring in the user page that we will copy from _first_.
1938 * Otherwise there's a nasty deadlock on copying from the
1939 * same page as we're writing to, without it being marked
1942 maxlen = cur_iov->iov_len - iov_base;
1945 fault_in_pages_readable(buf, maxlen);
1947 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1953 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1954 if (unlikely(status)) {
1955 loff_t isize = i_size_read(inode);
1957 if (status != AOP_TRUNCATED_PAGE)
1959 page_cache_release(page);
1960 if (status == AOP_TRUNCATED_PAGE)
1963 * prepare_write() may have instantiated a few blocks
1964 * outside i_size. Trim these off again.
1966 if (pos + bytes > isize)
1967 vmtruncate(inode, isize);
1970 if (likely(nr_segs == 1))
1971 copied = filemap_copy_from_user(page, offset,
1974 copied = filemap_copy_from_user_iovec(page, offset,
1975 cur_iov, iov_base, bytes);
1976 flush_dcache_page(page);
1977 status = a_ops->commit_write(file, page, offset, offset+bytes);
1978 if (status == AOP_TRUNCATED_PAGE) {
1979 page_cache_release(page);
1982 if (likely(copied > 0)) {
1991 if (unlikely(nr_segs > 1)) {
1992 filemap_set_next_iovec(&cur_iov,
1995 buf = cur_iov->iov_base +
2002 if (unlikely(copied != bytes))
2006 mark_page_accessed(page);
2007 page_cache_release(page);
2010 balance_dirty_pages_ratelimited(mapping);
2016 page_cache_release(cached_page);
2019 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2021 if (likely(status >= 0)) {
2022 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2023 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2024 status = generic_osync_inode(inode, mapping,
2025 OSYNC_METADATA|OSYNC_DATA);
2030 * If we get here for O_DIRECT writes then we must have fallen through
2031 * to buffered writes (block instantiation inside i_size). So we sync
2032 * the file data here, to try to honour O_DIRECT expectations.
2034 if (unlikely(file->f_flags & O_DIRECT) && written)
2035 status = filemap_write_and_wait(mapping);
2037 pagevec_lru_add(&lru_pvec);
2038 return written ? written : status;
2040 EXPORT_SYMBOL(generic_file_buffered_write);
2043 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2044 unsigned long nr_segs, loff_t *ppos)
2046 struct file *file = iocb->ki_filp;
2047 struct address_space * mapping = file->f_mapping;
2048 size_t ocount; /* original count */
2049 size_t count; /* after file limit checks */
2050 struct inode *inode = mapping->host;
2057 for (seg = 0; seg < nr_segs; seg++) {
2058 const struct iovec *iv = &iov[seg];
2061 * If any segment has a negative length, or the cumulative
2062 * length ever wraps negative then return -EINVAL.
2064 ocount += iv->iov_len;
2065 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2067 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2072 ocount -= iv->iov_len; /* This segment is no good */
2079 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2081 /* We can write back this queue in page reclaim */
2082 current->backing_dev_info = mapping->backing_dev_info;
2085 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2092 err = remove_suid(file->f_dentry);
2096 inode_update_time(inode, 1);
2098 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2099 if (unlikely(file->f_flags & O_DIRECT)) {
2100 written = generic_file_direct_write(iocb, iov,
2101 &nr_segs, pos, ppos, count, ocount);
2102 if (written < 0 || written == count)
2105 * direct-io write to a hole: fall through to buffered I/O
2106 * for completing the rest of the request.
2112 written = generic_file_buffered_write(iocb, iov, nr_segs,
2113 pos, ppos, count, written);
2115 current->backing_dev_info = NULL;
2116 return written ? written : err;
2118 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2121 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2122 unsigned long nr_segs, loff_t *ppos)
2124 struct file *file = iocb->ki_filp;
2125 struct address_space *mapping = file->f_mapping;
2126 struct inode *inode = mapping->host;
2130 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2132 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2135 err = sync_page_range_nolock(inode, mapping, pos, ret);
2143 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2144 unsigned long nr_segs, loff_t *ppos)
2149 init_sync_kiocb(&kiocb, file);
2150 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2151 if (ret == -EIOCBQUEUED)
2152 ret = wait_on_sync_kiocb(&kiocb);
2157 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2158 unsigned long nr_segs, loff_t *ppos)
2163 init_sync_kiocb(&kiocb, file);
2164 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2165 if (-EIOCBQUEUED == ret)
2166 ret = wait_on_sync_kiocb(&kiocb);
2169 EXPORT_SYMBOL(generic_file_write_nolock);
2171 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2172 size_t count, loff_t pos)
2174 struct file *file = iocb->ki_filp;
2175 struct address_space *mapping = file->f_mapping;
2176 struct inode *inode = mapping->host;
2178 struct iovec local_iov = { .iov_base = (void __user *)buf,
2181 BUG_ON(iocb->ki_pos != pos);
2183 down(&inode->i_sem);
2184 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2188 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2191 err = sync_page_range(inode, mapping, pos, ret);
2197 EXPORT_SYMBOL(generic_file_aio_write);
2199 ssize_t generic_file_write(struct file *file, const char __user *buf,
2200 size_t count, loff_t *ppos)
2202 struct address_space *mapping = file->f_mapping;
2203 struct inode *inode = mapping->host;
2205 struct iovec local_iov = { .iov_base = (void __user *)buf,
2208 down(&inode->i_sem);
2209 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2212 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2215 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2221 EXPORT_SYMBOL(generic_file_write);
2223 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2224 unsigned long nr_segs, loff_t *ppos)
2229 init_sync_kiocb(&kiocb, filp);
2230 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2231 if (-EIOCBQUEUED == ret)
2232 ret = wait_on_sync_kiocb(&kiocb);
2235 EXPORT_SYMBOL(generic_file_readv);
2237 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2238 unsigned long nr_segs, loff_t *ppos)
2240 struct address_space *mapping = file->f_mapping;
2241 struct inode *inode = mapping->host;
2244 down(&inode->i_sem);
2245 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2248 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2251 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2257 EXPORT_SYMBOL(generic_file_writev);
2260 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2261 * went wrong during pagecache shootdown.
2264 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2265 loff_t offset, unsigned long nr_segs)
2267 struct file *file = iocb->ki_filp;
2268 struct address_space *mapping = file->f_mapping;
2270 size_t write_len = 0;
2273 * If it's a write, unmap all mmappings of the file up-front. This
2274 * will cause any pte dirty bits to be propagated into the pageframes
2275 * for the subsequent filemap_write_and_wait().
2278 write_len = iov_length(iov, nr_segs);
2279 if (mapping_mapped(mapping))
2280 unmap_mapping_range(mapping, offset, write_len, 0);
2283 retval = filemap_write_and_wait(mapping);
2285 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2287 if (rw == WRITE && mapping->nrpages) {
2288 pgoff_t end = (offset + write_len - 1)
2289 >> PAGE_CACHE_SHIFT;
2290 int err = invalidate_inode_pages2_range(mapping,
2291 offset >> PAGE_CACHE_SHIFT, end);