]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
Merge remote-tracking branch 'rtc/rtc-next'
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39         SCAN_FAIL,
40         SCAN_SUCCEED,
41         SCAN_PMD_NULL,
42         SCAN_EXCEED_NONE_PTE,
43         SCAN_PTE_NON_PRESENT,
44         SCAN_PAGE_RO,
45         SCAN_NO_REFERENCED_PAGE,
46         SCAN_PAGE_NULL,
47         SCAN_SCAN_ABORT,
48         SCAN_PAGE_COUNT,
49         SCAN_PAGE_LRU,
50         SCAN_PAGE_LOCK,
51         SCAN_PAGE_ANON,
52         SCAN_PAGE_COMPOUND,
53         SCAN_ANY_PROCESS,
54         SCAN_VMA_NULL,
55         SCAN_VMA_CHECK,
56         SCAN_ADDRESS_RANGE,
57         SCAN_SWAP_CACHE_PAGE,
58         SCAN_DEL_PAGE_LRU,
59         SCAN_ALLOC_HUGE_PAGE_FAIL,
60         SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
82         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97  * default collapse hugepages if there is at least one pte mapped like
98  * it would have happened if the vma was large enough during page
99  * fault.
100  */
101 static unsigned int khugepaged_max_ptes_none __read_mostly;
102
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111
112 /**
113  * struct mm_slot - hash lookup from mm to mm_slot
114  * @hash: hash collision list
115  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116  * @mm: the mm that this information is valid for
117  */
118 struct mm_slot {
119         struct hlist_node hash;
120         struct list_head mm_node;
121         struct mm_struct *mm;
122 };
123
124 /**
125  * struct khugepaged_scan - cursor for scanning
126  * @mm_head: the head of the mm list to scan
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  *
130  * There is only the one khugepaged_scan instance of this cursor structure.
131  */
132 struct khugepaged_scan {
133         struct list_head mm_head;
134         struct mm_slot *mm_slot;
135         unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145         struct zone *zone;
146         int nr_zones = 0;
147         unsigned long recommended_min;
148
149         for_each_populated_zone(zone)
150                 nr_zones++;
151
152         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153         recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155         /*
156          * Make sure that on average at least two pageblocks are almost free
157          * of another type, one for a migratetype to fall back to and a
158          * second to avoid subsequent fallbacks of other types There are 3
159          * MIGRATE_TYPES we care about.
160          */
161         recommended_min += pageblock_nr_pages * nr_zones *
162                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164         /* don't ever allow to reserve more than 5% of the lowmem */
165         recommended_min = min(recommended_min,
166                               (unsigned long) nr_free_buffer_pages() / 20);
167         recommended_min <<= (PAGE_SHIFT-10);
168
169         if (recommended_min > min_free_kbytes) {
170                 if (user_min_free_kbytes >= 0)
171                         pr_info("raising min_free_kbytes from %d to %lu "
172                                 "to help transparent hugepage allocations\n",
173                                 min_free_kbytes, recommended_min);
174
175                 min_free_kbytes = recommended_min;
176         }
177         setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182         int err = 0;
183         if (khugepaged_enabled()) {
184                 if (!khugepaged_thread)
185                         khugepaged_thread = kthread_run(khugepaged, NULL,
186                                                         "khugepaged");
187                 if (IS_ERR(khugepaged_thread)) {
188                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189                         err = PTR_ERR(khugepaged_thread);
190                         khugepaged_thread = NULL;
191                         goto fail;
192                 }
193
194                 if (!list_empty(&khugepaged_scan.mm_head))
195                         wake_up_interruptible(&khugepaged_wait);
196
197                 set_recommended_min_free_kbytes();
198         } else if (khugepaged_thread) {
199                 kthread_stop(khugepaged_thread);
200                 khugepaged_thread = NULL;
201         }
202 fail:
203         return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211         struct page *zero_page;
212 retry:
213         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214                 return READ_ONCE(huge_zero_page);
215
216         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217                         HPAGE_PMD_ORDER);
218         if (!zero_page) {
219                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220                 return NULL;
221         }
222         count_vm_event(THP_ZERO_PAGE_ALLOC);
223         preempt_disable();
224         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225                 preempt_enable();
226                 __free_pages(zero_page, compound_order(zero_page));
227                 goto retry;
228         }
229
230         /* We take additional reference here. It will be put back by shrinker */
231         atomic_set(&huge_zero_refcount, 2);
232         preempt_enable();
233         return READ_ONCE(huge_zero_page);
234 }
235
236 static void put_huge_zero_page(void)
237 {
238         /*
239          * Counter should never go to zero here. Only shrinker can put
240          * last reference.
241          */
242         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246                                         struct shrink_control *sc)
247 {
248         /* we can free zero page only if last reference remains */
249         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253                                        struct shrink_control *sc)
254 {
255         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256                 struct page *zero_page = xchg(&huge_zero_page, NULL);
257                 BUG_ON(zero_page == NULL);
258                 __free_pages(zero_page, compound_order(zero_page));
259                 return HPAGE_PMD_NR;
260         }
261
262         return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266         .count_objects = shrink_huge_zero_page_count,
267         .scan_objects = shrink_huge_zero_page_scan,
268         .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t double_flag_show(struct kobject *kobj,
274                                 struct kobj_attribute *attr, char *buf,
275                                 enum transparent_hugepage_flag enabled,
276                                 enum transparent_hugepage_flag req_madv)
277 {
278         if (test_bit(enabled, &transparent_hugepage_flags)) {
279                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280                 return sprintf(buf, "[always] madvise never\n");
281         } else if (test_bit(req_madv, &transparent_hugepage_flags))
282                 return sprintf(buf, "always [madvise] never\n");
283         else
284                 return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287                                  struct kobj_attribute *attr,
288                                  const char *buf, size_t count,
289                                  enum transparent_hugepage_flag enabled,
290                                  enum transparent_hugepage_flag req_madv)
291 {
292         if (!memcmp("always", buf,
293                     min(sizeof("always")-1, count))) {
294                 set_bit(enabled, &transparent_hugepage_flags);
295                 clear_bit(req_madv, &transparent_hugepage_flags);
296         } else if (!memcmp("madvise", buf,
297                            min(sizeof("madvise")-1, count))) {
298                 clear_bit(enabled, &transparent_hugepage_flags);
299                 set_bit(req_madv, &transparent_hugepage_flags);
300         } else if (!memcmp("never", buf,
301                            min(sizeof("never")-1, count))) {
302                 clear_bit(enabled, &transparent_hugepage_flags);
303                 clear_bit(req_madv, &transparent_hugepage_flags);
304         } else
305                 return -EINVAL;
306
307         return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311                             struct kobj_attribute *attr, char *buf)
312 {
313         return double_flag_show(kobj, attr, buf,
314                                 TRANSPARENT_HUGEPAGE_FLAG,
315                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318                              struct kobj_attribute *attr,
319                              const char *buf, size_t count)
320 {
321         ssize_t ret;
322
323         ret = double_flag_store(kobj, attr, buf, count,
324                                 TRANSPARENT_HUGEPAGE_FLAG,
325                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327         if (ret > 0) {
328                 int err;
329
330                 mutex_lock(&khugepaged_mutex);
331                 err = start_stop_khugepaged();
332                 mutex_unlock(&khugepaged_mutex);
333
334                 if (err)
335                         ret = err;
336         }
337
338         return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341         __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343 static ssize_t single_flag_show(struct kobject *kobj,
344                                 struct kobj_attribute *attr, char *buf,
345                                 enum transparent_hugepage_flag flag)
346 {
347         return sprintf(buf, "%d\n",
348                        !!test_bit(flag, &transparent_hugepage_flags));
349 }
350
351 static ssize_t single_flag_store(struct kobject *kobj,
352                                  struct kobj_attribute *attr,
353                                  const char *buf, size_t count,
354                                  enum transparent_hugepage_flag flag)
355 {
356         unsigned long value;
357         int ret;
358
359         ret = kstrtoul(buf, 10, &value);
360         if (ret < 0)
361                 return ret;
362         if (value > 1)
363                 return -EINVAL;
364
365         if (value)
366                 set_bit(flag, &transparent_hugepage_flags);
367         else
368                 clear_bit(flag, &transparent_hugepage_flags);
369
370         return count;
371 }
372
373 /*
374  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376  * memory just to allocate one more hugepage.
377  */
378 static ssize_t defrag_show(struct kobject *kobj,
379                            struct kobj_attribute *attr, char *buf)
380 {
381         return double_flag_show(kobj, attr, buf,
382                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386                             struct kobj_attribute *attr,
387                             const char *buf, size_t count)
388 {
389         return double_flag_store(kobj, attr, buf, count,
390                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394         __ATTR(defrag, 0644, defrag_show, defrag_store);
395
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397                 struct kobj_attribute *attr, char *buf)
398 {
399         return single_flag_show(kobj, attr, buf,
400                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403                 struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405         return single_flag_store(kobj, attr, buf, count,
406                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412                                 struct kobj_attribute *attr, char *buf)
413 {
414         return single_flag_show(kobj, attr, buf,
415                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418                                struct kobj_attribute *attr,
419                                const char *buf, size_t count)
420 {
421         return single_flag_store(kobj, attr, buf, count,
422                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427
428 static struct attribute *hugepage_attr[] = {
429         &enabled_attr.attr,
430         &defrag_attr.attr,
431         &use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433         &debug_cow_attr.attr,
434 #endif
435         NULL,
436 };
437
438 static struct attribute_group hugepage_attr_group = {
439         .attrs = hugepage_attr,
440 };
441
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443                                          struct kobj_attribute *attr,
444                                          char *buf)
445 {
446         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450                                           struct kobj_attribute *attr,
451                                           const char *buf, size_t count)
452 {
453         unsigned long msecs;
454         int err;
455
456         err = kstrtoul(buf, 10, &msecs);
457         if (err || msecs > UINT_MAX)
458                 return -EINVAL;
459
460         khugepaged_scan_sleep_millisecs = msecs;
461         wake_up_interruptible(&khugepaged_wait);
462
463         return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467                scan_sleep_millisecs_store);
468
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470                                           struct kobj_attribute *attr,
471                                           char *buf)
472 {
473         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477                                            struct kobj_attribute *attr,
478                                            const char *buf, size_t count)
479 {
480         unsigned long msecs;
481         int err;
482
483         err = kstrtoul(buf, 10, &msecs);
484         if (err || msecs > UINT_MAX)
485                 return -EINVAL;
486
487         khugepaged_alloc_sleep_millisecs = msecs;
488         wake_up_interruptible(&khugepaged_wait);
489
490         return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494                alloc_sleep_millisecs_store);
495
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497                                   struct kobj_attribute *attr,
498                                   char *buf)
499 {
500         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503                                    struct kobj_attribute *attr,
504                                    const char *buf, size_t count)
505 {
506         int err;
507         unsigned long pages;
508
509         err = kstrtoul(buf, 10, &pages);
510         if (err || !pages || pages > UINT_MAX)
511                 return -EINVAL;
512
513         khugepaged_pages_to_scan = pages;
514
515         return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519                pages_to_scan_store);
520
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522                                     struct kobj_attribute *attr,
523                                     char *buf)
524 {
525         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528         __ATTR_RO(pages_collapsed);
529
530 static ssize_t full_scans_show(struct kobject *kobj,
531                                struct kobj_attribute *attr,
532                                char *buf)
533 {
534         return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537         __ATTR_RO(full_scans);
538
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540                                       struct kobj_attribute *attr, char *buf)
541 {
542         return single_flag_show(kobj, attr, buf,
543                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546                                        struct kobj_attribute *attr,
547                                        const char *buf, size_t count)
548 {
549         return single_flag_store(kobj, attr, buf, count,
550                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553         __ATTR(defrag, 0644, khugepaged_defrag_show,
554                khugepaged_defrag_store);
555
556 /*
557  * max_ptes_none controls if khugepaged should collapse hugepages over
558  * any unmapped ptes in turn potentially increasing the memory
559  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560  * reduce the available free memory in the system as it
561  * runs. Increasing max_ptes_none will instead potentially reduce the
562  * free memory in the system during the khugepaged scan.
563  */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565                                              struct kobj_attribute *attr,
566                                              char *buf)
567 {
568         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571                                               struct kobj_attribute *attr,
572                                               const char *buf, size_t count)
573 {
574         int err;
575         unsigned long max_ptes_none;
576
577         err = kstrtoul(buf, 10, &max_ptes_none);
578         if (err || max_ptes_none > HPAGE_PMD_NR-1)
579                 return -EINVAL;
580
581         khugepaged_max_ptes_none = max_ptes_none;
582
583         return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587                khugepaged_max_ptes_none_store);
588
589 static struct attribute *khugepaged_attr[] = {
590         &khugepaged_defrag_attr.attr,
591         &khugepaged_max_ptes_none_attr.attr,
592         &pages_to_scan_attr.attr,
593         &pages_collapsed_attr.attr,
594         &full_scans_attr.attr,
595         &scan_sleep_millisecs_attr.attr,
596         &alloc_sleep_millisecs_attr.attr,
597         NULL,
598 };
599
600 static struct attribute_group khugepaged_attr_group = {
601         .attrs = khugepaged_attr,
602         .name = "khugepaged",
603 };
604
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607         int err;
608
609         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610         if (unlikely(!*hugepage_kobj)) {
611                 pr_err("failed to create transparent hugepage kobject\n");
612                 return -ENOMEM;
613         }
614
615         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616         if (err) {
617                 pr_err("failed to register transparent hugepage group\n");
618                 goto delete_obj;
619         }
620
621         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622         if (err) {
623                 pr_err("failed to register transparent hugepage group\n");
624                 goto remove_hp_group;
625         }
626
627         return 0;
628
629 remove_hp_group:
630         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632         kobject_put(*hugepage_kobj);
633         return err;
634 }
635
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640         kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645         return 0;
646 }
647
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652
653 static int __init hugepage_init(void)
654 {
655         int err;
656         struct kobject *hugepage_kobj;
657
658         if (!has_transparent_hugepage()) {
659                 transparent_hugepage_flags = 0;
660                 return -EINVAL;
661         }
662
663         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
664         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
665         /*
666          * hugepages can't be allocated by the buddy allocator
667          */
668         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
669         /*
670          * we use page->mapping and page->index in second tail page
671          * as list_head: assuming THP order >= 2
672          */
673         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
674
675         err = hugepage_init_sysfs(&hugepage_kobj);
676         if (err)
677                 goto err_sysfs;
678
679         err = khugepaged_slab_init();
680         if (err)
681                 goto err_slab;
682
683         err = register_shrinker(&huge_zero_page_shrinker);
684         if (err)
685                 goto err_hzp_shrinker;
686         err = register_shrinker(&deferred_split_shrinker);
687         if (err)
688                 goto err_split_shrinker;
689
690         /*
691          * By default disable transparent hugepages on smaller systems,
692          * where the extra memory used could hurt more than TLB overhead
693          * is likely to save.  The admin can still enable it through /sys.
694          */
695         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
696                 transparent_hugepage_flags = 0;
697                 return 0;
698         }
699
700         err = start_stop_khugepaged();
701         if (err)
702                 goto err_khugepaged;
703
704         return 0;
705 err_khugepaged:
706         unregister_shrinker(&deferred_split_shrinker);
707 err_split_shrinker:
708         unregister_shrinker(&huge_zero_page_shrinker);
709 err_hzp_shrinker:
710         khugepaged_slab_exit();
711 err_slab:
712         hugepage_exit_sysfs(hugepage_kobj);
713 err_sysfs:
714         return err;
715 }
716 subsys_initcall(hugepage_init);
717
718 static int __init setup_transparent_hugepage(char *str)
719 {
720         int ret = 0;
721         if (!str)
722                 goto out;
723         if (!strcmp(str, "always")) {
724                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
725                         &transparent_hugepage_flags);
726                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727                           &transparent_hugepage_flags);
728                 ret = 1;
729         } else if (!strcmp(str, "madvise")) {
730                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
731                           &transparent_hugepage_flags);
732                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
733                         &transparent_hugepage_flags);
734                 ret = 1;
735         } else if (!strcmp(str, "never")) {
736                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
737                           &transparent_hugepage_flags);
738                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739                           &transparent_hugepage_flags);
740                 ret = 1;
741         }
742 out:
743         if (!ret)
744                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
745         return ret;
746 }
747 __setup("transparent_hugepage=", setup_transparent_hugepage);
748
749 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
750 {
751         if (likely(vma->vm_flags & VM_WRITE))
752                 pmd = pmd_mkwrite(pmd);
753         return pmd;
754 }
755
756 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
757 {
758         pmd_t entry;
759         entry = mk_pmd(page, prot);
760         entry = pmd_mkhuge(entry);
761         return entry;
762 }
763
764 static inline struct list_head *page_deferred_list(struct page *page)
765 {
766         /*
767          * ->lru in the tail pages is occupied by compound_head.
768          * Let's use ->mapping + ->index in the second tail page as list_head.
769          */
770         return (struct list_head *)&page[2].mapping;
771 }
772
773 void prep_transhuge_page(struct page *page)
774 {
775         /*
776          * we use page->mapping and page->indexlru in second tail page
777          * as list_head: assuming THP order >= 2
778          */
779
780         INIT_LIST_HEAD(page_deferred_list(page));
781         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
782 }
783
784 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
785                                         struct vm_area_struct *vma,
786                                         unsigned long address, pmd_t *pmd,
787                                         struct page *page, gfp_t gfp,
788                                         unsigned int flags)
789 {
790         struct mem_cgroup *memcg;
791         pgtable_t pgtable;
792         spinlock_t *ptl;
793         unsigned long haddr = address & HPAGE_PMD_MASK;
794
795         VM_BUG_ON_PAGE(!PageCompound(page), page);
796
797         if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
798                 put_page(page);
799                 count_vm_event(THP_FAULT_FALLBACK);
800                 return VM_FAULT_FALLBACK;
801         }
802
803         pgtable = pte_alloc_one(mm, haddr);
804         if (unlikely(!pgtable)) {
805                 mem_cgroup_cancel_charge(page, memcg, true);
806                 put_page(page);
807                 return VM_FAULT_OOM;
808         }
809
810         clear_huge_page(page, haddr, HPAGE_PMD_NR);
811         /*
812          * The memory barrier inside __SetPageUptodate makes sure that
813          * clear_huge_page writes become visible before the set_pmd_at()
814          * write.
815          */
816         __SetPageUptodate(page);
817
818         ptl = pmd_lock(mm, pmd);
819         if (unlikely(!pmd_none(*pmd))) {
820                 spin_unlock(ptl);
821                 mem_cgroup_cancel_charge(page, memcg, true);
822                 put_page(page);
823                 pte_free(mm, pgtable);
824         } else {
825                 pmd_t entry;
826
827                 /* Deliver the page fault to userland */
828                 if (userfaultfd_missing(vma)) {
829                         int ret;
830
831                         spin_unlock(ptl);
832                         mem_cgroup_cancel_charge(page, memcg, true);
833                         put_page(page);
834                         pte_free(mm, pgtable);
835                         ret = handle_userfault(vma, address, flags,
836                                                VM_UFFD_MISSING);
837                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
838                         return ret;
839                 }
840
841                 entry = mk_huge_pmd(page, vma->vm_page_prot);
842                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
843                 page_add_new_anon_rmap(page, vma, haddr, true);
844                 mem_cgroup_commit_charge(page, memcg, false, true);
845                 lru_cache_add_active_or_unevictable(page, vma);
846                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
847                 set_pmd_at(mm, haddr, pmd, entry);
848                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
849                 atomic_long_inc(&mm->nr_ptes);
850                 spin_unlock(ptl);
851                 count_vm_event(THP_FAULT_ALLOC);
852         }
853
854         return 0;
855 }
856
857 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
858 {
859         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
860 }
861
862 /* Caller must hold page table lock. */
863 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
864                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
865                 struct page *zero_page)
866 {
867         pmd_t entry;
868         if (!pmd_none(*pmd))
869                 return false;
870         entry = mk_pmd(zero_page, vma->vm_page_prot);
871         entry = pmd_mkhuge(entry);
872         if (pgtable)
873                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
874         set_pmd_at(mm, haddr, pmd, entry);
875         atomic_long_inc(&mm->nr_ptes);
876         return true;
877 }
878
879 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
880                                unsigned long address, pmd_t *pmd,
881                                unsigned int flags)
882 {
883         gfp_t gfp;
884         struct page *page;
885         unsigned long haddr = address & HPAGE_PMD_MASK;
886
887         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
888                 return VM_FAULT_FALLBACK;
889         if (unlikely(anon_vma_prepare(vma)))
890                 return VM_FAULT_OOM;
891         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
892                 return VM_FAULT_OOM;
893         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
894                         transparent_hugepage_use_zero_page()) {
895                 spinlock_t *ptl;
896                 pgtable_t pgtable;
897                 struct page *zero_page;
898                 bool set;
899                 int ret;
900                 pgtable = pte_alloc_one(mm, haddr);
901                 if (unlikely(!pgtable))
902                         return VM_FAULT_OOM;
903                 zero_page = get_huge_zero_page();
904                 if (unlikely(!zero_page)) {
905                         pte_free(mm, pgtable);
906                         count_vm_event(THP_FAULT_FALLBACK);
907                         return VM_FAULT_FALLBACK;
908                 }
909                 ptl = pmd_lock(mm, pmd);
910                 ret = 0;
911                 set = false;
912                 if (pmd_none(*pmd)) {
913                         if (userfaultfd_missing(vma)) {
914                                 spin_unlock(ptl);
915                                 ret = handle_userfault(vma, address, flags,
916                                                        VM_UFFD_MISSING);
917                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
918                         } else {
919                                 set_huge_zero_page(pgtable, mm, vma,
920                                                    haddr, pmd,
921                                                    zero_page);
922                                 spin_unlock(ptl);
923                                 set = true;
924                         }
925                 } else
926                         spin_unlock(ptl);
927                 if (!set) {
928                         pte_free(mm, pgtable);
929                         put_huge_zero_page();
930                 }
931                 return ret;
932         }
933         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
934         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
935         if (unlikely(!page)) {
936                 count_vm_event(THP_FAULT_FALLBACK);
937                 return VM_FAULT_FALLBACK;
938         }
939         prep_transhuge_page(page);
940         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
941                                             flags);
942 }
943
944 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
945                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
946 {
947         struct mm_struct *mm = vma->vm_mm;
948         pmd_t entry;
949         spinlock_t *ptl;
950
951         ptl = pmd_lock(mm, pmd);
952         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
953         if (pfn_t_devmap(pfn))
954                 entry = pmd_mkdevmap(entry);
955         if (write) {
956                 entry = pmd_mkyoung(pmd_mkdirty(entry));
957                 entry = maybe_pmd_mkwrite(entry, vma);
958         }
959         set_pmd_at(mm, addr, pmd, entry);
960         update_mmu_cache_pmd(vma, addr, pmd);
961         spin_unlock(ptl);
962 }
963
964 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
965                         pmd_t *pmd, pfn_t pfn, bool write)
966 {
967         pgprot_t pgprot = vma->vm_page_prot;
968         /*
969          * If we had pmd_special, we could avoid all these restrictions,
970          * but we need to be consistent with PTEs and architectures that
971          * can't support a 'special' bit.
972          */
973         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
974         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
975                                                 (VM_PFNMAP|VM_MIXEDMAP));
976         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
977         BUG_ON(!pfn_t_devmap(pfn));
978
979         if (addr < vma->vm_start || addr >= vma->vm_end)
980                 return VM_FAULT_SIGBUS;
981         if (track_pfn_insert(vma, &pgprot, pfn))
982                 return VM_FAULT_SIGBUS;
983         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
984         return VM_FAULT_NOPAGE;
985 }
986
987 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
988                 pmd_t *pmd)
989 {
990         pmd_t _pmd;
991
992         /*
993          * We should set the dirty bit only for FOLL_WRITE but for now
994          * the dirty bit in the pmd is meaningless.  And if the dirty
995          * bit will become meaningful and we'll only set it with
996          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
997          * set the young bit, instead of the current set_pmd_at.
998          */
999         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1000         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1001                                 pmd, _pmd,  1))
1002                 update_mmu_cache_pmd(vma, addr, pmd);
1003 }
1004
1005 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1006                 pmd_t *pmd, int flags)
1007 {
1008         unsigned long pfn = pmd_pfn(*pmd);
1009         struct mm_struct *mm = vma->vm_mm;
1010         struct dev_pagemap *pgmap;
1011         struct page *page;
1012
1013         assert_spin_locked(pmd_lockptr(mm, pmd));
1014
1015         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1016                 return NULL;
1017
1018         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1019                 /* pass */;
1020         else
1021                 return NULL;
1022
1023         if (flags & FOLL_TOUCH)
1024                 touch_pmd(vma, addr, pmd);
1025
1026         /*
1027          * device mapped pages can only be returned if the
1028          * caller will manage the page reference count.
1029          */
1030         if (!(flags & FOLL_GET))
1031                 return ERR_PTR(-EEXIST);
1032
1033         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1034         pgmap = get_dev_pagemap(pfn, NULL);
1035         if (!pgmap)
1036                 return ERR_PTR(-EFAULT);
1037         page = pfn_to_page(pfn);
1038         get_page(page);
1039         put_dev_pagemap(pgmap);
1040
1041         return page;
1042 }
1043
1044 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1046                   struct vm_area_struct *vma)
1047 {
1048         spinlock_t *dst_ptl, *src_ptl;
1049         struct page *src_page;
1050         pmd_t pmd;
1051         pgtable_t pgtable = NULL;
1052         int ret;
1053
1054         if (!vma_is_dax(vma)) {
1055                 ret = -ENOMEM;
1056                 pgtable = pte_alloc_one(dst_mm, addr);
1057                 if (unlikely(!pgtable))
1058                         goto out;
1059         }
1060
1061         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1062         src_ptl = pmd_lockptr(src_mm, src_pmd);
1063         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1064
1065         ret = -EAGAIN;
1066         pmd = *src_pmd;
1067         if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1068                 pte_free(dst_mm, pgtable);
1069                 goto out_unlock;
1070         }
1071         /*
1072          * When page table lock is held, the huge zero pmd should not be
1073          * under splitting since we don't split the page itself, only pmd to
1074          * a page table.
1075          */
1076         if (is_huge_zero_pmd(pmd)) {
1077                 struct page *zero_page;
1078                 /*
1079                  * get_huge_zero_page() will never allocate a new page here,
1080                  * since we already have a zero page to copy. It just takes a
1081                  * reference.
1082                  */
1083                 zero_page = get_huge_zero_page();
1084                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1085                                 zero_page);
1086                 ret = 0;
1087                 goto out_unlock;
1088         }
1089
1090         if (!vma_is_dax(vma)) {
1091                 /* thp accounting separate from pmd_devmap accounting */
1092                 src_page = pmd_page(pmd);
1093                 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1094                 get_page(src_page);
1095                 page_dup_rmap(src_page, true);
1096                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1097                 atomic_long_inc(&dst_mm->nr_ptes);
1098                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1099         }
1100
1101         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1102         pmd = pmd_mkold(pmd_wrprotect(pmd));
1103         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1104
1105         ret = 0;
1106 out_unlock:
1107         spin_unlock(src_ptl);
1108         spin_unlock(dst_ptl);
1109 out:
1110         return ret;
1111 }
1112
1113 void huge_pmd_set_accessed(struct mm_struct *mm,
1114                            struct vm_area_struct *vma,
1115                            unsigned long address,
1116                            pmd_t *pmd, pmd_t orig_pmd,
1117                            int dirty)
1118 {
1119         spinlock_t *ptl;
1120         pmd_t entry;
1121         unsigned long haddr;
1122
1123         ptl = pmd_lock(mm, pmd);
1124         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1125                 goto unlock;
1126
1127         entry = pmd_mkyoung(orig_pmd);
1128         haddr = address & HPAGE_PMD_MASK;
1129         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1130                 update_mmu_cache_pmd(vma, address, pmd);
1131
1132 unlock:
1133         spin_unlock(ptl);
1134 }
1135
1136 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1137                                         struct vm_area_struct *vma,
1138                                         unsigned long address,
1139                                         pmd_t *pmd, pmd_t orig_pmd,
1140                                         struct page *page,
1141                                         unsigned long haddr)
1142 {
1143         struct mem_cgroup *memcg;
1144         spinlock_t *ptl;
1145         pgtable_t pgtable;
1146         pmd_t _pmd;
1147         int ret = 0, i;
1148         struct page **pages;
1149         unsigned long mmun_start;       /* For mmu_notifiers */
1150         unsigned long mmun_end;         /* For mmu_notifiers */
1151
1152         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1153                         GFP_KERNEL);
1154         if (unlikely(!pages)) {
1155                 ret |= VM_FAULT_OOM;
1156                 goto out;
1157         }
1158
1159         for (i = 0; i < HPAGE_PMD_NR; i++) {
1160                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1161                                                __GFP_OTHER_NODE,
1162                                                vma, address, page_to_nid(page));
1163                 if (unlikely(!pages[i] ||
1164                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1165                                                    &memcg, false))) {
1166                         if (pages[i])
1167                                 put_page(pages[i]);
1168                         while (--i >= 0) {
1169                                 memcg = (void *)page_private(pages[i]);
1170                                 set_page_private(pages[i], 0);
1171                                 mem_cgroup_cancel_charge(pages[i], memcg,
1172                                                 false);
1173                                 put_page(pages[i]);
1174                         }
1175                         kfree(pages);
1176                         ret |= VM_FAULT_OOM;
1177                         goto out;
1178                 }
1179                 set_page_private(pages[i], (unsigned long)memcg);
1180         }
1181
1182         for (i = 0; i < HPAGE_PMD_NR; i++) {
1183                 copy_user_highpage(pages[i], page + i,
1184                                    haddr + PAGE_SIZE * i, vma);
1185                 __SetPageUptodate(pages[i]);
1186                 cond_resched();
1187         }
1188
1189         mmun_start = haddr;
1190         mmun_end   = haddr + HPAGE_PMD_SIZE;
1191         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1192
1193         ptl = pmd_lock(mm, pmd);
1194         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1195                 goto out_free_pages;
1196         VM_BUG_ON_PAGE(!PageHead(page), page);
1197
1198         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1199         /* leave pmd empty until pte is filled */
1200
1201         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1202         pmd_populate(mm, &_pmd, pgtable);
1203
1204         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1205                 pte_t *pte, entry;
1206                 entry = mk_pte(pages[i], vma->vm_page_prot);
1207                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1208                 memcg = (void *)page_private(pages[i]);
1209                 set_page_private(pages[i], 0);
1210                 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1211                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1212                 lru_cache_add_active_or_unevictable(pages[i], vma);
1213                 pte = pte_offset_map(&_pmd, haddr);
1214                 VM_BUG_ON(!pte_none(*pte));
1215                 set_pte_at(mm, haddr, pte, entry);
1216                 pte_unmap(pte);
1217         }
1218         kfree(pages);
1219
1220         smp_wmb(); /* make pte visible before pmd */
1221         pmd_populate(mm, pmd, pgtable);
1222         page_remove_rmap(page, true);
1223         spin_unlock(ptl);
1224
1225         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1226
1227         ret |= VM_FAULT_WRITE;
1228         put_page(page);
1229
1230 out:
1231         return ret;
1232
1233 out_free_pages:
1234         spin_unlock(ptl);
1235         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1236         for (i = 0; i < HPAGE_PMD_NR; i++) {
1237                 memcg = (void *)page_private(pages[i]);
1238                 set_page_private(pages[i], 0);
1239                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1240                 put_page(pages[i]);
1241         }
1242         kfree(pages);
1243         goto out;
1244 }
1245
1246 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1247                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1248 {
1249         spinlock_t *ptl;
1250         int ret = 0;
1251         struct page *page = NULL, *new_page;
1252         struct mem_cgroup *memcg;
1253         unsigned long haddr;
1254         unsigned long mmun_start;       /* For mmu_notifiers */
1255         unsigned long mmun_end;         /* For mmu_notifiers */
1256         gfp_t huge_gfp;                 /* for allocation and charge */
1257
1258         ptl = pmd_lockptr(mm, pmd);
1259         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1260         haddr = address & HPAGE_PMD_MASK;
1261         if (is_huge_zero_pmd(orig_pmd))
1262                 goto alloc;
1263         spin_lock(ptl);
1264         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1265                 goto out_unlock;
1266
1267         page = pmd_page(orig_pmd);
1268         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1269         /*
1270          * We can only reuse the page if nobody else maps the huge page or it's
1271          * part. We can do it by checking page_mapcount() on each sub-page, but
1272          * it's expensive.
1273          * The cheaper way is to check page_count() to be equal 1: every
1274          * mapcount takes page reference reference, so this way we can
1275          * guarantee, that the PMD is the only mapping.
1276          * This can give false negative if somebody pinned the page, but that's
1277          * fine.
1278          */
1279         if (page_mapcount(page) == 1 && page_count(page) == 1) {
1280                 pmd_t entry;
1281                 entry = pmd_mkyoung(orig_pmd);
1282                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1284                         update_mmu_cache_pmd(vma, address, pmd);
1285                 ret |= VM_FAULT_WRITE;
1286                 goto out_unlock;
1287         }
1288         get_page(page);
1289         spin_unlock(ptl);
1290 alloc:
1291         if (transparent_hugepage_enabled(vma) &&
1292             !transparent_hugepage_debug_cow()) {
1293                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1294                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1295         } else
1296                 new_page = NULL;
1297
1298         if (likely(new_page)) {
1299                 prep_transhuge_page(new_page);
1300         } else {
1301                 if (!page) {
1302                         split_huge_pmd(vma, pmd, address);
1303                         ret |= VM_FAULT_FALLBACK;
1304                 } else {
1305                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1306                                         pmd, orig_pmd, page, haddr);
1307                         if (ret & VM_FAULT_OOM) {
1308                                 split_huge_pmd(vma, pmd, address);
1309                                 ret |= VM_FAULT_FALLBACK;
1310                         }
1311                         put_page(page);
1312                 }
1313                 count_vm_event(THP_FAULT_FALLBACK);
1314                 goto out;
1315         }
1316
1317         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1318                                            true))) {
1319                 put_page(new_page);
1320                 if (page) {
1321                         split_huge_pmd(vma, pmd, address);
1322                         put_page(page);
1323                 } else
1324                         split_huge_pmd(vma, pmd, address);
1325                 ret |= VM_FAULT_FALLBACK;
1326                 count_vm_event(THP_FAULT_FALLBACK);
1327                 goto out;
1328         }
1329
1330         count_vm_event(THP_FAULT_ALLOC);
1331
1332         if (!page)
1333                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1334         else
1335                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1336         __SetPageUptodate(new_page);
1337
1338         mmun_start = haddr;
1339         mmun_end   = haddr + HPAGE_PMD_SIZE;
1340         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1341
1342         spin_lock(ptl);
1343         if (page)
1344                 put_page(page);
1345         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1346                 spin_unlock(ptl);
1347                 mem_cgroup_cancel_charge(new_page, memcg, true);
1348                 put_page(new_page);
1349                 goto out_mn;
1350         } else {
1351                 pmd_t entry;
1352                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1353                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1355                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1356                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1357                 lru_cache_add_active_or_unevictable(new_page, vma);
1358                 set_pmd_at(mm, haddr, pmd, entry);
1359                 update_mmu_cache_pmd(vma, address, pmd);
1360                 if (!page) {
1361                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1362                         put_huge_zero_page();
1363                 } else {
1364                         VM_BUG_ON_PAGE(!PageHead(page), page);
1365                         page_remove_rmap(page, true);
1366                         put_page(page);
1367                 }
1368                 ret |= VM_FAULT_WRITE;
1369         }
1370         spin_unlock(ptl);
1371 out_mn:
1372         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1373 out:
1374         return ret;
1375 out_unlock:
1376         spin_unlock(ptl);
1377         return ret;
1378 }
1379
1380 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1381                                    unsigned long addr,
1382                                    pmd_t *pmd,
1383                                    unsigned int flags)
1384 {
1385         struct mm_struct *mm = vma->vm_mm;
1386         struct page *page = NULL;
1387
1388         assert_spin_locked(pmd_lockptr(mm, pmd));
1389
1390         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1391                 goto out;
1392
1393         /* Avoid dumping huge zero page */
1394         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1395                 return ERR_PTR(-EFAULT);
1396
1397         /* Full NUMA hinting faults to serialise migration in fault paths */
1398         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1399                 goto out;
1400
1401         page = pmd_page(*pmd);
1402         VM_BUG_ON_PAGE(!PageHead(page), page);
1403         if (flags & FOLL_TOUCH)
1404                 touch_pmd(vma, addr, pmd);
1405         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1406                 /*
1407                  * We don't mlock() pte-mapped THPs. This way we can avoid
1408                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1409                  *
1410                  * In most cases the pmd is the only mapping of the page as we
1411                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1412                  * writable private mappings in populate_vma_page_range().
1413                  *
1414                  * The only scenario when we have the page shared here is if we
1415                  * mlocking read-only mapping shared over fork(). We skip
1416                  * mlocking such pages.
1417                  */
1418                 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1419                                 page->mapping && trylock_page(page)) {
1420                         lru_add_drain();
1421                         if (page->mapping)
1422                                 mlock_vma_page(page);
1423                         unlock_page(page);
1424                 }
1425         }
1426         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1427         VM_BUG_ON_PAGE(!PageCompound(page), page);
1428         if (flags & FOLL_GET)
1429                 get_page(page);
1430
1431 out:
1432         return page;
1433 }
1434
1435 /* NUMA hinting page fault entry point for trans huge pmds */
1436 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1437                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1438 {
1439         spinlock_t *ptl;
1440         struct anon_vma *anon_vma = NULL;
1441         struct page *page;
1442         unsigned long haddr = addr & HPAGE_PMD_MASK;
1443         int page_nid = -1, this_nid = numa_node_id();
1444         int target_nid, last_cpupid = -1;
1445         bool page_locked;
1446         bool migrated = false;
1447         bool was_writable;
1448         int flags = 0;
1449
1450         /* A PROT_NONE fault should not end up here */
1451         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1452
1453         ptl = pmd_lock(mm, pmdp);
1454         if (unlikely(!pmd_same(pmd, *pmdp)))
1455                 goto out_unlock;
1456
1457         /*
1458          * If there are potential migrations, wait for completion and retry
1459          * without disrupting NUMA hinting information. Do not relock and
1460          * check_same as the page may no longer be mapped.
1461          */
1462         if (unlikely(pmd_trans_migrating(*pmdp))) {
1463                 page = pmd_page(*pmdp);
1464                 spin_unlock(ptl);
1465                 wait_on_page_locked(page);
1466                 goto out;
1467         }
1468
1469         page = pmd_page(pmd);
1470         BUG_ON(is_huge_zero_page(page));
1471         page_nid = page_to_nid(page);
1472         last_cpupid = page_cpupid_last(page);
1473         count_vm_numa_event(NUMA_HINT_FAULTS);
1474         if (page_nid == this_nid) {
1475                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1476                 flags |= TNF_FAULT_LOCAL;
1477         }
1478
1479         /* See similar comment in do_numa_page for explanation */
1480         if (!(vma->vm_flags & VM_WRITE))
1481                 flags |= TNF_NO_GROUP;
1482
1483         /*
1484          * Acquire the page lock to serialise THP migrations but avoid dropping
1485          * page_table_lock if at all possible
1486          */
1487         page_locked = trylock_page(page);
1488         target_nid = mpol_misplaced(page, vma, haddr);
1489         if (target_nid == -1) {
1490                 /* If the page was locked, there are no parallel migrations */
1491                 if (page_locked)
1492                         goto clear_pmdnuma;
1493         }
1494
1495         /* Migration could have started since the pmd_trans_migrating check */
1496         if (!page_locked) {
1497                 spin_unlock(ptl);
1498                 wait_on_page_locked(page);
1499                 page_nid = -1;
1500                 goto out;
1501         }
1502
1503         /*
1504          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1505          * to serialises splits
1506          */
1507         get_page(page);
1508         spin_unlock(ptl);
1509         anon_vma = page_lock_anon_vma_read(page);
1510
1511         /* Confirm the PMD did not change while page_table_lock was released */
1512         spin_lock(ptl);
1513         if (unlikely(!pmd_same(pmd, *pmdp))) {
1514                 unlock_page(page);
1515                 put_page(page);
1516                 page_nid = -1;
1517                 goto out_unlock;
1518         }
1519
1520         /* Bail if we fail to protect against THP splits for any reason */
1521         if (unlikely(!anon_vma)) {
1522                 put_page(page);
1523                 page_nid = -1;
1524                 goto clear_pmdnuma;
1525         }
1526
1527         /*
1528          * Migrate the THP to the requested node, returns with page unlocked
1529          * and access rights restored.
1530          */
1531         spin_unlock(ptl);
1532         migrated = migrate_misplaced_transhuge_page(mm, vma,
1533                                 pmdp, pmd, addr, page, target_nid);
1534         if (migrated) {
1535                 flags |= TNF_MIGRATED;
1536                 page_nid = target_nid;
1537         } else
1538                 flags |= TNF_MIGRATE_FAIL;
1539
1540         goto out;
1541 clear_pmdnuma:
1542         BUG_ON(!PageLocked(page));
1543         was_writable = pmd_write(pmd);
1544         pmd = pmd_modify(pmd, vma->vm_page_prot);
1545         pmd = pmd_mkyoung(pmd);
1546         if (was_writable)
1547                 pmd = pmd_mkwrite(pmd);
1548         set_pmd_at(mm, haddr, pmdp, pmd);
1549         update_mmu_cache_pmd(vma, addr, pmdp);
1550         unlock_page(page);
1551 out_unlock:
1552         spin_unlock(ptl);
1553
1554 out:
1555         if (anon_vma)
1556                 page_unlock_anon_vma_read(anon_vma);
1557
1558         if (page_nid != -1)
1559                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1560
1561         return 0;
1562 }
1563
1564 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1565                 pmd_t *pmd, unsigned long addr, unsigned long next)
1566
1567 {
1568         spinlock_t *ptl;
1569         pmd_t orig_pmd;
1570         struct page *page;
1571         struct mm_struct *mm = tlb->mm;
1572         int ret = 0;
1573
1574         ptl = pmd_trans_huge_lock(pmd, vma);
1575         if (!ptl)
1576                 goto out_unlocked;
1577
1578         orig_pmd = *pmd;
1579         if (is_huge_zero_pmd(orig_pmd)) {
1580                 ret = 1;
1581                 goto out;
1582         }
1583
1584         page = pmd_page(orig_pmd);
1585         /*
1586          * If other processes are mapping this page, we couldn't discard
1587          * the page unless they all do MADV_FREE so let's skip the page.
1588          */
1589         if (page_mapcount(page) != 1)
1590                 goto out;
1591
1592         if (!trylock_page(page))
1593                 goto out;
1594
1595         /*
1596          * If user want to discard part-pages of THP, split it so MADV_FREE
1597          * will deactivate only them.
1598          */
1599         if (next - addr != HPAGE_PMD_SIZE) {
1600                 get_page(page);
1601                 spin_unlock(ptl);
1602                 if (split_huge_page(page)) {
1603                         put_page(page);
1604                         unlock_page(page);
1605                         goto out_unlocked;
1606                 }
1607                 put_page(page);
1608                 unlock_page(page);
1609                 ret = 1;
1610                 goto out_unlocked;
1611         }
1612
1613         if (PageDirty(page))
1614                 ClearPageDirty(page);
1615         unlock_page(page);
1616
1617         if (PageActive(page))
1618                 deactivate_page(page);
1619
1620         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1621                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1622                         tlb->fullmm);
1623                 orig_pmd = pmd_mkold(orig_pmd);
1624                 orig_pmd = pmd_mkclean(orig_pmd);
1625
1626                 set_pmd_at(mm, addr, pmd, orig_pmd);
1627                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1628         }
1629         ret = 1;
1630 out:
1631         spin_unlock(ptl);
1632 out_unlocked:
1633         return ret;
1634 }
1635
1636 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1637                  pmd_t *pmd, unsigned long addr)
1638 {
1639         pmd_t orig_pmd;
1640         spinlock_t *ptl;
1641
1642         ptl = __pmd_trans_huge_lock(pmd, vma);
1643         if (!ptl)
1644                 return 0;
1645         /*
1646          * For architectures like ppc64 we look at deposited pgtable
1647          * when calling pmdp_huge_get_and_clear. So do the
1648          * pgtable_trans_huge_withdraw after finishing pmdp related
1649          * operations.
1650          */
1651         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652                         tlb->fullmm);
1653         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654         if (vma_is_dax(vma)) {
1655                 spin_unlock(ptl);
1656                 if (is_huge_zero_pmd(orig_pmd))
1657                         put_huge_zero_page();
1658         } else if (is_huge_zero_pmd(orig_pmd)) {
1659                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1660                 atomic_long_dec(&tlb->mm->nr_ptes);
1661                 spin_unlock(ptl);
1662                 put_huge_zero_page();
1663         } else {
1664                 struct page *page = pmd_page(orig_pmd);
1665                 page_remove_rmap(page, true);
1666                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1667                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1668                 VM_BUG_ON_PAGE(!PageHead(page), page);
1669                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1670                 atomic_long_dec(&tlb->mm->nr_ptes);
1671                 spin_unlock(ptl);
1672                 tlb_remove_page(tlb, page);
1673         }
1674         return 1;
1675 }
1676
1677 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1678                   unsigned long old_addr,
1679                   unsigned long new_addr, unsigned long old_end,
1680                   pmd_t *old_pmd, pmd_t *new_pmd)
1681 {
1682         spinlock_t *old_ptl, *new_ptl;
1683         pmd_t pmd;
1684
1685         struct mm_struct *mm = vma->vm_mm;
1686
1687         if ((old_addr & ~HPAGE_PMD_MASK) ||
1688             (new_addr & ~HPAGE_PMD_MASK) ||
1689             old_end - old_addr < HPAGE_PMD_SIZE ||
1690             (new_vma->vm_flags & VM_NOHUGEPAGE))
1691                 return false;
1692
1693         /*
1694          * The destination pmd shouldn't be established, free_pgtables()
1695          * should have release it.
1696          */
1697         if (WARN_ON(!pmd_none(*new_pmd))) {
1698                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1699                 return false;
1700         }
1701
1702         /*
1703          * We don't have to worry about the ordering of src and dst
1704          * ptlocks because exclusive mmap_sem prevents deadlock.
1705          */
1706         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1707         if (old_ptl) {
1708                 new_ptl = pmd_lockptr(mm, new_pmd);
1709                 if (new_ptl != old_ptl)
1710                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1711                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1712                 VM_BUG_ON(!pmd_none(*new_pmd));
1713
1714                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1715                                 vma_is_anonymous(vma)) {
1716                         pgtable_t pgtable;
1717                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1718                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1719                 }
1720                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1721                 if (new_ptl != old_ptl)
1722                         spin_unlock(new_ptl);
1723                 spin_unlock(old_ptl);
1724                 return true;
1725         }
1726         return false;
1727 }
1728
1729 /*
1730  * Returns
1731  *  - 0 if PMD could not be locked
1732  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1733  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1734  */
1735 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1736                 unsigned long addr, pgprot_t newprot, int prot_numa)
1737 {
1738         struct mm_struct *mm = vma->vm_mm;
1739         spinlock_t *ptl;
1740         int ret = 0;
1741
1742         ptl = __pmd_trans_huge_lock(pmd, vma);
1743         if (ptl) {
1744                 pmd_t entry;
1745                 bool preserve_write = prot_numa && pmd_write(*pmd);
1746                 ret = 1;
1747
1748                 /*
1749                  * Avoid trapping faults against the zero page. The read-only
1750                  * data is likely to be read-cached on the local CPU and
1751                  * local/remote hits to the zero page are not interesting.
1752                  */
1753                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1754                         spin_unlock(ptl);
1755                         return ret;
1756                 }
1757
1758                 if (!prot_numa || !pmd_protnone(*pmd)) {
1759                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1760                         entry = pmd_modify(entry, newprot);
1761                         if (preserve_write)
1762                                 entry = pmd_mkwrite(entry);
1763                         ret = HPAGE_PMD_NR;
1764                         set_pmd_at(mm, addr, pmd, entry);
1765                         BUG_ON(!preserve_write && pmd_write(entry));
1766                 }
1767                 spin_unlock(ptl);
1768         }
1769
1770         return ret;
1771 }
1772
1773 /*
1774  * Returns true if a given pmd maps a thp, false otherwise.
1775  *
1776  * Note that if it returns true, this routine returns without unlocking page
1777  * table lock. So callers must unlock it.
1778  */
1779 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1780 {
1781         spinlock_t *ptl;
1782         ptl = pmd_lock(vma->vm_mm, pmd);
1783         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1784                 return ptl;
1785         spin_unlock(ptl);
1786         return NULL;
1787 }
1788
1789 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1790
1791 int hugepage_madvise(struct vm_area_struct *vma,
1792                      unsigned long *vm_flags, int advice)
1793 {
1794         switch (advice) {
1795         case MADV_HUGEPAGE:
1796 #ifdef CONFIG_S390
1797                 /*
1798                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1799                  * can't handle this properly after s390_enable_sie, so we simply
1800                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1801                  */
1802                 if (mm_has_pgste(vma->vm_mm))
1803                         return 0;
1804 #endif
1805                 /*
1806                  * Be somewhat over-protective like KSM for now!
1807                  */
1808                 if (*vm_flags & VM_NO_THP)
1809                         return -EINVAL;
1810                 *vm_flags &= ~VM_NOHUGEPAGE;
1811                 *vm_flags |= VM_HUGEPAGE;
1812                 /*
1813                  * If the vma become good for khugepaged to scan,
1814                  * register it here without waiting a page fault that
1815                  * may not happen any time soon.
1816                  */
1817                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1818                         return -ENOMEM;
1819                 break;
1820         case MADV_NOHUGEPAGE:
1821                 /*
1822                  * Be somewhat over-protective like KSM for now!
1823                  */
1824                 if (*vm_flags & VM_NO_THP)
1825                         return -EINVAL;
1826                 *vm_flags &= ~VM_HUGEPAGE;
1827                 *vm_flags |= VM_NOHUGEPAGE;
1828                 /*
1829                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1830                  * this vma even if we leave the mm registered in khugepaged if
1831                  * it got registered before VM_NOHUGEPAGE was set.
1832                  */
1833                 break;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static int __init khugepaged_slab_init(void)
1840 {
1841         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1842                                           sizeof(struct mm_slot),
1843                                           __alignof__(struct mm_slot), 0, NULL);
1844         if (!mm_slot_cache)
1845                 return -ENOMEM;
1846
1847         return 0;
1848 }
1849
1850 static void __init khugepaged_slab_exit(void)
1851 {
1852         kmem_cache_destroy(mm_slot_cache);
1853 }
1854
1855 static inline struct mm_slot *alloc_mm_slot(void)
1856 {
1857         if (!mm_slot_cache)     /* initialization failed */
1858                 return NULL;
1859         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1860 }
1861
1862 static inline void free_mm_slot(struct mm_slot *mm_slot)
1863 {
1864         kmem_cache_free(mm_slot_cache, mm_slot);
1865 }
1866
1867 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1868 {
1869         struct mm_slot *mm_slot;
1870
1871         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1872                 if (mm == mm_slot->mm)
1873                         return mm_slot;
1874
1875         return NULL;
1876 }
1877
1878 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1879                                     struct mm_slot *mm_slot)
1880 {
1881         mm_slot->mm = mm;
1882         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1883 }
1884
1885 static inline int khugepaged_test_exit(struct mm_struct *mm)
1886 {
1887         return atomic_read(&mm->mm_users) == 0;
1888 }
1889
1890 int __khugepaged_enter(struct mm_struct *mm)
1891 {
1892         struct mm_slot *mm_slot;
1893         int wakeup;
1894
1895         mm_slot = alloc_mm_slot();
1896         if (!mm_slot)
1897                 return -ENOMEM;
1898
1899         /* __khugepaged_exit() must not run from under us */
1900         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1901         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1902                 free_mm_slot(mm_slot);
1903                 return 0;
1904         }
1905
1906         spin_lock(&khugepaged_mm_lock);
1907         insert_to_mm_slots_hash(mm, mm_slot);
1908         /*
1909          * Insert just behind the scanning cursor, to let the area settle
1910          * down a little.
1911          */
1912         wakeup = list_empty(&khugepaged_scan.mm_head);
1913         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1914         spin_unlock(&khugepaged_mm_lock);
1915
1916         atomic_inc(&mm->mm_count);
1917         if (wakeup)
1918                 wake_up_interruptible(&khugepaged_wait);
1919
1920         return 0;
1921 }
1922
1923 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1924                                unsigned long vm_flags)
1925 {
1926         unsigned long hstart, hend;
1927         if (!vma->anon_vma)
1928                 /*
1929                  * Not yet faulted in so we will register later in the
1930                  * page fault if needed.
1931                  */
1932                 return 0;
1933         if (vma->vm_ops)
1934                 /* khugepaged not yet working on file or special mappings */
1935                 return 0;
1936         VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1937         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1938         hend = vma->vm_end & HPAGE_PMD_MASK;
1939         if (hstart < hend)
1940                 return khugepaged_enter(vma, vm_flags);
1941         return 0;
1942 }
1943
1944 void __khugepaged_exit(struct mm_struct *mm)
1945 {
1946         struct mm_slot *mm_slot;
1947         int free = 0;
1948
1949         spin_lock(&khugepaged_mm_lock);
1950         mm_slot = get_mm_slot(mm);
1951         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1952                 hash_del(&mm_slot->hash);
1953                 list_del(&mm_slot->mm_node);
1954                 free = 1;
1955         }
1956         spin_unlock(&khugepaged_mm_lock);
1957
1958         if (free) {
1959                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1960                 free_mm_slot(mm_slot);
1961                 mmdrop(mm);
1962         } else if (mm_slot) {
1963                 /*
1964                  * This is required to serialize against
1965                  * khugepaged_test_exit() (which is guaranteed to run
1966                  * under mmap sem read mode). Stop here (after we
1967                  * return all pagetables will be destroyed) until
1968                  * khugepaged has finished working on the pagetables
1969                  * under the mmap_sem.
1970                  */
1971                 down_write(&mm->mmap_sem);
1972                 up_write(&mm->mmap_sem);
1973         }
1974 }
1975
1976 static void release_pte_page(struct page *page)
1977 {
1978         /* 0 stands for page_is_file_cache(page) == false */
1979         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1980         unlock_page(page);
1981         putback_lru_page(page);
1982 }
1983
1984 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1985 {
1986         while (--_pte >= pte) {
1987                 pte_t pteval = *_pte;
1988                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1989                         release_pte_page(pte_page(pteval));
1990         }
1991 }
1992
1993 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1994                                         unsigned long address,
1995                                         pte_t *pte)
1996 {
1997         struct page *page = NULL;
1998         pte_t *_pte;
1999         int none_or_zero = 0, result = 0;
2000         bool referenced = false, writable = false;
2001
2002         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2003              _pte++, address += PAGE_SIZE) {
2004                 pte_t pteval = *_pte;
2005                 if (pte_none(pteval) || (pte_present(pteval) &&
2006                                 is_zero_pfn(pte_pfn(pteval)))) {
2007                         if (!userfaultfd_armed(vma) &&
2008                             ++none_or_zero <= khugepaged_max_ptes_none) {
2009                                 continue;
2010                         } else {
2011                                 result = SCAN_EXCEED_NONE_PTE;
2012                                 goto out;
2013                         }
2014                 }
2015                 if (!pte_present(pteval)) {
2016                         result = SCAN_PTE_NON_PRESENT;
2017                         goto out;
2018                 }
2019                 page = vm_normal_page(vma, address, pteval);
2020                 if (unlikely(!page)) {
2021                         result = SCAN_PAGE_NULL;
2022                         goto out;
2023                 }
2024
2025                 VM_BUG_ON_PAGE(PageCompound(page), page);
2026                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2027                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2028
2029                 /*
2030                  * We can do it before isolate_lru_page because the
2031                  * page can't be freed from under us. NOTE: PG_lock
2032                  * is needed to serialize against split_huge_page
2033                  * when invoked from the VM.
2034                  */
2035                 if (!trylock_page(page)) {
2036                         result = SCAN_PAGE_LOCK;
2037                         goto out;
2038                 }
2039
2040                 /*
2041                  * cannot use mapcount: can't collapse if there's a gup pin.
2042                  * The page must only be referenced by the scanned process
2043                  * and page swap cache.
2044                  */
2045                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2046                         unlock_page(page);
2047                         result = SCAN_PAGE_COUNT;
2048                         goto out;
2049                 }
2050                 if (pte_write(pteval)) {
2051                         writable = true;
2052                 } else {
2053                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2054                                 unlock_page(page);
2055                                 result = SCAN_SWAP_CACHE_PAGE;
2056                                 goto out;
2057                         }
2058                         /*
2059                          * Page is not in the swap cache. It can be collapsed
2060                          * into a THP.
2061                          */
2062                 }
2063
2064                 /*
2065                  * Isolate the page to avoid collapsing an hugepage
2066                  * currently in use by the VM.
2067                  */
2068                 if (isolate_lru_page(page)) {
2069                         unlock_page(page);
2070                         result = SCAN_DEL_PAGE_LRU;
2071                         goto out;
2072                 }
2073                 /* 0 stands for page_is_file_cache(page) == false */
2074                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2075                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2076                 VM_BUG_ON_PAGE(PageLRU(page), page);
2077
2078                 /* If there is no mapped pte young don't collapse the page */
2079                 if (pte_young(pteval) ||
2080                     page_is_young(page) || PageReferenced(page) ||
2081                     mmu_notifier_test_young(vma->vm_mm, address))
2082                         referenced = true;
2083         }
2084         if (likely(writable)) {
2085                 if (likely(referenced)) {
2086                         result = SCAN_SUCCEED;
2087                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2088                                                             referenced, writable, result);
2089                         return 1;
2090                 }
2091         } else {
2092                 result = SCAN_PAGE_RO;
2093         }
2094
2095 out:
2096         release_pte_pages(pte, _pte);
2097         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2098                                             referenced, writable, result);
2099         return 0;
2100 }
2101
2102 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2103                                       struct vm_area_struct *vma,
2104                                       unsigned long address,
2105                                       spinlock_t *ptl)
2106 {
2107         pte_t *_pte;
2108         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2109                 pte_t pteval = *_pte;
2110                 struct page *src_page;
2111
2112                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2113                         clear_user_highpage(page, address);
2114                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2115                         if (is_zero_pfn(pte_pfn(pteval))) {
2116                                 /*
2117                                  * ptl mostly unnecessary.
2118                                  */
2119                                 spin_lock(ptl);
2120                                 /*
2121                                  * paravirt calls inside pte_clear here are
2122                                  * superfluous.
2123                                  */
2124                                 pte_clear(vma->vm_mm, address, _pte);
2125                                 spin_unlock(ptl);
2126                         }
2127                 } else {
2128                         src_page = pte_page(pteval);
2129                         copy_user_highpage(page, src_page, address, vma);
2130                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2131                         release_pte_page(src_page);
2132                         /*
2133                          * ptl mostly unnecessary, but preempt has to
2134                          * be disabled to update the per-cpu stats
2135                          * inside page_remove_rmap().
2136                          */
2137                         spin_lock(ptl);
2138                         /*
2139                          * paravirt calls inside pte_clear here are
2140                          * superfluous.
2141                          */
2142                         pte_clear(vma->vm_mm, address, _pte);
2143                         page_remove_rmap(src_page, false);
2144                         spin_unlock(ptl);
2145                         free_page_and_swap_cache(src_page);
2146                 }
2147
2148                 address += PAGE_SIZE;
2149                 page++;
2150         }
2151 }
2152
2153 static void khugepaged_alloc_sleep(void)
2154 {
2155         DEFINE_WAIT(wait);
2156
2157         add_wait_queue(&khugepaged_wait, &wait);
2158         freezable_schedule_timeout_interruptible(
2159                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2160         remove_wait_queue(&khugepaged_wait, &wait);
2161 }
2162
2163 static int khugepaged_node_load[MAX_NUMNODES];
2164
2165 static bool khugepaged_scan_abort(int nid)
2166 {
2167         int i;
2168
2169         /*
2170          * If zone_reclaim_mode is disabled, then no extra effort is made to
2171          * allocate memory locally.
2172          */
2173         if (!zone_reclaim_mode)
2174                 return false;
2175
2176         /* If there is a count for this node already, it must be acceptable */
2177         if (khugepaged_node_load[nid])
2178                 return false;
2179
2180         for (i = 0; i < MAX_NUMNODES; i++) {
2181                 if (!khugepaged_node_load[i])
2182                         continue;
2183                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2184                         return true;
2185         }
2186         return false;
2187 }
2188
2189 #ifdef CONFIG_NUMA
2190 static int khugepaged_find_target_node(void)
2191 {
2192         static int last_khugepaged_target_node = NUMA_NO_NODE;
2193         int nid, target_node = 0, max_value = 0;
2194
2195         /* find first node with max normal pages hit */
2196         for (nid = 0; nid < MAX_NUMNODES; nid++)
2197                 if (khugepaged_node_load[nid] > max_value) {
2198                         max_value = khugepaged_node_load[nid];
2199                         target_node = nid;
2200                 }
2201
2202         /* do some balance if several nodes have the same hit record */
2203         if (target_node <= last_khugepaged_target_node)
2204                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2205                                 nid++)
2206                         if (max_value == khugepaged_node_load[nid]) {
2207                                 target_node = nid;
2208                                 break;
2209                         }
2210
2211         last_khugepaged_target_node = target_node;
2212         return target_node;
2213 }
2214
2215 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2216 {
2217         if (IS_ERR(*hpage)) {
2218                 if (!*wait)
2219                         return false;
2220
2221                 *wait = false;
2222                 *hpage = NULL;
2223                 khugepaged_alloc_sleep();
2224         } else if (*hpage) {
2225                 put_page(*hpage);
2226                 *hpage = NULL;
2227         }
2228
2229         return true;
2230 }
2231
2232 static struct page *
2233 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2234                        unsigned long address, int node)
2235 {
2236         VM_BUG_ON_PAGE(*hpage, *hpage);
2237
2238         /*
2239          * Before allocating the hugepage, release the mmap_sem read lock.
2240          * The allocation can take potentially a long time if it involves
2241          * sync compaction, and we do not need to hold the mmap_sem during
2242          * that. We will recheck the vma after taking it again in write mode.
2243          */
2244         up_read(&mm->mmap_sem);
2245
2246         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2247         if (unlikely(!*hpage)) {
2248                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2249                 *hpage = ERR_PTR(-ENOMEM);
2250                 return NULL;
2251         }
2252
2253         prep_transhuge_page(*hpage);
2254         count_vm_event(THP_COLLAPSE_ALLOC);
2255         return *hpage;
2256 }
2257 #else
2258 static int khugepaged_find_target_node(void)
2259 {
2260         return 0;
2261 }
2262
2263 static inline struct page *alloc_hugepage(int defrag)
2264 {
2265         struct page *page;
2266
2267         page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2268         if (page)
2269                 prep_transhuge_page(page);
2270         return page;
2271 }
2272
2273 static struct page *khugepaged_alloc_hugepage(bool *wait)
2274 {
2275         struct page *hpage;
2276
2277         do {
2278                 hpage = alloc_hugepage(khugepaged_defrag());
2279                 if (!hpage) {
2280                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2281                         if (!*wait)
2282                                 return NULL;
2283
2284                         *wait = false;
2285                         khugepaged_alloc_sleep();
2286                 } else
2287                         count_vm_event(THP_COLLAPSE_ALLOC);
2288         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2289
2290         return hpage;
2291 }
2292
2293 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2294 {
2295         if (!*hpage)
2296                 *hpage = khugepaged_alloc_hugepage(wait);
2297
2298         if (unlikely(!*hpage))
2299                 return false;
2300
2301         return true;
2302 }
2303
2304 static struct page *
2305 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2306                        unsigned long address, int node)
2307 {
2308         up_read(&mm->mmap_sem);
2309         VM_BUG_ON(!*hpage);
2310
2311         return  *hpage;
2312 }
2313 #endif
2314
2315 static bool hugepage_vma_check(struct vm_area_struct *vma)
2316 {
2317         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2318             (vma->vm_flags & VM_NOHUGEPAGE))
2319                 return false;
2320         if (!vma->anon_vma || vma->vm_ops)
2321                 return false;
2322         if (is_vma_temporary_stack(vma))
2323                 return false;
2324         VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2325         return true;
2326 }
2327
2328 static void collapse_huge_page(struct mm_struct *mm,
2329                                    unsigned long address,
2330                                    struct page **hpage,
2331                                    struct vm_area_struct *vma,
2332                                    int node)
2333 {
2334         pmd_t *pmd, _pmd;
2335         pte_t *pte;
2336         pgtable_t pgtable;
2337         struct page *new_page;
2338         spinlock_t *pmd_ptl, *pte_ptl;
2339         int isolated = 0, result = 0;
2340         unsigned long hstart, hend;
2341         struct mem_cgroup *memcg;
2342         unsigned long mmun_start;       /* For mmu_notifiers */
2343         unsigned long mmun_end;         /* For mmu_notifiers */
2344         gfp_t gfp;
2345
2346         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2347
2348         /* Only allocate from the target node */
2349         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2350                 __GFP_THISNODE;
2351
2352         /* release the mmap_sem read lock. */
2353         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2354         if (!new_page) {
2355                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2356                 goto out_nolock;
2357         }
2358
2359         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2360                 result = SCAN_CGROUP_CHARGE_FAIL;
2361                 goto out_nolock;
2362         }
2363
2364         /*
2365          * Prevent all access to pagetables with the exception of
2366          * gup_fast later hanlded by the ptep_clear_flush and the VM
2367          * handled by the anon_vma lock + PG_lock.
2368          */
2369         down_write(&mm->mmap_sem);
2370         if (unlikely(khugepaged_test_exit(mm))) {
2371                 result = SCAN_ANY_PROCESS;
2372                 goto out;
2373         }
2374
2375         vma = find_vma(mm, address);
2376         if (!vma) {
2377                 result = SCAN_VMA_NULL;
2378                 goto out;
2379         }
2380         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2381         hend = vma->vm_end & HPAGE_PMD_MASK;
2382         if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2383                 result = SCAN_ADDRESS_RANGE;
2384                 goto out;
2385         }
2386         if (!hugepage_vma_check(vma)) {
2387                 result = SCAN_VMA_CHECK;
2388                 goto out;
2389         }
2390         pmd = mm_find_pmd(mm, address);
2391         if (!pmd) {
2392                 result = SCAN_PMD_NULL;
2393                 goto out;
2394         }
2395
2396         anon_vma_lock_write(vma->anon_vma);
2397
2398         pte = pte_offset_map(pmd, address);
2399         pte_ptl = pte_lockptr(mm, pmd);
2400
2401         mmun_start = address;
2402         mmun_end   = address + HPAGE_PMD_SIZE;
2403         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405         /*
2406          * After this gup_fast can't run anymore. This also removes
2407          * any huge TLB entry from the CPU so we won't allow
2408          * huge and small TLB entries for the same virtual address
2409          * to avoid the risk of CPU bugs in that area.
2410          */
2411         _pmd = pmdp_collapse_flush(vma, address, pmd);
2412         spin_unlock(pmd_ptl);
2413         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415         spin_lock(pte_ptl);
2416         isolated = __collapse_huge_page_isolate(vma, address, pte);
2417         spin_unlock(pte_ptl);
2418
2419         if (unlikely(!isolated)) {
2420                 pte_unmap(pte);
2421                 spin_lock(pmd_ptl);
2422                 BUG_ON(!pmd_none(*pmd));
2423                 /*
2424                  * We can only use set_pmd_at when establishing
2425                  * hugepmds and never for establishing regular pmds that
2426                  * points to regular pagetables. Use pmd_populate for that
2427                  */
2428                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429                 spin_unlock(pmd_ptl);
2430                 anon_vma_unlock_write(vma->anon_vma);
2431                 result = SCAN_FAIL;
2432                 goto out;
2433         }
2434
2435         /*
2436          * All pages are isolated and locked so anon_vma rmap
2437          * can't run anymore.
2438          */
2439         anon_vma_unlock_write(vma->anon_vma);
2440
2441         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2442         pte_unmap(pte);
2443         __SetPageUptodate(new_page);
2444         pgtable = pmd_pgtable(_pmd);
2445
2446         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2447         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2448
2449         /*
2450          * spin_lock() below is not the equivalent of smp_wmb(), so
2451          * this is needed to avoid the copy_huge_page writes to become
2452          * visible after the set_pmd_at() write.
2453          */
2454         smp_wmb();
2455
2456         spin_lock(pmd_ptl);
2457         BUG_ON(!pmd_none(*pmd));
2458         page_add_new_anon_rmap(new_page, vma, address, true);
2459         mem_cgroup_commit_charge(new_page, memcg, false, true);
2460         lru_cache_add_active_or_unevictable(new_page, vma);
2461         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2462         set_pmd_at(mm, address, pmd, _pmd);
2463         update_mmu_cache_pmd(vma, address, pmd);
2464         spin_unlock(pmd_ptl);
2465
2466         *hpage = NULL;
2467
2468         khugepaged_pages_collapsed++;
2469         result = SCAN_SUCCEED;
2470 out_up_write:
2471         up_write(&mm->mmap_sem);
2472         trace_mm_collapse_huge_page(mm, isolated, result);
2473         return;
2474
2475 out_nolock:
2476         trace_mm_collapse_huge_page(mm, isolated, result);
2477         return;
2478 out:
2479         mem_cgroup_cancel_charge(new_page, memcg, true);
2480         goto out_up_write;
2481 }
2482
2483 static int khugepaged_scan_pmd(struct mm_struct *mm,
2484                                struct vm_area_struct *vma,
2485                                unsigned long address,
2486                                struct page **hpage)
2487 {
2488         pmd_t *pmd;
2489         pte_t *pte, *_pte;
2490         int ret = 0, none_or_zero = 0, result = 0;
2491         struct page *page = NULL;
2492         unsigned long _address;
2493         spinlock_t *ptl;
2494         int node = NUMA_NO_NODE;
2495         bool writable = false, referenced = false;
2496
2497         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2498
2499         pmd = mm_find_pmd(mm, address);
2500         if (!pmd) {
2501                 result = SCAN_PMD_NULL;
2502                 goto out;
2503         }
2504
2505         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2506         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2507         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2508              _pte++, _address += PAGE_SIZE) {
2509                 pte_t pteval = *_pte;
2510                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2511                         if (!userfaultfd_armed(vma) &&
2512                             ++none_or_zero <= khugepaged_max_ptes_none) {
2513                                 continue;
2514                         } else {
2515                                 result = SCAN_EXCEED_NONE_PTE;
2516                                 goto out_unmap;
2517                         }
2518                 }
2519                 if (!pte_present(pteval)) {
2520                         result = SCAN_PTE_NON_PRESENT;
2521                         goto out_unmap;
2522                 }
2523                 if (pte_write(pteval))
2524                         writable = true;
2525
2526                 page = vm_normal_page(vma, _address, pteval);
2527                 if (unlikely(!page)) {
2528                         result = SCAN_PAGE_NULL;
2529                         goto out_unmap;
2530                 }
2531
2532                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2533                 if (PageCompound(page)) {
2534                         result = SCAN_PAGE_COMPOUND;
2535                         goto out_unmap;
2536                 }
2537
2538                 /*
2539                  * Record which node the original page is from and save this
2540                  * information to khugepaged_node_load[].
2541                  * Khupaged will allocate hugepage from the node has the max
2542                  * hit record.
2543                  */
2544                 node = page_to_nid(page);
2545                 if (khugepaged_scan_abort(node)) {
2546                         result = SCAN_SCAN_ABORT;
2547                         goto out_unmap;
2548                 }
2549                 khugepaged_node_load[node]++;
2550                 if (!PageLRU(page)) {
2551                         result = SCAN_SCAN_ABORT;
2552                         goto out_unmap;
2553                 }
2554                 if (PageLocked(page)) {
2555                         result = SCAN_PAGE_LOCK;
2556                         goto out_unmap;
2557                 }
2558                 if (!PageAnon(page)) {
2559                         result = SCAN_PAGE_ANON;
2560                         goto out_unmap;
2561                 }
2562
2563                 /*
2564                  * cannot use mapcount: can't collapse if there's a gup pin.
2565                  * The page must only be referenced by the scanned process
2566                  * and page swap cache.
2567                  */
2568                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2569                         result = SCAN_PAGE_COUNT;
2570                         goto out_unmap;
2571                 }
2572                 if (pte_young(pteval) ||
2573                     page_is_young(page) || PageReferenced(page) ||
2574                     mmu_notifier_test_young(vma->vm_mm, address))
2575                         referenced = true;
2576         }
2577         if (writable) {
2578                 if (referenced) {
2579                         result = SCAN_SUCCEED;
2580                         ret = 1;
2581                 } else {
2582                         result = SCAN_NO_REFERENCED_PAGE;
2583                 }
2584         } else {
2585                 result = SCAN_PAGE_RO;
2586         }
2587 out_unmap:
2588         pte_unmap_unlock(pte, ptl);
2589         if (ret) {
2590                 node = khugepaged_find_target_node();
2591                 /* collapse_huge_page will return with the mmap_sem released */
2592                 collapse_huge_page(mm, address, hpage, vma, node);
2593         }
2594 out:
2595         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2596                                      none_or_zero, result);
2597         return ret;
2598 }
2599
2600 static void collect_mm_slot(struct mm_slot *mm_slot)
2601 {
2602         struct mm_struct *mm = mm_slot->mm;
2603
2604         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2605
2606         if (khugepaged_test_exit(mm)) {
2607                 /* free mm_slot */
2608                 hash_del(&mm_slot->hash);
2609                 list_del(&mm_slot->mm_node);
2610
2611                 /*
2612                  * Not strictly needed because the mm exited already.
2613                  *
2614                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2615                  */
2616
2617                 /* khugepaged_mm_lock actually not necessary for the below */
2618                 free_mm_slot(mm_slot);
2619                 mmdrop(mm);
2620         }
2621 }
2622
2623 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2624                                             struct page **hpage)
2625         __releases(&khugepaged_mm_lock)
2626         __acquires(&khugepaged_mm_lock)
2627 {
2628         struct mm_slot *mm_slot;
2629         struct mm_struct *mm;
2630         struct vm_area_struct *vma;
2631         int progress = 0;
2632
2633         VM_BUG_ON(!pages);
2634         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2635
2636         if (khugepaged_scan.mm_slot)
2637                 mm_slot = khugepaged_scan.mm_slot;
2638         else {
2639                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2640                                      struct mm_slot, mm_node);
2641                 khugepaged_scan.address = 0;
2642                 khugepaged_scan.mm_slot = mm_slot;
2643         }
2644         spin_unlock(&khugepaged_mm_lock);
2645
2646         mm = mm_slot->mm;
2647         down_read(&mm->mmap_sem);
2648         if (unlikely(khugepaged_test_exit(mm)))
2649                 vma = NULL;
2650         else
2651                 vma = find_vma(mm, khugepaged_scan.address);
2652
2653         progress++;
2654         for (; vma; vma = vma->vm_next) {
2655                 unsigned long hstart, hend;
2656
2657                 cond_resched();
2658                 if (unlikely(khugepaged_test_exit(mm))) {
2659                         progress++;
2660                         break;
2661                 }
2662                 if (!hugepage_vma_check(vma)) {
2663 skip:
2664                         progress++;
2665                         continue;
2666                 }
2667                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2668                 hend = vma->vm_end & HPAGE_PMD_MASK;
2669                 if (hstart >= hend)
2670                         goto skip;
2671                 if (khugepaged_scan.address > hend)
2672                         goto skip;
2673                 if (khugepaged_scan.address < hstart)
2674                         khugepaged_scan.address = hstart;
2675                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2676
2677                 while (khugepaged_scan.address < hend) {
2678                         int ret;
2679                         cond_resched();
2680                         if (unlikely(khugepaged_test_exit(mm)))
2681                                 goto breakouterloop;
2682
2683                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2684                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2685                                   hend);
2686                         ret = khugepaged_scan_pmd(mm, vma,
2687                                                   khugepaged_scan.address,
2688                                                   hpage);
2689                         /* move to next address */
2690                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2691                         progress += HPAGE_PMD_NR;
2692                         if (ret)
2693                                 /* we released mmap_sem so break loop */
2694                                 goto breakouterloop_mmap_sem;
2695                         if (progress >= pages)
2696                                 goto breakouterloop;
2697                 }
2698         }
2699 breakouterloop:
2700         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2701 breakouterloop_mmap_sem:
2702
2703         spin_lock(&khugepaged_mm_lock);
2704         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2705         /*
2706          * Release the current mm_slot if this mm is about to die, or
2707          * if we scanned all vmas of this mm.
2708          */
2709         if (khugepaged_test_exit(mm) || !vma) {
2710                 /*
2711                  * Make sure that if mm_users is reaching zero while
2712                  * khugepaged runs here, khugepaged_exit will find
2713                  * mm_slot not pointing to the exiting mm.
2714                  */
2715                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2716                         khugepaged_scan.mm_slot = list_entry(
2717                                 mm_slot->mm_node.next,
2718                                 struct mm_slot, mm_node);
2719                         khugepaged_scan.address = 0;
2720                 } else {
2721                         khugepaged_scan.mm_slot = NULL;
2722                         khugepaged_full_scans++;
2723                 }
2724
2725                 collect_mm_slot(mm_slot);
2726         }
2727
2728         return progress;
2729 }
2730
2731 static int khugepaged_has_work(void)
2732 {
2733         return !list_empty(&khugepaged_scan.mm_head) &&
2734                 khugepaged_enabled();
2735 }
2736
2737 static int khugepaged_wait_event(void)
2738 {
2739         return !list_empty(&khugepaged_scan.mm_head) ||
2740                 kthread_should_stop();
2741 }
2742
2743 static void khugepaged_do_scan(void)
2744 {
2745         struct page *hpage = NULL;
2746         unsigned int progress = 0, pass_through_head = 0;
2747         unsigned int pages = khugepaged_pages_to_scan;
2748         bool wait = true;
2749
2750         barrier(); /* write khugepaged_pages_to_scan to local stack */
2751
2752         while (progress < pages) {
2753                 if (!khugepaged_prealloc_page(&hpage, &wait))
2754                         break;
2755
2756                 cond_resched();
2757
2758                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2759                         break;
2760
2761                 spin_lock(&khugepaged_mm_lock);
2762                 if (!khugepaged_scan.mm_slot)
2763                         pass_through_head++;
2764                 if (khugepaged_has_work() &&
2765                     pass_through_head < 2)
2766                         progress += khugepaged_scan_mm_slot(pages - progress,
2767                                                             &hpage);
2768                 else
2769                         progress = pages;
2770                 spin_unlock(&khugepaged_mm_lock);
2771         }
2772
2773         if (!IS_ERR_OR_NULL(hpage))
2774                 put_page(hpage);
2775 }
2776
2777 static void khugepaged_wait_work(void)
2778 {
2779         if (khugepaged_has_work()) {
2780                 if (!khugepaged_scan_sleep_millisecs)
2781                         return;
2782
2783                 wait_event_freezable_timeout(khugepaged_wait,
2784                                              kthread_should_stop(),
2785                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2786                 return;
2787         }
2788
2789         if (khugepaged_enabled())
2790                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2791 }
2792
2793 static int khugepaged(void *none)
2794 {
2795         struct mm_slot *mm_slot;
2796
2797         set_freezable();
2798         set_user_nice(current, MAX_NICE);
2799
2800         while (!kthread_should_stop()) {
2801                 khugepaged_do_scan();
2802                 khugepaged_wait_work();
2803         }
2804
2805         spin_lock(&khugepaged_mm_lock);
2806         mm_slot = khugepaged_scan.mm_slot;
2807         khugepaged_scan.mm_slot = NULL;
2808         if (mm_slot)
2809                 collect_mm_slot(mm_slot);
2810         spin_unlock(&khugepaged_mm_lock);
2811         return 0;
2812 }
2813
2814 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2815                 unsigned long haddr, pmd_t *pmd)
2816 {
2817         struct mm_struct *mm = vma->vm_mm;
2818         pgtable_t pgtable;
2819         pmd_t _pmd;
2820         int i;
2821
2822         /* leave pmd empty until pte is filled */
2823         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2824
2825         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2826         pmd_populate(mm, &_pmd, pgtable);
2827
2828         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2829                 pte_t *pte, entry;
2830                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2831                 entry = pte_mkspecial(entry);
2832                 pte = pte_offset_map(&_pmd, haddr);
2833                 VM_BUG_ON(!pte_none(*pte));
2834                 set_pte_at(mm, haddr, pte, entry);
2835                 pte_unmap(pte);
2836         }
2837         smp_wmb(); /* make pte visible before pmd */
2838         pmd_populate(mm, pmd, pgtable);
2839         put_huge_zero_page();
2840 }
2841
2842 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2843                 unsigned long haddr, bool freeze)
2844 {
2845         struct mm_struct *mm = vma->vm_mm;
2846         struct page *page;
2847         pgtable_t pgtable;
2848         pmd_t _pmd;
2849         bool young, write, dirty;
2850         unsigned long addr;
2851         int i;
2852
2853         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2854         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2855         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2856         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2857
2858         count_vm_event(THP_SPLIT_PMD);
2859
2860         if (vma_is_dax(vma)) {
2861                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2862                 if (is_huge_zero_pmd(_pmd))
2863                         put_huge_zero_page();
2864                 return;
2865         } else if (is_huge_zero_pmd(*pmd)) {
2866                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2867         }
2868
2869         page = pmd_page(*pmd);
2870         VM_BUG_ON_PAGE(!page_count(page), page);
2871         atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2872         write = pmd_write(*pmd);
2873         young = pmd_young(*pmd);
2874         dirty = pmd_dirty(*pmd);
2875
2876         pmdp_huge_split_prepare(vma, haddr, pmd);
2877         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2878         pmd_populate(mm, &_pmd, pgtable);
2879
2880         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2881                 pte_t entry, *pte;
2882                 /*
2883                  * Note that NUMA hinting access restrictions are not
2884                  * transferred to avoid any possibility of altering
2885                  * permissions across VMAs.
2886                  */
2887                 if (freeze) {
2888                         swp_entry_t swp_entry;
2889                         swp_entry = make_migration_entry(page + i, write);
2890                         entry = swp_entry_to_pte(swp_entry);
2891                 } else {
2892                         entry = mk_pte(page + i, vma->vm_page_prot);
2893                         entry = maybe_mkwrite(entry, vma);
2894                         if (!write)
2895                                 entry = pte_wrprotect(entry);
2896                         if (!young)
2897                                 entry = pte_mkold(entry);
2898                 }
2899                 if (dirty)
2900                         SetPageDirty(page + i);
2901                 pte = pte_offset_map(&_pmd, addr);
2902                 BUG_ON(!pte_none(*pte));
2903                 set_pte_at(mm, addr, pte, entry);
2904                 atomic_inc(&page[i]._mapcount);
2905                 pte_unmap(pte);
2906         }
2907
2908         /*
2909          * Set PG_double_map before dropping compound_mapcount to avoid
2910          * false-negative page_mapped().
2911          */
2912         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2913                 for (i = 0; i < HPAGE_PMD_NR; i++)
2914                         atomic_inc(&page[i]._mapcount);
2915         }
2916
2917         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2918                 /* Last compound_mapcount is gone. */
2919                 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2920                 if (TestClearPageDoubleMap(page)) {
2921                         /* No need in mapcount reference anymore */
2922                         for (i = 0; i < HPAGE_PMD_NR; i++)
2923                                 atomic_dec(&page[i]._mapcount);
2924                 }
2925         }
2926
2927         smp_wmb(); /* make pte visible before pmd */
2928         /*
2929          * Up to this point the pmd is present and huge and userland has the
2930          * whole access to the hugepage during the split (which happens in
2931          * place). If we overwrite the pmd with the not-huge version pointing
2932          * to the pte here (which of course we could if all CPUs were bug
2933          * free), userland could trigger a small page size TLB miss on the
2934          * small sized TLB while the hugepage TLB entry is still established in
2935          * the huge TLB. Some CPU doesn't like that.
2936          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2937          * 383 on page 93. Intel should be safe but is also warns that it's
2938          * only safe if the permission and cache attributes of the two entries
2939          * loaded in the two TLB is identical (which should be the case here).
2940          * But it is generally safer to never allow small and huge TLB entries
2941          * for the same virtual address to be loaded simultaneously. So instead
2942          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2943          * current pmd notpresent (atomically because here the pmd_trans_huge
2944          * and pmd_trans_splitting must remain set at all times on the pmd
2945          * until the split is complete for this pmd), then we flush the SMP TLB
2946          * and finally we write the non-huge version of the pmd entry with
2947          * pmd_populate.
2948          */
2949         pmdp_invalidate(vma, haddr, pmd);
2950         pmd_populate(mm, pmd, pgtable);
2951
2952         if (freeze) {
2953                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2954                         page_remove_rmap(page + i, false);
2955                         put_page(page + i);
2956                 }
2957         }
2958 }
2959
2960 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2961                 unsigned long address)
2962 {
2963         spinlock_t *ptl;
2964         struct mm_struct *mm = vma->vm_mm;
2965         struct page *page = NULL;
2966         unsigned long haddr = address & HPAGE_PMD_MASK;
2967
2968         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2969         ptl = pmd_lock(mm, pmd);
2970         if (pmd_trans_huge(*pmd)) {
2971                 page = pmd_page(*pmd);
2972                 if (PageMlocked(page))
2973                         get_page(page);
2974                 else
2975                         page = NULL;
2976         } else if (!pmd_devmap(*pmd))
2977                 goto out;
2978         __split_huge_pmd_locked(vma, pmd, haddr, false);
2979 out:
2980         spin_unlock(ptl);
2981         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2982         if (page) {
2983                 lock_page(page);
2984                 munlock_vma_page(page);
2985                 unlock_page(page);
2986                 put_page(page);
2987         }
2988 }
2989
2990 static void split_huge_pmd_address(struct vm_area_struct *vma,
2991                                     unsigned long address)
2992 {
2993         pgd_t *pgd;
2994         pud_t *pud;
2995         pmd_t *pmd;
2996
2997         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2998
2999         pgd = pgd_offset(vma->vm_mm, address);
3000         if (!pgd_present(*pgd))
3001                 return;
3002
3003         pud = pud_offset(pgd, address);
3004         if (!pud_present(*pud))
3005                 return;
3006
3007         pmd = pmd_offset(pud, address);
3008         if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3009                 return;
3010         /*
3011          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3012          * materialize from under us.
3013          */
3014         split_huge_pmd(vma, pmd, address);
3015 }
3016
3017 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3018                              unsigned long start,
3019                              unsigned long end,
3020                              long adjust_next)
3021 {
3022         /*
3023          * If the new start address isn't hpage aligned and it could
3024          * previously contain an hugepage: check if we need to split
3025          * an huge pmd.
3026          */
3027         if (start & ~HPAGE_PMD_MASK &&
3028             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3029             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3030                 split_huge_pmd_address(vma, start);
3031
3032         /*
3033          * If the new end address isn't hpage aligned and it could
3034          * previously contain an hugepage: check if we need to split
3035          * an huge pmd.
3036          */
3037         if (end & ~HPAGE_PMD_MASK &&
3038             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3039             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3040                 split_huge_pmd_address(vma, end);
3041
3042         /*
3043          * If we're also updating the vma->vm_next->vm_start, if the new
3044          * vm_next->vm_start isn't page aligned and it could previously
3045          * contain an hugepage: check if we need to split an huge pmd.
3046          */
3047         if (adjust_next > 0) {
3048                 struct vm_area_struct *next = vma->vm_next;
3049                 unsigned long nstart = next->vm_start;
3050                 nstart += adjust_next << PAGE_SHIFT;
3051                 if (nstart & ~HPAGE_PMD_MASK &&
3052                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3053                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3054                         split_huge_pmd_address(next, nstart);
3055         }
3056 }
3057
3058 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3059                 unsigned long address)
3060 {
3061         unsigned long haddr = address & HPAGE_PMD_MASK;
3062         spinlock_t *ptl;
3063         pgd_t *pgd;
3064         pud_t *pud;
3065         pmd_t *pmd;
3066         pte_t *pte;
3067         int i, nr = HPAGE_PMD_NR;
3068
3069         /* Skip pages which doesn't belong to the VMA */
3070         if (address < vma->vm_start) {
3071                 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3072                 page += off;
3073                 nr -= off;
3074                 address = vma->vm_start;
3075         }
3076
3077         pgd = pgd_offset(vma->vm_mm, address);
3078         if (!pgd_present(*pgd))
3079                 return;
3080         pud = pud_offset(pgd, address);
3081         if (!pud_present(*pud))
3082                 return;
3083         pmd = pmd_offset(pud, address);
3084         ptl = pmd_lock(vma->vm_mm, pmd);
3085         if (!pmd_present(*pmd)) {
3086                 spin_unlock(ptl);
3087                 return;
3088         }
3089         if (pmd_trans_huge(*pmd)) {
3090                 if (page == pmd_page(*pmd))
3091                         __split_huge_pmd_locked(vma, pmd, haddr, true);
3092                 spin_unlock(ptl);
3093                 return;
3094         }
3095         spin_unlock(ptl);
3096
3097         pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3098         for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3099                 pte_t entry, swp_pte;
3100                 swp_entry_t swp_entry;
3101
3102                 /*
3103                  * We've just crossed page table boundary: need to map next one.
3104                  * It can happen if THP was mremaped to non PMD-aligned address.
3105                  */
3106                 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3107                         pte_unmap_unlock(pte - 1, ptl);
3108                         pmd = mm_find_pmd(vma->vm_mm, address);
3109                         if (!pmd)
3110                                 return;
3111                         pte = pte_offset_map_lock(vma->vm_mm, pmd,
3112                                         address, &ptl);
3113                 }
3114
3115                 if (!pte_present(*pte))
3116                         continue;
3117                 if (page_to_pfn(page) != pte_pfn(*pte))
3118                         continue;
3119                 flush_cache_page(vma, address, page_to_pfn(page));
3120                 entry = ptep_clear_flush(vma, address, pte);
3121                 if (pte_dirty(entry))
3122                         SetPageDirty(page);
3123                 swp_entry = make_migration_entry(page, pte_write(entry));
3124                 swp_pte = swp_entry_to_pte(swp_entry);
3125                 if (pte_soft_dirty(entry))
3126                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
3127                 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3128                 page_remove_rmap(page, false);
3129                 put_page(page);
3130         }
3131         pte_unmap_unlock(pte - 1, ptl);
3132 }
3133
3134 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3135 {
3136         struct anon_vma_chain *avc;
3137         pgoff_t pgoff = page_to_pgoff(page);
3138
3139         VM_BUG_ON_PAGE(!PageHead(page), page);
3140
3141         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3142                         pgoff + HPAGE_PMD_NR - 1) {
3143                 unsigned long address = __vma_address(page, avc->vma);
3144
3145                 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3146                                 address, address + HPAGE_PMD_SIZE);
3147                 freeze_page_vma(avc->vma, page, address);
3148                 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3149                                 address, address + HPAGE_PMD_SIZE);
3150         }
3151 }
3152
3153 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3154                 unsigned long address)
3155 {
3156         spinlock_t *ptl;
3157         pmd_t *pmd;
3158         pte_t *pte, entry;
3159         swp_entry_t swp_entry;
3160         unsigned long haddr = address & HPAGE_PMD_MASK;
3161         int i, nr = HPAGE_PMD_NR;
3162
3163         /* Skip pages which doesn't belong to the VMA */
3164         if (address < vma->vm_start) {
3165                 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3166                 page += off;
3167                 nr -= off;
3168                 address = vma->vm_start;
3169         }
3170
3171         pmd = mm_find_pmd(vma->vm_mm, address);
3172         if (!pmd)
3173                 return;
3174
3175         pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3176         for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3177                 /*
3178                  * We've just crossed page table boundary: need to map next one.
3179                  * It can happen if THP was mremaped to non-PMD aligned address.
3180                  */
3181                 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3182                         pte_unmap_unlock(pte - 1, ptl);
3183                         pmd = mm_find_pmd(vma->vm_mm, address);
3184                         if (!pmd)
3185                                 return;
3186                         pte = pte_offset_map_lock(vma->vm_mm, pmd,
3187                                         address, &ptl);
3188                 }
3189
3190                 if (!is_swap_pte(*pte))
3191                         continue;
3192
3193                 swp_entry = pte_to_swp_entry(*pte);
3194                 if (!is_migration_entry(swp_entry))
3195                         continue;
3196                 if (migration_entry_to_page(swp_entry) != page)
3197                         continue;
3198
3199                 get_page(page);
3200                 page_add_anon_rmap(page, vma, address, false);
3201
3202                 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3203                 if (PageDirty(page))
3204                         entry = pte_mkdirty(entry);
3205                 if (is_write_migration_entry(swp_entry))
3206                         entry = maybe_mkwrite(entry, vma);
3207
3208                 flush_dcache_page(page);
3209                 set_pte_at(vma->vm_mm, address, pte, entry);
3210
3211                 /* No need to invalidate - it was non-present before */
3212                 update_mmu_cache(vma, address, pte);
3213         }
3214         pte_unmap_unlock(pte - 1, ptl);
3215 }
3216
3217 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3218 {
3219         struct anon_vma_chain *avc;
3220         pgoff_t pgoff = page_to_pgoff(page);
3221
3222         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3223                         pgoff, pgoff + HPAGE_PMD_NR - 1) {
3224                 unsigned long address = __vma_address(page, avc->vma);
3225
3226                 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3227                                 address, address + HPAGE_PMD_SIZE);
3228                 unfreeze_page_vma(avc->vma, page, address);
3229                 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3230                                 address, address + HPAGE_PMD_SIZE);
3231         }
3232 }
3233
3234 static int __split_huge_page_tail(struct page *head, int tail,
3235                 struct lruvec *lruvec, struct list_head *list)
3236 {
3237         int mapcount;
3238         struct page *page_tail = head + tail;
3239
3240         mapcount = atomic_read(&page_tail->_mapcount) + 1;
3241         VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3242
3243         /*
3244          * tail_page->_count is zero and not changing from under us. But
3245          * get_page_unless_zero() may be running from under us on the
3246          * tail_page. If we used atomic_set() below instead of atomic_add(), we
3247          * would then run atomic_set() concurrently with
3248          * get_page_unless_zero(), and atomic_set() is implemented in C not
3249          * using locked ops. spin_unlock on x86 sometime uses locked ops
3250          * because of PPro errata 66, 92, so unless somebody can guarantee
3251          * atomic_set() here would be safe on all archs (and not only on x86),
3252          * it's safer to use atomic_add().
3253          */
3254         atomic_add(mapcount + 1, &page_tail->_count);
3255
3256
3257         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3258         page_tail->flags |= (head->flags &
3259                         ((1L << PG_referenced) |
3260                          (1L << PG_swapbacked) |
3261                          (1L << PG_mlocked) |
3262                          (1L << PG_uptodate) |
3263                          (1L << PG_active) |
3264                          (1L << PG_locked) |
3265                          (1L << PG_unevictable) |
3266                          (1L << PG_dirty)));
3267
3268         /*
3269          * After clearing PageTail the gup refcount can be released.
3270          * Page flags also must be visible before we make the page non-compound.
3271          */
3272         smp_wmb();
3273
3274         clear_compound_head(page_tail);
3275
3276         if (page_is_young(head))
3277                 set_page_young(page_tail);
3278         if (page_is_idle(head))
3279                 set_page_idle(page_tail);
3280
3281         /* ->mapping in first tail page is compound_mapcount */
3282         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3283                         page_tail);
3284         page_tail->mapping = head->mapping;
3285
3286         page_tail->index = head->index + tail;
3287         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3288         lru_add_page_tail(head, page_tail, lruvec, list);
3289
3290         return mapcount;
3291 }
3292
3293 static void __split_huge_page(struct page *page, struct list_head *list)
3294 {
3295         struct page *head = compound_head(page);
3296         struct zone *zone = page_zone(head);
3297         struct lruvec *lruvec;
3298         int i, tail_mapcount;
3299
3300         /* prevent PageLRU to go away from under us, and freeze lru stats */
3301         spin_lock_irq(&zone->lru_lock);
3302         lruvec = mem_cgroup_page_lruvec(head, zone);
3303
3304         /* complete memcg works before add pages to LRU */
3305         mem_cgroup_split_huge_fixup(head);
3306
3307         tail_mapcount = 0;
3308         for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3309                 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3310         atomic_sub(tail_mapcount, &head->_count);
3311
3312         ClearPageCompound(head);
3313         spin_unlock_irq(&zone->lru_lock);
3314
3315         unfreeze_page(page_anon_vma(head), head);
3316
3317         for (i = 0; i < HPAGE_PMD_NR; i++) {
3318                 struct page *subpage = head + i;
3319                 if (subpage == page)
3320                         continue;
3321                 unlock_page(subpage);
3322
3323                 /*
3324                  * Subpages may be freed if there wasn't any mapping
3325                  * like if add_to_swap() is running on a lru page that
3326                  * had its mapping zapped. And freeing these pages
3327                  * requires taking the lru_lock so we do the put_page
3328                  * of the tail pages after the split is complete.
3329                  */
3330                 put_page(subpage);
3331         }
3332 }
3333
3334 int total_mapcount(struct page *page)
3335 {
3336         int i, ret;
3337
3338         VM_BUG_ON_PAGE(PageTail(page), page);
3339
3340         if (likely(!PageCompound(page)))
3341                 return atomic_read(&page->_mapcount) + 1;
3342
3343         ret = compound_mapcount(page);
3344         if (PageHuge(page))
3345                 return ret;
3346         for (i = 0; i < HPAGE_PMD_NR; i++)
3347                 ret += atomic_read(&page[i]._mapcount) + 1;
3348         if (PageDoubleMap(page))
3349                 ret -= HPAGE_PMD_NR;
3350         return ret;
3351 }
3352
3353 /*
3354  * This function splits huge page into normal pages. @page can point to any
3355  * subpage of huge page to split. Split doesn't change the position of @page.
3356  *
3357  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3358  * The huge page must be locked.
3359  *
3360  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3361  *
3362  * Both head page and tail pages will inherit mapping, flags, and so on from
3363  * the hugepage.
3364  *
3365  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3366  * they are not mapped.
3367  *
3368  * Returns 0 if the hugepage is split successfully.
3369  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3370  * us.
3371  */
3372 int split_huge_page_to_list(struct page *page, struct list_head *list)
3373 {
3374         struct page *head = compound_head(page);
3375         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3376         struct anon_vma *anon_vma;
3377         int count, mapcount, ret;
3378         bool mlocked;
3379         unsigned long flags;
3380
3381         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3382         VM_BUG_ON_PAGE(!PageAnon(page), page);
3383         VM_BUG_ON_PAGE(!PageLocked(page), page);
3384         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3385         VM_BUG_ON_PAGE(!PageCompound(page), page);
3386
3387         /*
3388          * The caller does not necessarily hold an mmap_sem that would prevent
3389          * the anon_vma disappearing so we first we take a reference to it
3390          * and then lock the anon_vma for write. This is similar to
3391          * page_lock_anon_vma_read except the write lock is taken to serialise
3392          * against parallel split or collapse operations.
3393          */
3394         anon_vma = page_get_anon_vma(head);
3395         if (!anon_vma) {
3396                 ret = -EBUSY;
3397                 goto out;
3398         }
3399         anon_vma_lock_write(anon_vma);
3400
3401         /*
3402          * Racy check if we can split the page, before freeze_page() will
3403          * split PMDs
3404          */
3405         if (total_mapcount(head) != page_count(head) - 1) {
3406                 ret = -EBUSY;
3407                 goto out_unlock;
3408         }
3409
3410         mlocked = PageMlocked(page);
3411         freeze_page(anon_vma, head);
3412         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3413
3414         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3415         if (mlocked)
3416                 lru_add_drain();
3417
3418         /* Prevent deferred_split_scan() touching ->_count */
3419         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3420         count = page_count(head);
3421         mapcount = total_mapcount(head);
3422         if (!mapcount && count == 1) {
3423                 if (!list_empty(page_deferred_list(head))) {
3424                         pgdata->split_queue_len--;
3425                         list_del(page_deferred_list(head));
3426                 }
3427                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3428                 __split_huge_page(page, list);
3429                 ret = 0;
3430         } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3431                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3432                 pr_alert("total_mapcount: %u, page_count(): %u\n",
3433                                 mapcount, count);
3434                 if (PageTail(page))
3435                         dump_page(head, NULL);
3436                 dump_page(page, "total_mapcount(head) > 0");
3437                 BUG();
3438         } else {
3439                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3440                 unfreeze_page(anon_vma, head);
3441                 ret = -EBUSY;
3442         }
3443
3444 out_unlock:
3445         anon_vma_unlock_write(anon_vma);
3446         put_anon_vma(anon_vma);
3447 out:
3448         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3449         return ret;
3450 }
3451
3452 void free_transhuge_page(struct page *page)
3453 {
3454         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3455         unsigned long flags;
3456
3457         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3458         if (!list_empty(page_deferred_list(page))) {
3459                 pgdata->split_queue_len--;
3460                 list_del(page_deferred_list(page));
3461         }
3462         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3463         free_compound_page(page);
3464 }
3465
3466 void deferred_split_huge_page(struct page *page)
3467 {
3468         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3469         unsigned long flags;
3470
3471         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3472
3473         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3474         if (list_empty(page_deferred_list(page))) {
3475                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3476                 pgdata->split_queue_len++;
3477         }
3478         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3479 }
3480
3481 static unsigned long deferred_split_count(struct shrinker *shrink,
3482                 struct shrink_control *sc)
3483 {
3484         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3485         return ACCESS_ONCE(pgdata->split_queue_len);
3486 }
3487
3488 static unsigned long deferred_split_scan(struct shrinker *shrink,
3489                 struct shrink_control *sc)
3490 {
3491         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3492         unsigned long flags;
3493         LIST_HEAD(list), *pos, *next;
3494         struct page *page;
3495         int split = 0;
3496
3497         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3498         /* Take pin on all head pages to avoid freeing them under us */
3499         list_for_each_safe(pos, next, &pgdata->split_queue) {
3500                 page = list_entry((void *)pos, struct page, mapping);
3501                 page = compound_head(page);
3502                 if (get_page_unless_zero(page)) {
3503                         list_move(page_deferred_list(page), &list);
3504                 } else {
3505                         /* We lost race with put_compound_page() */
3506                         list_del_init(page_deferred_list(page));
3507                         pgdata->split_queue_len--;
3508                 }
3509                 if (!--sc->nr_to_scan)
3510                         break;
3511         }
3512         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3513
3514         list_for_each_safe(pos, next, &list) {
3515                 page = list_entry((void *)pos, struct page, mapping);
3516                 lock_page(page);
3517                 /* split_huge_page() removes page from list on success */
3518                 if (!split_huge_page(page))
3519                         split++;
3520                 unlock_page(page);
3521                 put_page(page);
3522         }
3523
3524         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3525         list_splice_tail(&list, &pgdata->split_queue);
3526         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3527
3528         /*
3529          * Stop shrinker if we didn't split any page, but the queue is empty.
3530          * This can happen if pages were freed under us.
3531          */
3532         if (!split && list_empty(&pgdata->split_queue))
3533                 return SHRINK_STOP;
3534         return split;
3535 }
3536
3537 static struct shrinker deferred_split_shrinker = {
3538         .count_objects = deferred_split_count,
3539         .scan_objects = deferred_split_scan,
3540         .seeks = DEFAULT_SEEKS,
3541         .flags = SHRINKER_NUMA_AWARE,
3542 };
3543
3544 #ifdef CONFIG_DEBUG_FS
3545 static int split_huge_pages_set(void *data, u64 val)
3546 {
3547         struct zone *zone;
3548         struct page *page;
3549         unsigned long pfn, max_zone_pfn;
3550         unsigned long total = 0, split = 0;
3551
3552         if (val != 1)
3553                 return -EINVAL;
3554
3555         for_each_populated_zone(zone) {
3556                 max_zone_pfn = zone_end_pfn(zone);
3557                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3558                         if (!pfn_valid(pfn))
3559                                 continue;
3560
3561                         page = pfn_to_page(pfn);
3562                         if (!get_page_unless_zero(page))
3563                                 continue;
3564
3565                         if (zone != page_zone(page))
3566                                 goto next;
3567
3568                         if (!PageHead(page) || !PageAnon(page) ||
3569                                         PageHuge(page))
3570                                 goto next;
3571
3572                         total++;
3573                         lock_page(page);
3574                         if (!split_huge_page(page))
3575                                 split++;
3576                         unlock_page(page);
3577 next:
3578                         put_page(page);
3579                 }
3580         }
3581
3582         pr_info("%lu of %lu THP split", split, total);
3583
3584         return 0;
3585 }
3586 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3587                 "%llu\n");
3588
3589 static int __init split_huge_pages_debugfs(void)
3590 {
3591         void *ret;
3592
3593         ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3594                         &split_huge_pages_fops);
3595         if (!ret)
3596                 pr_warn("Failed to create split_huge_pages in debugfs");
3597         return 0;
3598 }
3599 late_initcall(split_huge_pages_debugfs);
3600 #endif