]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
mm: introduce arch-specific vma flag VM_ARCH_1
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/migrate.h>
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24
25 /*
26  * By default transparent hugepage support is enabled for all mappings
27  * and khugepaged scans all mappings. Defrag is only invoked by
28  * khugepaged hugepage allocations and by page faults inside
29  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30  * allocations.
31  */
32 unsigned long transparent_hugepage_flags __read_mostly =
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
34         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
35 #endif
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38 #endif
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
40         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42 /* default scan 8*512 pte (or vmas) every 30 second */
43 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44 static unsigned int khugepaged_pages_collapsed;
45 static unsigned int khugepaged_full_scans;
46 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47 /* during fragmentation poll the hugepage allocator once every minute */
48 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49 static struct task_struct *khugepaged_thread __read_mostly;
50 static DEFINE_MUTEX(khugepaged_mutex);
51 static DEFINE_SPINLOCK(khugepaged_mm_lock);
52 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 /*
54  * default collapse hugepages if there is at least one pte mapped like
55  * it would have happened if the vma was large enough during page
56  * fault.
57  */
58 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59
60 static int khugepaged(void *none);
61 static int mm_slots_hash_init(void);
62 static int khugepaged_slab_init(void);
63 static void khugepaged_slab_free(void);
64
65 #define MM_SLOTS_HASH_HEADS 1024
66 static struct hlist_head *mm_slots_hash __read_mostly;
67 static struct kmem_cache *mm_slot_cache __read_mostly;
68
69 /**
70  * struct mm_slot - hash lookup from mm to mm_slot
71  * @hash: hash collision list
72  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
73  * @mm: the mm that this information is valid for
74  */
75 struct mm_slot {
76         struct hlist_node hash;
77         struct list_head mm_node;
78         struct mm_struct *mm;
79 };
80
81 /**
82  * struct khugepaged_scan - cursor for scanning
83  * @mm_head: the head of the mm list to scan
84  * @mm_slot: the current mm_slot we are scanning
85  * @address: the next address inside that to be scanned
86  *
87  * There is only the one khugepaged_scan instance of this cursor structure.
88  */
89 struct khugepaged_scan {
90         struct list_head mm_head;
91         struct mm_slot *mm_slot;
92         unsigned long address;
93 };
94 static struct khugepaged_scan khugepaged_scan = {
95         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
96 };
97
98
99 static int set_recommended_min_free_kbytes(void)
100 {
101         struct zone *zone;
102         int nr_zones = 0;
103         unsigned long recommended_min;
104         extern int min_free_kbytes;
105
106         if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
107                       &transparent_hugepage_flags) &&
108             !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
109                       &transparent_hugepage_flags))
110                 return 0;
111
112         for_each_populated_zone(zone)
113                 nr_zones++;
114
115         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116         recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118         /*
119          * Make sure that on average at least two pageblocks are almost free
120          * of another type, one for a migratetype to fall back to and a
121          * second to avoid subsequent fallbacks of other types There are 3
122          * MIGRATE_TYPES we care about.
123          */
124         recommended_min += pageblock_nr_pages * nr_zones *
125                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127         /* don't ever allow to reserve more than 5% of the lowmem */
128         recommended_min = min(recommended_min,
129                               (unsigned long) nr_free_buffer_pages() / 20);
130         recommended_min <<= (PAGE_SHIFT-10);
131
132         if (recommended_min > min_free_kbytes)
133                 min_free_kbytes = recommended_min;
134         setup_per_zone_wmarks();
135         return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141         int err = 0;
142         if (khugepaged_enabled()) {
143                 int wakeup;
144                 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
145                         err = -ENOMEM;
146                         goto out;
147                 }
148                 mutex_lock(&khugepaged_mutex);
149                 if (!khugepaged_thread)
150                         khugepaged_thread = kthread_run(khugepaged, NULL,
151                                                         "khugepaged");
152                 if (unlikely(IS_ERR(khugepaged_thread))) {
153                         printk(KERN_ERR
154                                "khugepaged: kthread_run(khugepaged) failed\n");
155                         err = PTR_ERR(khugepaged_thread);
156                         khugepaged_thread = NULL;
157                 }
158                 wakeup = !list_empty(&khugepaged_scan.mm_head);
159                 mutex_unlock(&khugepaged_mutex);
160                 if (wakeup)
161                         wake_up_interruptible(&khugepaged_wait);
162
163                 set_recommended_min_free_kbytes();
164         } else
165                 /* wakeup to exit */
166                 wake_up_interruptible(&khugepaged_wait);
167 out:
168         return err;
169 }
170
171 #ifdef CONFIG_SYSFS
172
173 static ssize_t double_flag_show(struct kobject *kobj,
174                                 struct kobj_attribute *attr, char *buf,
175                                 enum transparent_hugepage_flag enabled,
176                                 enum transparent_hugepage_flag req_madv)
177 {
178         if (test_bit(enabled, &transparent_hugepage_flags)) {
179                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
180                 return sprintf(buf, "[always] madvise never\n");
181         } else if (test_bit(req_madv, &transparent_hugepage_flags))
182                 return sprintf(buf, "always [madvise] never\n");
183         else
184                 return sprintf(buf, "always madvise [never]\n");
185 }
186 static ssize_t double_flag_store(struct kobject *kobj,
187                                  struct kobj_attribute *attr,
188                                  const char *buf, size_t count,
189                                  enum transparent_hugepage_flag enabled,
190                                  enum transparent_hugepage_flag req_madv)
191 {
192         if (!memcmp("always", buf,
193                     min(sizeof("always")-1, count))) {
194                 set_bit(enabled, &transparent_hugepage_flags);
195                 clear_bit(req_madv, &transparent_hugepage_flags);
196         } else if (!memcmp("madvise", buf,
197                            min(sizeof("madvise")-1, count))) {
198                 clear_bit(enabled, &transparent_hugepage_flags);
199                 set_bit(req_madv, &transparent_hugepage_flags);
200         } else if (!memcmp("never", buf,
201                            min(sizeof("never")-1, count))) {
202                 clear_bit(enabled, &transparent_hugepage_flags);
203                 clear_bit(req_madv, &transparent_hugepage_flags);
204         } else
205                 return -EINVAL;
206
207         return count;
208 }
209
210 static ssize_t enabled_show(struct kobject *kobj,
211                             struct kobj_attribute *attr, char *buf)
212 {
213         return double_flag_show(kobj, attr, buf,
214                                 TRANSPARENT_HUGEPAGE_FLAG,
215                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216 }
217 static ssize_t enabled_store(struct kobject *kobj,
218                              struct kobj_attribute *attr,
219                              const char *buf, size_t count)
220 {
221         ssize_t ret;
222
223         ret = double_flag_store(kobj, attr, buf, count,
224                                 TRANSPARENT_HUGEPAGE_FLAG,
225                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
226
227         if (ret > 0) {
228                 int err = start_khugepaged();
229                 if (err)
230                         ret = err;
231         }
232
233         if (ret > 0 &&
234             (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
235                       &transparent_hugepage_flags) ||
236              test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
237                       &transparent_hugepage_flags)))
238                 set_recommended_min_free_kbytes();
239
240         return ret;
241 }
242 static struct kobj_attribute enabled_attr =
243         __ATTR(enabled, 0644, enabled_show, enabled_store);
244
245 static ssize_t single_flag_show(struct kobject *kobj,
246                                 struct kobj_attribute *attr, char *buf,
247                                 enum transparent_hugepage_flag flag)
248 {
249         return sprintf(buf, "%d\n",
250                        !!test_bit(flag, &transparent_hugepage_flags));
251 }
252
253 static ssize_t single_flag_store(struct kobject *kobj,
254                                  struct kobj_attribute *attr,
255                                  const char *buf, size_t count,
256                                  enum transparent_hugepage_flag flag)
257 {
258         unsigned long value;
259         int ret;
260
261         ret = kstrtoul(buf, 10, &value);
262         if (ret < 0)
263                 return ret;
264         if (value > 1)
265                 return -EINVAL;
266
267         if (value)
268                 set_bit(flag, &transparent_hugepage_flags);
269         else
270                 clear_bit(flag, &transparent_hugepage_flags);
271
272         return count;
273 }
274
275 /*
276  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
277  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
278  * memory just to allocate one more hugepage.
279  */
280 static ssize_t defrag_show(struct kobject *kobj,
281                            struct kobj_attribute *attr, char *buf)
282 {
283         return double_flag_show(kobj, attr, buf,
284                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
285                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
286 }
287 static ssize_t defrag_store(struct kobject *kobj,
288                             struct kobj_attribute *attr,
289                             const char *buf, size_t count)
290 {
291         return double_flag_store(kobj, attr, buf, count,
292                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
293                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
294 }
295 static struct kobj_attribute defrag_attr =
296         __ATTR(defrag, 0644, defrag_show, defrag_store);
297
298 #ifdef CONFIG_DEBUG_VM
299 static ssize_t debug_cow_show(struct kobject *kobj,
300                                 struct kobj_attribute *attr, char *buf)
301 {
302         return single_flag_show(kobj, attr, buf,
303                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304 }
305 static ssize_t debug_cow_store(struct kobject *kobj,
306                                struct kobj_attribute *attr,
307                                const char *buf, size_t count)
308 {
309         return single_flag_store(kobj, attr, buf, count,
310                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
311 }
312 static struct kobj_attribute debug_cow_attr =
313         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
314 #endif /* CONFIG_DEBUG_VM */
315
316 static struct attribute *hugepage_attr[] = {
317         &enabled_attr.attr,
318         &defrag_attr.attr,
319 #ifdef CONFIG_DEBUG_VM
320         &debug_cow_attr.attr,
321 #endif
322         NULL,
323 };
324
325 static struct attribute_group hugepage_attr_group = {
326         .attrs = hugepage_attr,
327 };
328
329 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
330                                          struct kobj_attribute *attr,
331                                          char *buf)
332 {
333         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
334 }
335
336 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
337                                           struct kobj_attribute *attr,
338                                           const char *buf, size_t count)
339 {
340         unsigned long msecs;
341         int err;
342
343         err = strict_strtoul(buf, 10, &msecs);
344         if (err || msecs > UINT_MAX)
345                 return -EINVAL;
346
347         khugepaged_scan_sleep_millisecs = msecs;
348         wake_up_interruptible(&khugepaged_wait);
349
350         return count;
351 }
352 static struct kobj_attribute scan_sleep_millisecs_attr =
353         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
354                scan_sleep_millisecs_store);
355
356 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
357                                           struct kobj_attribute *attr,
358                                           char *buf)
359 {
360         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
361 }
362
363 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
364                                            struct kobj_attribute *attr,
365                                            const char *buf, size_t count)
366 {
367         unsigned long msecs;
368         int err;
369
370         err = strict_strtoul(buf, 10, &msecs);
371         if (err || msecs > UINT_MAX)
372                 return -EINVAL;
373
374         khugepaged_alloc_sleep_millisecs = msecs;
375         wake_up_interruptible(&khugepaged_wait);
376
377         return count;
378 }
379 static struct kobj_attribute alloc_sleep_millisecs_attr =
380         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
381                alloc_sleep_millisecs_store);
382
383 static ssize_t pages_to_scan_show(struct kobject *kobj,
384                                   struct kobj_attribute *attr,
385                                   char *buf)
386 {
387         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
388 }
389 static ssize_t pages_to_scan_store(struct kobject *kobj,
390                                    struct kobj_attribute *attr,
391                                    const char *buf, size_t count)
392 {
393         int err;
394         unsigned long pages;
395
396         err = strict_strtoul(buf, 10, &pages);
397         if (err || !pages || pages > UINT_MAX)
398                 return -EINVAL;
399
400         khugepaged_pages_to_scan = pages;
401
402         return count;
403 }
404 static struct kobj_attribute pages_to_scan_attr =
405         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
406                pages_to_scan_store);
407
408 static ssize_t pages_collapsed_show(struct kobject *kobj,
409                                     struct kobj_attribute *attr,
410                                     char *buf)
411 {
412         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
413 }
414 static struct kobj_attribute pages_collapsed_attr =
415         __ATTR_RO(pages_collapsed);
416
417 static ssize_t full_scans_show(struct kobject *kobj,
418                                struct kobj_attribute *attr,
419                                char *buf)
420 {
421         return sprintf(buf, "%u\n", khugepaged_full_scans);
422 }
423 static struct kobj_attribute full_scans_attr =
424         __ATTR_RO(full_scans);
425
426 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
427                                       struct kobj_attribute *attr, char *buf)
428 {
429         return single_flag_show(kobj, attr, buf,
430                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
431 }
432 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
433                                        struct kobj_attribute *attr,
434                                        const char *buf, size_t count)
435 {
436         return single_flag_store(kobj, attr, buf, count,
437                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
438 }
439 static struct kobj_attribute khugepaged_defrag_attr =
440         __ATTR(defrag, 0644, khugepaged_defrag_show,
441                khugepaged_defrag_store);
442
443 /*
444  * max_ptes_none controls if khugepaged should collapse hugepages over
445  * any unmapped ptes in turn potentially increasing the memory
446  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
447  * reduce the available free memory in the system as it
448  * runs. Increasing max_ptes_none will instead potentially reduce the
449  * free memory in the system during the khugepaged scan.
450  */
451 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
452                                              struct kobj_attribute *attr,
453                                              char *buf)
454 {
455         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
456 }
457 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
458                                               struct kobj_attribute *attr,
459                                               const char *buf, size_t count)
460 {
461         int err;
462         unsigned long max_ptes_none;
463
464         err = strict_strtoul(buf, 10, &max_ptes_none);
465         if (err || max_ptes_none > HPAGE_PMD_NR-1)
466                 return -EINVAL;
467
468         khugepaged_max_ptes_none = max_ptes_none;
469
470         return count;
471 }
472 static struct kobj_attribute khugepaged_max_ptes_none_attr =
473         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
474                khugepaged_max_ptes_none_store);
475
476 static struct attribute *khugepaged_attr[] = {
477         &khugepaged_defrag_attr.attr,
478         &khugepaged_max_ptes_none_attr.attr,
479         &pages_to_scan_attr.attr,
480         &pages_collapsed_attr.attr,
481         &full_scans_attr.attr,
482         &scan_sleep_millisecs_attr.attr,
483         &alloc_sleep_millisecs_attr.attr,
484         NULL,
485 };
486
487 static struct attribute_group khugepaged_attr_group = {
488         .attrs = khugepaged_attr,
489         .name = "khugepaged",
490 };
491
492 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
493 {
494         int err;
495
496         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
497         if (unlikely(!*hugepage_kobj)) {
498                 printk(KERN_ERR "hugepage: failed kobject create\n");
499                 return -ENOMEM;
500         }
501
502         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
503         if (err) {
504                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
505                 goto delete_obj;
506         }
507
508         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
509         if (err) {
510                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
511                 goto remove_hp_group;
512         }
513
514         return 0;
515
516 remove_hp_group:
517         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
518 delete_obj:
519         kobject_put(*hugepage_kobj);
520         return err;
521 }
522
523 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524 {
525         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
526         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
527         kobject_put(hugepage_kobj);
528 }
529 #else
530 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
531 {
532         return 0;
533 }
534
535 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
536 {
537 }
538 #endif /* CONFIG_SYSFS */
539
540 static int __init hugepage_init(void)
541 {
542         int err;
543         struct kobject *hugepage_kobj;
544
545         if (!has_transparent_hugepage()) {
546                 transparent_hugepage_flags = 0;
547                 return -EINVAL;
548         }
549
550         err = hugepage_init_sysfs(&hugepage_kobj);
551         if (err)
552                 return err;
553
554         err = khugepaged_slab_init();
555         if (err)
556                 goto out;
557
558         err = mm_slots_hash_init();
559         if (err) {
560                 khugepaged_slab_free();
561                 goto out;
562         }
563
564         /*
565          * By default disable transparent hugepages on smaller systems,
566          * where the extra memory used could hurt more than TLB overhead
567          * is likely to save.  The admin can still enable it through /sys.
568          */
569         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
570                 transparent_hugepage_flags = 0;
571
572         start_khugepaged();
573
574         set_recommended_min_free_kbytes();
575
576         return 0;
577 out:
578         hugepage_exit_sysfs(hugepage_kobj);
579         return err;
580 }
581 module_init(hugepage_init)
582
583 static int __init setup_transparent_hugepage(char *str)
584 {
585         int ret = 0;
586         if (!str)
587                 goto out;
588         if (!strcmp(str, "always")) {
589                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
590                         &transparent_hugepage_flags);
591                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
592                           &transparent_hugepage_flags);
593                 ret = 1;
594         } else if (!strcmp(str, "madvise")) {
595                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
596                           &transparent_hugepage_flags);
597                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
598                         &transparent_hugepage_flags);
599                 ret = 1;
600         } else if (!strcmp(str, "never")) {
601                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
602                           &transparent_hugepage_flags);
603                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
604                           &transparent_hugepage_flags);
605                 ret = 1;
606         }
607 out:
608         if (!ret)
609                 printk(KERN_WARNING
610                        "transparent_hugepage= cannot parse, ignored\n");
611         return ret;
612 }
613 __setup("transparent_hugepage=", setup_transparent_hugepage);
614
615 static void prepare_pmd_huge_pte(pgtable_t pgtable,
616                                  struct mm_struct *mm)
617 {
618         assert_spin_locked(&mm->page_table_lock);
619
620         /* FIFO */
621         if (!mm->pmd_huge_pte)
622                 INIT_LIST_HEAD(&pgtable->lru);
623         else
624                 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
625         mm->pmd_huge_pte = pgtable;
626 }
627
628 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
629 {
630         if (likely(vma->vm_flags & VM_WRITE))
631                 pmd = pmd_mkwrite(pmd);
632         return pmd;
633 }
634
635 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
636                                         struct vm_area_struct *vma,
637                                         unsigned long haddr, pmd_t *pmd,
638                                         struct page *page)
639 {
640         pgtable_t pgtable;
641
642         VM_BUG_ON(!PageCompound(page));
643         pgtable = pte_alloc_one(mm, haddr);
644         if (unlikely(!pgtable))
645                 return VM_FAULT_OOM;
646
647         clear_huge_page(page, haddr, HPAGE_PMD_NR);
648         __SetPageUptodate(page);
649
650         spin_lock(&mm->page_table_lock);
651         if (unlikely(!pmd_none(*pmd))) {
652                 spin_unlock(&mm->page_table_lock);
653                 mem_cgroup_uncharge_page(page);
654                 put_page(page);
655                 pte_free(mm, pgtable);
656         } else {
657                 pmd_t entry;
658                 entry = mk_pmd(page, vma->vm_page_prot);
659                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
660                 entry = pmd_mkhuge(entry);
661                 /*
662                  * The spinlocking to take the lru_lock inside
663                  * page_add_new_anon_rmap() acts as a full memory
664                  * barrier to be sure clear_huge_page writes become
665                  * visible after the set_pmd_at() write.
666                  */
667                 page_add_new_anon_rmap(page, vma, haddr);
668                 set_pmd_at(mm, haddr, pmd, entry);
669                 prepare_pmd_huge_pte(pgtable, mm);
670                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
671                 mm->nr_ptes++;
672                 spin_unlock(&mm->page_table_lock);
673         }
674
675         return 0;
676 }
677
678 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
679 {
680         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
681 }
682
683 static inline struct page *alloc_hugepage_vma(int defrag,
684                                               struct vm_area_struct *vma,
685                                               unsigned long haddr, int nd,
686                                               gfp_t extra_gfp)
687 {
688         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
689                                HPAGE_PMD_ORDER, vma, haddr, nd);
690 }
691
692 #ifndef CONFIG_NUMA
693 static inline struct page *alloc_hugepage(int defrag)
694 {
695         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
696                            HPAGE_PMD_ORDER);
697 }
698 #endif
699
700 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
701                                unsigned long address, pmd_t *pmd,
702                                unsigned int flags)
703 {
704         struct page *page;
705         unsigned long haddr = address & HPAGE_PMD_MASK;
706         pte_t *pte;
707
708         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
709                 if (unlikely(anon_vma_prepare(vma)))
710                         return VM_FAULT_OOM;
711                 if (unlikely(khugepaged_enter(vma)))
712                         return VM_FAULT_OOM;
713                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
714                                           vma, haddr, numa_node_id(), 0);
715                 if (unlikely(!page)) {
716                         count_vm_event(THP_FAULT_FALLBACK);
717                         goto out;
718                 }
719                 count_vm_event(THP_FAULT_ALLOC);
720                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
721                         put_page(page);
722                         goto out;
723                 }
724                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
725                                                           page))) {
726                         mem_cgroup_uncharge_page(page);
727                         put_page(page);
728                         goto out;
729                 }
730
731                 return 0;
732         }
733 out:
734         /*
735          * Use __pte_alloc instead of pte_alloc_map, because we can't
736          * run pte_offset_map on the pmd, if an huge pmd could
737          * materialize from under us from a different thread.
738          */
739         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
740                 return VM_FAULT_OOM;
741         /* if an huge pmd materialized from under us just retry later */
742         if (unlikely(pmd_trans_huge(*pmd)))
743                 return 0;
744         /*
745          * A regular pmd is established and it can't morph into a huge pmd
746          * from under us anymore at this point because we hold the mmap_sem
747          * read mode and khugepaged takes it in write mode. So now it's
748          * safe to run pte_offset_map().
749          */
750         pte = pte_offset_map(pmd, address);
751         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
752 }
753
754 bool pmd_prot_none(struct vm_area_struct *vma, pmd_t pmd)
755 {
756         /*
757          * See pte_prot_none().
758          */
759         if (pmd_same(pmd, pmd_modify(pmd, vma->vm_page_prot)))
760                 return false;
761
762         return pmd_same(pmd, pmd_modify(pmd, vma_prot_none(vma)));
763 }
764
765 void do_huge_pmd_prot_none(struct mm_struct *mm, struct vm_area_struct *vma,
766                            unsigned long address, pmd_t *pmd,
767                            unsigned int flags, pmd_t entry)
768 {
769         unsigned long haddr = address & HPAGE_PMD_MASK;
770         struct page *page = NULL;
771
772         spin_lock(&mm->page_table_lock);
773         if (unlikely(!pmd_same(*pmd, entry)))
774                 goto out_unlock;
775
776         if (unlikely(pmd_trans_splitting(entry))) {
777                 spin_unlock(&mm->page_table_lock);
778                 wait_split_huge_page(vma->anon_vma, pmd);
779                 return;
780         }
781
782 #ifdef CONFIG_NUMA
783         page = pmd_page(entry);
784         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
785
786         get_page(page);
787         spin_unlock(&mm->page_table_lock);
788
789         /*
790          * XXX should we serialize against split_huge_page ?
791          */
792
793         if (mpol_misplaced(page, vma, haddr, mm->numa_big) == -1)
794                 goto do_fixup;
795
796         /*
797          * Due to lacking code to migrate thp pages, we'll split
798          * (which preserves the special PROT_NONE) and re-take the
799          * fault on the normal pages.
800          */
801         split_huge_page(page);
802         put_page(page);
803         return;
804
805 do_fixup:
806         spin_lock(&mm->page_table_lock);
807         if (unlikely(!pmd_same(*pmd, entry)))
808                 goto out_unlock;
809 #endif
810
811         /* change back to regular protection */
812         entry = pmd_modify(entry, vma->vm_page_prot);
813         if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
814                 update_mmu_cache(vma, address, entry);
815
816 out_unlock:
817         spin_unlock(&mm->page_table_lock);
818         if (page)
819                 put_page(page);
820 }
821
822 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
823                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
824                   struct vm_area_struct *vma)
825 {
826         struct page *src_page;
827         pmd_t pmd;
828         pgtable_t pgtable;
829         int ret;
830
831         ret = -ENOMEM;
832         pgtable = pte_alloc_one(dst_mm, addr);
833         if (unlikely(!pgtable))
834                 goto out;
835
836         spin_lock(&dst_mm->page_table_lock);
837         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
838
839         ret = -EAGAIN;
840         pmd = *src_pmd;
841         if (unlikely(!pmd_trans_huge(pmd))) {
842                 pte_free(dst_mm, pgtable);
843                 goto out_unlock;
844         }
845         if (unlikely(pmd_trans_splitting(pmd))) {
846                 /* split huge page running from under us */
847                 spin_unlock(&src_mm->page_table_lock);
848                 spin_unlock(&dst_mm->page_table_lock);
849                 pte_free(dst_mm, pgtable);
850
851                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
852                 goto out;
853         }
854         src_page = pmd_page(pmd);
855         VM_BUG_ON(!PageHead(src_page));
856         get_page(src_page);
857         page_dup_rmap(src_page);
858         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
859
860         pmdp_set_wrprotect(src_mm, addr, src_pmd);
861         pmd = pmd_mkold(pmd_wrprotect(pmd));
862         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
863         prepare_pmd_huge_pte(pgtable, dst_mm);
864         dst_mm->nr_ptes++;
865
866         ret = 0;
867 out_unlock:
868         spin_unlock(&src_mm->page_table_lock);
869         spin_unlock(&dst_mm->page_table_lock);
870 out:
871         return ret;
872 }
873
874 /* no "address" argument so destroys page coloring of some arch */
875 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
876 {
877         pgtable_t pgtable;
878
879         assert_spin_locked(&mm->page_table_lock);
880
881         /* FIFO */
882         pgtable = mm->pmd_huge_pte;
883         if (list_empty(&pgtable->lru))
884                 mm->pmd_huge_pte = NULL;
885         else {
886                 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
887                                               struct page, lru);
888                 list_del(&pgtable->lru);
889         }
890         return pgtable;
891 }
892
893 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
894                                         struct vm_area_struct *vma,
895                                         unsigned long address,
896                                         pmd_t *pmd, pmd_t orig_pmd,
897                                         struct page *page,
898                                         unsigned long haddr)
899 {
900         pgtable_t pgtable;
901         pmd_t _pmd;
902         int ret = 0, i;
903         struct page **pages;
904
905         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
906                         GFP_KERNEL);
907         if (unlikely(!pages)) {
908                 ret |= VM_FAULT_OOM;
909                 goto out;
910         }
911
912         for (i = 0; i < HPAGE_PMD_NR; i++) {
913                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
914                                                __GFP_OTHER_NODE,
915                                                vma, address, page_to_nid(page));
916                 if (unlikely(!pages[i] ||
917                              mem_cgroup_newpage_charge(pages[i], mm,
918                                                        GFP_KERNEL))) {
919                         if (pages[i])
920                                 put_page(pages[i]);
921                         mem_cgroup_uncharge_start();
922                         while (--i >= 0) {
923                                 mem_cgroup_uncharge_page(pages[i]);
924                                 put_page(pages[i]);
925                         }
926                         mem_cgroup_uncharge_end();
927                         kfree(pages);
928                         ret |= VM_FAULT_OOM;
929                         goto out;
930                 }
931         }
932
933         for (i = 0; i < HPAGE_PMD_NR; i++) {
934                 copy_user_highpage(pages[i], page + i,
935                                    haddr + PAGE_SIZE * i, vma);
936                 __SetPageUptodate(pages[i]);
937                 cond_resched();
938         }
939
940         spin_lock(&mm->page_table_lock);
941         if (unlikely(!pmd_same(*pmd, orig_pmd)))
942                 goto out_free_pages;
943         VM_BUG_ON(!PageHead(page));
944
945         pmdp_clear_flush_notify(vma, haddr, pmd);
946         /* leave pmd empty until pte is filled */
947
948         pgtable = get_pmd_huge_pte(mm);
949         pmd_populate(mm, &_pmd, pgtable);
950
951         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
952                 pte_t *pte, entry;
953                 entry = mk_pte(pages[i], vma->vm_page_prot);
954                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
955                 page_add_new_anon_rmap(pages[i], vma, haddr);
956                 pte = pte_offset_map(&_pmd, haddr);
957                 VM_BUG_ON(!pte_none(*pte));
958                 set_pte_at(mm, haddr, pte, entry);
959                 pte_unmap(pte);
960         }
961         kfree(pages);
962
963         smp_wmb(); /* make pte visible before pmd */
964         pmd_populate(mm, pmd, pgtable);
965         page_remove_rmap(page);
966         spin_unlock(&mm->page_table_lock);
967
968         ret |= VM_FAULT_WRITE;
969         put_page(page);
970
971 out:
972         return ret;
973
974 out_free_pages:
975         spin_unlock(&mm->page_table_lock);
976         mem_cgroup_uncharge_start();
977         for (i = 0; i < HPAGE_PMD_NR; i++) {
978                 mem_cgroup_uncharge_page(pages[i]);
979                 put_page(pages[i]);
980         }
981         mem_cgroup_uncharge_end();
982         kfree(pages);
983         goto out;
984 }
985
986 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
987                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
988 {
989         int ret = 0;
990         struct page *page, *new_page;
991         unsigned long haddr;
992
993         VM_BUG_ON(!vma->anon_vma);
994         spin_lock(&mm->page_table_lock);
995         if (unlikely(!pmd_same(*pmd, orig_pmd)))
996                 goto out_unlock;
997
998         page = pmd_page(orig_pmd);
999         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1000         haddr = address & HPAGE_PMD_MASK;
1001         if (page_mapcount(page) == 1) {
1002                 pmd_t entry;
1003                 entry = pmd_mkyoung(orig_pmd);
1004                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1005                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1006                         update_mmu_cache(vma, address, entry);
1007                 ret |= VM_FAULT_WRITE;
1008                 goto out_unlock;
1009         }
1010         get_page(page);
1011         spin_unlock(&mm->page_table_lock);
1012
1013         if (transparent_hugepage_enabled(vma) &&
1014             !transparent_hugepage_debug_cow())
1015                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1016                                               vma, haddr, numa_node_id(), 0);
1017         else
1018                 new_page = NULL;
1019
1020         if (unlikely(!new_page)) {
1021                 count_vm_event(THP_FAULT_FALLBACK);
1022                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1023                                                    pmd, orig_pmd, page, haddr);
1024                 if (ret & VM_FAULT_OOM)
1025                         split_huge_page(page);
1026                 put_page(page);
1027                 goto out;
1028         }
1029         count_vm_event(THP_FAULT_ALLOC);
1030
1031         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1032                 put_page(new_page);
1033                 split_huge_page(page);
1034                 put_page(page);
1035                 ret |= VM_FAULT_OOM;
1036                 goto out;
1037         }
1038
1039         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1040         __SetPageUptodate(new_page);
1041
1042         spin_lock(&mm->page_table_lock);
1043         put_page(page);
1044         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1045                 spin_unlock(&mm->page_table_lock);
1046                 mem_cgroup_uncharge_page(new_page);
1047                 put_page(new_page);
1048                 goto out;
1049         } else {
1050                 pmd_t entry;
1051                 VM_BUG_ON(!PageHead(page));
1052                 entry = mk_pmd(new_page, vma->vm_page_prot);
1053                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1054                 entry = pmd_mkhuge(entry);
1055                 pmdp_clear_flush_notify(vma, haddr, pmd);
1056                 page_add_new_anon_rmap(new_page, vma, haddr);
1057                 set_pmd_at(mm, haddr, pmd, entry);
1058                 update_mmu_cache(vma, address, entry);
1059                 page_remove_rmap(page);
1060                 put_page(page);
1061                 ret |= VM_FAULT_WRITE;
1062         }
1063 out_unlock:
1064         spin_unlock(&mm->page_table_lock);
1065 out:
1066         return ret;
1067 }
1068
1069 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1070                                    unsigned long addr,
1071                                    pmd_t *pmd,
1072                                    unsigned int flags)
1073 {
1074         struct page *page = NULL;
1075
1076         assert_spin_locked(&mm->page_table_lock);
1077
1078         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1079                 goto out;
1080
1081         page = pmd_page(*pmd);
1082         VM_BUG_ON(!PageHead(page));
1083         if (flags & FOLL_TOUCH) {
1084                 pmd_t _pmd;
1085                 /*
1086                  * We should set the dirty bit only for FOLL_WRITE but
1087                  * for now the dirty bit in the pmd is meaningless.
1088                  * And if the dirty bit will become meaningful and
1089                  * we'll only set it with FOLL_WRITE, an atomic
1090                  * set_bit will be required on the pmd to set the
1091                  * young bit, instead of the current set_pmd_at.
1092                  */
1093                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1094                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1095         }
1096         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1097         VM_BUG_ON(!PageCompound(page));
1098         if (flags & FOLL_GET)
1099                 get_page_foll(page);
1100
1101 out:
1102         return page;
1103 }
1104
1105 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1106                  pmd_t *pmd, unsigned long addr)
1107 {
1108         int ret = 0;
1109
1110         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1111                 struct page *page;
1112                 pgtable_t pgtable;
1113                 pgtable = get_pmd_huge_pte(tlb->mm);
1114                 page = pmd_page(*pmd);
1115                 pmd_clear(pmd);
1116                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1117                 page_remove_rmap(page);
1118                 VM_BUG_ON(page_mapcount(page) < 0);
1119                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1120                 VM_BUG_ON(!PageHead(page));
1121                 tlb->mm->nr_ptes--;
1122                 spin_unlock(&tlb->mm->page_table_lock);
1123                 tlb_remove_page(tlb, page);
1124                 pte_free(tlb->mm, pgtable);
1125                 ret = 1;
1126         }
1127         return ret;
1128 }
1129
1130 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1131                 unsigned long addr, unsigned long end,
1132                 unsigned char *vec)
1133 {
1134         int ret = 0;
1135
1136         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1137                 /*
1138                  * All logical pages in the range are present
1139                  * if backed by a huge page.
1140                  */
1141                 spin_unlock(&vma->vm_mm->page_table_lock);
1142                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1143                 ret = 1;
1144         }
1145
1146         return ret;
1147 }
1148
1149 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1150                   unsigned long old_addr,
1151                   unsigned long new_addr, unsigned long old_end,
1152                   pmd_t *old_pmd, pmd_t *new_pmd)
1153 {
1154         int ret = 0;
1155         pmd_t pmd;
1156
1157         struct mm_struct *mm = vma->vm_mm;
1158
1159         if ((old_addr & ~HPAGE_PMD_MASK) ||
1160             (new_addr & ~HPAGE_PMD_MASK) ||
1161             old_end - old_addr < HPAGE_PMD_SIZE ||
1162             (new_vma->vm_flags & VM_NOHUGEPAGE))
1163                 goto out;
1164
1165         /*
1166          * The destination pmd shouldn't be established, free_pgtables()
1167          * should have release it.
1168          */
1169         if (WARN_ON(!pmd_none(*new_pmd))) {
1170                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1171                 goto out;
1172         }
1173
1174         ret = __pmd_trans_huge_lock(old_pmd, vma);
1175         if (ret == 1) {
1176                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1177                 VM_BUG_ON(!pmd_none(*new_pmd));
1178                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1179                 spin_unlock(&mm->page_table_lock);
1180         }
1181 out:
1182         return ret;
1183 }
1184
1185 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1186                 unsigned long addr, pgprot_t newprot)
1187 {
1188         struct mm_struct *mm = vma->vm_mm;
1189         int ret = 0;
1190
1191         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1192                 pmd_t entry;
1193                 entry = pmdp_get_and_clear(mm, addr, pmd);
1194                 entry = pmd_modify(entry, newprot);
1195                 set_pmd_at(mm, addr, pmd, entry);
1196                 spin_unlock(&vma->vm_mm->page_table_lock);
1197                 ret = 1;
1198         }
1199
1200         return ret;
1201 }
1202
1203 /*
1204  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1205  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1206  *
1207  * Note that if it returns 1, this routine returns without unlocking page
1208  * table locks. So callers must unlock them.
1209  */
1210 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1211 {
1212         spin_lock(&vma->vm_mm->page_table_lock);
1213         if (likely(pmd_trans_huge(*pmd))) {
1214                 if (unlikely(pmd_trans_splitting(*pmd))) {
1215                         spin_unlock(&vma->vm_mm->page_table_lock);
1216                         wait_split_huge_page(vma->anon_vma, pmd);
1217                         return -1;
1218                 } else {
1219                         /* Thp mapped by 'pmd' is stable, so we can
1220                          * handle it as it is. */
1221                         return 1;
1222                 }
1223         }
1224         spin_unlock(&vma->vm_mm->page_table_lock);
1225         return 0;
1226 }
1227
1228 pmd_t *page_check_address_pmd(struct page *page,
1229                               struct mm_struct *mm,
1230                               unsigned long address,
1231                               enum page_check_address_pmd_flag flag)
1232 {
1233         pgd_t *pgd;
1234         pud_t *pud;
1235         pmd_t *pmd, *ret = NULL;
1236
1237         if (address & ~HPAGE_PMD_MASK)
1238                 goto out;
1239
1240         pgd = pgd_offset(mm, address);
1241         if (!pgd_present(*pgd))
1242                 goto out;
1243
1244         pud = pud_offset(pgd, address);
1245         if (!pud_present(*pud))
1246                 goto out;
1247
1248         pmd = pmd_offset(pud, address);
1249         if (pmd_none(*pmd))
1250                 goto out;
1251         if (pmd_page(*pmd) != page)
1252                 goto out;
1253         /*
1254          * split_vma() may create temporary aliased mappings. There is
1255          * no risk as long as all huge pmd are found and have their
1256          * splitting bit set before __split_huge_page_refcount
1257          * runs. Finding the same huge pmd more than once during the
1258          * same rmap walk is not a problem.
1259          */
1260         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1261             pmd_trans_splitting(*pmd))
1262                 goto out;
1263         if (pmd_trans_huge(*pmd)) {
1264                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1265                           !pmd_trans_splitting(*pmd));
1266                 ret = pmd;
1267         }
1268 out:
1269         return ret;
1270 }
1271
1272 static int __split_huge_page_splitting(struct page *page,
1273                                        struct vm_area_struct *vma,
1274                                        unsigned long address)
1275 {
1276         struct mm_struct *mm = vma->vm_mm;
1277         pmd_t *pmd;
1278         int ret = 0;
1279
1280         spin_lock(&mm->page_table_lock);
1281         pmd = page_check_address_pmd(page, mm, address,
1282                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1283         if (pmd) {
1284                 /*
1285                  * We can't temporarily set the pmd to null in order
1286                  * to split it, the pmd must remain marked huge at all
1287                  * times or the VM won't take the pmd_trans_huge paths
1288                  * and it won't wait on the anon_vma->root->mutex to
1289                  * serialize against split_huge_page*.
1290                  */
1291                 pmdp_splitting_flush_notify(vma, address, pmd);
1292                 ret = 1;
1293         }
1294         spin_unlock(&mm->page_table_lock);
1295
1296         return ret;
1297 }
1298
1299 static void __split_huge_page_refcount(struct page *page)
1300 {
1301         int i;
1302         struct zone *zone = page_zone(page);
1303         struct lruvec *lruvec;
1304         int tail_count = 0;
1305
1306         /* prevent PageLRU to go away from under us, and freeze lru stats */
1307         spin_lock_irq(&zone->lru_lock);
1308         lruvec = mem_cgroup_page_lruvec(page, zone);
1309
1310         compound_lock(page);
1311         /* complete memcg works before add pages to LRU */
1312         mem_cgroup_split_huge_fixup(page);
1313
1314         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1315                 struct page *page_tail = page + i;
1316
1317                 /* tail_page->_mapcount cannot change */
1318                 BUG_ON(page_mapcount(page_tail) < 0);
1319                 tail_count += page_mapcount(page_tail);
1320                 /* check for overflow */
1321                 BUG_ON(tail_count < 0);
1322                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1323                 /*
1324                  * tail_page->_count is zero and not changing from
1325                  * under us. But get_page_unless_zero() may be running
1326                  * from under us on the tail_page. If we used
1327                  * atomic_set() below instead of atomic_add(), we
1328                  * would then run atomic_set() concurrently with
1329                  * get_page_unless_zero(), and atomic_set() is
1330                  * implemented in C not using locked ops. spin_unlock
1331                  * on x86 sometime uses locked ops because of PPro
1332                  * errata 66, 92, so unless somebody can guarantee
1333                  * atomic_set() here would be safe on all archs (and
1334                  * not only on x86), it's safer to use atomic_add().
1335                  */
1336                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1337                            &page_tail->_count);
1338
1339                 /* after clearing PageTail the gup refcount can be released */
1340                 smp_mb();
1341
1342                 /*
1343                  * retain hwpoison flag of the poisoned tail page:
1344                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1345                  *   by the memory-failure.
1346                  */
1347                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1348                 page_tail->flags |= (page->flags &
1349                                      ((1L << PG_referenced) |
1350                                       (1L << PG_swapbacked) |
1351                                       (1L << PG_mlocked) |
1352                                       (1L << PG_uptodate)));
1353                 page_tail->flags |= (1L << PG_dirty);
1354
1355                 /* clear PageTail before overwriting first_page */
1356                 smp_wmb();
1357
1358                 /*
1359                  * __split_huge_page_splitting() already set the
1360                  * splitting bit in all pmd that could map this
1361                  * hugepage, that will ensure no CPU can alter the
1362                  * mapcount on the head page. The mapcount is only
1363                  * accounted in the head page and it has to be
1364                  * transferred to all tail pages in the below code. So
1365                  * for this code to be safe, the split the mapcount
1366                  * can't change. But that doesn't mean userland can't
1367                  * keep changing and reading the page contents while
1368                  * we transfer the mapcount, so the pmd splitting
1369                  * status is achieved setting a reserved bit in the
1370                  * pmd, not by clearing the present bit.
1371                 */
1372                 page_tail->_mapcount = page->_mapcount;
1373
1374                 BUG_ON(page_tail->mapping);
1375                 page_tail->mapping = page->mapping;
1376
1377                 page_tail->index = page->index + i;
1378                 page_xchg_last_nid(page, page_last_nid(page_tail));
1379
1380                 BUG_ON(!PageAnon(page_tail));
1381                 BUG_ON(!PageUptodate(page_tail));
1382                 BUG_ON(!PageDirty(page_tail));
1383                 BUG_ON(!PageSwapBacked(page_tail));
1384
1385                 lru_add_page_tail(page, page_tail, lruvec);
1386         }
1387         atomic_sub(tail_count, &page->_count);
1388         BUG_ON(atomic_read(&page->_count) <= 0);
1389
1390         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1391         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1392
1393         ClearPageCompound(page);
1394         compound_unlock(page);
1395         spin_unlock_irq(&zone->lru_lock);
1396
1397         for (i = 1; i < HPAGE_PMD_NR; i++) {
1398                 struct page *page_tail = page + i;
1399                 BUG_ON(page_count(page_tail) <= 0);
1400                 /*
1401                  * Tail pages may be freed if there wasn't any mapping
1402                  * like if add_to_swap() is running on a lru page that
1403                  * had its mapping zapped. And freeing these pages
1404                  * requires taking the lru_lock so we do the put_page
1405                  * of the tail pages after the split is complete.
1406                  */
1407                 put_page(page_tail);
1408         }
1409
1410         /*
1411          * Only the head page (now become a regular page) is required
1412          * to be pinned by the caller.
1413          */
1414         BUG_ON(page_count(page) <= 0);
1415 }
1416
1417 static int __split_huge_page_map(struct page *page,
1418                                  struct vm_area_struct *vma,
1419                                  unsigned long address)
1420 {
1421         struct mm_struct *mm = vma->vm_mm;
1422         pmd_t *pmd, _pmd;
1423         int ret = 0, i;
1424         pgtable_t pgtable;
1425         unsigned long haddr;
1426         pgprot_t prot;
1427
1428         spin_lock(&mm->page_table_lock);
1429         pmd = page_check_address_pmd(page, mm, address,
1430                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1431         if (!pmd)
1432                 goto unlock;
1433
1434         prot = pmd_pgprot(*pmd);
1435         pgtable = get_pmd_huge_pte(mm);
1436         pmd_populate(mm, &_pmd, pgtable);
1437
1438         for (i = 0, haddr = address; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1439                 pte_t *pte, entry;
1440
1441                 BUG_ON(PageCompound(page+i));
1442                 entry = mk_pte(page + i, prot);
1443                 entry = pte_mkdirty(entry);
1444                 if (!pmd_young(*pmd))
1445                         entry = pte_mkold(entry);
1446                 pte = pte_offset_map(&_pmd, haddr);
1447                 BUG_ON(!pte_none(*pte));
1448                 set_pte_at(mm, haddr, pte, entry);
1449                 pte_unmap(pte);
1450         }
1451
1452         smp_wmb(); /* make ptes visible before pmd, see __pte_alloc */
1453         /*
1454          * Up to this point the pmd is present and huge.
1455          *
1456          * If we overwrite the pmd with the not-huge version, we could trigger
1457          * a small page size TLB miss on the small sized TLB while the hugepage
1458          * TLB entry is still established in the huge TLB.
1459          *
1460          * Some CPUs don't like that. See
1461          * http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 383
1462          * on page 93.
1463          *
1464          * Thus it is generally safer to never allow small and huge TLB entries
1465          * for overlapping virtual addresses to be loaded. So we first mark the
1466          * current pmd not present, then we flush the TLB and finally we write
1467          * the non-huge version of the pmd entry with pmd_populate.
1468          *
1469          * The above needs to be done under the ptl because pmd_trans_huge and
1470          * pmd_trans_splitting must remain set on the pmd until the split is
1471          * complete. The ptl also protects against concurrent faults due to
1472          * making the pmd not-present.
1473          */
1474         set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1475         flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1476         pmd_populate(mm, pmd, pgtable);
1477         ret = 1;
1478
1479 unlock:
1480         spin_unlock(&mm->page_table_lock);
1481
1482         return ret;
1483 }
1484
1485 /* must be called with anon_vma->root->mutex hold */
1486 static void __split_huge_page(struct page *page,
1487                               struct anon_vma *anon_vma)
1488 {
1489         int mapcount, mapcount2;
1490         struct anon_vma_chain *avc;
1491
1492         BUG_ON(!PageHead(page));
1493         BUG_ON(PageTail(page));
1494
1495         mapcount = 0;
1496         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1497                 struct vm_area_struct *vma = avc->vma;
1498                 unsigned long addr = vma_address(page, vma);
1499                 BUG_ON(is_vma_temporary_stack(vma));
1500                 if (addr == -EFAULT)
1501                         continue;
1502                 mapcount += __split_huge_page_splitting(page, vma, addr);
1503         }
1504         /*
1505          * It is critical that new vmas are added to the tail of the
1506          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1507          * and establishes a child pmd before
1508          * __split_huge_page_splitting() freezes the parent pmd (so if
1509          * we fail to prevent copy_huge_pmd() from running until the
1510          * whole __split_huge_page() is complete), we will still see
1511          * the newly established pmd of the child later during the
1512          * walk, to be able to set it as pmd_trans_splitting too.
1513          */
1514         if (mapcount != page_mapcount(page))
1515                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1516                        mapcount, page_mapcount(page));
1517         BUG_ON(mapcount != page_mapcount(page));
1518
1519         __split_huge_page_refcount(page);
1520
1521         mapcount2 = 0;
1522         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1523                 struct vm_area_struct *vma = avc->vma;
1524                 unsigned long addr = vma_address(page, vma);
1525                 BUG_ON(is_vma_temporary_stack(vma));
1526                 if (addr == -EFAULT)
1527                         continue;
1528                 mapcount2 += __split_huge_page_map(page, vma, addr);
1529         }
1530         if (mapcount != mapcount2)
1531                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1532                        mapcount, mapcount2, page_mapcount(page));
1533         BUG_ON(mapcount != mapcount2);
1534 }
1535
1536 int split_huge_page(struct page *page)
1537 {
1538         struct anon_vma *anon_vma;
1539         int ret = 1;
1540
1541         BUG_ON(!PageAnon(page));
1542         anon_vma = page_lock_anon_vma(page);
1543         if (!anon_vma)
1544                 goto out;
1545         ret = 0;
1546         if (!PageCompound(page))
1547                 goto out_unlock;
1548
1549         BUG_ON(!PageSwapBacked(page));
1550         __split_huge_page(page, anon_vma);
1551         count_vm_event(THP_SPLIT);
1552
1553         BUG_ON(PageCompound(page));
1554 out_unlock:
1555         page_unlock_anon_vma(anon_vma);
1556 out:
1557         return ret;
1558 }
1559
1560 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP| \
1561                    VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1562
1563 int hugepage_madvise(struct vm_area_struct *vma,
1564                      unsigned long *vm_flags, int advice)
1565 {
1566         switch (advice) {
1567         case MADV_HUGEPAGE:
1568                 /*
1569                  * Be somewhat over-protective like KSM for now!
1570                  */
1571                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1572                         return -EINVAL;
1573                 *vm_flags &= ~VM_NOHUGEPAGE;
1574                 *vm_flags |= VM_HUGEPAGE;
1575                 /*
1576                  * If the vma become good for khugepaged to scan,
1577                  * register it here without waiting a page fault that
1578                  * may not happen any time soon.
1579                  */
1580                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1581                         return -ENOMEM;
1582                 break;
1583         case MADV_NOHUGEPAGE:
1584                 /*
1585                  * Be somewhat over-protective like KSM for now!
1586                  */
1587                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1588                         return -EINVAL;
1589                 *vm_flags &= ~VM_HUGEPAGE;
1590                 *vm_flags |= VM_NOHUGEPAGE;
1591                 /*
1592                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1593                  * this vma even if we leave the mm registered in khugepaged if
1594                  * it got registered before VM_NOHUGEPAGE was set.
1595                  */
1596                 break;
1597         }
1598
1599         return 0;
1600 }
1601
1602 static int __init khugepaged_slab_init(void)
1603 {
1604         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1605                                           sizeof(struct mm_slot),
1606                                           __alignof__(struct mm_slot), 0, NULL);
1607         if (!mm_slot_cache)
1608                 return -ENOMEM;
1609
1610         return 0;
1611 }
1612
1613 static void __init khugepaged_slab_free(void)
1614 {
1615         kmem_cache_destroy(mm_slot_cache);
1616         mm_slot_cache = NULL;
1617 }
1618
1619 static inline struct mm_slot *alloc_mm_slot(void)
1620 {
1621         if (!mm_slot_cache)     /* initialization failed */
1622                 return NULL;
1623         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1624 }
1625
1626 static inline void free_mm_slot(struct mm_slot *mm_slot)
1627 {
1628         kmem_cache_free(mm_slot_cache, mm_slot);
1629 }
1630
1631 static int __init mm_slots_hash_init(void)
1632 {
1633         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1634                                 GFP_KERNEL);
1635         if (!mm_slots_hash)
1636                 return -ENOMEM;
1637         return 0;
1638 }
1639
1640 #if 0
1641 static void __init mm_slots_hash_free(void)
1642 {
1643         kfree(mm_slots_hash);
1644         mm_slots_hash = NULL;
1645 }
1646 #endif
1647
1648 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1649 {
1650         struct mm_slot *mm_slot;
1651         struct hlist_head *bucket;
1652         struct hlist_node *node;
1653
1654         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1655                                 % MM_SLOTS_HASH_HEADS];
1656         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1657                 if (mm == mm_slot->mm)
1658                         return mm_slot;
1659         }
1660         return NULL;
1661 }
1662
1663 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1664                                     struct mm_slot *mm_slot)
1665 {
1666         struct hlist_head *bucket;
1667
1668         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1669                                 % MM_SLOTS_HASH_HEADS];
1670         mm_slot->mm = mm;
1671         hlist_add_head(&mm_slot->hash, bucket);
1672 }
1673
1674 static inline int khugepaged_test_exit(struct mm_struct *mm)
1675 {
1676         return atomic_read(&mm->mm_users) == 0;
1677 }
1678
1679 int __khugepaged_enter(struct mm_struct *mm)
1680 {
1681         struct mm_slot *mm_slot;
1682         int wakeup;
1683
1684         mm_slot = alloc_mm_slot();
1685         if (!mm_slot)
1686                 return -ENOMEM;
1687
1688         /* __khugepaged_exit() must not run from under us */
1689         VM_BUG_ON(khugepaged_test_exit(mm));
1690         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1691                 free_mm_slot(mm_slot);
1692                 return 0;
1693         }
1694
1695         spin_lock(&khugepaged_mm_lock);
1696         insert_to_mm_slots_hash(mm, mm_slot);
1697         /*
1698          * Insert just behind the scanning cursor, to let the area settle
1699          * down a little.
1700          */
1701         wakeup = list_empty(&khugepaged_scan.mm_head);
1702         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1703         spin_unlock(&khugepaged_mm_lock);
1704
1705         atomic_inc(&mm->mm_count);
1706         if (wakeup)
1707                 wake_up_interruptible(&khugepaged_wait);
1708
1709         return 0;
1710 }
1711
1712 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1713 {
1714         unsigned long hstart, hend;
1715         if (!vma->anon_vma)
1716                 /*
1717                  * Not yet faulted in so we will register later in the
1718                  * page fault if needed.
1719                  */
1720                 return 0;
1721         if (vma->vm_ops)
1722                 /* khugepaged not yet working on file or special mappings */
1723                 return 0;
1724         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1725         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1726         hend = vma->vm_end & HPAGE_PMD_MASK;
1727         if (hstart < hend)
1728                 return khugepaged_enter(vma);
1729         return 0;
1730 }
1731
1732 void __khugepaged_exit(struct mm_struct *mm)
1733 {
1734         struct mm_slot *mm_slot;
1735         int free = 0;
1736
1737         spin_lock(&khugepaged_mm_lock);
1738         mm_slot = get_mm_slot(mm);
1739         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1740                 hlist_del(&mm_slot->hash);
1741                 list_del(&mm_slot->mm_node);
1742                 free = 1;
1743         }
1744         spin_unlock(&khugepaged_mm_lock);
1745
1746         if (free) {
1747                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1748                 free_mm_slot(mm_slot);
1749                 mmdrop(mm);
1750         } else if (mm_slot) {
1751                 /*
1752                  * This is required to serialize against
1753                  * khugepaged_test_exit() (which is guaranteed to run
1754                  * under mmap sem read mode). Stop here (after we
1755                  * return all pagetables will be destroyed) until
1756                  * khugepaged has finished working on the pagetables
1757                  * under the mmap_sem.
1758                  */
1759                 down_write(&mm->mmap_sem);
1760                 up_write(&mm->mmap_sem);
1761         }
1762 }
1763
1764 static void release_pte_page(struct page *page)
1765 {
1766         /* 0 stands for page_is_file_cache(page) == false */
1767         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1768         unlock_page(page);
1769         putback_lru_page(page);
1770 }
1771
1772 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1773 {
1774         while (--_pte >= pte) {
1775                 pte_t pteval = *_pte;
1776                 if (!pte_none(pteval))
1777                         release_pte_page(pte_page(pteval));
1778         }
1779 }
1780
1781 static void release_all_pte_pages(pte_t *pte)
1782 {
1783         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1784 }
1785
1786 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1787                                         unsigned long address,
1788                                         pte_t *pte)
1789 {
1790         struct page *page;
1791         pte_t *_pte;
1792         int referenced = 0, isolated = 0, none = 0;
1793         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1794              _pte++, address += PAGE_SIZE) {
1795                 pte_t pteval = *_pte;
1796                 if (pte_none(pteval)) {
1797                         if (++none <= khugepaged_max_ptes_none)
1798                                 continue;
1799                         else {
1800                                 release_pte_pages(pte, _pte);
1801                                 goto out;
1802                         }
1803                 }
1804                 if (!pte_present(pteval) || !pte_write(pteval)) {
1805                         release_pte_pages(pte, _pte);
1806                         goto out;
1807                 }
1808                 page = vm_normal_page(vma, address, pteval);
1809                 if (unlikely(!page)) {
1810                         release_pte_pages(pte, _pte);
1811                         goto out;
1812                 }
1813                 VM_BUG_ON(PageCompound(page));
1814                 BUG_ON(!PageAnon(page));
1815                 VM_BUG_ON(!PageSwapBacked(page));
1816
1817                 /* cannot use mapcount: can't collapse if there's a gup pin */
1818                 if (page_count(page) != 1) {
1819                         release_pte_pages(pte, _pte);
1820                         goto out;
1821                 }
1822                 /*
1823                  * We can do it before isolate_lru_page because the
1824                  * page can't be freed from under us. NOTE: PG_lock
1825                  * is needed to serialize against split_huge_page
1826                  * when invoked from the VM.
1827                  */
1828                 if (!trylock_page(page)) {
1829                         release_pte_pages(pte, _pte);
1830                         goto out;
1831                 }
1832                 /*
1833                  * Isolate the page to avoid collapsing an hugepage
1834                  * currently in use by the VM.
1835                  */
1836                 if (isolate_lru_page(page)) {
1837                         unlock_page(page);
1838                         release_pte_pages(pte, _pte);
1839                         goto out;
1840                 }
1841                 /* 0 stands for page_is_file_cache(page) == false */
1842                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1843                 VM_BUG_ON(!PageLocked(page));
1844                 VM_BUG_ON(PageLRU(page));
1845
1846                 /* If there is no mapped pte young don't collapse the page */
1847                 if (pte_young(pteval) || PageReferenced(page) ||
1848                     mmu_notifier_test_young(vma->vm_mm, address))
1849                         referenced = 1;
1850         }
1851         if (unlikely(!referenced))
1852                 release_all_pte_pages(pte);
1853         else
1854                 isolated = 1;
1855 out:
1856         return isolated;
1857 }
1858
1859 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1860                                       struct vm_area_struct *vma,
1861                                       unsigned long address,
1862                                       spinlock_t *ptl)
1863 {
1864         pte_t *_pte;
1865         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1866                 pte_t pteval = *_pte;
1867                 struct page *src_page;
1868
1869                 if (pte_none(pteval)) {
1870                         clear_user_highpage(page, address);
1871                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1872                 } else {
1873                         src_page = pte_page(pteval);
1874                         copy_user_highpage(page, src_page, address, vma);
1875                         VM_BUG_ON(page_mapcount(src_page) != 1);
1876                         release_pte_page(src_page);
1877                         /*
1878                          * ptl mostly unnecessary, but preempt has to
1879                          * be disabled to update the per-cpu stats
1880                          * inside page_remove_rmap().
1881                          */
1882                         spin_lock(ptl);
1883                         /*
1884                          * paravirt calls inside pte_clear here are
1885                          * superfluous.
1886                          */
1887                         pte_clear(vma->vm_mm, address, _pte);
1888                         page_remove_rmap(src_page);
1889                         spin_unlock(ptl);
1890                         free_page_and_swap_cache(src_page);
1891                 }
1892
1893                 address += PAGE_SIZE;
1894                 page++;
1895         }
1896 }
1897
1898 static void collapse_huge_page(struct mm_struct *mm,
1899                                unsigned long address,
1900                                struct page **hpage,
1901                                struct vm_area_struct *vma,
1902                                int node)
1903 {
1904         pgd_t *pgd;
1905         pud_t *pud;
1906         pmd_t *pmd, _pmd;
1907         pte_t *pte;
1908         pgtable_t pgtable;
1909         struct page *new_page;
1910         spinlock_t *ptl;
1911         int isolated;
1912         unsigned long hstart, hend;
1913
1914         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1915 #ifndef CONFIG_NUMA
1916         up_read(&mm->mmap_sem);
1917         VM_BUG_ON(!*hpage);
1918         new_page = *hpage;
1919 #else
1920         VM_BUG_ON(*hpage);
1921         /*
1922          * Allocate the page while the vma is still valid and under
1923          * the mmap_sem read mode so there is no memory allocation
1924          * later when we take the mmap_sem in write mode. This is more
1925          * friendly behavior (OTOH it may actually hide bugs) to
1926          * filesystems in userland with daemons allocating memory in
1927          * the userland I/O paths.  Allocating memory with the
1928          * mmap_sem in read mode is good idea also to allow greater
1929          * scalability.
1930          */
1931         new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1932                                       node, __GFP_OTHER_NODE);
1933
1934         /*
1935          * After allocating the hugepage, release the mmap_sem read lock in
1936          * preparation for taking it in write mode.
1937          */
1938         up_read(&mm->mmap_sem);
1939         if (unlikely(!new_page)) {
1940                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1941                 *hpage = ERR_PTR(-ENOMEM);
1942                 return;
1943         }
1944 #endif
1945
1946         count_vm_event(THP_COLLAPSE_ALLOC);
1947         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1948 #ifdef CONFIG_NUMA
1949                 put_page(new_page);
1950 #endif
1951                 return;
1952         }
1953
1954         /*
1955          * Prevent all access to pagetables with the exception of
1956          * gup_fast later hanlded by the ptep_clear_flush and the VM
1957          * handled by the anon_vma lock + PG_lock.
1958          */
1959         down_write(&mm->mmap_sem);
1960         if (unlikely(khugepaged_test_exit(mm)))
1961                 goto out;
1962
1963         vma = find_vma(mm, address);
1964         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1965         hend = vma->vm_end & HPAGE_PMD_MASK;
1966         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1967                 goto out;
1968
1969         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1970             (vma->vm_flags & VM_NOHUGEPAGE))
1971                 goto out;
1972
1973         if (!vma->anon_vma || vma->vm_ops)
1974                 goto out;
1975         if (is_vma_temporary_stack(vma))
1976                 goto out;
1977         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1978
1979         pgd = pgd_offset(mm, address);
1980         if (!pgd_present(*pgd))
1981                 goto out;
1982
1983         pud = pud_offset(pgd, address);
1984         if (!pud_present(*pud))
1985                 goto out;
1986
1987         pmd = pmd_offset(pud, address);
1988         /* pmd can't go away or become huge under us */
1989         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1990                 goto out;
1991
1992         anon_vma_lock(vma->anon_vma);
1993
1994         pte = pte_offset_map(pmd, address);
1995         ptl = pte_lockptr(mm, pmd);
1996
1997         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1998         /*
1999          * After this gup_fast can't run anymore. This also removes
2000          * any huge TLB entry from the CPU so we won't allow
2001          * huge and small TLB entries for the same virtual address
2002          * to avoid the risk of CPU bugs in that area.
2003          */
2004         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
2005         spin_unlock(&mm->page_table_lock);
2006
2007         spin_lock(ptl);
2008         isolated = __collapse_huge_page_isolate(vma, address, pte);
2009         spin_unlock(ptl);
2010
2011         if (unlikely(!isolated)) {
2012                 pte_unmap(pte);
2013                 spin_lock(&mm->page_table_lock);
2014                 BUG_ON(!pmd_none(*pmd));
2015                 set_pmd_at(mm, address, pmd, _pmd);
2016                 spin_unlock(&mm->page_table_lock);
2017                 anon_vma_unlock(vma->anon_vma);
2018                 goto out;
2019         }
2020
2021         /*
2022          * All pages are isolated and locked so anon_vma rmap
2023          * can't run anymore.
2024          */
2025         anon_vma_unlock(vma->anon_vma);
2026
2027         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2028         pte_unmap(pte);
2029         __SetPageUptodate(new_page);
2030         pgtable = pmd_pgtable(_pmd);
2031         VM_BUG_ON(page_count(pgtable) != 1);
2032         VM_BUG_ON(page_mapcount(pgtable) != 0);
2033
2034         _pmd = mk_pmd(new_page, vma->vm_page_prot);
2035         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2036         _pmd = pmd_mkhuge(_pmd);
2037
2038         /*
2039          * spin_lock() below is not the equivalent of smp_wmb(), so
2040          * this is needed to avoid the copy_huge_page writes to become
2041          * visible after the set_pmd_at() write.
2042          */
2043         smp_wmb();
2044
2045         spin_lock(&mm->page_table_lock);
2046         BUG_ON(!pmd_none(*pmd));
2047         page_add_new_anon_rmap(new_page, vma, address);
2048         set_pmd_at(mm, address, pmd, _pmd);
2049         update_mmu_cache(vma, address, _pmd);
2050         prepare_pmd_huge_pte(pgtable, mm);
2051         spin_unlock(&mm->page_table_lock);
2052
2053 #ifndef CONFIG_NUMA
2054         *hpage = NULL;
2055 #endif
2056         khugepaged_pages_collapsed++;
2057 out_up_write:
2058         up_write(&mm->mmap_sem);
2059         return;
2060
2061 out:
2062         mem_cgroup_uncharge_page(new_page);
2063 #ifdef CONFIG_NUMA
2064         put_page(new_page);
2065 #endif
2066         goto out_up_write;
2067 }
2068
2069 static int khugepaged_scan_pmd(struct mm_struct *mm,
2070                                struct vm_area_struct *vma,
2071                                unsigned long address,
2072                                struct page **hpage)
2073 {
2074         pgd_t *pgd;
2075         pud_t *pud;
2076         pmd_t *pmd;
2077         pte_t *pte, *_pte;
2078         int ret = 0, referenced = 0, none = 0;
2079         struct page *page;
2080         unsigned long _address;
2081         spinlock_t *ptl;
2082         int node = -1;
2083
2084         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2085
2086         pgd = pgd_offset(mm, address);
2087         if (!pgd_present(*pgd))
2088                 goto out;
2089
2090         pud = pud_offset(pgd, address);
2091         if (!pud_present(*pud))
2092                 goto out;
2093
2094         pmd = pmd_offset(pud, address);
2095         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2096                 goto out;
2097
2098         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2099         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2100              _pte++, _address += PAGE_SIZE) {
2101                 pte_t pteval = *_pte;
2102                 if (pte_none(pteval)) {
2103                         if (++none <= khugepaged_max_ptes_none)
2104                                 continue;
2105                         else
2106                                 goto out_unmap;
2107                 }
2108                 if (!pte_present(pteval) || !pte_write(pteval))
2109                         goto out_unmap;
2110                 page = vm_normal_page(vma, _address, pteval);
2111                 if (unlikely(!page))
2112                         goto out_unmap;
2113                 /*
2114                  * Chose the node of the first page. This could
2115                  * be more sophisticated and look at more pages,
2116                  * but isn't for now.
2117                  */
2118                 if (node == -1)
2119                         node = page_to_nid(page);
2120                 VM_BUG_ON(PageCompound(page));
2121                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2122                         goto out_unmap;
2123                 /* cannot use mapcount: can't collapse if there's a gup pin */
2124                 if (page_count(page) != 1)
2125                         goto out_unmap;
2126                 if (pte_young(pteval) || PageReferenced(page) ||
2127                     mmu_notifier_test_young(vma->vm_mm, address))
2128                         referenced = 1;
2129         }
2130         if (referenced)
2131                 ret = 1;
2132 out_unmap:
2133         pte_unmap_unlock(pte, ptl);
2134         if (ret)
2135                 /* collapse_huge_page will return with the mmap_sem released */
2136                 collapse_huge_page(mm, address, hpage, vma, node);
2137 out:
2138         return ret;
2139 }
2140
2141 static void collect_mm_slot(struct mm_slot *mm_slot)
2142 {
2143         struct mm_struct *mm = mm_slot->mm;
2144
2145         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2146
2147         if (khugepaged_test_exit(mm)) {
2148                 /* free mm_slot */
2149                 hlist_del(&mm_slot->hash);
2150                 list_del(&mm_slot->mm_node);
2151
2152                 /*
2153                  * Not strictly needed because the mm exited already.
2154                  *
2155                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2156                  */
2157
2158                 /* khugepaged_mm_lock actually not necessary for the below */
2159                 free_mm_slot(mm_slot);
2160                 mmdrop(mm);
2161         }
2162 }
2163
2164 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2165                                             struct page **hpage)
2166         __releases(&khugepaged_mm_lock)
2167         __acquires(&khugepaged_mm_lock)
2168 {
2169         struct mm_slot *mm_slot;
2170         struct mm_struct *mm;
2171         struct vm_area_struct *vma;
2172         int progress = 0;
2173
2174         VM_BUG_ON(!pages);
2175         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2176
2177         if (khugepaged_scan.mm_slot)
2178                 mm_slot = khugepaged_scan.mm_slot;
2179         else {
2180                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2181                                      struct mm_slot, mm_node);
2182                 khugepaged_scan.address = 0;
2183                 khugepaged_scan.mm_slot = mm_slot;
2184         }
2185         spin_unlock(&khugepaged_mm_lock);
2186
2187         mm = mm_slot->mm;
2188         down_read(&mm->mmap_sem);
2189         if (unlikely(khugepaged_test_exit(mm)))
2190                 vma = NULL;
2191         else
2192                 vma = find_vma(mm, khugepaged_scan.address);
2193
2194         progress++;
2195         for (; vma; vma = vma->vm_next) {
2196                 unsigned long hstart, hend;
2197
2198                 cond_resched();
2199                 if (unlikely(khugepaged_test_exit(mm))) {
2200                         progress++;
2201                         break;
2202                 }
2203
2204                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2205                      !khugepaged_always()) ||
2206                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2207                 skip:
2208                         progress++;
2209                         continue;
2210                 }
2211                 if (!vma->anon_vma || vma->vm_ops)
2212                         goto skip;
2213                 if (is_vma_temporary_stack(vma))
2214                         goto skip;
2215                 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2216
2217                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2218                 hend = vma->vm_end & HPAGE_PMD_MASK;
2219                 if (hstart >= hend)
2220                         goto skip;
2221                 if (khugepaged_scan.address > hend)
2222                         goto skip;
2223                 if (khugepaged_scan.address < hstart)
2224                         khugepaged_scan.address = hstart;
2225                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2226
2227                 while (khugepaged_scan.address < hend) {
2228                         int ret;
2229                         cond_resched();
2230                         if (unlikely(khugepaged_test_exit(mm)))
2231                                 goto breakouterloop;
2232
2233                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2234                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2235                                   hend);
2236                         ret = khugepaged_scan_pmd(mm, vma,
2237                                                   khugepaged_scan.address,
2238                                                   hpage);
2239                         /* move to next address */
2240                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2241                         progress += HPAGE_PMD_NR;
2242                         if (ret)
2243                                 /* we released mmap_sem so break loop */
2244                                 goto breakouterloop_mmap_sem;
2245                         if (progress >= pages)
2246                                 goto breakouterloop;
2247                 }
2248         }
2249 breakouterloop:
2250         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2251 breakouterloop_mmap_sem:
2252
2253         spin_lock(&khugepaged_mm_lock);
2254         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2255         /*
2256          * Release the current mm_slot if this mm is about to die, or
2257          * if we scanned all vmas of this mm.
2258          */
2259         if (khugepaged_test_exit(mm) || !vma) {
2260                 /*
2261                  * Make sure that if mm_users is reaching zero while
2262                  * khugepaged runs here, khugepaged_exit will find
2263                  * mm_slot not pointing to the exiting mm.
2264                  */
2265                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2266                         khugepaged_scan.mm_slot = list_entry(
2267                                 mm_slot->mm_node.next,
2268                                 struct mm_slot, mm_node);
2269                         khugepaged_scan.address = 0;
2270                 } else {
2271                         khugepaged_scan.mm_slot = NULL;
2272                         khugepaged_full_scans++;
2273                 }
2274
2275                 collect_mm_slot(mm_slot);
2276         }
2277
2278         return progress;
2279 }
2280
2281 static int khugepaged_has_work(void)
2282 {
2283         return !list_empty(&khugepaged_scan.mm_head) &&
2284                 khugepaged_enabled();
2285 }
2286
2287 static int khugepaged_wait_event(void)
2288 {
2289         return !list_empty(&khugepaged_scan.mm_head) ||
2290                 !khugepaged_enabled();
2291 }
2292
2293 static void khugepaged_do_scan(struct page **hpage)
2294 {
2295         unsigned int progress = 0, pass_through_head = 0;
2296         unsigned int pages = ACCESS_ONCE(khugepaged_pages_to_scan);
2297
2298         while (progress < pages) {
2299                 cond_resched();
2300
2301 #ifndef CONFIG_NUMA
2302                 if (!*hpage) {
2303                         *hpage = alloc_hugepage(khugepaged_defrag());
2304                         if (unlikely(!*hpage)) {
2305                                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306                                 break;
2307                         }
2308                         count_vm_event(THP_COLLAPSE_ALLOC);
2309                 }
2310 #else
2311                 if (IS_ERR(*hpage))
2312                         break;
2313 #endif
2314
2315                 if (unlikely(kthread_should_stop() || freezing(current)))
2316                         break;
2317
2318                 spin_lock(&khugepaged_mm_lock);
2319                 if (!khugepaged_scan.mm_slot)
2320                         pass_through_head++;
2321                 if (khugepaged_has_work() &&
2322                     pass_through_head < 2)
2323                         progress += khugepaged_scan_mm_slot(pages - progress,
2324                                                             hpage);
2325                 else
2326                         progress = pages;
2327                 spin_unlock(&khugepaged_mm_lock);
2328         }
2329 }
2330
2331 static void khugepaged_alloc_sleep(void)
2332 {
2333         wait_event_freezable_timeout(khugepaged_wait, false,
2334                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2335 }
2336
2337 #ifndef CONFIG_NUMA
2338 static struct page *khugepaged_alloc_hugepage(void)
2339 {
2340         struct page *hpage;
2341
2342         do {
2343                 hpage = alloc_hugepage(khugepaged_defrag());
2344                 if (!hpage) {
2345                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2346                         khugepaged_alloc_sleep();
2347                 } else
2348                         count_vm_event(THP_COLLAPSE_ALLOC);
2349         } while (unlikely(!hpage) &&
2350                  likely(khugepaged_enabled()));
2351         return hpage;
2352 }
2353 #endif
2354
2355 static void khugepaged_loop(void)
2356 {
2357         struct page *hpage;
2358
2359 #ifdef CONFIG_NUMA
2360         hpage = NULL;
2361 #endif
2362         while (likely(khugepaged_enabled())) {
2363 #ifndef CONFIG_NUMA
2364                 hpage = khugepaged_alloc_hugepage();
2365                 if (unlikely(!hpage))
2366                         break;
2367 #else
2368                 if (IS_ERR(hpage)) {
2369                         khugepaged_alloc_sleep();
2370                         hpage = NULL;
2371                 }
2372 #endif
2373
2374                 khugepaged_do_scan(&hpage);
2375 #ifndef CONFIG_NUMA
2376                 if (hpage)
2377                         put_page(hpage);
2378 #endif
2379                 try_to_freeze();
2380                 if (unlikely(kthread_should_stop()))
2381                         break;
2382                 if (khugepaged_has_work()) {
2383                         if (!khugepaged_scan_sleep_millisecs)
2384                                 continue;
2385                         wait_event_freezable_timeout(khugepaged_wait, false,
2386                             msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2387                 } else if (khugepaged_enabled())
2388                         wait_event_freezable(khugepaged_wait,
2389                                              khugepaged_wait_event());
2390         }
2391 }
2392
2393 static int khugepaged(void *none)
2394 {
2395         struct mm_slot *mm_slot;
2396
2397         set_freezable();
2398         set_user_nice(current, 19);
2399
2400         /* serialize with start_khugepaged() */
2401         mutex_lock(&khugepaged_mutex);
2402
2403         for (;;) {
2404                 mutex_unlock(&khugepaged_mutex);
2405                 VM_BUG_ON(khugepaged_thread != current);
2406                 khugepaged_loop();
2407                 VM_BUG_ON(khugepaged_thread != current);
2408
2409                 mutex_lock(&khugepaged_mutex);
2410                 if (!khugepaged_enabled())
2411                         break;
2412                 if (unlikely(kthread_should_stop()))
2413                         break;
2414         }
2415
2416         spin_lock(&khugepaged_mm_lock);
2417         mm_slot = khugepaged_scan.mm_slot;
2418         khugepaged_scan.mm_slot = NULL;
2419         if (mm_slot)
2420                 collect_mm_slot(mm_slot);
2421         spin_unlock(&khugepaged_mm_lock);
2422
2423         khugepaged_thread = NULL;
2424         mutex_unlock(&khugepaged_mutex);
2425
2426         return 0;
2427 }
2428
2429 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2430 {
2431         struct page *page;
2432
2433         spin_lock(&mm->page_table_lock);
2434         if (unlikely(!pmd_trans_huge(*pmd))) {
2435                 spin_unlock(&mm->page_table_lock);
2436                 return;
2437         }
2438         page = pmd_page(*pmd);
2439         VM_BUG_ON(!page_count(page));
2440         get_page(page);
2441         spin_unlock(&mm->page_table_lock);
2442
2443         split_huge_page(page);
2444
2445         put_page(page);
2446         BUG_ON(pmd_trans_huge(*pmd));
2447 }
2448
2449 static void split_huge_page_address(struct mm_struct *mm,
2450                                     unsigned long address)
2451 {
2452         pgd_t *pgd;
2453         pud_t *pud;
2454         pmd_t *pmd;
2455
2456         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2457
2458         pgd = pgd_offset(mm, address);
2459         if (!pgd_present(*pgd))
2460                 return;
2461
2462         pud = pud_offset(pgd, address);
2463         if (!pud_present(*pud))
2464                 return;
2465
2466         pmd = pmd_offset(pud, address);
2467         if (!pmd_present(*pmd))
2468                 return;
2469         /*
2470          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2471          * materialize from under us.
2472          */
2473         split_huge_page_pmd(mm, pmd);
2474 }
2475
2476 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2477                              unsigned long start,
2478                              unsigned long end,
2479                              long adjust_next)
2480 {
2481         /*
2482          * If the new start address isn't hpage aligned and it could
2483          * previously contain an hugepage: check if we need to split
2484          * an huge pmd.
2485          */
2486         if (start & ~HPAGE_PMD_MASK &&
2487             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2488             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2489                 split_huge_page_address(vma->vm_mm, start);
2490
2491         /*
2492          * If the new end address isn't hpage aligned and it could
2493          * previously contain an hugepage: check if we need to split
2494          * an huge pmd.
2495          */
2496         if (end & ~HPAGE_PMD_MASK &&
2497             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2498             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2499                 split_huge_page_address(vma->vm_mm, end);
2500
2501         /*
2502          * If we're also updating the vma->vm_next->vm_start, if the new
2503          * vm_next->vm_start isn't page aligned and it could previously
2504          * contain an hugepage: check if we need to split an huge pmd.
2505          */
2506         if (adjust_next > 0) {
2507                 struct vm_area_struct *next = vma->vm_next;
2508                 unsigned long nstart = next->vm_start;
2509                 nstart += adjust_next << PAGE_SHIFT;
2510                 if (nstart & ~HPAGE_PMD_MASK &&
2511                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2512                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2513                         split_huge_page_address(next->vm_mm, nstart);
2514         }
2515 }