]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
thp: rename split_huge_page_pmd() to split_huge_pmd()
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 enum scan_result {
35         SCAN_FAIL,
36         SCAN_SUCCEED,
37         SCAN_PMD_NULL,
38         SCAN_EXCEED_NONE_PTE,
39         SCAN_PTE_NON_PRESENT,
40         SCAN_PAGE_RO,
41         SCAN_NO_REFERENCED_PAGE,
42         SCAN_PAGE_NULL,
43         SCAN_SCAN_ABORT,
44         SCAN_PAGE_COUNT,
45         SCAN_PAGE_LRU,
46         SCAN_PAGE_LOCK,
47         SCAN_PAGE_ANON,
48         SCAN_PAGE_COMPOUND,
49         SCAN_ANY_PROCESS,
50         SCAN_VMA_NULL,
51         SCAN_VMA_CHECK,
52         SCAN_ADDRESS_RANGE,
53         SCAN_SWAP_CACHE_PAGE,
54         SCAN_DEL_PAGE_LRU,
55         SCAN_ALLOC_HUGE_PAGE_FAIL,
56         SCAN_CGROUP_CHARGE_FAIL
57 };
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/huge_memory.h>
61
62 /*
63  * By default transparent hugepage support is disabled in order that avoid
64  * to risk increase the memory footprint of applications without a guaranteed
65  * benefit. When transparent hugepage support is enabled, is for all mappings,
66  * and khugepaged scans all mappings.
67  * Defrag is invoked by khugepaged hugepage allocations and by page faults
68  * for all hugepage allocations.
69  */
70 unsigned long transparent_hugepage_flags __read_mostly =
71 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
72         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
73 #endif
74 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
75         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
76 #endif
77         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
78         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
79         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
80
81 /* default scan 8*512 pte (or vmas) every 30 second */
82 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
83 static unsigned int khugepaged_pages_collapsed;
84 static unsigned int khugepaged_full_scans;
85 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
86 /* during fragmentation poll the hugepage allocator once every minute */
87 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
88 static struct task_struct *khugepaged_thread __read_mostly;
89 static DEFINE_MUTEX(khugepaged_mutex);
90 static DEFINE_SPINLOCK(khugepaged_mm_lock);
91 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
92 /*
93  * default collapse hugepages if there is at least one pte mapped like
94  * it would have happened if the vma was large enough during page
95  * fault.
96  */
97 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
98
99 static int khugepaged(void *none);
100 static int khugepaged_slab_init(void);
101 static void khugepaged_slab_exit(void);
102
103 #define MM_SLOTS_HASH_BITS 10
104 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
105
106 static struct kmem_cache *mm_slot_cache __read_mostly;
107
108 /**
109  * struct mm_slot - hash lookup from mm to mm_slot
110  * @hash: hash collision list
111  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
112  * @mm: the mm that this information is valid for
113  */
114 struct mm_slot {
115         struct hlist_node hash;
116         struct list_head mm_node;
117         struct mm_struct *mm;
118 };
119
120 /**
121  * struct khugepaged_scan - cursor for scanning
122  * @mm_head: the head of the mm list to scan
123  * @mm_slot: the current mm_slot we are scanning
124  * @address: the next address inside that to be scanned
125  *
126  * There is only the one khugepaged_scan instance of this cursor structure.
127  */
128 struct khugepaged_scan {
129         struct list_head mm_head;
130         struct mm_slot *mm_slot;
131         unsigned long address;
132 };
133 static struct khugepaged_scan khugepaged_scan = {
134         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
135 };
136
137
138 static void set_recommended_min_free_kbytes(void)
139 {
140         struct zone *zone;
141         int nr_zones = 0;
142         unsigned long recommended_min;
143
144         for_each_populated_zone(zone)
145                 nr_zones++;
146
147         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
148         recommended_min = pageblock_nr_pages * nr_zones * 2;
149
150         /*
151          * Make sure that on average at least two pageblocks are almost free
152          * of another type, one for a migratetype to fall back to and a
153          * second to avoid subsequent fallbacks of other types There are 3
154          * MIGRATE_TYPES we care about.
155          */
156         recommended_min += pageblock_nr_pages * nr_zones *
157                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
158
159         /* don't ever allow to reserve more than 5% of the lowmem */
160         recommended_min = min(recommended_min,
161                               (unsigned long) nr_free_buffer_pages() / 20);
162         recommended_min <<= (PAGE_SHIFT-10);
163
164         if (recommended_min > min_free_kbytes) {
165                 if (user_min_free_kbytes >= 0)
166                         pr_info("raising min_free_kbytes from %d to %lu "
167                                 "to help transparent hugepage allocations\n",
168                                 min_free_kbytes, recommended_min);
169
170                 min_free_kbytes = recommended_min;
171         }
172         setup_per_zone_wmarks();
173 }
174
175 static int start_stop_khugepaged(void)
176 {
177         int err = 0;
178         if (khugepaged_enabled()) {
179                 if (!khugepaged_thread)
180                         khugepaged_thread = kthread_run(khugepaged, NULL,
181                                                         "khugepaged");
182                 if (IS_ERR(khugepaged_thread)) {
183                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
184                         err = PTR_ERR(khugepaged_thread);
185                         khugepaged_thread = NULL;
186                         goto fail;
187                 }
188
189                 if (!list_empty(&khugepaged_scan.mm_head))
190                         wake_up_interruptible(&khugepaged_wait);
191
192                 set_recommended_min_free_kbytes();
193         } else if (khugepaged_thread) {
194                 kthread_stop(khugepaged_thread);
195                 khugepaged_thread = NULL;
196         }
197 fail:
198         return err;
199 }
200
201 static atomic_t huge_zero_refcount;
202 struct page *huge_zero_page __read_mostly;
203
204 struct page *get_huge_zero_page(void)
205 {
206         struct page *zero_page;
207 retry:
208         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
209                 return READ_ONCE(huge_zero_page);
210
211         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
212                         HPAGE_PMD_ORDER);
213         if (!zero_page) {
214                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
215                 return NULL;
216         }
217         count_vm_event(THP_ZERO_PAGE_ALLOC);
218         preempt_disable();
219         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
220                 preempt_enable();
221                 __free_pages(zero_page, compound_order(zero_page));
222                 goto retry;
223         }
224
225         /* We take additional reference here. It will be put back by shrinker */
226         atomic_set(&huge_zero_refcount, 2);
227         preempt_enable();
228         return READ_ONCE(huge_zero_page);
229 }
230
231 static void put_huge_zero_page(void)
232 {
233         /*
234          * Counter should never go to zero here. Only shrinker can put
235          * last reference.
236          */
237         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
238 }
239
240 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
241                                         struct shrink_control *sc)
242 {
243         /* we can free zero page only if last reference remains */
244         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
245 }
246
247 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
248                                        struct shrink_control *sc)
249 {
250         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
251                 struct page *zero_page = xchg(&huge_zero_page, NULL);
252                 BUG_ON(zero_page == NULL);
253                 __free_pages(zero_page, compound_order(zero_page));
254                 return HPAGE_PMD_NR;
255         }
256
257         return 0;
258 }
259
260 static struct shrinker huge_zero_page_shrinker = {
261         .count_objects = shrink_huge_zero_page_count,
262         .scan_objects = shrink_huge_zero_page_scan,
263         .seeks = DEFAULT_SEEKS,
264 };
265
266 #ifdef CONFIG_SYSFS
267
268 static ssize_t double_flag_show(struct kobject *kobj,
269                                 struct kobj_attribute *attr, char *buf,
270                                 enum transparent_hugepage_flag enabled,
271                                 enum transparent_hugepage_flag req_madv)
272 {
273         if (test_bit(enabled, &transparent_hugepage_flags)) {
274                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
275                 return sprintf(buf, "[always] madvise never\n");
276         } else if (test_bit(req_madv, &transparent_hugepage_flags))
277                 return sprintf(buf, "always [madvise] never\n");
278         else
279                 return sprintf(buf, "always madvise [never]\n");
280 }
281 static ssize_t double_flag_store(struct kobject *kobj,
282                                  struct kobj_attribute *attr,
283                                  const char *buf, size_t count,
284                                  enum transparent_hugepage_flag enabled,
285                                  enum transparent_hugepage_flag req_madv)
286 {
287         if (!memcmp("always", buf,
288                     min(sizeof("always")-1, count))) {
289                 set_bit(enabled, &transparent_hugepage_flags);
290                 clear_bit(req_madv, &transparent_hugepage_flags);
291         } else if (!memcmp("madvise", buf,
292                            min(sizeof("madvise")-1, count))) {
293                 clear_bit(enabled, &transparent_hugepage_flags);
294                 set_bit(req_madv, &transparent_hugepage_flags);
295         } else if (!memcmp("never", buf,
296                            min(sizeof("never")-1, count))) {
297                 clear_bit(enabled, &transparent_hugepage_flags);
298                 clear_bit(req_madv, &transparent_hugepage_flags);
299         } else
300                 return -EINVAL;
301
302         return count;
303 }
304
305 static ssize_t enabled_show(struct kobject *kobj,
306                             struct kobj_attribute *attr, char *buf)
307 {
308         return double_flag_show(kobj, attr, buf,
309                                 TRANSPARENT_HUGEPAGE_FLAG,
310                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
311 }
312 static ssize_t enabled_store(struct kobject *kobj,
313                              struct kobj_attribute *attr,
314                              const char *buf, size_t count)
315 {
316         ssize_t ret;
317
318         ret = double_flag_store(kobj, attr, buf, count,
319                                 TRANSPARENT_HUGEPAGE_FLAG,
320                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
321
322         if (ret > 0) {
323                 int err;
324
325                 mutex_lock(&khugepaged_mutex);
326                 err = start_stop_khugepaged();
327                 mutex_unlock(&khugepaged_mutex);
328
329                 if (err)
330                         ret = err;
331         }
332
333         return ret;
334 }
335 static struct kobj_attribute enabled_attr =
336         __ATTR(enabled, 0644, enabled_show, enabled_store);
337
338 static ssize_t single_flag_show(struct kobject *kobj,
339                                 struct kobj_attribute *attr, char *buf,
340                                 enum transparent_hugepage_flag flag)
341 {
342         return sprintf(buf, "%d\n",
343                        !!test_bit(flag, &transparent_hugepage_flags));
344 }
345
346 static ssize_t single_flag_store(struct kobject *kobj,
347                                  struct kobj_attribute *attr,
348                                  const char *buf, size_t count,
349                                  enum transparent_hugepage_flag flag)
350 {
351         unsigned long value;
352         int ret;
353
354         ret = kstrtoul(buf, 10, &value);
355         if (ret < 0)
356                 return ret;
357         if (value > 1)
358                 return -EINVAL;
359
360         if (value)
361                 set_bit(flag, &transparent_hugepage_flags);
362         else
363                 clear_bit(flag, &transparent_hugepage_flags);
364
365         return count;
366 }
367
368 /*
369  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
370  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
371  * memory just to allocate one more hugepage.
372  */
373 static ssize_t defrag_show(struct kobject *kobj,
374                            struct kobj_attribute *attr, char *buf)
375 {
376         return double_flag_show(kobj, attr, buf,
377                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
378                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
379 }
380 static ssize_t defrag_store(struct kobject *kobj,
381                             struct kobj_attribute *attr,
382                             const char *buf, size_t count)
383 {
384         return double_flag_store(kobj, attr, buf, count,
385                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
386                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
387 }
388 static struct kobj_attribute defrag_attr =
389         __ATTR(defrag, 0644, defrag_show, defrag_store);
390
391 static ssize_t use_zero_page_show(struct kobject *kobj,
392                 struct kobj_attribute *attr, char *buf)
393 {
394         return single_flag_show(kobj, attr, buf,
395                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
396 }
397 static ssize_t use_zero_page_store(struct kobject *kobj,
398                 struct kobj_attribute *attr, const char *buf, size_t count)
399 {
400         return single_flag_store(kobj, attr, buf, count,
401                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
402 }
403 static struct kobj_attribute use_zero_page_attr =
404         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
405 #ifdef CONFIG_DEBUG_VM
406 static ssize_t debug_cow_show(struct kobject *kobj,
407                                 struct kobj_attribute *attr, char *buf)
408 {
409         return single_flag_show(kobj, attr, buf,
410                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
411 }
412 static ssize_t debug_cow_store(struct kobject *kobj,
413                                struct kobj_attribute *attr,
414                                const char *buf, size_t count)
415 {
416         return single_flag_store(kobj, attr, buf, count,
417                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
418 }
419 static struct kobj_attribute debug_cow_attr =
420         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
421 #endif /* CONFIG_DEBUG_VM */
422
423 static struct attribute *hugepage_attr[] = {
424         &enabled_attr.attr,
425         &defrag_attr.attr,
426         &use_zero_page_attr.attr,
427 #ifdef CONFIG_DEBUG_VM
428         &debug_cow_attr.attr,
429 #endif
430         NULL,
431 };
432
433 static struct attribute_group hugepage_attr_group = {
434         .attrs = hugepage_attr,
435 };
436
437 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
438                                          struct kobj_attribute *attr,
439                                          char *buf)
440 {
441         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
442 }
443
444 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
445                                           struct kobj_attribute *attr,
446                                           const char *buf, size_t count)
447 {
448         unsigned long msecs;
449         int err;
450
451         err = kstrtoul(buf, 10, &msecs);
452         if (err || msecs > UINT_MAX)
453                 return -EINVAL;
454
455         khugepaged_scan_sleep_millisecs = msecs;
456         wake_up_interruptible(&khugepaged_wait);
457
458         return count;
459 }
460 static struct kobj_attribute scan_sleep_millisecs_attr =
461         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
462                scan_sleep_millisecs_store);
463
464 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
465                                           struct kobj_attribute *attr,
466                                           char *buf)
467 {
468         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
469 }
470
471 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
472                                            struct kobj_attribute *attr,
473                                            const char *buf, size_t count)
474 {
475         unsigned long msecs;
476         int err;
477
478         err = kstrtoul(buf, 10, &msecs);
479         if (err || msecs > UINT_MAX)
480                 return -EINVAL;
481
482         khugepaged_alloc_sleep_millisecs = msecs;
483         wake_up_interruptible(&khugepaged_wait);
484
485         return count;
486 }
487 static struct kobj_attribute alloc_sleep_millisecs_attr =
488         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
489                alloc_sleep_millisecs_store);
490
491 static ssize_t pages_to_scan_show(struct kobject *kobj,
492                                   struct kobj_attribute *attr,
493                                   char *buf)
494 {
495         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
496 }
497 static ssize_t pages_to_scan_store(struct kobject *kobj,
498                                    struct kobj_attribute *attr,
499                                    const char *buf, size_t count)
500 {
501         int err;
502         unsigned long pages;
503
504         err = kstrtoul(buf, 10, &pages);
505         if (err || !pages || pages > UINT_MAX)
506                 return -EINVAL;
507
508         khugepaged_pages_to_scan = pages;
509
510         return count;
511 }
512 static struct kobj_attribute pages_to_scan_attr =
513         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
514                pages_to_scan_store);
515
516 static ssize_t pages_collapsed_show(struct kobject *kobj,
517                                     struct kobj_attribute *attr,
518                                     char *buf)
519 {
520         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
521 }
522 static struct kobj_attribute pages_collapsed_attr =
523         __ATTR_RO(pages_collapsed);
524
525 static ssize_t full_scans_show(struct kobject *kobj,
526                                struct kobj_attribute *attr,
527                                char *buf)
528 {
529         return sprintf(buf, "%u\n", khugepaged_full_scans);
530 }
531 static struct kobj_attribute full_scans_attr =
532         __ATTR_RO(full_scans);
533
534 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
535                                       struct kobj_attribute *attr, char *buf)
536 {
537         return single_flag_show(kobj, attr, buf,
538                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
539 }
540 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
541                                        struct kobj_attribute *attr,
542                                        const char *buf, size_t count)
543 {
544         return single_flag_store(kobj, attr, buf, count,
545                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
546 }
547 static struct kobj_attribute khugepaged_defrag_attr =
548         __ATTR(defrag, 0644, khugepaged_defrag_show,
549                khugepaged_defrag_store);
550
551 /*
552  * max_ptes_none controls if khugepaged should collapse hugepages over
553  * any unmapped ptes in turn potentially increasing the memory
554  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
555  * reduce the available free memory in the system as it
556  * runs. Increasing max_ptes_none will instead potentially reduce the
557  * free memory in the system during the khugepaged scan.
558  */
559 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
560                                              struct kobj_attribute *attr,
561                                              char *buf)
562 {
563         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
564 }
565 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
566                                               struct kobj_attribute *attr,
567                                               const char *buf, size_t count)
568 {
569         int err;
570         unsigned long max_ptes_none;
571
572         err = kstrtoul(buf, 10, &max_ptes_none);
573         if (err || max_ptes_none > HPAGE_PMD_NR-1)
574                 return -EINVAL;
575
576         khugepaged_max_ptes_none = max_ptes_none;
577
578         return count;
579 }
580 static struct kobj_attribute khugepaged_max_ptes_none_attr =
581         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
582                khugepaged_max_ptes_none_store);
583
584 static struct attribute *khugepaged_attr[] = {
585         &khugepaged_defrag_attr.attr,
586         &khugepaged_max_ptes_none_attr.attr,
587         &pages_to_scan_attr.attr,
588         &pages_collapsed_attr.attr,
589         &full_scans_attr.attr,
590         &scan_sleep_millisecs_attr.attr,
591         &alloc_sleep_millisecs_attr.attr,
592         NULL,
593 };
594
595 static struct attribute_group khugepaged_attr_group = {
596         .attrs = khugepaged_attr,
597         .name = "khugepaged",
598 };
599
600 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
601 {
602         int err;
603
604         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
605         if (unlikely(!*hugepage_kobj)) {
606                 pr_err("failed to create transparent hugepage kobject\n");
607                 return -ENOMEM;
608         }
609
610         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
611         if (err) {
612                 pr_err("failed to register transparent hugepage group\n");
613                 goto delete_obj;
614         }
615
616         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
617         if (err) {
618                 pr_err("failed to register transparent hugepage group\n");
619                 goto remove_hp_group;
620         }
621
622         return 0;
623
624 remove_hp_group:
625         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
626 delete_obj:
627         kobject_put(*hugepage_kobj);
628         return err;
629 }
630
631 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
632 {
633         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
634         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
635         kobject_put(hugepage_kobj);
636 }
637 #else
638 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
639 {
640         return 0;
641 }
642
643 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
644 {
645 }
646 #endif /* CONFIG_SYSFS */
647
648 static int __init hugepage_init(void)
649 {
650         int err;
651         struct kobject *hugepage_kobj;
652
653         if (!has_transparent_hugepage()) {
654                 transparent_hugepage_flags = 0;
655                 return -EINVAL;
656         }
657
658         err = hugepage_init_sysfs(&hugepage_kobj);
659         if (err)
660                 goto err_sysfs;
661
662         err = khugepaged_slab_init();
663         if (err)
664                 goto err_slab;
665
666         err = register_shrinker(&huge_zero_page_shrinker);
667         if (err)
668                 goto err_hzp_shrinker;
669
670         /*
671          * By default disable transparent hugepages on smaller systems,
672          * where the extra memory used could hurt more than TLB overhead
673          * is likely to save.  The admin can still enable it through /sys.
674          */
675         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
676                 transparent_hugepage_flags = 0;
677                 return 0;
678         }
679
680         err = start_stop_khugepaged();
681         if (err)
682                 goto err_khugepaged;
683
684         return 0;
685 err_khugepaged:
686         unregister_shrinker(&huge_zero_page_shrinker);
687 err_hzp_shrinker:
688         khugepaged_slab_exit();
689 err_slab:
690         hugepage_exit_sysfs(hugepage_kobj);
691 err_sysfs:
692         return err;
693 }
694 subsys_initcall(hugepage_init);
695
696 static int __init setup_transparent_hugepage(char *str)
697 {
698         int ret = 0;
699         if (!str)
700                 goto out;
701         if (!strcmp(str, "always")) {
702                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
703                         &transparent_hugepage_flags);
704                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
705                           &transparent_hugepage_flags);
706                 ret = 1;
707         } else if (!strcmp(str, "madvise")) {
708                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
709                           &transparent_hugepage_flags);
710                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
711                         &transparent_hugepage_flags);
712                 ret = 1;
713         } else if (!strcmp(str, "never")) {
714                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
715                           &transparent_hugepage_flags);
716                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
717                           &transparent_hugepage_flags);
718                 ret = 1;
719         }
720 out:
721         if (!ret)
722                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
723         return ret;
724 }
725 __setup("transparent_hugepage=", setup_transparent_hugepage);
726
727 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
728 {
729         if (likely(vma->vm_flags & VM_WRITE))
730                 pmd = pmd_mkwrite(pmd);
731         return pmd;
732 }
733
734 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
735 {
736         pmd_t entry;
737         entry = mk_pmd(page, prot);
738         entry = pmd_mkhuge(entry);
739         return entry;
740 }
741
742 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
743                                         struct vm_area_struct *vma,
744                                         unsigned long address, pmd_t *pmd,
745                                         struct page *page, gfp_t gfp,
746                                         unsigned int flags)
747 {
748         struct mem_cgroup *memcg;
749         pgtable_t pgtable;
750         spinlock_t *ptl;
751         unsigned long haddr = address & HPAGE_PMD_MASK;
752
753         VM_BUG_ON_PAGE(!PageCompound(page), page);
754
755         if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
756                 put_page(page);
757                 count_vm_event(THP_FAULT_FALLBACK);
758                 return VM_FAULT_FALLBACK;
759         }
760
761         pgtable = pte_alloc_one(mm, haddr);
762         if (unlikely(!pgtable)) {
763                 mem_cgroup_cancel_charge(page, memcg, true);
764                 put_page(page);
765                 return VM_FAULT_OOM;
766         }
767
768         clear_huge_page(page, haddr, HPAGE_PMD_NR);
769         /*
770          * The memory barrier inside __SetPageUptodate makes sure that
771          * clear_huge_page writes become visible before the set_pmd_at()
772          * write.
773          */
774         __SetPageUptodate(page);
775
776         ptl = pmd_lock(mm, pmd);
777         if (unlikely(!pmd_none(*pmd))) {
778                 spin_unlock(ptl);
779                 mem_cgroup_cancel_charge(page, memcg, true);
780                 put_page(page);
781                 pte_free(mm, pgtable);
782         } else {
783                 pmd_t entry;
784
785                 /* Deliver the page fault to userland */
786                 if (userfaultfd_missing(vma)) {
787                         int ret;
788
789                         spin_unlock(ptl);
790                         mem_cgroup_cancel_charge(page, memcg, true);
791                         put_page(page);
792                         pte_free(mm, pgtable);
793                         ret = handle_userfault(vma, address, flags,
794                                                VM_UFFD_MISSING);
795                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
796                         return ret;
797                 }
798
799                 entry = mk_huge_pmd(page, vma->vm_page_prot);
800                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
801                 page_add_new_anon_rmap(page, vma, haddr, true);
802                 mem_cgroup_commit_charge(page, memcg, false, true);
803                 lru_cache_add_active_or_unevictable(page, vma);
804                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
805                 set_pmd_at(mm, haddr, pmd, entry);
806                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
807                 atomic_long_inc(&mm->nr_ptes);
808                 spin_unlock(ptl);
809                 count_vm_event(THP_FAULT_ALLOC);
810         }
811
812         return 0;
813 }
814
815 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
816 {
817         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
818 }
819
820 /* Caller must hold page table lock. */
821 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
822                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
823                 struct page *zero_page)
824 {
825         pmd_t entry;
826         if (!pmd_none(*pmd))
827                 return false;
828         entry = mk_pmd(zero_page, vma->vm_page_prot);
829         entry = pmd_mkhuge(entry);
830         pgtable_trans_huge_deposit(mm, pmd, pgtable);
831         set_pmd_at(mm, haddr, pmd, entry);
832         atomic_long_inc(&mm->nr_ptes);
833         return true;
834 }
835
836 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
837                                unsigned long address, pmd_t *pmd,
838                                unsigned int flags)
839 {
840         gfp_t gfp;
841         struct page *page;
842         unsigned long haddr = address & HPAGE_PMD_MASK;
843
844         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
845                 return VM_FAULT_FALLBACK;
846         if (vma->vm_flags & VM_LOCKED)
847                 return VM_FAULT_FALLBACK;
848         if (unlikely(anon_vma_prepare(vma)))
849                 return VM_FAULT_OOM;
850         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
851                 return VM_FAULT_OOM;
852         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
853                         transparent_hugepage_use_zero_page()) {
854                 spinlock_t *ptl;
855                 pgtable_t pgtable;
856                 struct page *zero_page;
857                 bool set;
858                 int ret;
859                 pgtable = pte_alloc_one(mm, haddr);
860                 if (unlikely(!pgtable))
861                         return VM_FAULT_OOM;
862                 zero_page = get_huge_zero_page();
863                 if (unlikely(!zero_page)) {
864                         pte_free(mm, pgtable);
865                         count_vm_event(THP_FAULT_FALLBACK);
866                         return VM_FAULT_FALLBACK;
867                 }
868                 ptl = pmd_lock(mm, pmd);
869                 ret = 0;
870                 set = false;
871                 if (pmd_none(*pmd)) {
872                         if (userfaultfd_missing(vma)) {
873                                 spin_unlock(ptl);
874                                 ret = handle_userfault(vma, address, flags,
875                                                        VM_UFFD_MISSING);
876                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
877                         } else {
878                                 set_huge_zero_page(pgtable, mm, vma,
879                                                    haddr, pmd,
880                                                    zero_page);
881                                 spin_unlock(ptl);
882                                 set = true;
883                         }
884                 } else
885                         spin_unlock(ptl);
886                 if (!set) {
887                         pte_free(mm, pgtable);
888                         put_huge_zero_page();
889                 }
890                 return ret;
891         }
892         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
893         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
894         if (unlikely(!page)) {
895                 count_vm_event(THP_FAULT_FALLBACK);
896                 return VM_FAULT_FALLBACK;
897         }
898         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
899                                             flags);
900 }
901
902 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
903                 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
904 {
905         struct mm_struct *mm = vma->vm_mm;
906         pmd_t entry;
907         spinlock_t *ptl;
908
909         ptl = pmd_lock(mm, pmd);
910         if (pmd_none(*pmd)) {
911                 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
912                 if (write) {
913                         entry = pmd_mkyoung(pmd_mkdirty(entry));
914                         entry = maybe_pmd_mkwrite(entry, vma);
915                 }
916                 set_pmd_at(mm, addr, pmd, entry);
917                 update_mmu_cache_pmd(vma, addr, pmd);
918         }
919         spin_unlock(ptl);
920 }
921
922 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
923                         pmd_t *pmd, unsigned long pfn, bool write)
924 {
925         pgprot_t pgprot = vma->vm_page_prot;
926         /*
927          * If we had pmd_special, we could avoid all these restrictions,
928          * but we need to be consistent with PTEs and architectures that
929          * can't support a 'special' bit.
930          */
931         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
932         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
933                                                 (VM_PFNMAP|VM_MIXEDMAP));
934         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
935         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
936
937         if (addr < vma->vm_start || addr >= vma->vm_end)
938                 return VM_FAULT_SIGBUS;
939         if (track_pfn_insert(vma, &pgprot, pfn))
940                 return VM_FAULT_SIGBUS;
941         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
942         return VM_FAULT_NOPAGE;
943 }
944
945 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
947                   struct vm_area_struct *vma)
948 {
949         spinlock_t *dst_ptl, *src_ptl;
950         struct page *src_page;
951         pmd_t pmd;
952         pgtable_t pgtable;
953         int ret;
954
955         ret = -ENOMEM;
956         pgtable = pte_alloc_one(dst_mm, addr);
957         if (unlikely(!pgtable))
958                 goto out;
959
960         dst_ptl = pmd_lock(dst_mm, dst_pmd);
961         src_ptl = pmd_lockptr(src_mm, src_pmd);
962         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
963
964         ret = -EAGAIN;
965         pmd = *src_pmd;
966         if (unlikely(!pmd_trans_huge(pmd))) {
967                 pte_free(dst_mm, pgtable);
968                 goto out_unlock;
969         }
970         /*
971          * When page table lock is held, the huge zero pmd should not be
972          * under splitting since we don't split the page itself, only pmd to
973          * a page table.
974          */
975         if (is_huge_zero_pmd(pmd)) {
976                 struct page *zero_page;
977                 /*
978                  * get_huge_zero_page() will never allocate a new page here,
979                  * since we already have a zero page to copy. It just takes a
980                  * reference.
981                  */
982                 zero_page = get_huge_zero_page();
983                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
984                                 zero_page);
985                 ret = 0;
986                 goto out_unlock;
987         }
988
989         if (unlikely(pmd_trans_splitting(pmd))) {
990                 /* split huge page running from under us */
991                 spin_unlock(src_ptl);
992                 spin_unlock(dst_ptl);
993                 pte_free(dst_mm, pgtable);
994
995                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
996                 goto out;
997         }
998         src_page = pmd_page(pmd);
999         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1000         get_page(src_page);
1001         page_dup_rmap(src_page);
1002         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1003
1004         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1005         pmd = pmd_mkold(pmd_wrprotect(pmd));
1006         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1007         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1008         atomic_long_inc(&dst_mm->nr_ptes);
1009
1010         ret = 0;
1011 out_unlock:
1012         spin_unlock(src_ptl);
1013         spin_unlock(dst_ptl);
1014 out:
1015         return ret;
1016 }
1017
1018 void huge_pmd_set_accessed(struct mm_struct *mm,
1019                            struct vm_area_struct *vma,
1020                            unsigned long address,
1021                            pmd_t *pmd, pmd_t orig_pmd,
1022                            int dirty)
1023 {
1024         spinlock_t *ptl;
1025         pmd_t entry;
1026         unsigned long haddr;
1027
1028         ptl = pmd_lock(mm, pmd);
1029         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1030                 goto unlock;
1031
1032         entry = pmd_mkyoung(orig_pmd);
1033         haddr = address & HPAGE_PMD_MASK;
1034         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1035                 update_mmu_cache_pmd(vma, address, pmd);
1036
1037 unlock:
1038         spin_unlock(ptl);
1039 }
1040
1041 /*
1042  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1043  * during copy_user_huge_page()'s copy_page_rep(): in the case when
1044  * the source page gets split and a tail freed before copy completes.
1045  * Called under pmd_lock of checked pmd, so safe from splitting itself.
1046  */
1047 static void get_user_huge_page(struct page *page)
1048 {
1049         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1050                 struct page *endpage = page + HPAGE_PMD_NR;
1051
1052                 atomic_add(HPAGE_PMD_NR, &page->_count);
1053                 while (++page < endpage)
1054                         get_huge_page_tail(page);
1055         } else {
1056                 get_page(page);
1057         }
1058 }
1059
1060 static void put_user_huge_page(struct page *page)
1061 {
1062         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1063                 struct page *endpage = page + HPAGE_PMD_NR;
1064
1065                 while (page < endpage)
1066                         put_page(page++);
1067         } else {
1068                 put_page(page);
1069         }
1070 }
1071
1072 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1073                                         struct vm_area_struct *vma,
1074                                         unsigned long address,
1075                                         pmd_t *pmd, pmd_t orig_pmd,
1076                                         struct page *page,
1077                                         unsigned long haddr)
1078 {
1079         struct mem_cgroup *memcg;
1080         spinlock_t *ptl;
1081         pgtable_t pgtable;
1082         pmd_t _pmd;
1083         int ret = 0, i;
1084         struct page **pages;
1085         unsigned long mmun_start;       /* For mmu_notifiers */
1086         unsigned long mmun_end;         /* For mmu_notifiers */
1087
1088         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1089                         GFP_KERNEL);
1090         if (unlikely(!pages)) {
1091                 ret |= VM_FAULT_OOM;
1092                 goto out;
1093         }
1094
1095         for (i = 0; i < HPAGE_PMD_NR; i++) {
1096                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1097                                                __GFP_OTHER_NODE,
1098                                                vma, address, page_to_nid(page));
1099                 if (unlikely(!pages[i] ||
1100                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1101                                                    &memcg, false))) {
1102                         if (pages[i])
1103                                 put_page(pages[i]);
1104                         while (--i >= 0) {
1105                                 memcg = (void *)page_private(pages[i]);
1106                                 set_page_private(pages[i], 0);
1107                                 mem_cgroup_cancel_charge(pages[i], memcg,
1108                                                 false);
1109                                 put_page(pages[i]);
1110                         }
1111                         kfree(pages);
1112                         ret |= VM_FAULT_OOM;
1113                         goto out;
1114                 }
1115                 set_page_private(pages[i], (unsigned long)memcg);
1116         }
1117
1118         for (i = 0; i < HPAGE_PMD_NR; i++) {
1119                 copy_user_highpage(pages[i], page + i,
1120                                    haddr + PAGE_SIZE * i, vma);
1121                 __SetPageUptodate(pages[i]);
1122                 cond_resched();
1123         }
1124
1125         mmun_start = haddr;
1126         mmun_end   = haddr + HPAGE_PMD_SIZE;
1127         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1128
1129         ptl = pmd_lock(mm, pmd);
1130         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1131                 goto out_free_pages;
1132         VM_BUG_ON_PAGE(!PageHead(page), page);
1133
1134         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1135         /* leave pmd empty until pte is filled */
1136
1137         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1138         pmd_populate(mm, &_pmd, pgtable);
1139
1140         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1141                 pte_t *pte, entry;
1142                 entry = mk_pte(pages[i], vma->vm_page_prot);
1143                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1144                 memcg = (void *)page_private(pages[i]);
1145                 set_page_private(pages[i], 0);
1146                 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1147                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1148                 lru_cache_add_active_or_unevictable(pages[i], vma);
1149                 pte = pte_offset_map(&_pmd, haddr);
1150                 VM_BUG_ON(!pte_none(*pte));
1151                 set_pte_at(mm, haddr, pte, entry);
1152                 pte_unmap(pte);
1153         }
1154         kfree(pages);
1155
1156         smp_wmb(); /* make pte visible before pmd */
1157         pmd_populate(mm, pmd, pgtable);
1158         page_remove_rmap(page, true);
1159         spin_unlock(ptl);
1160
1161         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162
1163         ret |= VM_FAULT_WRITE;
1164         put_page(page);
1165
1166 out:
1167         return ret;
1168
1169 out_free_pages:
1170         spin_unlock(ptl);
1171         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1172         for (i = 0; i < HPAGE_PMD_NR; i++) {
1173                 memcg = (void *)page_private(pages[i]);
1174                 set_page_private(pages[i], 0);
1175                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1176                 put_page(pages[i]);
1177         }
1178         kfree(pages);
1179         goto out;
1180 }
1181
1182 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1183                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1184 {
1185         spinlock_t *ptl;
1186         int ret = 0;
1187         struct page *page = NULL, *new_page;
1188         struct mem_cgroup *memcg;
1189         unsigned long haddr;
1190         unsigned long mmun_start;       /* For mmu_notifiers */
1191         unsigned long mmun_end;         /* For mmu_notifiers */
1192         gfp_t huge_gfp;                 /* for allocation and charge */
1193
1194         ptl = pmd_lockptr(mm, pmd);
1195         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1196         haddr = address & HPAGE_PMD_MASK;
1197         if (is_huge_zero_pmd(orig_pmd))
1198                 goto alloc;
1199         spin_lock(ptl);
1200         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1201                 goto out_unlock;
1202
1203         page = pmd_page(orig_pmd);
1204         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1205         /*
1206          * We can only reuse the page if nobody else maps the huge page or it's
1207          * part. We can do it by checking page_mapcount() on each sub-page, but
1208          * it's expensive.
1209          * The cheaper way is to check page_count() to be equal 1: every
1210          * mapcount takes page reference reference, so this way we can
1211          * guarantee, that the PMD is the only mapping.
1212          * This can give false negative if somebody pinned the page, but that's
1213          * fine.
1214          */
1215         if (page_mapcount(page) == 1 && page_count(page) == 1) {
1216                 pmd_t entry;
1217                 entry = pmd_mkyoung(orig_pmd);
1218                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1219                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1220                         update_mmu_cache_pmd(vma, address, pmd);
1221                 ret |= VM_FAULT_WRITE;
1222                 goto out_unlock;
1223         }
1224         get_user_huge_page(page);
1225         spin_unlock(ptl);
1226 alloc:
1227         if (transparent_hugepage_enabled(vma) &&
1228             !transparent_hugepage_debug_cow()) {
1229                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1230                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1231         } else
1232                 new_page = NULL;
1233
1234         if (unlikely(!new_page)) {
1235                 if (!page) {
1236                         split_huge_pmd(vma, pmd, address);
1237                         ret |= VM_FAULT_FALLBACK;
1238                 } else {
1239                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1240                                         pmd, orig_pmd, page, haddr);
1241                         if (ret & VM_FAULT_OOM) {
1242                                 split_huge_pmd(vma, pmd, address);
1243                                 ret |= VM_FAULT_FALLBACK;
1244                         }
1245                         put_user_huge_page(page);
1246                 }
1247                 count_vm_event(THP_FAULT_FALLBACK);
1248                 goto out;
1249         }
1250
1251         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1252                                            true))) {
1253                 put_page(new_page);
1254                 if (page) {
1255                         split_huge_pmd(vma, pmd, address);
1256                         put_user_huge_page(page);
1257                 } else
1258                         split_huge_pmd(vma, pmd, address);
1259                 ret |= VM_FAULT_FALLBACK;
1260                 count_vm_event(THP_FAULT_FALLBACK);
1261                 goto out;
1262         }
1263
1264         count_vm_event(THP_FAULT_ALLOC);
1265
1266         if (!page)
1267                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1268         else
1269                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1270         __SetPageUptodate(new_page);
1271
1272         mmun_start = haddr;
1273         mmun_end   = haddr + HPAGE_PMD_SIZE;
1274         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1275
1276         spin_lock(ptl);
1277         if (page)
1278                 put_user_huge_page(page);
1279         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1280                 spin_unlock(ptl);
1281                 mem_cgroup_cancel_charge(new_page, memcg, true);
1282                 put_page(new_page);
1283                 goto out_mn;
1284         } else {
1285                 pmd_t entry;
1286                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1287                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1288                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1289                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1290                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1291                 lru_cache_add_active_or_unevictable(new_page, vma);
1292                 set_pmd_at(mm, haddr, pmd, entry);
1293                 update_mmu_cache_pmd(vma, address, pmd);
1294                 if (!page) {
1295                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1296                         put_huge_zero_page();
1297                 } else {
1298                         VM_BUG_ON_PAGE(!PageHead(page), page);
1299                         page_remove_rmap(page, true);
1300                         put_page(page);
1301                 }
1302                 ret |= VM_FAULT_WRITE;
1303         }
1304         spin_unlock(ptl);
1305 out_mn:
1306         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1307 out:
1308         return ret;
1309 out_unlock:
1310         spin_unlock(ptl);
1311         return ret;
1312 }
1313
1314 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1315                                    unsigned long addr,
1316                                    pmd_t *pmd,
1317                                    unsigned int flags)
1318 {
1319         struct mm_struct *mm = vma->vm_mm;
1320         struct page *page = NULL;
1321
1322         assert_spin_locked(pmd_lockptr(mm, pmd));
1323
1324         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1325                 goto out;
1326
1327         /* Avoid dumping huge zero page */
1328         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1329                 return ERR_PTR(-EFAULT);
1330
1331         /* Full NUMA hinting faults to serialise migration in fault paths */
1332         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1333                 goto out;
1334
1335         page = pmd_page(*pmd);
1336         VM_BUG_ON_PAGE(!PageHead(page), page);
1337         if (flags & FOLL_TOUCH) {
1338                 pmd_t _pmd;
1339                 /*
1340                  * We should set the dirty bit only for FOLL_WRITE but
1341                  * for now the dirty bit in the pmd is meaningless.
1342                  * And if the dirty bit will become meaningful and
1343                  * we'll only set it with FOLL_WRITE, an atomic
1344                  * set_bit will be required on the pmd to set the
1345                  * young bit, instead of the current set_pmd_at.
1346                  */
1347                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1348                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1349                                           pmd, _pmd,  1))
1350                         update_mmu_cache_pmd(vma, addr, pmd);
1351         }
1352         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1353                 if (page->mapping && trylock_page(page)) {
1354                         lru_add_drain();
1355                         if (page->mapping)
1356                                 mlock_vma_page(page);
1357                         unlock_page(page);
1358                 }
1359         }
1360         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1361         VM_BUG_ON_PAGE(!PageCompound(page), page);
1362         if (flags & FOLL_GET)
1363                 get_page_foll(page);
1364
1365 out:
1366         return page;
1367 }
1368
1369 /* NUMA hinting page fault entry point for trans huge pmds */
1370 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1371                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1372 {
1373         spinlock_t *ptl;
1374         struct anon_vma *anon_vma = NULL;
1375         struct page *page;
1376         unsigned long haddr = addr & HPAGE_PMD_MASK;
1377         int page_nid = -1, this_nid = numa_node_id();
1378         int target_nid, last_cpupid = -1;
1379         bool page_locked;
1380         bool migrated = false;
1381         bool was_writable;
1382         int flags = 0;
1383
1384         /* A PROT_NONE fault should not end up here */
1385         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1386
1387         ptl = pmd_lock(mm, pmdp);
1388         if (unlikely(!pmd_same(pmd, *pmdp)))
1389                 goto out_unlock;
1390
1391         /*
1392          * If there are potential migrations, wait for completion and retry
1393          * without disrupting NUMA hinting information. Do not relock and
1394          * check_same as the page may no longer be mapped.
1395          */
1396         if (unlikely(pmd_trans_migrating(*pmdp))) {
1397                 page = pmd_page(*pmdp);
1398                 spin_unlock(ptl);
1399                 wait_on_page_locked(page);
1400                 goto out;
1401         }
1402
1403         page = pmd_page(pmd);
1404         BUG_ON(is_huge_zero_page(page));
1405         page_nid = page_to_nid(page);
1406         last_cpupid = page_cpupid_last(page);
1407         count_vm_numa_event(NUMA_HINT_FAULTS);
1408         if (page_nid == this_nid) {
1409                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1410                 flags |= TNF_FAULT_LOCAL;
1411         }
1412
1413         /* See similar comment in do_numa_page for explanation */
1414         if (!(vma->vm_flags & VM_WRITE))
1415                 flags |= TNF_NO_GROUP;
1416
1417         /*
1418          * Acquire the page lock to serialise THP migrations but avoid dropping
1419          * page_table_lock if at all possible
1420          */
1421         page_locked = trylock_page(page);
1422         target_nid = mpol_misplaced(page, vma, haddr);
1423         if (target_nid == -1) {
1424                 /* If the page was locked, there are no parallel migrations */
1425                 if (page_locked)
1426                         goto clear_pmdnuma;
1427         }
1428
1429         /* Migration could have started since the pmd_trans_migrating check */
1430         if (!page_locked) {
1431                 spin_unlock(ptl);
1432                 wait_on_page_locked(page);
1433                 page_nid = -1;
1434                 goto out;
1435         }
1436
1437         /*
1438          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1439          * to serialises splits
1440          */
1441         get_page(page);
1442         spin_unlock(ptl);
1443         anon_vma = page_lock_anon_vma_read(page);
1444
1445         /* Confirm the PMD did not change while page_table_lock was released */
1446         spin_lock(ptl);
1447         if (unlikely(!pmd_same(pmd, *pmdp))) {
1448                 unlock_page(page);
1449                 put_page(page);
1450                 page_nid = -1;
1451                 goto out_unlock;
1452         }
1453
1454         /* Bail if we fail to protect against THP splits for any reason */
1455         if (unlikely(!anon_vma)) {
1456                 put_page(page);
1457                 page_nid = -1;
1458                 goto clear_pmdnuma;
1459         }
1460
1461         /*
1462          * Migrate the THP to the requested node, returns with page unlocked
1463          * and access rights restored.
1464          */
1465         spin_unlock(ptl);
1466         migrated = migrate_misplaced_transhuge_page(mm, vma,
1467                                 pmdp, pmd, addr, page, target_nid);
1468         if (migrated) {
1469                 flags |= TNF_MIGRATED;
1470                 page_nid = target_nid;
1471         } else
1472                 flags |= TNF_MIGRATE_FAIL;
1473
1474         goto out;
1475 clear_pmdnuma:
1476         BUG_ON(!PageLocked(page));
1477         was_writable = pmd_write(pmd);
1478         pmd = pmd_modify(pmd, vma->vm_page_prot);
1479         pmd = pmd_mkyoung(pmd);
1480         if (was_writable)
1481                 pmd = pmd_mkwrite(pmd);
1482         set_pmd_at(mm, haddr, pmdp, pmd);
1483         update_mmu_cache_pmd(vma, addr, pmdp);
1484         unlock_page(page);
1485 out_unlock:
1486         spin_unlock(ptl);
1487
1488 out:
1489         if (anon_vma)
1490                 page_unlock_anon_vma_read(anon_vma);
1491
1492         if (page_nid != -1)
1493                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1494
1495         return 0;
1496 }
1497
1498 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1499                  pmd_t *pmd, unsigned long addr)
1500 {
1501         pmd_t orig_pmd;
1502         spinlock_t *ptl;
1503
1504         if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1505                 return 0;
1506         /*
1507          * For architectures like ppc64 we look at deposited pgtable
1508          * when calling pmdp_huge_get_and_clear. So do the
1509          * pgtable_trans_huge_withdraw after finishing pmdp related
1510          * operations.
1511          */
1512         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1513                         tlb->fullmm);
1514         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1515         if (vma_is_dax(vma)) {
1516                 spin_unlock(ptl);
1517                 if (is_huge_zero_pmd(orig_pmd))
1518                         put_huge_zero_page();
1519         } else if (is_huge_zero_pmd(orig_pmd)) {
1520                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1521                 atomic_long_dec(&tlb->mm->nr_ptes);
1522                 spin_unlock(ptl);
1523                 put_huge_zero_page();
1524         } else {
1525                 struct page *page = pmd_page(orig_pmd);
1526                 page_remove_rmap(page, true);
1527                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1528                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1529                 VM_BUG_ON_PAGE(!PageHead(page), page);
1530                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1531                 atomic_long_dec(&tlb->mm->nr_ptes);
1532                 spin_unlock(ptl);
1533                 tlb_remove_page(tlb, page);
1534         }
1535         return 1;
1536 }
1537
1538 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1539                   unsigned long old_addr,
1540                   unsigned long new_addr, unsigned long old_end,
1541                   pmd_t *old_pmd, pmd_t *new_pmd)
1542 {
1543         spinlock_t *old_ptl, *new_ptl;
1544         int ret = 0;
1545         pmd_t pmd;
1546
1547         struct mm_struct *mm = vma->vm_mm;
1548
1549         if ((old_addr & ~HPAGE_PMD_MASK) ||
1550             (new_addr & ~HPAGE_PMD_MASK) ||
1551             old_end - old_addr < HPAGE_PMD_SIZE ||
1552             (new_vma->vm_flags & VM_NOHUGEPAGE))
1553                 goto out;
1554
1555         /*
1556          * The destination pmd shouldn't be established, free_pgtables()
1557          * should have release it.
1558          */
1559         if (WARN_ON(!pmd_none(*new_pmd))) {
1560                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1561                 goto out;
1562         }
1563
1564         /*
1565          * We don't have to worry about the ordering of src and dst
1566          * ptlocks because exclusive mmap_sem prevents deadlock.
1567          */
1568         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1569         if (ret == 1) {
1570                 new_ptl = pmd_lockptr(mm, new_pmd);
1571                 if (new_ptl != old_ptl)
1572                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1573                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1574                 VM_BUG_ON(!pmd_none(*new_pmd));
1575
1576                 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1577                         pgtable_t pgtable;
1578                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1579                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1580                 }
1581                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1582                 if (new_ptl != old_ptl)
1583                         spin_unlock(new_ptl);
1584                 spin_unlock(old_ptl);
1585         }
1586 out:
1587         return ret;
1588 }
1589
1590 /*
1591  * Returns
1592  *  - 0 if PMD could not be locked
1593  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1594  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1595  */
1596 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1597                 unsigned long addr, pgprot_t newprot, int prot_numa)
1598 {
1599         struct mm_struct *mm = vma->vm_mm;
1600         spinlock_t *ptl;
1601         int ret = 0;
1602
1603         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1604                 pmd_t entry;
1605                 bool preserve_write = prot_numa && pmd_write(*pmd);
1606                 ret = 1;
1607
1608                 /*
1609                  * Avoid trapping faults against the zero page. The read-only
1610                  * data is likely to be read-cached on the local CPU and
1611                  * local/remote hits to the zero page are not interesting.
1612                  */
1613                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1614                         spin_unlock(ptl);
1615                         return ret;
1616                 }
1617
1618                 if (!prot_numa || !pmd_protnone(*pmd)) {
1619                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1620                         entry = pmd_modify(entry, newprot);
1621                         if (preserve_write)
1622                                 entry = pmd_mkwrite(entry);
1623                         ret = HPAGE_PMD_NR;
1624                         set_pmd_at(mm, addr, pmd, entry);
1625                         BUG_ON(!preserve_write && pmd_write(entry));
1626                 }
1627                 spin_unlock(ptl);
1628         }
1629
1630         return ret;
1631 }
1632
1633 /*
1634  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1635  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1636  *
1637  * Note that if it returns 1, this routine returns without unlocking page
1638  * table locks. So callers must unlock them.
1639  */
1640 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1641                 spinlock_t **ptl)
1642 {
1643         *ptl = pmd_lock(vma->vm_mm, pmd);
1644         if (likely(pmd_trans_huge(*pmd))) {
1645                 if (unlikely(pmd_trans_splitting(*pmd))) {
1646                         spin_unlock(*ptl);
1647                         wait_split_huge_page(vma->anon_vma, pmd);
1648                         return -1;
1649                 } else {
1650                         /* Thp mapped by 'pmd' is stable, so we can
1651                          * handle it as it is. */
1652                         return 1;
1653                 }
1654         }
1655         spin_unlock(*ptl);
1656         return 0;
1657 }
1658
1659 /*
1660  * This function returns whether a given @page is mapped onto the @address
1661  * in the virtual space of @mm.
1662  *
1663  * When it's true, this function returns *pmd with holding the page table lock
1664  * and passing it back to the caller via @ptl.
1665  * If it's false, returns NULL without holding the page table lock.
1666  */
1667 pmd_t *page_check_address_pmd(struct page *page,
1668                               struct mm_struct *mm,
1669                               unsigned long address,
1670                               enum page_check_address_pmd_flag flag,
1671                               spinlock_t **ptl)
1672 {
1673         pgd_t *pgd;
1674         pud_t *pud;
1675         pmd_t *pmd;
1676
1677         if (address & ~HPAGE_PMD_MASK)
1678                 return NULL;
1679
1680         pgd = pgd_offset(mm, address);
1681         if (!pgd_present(*pgd))
1682                 return NULL;
1683         pud = pud_offset(pgd, address);
1684         if (!pud_present(*pud))
1685                 return NULL;
1686         pmd = pmd_offset(pud, address);
1687
1688         *ptl = pmd_lock(mm, pmd);
1689         if (!pmd_present(*pmd))
1690                 goto unlock;
1691         if (pmd_page(*pmd) != page)
1692                 goto unlock;
1693         /*
1694          * split_vma() may create temporary aliased mappings. There is
1695          * no risk as long as all huge pmd are found and have their
1696          * splitting bit set before __split_huge_page_refcount
1697          * runs. Finding the same huge pmd more than once during the
1698          * same rmap walk is not a problem.
1699          */
1700         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1701             pmd_trans_splitting(*pmd))
1702                 goto unlock;
1703         if (pmd_trans_huge(*pmd)) {
1704                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1705                           !pmd_trans_splitting(*pmd));
1706                 return pmd;
1707         }
1708 unlock:
1709         spin_unlock(*ptl);
1710         return NULL;
1711 }
1712
1713 static int __split_huge_page_splitting(struct page *page,
1714                                        struct vm_area_struct *vma,
1715                                        unsigned long address)
1716 {
1717         struct mm_struct *mm = vma->vm_mm;
1718         spinlock_t *ptl;
1719         pmd_t *pmd;
1720         int ret = 0;
1721         /* For mmu_notifiers */
1722         const unsigned long mmun_start = address;
1723         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1724
1725         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1726         pmd = page_check_address_pmd(page, mm, address,
1727                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1728         if (pmd) {
1729                 /*
1730                  * We can't temporarily set the pmd to null in order
1731                  * to split it, the pmd must remain marked huge at all
1732                  * times or the VM won't take the pmd_trans_huge paths
1733                  * and it won't wait on the anon_vma->root->rwsem to
1734                  * serialize against split_huge_page*.
1735                  */
1736                 pmdp_splitting_flush(vma, address, pmd);
1737
1738                 ret = 1;
1739                 spin_unlock(ptl);
1740         }
1741         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1742
1743         return ret;
1744 }
1745
1746 static void __split_huge_page_refcount(struct page *page,
1747                                        struct list_head *list)
1748 {
1749         int i;
1750         struct zone *zone = page_zone(page);
1751         struct lruvec *lruvec;
1752         int tail_count = 0;
1753
1754         /* prevent PageLRU to go away from under us, and freeze lru stats */
1755         spin_lock_irq(&zone->lru_lock);
1756         lruvec = mem_cgroup_page_lruvec(page, zone);
1757
1758         compound_lock(page);
1759         /* complete memcg works before add pages to LRU */
1760         mem_cgroup_split_huge_fixup(page);
1761
1762         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1763                 struct page *page_tail = page + i;
1764
1765                 /* tail_page->_mapcount cannot change */
1766                 BUG_ON(page_mapcount(page_tail) < 0);
1767                 tail_count += page_mapcount(page_tail);
1768                 /* check for overflow */
1769                 BUG_ON(tail_count < 0);
1770                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1771                 /*
1772                  * tail_page->_count is zero and not changing from
1773                  * under us. But get_page_unless_zero() may be running
1774                  * from under us on the tail_page. If we used
1775                  * atomic_set() below instead of atomic_add(), we
1776                  * would then run atomic_set() concurrently with
1777                  * get_page_unless_zero(), and atomic_set() is
1778                  * implemented in C not using locked ops. spin_unlock
1779                  * on x86 sometime uses locked ops because of PPro
1780                  * errata 66, 92, so unless somebody can guarantee
1781                  * atomic_set() here would be safe on all archs (and
1782                  * not only on x86), it's safer to use atomic_add().
1783                  */
1784                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1785                            &page_tail->_count);
1786
1787                 /* after clearing PageTail the gup refcount can be released */
1788                 smp_mb__after_atomic();
1789
1790                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1791                 page_tail->flags |= (page->flags &
1792                                      ((1L << PG_referenced) |
1793                                       (1L << PG_swapbacked) |
1794                                       (1L << PG_mlocked) |
1795                                       (1L << PG_uptodate) |
1796                                       (1L << PG_active) |
1797                                       (1L << PG_unevictable)));
1798                 page_tail->flags |= (1L << PG_dirty);
1799
1800                 clear_compound_head(page_tail);
1801
1802                 if (page_is_young(page))
1803                         set_page_young(page_tail);
1804                 if (page_is_idle(page))
1805                         set_page_idle(page_tail);
1806
1807                 /*
1808                  * __split_huge_page_splitting() already set the
1809                  * splitting bit in all pmd that could map this
1810                  * hugepage, that will ensure no CPU can alter the
1811                  * mapcount on the head page. The mapcount is only
1812                  * accounted in the head page and it has to be
1813                  * transferred to all tail pages in the below code. So
1814                  * for this code to be safe, the split the mapcount
1815                  * can't change. But that doesn't mean userland can't
1816                  * keep changing and reading the page contents while
1817                  * we transfer the mapcount, so the pmd splitting
1818                  * status is achieved setting a reserved bit in the
1819                  * pmd, not by clearing the present bit.
1820                 */
1821                 page_tail->_mapcount = page->_mapcount;
1822
1823                 BUG_ON(page_tail->mapping != TAIL_MAPPING);
1824                 page_tail->mapping = page->mapping;
1825
1826                 page_tail->index = page->index + i;
1827                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1828
1829                 BUG_ON(!PageAnon(page_tail));
1830                 BUG_ON(!PageUptodate(page_tail));
1831                 BUG_ON(!PageDirty(page_tail));
1832                 BUG_ON(!PageSwapBacked(page_tail));
1833
1834                 lru_add_page_tail(page, page_tail, lruvec, list);
1835         }
1836         atomic_sub(tail_count, &page->_count);
1837         BUG_ON(atomic_read(&page->_count) <= 0);
1838
1839         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1840
1841         ClearPageCompound(page);
1842         compound_unlock(page);
1843         spin_unlock_irq(&zone->lru_lock);
1844
1845         for (i = 1; i < HPAGE_PMD_NR; i++) {
1846                 struct page *page_tail = page + i;
1847                 BUG_ON(page_count(page_tail) <= 0);
1848                 /*
1849                  * Tail pages may be freed if there wasn't any mapping
1850                  * like if add_to_swap() is running on a lru page that
1851                  * had its mapping zapped. And freeing these pages
1852                  * requires taking the lru_lock so we do the put_page
1853                  * of the tail pages after the split is complete.
1854                  */
1855                 put_page(page_tail);
1856         }
1857
1858         /*
1859          * Only the head page (now become a regular page) is required
1860          * to be pinned by the caller.
1861          */
1862         BUG_ON(page_count(page) <= 0);
1863 }
1864
1865 static int __split_huge_page_map(struct page *page,
1866                                  struct vm_area_struct *vma,
1867                                  unsigned long address)
1868 {
1869         struct mm_struct *mm = vma->vm_mm;
1870         spinlock_t *ptl;
1871         pmd_t *pmd, _pmd;
1872         int ret = 0, i;
1873         pgtable_t pgtable;
1874         unsigned long haddr;
1875
1876         pmd = page_check_address_pmd(page, mm, address,
1877                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1878         if (pmd) {
1879                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1880                 pmd_populate(mm, &_pmd, pgtable);
1881                 if (pmd_write(*pmd))
1882                         BUG_ON(page_mapcount(page) != 1);
1883
1884                 haddr = address;
1885                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1886                         pte_t *pte, entry;
1887                         BUG_ON(PageCompound(page+i));
1888                         /*
1889                          * Note that NUMA hinting access restrictions are not
1890                          * transferred to avoid any possibility of altering
1891                          * permissions across VMAs.
1892                          */
1893                         entry = mk_pte(page + i, vma->vm_page_prot);
1894                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1895                         if (!pmd_write(*pmd))
1896                                 entry = pte_wrprotect(entry);
1897                         if (!pmd_young(*pmd))
1898                                 entry = pte_mkold(entry);
1899                         pte = pte_offset_map(&_pmd, haddr);
1900                         BUG_ON(!pte_none(*pte));
1901                         set_pte_at(mm, haddr, pte, entry);
1902                         pte_unmap(pte);
1903                 }
1904
1905                 smp_wmb(); /* make pte visible before pmd */
1906                 /*
1907                  * Up to this point the pmd is present and huge and
1908                  * userland has the whole access to the hugepage
1909                  * during the split (which happens in place). If we
1910                  * overwrite the pmd with the not-huge version
1911                  * pointing to the pte here (which of course we could
1912                  * if all CPUs were bug free), userland could trigger
1913                  * a small page size TLB miss on the small sized TLB
1914                  * while the hugepage TLB entry is still established
1915                  * in the huge TLB. Some CPU doesn't like that. See
1916                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1917                  * Erratum 383 on page 93. Intel should be safe but is
1918                  * also warns that it's only safe if the permission
1919                  * and cache attributes of the two entries loaded in
1920                  * the two TLB is identical (which should be the case
1921                  * here). But it is generally safer to never allow
1922                  * small and huge TLB entries for the same virtual
1923                  * address to be loaded simultaneously. So instead of
1924                  * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1925                  * mark the current pmd notpresent (atomically because
1926                  * here the pmd_trans_huge and pmd_trans_splitting
1927                  * must remain set at all times on the pmd until the
1928                  * split is complete for this pmd), then we flush the
1929                  * SMP TLB and finally we write the non-huge version
1930                  * of the pmd entry with pmd_populate.
1931                  */
1932                 pmdp_invalidate(vma, address, pmd);
1933                 pmd_populate(mm, pmd, pgtable);
1934                 ret = 1;
1935                 spin_unlock(ptl);
1936         }
1937
1938         return ret;
1939 }
1940
1941 /* must be called with anon_vma->root->rwsem held */
1942 static void __split_huge_page(struct page *page,
1943                               struct anon_vma *anon_vma,
1944                               struct list_head *list)
1945 {
1946         int mapcount, mapcount2;
1947         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1948         struct anon_vma_chain *avc;
1949
1950         BUG_ON(!PageHead(page));
1951         BUG_ON(PageTail(page));
1952
1953         mapcount = 0;
1954         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1955                 struct vm_area_struct *vma = avc->vma;
1956                 unsigned long addr = vma_address(page, vma);
1957                 BUG_ON(is_vma_temporary_stack(vma));
1958                 mapcount += __split_huge_page_splitting(page, vma, addr);
1959         }
1960         /*
1961          * It is critical that new vmas are added to the tail of the
1962          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1963          * and establishes a child pmd before
1964          * __split_huge_page_splitting() freezes the parent pmd (so if
1965          * we fail to prevent copy_huge_pmd() from running until the
1966          * whole __split_huge_page() is complete), we will still see
1967          * the newly established pmd of the child later during the
1968          * walk, to be able to set it as pmd_trans_splitting too.
1969          */
1970         if (mapcount != page_mapcount(page)) {
1971                 pr_err("mapcount %d page_mapcount %d\n",
1972                         mapcount, page_mapcount(page));
1973                 BUG();
1974         }
1975
1976         __split_huge_page_refcount(page, list);
1977
1978         mapcount2 = 0;
1979         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1980                 struct vm_area_struct *vma = avc->vma;
1981                 unsigned long addr = vma_address(page, vma);
1982                 BUG_ON(is_vma_temporary_stack(vma));
1983                 mapcount2 += __split_huge_page_map(page, vma, addr);
1984         }
1985         if (mapcount != mapcount2) {
1986                 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1987                         mapcount, mapcount2, page_mapcount(page));
1988                 BUG();
1989         }
1990 }
1991
1992 /*
1993  * Split a hugepage into normal pages. This doesn't change the position of head
1994  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1995  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1996  * from the hugepage.
1997  * Return 0 if the hugepage is split successfully otherwise return 1.
1998  */
1999 int split_huge_page_to_list(struct page *page, struct list_head *list)
2000 {
2001         struct anon_vma *anon_vma;
2002         int ret = 1;
2003
2004         BUG_ON(is_huge_zero_page(page));
2005         BUG_ON(!PageAnon(page));
2006
2007         /*
2008          * The caller does not necessarily hold an mmap_sem that would prevent
2009          * the anon_vma disappearing so we first we take a reference to it
2010          * and then lock the anon_vma for write. This is similar to
2011          * page_lock_anon_vma_read except the write lock is taken to serialise
2012          * against parallel split or collapse operations.
2013          */
2014         anon_vma = page_get_anon_vma(page);
2015         if (!anon_vma)
2016                 goto out;
2017         anon_vma_lock_write(anon_vma);
2018
2019         ret = 0;
2020         if (!PageCompound(page))
2021                 goto out_unlock;
2022
2023         BUG_ON(!PageSwapBacked(page));
2024         __split_huge_page(page, anon_vma, list);
2025         count_vm_event(THP_SPLIT);
2026
2027         BUG_ON(PageCompound(page));
2028 out_unlock:
2029         anon_vma_unlock_write(anon_vma);
2030         put_anon_vma(anon_vma);
2031 out:
2032         return ret;
2033 }
2034
2035 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2036
2037 int hugepage_madvise(struct vm_area_struct *vma,
2038                      unsigned long *vm_flags, int advice)
2039 {
2040         switch (advice) {
2041         case MADV_HUGEPAGE:
2042 #ifdef CONFIG_S390
2043                 /*
2044                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2045                  * can't handle this properly after s390_enable_sie, so we simply
2046                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
2047                  */
2048                 if (mm_has_pgste(vma->vm_mm))
2049                         return 0;
2050 #endif
2051                 /*
2052                  * Be somewhat over-protective like KSM for now!
2053                  */
2054                 if (*vm_flags & VM_NO_THP)
2055                         return -EINVAL;
2056                 *vm_flags &= ~VM_NOHUGEPAGE;
2057                 *vm_flags |= VM_HUGEPAGE;
2058                 /*
2059                  * If the vma become good for khugepaged to scan,
2060                  * register it here without waiting a page fault that
2061                  * may not happen any time soon.
2062                  */
2063                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2064                         return -ENOMEM;
2065                 break;
2066         case MADV_NOHUGEPAGE:
2067                 /*
2068                  * Be somewhat over-protective like KSM for now!
2069                  */
2070                 if (*vm_flags & VM_NO_THP)
2071                         return -EINVAL;
2072                 *vm_flags &= ~VM_HUGEPAGE;
2073                 *vm_flags |= VM_NOHUGEPAGE;
2074                 /*
2075                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2076                  * this vma even if we leave the mm registered in khugepaged if
2077                  * it got registered before VM_NOHUGEPAGE was set.
2078                  */
2079                 break;
2080         }
2081
2082         return 0;
2083 }
2084
2085 static int __init khugepaged_slab_init(void)
2086 {
2087         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2088                                           sizeof(struct mm_slot),
2089                                           __alignof__(struct mm_slot), 0, NULL);
2090         if (!mm_slot_cache)
2091                 return -ENOMEM;
2092
2093         return 0;
2094 }
2095
2096 static void __init khugepaged_slab_exit(void)
2097 {
2098         kmem_cache_destroy(mm_slot_cache);
2099 }
2100
2101 static inline struct mm_slot *alloc_mm_slot(void)
2102 {
2103         if (!mm_slot_cache)     /* initialization failed */
2104                 return NULL;
2105         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2106 }
2107
2108 static inline void free_mm_slot(struct mm_slot *mm_slot)
2109 {
2110         kmem_cache_free(mm_slot_cache, mm_slot);
2111 }
2112
2113 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2114 {
2115         struct mm_slot *mm_slot;
2116
2117         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2118                 if (mm == mm_slot->mm)
2119                         return mm_slot;
2120
2121         return NULL;
2122 }
2123
2124 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2125                                     struct mm_slot *mm_slot)
2126 {
2127         mm_slot->mm = mm;
2128         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2129 }
2130
2131 static inline int khugepaged_test_exit(struct mm_struct *mm)
2132 {
2133         return atomic_read(&mm->mm_users) == 0;
2134 }
2135
2136 int __khugepaged_enter(struct mm_struct *mm)
2137 {
2138         struct mm_slot *mm_slot;
2139         int wakeup;
2140
2141         mm_slot = alloc_mm_slot();
2142         if (!mm_slot)
2143                 return -ENOMEM;
2144
2145         /* __khugepaged_exit() must not run from under us */
2146         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2147         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2148                 free_mm_slot(mm_slot);
2149                 return 0;
2150         }
2151
2152         spin_lock(&khugepaged_mm_lock);
2153         insert_to_mm_slots_hash(mm, mm_slot);
2154         /*
2155          * Insert just behind the scanning cursor, to let the area settle
2156          * down a little.
2157          */
2158         wakeup = list_empty(&khugepaged_scan.mm_head);
2159         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2160         spin_unlock(&khugepaged_mm_lock);
2161
2162         atomic_inc(&mm->mm_count);
2163         if (wakeup)
2164                 wake_up_interruptible(&khugepaged_wait);
2165
2166         return 0;
2167 }
2168
2169 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2170                                unsigned long vm_flags)
2171 {
2172         unsigned long hstart, hend;
2173         if (!vma->anon_vma)
2174                 /*
2175                  * Not yet faulted in so we will register later in the
2176                  * page fault if needed.
2177                  */
2178                 return 0;
2179         if (vma->vm_ops)
2180                 /* khugepaged not yet working on file or special mappings */
2181                 return 0;
2182         VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2183         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2184         hend = vma->vm_end & HPAGE_PMD_MASK;
2185         if (hstart < hend)
2186                 return khugepaged_enter(vma, vm_flags);
2187         return 0;
2188 }
2189
2190 void __khugepaged_exit(struct mm_struct *mm)
2191 {
2192         struct mm_slot *mm_slot;
2193         int free = 0;
2194
2195         spin_lock(&khugepaged_mm_lock);
2196         mm_slot = get_mm_slot(mm);
2197         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2198                 hash_del(&mm_slot->hash);
2199                 list_del(&mm_slot->mm_node);
2200                 free = 1;
2201         }
2202         spin_unlock(&khugepaged_mm_lock);
2203
2204         if (free) {
2205                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2206                 free_mm_slot(mm_slot);
2207                 mmdrop(mm);
2208         } else if (mm_slot) {
2209                 /*
2210                  * This is required to serialize against
2211                  * khugepaged_test_exit() (which is guaranteed to run
2212                  * under mmap sem read mode). Stop here (after we
2213                  * return all pagetables will be destroyed) until
2214                  * khugepaged has finished working on the pagetables
2215                  * under the mmap_sem.
2216                  */
2217                 down_write(&mm->mmap_sem);
2218                 up_write(&mm->mmap_sem);
2219         }
2220 }
2221
2222 static void release_pte_page(struct page *page)
2223 {
2224         /* 0 stands for page_is_file_cache(page) == false */
2225         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2226         unlock_page(page);
2227         putback_lru_page(page);
2228 }
2229
2230 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2231 {
2232         while (--_pte >= pte) {
2233                 pte_t pteval = *_pte;
2234                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2235                         release_pte_page(pte_page(pteval));
2236         }
2237 }
2238
2239 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2240                                         unsigned long address,
2241                                         pte_t *pte)
2242 {
2243         struct page *page = NULL;
2244         pte_t *_pte;
2245         int none_or_zero = 0, result = 0;
2246         bool referenced = false, writable = false;
2247
2248         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2249              _pte++, address += PAGE_SIZE) {
2250                 pte_t pteval = *_pte;
2251                 if (pte_none(pteval) || (pte_present(pteval) &&
2252                                 is_zero_pfn(pte_pfn(pteval)))) {
2253                         if (!userfaultfd_armed(vma) &&
2254                             ++none_or_zero <= khugepaged_max_ptes_none) {
2255                                 continue;
2256                         } else {
2257                                 result = SCAN_EXCEED_NONE_PTE;
2258                                 goto out;
2259                         }
2260                 }
2261                 if (!pte_present(pteval)) {
2262                         result = SCAN_PTE_NON_PRESENT;
2263                         goto out;
2264                 }
2265                 page = vm_normal_page(vma, address, pteval);
2266                 if (unlikely(!page)) {
2267                         result = SCAN_PAGE_NULL;
2268                         goto out;
2269                 }
2270
2271                 VM_BUG_ON_PAGE(PageCompound(page), page);
2272                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2273                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2274
2275                 /*
2276                  * We can do it before isolate_lru_page because the
2277                  * page can't be freed from under us. NOTE: PG_lock
2278                  * is needed to serialize against split_huge_page
2279                  * when invoked from the VM.
2280                  */
2281                 if (!trylock_page(page)) {
2282                         result = SCAN_PAGE_LOCK;
2283                         goto out;
2284                 }
2285
2286                 /*
2287                  * cannot use mapcount: can't collapse if there's a gup pin.
2288                  * The page must only be referenced by the scanned process
2289                  * and page swap cache.
2290                  */
2291                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2292                         unlock_page(page);
2293                         result = SCAN_PAGE_COUNT;
2294                         goto out;
2295                 }
2296                 if (pte_write(pteval)) {
2297                         writable = true;
2298                 } else {
2299                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2300                                 unlock_page(page);
2301                                 result = SCAN_SWAP_CACHE_PAGE;
2302                                 goto out;
2303                         }
2304                         /*
2305                          * Page is not in the swap cache. It can be collapsed
2306                          * into a THP.
2307                          */
2308                 }
2309
2310                 /*
2311                  * Isolate the page to avoid collapsing an hugepage
2312                  * currently in use by the VM.
2313                  */
2314                 if (isolate_lru_page(page)) {
2315                         unlock_page(page);
2316                         result = SCAN_DEL_PAGE_LRU;
2317                         goto out;
2318                 }
2319                 /* 0 stands for page_is_file_cache(page) == false */
2320                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2321                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2322                 VM_BUG_ON_PAGE(PageLRU(page), page);
2323
2324                 /* If there is no mapped pte young don't collapse the page */
2325                 if (pte_young(pteval) ||
2326                     page_is_young(page) || PageReferenced(page) ||
2327                     mmu_notifier_test_young(vma->vm_mm, address))
2328                         referenced = true;
2329         }
2330         if (likely(writable)) {
2331                 if (likely(referenced)) {
2332                         result = SCAN_SUCCEED;
2333                         trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2334                                                             referenced, writable, result);
2335                         return 1;
2336                 }
2337         } else {
2338                 result = SCAN_PAGE_RO;
2339         }
2340
2341 out:
2342         release_pte_pages(pte, _pte);
2343         trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2344                                             referenced, writable, result);
2345         return 0;
2346 }
2347
2348 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2349                                       struct vm_area_struct *vma,
2350                                       unsigned long address,
2351                                       spinlock_t *ptl)
2352 {
2353         pte_t *_pte;
2354         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2355                 pte_t pteval = *_pte;
2356                 struct page *src_page;
2357
2358                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2359                         clear_user_highpage(page, address);
2360                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2361                         if (is_zero_pfn(pte_pfn(pteval))) {
2362                                 /*
2363                                  * ptl mostly unnecessary.
2364                                  */
2365                                 spin_lock(ptl);
2366                                 /*
2367                                  * paravirt calls inside pte_clear here are
2368                                  * superfluous.
2369                                  */
2370                                 pte_clear(vma->vm_mm, address, _pte);
2371                                 spin_unlock(ptl);
2372                         }
2373                 } else {
2374                         src_page = pte_page(pteval);
2375                         copy_user_highpage(page, src_page, address, vma);
2376                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2377                         release_pte_page(src_page);
2378                         /*
2379                          * ptl mostly unnecessary, but preempt has to
2380                          * be disabled to update the per-cpu stats
2381                          * inside page_remove_rmap().
2382                          */
2383                         spin_lock(ptl);
2384                         /*
2385                          * paravirt calls inside pte_clear here are
2386                          * superfluous.
2387                          */
2388                         pte_clear(vma->vm_mm, address, _pte);
2389                         page_remove_rmap(src_page, false);
2390                         spin_unlock(ptl);
2391                         free_page_and_swap_cache(src_page);
2392                 }
2393
2394                 address += PAGE_SIZE;
2395                 page++;
2396         }
2397 }
2398
2399 static void khugepaged_alloc_sleep(void)
2400 {
2401         DEFINE_WAIT(wait);
2402
2403         add_wait_queue(&khugepaged_wait, &wait);
2404         freezable_schedule_timeout_interruptible(
2405                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2406         remove_wait_queue(&khugepaged_wait, &wait);
2407 }
2408
2409 static int khugepaged_node_load[MAX_NUMNODES];
2410
2411 static bool khugepaged_scan_abort(int nid)
2412 {
2413         int i;
2414
2415         /*
2416          * If zone_reclaim_mode is disabled, then no extra effort is made to
2417          * allocate memory locally.
2418          */
2419         if (!zone_reclaim_mode)
2420                 return false;
2421
2422         /* If there is a count for this node already, it must be acceptable */
2423         if (khugepaged_node_load[nid])
2424                 return false;
2425
2426         for (i = 0; i < MAX_NUMNODES; i++) {
2427                 if (!khugepaged_node_load[i])
2428                         continue;
2429                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2430                         return true;
2431         }
2432         return false;
2433 }
2434
2435 #ifdef CONFIG_NUMA
2436 static int khugepaged_find_target_node(void)
2437 {
2438         static int last_khugepaged_target_node = NUMA_NO_NODE;
2439         int nid, target_node = 0, max_value = 0;
2440
2441         /* find first node with max normal pages hit */
2442         for (nid = 0; nid < MAX_NUMNODES; nid++)
2443                 if (khugepaged_node_load[nid] > max_value) {
2444                         max_value = khugepaged_node_load[nid];
2445                         target_node = nid;
2446                 }
2447
2448         /* do some balance if several nodes have the same hit record */
2449         if (target_node <= last_khugepaged_target_node)
2450                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2451                                 nid++)
2452                         if (max_value == khugepaged_node_load[nid]) {
2453                                 target_node = nid;
2454                                 break;
2455                         }
2456
2457         last_khugepaged_target_node = target_node;
2458         return target_node;
2459 }
2460
2461 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2462 {
2463         if (IS_ERR(*hpage)) {
2464                 if (!*wait)
2465                         return false;
2466
2467                 *wait = false;
2468                 *hpage = NULL;
2469                 khugepaged_alloc_sleep();
2470         } else if (*hpage) {
2471                 put_page(*hpage);
2472                 *hpage = NULL;
2473         }
2474
2475         return true;
2476 }
2477
2478 static struct page *
2479 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2480                        unsigned long address, int node)
2481 {
2482         VM_BUG_ON_PAGE(*hpage, *hpage);
2483
2484         /*
2485          * Before allocating the hugepage, release the mmap_sem read lock.
2486          * The allocation can take potentially a long time if it involves
2487          * sync compaction, and we do not need to hold the mmap_sem during
2488          * that. We will recheck the vma after taking it again in write mode.
2489          */
2490         up_read(&mm->mmap_sem);
2491
2492         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2493         if (unlikely(!*hpage)) {
2494                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2495                 *hpage = ERR_PTR(-ENOMEM);
2496                 return NULL;
2497         }
2498
2499         count_vm_event(THP_COLLAPSE_ALLOC);
2500         return *hpage;
2501 }
2502 #else
2503 static int khugepaged_find_target_node(void)
2504 {
2505         return 0;
2506 }
2507
2508 static inline struct page *alloc_hugepage(int defrag)
2509 {
2510         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2511                            HPAGE_PMD_ORDER);
2512 }
2513
2514 static struct page *khugepaged_alloc_hugepage(bool *wait)
2515 {
2516         struct page *hpage;
2517
2518         do {
2519                 hpage = alloc_hugepage(khugepaged_defrag());
2520                 if (!hpage) {
2521                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2522                         if (!*wait)
2523                                 return NULL;
2524
2525                         *wait = false;
2526                         khugepaged_alloc_sleep();
2527                 } else
2528                         count_vm_event(THP_COLLAPSE_ALLOC);
2529         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2530
2531         return hpage;
2532 }
2533
2534 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2535 {
2536         if (!*hpage)
2537                 *hpage = khugepaged_alloc_hugepage(wait);
2538
2539         if (unlikely(!*hpage))
2540                 return false;
2541
2542         return true;
2543 }
2544
2545 static struct page *
2546 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2547                        unsigned long address, int node)
2548 {
2549         up_read(&mm->mmap_sem);
2550         VM_BUG_ON(!*hpage);
2551
2552         return  *hpage;
2553 }
2554 #endif
2555
2556 static bool hugepage_vma_check(struct vm_area_struct *vma)
2557 {
2558         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2559             (vma->vm_flags & VM_NOHUGEPAGE))
2560                 return false;
2561         if (vma->vm_flags & VM_LOCKED)
2562                 return false;
2563         if (!vma->anon_vma || vma->vm_ops)
2564                 return false;
2565         if (is_vma_temporary_stack(vma))
2566                 return false;
2567         VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2568         return true;
2569 }
2570
2571 static void collapse_huge_page(struct mm_struct *mm,
2572                                    unsigned long address,
2573                                    struct page **hpage,
2574                                    struct vm_area_struct *vma,
2575                                    int node)
2576 {
2577         pmd_t *pmd, _pmd;
2578         pte_t *pte;
2579         pgtable_t pgtable;
2580         struct page *new_page;
2581         spinlock_t *pmd_ptl, *pte_ptl;
2582         int isolated, result = 0;
2583         unsigned long hstart, hend;
2584         struct mem_cgroup *memcg;
2585         unsigned long mmun_start;       /* For mmu_notifiers */
2586         unsigned long mmun_end;         /* For mmu_notifiers */
2587         gfp_t gfp;
2588
2589         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2590
2591         /* Only allocate from the target node */
2592         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2593                 __GFP_THISNODE;
2594
2595         /* release the mmap_sem read lock. */
2596         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2597         if (!new_page) {
2598                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2599                 goto out_nolock;
2600         }
2601
2602         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2603                 result = SCAN_CGROUP_CHARGE_FAIL;
2604                 goto out_nolock;
2605         }
2606
2607         /*
2608          * Prevent all access to pagetables with the exception of
2609          * gup_fast later hanlded by the ptep_clear_flush and the VM
2610          * handled by the anon_vma lock + PG_lock.
2611          */
2612         down_write(&mm->mmap_sem);
2613         if (unlikely(khugepaged_test_exit(mm))) {
2614                 result = SCAN_ANY_PROCESS;
2615                 goto out;
2616         }
2617
2618         vma = find_vma(mm, address);
2619         if (!vma) {
2620                 result = SCAN_VMA_NULL;
2621                 goto out;
2622         }
2623         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2624         hend = vma->vm_end & HPAGE_PMD_MASK;
2625         if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2626                 result = SCAN_ADDRESS_RANGE;
2627                 goto out;
2628         }
2629         if (!hugepage_vma_check(vma)) {
2630                 result = SCAN_VMA_CHECK;
2631                 goto out;
2632         }
2633         pmd = mm_find_pmd(mm, address);
2634         if (!pmd) {
2635                 result = SCAN_PMD_NULL;
2636                 goto out;
2637         }
2638
2639         anon_vma_lock_write(vma->anon_vma);
2640
2641         pte = pte_offset_map(pmd, address);
2642         pte_ptl = pte_lockptr(mm, pmd);
2643
2644         mmun_start = address;
2645         mmun_end   = address + HPAGE_PMD_SIZE;
2646         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2647         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2648         /*
2649          * After this gup_fast can't run anymore. This also removes
2650          * any huge TLB entry from the CPU so we won't allow
2651          * huge and small TLB entries for the same virtual address
2652          * to avoid the risk of CPU bugs in that area.
2653          */
2654         _pmd = pmdp_collapse_flush(vma, address, pmd);
2655         spin_unlock(pmd_ptl);
2656         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2657
2658         spin_lock(pte_ptl);
2659         isolated = __collapse_huge_page_isolate(vma, address, pte);
2660         spin_unlock(pte_ptl);
2661
2662         if (unlikely(!isolated)) {
2663                 pte_unmap(pte);
2664                 spin_lock(pmd_ptl);
2665                 BUG_ON(!pmd_none(*pmd));
2666                 /*
2667                  * We can only use set_pmd_at when establishing
2668                  * hugepmds and never for establishing regular pmds that
2669                  * points to regular pagetables. Use pmd_populate for that
2670                  */
2671                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2672                 spin_unlock(pmd_ptl);
2673                 anon_vma_unlock_write(vma->anon_vma);
2674                 result = SCAN_FAIL;
2675                 goto out;
2676         }
2677
2678         /*
2679          * All pages are isolated and locked so anon_vma rmap
2680          * can't run anymore.
2681          */
2682         anon_vma_unlock_write(vma->anon_vma);
2683
2684         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2685         pte_unmap(pte);
2686         __SetPageUptodate(new_page);
2687         pgtable = pmd_pgtable(_pmd);
2688
2689         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2690         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2691
2692         /*
2693          * spin_lock() below is not the equivalent of smp_wmb(), so
2694          * this is needed to avoid the copy_huge_page writes to become
2695          * visible after the set_pmd_at() write.
2696          */
2697         smp_wmb();
2698
2699         spin_lock(pmd_ptl);
2700         BUG_ON(!pmd_none(*pmd));
2701         page_add_new_anon_rmap(new_page, vma, address, true);
2702         mem_cgroup_commit_charge(new_page, memcg, false, true);
2703         lru_cache_add_active_or_unevictable(new_page, vma);
2704         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2705         set_pmd_at(mm, address, pmd, _pmd);
2706         update_mmu_cache_pmd(vma, address, pmd);
2707         spin_unlock(pmd_ptl);
2708
2709         *hpage = NULL;
2710
2711         khugepaged_pages_collapsed++;
2712         result = SCAN_SUCCEED;
2713 out_up_write:
2714         up_write(&mm->mmap_sem);
2715         trace_mm_collapse_huge_page(mm, isolated, result);
2716         return;
2717
2718 out_nolock:
2719         trace_mm_collapse_huge_page(mm, isolated, result);
2720         return;
2721 out:
2722         mem_cgroup_cancel_charge(new_page, memcg, true);
2723         goto out_up_write;
2724 }
2725
2726 static int khugepaged_scan_pmd(struct mm_struct *mm,
2727                                struct vm_area_struct *vma,
2728                                unsigned long address,
2729                                struct page **hpage)
2730 {
2731         pmd_t *pmd;
2732         pte_t *pte, *_pte;
2733         int ret = 0, none_or_zero = 0, result = 0;
2734         struct page *page = NULL;
2735         unsigned long _address;
2736         spinlock_t *ptl;
2737         int node = NUMA_NO_NODE;
2738         bool writable = false, referenced = false;
2739
2740         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2741
2742         pmd = mm_find_pmd(mm, address);
2743         if (!pmd) {
2744                 result = SCAN_PMD_NULL;
2745                 goto out;
2746         }
2747
2748         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2749         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2750         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2751              _pte++, _address += PAGE_SIZE) {
2752                 pte_t pteval = *_pte;
2753                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2754                         if (!userfaultfd_armed(vma) &&
2755                             ++none_or_zero <= khugepaged_max_ptes_none) {
2756                                 continue;
2757                         } else {
2758                                 result = SCAN_EXCEED_NONE_PTE;
2759                                 goto out_unmap;
2760                         }
2761                 }
2762                 if (!pte_present(pteval)) {
2763                         result = SCAN_PTE_NON_PRESENT;
2764                         goto out_unmap;
2765                 }
2766                 if (pte_write(pteval))
2767                         writable = true;
2768
2769                 page = vm_normal_page(vma, _address, pteval);
2770                 if (unlikely(!page)) {
2771                         result = SCAN_PAGE_NULL;
2772                         goto out_unmap;
2773                 }
2774
2775                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2776                 if (PageCompound(page)) {
2777                         result = SCAN_PAGE_COMPOUND;
2778                         goto out_unmap;
2779                 }
2780
2781                 /*
2782                  * Record which node the original page is from and save this
2783                  * information to khugepaged_node_load[].
2784                  * Khupaged will allocate hugepage from the node has the max
2785                  * hit record.
2786                  */
2787                 node = page_to_nid(page);
2788                 if (khugepaged_scan_abort(node)) {
2789                         result = SCAN_SCAN_ABORT;
2790                         goto out_unmap;
2791                 }
2792                 khugepaged_node_load[node]++;
2793                 if (!PageLRU(page)) {
2794                         result = SCAN_SCAN_ABORT;
2795                         goto out_unmap;
2796                 }
2797                 if (PageLocked(page)) {
2798                         result = SCAN_PAGE_LOCK;
2799                         goto out_unmap;
2800                 }
2801                 if (!PageAnon(page)) {
2802                         result = SCAN_PAGE_ANON;
2803                         goto out_unmap;
2804                 }
2805
2806                 /*
2807                  * cannot use mapcount: can't collapse if there's a gup pin.
2808                  * The page must only be referenced by the scanned process
2809                  * and page swap cache.
2810                  */
2811                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2812                         result = SCAN_PAGE_COUNT;
2813                         goto out_unmap;
2814                 }
2815                 if (pte_young(pteval) ||
2816                     page_is_young(page) || PageReferenced(page) ||
2817                     mmu_notifier_test_young(vma->vm_mm, address))
2818                         referenced = true;
2819         }
2820         if (writable) {
2821                 if (referenced) {
2822                         result = SCAN_SUCCEED;
2823                         ret = 1;
2824                 } else {
2825                         result = SCAN_NO_REFERENCED_PAGE;
2826                 }
2827         } else {
2828                 result = SCAN_PAGE_RO;
2829         }
2830 out_unmap:
2831         pte_unmap_unlock(pte, ptl);
2832         if (ret) {
2833                 node = khugepaged_find_target_node();
2834                 /* collapse_huge_page will return with the mmap_sem released */
2835                 collapse_huge_page(mm, address, hpage, vma, node);
2836         }
2837 out:
2838         trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2839                                      none_or_zero, result);
2840         return ret;
2841 }
2842
2843 static void collect_mm_slot(struct mm_slot *mm_slot)
2844 {
2845         struct mm_struct *mm = mm_slot->mm;
2846
2847         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2848
2849         if (khugepaged_test_exit(mm)) {
2850                 /* free mm_slot */
2851                 hash_del(&mm_slot->hash);
2852                 list_del(&mm_slot->mm_node);
2853
2854                 /*
2855                  * Not strictly needed because the mm exited already.
2856                  *
2857                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2858                  */
2859
2860                 /* khugepaged_mm_lock actually not necessary for the below */
2861                 free_mm_slot(mm_slot);
2862                 mmdrop(mm);
2863         }
2864 }
2865
2866 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2867                                             struct page **hpage)
2868         __releases(&khugepaged_mm_lock)
2869         __acquires(&khugepaged_mm_lock)
2870 {
2871         struct mm_slot *mm_slot;
2872         struct mm_struct *mm;
2873         struct vm_area_struct *vma;
2874         int progress = 0;
2875
2876         VM_BUG_ON(!pages);
2877         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2878
2879         if (khugepaged_scan.mm_slot)
2880                 mm_slot = khugepaged_scan.mm_slot;
2881         else {
2882                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2883                                      struct mm_slot, mm_node);
2884                 khugepaged_scan.address = 0;
2885                 khugepaged_scan.mm_slot = mm_slot;
2886         }
2887         spin_unlock(&khugepaged_mm_lock);
2888
2889         mm = mm_slot->mm;
2890         down_read(&mm->mmap_sem);
2891         if (unlikely(khugepaged_test_exit(mm)))
2892                 vma = NULL;
2893         else
2894                 vma = find_vma(mm, khugepaged_scan.address);
2895
2896         progress++;
2897         for (; vma; vma = vma->vm_next) {
2898                 unsigned long hstart, hend;
2899
2900                 cond_resched();
2901                 if (unlikely(khugepaged_test_exit(mm))) {
2902                         progress++;
2903                         break;
2904                 }
2905                 if (!hugepage_vma_check(vma)) {
2906 skip:
2907                         progress++;
2908                         continue;
2909                 }
2910                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2911                 hend = vma->vm_end & HPAGE_PMD_MASK;
2912                 if (hstart >= hend)
2913                         goto skip;
2914                 if (khugepaged_scan.address > hend)
2915                         goto skip;
2916                 if (khugepaged_scan.address < hstart)
2917                         khugepaged_scan.address = hstart;
2918                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2919
2920                 while (khugepaged_scan.address < hend) {
2921                         int ret;
2922                         cond_resched();
2923                         if (unlikely(khugepaged_test_exit(mm)))
2924                                 goto breakouterloop;
2925
2926                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2927                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2928                                   hend);
2929                         ret = khugepaged_scan_pmd(mm, vma,
2930                                                   khugepaged_scan.address,
2931                                                   hpage);
2932                         /* move to next address */
2933                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2934                         progress += HPAGE_PMD_NR;
2935                         if (ret)
2936                                 /* we released mmap_sem so break loop */
2937                                 goto breakouterloop_mmap_sem;
2938                         if (progress >= pages)
2939                                 goto breakouterloop;
2940                 }
2941         }
2942 breakouterloop:
2943         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2944 breakouterloop_mmap_sem:
2945
2946         spin_lock(&khugepaged_mm_lock);
2947         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2948         /*
2949          * Release the current mm_slot if this mm is about to die, or
2950          * if we scanned all vmas of this mm.
2951          */
2952         if (khugepaged_test_exit(mm) || !vma) {
2953                 /*
2954                  * Make sure that if mm_users is reaching zero while
2955                  * khugepaged runs here, khugepaged_exit will find
2956                  * mm_slot not pointing to the exiting mm.
2957                  */
2958                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2959                         khugepaged_scan.mm_slot = list_entry(
2960                                 mm_slot->mm_node.next,
2961                                 struct mm_slot, mm_node);
2962                         khugepaged_scan.address = 0;
2963                 } else {
2964                         khugepaged_scan.mm_slot = NULL;
2965                         khugepaged_full_scans++;
2966                 }
2967
2968                 collect_mm_slot(mm_slot);
2969         }
2970
2971         return progress;
2972 }
2973
2974 static int khugepaged_has_work(void)
2975 {
2976         return !list_empty(&khugepaged_scan.mm_head) &&
2977                 khugepaged_enabled();
2978 }
2979
2980 static int khugepaged_wait_event(void)
2981 {
2982         return !list_empty(&khugepaged_scan.mm_head) ||
2983                 kthread_should_stop();
2984 }
2985
2986 static void khugepaged_do_scan(void)
2987 {
2988         struct page *hpage = NULL;
2989         unsigned int progress = 0, pass_through_head = 0;
2990         unsigned int pages = khugepaged_pages_to_scan;
2991         bool wait = true;
2992
2993         barrier(); /* write khugepaged_pages_to_scan to local stack */
2994
2995         while (progress < pages) {
2996                 if (!khugepaged_prealloc_page(&hpage, &wait))
2997                         break;
2998
2999                 cond_resched();
3000
3001                 if (unlikely(kthread_should_stop() || try_to_freeze()))
3002                         break;
3003
3004                 spin_lock(&khugepaged_mm_lock);
3005                 if (!khugepaged_scan.mm_slot)
3006                         pass_through_head++;
3007                 if (khugepaged_has_work() &&
3008                     pass_through_head < 2)
3009                         progress += khugepaged_scan_mm_slot(pages - progress,
3010                                                             &hpage);
3011                 else
3012                         progress = pages;
3013                 spin_unlock(&khugepaged_mm_lock);
3014         }
3015
3016         if (!IS_ERR_OR_NULL(hpage))
3017                 put_page(hpage);
3018 }
3019
3020 static void khugepaged_wait_work(void)
3021 {
3022         if (khugepaged_has_work()) {
3023                 if (!khugepaged_scan_sleep_millisecs)
3024                         return;
3025
3026                 wait_event_freezable_timeout(khugepaged_wait,
3027                                              kthread_should_stop(),
3028                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
3029                 return;
3030         }
3031
3032         if (khugepaged_enabled())
3033                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
3034 }
3035
3036 static int khugepaged(void *none)
3037 {
3038         struct mm_slot *mm_slot;
3039
3040         set_freezable();
3041         set_user_nice(current, MAX_NICE);
3042
3043         while (!kthread_should_stop()) {
3044                 khugepaged_do_scan();
3045                 khugepaged_wait_work();
3046         }
3047
3048         spin_lock(&khugepaged_mm_lock);
3049         mm_slot = khugepaged_scan.mm_slot;
3050         khugepaged_scan.mm_slot = NULL;
3051         if (mm_slot)
3052                 collect_mm_slot(mm_slot);
3053         spin_unlock(&khugepaged_mm_lock);
3054         return 0;
3055 }
3056
3057 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
3058                 unsigned long haddr, pmd_t *pmd)
3059 {
3060         struct mm_struct *mm = vma->vm_mm;
3061         pgtable_t pgtable;
3062         pmd_t _pmd;
3063         int i;
3064
3065         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3066         /* leave pmd empty until pte is filled */
3067
3068         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3069         pmd_populate(mm, &_pmd, pgtable);
3070
3071         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3072                 pte_t *pte, entry;
3073                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
3074                 entry = pte_mkspecial(entry);
3075                 pte = pte_offset_map(&_pmd, haddr);
3076                 VM_BUG_ON(!pte_none(*pte));
3077                 set_pte_at(mm, haddr, pte, entry);
3078                 pte_unmap(pte);
3079         }
3080         smp_wmb(); /* make pte visible before pmd */
3081         pmd_populate(mm, pmd, pgtable);
3082         put_huge_zero_page();
3083 }
3084
3085 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3086                 pmd_t *pmd)
3087 {
3088         spinlock_t *ptl;
3089         struct page *page = NULL;
3090         struct mm_struct *mm = vma->vm_mm;
3091         unsigned long haddr = address & HPAGE_PMD_MASK;
3092         unsigned long mmun_start;       /* For mmu_notifiers */
3093         unsigned long mmun_end;         /* For mmu_notifiers */
3094
3095         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
3096
3097         mmun_start = haddr;
3098         mmun_end   = haddr + HPAGE_PMD_SIZE;
3099 again:
3100         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3101         ptl = pmd_lock(mm, pmd);
3102         if (unlikely(!pmd_trans_huge(*pmd)))
3103                 goto unlock;
3104         if (vma_is_dax(vma)) {
3105                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3106                 if (is_huge_zero_pmd(_pmd))
3107                         put_huge_zero_page();
3108         } else if (is_huge_zero_pmd(*pmd)) {
3109                 __split_huge_zero_page_pmd(vma, haddr, pmd);
3110         } else {
3111                 page = pmd_page(*pmd);
3112                 VM_BUG_ON_PAGE(!page_count(page), page);
3113                 get_page(page);
3114         }
3115  unlock:
3116         spin_unlock(ptl);
3117         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3118
3119         if (!page)
3120                 return;
3121
3122         split_huge_page(page);
3123         put_page(page);
3124
3125         /*
3126          * We don't always have down_write of mmap_sem here: a racing
3127          * do_huge_pmd_wp_page() might have copied-on-write to another
3128          * huge page before our split_huge_page() got the anon_vma lock.
3129          */
3130         if (unlikely(pmd_trans_huge(*pmd)))
3131                 goto again;
3132 }
3133
3134 static void split_huge_pmd_address(struct vm_area_struct *vma,
3135                                     unsigned long address)
3136 {
3137         pgd_t *pgd;
3138         pud_t *pud;
3139         pmd_t *pmd;
3140
3141         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3142
3143         pgd = pgd_offset(vma->vm_mm, address);
3144         if (!pgd_present(*pgd))
3145                 return;
3146
3147         pud = pud_offset(pgd, address);
3148         if (!pud_present(*pud))
3149                 return;
3150
3151         pmd = pmd_offset(pud, address);
3152         if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
3153                 return;
3154         /*
3155          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3156          * materialize from under us.
3157          */
3158         __split_huge_page_pmd(vma, address, pmd);
3159 }
3160
3161 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3162                              unsigned long start,
3163                              unsigned long end,
3164                              long adjust_next)
3165 {
3166         /*
3167          * If the new start address isn't hpage aligned and it could
3168          * previously contain an hugepage: check if we need to split
3169          * an huge pmd.
3170          */
3171         if (start & ~HPAGE_PMD_MASK &&
3172             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3173             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3174                 split_huge_pmd_address(vma, start);
3175
3176         /*
3177          * If the new end address isn't hpage aligned and it could
3178          * previously contain an hugepage: check if we need to split
3179          * an huge pmd.
3180          */
3181         if (end & ~HPAGE_PMD_MASK &&
3182             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3183             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3184                 split_huge_pmd_address(vma, end);
3185
3186         /*
3187          * If we're also updating the vma->vm_next->vm_start, if the new
3188          * vm_next->vm_start isn't page aligned and it could previously
3189          * contain an hugepage: check if we need to split an huge pmd.
3190          */
3191         if (adjust_next > 0) {
3192                 struct vm_area_struct *next = vma->vm_next;
3193                 unsigned long nstart = next->vm_start;
3194                 nstart += adjust_next << PAGE_SHIFT;
3195                 if (nstart & ~HPAGE_PMD_MASK &&
3196                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3197                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3198                         split_huge_pmd_address(next, nstart);
3199         }
3200 }