]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
mm: avoid null pointer access in vm_struct via /proc/vmallocinfo
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock             (proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         radix_tree_delete(&mapping->page_tree, page->index);
123         page->mapping = NULL;
124         mapping->nrpages--;
125         __dec_zone_page_state(page, NR_FILE_PAGES);
126         if (PageSwapBacked(page))
127                 __dec_zone_page_state(page, NR_SHMEM);
128         BUG_ON(page_mapped(page));
129
130         /*
131          * Some filesystems seem to re-dirty the page even after
132          * the VM has canceled the dirty bit (eg ext3 journaling).
133          *
134          * Fix it up by doing a final dirty accounting check after
135          * having removed the page entirely.
136          */
137         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138                 dec_zone_page_state(page, NR_FILE_DIRTY);
139                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140         }
141 }
142
143 void remove_from_page_cache(struct page *page)
144 {
145         struct address_space *mapping = page->mapping;
146
147         BUG_ON(!PageLocked(page));
148
149         spin_lock_irq(&mapping->tree_lock);
150         __remove_from_page_cache(page);
151         spin_unlock_irq(&mapping->tree_lock);
152         mem_cgroup_uncharge_cache_page(page);
153 }
154
155 static int sync_page(void *word)
156 {
157         struct address_space *mapping;
158         struct page *page;
159
160         page = container_of((unsigned long *)word, struct page, flags);
161
162         /*
163          * page_mapping() is being called without PG_locked held.
164          * Some knowledge of the state and use of the page is used to
165          * reduce the requirements down to a memory barrier.
166          * The danger here is of a stale page_mapping() return value
167          * indicating a struct address_space different from the one it's
168          * associated with when it is associated with one.
169          * After smp_mb(), it's either the correct page_mapping() for
170          * the page, or an old page_mapping() and the page's own
171          * page_mapping() has gone NULL.
172          * The ->sync_page() address_space operation must tolerate
173          * page_mapping() going NULL. By an amazing coincidence,
174          * this comes about because none of the users of the page
175          * in the ->sync_page() methods make essential use of the
176          * page_mapping(), merely passing the page down to the backing
177          * device's unplug functions when it's non-NULL, which in turn
178          * ignore it for all cases but swap, where only page_private(page) is
179          * of interest. When page_mapping() does go NULL, the entire
180          * call stack gracefully ignores the page and returns.
181          * -- wli
182          */
183         smp_mb();
184         mapping = page_mapping(page);
185         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186                 mapping->a_ops->sync_page(page);
187         io_schedule();
188         return 0;
189 }
190
191 static int sync_page_killable(void *word)
192 {
193         sync_page(word);
194         return fatal_signal_pending(current) ? -EINTR : 0;
195 }
196
197 /**
198  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199  * @mapping:    address space structure to write
200  * @start:      offset in bytes where the range starts
201  * @end:        offset in bytes where the range ends (inclusive)
202  * @sync_mode:  enable synchronous operation
203  *
204  * Start writeback against all of a mapping's dirty pages that lie
205  * within the byte offsets <start, end> inclusive.
206  *
207  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208  * opposed to a regular memory cleansing writeback.  The difference between
209  * these two operations is that if a dirty page/buffer is encountered, it must
210  * be waited upon, and not just skipped over.
211  */
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213                                 loff_t end, int sync_mode)
214 {
215         int ret;
216         struct writeback_control wbc = {
217                 .sync_mode = sync_mode,
218                 .nr_to_write = LONG_MAX,
219                 .range_start = start,
220                 .range_end = end,
221         };
222
223         if (!mapping_cap_writeback_dirty(mapping))
224                 return 0;
225
226         ret = do_writepages(mapping, &wbc);
227         return ret;
228 }
229
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231         int sync_mode)
232 {
233         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
234 }
235
236 int filemap_fdatawrite(struct address_space *mapping)
237 {
238         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239 }
240 EXPORT_SYMBOL(filemap_fdatawrite);
241
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243                                 loff_t end)
244 {
245         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 }
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
248
249 /**
250  * filemap_flush - mostly a non-blocking flush
251  * @mapping:    target address_space
252  *
253  * This is a mostly non-blocking flush.  Not suitable for data-integrity
254  * purposes - I/O may not be started against all dirty pages.
255  */
256 int filemap_flush(struct address_space *mapping)
257 {
258         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259 }
260 EXPORT_SYMBOL(filemap_flush);
261
262 /**
263  * wait_on_page_writeback_range - wait for writeback to complete
264  * @mapping:    target address_space
265  * @start:      beginning page index
266  * @end:        ending page index
267  *
268  * Wait for writeback to complete against pages indexed by start->end
269  * inclusive
270  */
271 int wait_on_page_writeback_range(struct address_space *mapping,
272                                 pgoff_t start, pgoff_t end)
273 {
274         struct pagevec pvec;
275         int nr_pages;
276         int ret = 0;
277         pgoff_t index;
278
279         if (end < start)
280                 return 0;
281
282         pagevec_init(&pvec, 0);
283         index = start;
284         while ((index <= end) &&
285                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286                         PAGECACHE_TAG_WRITEBACK,
287                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288                 unsigned i;
289
290                 for (i = 0; i < nr_pages; i++) {
291                         struct page *page = pvec.pages[i];
292
293                         /* until radix tree lookup accepts end_index */
294                         if (page->index > end)
295                                 continue;
296
297                         wait_on_page_writeback(page);
298                         if (PageError(page))
299                                 ret = -EIO;
300                 }
301                 pagevec_release(&pvec);
302                 cond_resched();
303         }
304
305         /* Check for outstanding write errors */
306         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307                 ret = -ENOSPC;
308         if (test_and_clear_bit(AS_EIO, &mapping->flags))
309                 ret = -EIO;
310
311         return ret;
312 }
313
314 /**
315  * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
316  * @mapping: address space structure to wait for
317  * @start:      offset in bytes where the range starts
318  * @end:        offset in bytes where the range ends (inclusive)
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * in the given range and wait for all of them.
322  *
323  * This is just a simple wrapper so that callers don't have to convert offsets
324  * to page indexes themselves
325  */
326 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
327                             loff_t end)
328 {
329         return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
330                                             end >> PAGE_CACHE_SHIFT);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait_range);
333
334 /**
335  * filemap_fdatawait - wait for all under-writeback pages to complete
336  * @mapping: address space structure to wait for
337  *
338  * Walk the list of under-writeback pages of the given address space
339  * and wait for all of them.
340  */
341 int filemap_fdatawait(struct address_space *mapping)
342 {
343         loff_t i_size = i_size_read(mapping->host);
344
345         if (i_size == 0)
346                 return 0;
347
348         return wait_on_page_writeback_range(mapping, 0,
349                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
350 }
351 EXPORT_SYMBOL(filemap_fdatawait);
352
353 int filemap_write_and_wait(struct address_space *mapping)
354 {
355         int err = 0;
356
357         if (mapping->nrpages) {
358                 err = filemap_fdatawrite(mapping);
359                 /*
360                  * Even if the above returned error, the pages may be
361                  * written partially (e.g. -ENOSPC), so we wait for it.
362                  * But the -EIO is special case, it may indicate the worst
363                  * thing (e.g. bug) happened, so we avoid waiting for it.
364                  */
365                 if (err != -EIO) {
366                         int err2 = filemap_fdatawait(mapping);
367                         if (!err)
368                                 err = err2;
369                 }
370         }
371         return err;
372 }
373 EXPORT_SYMBOL(filemap_write_and_wait);
374
375 /**
376  * filemap_write_and_wait_range - write out & wait on a file range
377  * @mapping:    the address_space for the pages
378  * @lstart:     offset in bytes where the range starts
379  * @lend:       offset in bytes where the range ends (inclusive)
380  *
381  * Write out and wait upon file offsets lstart->lend, inclusive.
382  *
383  * Note that `lend' is inclusive (describes the last byte to be written) so
384  * that this function can be used to write to the very end-of-file (end = -1).
385  */
386 int filemap_write_and_wait_range(struct address_space *mapping,
387                                  loff_t lstart, loff_t lend)
388 {
389         int err = 0;
390
391         if (mapping->nrpages) {
392                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
393                                                  WB_SYNC_ALL);
394                 /* See comment of filemap_write_and_wait() */
395                 if (err != -EIO) {
396                         int err2 = wait_on_page_writeback_range(mapping,
397                                                 lstart >> PAGE_CACHE_SHIFT,
398                                                 lend >> PAGE_CACHE_SHIFT);
399                         if (!err)
400                                 err = err2;
401                 }
402         }
403         return err;
404 }
405 EXPORT_SYMBOL(filemap_write_and_wait_range);
406
407 /**
408  * add_to_page_cache_locked - add a locked page to the pagecache
409  * @page:       page to add
410  * @mapping:    the page's address_space
411  * @offset:     page index
412  * @gfp_mask:   page allocation mode
413  *
414  * This function is used to add a page to the pagecache. It must be locked.
415  * This function does not add the page to the LRU.  The caller must do that.
416  */
417 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
418                 pgoff_t offset, gfp_t gfp_mask)
419 {
420         int error;
421
422         VM_BUG_ON(!PageLocked(page));
423
424         error = mem_cgroup_cache_charge(page, current->mm,
425                                         gfp_mask & GFP_RECLAIM_MASK);
426         if (error)
427                 goto out;
428
429         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
430         if (error == 0) {
431                 page_cache_get(page);
432                 page->mapping = mapping;
433                 page->index = offset;
434
435                 spin_lock_irq(&mapping->tree_lock);
436                 error = radix_tree_insert(&mapping->page_tree, offset, page);
437                 if (likely(!error)) {
438                         mapping->nrpages++;
439                         __inc_zone_page_state(page, NR_FILE_PAGES);
440                         if (PageSwapBacked(page))
441                                 __inc_zone_page_state(page, NR_SHMEM);
442                         spin_unlock_irq(&mapping->tree_lock);
443                 } else {
444                         page->mapping = NULL;
445                         spin_unlock_irq(&mapping->tree_lock);
446                         mem_cgroup_uncharge_cache_page(page);
447                         page_cache_release(page);
448                 }
449                 radix_tree_preload_end();
450         } else
451                 mem_cgroup_uncharge_cache_page(page);
452 out:
453         return error;
454 }
455 EXPORT_SYMBOL(add_to_page_cache_locked);
456
457 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
458                                 pgoff_t offset, gfp_t gfp_mask)
459 {
460         int ret;
461
462         /*
463          * Splice_read and readahead add shmem/tmpfs pages into the page cache
464          * before shmem_readpage has a chance to mark them as SwapBacked: they
465          * need to go on the anon lru below, and mem_cgroup_cache_charge
466          * (called in add_to_page_cache) needs to know where they're going too.
467          */
468         if (mapping_cap_swap_backed(mapping))
469                 SetPageSwapBacked(page);
470
471         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
472         if (ret == 0) {
473                 if (page_is_file_cache(page))
474                         lru_cache_add_file(page);
475                 else
476                         lru_cache_add_anon(page);
477         }
478         return ret;
479 }
480 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
481
482 #ifdef CONFIG_NUMA
483 struct page *__page_cache_alloc(gfp_t gfp)
484 {
485         if (cpuset_do_page_mem_spread()) {
486                 int n = cpuset_mem_spread_node();
487                 return alloc_pages_exact_node(n, gfp, 0);
488         }
489         return alloc_pages(gfp, 0);
490 }
491 EXPORT_SYMBOL(__page_cache_alloc);
492 #endif
493
494 static int __sleep_on_page_lock(void *word)
495 {
496         io_schedule();
497         return 0;
498 }
499
500 /*
501  * In order to wait for pages to become available there must be
502  * waitqueues associated with pages. By using a hash table of
503  * waitqueues where the bucket discipline is to maintain all
504  * waiters on the same queue and wake all when any of the pages
505  * become available, and for the woken contexts to check to be
506  * sure the appropriate page became available, this saves space
507  * at a cost of "thundering herd" phenomena during rare hash
508  * collisions.
509  */
510 static wait_queue_head_t *page_waitqueue(struct page *page)
511 {
512         const struct zone *zone = page_zone(page);
513
514         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
515 }
516
517 static inline void wake_up_page(struct page *page, int bit)
518 {
519         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
520 }
521
522 void wait_on_page_bit(struct page *page, int bit_nr)
523 {
524         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
525
526         if (test_bit(bit_nr, &page->flags))
527                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
528                                                         TASK_UNINTERRUPTIBLE);
529 }
530 EXPORT_SYMBOL(wait_on_page_bit);
531
532 /**
533  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
534  * @page: Page defining the wait queue of interest
535  * @waiter: Waiter to add to the queue
536  *
537  * Add an arbitrary @waiter to the wait queue for the nominated @page.
538  */
539 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
540 {
541         wait_queue_head_t *q = page_waitqueue(page);
542         unsigned long flags;
543
544         spin_lock_irqsave(&q->lock, flags);
545         __add_wait_queue(q, waiter);
546         spin_unlock_irqrestore(&q->lock, flags);
547 }
548 EXPORT_SYMBOL_GPL(add_page_wait_queue);
549
550 /**
551  * unlock_page - unlock a locked page
552  * @page: the page
553  *
554  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
555  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
556  * mechananism between PageLocked pages and PageWriteback pages is shared.
557  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558  *
559  * The mb is necessary to enforce ordering between the clear_bit and the read
560  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
561  */
562 void unlock_page(struct page *page)
563 {
564         VM_BUG_ON(!PageLocked(page));
565         clear_bit_unlock(PG_locked, &page->flags);
566         smp_mb__after_clear_bit();
567         wake_up_page(page, PG_locked);
568 }
569 EXPORT_SYMBOL(unlock_page);
570
571 /**
572  * end_page_writeback - end writeback against a page
573  * @page: the page
574  */
575 void end_page_writeback(struct page *page)
576 {
577         if (TestClearPageReclaim(page))
578                 rotate_reclaimable_page(page);
579
580         if (!test_clear_page_writeback(page))
581                 BUG();
582
583         smp_mb__after_clear_bit();
584         wake_up_page(page, PG_writeback);
585 }
586 EXPORT_SYMBOL(end_page_writeback);
587
588 /**
589  * __lock_page - get a lock on the page, assuming we need to sleep to get it
590  * @page: the page to lock
591  *
592  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
593  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
594  * chances are that on the second loop, the block layer's plug list is empty,
595  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
596  */
597 void __lock_page(struct page *page)
598 {
599         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600
601         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
602                                                         TASK_UNINTERRUPTIBLE);
603 }
604 EXPORT_SYMBOL(__lock_page);
605
606 int __lock_page_killable(struct page *page)
607 {
608         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
609
610         return __wait_on_bit_lock(page_waitqueue(page), &wait,
611                                         sync_page_killable, TASK_KILLABLE);
612 }
613 EXPORT_SYMBOL_GPL(__lock_page_killable);
614
615 /**
616  * __lock_page_nosync - get a lock on the page, without calling sync_page()
617  * @page: the page to lock
618  *
619  * Variant of lock_page that does not require the caller to hold a reference
620  * on the page's mapping.
621  */
622 void __lock_page_nosync(struct page *page)
623 {
624         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
625         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
626                                                         TASK_UNINTERRUPTIBLE);
627 }
628
629 /**
630  * find_get_page - find and get a page reference
631  * @mapping: the address_space to search
632  * @offset: the page index
633  *
634  * Is there a pagecache struct page at the given (mapping, offset) tuple?
635  * If yes, increment its refcount and return it; if no, return NULL.
636  */
637 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
638 {
639         void **pagep;
640         struct page *page;
641
642         rcu_read_lock();
643 repeat:
644         page = NULL;
645         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
646         if (pagep) {
647                 page = radix_tree_deref_slot(pagep);
648                 if (unlikely(!page || page == RADIX_TREE_RETRY))
649                         goto repeat;
650
651                 if (!page_cache_get_speculative(page))
652                         goto repeat;
653
654                 /*
655                  * Has the page moved?
656                  * This is part of the lockless pagecache protocol. See
657                  * include/linux/pagemap.h for details.
658                  */
659                 if (unlikely(page != *pagep)) {
660                         page_cache_release(page);
661                         goto repeat;
662                 }
663         }
664         rcu_read_unlock();
665
666         return page;
667 }
668 EXPORT_SYMBOL(find_get_page);
669
670 /**
671  * find_lock_page - locate, pin and lock a pagecache page
672  * @mapping: the address_space to search
673  * @offset: the page index
674  *
675  * Locates the desired pagecache page, locks it, increments its reference
676  * count and returns its address.
677  *
678  * Returns zero if the page was not present. find_lock_page() may sleep.
679  */
680 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
681 {
682         struct page *page;
683
684 repeat:
685         page = find_get_page(mapping, offset);
686         if (page) {
687                 lock_page(page);
688                 /* Has the page been truncated? */
689                 if (unlikely(page->mapping != mapping)) {
690                         unlock_page(page);
691                         page_cache_release(page);
692                         goto repeat;
693                 }
694                 VM_BUG_ON(page->index != offset);
695         }
696         return page;
697 }
698 EXPORT_SYMBOL(find_lock_page);
699
700 /**
701  * find_or_create_page - locate or add a pagecache page
702  * @mapping: the page's address_space
703  * @index: the page's index into the mapping
704  * @gfp_mask: page allocation mode
705  *
706  * Locates a page in the pagecache.  If the page is not present, a new page
707  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
708  * LRU list.  The returned page is locked and has its reference count
709  * incremented.
710  *
711  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
712  * allocation!
713  *
714  * find_or_create_page() returns the desired page's address, or zero on
715  * memory exhaustion.
716  */
717 struct page *find_or_create_page(struct address_space *mapping,
718                 pgoff_t index, gfp_t gfp_mask)
719 {
720         struct page *page;
721         int err;
722 repeat:
723         page = find_lock_page(mapping, index);
724         if (!page) {
725                 page = __page_cache_alloc(gfp_mask);
726                 if (!page)
727                         return NULL;
728                 /*
729                  * We want a regular kernel memory (not highmem or DMA etc)
730                  * allocation for the radix tree nodes, but we need to honour
731                  * the context-specific requirements the caller has asked for.
732                  * GFP_RECLAIM_MASK collects those requirements.
733                  */
734                 err = add_to_page_cache_lru(page, mapping, index,
735                         (gfp_mask & GFP_RECLAIM_MASK));
736                 if (unlikely(err)) {
737                         page_cache_release(page);
738                         page = NULL;
739                         if (err == -EEXIST)
740                                 goto repeat;
741                 }
742         }
743         return page;
744 }
745 EXPORT_SYMBOL(find_or_create_page);
746
747 /**
748  * find_get_pages - gang pagecache lookup
749  * @mapping:    The address_space to search
750  * @start:      The starting page index
751  * @nr_pages:   The maximum number of pages
752  * @pages:      Where the resulting pages are placed
753  *
754  * find_get_pages() will search for and return a group of up to
755  * @nr_pages pages in the mapping.  The pages are placed at @pages.
756  * find_get_pages() takes a reference against the returned pages.
757  *
758  * The search returns a group of mapping-contiguous pages with ascending
759  * indexes.  There may be holes in the indices due to not-present pages.
760  *
761  * find_get_pages() returns the number of pages which were found.
762  */
763 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
764                             unsigned int nr_pages, struct page **pages)
765 {
766         unsigned int i;
767         unsigned int ret;
768         unsigned int nr_found;
769
770         rcu_read_lock();
771 restart:
772         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
773                                 (void ***)pages, start, nr_pages);
774         ret = 0;
775         for (i = 0; i < nr_found; i++) {
776                 struct page *page;
777 repeat:
778                 page = radix_tree_deref_slot((void **)pages[i]);
779                 if (unlikely(!page))
780                         continue;
781                 /*
782                  * this can only trigger if nr_found == 1, making livelock
783                  * a non issue.
784                  */
785                 if (unlikely(page == RADIX_TREE_RETRY))
786                         goto restart;
787
788                 if (!page_cache_get_speculative(page))
789                         goto repeat;
790
791                 /* Has the page moved? */
792                 if (unlikely(page != *((void **)pages[i]))) {
793                         page_cache_release(page);
794                         goto repeat;
795                 }
796
797                 pages[ret] = page;
798                 ret++;
799         }
800         rcu_read_unlock();
801         return ret;
802 }
803
804 /**
805  * find_get_pages_contig - gang contiguous pagecache lookup
806  * @mapping:    The address_space to search
807  * @index:      The starting page index
808  * @nr_pages:   The maximum number of pages
809  * @pages:      Where the resulting pages are placed
810  *
811  * find_get_pages_contig() works exactly like find_get_pages(), except
812  * that the returned number of pages are guaranteed to be contiguous.
813  *
814  * find_get_pages_contig() returns the number of pages which were found.
815  */
816 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
817                                unsigned int nr_pages, struct page **pages)
818 {
819         unsigned int i;
820         unsigned int ret;
821         unsigned int nr_found;
822
823         rcu_read_lock();
824 restart:
825         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
826                                 (void ***)pages, index, nr_pages);
827         ret = 0;
828         for (i = 0; i < nr_found; i++) {
829                 struct page *page;
830 repeat:
831                 page = radix_tree_deref_slot((void **)pages[i]);
832                 if (unlikely(!page))
833                         continue;
834                 /*
835                  * this can only trigger if nr_found == 1, making livelock
836                  * a non issue.
837                  */
838                 if (unlikely(page == RADIX_TREE_RETRY))
839                         goto restart;
840
841                 if (page->mapping == NULL || page->index != index)
842                         break;
843
844                 if (!page_cache_get_speculative(page))
845                         goto repeat;
846
847                 /* Has the page moved? */
848                 if (unlikely(page != *((void **)pages[i]))) {
849                         page_cache_release(page);
850                         goto repeat;
851                 }
852
853                 pages[ret] = page;
854                 ret++;
855                 index++;
856         }
857         rcu_read_unlock();
858         return ret;
859 }
860 EXPORT_SYMBOL(find_get_pages_contig);
861
862 /**
863  * find_get_pages_tag - find and return pages that match @tag
864  * @mapping:    the address_space to search
865  * @index:      the starting page index
866  * @tag:        the tag index
867  * @nr_pages:   the maximum number of pages
868  * @pages:      where the resulting pages are placed
869  *
870  * Like find_get_pages, except we only return pages which are tagged with
871  * @tag.   We update @index to index the next page for the traversal.
872  */
873 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
874                         int tag, unsigned int nr_pages, struct page **pages)
875 {
876         unsigned int i;
877         unsigned int ret;
878         unsigned int nr_found;
879
880         rcu_read_lock();
881 restart:
882         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
883                                 (void ***)pages, *index, nr_pages, tag);
884         ret = 0;
885         for (i = 0; i < nr_found; i++) {
886                 struct page *page;
887 repeat:
888                 page = radix_tree_deref_slot((void **)pages[i]);
889                 if (unlikely(!page))
890                         continue;
891                 /*
892                  * this can only trigger if nr_found == 1, making livelock
893                  * a non issue.
894                  */
895                 if (unlikely(page == RADIX_TREE_RETRY))
896                         goto restart;
897
898                 if (!page_cache_get_speculative(page))
899                         goto repeat;
900
901                 /* Has the page moved? */
902                 if (unlikely(page != *((void **)pages[i]))) {
903                         page_cache_release(page);
904                         goto repeat;
905                 }
906
907                 pages[ret] = page;
908                 ret++;
909         }
910         rcu_read_unlock();
911
912         if (ret)
913                 *index = pages[ret - 1]->index + 1;
914
915         return ret;
916 }
917 EXPORT_SYMBOL(find_get_pages_tag);
918
919 /**
920  * grab_cache_page_nowait - returns locked page at given index in given cache
921  * @mapping: target address_space
922  * @index: the page index
923  *
924  * Same as grab_cache_page(), but do not wait if the page is unavailable.
925  * This is intended for speculative data generators, where the data can
926  * be regenerated if the page couldn't be grabbed.  This routine should
927  * be safe to call while holding the lock for another page.
928  *
929  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
930  * and deadlock against the caller's locked page.
931  */
932 struct page *
933 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
934 {
935         struct page *page = find_get_page(mapping, index);
936
937         if (page) {
938                 if (trylock_page(page))
939                         return page;
940                 page_cache_release(page);
941                 return NULL;
942         }
943         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
944         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
945                 page_cache_release(page);
946                 page = NULL;
947         }
948         return page;
949 }
950 EXPORT_SYMBOL(grab_cache_page_nowait);
951
952 /*
953  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
954  * a _large_ part of the i/o request. Imagine the worst scenario:
955  *
956  *      ---R__________________________________________B__________
957  *         ^ reading here                             ^ bad block(assume 4k)
958  *
959  * read(R) => miss => readahead(R...B) => media error => frustrating retries
960  * => failing the whole request => read(R) => read(R+1) =>
961  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
962  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
963  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
964  *
965  * It is going insane. Fix it by quickly scaling down the readahead size.
966  */
967 static void shrink_readahead_size_eio(struct file *filp,
968                                         struct file_ra_state *ra)
969 {
970         ra->ra_pages /= 4;
971 }
972
973 /**
974  * do_generic_file_read - generic file read routine
975  * @filp:       the file to read
976  * @ppos:       current file position
977  * @desc:       read_descriptor
978  * @actor:      read method
979  *
980  * This is a generic file read routine, and uses the
981  * mapping->a_ops->readpage() function for the actual low-level stuff.
982  *
983  * This is really ugly. But the goto's actually try to clarify some
984  * of the logic when it comes to error handling etc.
985  */
986 static void do_generic_file_read(struct file *filp, loff_t *ppos,
987                 read_descriptor_t *desc, read_actor_t actor)
988 {
989         struct address_space *mapping = filp->f_mapping;
990         struct inode *inode = mapping->host;
991         struct file_ra_state *ra = &filp->f_ra;
992         pgoff_t index;
993         pgoff_t last_index;
994         pgoff_t prev_index;
995         unsigned long offset;      /* offset into pagecache page */
996         unsigned int prev_offset;
997         int error;
998
999         index = *ppos >> PAGE_CACHE_SHIFT;
1000         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1001         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1002         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1003         offset = *ppos & ~PAGE_CACHE_MASK;
1004
1005         for (;;) {
1006                 struct page *page;
1007                 pgoff_t end_index;
1008                 loff_t isize;
1009                 unsigned long nr, ret;
1010
1011                 cond_resched();
1012 find_page:
1013                 page = find_get_page(mapping, index);
1014                 if (!page) {
1015                         page_cache_sync_readahead(mapping,
1016                                         ra, filp,
1017                                         index, last_index - index);
1018                         page = find_get_page(mapping, index);
1019                         if (unlikely(page == NULL))
1020                                 goto no_cached_page;
1021                 }
1022                 if (PageReadahead(page)) {
1023                         page_cache_async_readahead(mapping,
1024                                         ra, filp, page,
1025                                         index, last_index - index);
1026                 }
1027                 if (!PageUptodate(page)) {
1028                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1029                                         !mapping->a_ops->is_partially_uptodate)
1030                                 goto page_not_up_to_date;
1031                         if (!trylock_page(page))
1032                                 goto page_not_up_to_date;
1033                         /* Did it get truncated before we got the lock? */
1034                         if (!page->mapping)
1035                                 goto page_not_up_to_date_locked;
1036                         if (!mapping->a_ops->is_partially_uptodate(page,
1037                                                                 desc, offset))
1038                                 goto page_not_up_to_date_locked;
1039                         unlock_page(page);
1040                 }
1041 page_ok:
1042                 /*
1043                  * i_size must be checked after we know the page is Uptodate.
1044                  *
1045                  * Checking i_size after the check allows us to calculate
1046                  * the correct value for "nr", which means the zero-filled
1047                  * part of the page is not copied back to userspace (unless
1048                  * another truncate extends the file - this is desired though).
1049                  */
1050
1051                 isize = i_size_read(inode);
1052                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1053                 if (unlikely(!isize || index > end_index)) {
1054                         page_cache_release(page);
1055                         goto out;
1056                 }
1057
1058                 /* nr is the maximum number of bytes to copy from this page */
1059                 nr = PAGE_CACHE_SIZE;
1060                 if (index == end_index) {
1061                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1062                         if (nr <= offset) {
1063                                 page_cache_release(page);
1064                                 goto out;
1065                         }
1066                 }
1067                 nr = nr - offset;
1068
1069                 /* If users can be writing to this page using arbitrary
1070                  * virtual addresses, take care about potential aliasing
1071                  * before reading the page on the kernel side.
1072                  */
1073                 if (mapping_writably_mapped(mapping))
1074                         flush_dcache_page(page);
1075
1076                 /*
1077                  * When a sequential read accesses a page several times,
1078                  * only mark it as accessed the first time.
1079                  */
1080                 if (prev_index != index || offset != prev_offset)
1081                         mark_page_accessed(page);
1082                 prev_index = index;
1083
1084                 /*
1085                  * Ok, we have the page, and it's up-to-date, so
1086                  * now we can copy it to user space...
1087                  *
1088                  * The actor routine returns how many bytes were actually used..
1089                  * NOTE! This may not be the same as how much of a user buffer
1090                  * we filled up (we may be padding etc), so we can only update
1091                  * "pos" here (the actor routine has to update the user buffer
1092                  * pointers and the remaining count).
1093                  */
1094                 ret = actor(desc, page, offset, nr);
1095                 offset += ret;
1096                 index += offset >> PAGE_CACHE_SHIFT;
1097                 offset &= ~PAGE_CACHE_MASK;
1098                 prev_offset = offset;
1099
1100                 page_cache_release(page);
1101                 if (ret == nr && desc->count)
1102                         continue;
1103                 goto out;
1104
1105 page_not_up_to_date:
1106                 /* Get exclusive access to the page ... */
1107                 error = lock_page_killable(page);
1108                 if (unlikely(error))
1109                         goto readpage_error;
1110
1111 page_not_up_to_date_locked:
1112                 /* Did it get truncated before we got the lock? */
1113                 if (!page->mapping) {
1114                         unlock_page(page);
1115                         page_cache_release(page);
1116                         continue;
1117                 }
1118
1119                 /* Did somebody else fill it already? */
1120                 if (PageUptodate(page)) {
1121                         unlock_page(page);
1122                         goto page_ok;
1123                 }
1124
1125 readpage:
1126                 /*
1127                  * A previous I/O error may have been due to temporary
1128                  * failures, eg. multipath errors.
1129                  * PG_error will be set again if readpage fails.
1130                  */
1131                 ClearPageError(page);
1132                 /* Start the actual read. The read will unlock the page. */
1133                 error = mapping->a_ops->readpage(filp, page);
1134
1135                 if (unlikely(error)) {
1136                         if (error == AOP_TRUNCATED_PAGE) {
1137                                 page_cache_release(page);
1138                                 goto find_page;
1139                         }
1140                         goto readpage_error;
1141                 }
1142
1143                 if (!PageUptodate(page)) {
1144                         error = lock_page_killable(page);
1145                         if (unlikely(error))
1146                                 goto readpage_error;
1147                         if (!PageUptodate(page)) {
1148                                 if (page->mapping == NULL) {
1149                                         /*
1150                                          * invalidate_inode_pages got it
1151                                          */
1152                                         unlock_page(page);
1153                                         page_cache_release(page);
1154                                         goto find_page;
1155                                 }
1156                                 unlock_page(page);
1157                                 shrink_readahead_size_eio(filp, ra);
1158                                 error = -EIO;
1159                                 goto readpage_error;
1160                         }
1161                         unlock_page(page);
1162                 }
1163
1164                 goto page_ok;
1165
1166 readpage_error:
1167                 /* UHHUH! A synchronous read error occurred. Report it */
1168                 desc->error = error;
1169                 page_cache_release(page);
1170                 goto out;
1171
1172 no_cached_page:
1173                 /*
1174                  * Ok, it wasn't cached, so we need to create a new
1175                  * page..
1176                  */
1177                 page = page_cache_alloc_cold(mapping);
1178                 if (!page) {
1179                         desc->error = -ENOMEM;
1180                         goto out;
1181                 }
1182                 error = add_to_page_cache_lru(page, mapping,
1183                                                 index, GFP_KERNEL);
1184                 if (error) {
1185                         page_cache_release(page);
1186                         if (error == -EEXIST)
1187                                 goto find_page;
1188                         desc->error = error;
1189                         goto out;
1190                 }
1191                 goto readpage;
1192         }
1193
1194 out:
1195         ra->prev_pos = prev_index;
1196         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1197         ra->prev_pos |= prev_offset;
1198
1199         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1200         file_accessed(filp);
1201 }
1202
1203 int file_read_actor(read_descriptor_t *desc, struct page *page,
1204                         unsigned long offset, unsigned long size)
1205 {
1206         char *kaddr;
1207         unsigned long left, count = desc->count;
1208
1209         if (size > count)
1210                 size = count;
1211
1212         /*
1213          * Faults on the destination of a read are common, so do it before
1214          * taking the kmap.
1215          */
1216         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1217                 kaddr = kmap_atomic(page, KM_USER0);
1218                 left = __copy_to_user_inatomic(desc->arg.buf,
1219                                                 kaddr + offset, size);
1220                 kunmap_atomic(kaddr, KM_USER0);
1221                 if (left == 0)
1222                         goto success;
1223         }
1224
1225         /* Do it the slow way */
1226         kaddr = kmap(page);
1227         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1228         kunmap(page);
1229
1230         if (left) {
1231                 size -= left;
1232                 desc->error = -EFAULT;
1233         }
1234 success:
1235         desc->count = count - size;
1236         desc->written += size;
1237         desc->arg.buf += size;
1238         return size;
1239 }
1240
1241 /*
1242  * Performs necessary checks before doing a write
1243  * @iov:        io vector request
1244  * @nr_segs:    number of segments in the iovec
1245  * @count:      number of bytes to write
1246  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1247  *
1248  * Adjust number of segments and amount of bytes to write (nr_segs should be
1249  * properly initialized first). Returns appropriate error code that caller
1250  * should return or zero in case that write should be allowed.
1251  */
1252 int generic_segment_checks(const struct iovec *iov,
1253                         unsigned long *nr_segs, size_t *count, int access_flags)
1254 {
1255         unsigned long   seg;
1256         size_t cnt = 0;
1257         for (seg = 0; seg < *nr_segs; seg++) {
1258                 const struct iovec *iv = &iov[seg];
1259
1260                 /*
1261                  * If any segment has a negative length, or the cumulative
1262                  * length ever wraps negative then return -EINVAL.
1263                  */
1264                 cnt += iv->iov_len;
1265                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1266                         return -EINVAL;
1267                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1268                         continue;
1269                 if (seg == 0)
1270                         return -EFAULT;
1271                 *nr_segs = seg;
1272                 cnt -= iv->iov_len;     /* This segment is no good */
1273                 break;
1274         }
1275         *count = cnt;
1276         return 0;
1277 }
1278 EXPORT_SYMBOL(generic_segment_checks);
1279
1280 /**
1281  * generic_file_aio_read - generic filesystem read routine
1282  * @iocb:       kernel I/O control block
1283  * @iov:        io vector request
1284  * @nr_segs:    number of segments in the iovec
1285  * @pos:        current file position
1286  *
1287  * This is the "read()" routine for all filesystems
1288  * that can use the page cache directly.
1289  */
1290 ssize_t
1291 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1292                 unsigned long nr_segs, loff_t pos)
1293 {
1294         struct file *filp = iocb->ki_filp;
1295         ssize_t retval;
1296         unsigned long seg;
1297         size_t count;
1298         loff_t *ppos = &iocb->ki_pos;
1299
1300         count = 0;
1301         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1302         if (retval)
1303                 return retval;
1304
1305         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1306         if (filp->f_flags & O_DIRECT) {
1307                 loff_t size;
1308                 struct address_space *mapping;
1309                 struct inode *inode;
1310
1311                 mapping = filp->f_mapping;
1312                 inode = mapping->host;
1313                 if (!count)
1314                         goto out; /* skip atime */
1315                 size = i_size_read(inode);
1316                 if (pos < size) {
1317                         retval = filemap_write_and_wait_range(mapping, pos,
1318                                         pos + iov_length(iov, nr_segs) - 1);
1319                         if (!retval) {
1320                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1321                                                         iov, pos, nr_segs);
1322                         }
1323                         if (retval > 0)
1324                                 *ppos = pos + retval;
1325                         if (retval) {
1326                                 file_accessed(filp);
1327                                 goto out;
1328                         }
1329                 }
1330         }
1331
1332         for (seg = 0; seg < nr_segs; seg++) {
1333                 read_descriptor_t desc;
1334
1335                 desc.written = 0;
1336                 desc.arg.buf = iov[seg].iov_base;
1337                 desc.count = iov[seg].iov_len;
1338                 if (desc.count == 0)
1339                         continue;
1340                 desc.error = 0;
1341                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1342                 retval += desc.written;
1343                 if (desc.error) {
1344                         retval = retval ?: desc.error;
1345                         break;
1346                 }
1347                 if (desc.count > 0)
1348                         break;
1349         }
1350 out:
1351         return retval;
1352 }
1353 EXPORT_SYMBOL(generic_file_aio_read);
1354
1355 static ssize_t
1356 do_readahead(struct address_space *mapping, struct file *filp,
1357              pgoff_t index, unsigned long nr)
1358 {
1359         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1360                 return -EINVAL;
1361
1362         force_page_cache_readahead(mapping, filp, index, nr);
1363         return 0;
1364 }
1365
1366 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1367 {
1368         ssize_t ret;
1369         struct file *file;
1370
1371         ret = -EBADF;
1372         file = fget(fd);
1373         if (file) {
1374                 if (file->f_mode & FMODE_READ) {
1375                         struct address_space *mapping = file->f_mapping;
1376                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1377                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1378                         unsigned long len = end - start + 1;
1379                         ret = do_readahead(mapping, file, start, len);
1380                 }
1381                 fput(file);
1382         }
1383         return ret;
1384 }
1385 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1386 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1387 {
1388         return SYSC_readahead((int) fd, offset, (size_t) count);
1389 }
1390 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1391 #endif
1392
1393 #ifdef CONFIG_MMU
1394 /**
1395  * page_cache_read - adds requested page to the page cache if not already there
1396  * @file:       file to read
1397  * @offset:     page index
1398  *
1399  * This adds the requested page to the page cache if it isn't already there,
1400  * and schedules an I/O to read in its contents from disk.
1401  */
1402 static int page_cache_read(struct file *file, pgoff_t offset)
1403 {
1404         struct address_space *mapping = file->f_mapping;
1405         struct page *page; 
1406         int ret;
1407
1408         do {
1409                 page = page_cache_alloc_cold(mapping);
1410                 if (!page)
1411                         return -ENOMEM;
1412
1413                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1414                 if (ret == 0)
1415                         ret = mapping->a_ops->readpage(file, page);
1416                 else if (ret == -EEXIST)
1417                         ret = 0; /* losing race to add is OK */
1418
1419                 page_cache_release(page);
1420
1421         } while (ret == AOP_TRUNCATED_PAGE);
1422                 
1423         return ret;
1424 }
1425
1426 #define MMAP_LOTSAMISS  (100)
1427
1428 /*
1429  * Synchronous readahead happens when we don't even find
1430  * a page in the page cache at all.
1431  */
1432 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1433                                    struct file_ra_state *ra,
1434                                    struct file *file,
1435                                    pgoff_t offset)
1436 {
1437         unsigned long ra_pages;
1438         struct address_space *mapping = file->f_mapping;
1439
1440         /* If we don't want any read-ahead, don't bother */
1441         if (VM_RandomReadHint(vma))
1442                 return;
1443
1444         if (VM_SequentialReadHint(vma) ||
1445                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1446                 page_cache_sync_readahead(mapping, ra, file, offset,
1447                                           ra->ra_pages);
1448                 return;
1449         }
1450
1451         if (ra->mmap_miss < INT_MAX)
1452                 ra->mmap_miss++;
1453
1454         /*
1455          * Do we miss much more than hit in this file? If so,
1456          * stop bothering with read-ahead. It will only hurt.
1457          */
1458         if (ra->mmap_miss > MMAP_LOTSAMISS)
1459                 return;
1460
1461         /*
1462          * mmap read-around
1463          */
1464         ra_pages = max_sane_readahead(ra->ra_pages);
1465         if (ra_pages) {
1466                 ra->start = max_t(long, 0, offset - ra_pages/2);
1467                 ra->size = ra_pages;
1468                 ra->async_size = 0;
1469                 ra_submit(ra, mapping, file);
1470         }
1471 }
1472
1473 /*
1474  * Asynchronous readahead happens when we find the page and PG_readahead,
1475  * so we want to possibly extend the readahead further..
1476  */
1477 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1478                                     struct file_ra_state *ra,
1479                                     struct file *file,
1480                                     struct page *page,
1481                                     pgoff_t offset)
1482 {
1483         struct address_space *mapping = file->f_mapping;
1484
1485         /* If we don't want any read-ahead, don't bother */
1486         if (VM_RandomReadHint(vma))
1487                 return;
1488         if (ra->mmap_miss > 0)
1489                 ra->mmap_miss--;
1490         if (PageReadahead(page))
1491                 page_cache_async_readahead(mapping, ra, file,
1492                                            page, offset, ra->ra_pages);
1493 }
1494
1495 /**
1496  * filemap_fault - read in file data for page fault handling
1497  * @vma:        vma in which the fault was taken
1498  * @vmf:        struct vm_fault containing details of the fault
1499  *
1500  * filemap_fault() is invoked via the vma operations vector for a
1501  * mapped memory region to read in file data during a page fault.
1502  *
1503  * The goto's are kind of ugly, but this streamlines the normal case of having
1504  * it in the page cache, and handles the special cases reasonably without
1505  * having a lot of duplicated code.
1506  */
1507 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1508 {
1509         int error;
1510         struct file *file = vma->vm_file;
1511         struct address_space *mapping = file->f_mapping;
1512         struct file_ra_state *ra = &file->f_ra;
1513         struct inode *inode = mapping->host;
1514         pgoff_t offset = vmf->pgoff;
1515         struct page *page;
1516         pgoff_t size;
1517         int ret = 0;
1518
1519         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1520         if (offset >= size)
1521                 return VM_FAULT_SIGBUS;
1522
1523         /*
1524          * Do we have something in the page cache already?
1525          */
1526         page = find_get_page(mapping, offset);
1527         if (likely(page)) {
1528                 /*
1529                  * We found the page, so try async readahead before
1530                  * waiting for the lock.
1531                  */
1532                 do_async_mmap_readahead(vma, ra, file, page, offset);
1533                 lock_page(page);
1534
1535                 /* Did it get truncated? */
1536                 if (unlikely(page->mapping != mapping)) {
1537                         unlock_page(page);
1538                         put_page(page);
1539                         goto no_cached_page;
1540                 }
1541         } else {
1542                 /* No page in the page cache at all */
1543                 do_sync_mmap_readahead(vma, ra, file, offset);
1544                 count_vm_event(PGMAJFAULT);
1545                 ret = VM_FAULT_MAJOR;
1546 retry_find:
1547                 page = find_lock_page(mapping, offset);
1548                 if (!page)
1549                         goto no_cached_page;
1550         }
1551
1552         /*
1553          * We have a locked page in the page cache, now we need to check
1554          * that it's up-to-date. If not, it is going to be due to an error.
1555          */
1556         if (unlikely(!PageUptodate(page)))
1557                 goto page_not_uptodate;
1558
1559         /*
1560          * Found the page and have a reference on it.
1561          * We must recheck i_size under page lock.
1562          */
1563         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1564         if (unlikely(offset >= size)) {
1565                 unlock_page(page);
1566                 page_cache_release(page);
1567                 return VM_FAULT_SIGBUS;
1568         }
1569
1570         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1571         vmf->page = page;
1572         return ret | VM_FAULT_LOCKED;
1573
1574 no_cached_page:
1575         /*
1576          * We're only likely to ever get here if MADV_RANDOM is in
1577          * effect.
1578          */
1579         error = page_cache_read(file, offset);
1580
1581         /*
1582          * The page we want has now been added to the page cache.
1583          * In the unlikely event that someone removed it in the
1584          * meantime, we'll just come back here and read it again.
1585          */
1586         if (error >= 0)
1587                 goto retry_find;
1588
1589         /*
1590          * An error return from page_cache_read can result if the
1591          * system is low on memory, or a problem occurs while trying
1592          * to schedule I/O.
1593          */
1594         if (error == -ENOMEM)
1595                 return VM_FAULT_OOM;
1596         return VM_FAULT_SIGBUS;
1597
1598 page_not_uptodate:
1599         /*
1600          * Umm, take care of errors if the page isn't up-to-date.
1601          * Try to re-read it _once_. We do this synchronously,
1602          * because there really aren't any performance issues here
1603          * and we need to check for errors.
1604          */
1605         ClearPageError(page);
1606         error = mapping->a_ops->readpage(file, page);
1607         if (!error) {
1608                 wait_on_page_locked(page);
1609                 if (!PageUptodate(page))
1610                         error = -EIO;
1611         }
1612         page_cache_release(page);
1613
1614         if (!error || error == AOP_TRUNCATED_PAGE)
1615                 goto retry_find;
1616
1617         /* Things didn't work out. Return zero to tell the mm layer so. */
1618         shrink_readahead_size_eio(file, ra);
1619         return VM_FAULT_SIGBUS;
1620 }
1621 EXPORT_SYMBOL(filemap_fault);
1622
1623 const struct vm_operations_struct generic_file_vm_ops = {
1624         .fault          = filemap_fault,
1625 };
1626
1627 /* This is used for a general mmap of a disk file */
1628
1629 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1630 {
1631         struct address_space *mapping = file->f_mapping;
1632
1633         if (!mapping->a_ops->readpage)
1634                 return -ENOEXEC;
1635         file_accessed(file);
1636         vma->vm_ops = &generic_file_vm_ops;
1637         vma->vm_flags |= VM_CAN_NONLINEAR;
1638         return 0;
1639 }
1640
1641 /*
1642  * This is for filesystems which do not implement ->writepage.
1643  */
1644 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1645 {
1646         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1647                 return -EINVAL;
1648         return generic_file_mmap(file, vma);
1649 }
1650 #else
1651 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1652 {
1653         return -ENOSYS;
1654 }
1655 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1656 {
1657         return -ENOSYS;
1658 }
1659 #endif /* CONFIG_MMU */
1660
1661 EXPORT_SYMBOL(generic_file_mmap);
1662 EXPORT_SYMBOL(generic_file_readonly_mmap);
1663
1664 static struct page *__read_cache_page(struct address_space *mapping,
1665                                 pgoff_t index,
1666                                 int (*filler)(void *,struct page*),
1667                                 void *data,
1668                                 gfp_t gfp)
1669 {
1670         struct page *page;
1671         int err;
1672 repeat:
1673         page = find_get_page(mapping, index);
1674         if (!page) {
1675                 page = __page_cache_alloc(gfp | __GFP_COLD);
1676                 if (!page)
1677                         return ERR_PTR(-ENOMEM);
1678                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1679                 if (unlikely(err)) {
1680                         page_cache_release(page);
1681                         if (err == -EEXIST)
1682                                 goto repeat;
1683                         /* Presumably ENOMEM for radix tree node */
1684                         return ERR_PTR(err);
1685                 }
1686                 err = filler(data, page);
1687                 if (err < 0) {
1688                         page_cache_release(page);
1689                         page = ERR_PTR(err);
1690                 }
1691         }
1692         return page;
1693 }
1694
1695 static struct page *do_read_cache_page(struct address_space *mapping,
1696                                 pgoff_t index,
1697                                 int (*filler)(void *,struct page*),
1698                                 void *data,
1699                                 gfp_t gfp)
1700
1701 {
1702         struct page *page;
1703         int err;
1704
1705 retry:
1706         page = __read_cache_page(mapping, index, filler, data, gfp);
1707         if (IS_ERR(page))
1708                 return page;
1709         if (PageUptodate(page))
1710                 goto out;
1711
1712         lock_page(page);
1713         if (!page->mapping) {
1714                 unlock_page(page);
1715                 page_cache_release(page);
1716                 goto retry;
1717         }
1718         if (PageUptodate(page)) {
1719                 unlock_page(page);
1720                 goto out;
1721         }
1722         err = filler(data, page);
1723         if (err < 0) {
1724                 page_cache_release(page);
1725                 return ERR_PTR(err);
1726         }
1727 out:
1728         mark_page_accessed(page);
1729         return page;
1730 }
1731
1732 /**
1733  * read_cache_page_async - read into page cache, fill it if needed
1734  * @mapping:    the page's address_space
1735  * @index:      the page index
1736  * @filler:     function to perform the read
1737  * @data:       destination for read data
1738  *
1739  * Same as read_cache_page, but don't wait for page to become unlocked
1740  * after submitting it to the filler.
1741  *
1742  * Read into the page cache. If a page already exists, and PageUptodate() is
1743  * not set, try to fill the page but don't wait for it to become unlocked.
1744  *
1745  * If the page does not get brought uptodate, return -EIO.
1746  */
1747 struct page *read_cache_page_async(struct address_space *mapping,
1748                                 pgoff_t index,
1749                                 int (*filler)(void *,struct page*),
1750                                 void *data)
1751 {
1752         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1753 }
1754 EXPORT_SYMBOL(read_cache_page_async);
1755
1756 static struct page *wait_on_page_read(struct page *page)
1757 {
1758         if (!IS_ERR(page)) {
1759                 wait_on_page_locked(page);
1760                 if (!PageUptodate(page)) {
1761                         page_cache_release(page);
1762                         page = ERR_PTR(-EIO);
1763                 }
1764         }
1765         return page;
1766 }
1767
1768 /**
1769  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1770  * @mapping:    the page's address_space
1771  * @index:      the page index
1772  * @gfp:        the page allocator flags to use if allocating
1773  *
1774  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1775  * any new page allocations done using the specified allocation flags. Note
1776  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1777  * expect to do this atomically or anything like that - but you can pass in
1778  * other page requirements.
1779  *
1780  * If the page does not get brought uptodate, return -EIO.
1781  */
1782 struct page *read_cache_page_gfp(struct address_space *mapping,
1783                                 pgoff_t index,
1784                                 gfp_t gfp)
1785 {
1786         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1787
1788         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1789 }
1790 EXPORT_SYMBOL(read_cache_page_gfp);
1791
1792 /**
1793  * read_cache_page - read into page cache, fill it if needed
1794  * @mapping:    the page's address_space
1795  * @index:      the page index
1796  * @filler:     function to perform the read
1797  * @data:       destination for read data
1798  *
1799  * Read into the page cache. If a page already exists, and PageUptodate() is
1800  * not set, try to fill the page then wait for it to become unlocked.
1801  *
1802  * If the page does not get brought uptodate, return -EIO.
1803  */
1804 struct page *read_cache_page(struct address_space *mapping,
1805                                 pgoff_t index,
1806                                 int (*filler)(void *,struct page*),
1807                                 void *data)
1808 {
1809         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1810 }
1811 EXPORT_SYMBOL(read_cache_page);
1812
1813 /*
1814  * The logic we want is
1815  *
1816  *      if suid or (sgid and xgrp)
1817  *              remove privs
1818  */
1819 int should_remove_suid(struct dentry *dentry)
1820 {
1821         mode_t mode = dentry->d_inode->i_mode;
1822         int kill = 0;
1823
1824         /* suid always must be killed */
1825         if (unlikely(mode & S_ISUID))
1826                 kill = ATTR_KILL_SUID;
1827
1828         /*
1829          * sgid without any exec bits is just a mandatory locking mark; leave
1830          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1831          */
1832         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1833                 kill |= ATTR_KILL_SGID;
1834
1835         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1836                 return kill;
1837
1838         return 0;
1839 }
1840 EXPORT_SYMBOL(should_remove_suid);
1841
1842 static int __remove_suid(struct dentry *dentry, int kill)
1843 {
1844         struct iattr newattrs;
1845
1846         newattrs.ia_valid = ATTR_FORCE | kill;
1847         return notify_change(dentry, &newattrs);
1848 }
1849
1850 int file_remove_suid(struct file *file)
1851 {
1852         struct dentry *dentry = file->f_path.dentry;
1853         int killsuid = should_remove_suid(dentry);
1854         int killpriv = security_inode_need_killpriv(dentry);
1855         int error = 0;
1856
1857         if (killpriv < 0)
1858                 return killpriv;
1859         if (killpriv)
1860                 error = security_inode_killpriv(dentry);
1861         if (!error && killsuid)
1862                 error = __remove_suid(dentry, killsuid);
1863
1864         return error;
1865 }
1866 EXPORT_SYMBOL(file_remove_suid);
1867
1868 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1869                         const struct iovec *iov, size_t base, size_t bytes)
1870 {
1871         size_t copied = 0, left = 0;
1872
1873         while (bytes) {
1874                 char __user *buf = iov->iov_base + base;
1875                 int copy = min(bytes, iov->iov_len - base);
1876
1877                 base = 0;
1878                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1879                 copied += copy;
1880                 bytes -= copy;
1881                 vaddr += copy;
1882                 iov++;
1883
1884                 if (unlikely(left))
1885                         break;
1886         }
1887         return copied - left;
1888 }
1889
1890 /*
1891  * Copy as much as we can into the page and return the number of bytes which
1892  * were sucessfully copied.  If a fault is encountered then return the number of
1893  * bytes which were copied.
1894  */
1895 size_t iov_iter_copy_from_user_atomic(struct page *page,
1896                 struct iov_iter *i, unsigned long offset, size_t bytes)
1897 {
1898         char *kaddr;
1899         size_t copied;
1900
1901         BUG_ON(!in_atomic());
1902         kaddr = kmap_atomic(page, KM_USER0);
1903         if (likely(i->nr_segs == 1)) {
1904                 int left;
1905                 char __user *buf = i->iov->iov_base + i->iov_offset;
1906                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1907                 copied = bytes - left;
1908         } else {
1909                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1910                                                 i->iov, i->iov_offset, bytes);
1911         }
1912         kunmap_atomic(kaddr, KM_USER0);
1913
1914         return copied;
1915 }
1916 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1917
1918 /*
1919  * This has the same sideeffects and return value as
1920  * iov_iter_copy_from_user_atomic().
1921  * The difference is that it attempts to resolve faults.
1922  * Page must not be locked.
1923  */
1924 size_t iov_iter_copy_from_user(struct page *page,
1925                 struct iov_iter *i, unsigned long offset, size_t bytes)
1926 {
1927         char *kaddr;
1928         size_t copied;
1929
1930         kaddr = kmap(page);
1931         if (likely(i->nr_segs == 1)) {
1932                 int left;
1933                 char __user *buf = i->iov->iov_base + i->iov_offset;
1934                 left = __copy_from_user(kaddr + offset, buf, bytes);
1935                 copied = bytes - left;
1936         } else {
1937                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1938                                                 i->iov, i->iov_offset, bytes);
1939         }
1940         kunmap(page);
1941         return copied;
1942 }
1943 EXPORT_SYMBOL(iov_iter_copy_from_user);
1944
1945 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1946 {
1947         BUG_ON(i->count < bytes);
1948
1949         if (likely(i->nr_segs == 1)) {
1950                 i->iov_offset += bytes;
1951                 i->count -= bytes;
1952         } else {
1953                 const struct iovec *iov = i->iov;
1954                 size_t base = i->iov_offset;
1955
1956                 /*
1957                  * The !iov->iov_len check ensures we skip over unlikely
1958                  * zero-length segments (without overruning the iovec).
1959                  */
1960                 while (bytes || unlikely(i->count && !iov->iov_len)) {
1961                         int copy;
1962
1963                         copy = min(bytes, iov->iov_len - base);
1964                         BUG_ON(!i->count || i->count < copy);
1965                         i->count -= copy;
1966                         bytes -= copy;
1967                         base += copy;
1968                         if (iov->iov_len == base) {
1969                                 iov++;
1970                                 base = 0;
1971                         }
1972                 }
1973                 i->iov = iov;
1974                 i->iov_offset = base;
1975         }
1976 }
1977 EXPORT_SYMBOL(iov_iter_advance);
1978
1979 /*
1980  * Fault in the first iovec of the given iov_iter, to a maximum length
1981  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1982  * accessed (ie. because it is an invalid address).
1983  *
1984  * writev-intensive code may want this to prefault several iovecs -- that
1985  * would be possible (callers must not rely on the fact that _only_ the
1986  * first iovec will be faulted with the current implementation).
1987  */
1988 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1989 {
1990         char __user *buf = i->iov->iov_base + i->iov_offset;
1991         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1992         return fault_in_pages_readable(buf, bytes);
1993 }
1994 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1995
1996 /*
1997  * Return the count of just the current iov_iter segment.
1998  */
1999 size_t iov_iter_single_seg_count(struct iov_iter *i)
2000 {
2001         const struct iovec *iov = i->iov;
2002         if (i->nr_segs == 1)
2003                 return i->count;
2004         else
2005                 return min(i->count, iov->iov_len - i->iov_offset);
2006 }
2007 EXPORT_SYMBOL(iov_iter_single_seg_count);
2008
2009 /*
2010  * Performs necessary checks before doing a write
2011  *
2012  * Can adjust writing position or amount of bytes to write.
2013  * Returns appropriate error code that caller should return or
2014  * zero in case that write should be allowed.
2015  */
2016 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2017 {
2018         struct inode *inode = file->f_mapping->host;
2019         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2020
2021         if (unlikely(*pos < 0))
2022                 return -EINVAL;
2023
2024         if (!isblk) {
2025                 /* FIXME: this is for backwards compatibility with 2.4 */
2026                 if (file->f_flags & O_APPEND)
2027                         *pos = i_size_read(inode);
2028
2029                 if (limit != RLIM_INFINITY) {
2030                         if (*pos >= limit) {
2031                                 send_sig(SIGXFSZ, current, 0);
2032                                 return -EFBIG;
2033                         }
2034                         if (*count > limit - (typeof(limit))*pos) {
2035                                 *count = limit - (typeof(limit))*pos;
2036                         }
2037                 }
2038         }
2039
2040         /*
2041          * LFS rule
2042          */
2043         if (unlikely(*pos + *count > MAX_NON_LFS &&
2044                                 !(file->f_flags & O_LARGEFILE))) {
2045                 if (*pos >= MAX_NON_LFS) {
2046                         return -EFBIG;
2047                 }
2048                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2049                         *count = MAX_NON_LFS - (unsigned long)*pos;
2050                 }
2051         }
2052
2053         /*
2054          * Are we about to exceed the fs block limit ?
2055          *
2056          * If we have written data it becomes a short write.  If we have
2057          * exceeded without writing data we send a signal and return EFBIG.
2058          * Linus frestrict idea will clean these up nicely..
2059          */
2060         if (likely(!isblk)) {
2061                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2062                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2063                                 return -EFBIG;
2064                         }
2065                         /* zero-length writes at ->s_maxbytes are OK */
2066                 }
2067
2068                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2069                         *count = inode->i_sb->s_maxbytes - *pos;
2070         } else {
2071 #ifdef CONFIG_BLOCK
2072                 loff_t isize;
2073                 if (bdev_read_only(I_BDEV(inode)))
2074                         return -EPERM;
2075                 isize = i_size_read(inode);
2076                 if (*pos >= isize) {
2077                         if (*count || *pos > isize)
2078                                 return -ENOSPC;
2079                 }
2080
2081                 if (*pos + *count > isize)
2082                         *count = isize - *pos;
2083 #else
2084                 return -EPERM;
2085 #endif
2086         }
2087         return 0;
2088 }
2089 EXPORT_SYMBOL(generic_write_checks);
2090
2091 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2092                                 loff_t pos, unsigned len, unsigned flags,
2093                                 struct page **pagep, void **fsdata)
2094 {
2095         const struct address_space_operations *aops = mapping->a_ops;
2096
2097         return aops->write_begin(file, mapping, pos, len, flags,
2098                                                         pagep, fsdata);
2099 }
2100 EXPORT_SYMBOL(pagecache_write_begin);
2101
2102 int pagecache_write_end(struct file *file, struct address_space *mapping,
2103                                 loff_t pos, unsigned len, unsigned copied,
2104                                 struct page *page, void *fsdata)
2105 {
2106         const struct address_space_operations *aops = mapping->a_ops;
2107
2108         mark_page_accessed(page);
2109         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2110 }
2111 EXPORT_SYMBOL(pagecache_write_end);
2112
2113 ssize_t
2114 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2115                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2116                 size_t count, size_t ocount)
2117 {
2118         struct file     *file = iocb->ki_filp;
2119         struct address_space *mapping = file->f_mapping;
2120         struct inode    *inode = mapping->host;
2121         ssize_t         written;
2122         size_t          write_len;
2123         pgoff_t         end;
2124
2125         if (count != ocount)
2126                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2127
2128         write_len = iov_length(iov, *nr_segs);
2129         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2130
2131         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2132         if (written)
2133                 goto out;
2134
2135         /*
2136          * After a write we want buffered reads to be sure to go to disk to get
2137          * the new data.  We invalidate clean cached page from the region we're
2138          * about to write.  We do this *before* the write so that we can return
2139          * without clobbering -EIOCBQUEUED from ->direct_IO().
2140          */
2141         if (mapping->nrpages) {
2142                 written = invalidate_inode_pages2_range(mapping,
2143                                         pos >> PAGE_CACHE_SHIFT, end);
2144                 /*
2145                  * If a page can not be invalidated, return 0 to fall back
2146                  * to buffered write.
2147                  */
2148                 if (written) {
2149                         if (written == -EBUSY)
2150                                 return 0;
2151                         goto out;
2152                 }
2153         }
2154
2155         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2156
2157         /*
2158          * Finally, try again to invalidate clean pages which might have been
2159          * cached by non-direct readahead, or faulted in by get_user_pages()
2160          * if the source of the write was an mmap'ed region of the file
2161          * we're writing.  Either one is a pretty crazy thing to do,
2162          * so we don't support it 100%.  If this invalidation
2163          * fails, tough, the write still worked...
2164          */
2165         if (mapping->nrpages) {
2166                 invalidate_inode_pages2_range(mapping,
2167                                               pos >> PAGE_CACHE_SHIFT, end);
2168         }
2169
2170         if (written > 0) {
2171                 loff_t end = pos + written;
2172                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2173                         i_size_write(inode,  end);
2174                         mark_inode_dirty(inode);
2175                 }
2176                 *ppos = end;
2177         }
2178 out:
2179         return written;
2180 }
2181 EXPORT_SYMBOL(generic_file_direct_write);
2182
2183 /*
2184  * Find or create a page at the given pagecache position. Return the locked
2185  * page. This function is specifically for buffered writes.
2186  */
2187 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2188                                         pgoff_t index, unsigned flags)
2189 {
2190         int status;
2191         struct page *page;
2192         gfp_t gfp_notmask = 0;
2193         if (flags & AOP_FLAG_NOFS)
2194                 gfp_notmask = __GFP_FS;
2195 repeat:
2196         page = find_lock_page(mapping, index);
2197         if (likely(page))
2198                 return page;
2199
2200         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2201         if (!page)
2202                 return NULL;
2203         status = add_to_page_cache_lru(page, mapping, index,
2204                                                 GFP_KERNEL & ~gfp_notmask);
2205         if (unlikely(status)) {
2206                 page_cache_release(page);
2207                 if (status == -EEXIST)
2208                         goto repeat;
2209                 return NULL;
2210         }
2211         return page;
2212 }
2213 EXPORT_SYMBOL(grab_cache_page_write_begin);
2214
2215 static ssize_t generic_perform_write(struct file *file,
2216                                 struct iov_iter *i, loff_t pos)
2217 {
2218         struct address_space *mapping = file->f_mapping;
2219         const struct address_space_operations *a_ops = mapping->a_ops;
2220         long status = 0;
2221         ssize_t written = 0;
2222         unsigned int flags = 0;
2223
2224         /*
2225          * Copies from kernel address space cannot fail (NFSD is a big user).
2226          */
2227         if (segment_eq(get_fs(), KERNEL_DS))
2228                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2229
2230         do {
2231                 struct page *page;
2232                 pgoff_t index;          /* Pagecache index for current page */
2233                 unsigned long offset;   /* Offset into pagecache page */
2234                 unsigned long bytes;    /* Bytes to write to page */
2235                 size_t copied;          /* Bytes copied from user */
2236                 void *fsdata;
2237
2238                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2239                 index = pos >> PAGE_CACHE_SHIFT;
2240                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2241                                                 iov_iter_count(i));
2242
2243 again:
2244
2245                 /*
2246                  * Bring in the user page that we will copy from _first_.
2247                  * Otherwise there's a nasty deadlock on copying from the
2248                  * same page as we're writing to, without it being marked
2249                  * up-to-date.
2250                  *
2251                  * Not only is this an optimisation, but it is also required
2252                  * to check that the address is actually valid, when atomic
2253                  * usercopies are used, below.
2254                  */
2255                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2256                         status = -EFAULT;
2257                         break;
2258                 }
2259
2260                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2261                                                 &page, &fsdata);
2262                 if (unlikely(status))
2263                         break;
2264
2265                 if (mapping_writably_mapped(mapping))
2266                         flush_dcache_page(page);
2267
2268                 pagefault_disable();
2269                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2270                 pagefault_enable();
2271                 flush_dcache_page(page);
2272
2273                 mark_page_accessed(page);
2274                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2275                                                 page, fsdata);
2276                 if (unlikely(status < 0))
2277                         break;
2278                 copied = status;
2279
2280                 cond_resched();
2281
2282                 iov_iter_advance(i, copied);
2283                 if (unlikely(copied == 0)) {
2284                         /*
2285                          * If we were unable to copy any data at all, we must
2286                          * fall back to a single segment length write.
2287                          *
2288                          * If we didn't fallback here, we could livelock
2289                          * because not all segments in the iov can be copied at
2290                          * once without a pagefault.
2291                          */
2292                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2293                                                 iov_iter_single_seg_count(i));
2294                         goto again;
2295                 }
2296                 pos += copied;
2297                 written += copied;
2298
2299                 balance_dirty_pages_ratelimited(mapping);
2300
2301         } while (iov_iter_count(i));
2302
2303         return written ? written : status;
2304 }
2305
2306 ssize_t
2307 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2308                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2309                 size_t count, ssize_t written)
2310 {
2311         struct file *file = iocb->ki_filp;
2312         struct address_space *mapping = file->f_mapping;
2313         ssize_t status;
2314         struct iov_iter i;
2315
2316         iov_iter_init(&i, iov, nr_segs, count, written);
2317         status = generic_perform_write(file, &i, pos);
2318
2319         if (likely(status >= 0)) {
2320                 written += status;
2321                 *ppos = pos + status;
2322         }
2323         
2324         /*
2325          * If we get here for O_DIRECT writes then we must have fallen through
2326          * to buffered writes (block instantiation inside i_size).  So we sync
2327          * the file data here, to try to honour O_DIRECT expectations.
2328          */
2329         if (unlikely(file->f_flags & O_DIRECT) && written)
2330                 status = filemap_write_and_wait_range(mapping,
2331                                         pos, pos + written - 1);
2332
2333         return written ? written : status;
2334 }
2335 EXPORT_SYMBOL(generic_file_buffered_write);
2336
2337 /**
2338  * __generic_file_aio_write - write data to a file
2339  * @iocb:       IO state structure (file, offset, etc.)
2340  * @iov:        vector with data to write
2341  * @nr_segs:    number of segments in the vector
2342  * @ppos:       position where to write
2343  *
2344  * This function does all the work needed for actually writing data to a
2345  * file. It does all basic checks, removes SUID from the file, updates
2346  * modification times and calls proper subroutines depending on whether we
2347  * do direct IO or a standard buffered write.
2348  *
2349  * It expects i_mutex to be grabbed unless we work on a block device or similar
2350  * object which does not need locking at all.
2351  *
2352  * This function does *not* take care of syncing data in case of O_SYNC write.
2353  * A caller has to handle it. This is mainly due to the fact that we want to
2354  * avoid syncing under i_mutex.
2355  */
2356 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2357                                  unsigned long nr_segs, loff_t *ppos)
2358 {
2359         struct file *file = iocb->ki_filp;
2360         struct address_space * mapping = file->f_mapping;
2361         size_t ocount;          /* original count */
2362         size_t count;           /* after file limit checks */
2363         struct inode    *inode = mapping->host;
2364         loff_t          pos;
2365         ssize_t         written;
2366         ssize_t         err;
2367
2368         ocount = 0;
2369         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2370         if (err)
2371                 return err;
2372
2373         count = ocount;
2374         pos = *ppos;
2375
2376         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2377
2378         /* We can write back this queue in page reclaim */
2379         current->backing_dev_info = mapping->backing_dev_info;
2380         written = 0;
2381
2382         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2383         if (err)
2384                 goto out;
2385
2386         if (count == 0)
2387                 goto out;
2388
2389         err = file_remove_suid(file);
2390         if (err)
2391                 goto out;
2392
2393         file_update_time(file);
2394
2395         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2396         if (unlikely(file->f_flags & O_DIRECT)) {
2397                 loff_t endbyte;
2398                 ssize_t written_buffered;
2399
2400                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2401                                                         ppos, count, ocount);
2402                 if (written < 0 || written == count)
2403                         goto out;
2404                 /*
2405                  * direct-io write to a hole: fall through to buffered I/O
2406                  * for completing the rest of the request.
2407                  */
2408                 pos += written;
2409                 count -= written;
2410                 written_buffered = generic_file_buffered_write(iocb, iov,
2411                                                 nr_segs, pos, ppos, count,
2412                                                 written);
2413                 /*
2414                  * If generic_file_buffered_write() retuned a synchronous error
2415                  * then we want to return the number of bytes which were
2416                  * direct-written, or the error code if that was zero.  Note
2417                  * that this differs from normal direct-io semantics, which
2418                  * will return -EFOO even if some bytes were written.
2419                  */
2420                 if (written_buffered < 0) {
2421                         err = written_buffered;
2422                         goto out;
2423                 }
2424
2425                 /*
2426                  * We need to ensure that the page cache pages are written to
2427                  * disk and invalidated to preserve the expected O_DIRECT
2428                  * semantics.
2429                  */
2430                 endbyte = pos + written_buffered - written - 1;
2431                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2432                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2433                                             SYNC_FILE_RANGE_WRITE|
2434                                             SYNC_FILE_RANGE_WAIT_AFTER);
2435                 if (err == 0) {
2436                         written = written_buffered;
2437                         invalidate_mapping_pages(mapping,
2438                                                  pos >> PAGE_CACHE_SHIFT,
2439                                                  endbyte >> PAGE_CACHE_SHIFT);
2440                 } else {
2441                         /*
2442                          * We don't know how much we wrote, so just return
2443                          * the number of bytes which were direct-written
2444                          */
2445                 }
2446         } else {
2447                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2448                                 pos, ppos, count, written);
2449         }
2450 out:
2451         current->backing_dev_info = NULL;
2452         return written ? written : err;
2453 }
2454 EXPORT_SYMBOL(__generic_file_aio_write);
2455
2456 /**
2457  * generic_file_aio_write - write data to a file
2458  * @iocb:       IO state structure
2459  * @iov:        vector with data to write
2460  * @nr_segs:    number of segments in the vector
2461  * @pos:        position in file where to write
2462  *
2463  * This is a wrapper around __generic_file_aio_write() to be used by most
2464  * filesystems. It takes care of syncing the file in case of O_SYNC file
2465  * and acquires i_mutex as needed.
2466  */
2467 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2468                 unsigned long nr_segs, loff_t pos)
2469 {
2470         struct file *file = iocb->ki_filp;
2471         struct inode *inode = file->f_mapping->host;
2472         ssize_t ret;
2473
2474         BUG_ON(iocb->ki_pos != pos);
2475
2476         mutex_lock(&inode->i_mutex);
2477         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2478         mutex_unlock(&inode->i_mutex);
2479
2480         if (ret > 0 || ret == -EIOCBQUEUED) {
2481                 ssize_t err;
2482
2483                 err = generic_write_sync(file, pos, ret);
2484                 if (err < 0 && ret > 0)
2485                         ret = err;
2486         }
2487         return ret;
2488 }
2489 EXPORT_SYMBOL(generic_file_aio_write);
2490
2491 /**
2492  * try_to_release_page() - release old fs-specific metadata on a page
2493  *
2494  * @page: the page which the kernel is trying to free
2495  * @gfp_mask: memory allocation flags (and I/O mode)
2496  *
2497  * The address_space is to try to release any data against the page
2498  * (presumably at page->private).  If the release was successful, return `1'.
2499  * Otherwise return zero.
2500  *
2501  * This may also be called if PG_fscache is set on a page, indicating that the
2502  * page is known to the local caching routines.
2503  *
2504  * The @gfp_mask argument specifies whether I/O may be performed to release
2505  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2506  *
2507  */
2508 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2509 {
2510         struct address_space * const mapping = page->mapping;
2511
2512         BUG_ON(!PageLocked(page));
2513         if (PageWriteback(page))
2514                 return 0;
2515
2516         if (mapping && mapping->a_ops->releasepage)
2517                 return mapping->a_ops->releasepage(page, gfp_mask);
2518         return try_to_free_buffers(page);
2519 }
2520
2521 EXPORT_SYMBOL(try_to_release_page);