]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
memory hotplug: fix next block calculation in is_removable
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36
37 __initdata LIST_HEAD(huge_boot_pages);
38
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43
44 #define for_each_hstate(h) \
45         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  *      down_write(&mm->mmap_sem);
62  * or
63  *      down_read(&mm->mmap_sem);
64  *      mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67         struct list_head link;
68         long from;
69         long to;
70 };
71
72 static long region_add(struct list_head *head, long f, long t)
73 {
74         struct file_region *rg, *nrg, *trg;
75
76         /* Locate the region we are either in or before. */
77         list_for_each_entry(rg, head, link)
78                 if (f <= rg->to)
79                         break;
80
81         /* Round our left edge to the current segment if it encloses us. */
82         if (f > rg->from)
83                 f = rg->from;
84
85         /* Check for and consume any regions we now overlap with. */
86         nrg = rg;
87         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88                 if (&rg->link == head)
89                         break;
90                 if (rg->from > t)
91                         break;
92
93                 /* If this area reaches higher then extend our area to
94                  * include it completely.  If this is not the first area
95                  * which we intend to reuse, free it. */
96                 if (rg->to > t)
97                         t = rg->to;
98                 if (rg != nrg) {
99                         list_del(&rg->link);
100                         kfree(rg);
101                 }
102         }
103         nrg->from = f;
104         nrg->to = t;
105         return 0;
106 }
107
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110         struct file_region *rg, *nrg;
111         long chg = 0;
112
113         /* Locate the region we are before or in. */
114         list_for_each_entry(rg, head, link)
115                 if (f <= rg->to)
116                         break;
117
118         /* If we are below the current region then a new region is required.
119          * Subtle, allocate a new region at the position but make it zero
120          * size such that we can guarantee to record the reservation. */
121         if (&rg->link == head || t < rg->from) {
122                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123                 if (!nrg)
124                         return -ENOMEM;
125                 nrg->from = f;
126                 nrg->to   = f;
127                 INIT_LIST_HEAD(&nrg->link);
128                 list_add(&nrg->link, rg->link.prev);
129
130                 return t - f;
131         }
132
133         /* Round our left edge to the current segment if it encloses us. */
134         if (f > rg->from)
135                 f = rg->from;
136         chg = t - f;
137
138         /* Check for and consume any regions we now overlap with. */
139         list_for_each_entry(rg, rg->link.prev, link) {
140                 if (&rg->link == head)
141                         break;
142                 if (rg->from > t)
143                         return chg;
144
145                 /* We overlap with this area, if it extends futher than
146                  * us then we must extend ourselves.  Account for its
147                  * existing reservation. */
148                 if (rg->to > t) {
149                         chg += rg->to - t;
150                         t = rg->to;
151                 }
152                 chg -= rg->to - rg->from;
153         }
154         return chg;
155 }
156
157 static long region_truncate(struct list_head *head, long end)
158 {
159         struct file_region *rg, *trg;
160         long chg = 0;
161
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (end <= rg->to)
165                         break;
166         if (&rg->link == head)
167                 return 0;
168
169         /* If we are in the middle of a region then adjust it. */
170         if (end > rg->from) {
171                 chg = rg->to - end;
172                 rg->to = end;
173                 rg = list_entry(rg->link.next, typeof(*rg), link);
174         }
175
176         /* Drop any remaining regions. */
177         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178                 if (&rg->link == head)
179                         break;
180                 chg += rg->to - rg->from;
181                 list_del(&rg->link);
182                 kfree(rg);
183         }
184         return chg;
185 }
186
187 static long region_count(struct list_head *head, long f, long t)
188 {
189         struct file_region *rg;
190         long chg = 0;
191
192         /* Locate each segment we overlap with, and count that overlap. */
193         list_for_each_entry(rg, head, link) {
194                 int seg_from;
195                 int seg_to;
196
197                 if (rg->to <= f)
198                         continue;
199                 if (rg->from >= t)
200                         break;
201
202                 seg_from = max(rg->from, f);
203                 seg_to = min(rg->to, t);
204
205                 chg += seg_to - seg_from;
206         }
207
208         return chg;
209 }
210
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216                         struct vm_area_struct *vma, unsigned long address)
217 {
218         return ((address - vma->vm_start) >> huge_page_shift(h)) +
219                         (vma->vm_pgoff >> huge_page_order(h));
220 }
221
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228         struct hstate *hstate;
229
230         if (!is_vm_hugetlb_page(vma))
231                 return PAGE_SIZE;
232
233         hstate = hstate_vma(vma);
234
235         return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239 /*
240  * Return the page size being used by the MMU to back a VMA. In the majority
241  * of cases, the page size used by the kernel matches the MMU size. On
242  * architectures where it differs, an architecture-specific version of this
243  * function is required.
244  */
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 {
248         return vma_kernel_pagesize(vma);
249 }
250 #endif
251
252 /*
253  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
254  * bits of the reservation map pointer, which are always clear due to
255  * alignment.
256  */
257 #define HPAGE_RESV_OWNER    (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261 /*
262  * These helpers are used to track how many pages are reserved for
263  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264  * is guaranteed to have their future faults succeed.
265  *
266  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267  * the reserve counters are updated with the hugetlb_lock held. It is safe
268  * to reset the VMA at fork() time as it is not in use yet and there is no
269  * chance of the global counters getting corrupted as a result of the values.
270  *
271  * The private mapping reservation is represented in a subtly different
272  * manner to a shared mapping.  A shared mapping has a region map associated
273  * with the underlying file, this region map represents the backing file
274  * pages which have ever had a reservation assigned which this persists even
275  * after the page is instantiated.  A private mapping has a region map
276  * associated with the original mmap which is attached to all VMAs which
277  * reference it, this region map represents those offsets which have consumed
278  * reservation ie. where pages have been instantiated.
279  */
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 {
282         return (unsigned long)vma->vm_private_data;
283 }
284
285 static void set_vma_private_data(struct vm_area_struct *vma,
286                                                         unsigned long value)
287 {
288         vma->vm_private_data = (void *)value;
289 }
290
291 struct resv_map {
292         struct kref refs;
293         struct list_head regions;
294 };
295
296 static struct resv_map *resv_map_alloc(void)
297 {
298         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299         if (!resv_map)
300                 return NULL;
301
302         kref_init(&resv_map->refs);
303         INIT_LIST_HEAD(&resv_map->regions);
304
305         return resv_map;
306 }
307
308 static void resv_map_release(struct kref *ref)
309 {
310         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312         /* Clear out any active regions before we release the map. */
313         region_truncate(&resv_map->regions, 0);
314         kfree(resv_map);
315 }
316
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 {
319         VM_BUG_ON(!is_vm_hugetlb_page(vma));
320         if (!(vma->vm_flags & VM_MAYSHARE))
321                 return (struct resv_map *)(get_vma_private_data(vma) &
322                                                         ~HPAGE_RESV_MASK);
323         return NULL;
324 }
325
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 {
328         VM_BUG_ON(!is_vm_hugetlb_page(vma));
329         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331         set_vma_private_data(vma, (get_vma_private_data(vma) &
332                                 HPAGE_RESV_MASK) | (unsigned long)map);
333 }
334
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 {
337         VM_BUG_ON(!is_vm_hugetlb_page(vma));
338         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 }
342
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 {
345         VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347         return (get_vma_private_data(vma) & flag) != 0;
348 }
349
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352                         struct vm_area_struct *vma)
353 {
354         if (vma->vm_flags & VM_NORESERVE)
355                 return;
356
357         if (vma->vm_flags & VM_MAYSHARE) {
358                 /* Shared mappings always use reserves */
359                 h->resv_huge_pages--;
360         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361                 /*
362                  * Only the process that called mmap() has reserves for
363                  * private mappings.
364                  */
365                 h->resv_huge_pages--;
366         }
367 }
368
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 {
372         VM_BUG_ON(!is_vm_hugetlb_page(vma));
373         if (!(vma->vm_flags & VM_MAYSHARE))
374                 vma->vm_private_data = (void *)0;
375 }
376
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
379 {
380         if (vma->vm_flags & VM_MAYSHARE)
381                 return 1;
382         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383                 return 1;
384         return 0;
385 }
386
387 static void clear_gigantic_page(struct page *page,
388                         unsigned long addr, unsigned long sz)
389 {
390         int i;
391         struct page *p = page;
392
393         might_sleep();
394         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395                 cond_resched();
396                 clear_user_highpage(p, addr + i * PAGE_SIZE);
397         }
398 }
399 static void clear_huge_page(struct page *page,
400                         unsigned long addr, unsigned long sz)
401 {
402         int i;
403
404         if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
405                 clear_gigantic_page(page, addr, sz);
406                 return;
407         }
408
409         might_sleep();
410         for (i = 0; i < sz/PAGE_SIZE; i++) {
411                 cond_resched();
412                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413         }
414 }
415
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417                            unsigned long addr, struct vm_area_struct *vma)
418 {
419         int i;
420         struct hstate *h = hstate_vma(vma);
421         struct page *dst_base = dst;
422         struct page *src_base = src;
423         might_sleep();
424         for (i = 0; i < pages_per_huge_page(h); ) {
425                 cond_resched();
426                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428                 i++;
429                 dst = mem_map_next(dst, dst_base, i);
430                 src = mem_map_next(src, src_base, i);
431         }
432 }
433 static void copy_huge_page(struct page *dst, struct page *src,
434                            unsigned long addr, struct vm_area_struct *vma)
435 {
436         int i;
437         struct hstate *h = hstate_vma(vma);
438
439         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440                 copy_gigantic_page(dst, src, addr, vma);
441                 return;
442         }
443
444         might_sleep();
445         for (i = 0; i < pages_per_huge_page(h); i++) {
446                 cond_resched();
447                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448         }
449 }
450
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
452 {
453         int nid = page_to_nid(page);
454         list_add(&page->lru, &h->hugepage_freelists[nid]);
455         h->free_huge_pages++;
456         h->free_huge_pages_node[nid]++;
457 }
458
459 static struct page *dequeue_huge_page_vma(struct hstate *h,
460                                 struct vm_area_struct *vma,
461                                 unsigned long address, int avoid_reserve)
462 {
463         int nid;
464         struct page *page = NULL;
465         struct mempolicy *mpol;
466         nodemask_t *nodemask;
467         struct zonelist *zonelist = huge_zonelist(vma, address,
468                                         htlb_alloc_mask, &mpol, &nodemask);
469         struct zone *zone;
470         struct zoneref *z;
471
472         /*
473          * A child process with MAP_PRIVATE mappings created by their parent
474          * have no page reserves. This check ensures that reservations are
475          * not "stolen". The child may still get SIGKILLed
476          */
477         if (!vma_has_reserves(vma) &&
478                         h->free_huge_pages - h->resv_huge_pages == 0)
479                 return NULL;
480
481         /* If reserves cannot be used, ensure enough pages are in the pool */
482         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483                 return NULL;
484
485         for_each_zone_zonelist_nodemask(zone, z, zonelist,
486                                                 MAX_NR_ZONES - 1, nodemask) {
487                 nid = zone_to_nid(zone);
488                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489                     !list_empty(&h->hugepage_freelists[nid])) {
490                         page = list_entry(h->hugepage_freelists[nid].next,
491                                           struct page, lru);
492                         list_del(&page->lru);
493                         h->free_huge_pages--;
494                         h->free_huge_pages_node[nid]--;
495
496                         if (!avoid_reserve)
497                                 decrement_hugepage_resv_vma(h, vma);
498
499                         break;
500                 }
501         }
502         mpol_cond_put(mpol);
503         return page;
504 }
505
506 static void update_and_free_page(struct hstate *h, struct page *page)
507 {
508         int i;
509
510         VM_BUG_ON(h->order >= MAX_ORDER);
511
512         h->nr_huge_pages--;
513         h->nr_huge_pages_node[page_to_nid(page)]--;
514         for (i = 0; i < pages_per_huge_page(h); i++) {
515                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517                                 1 << PG_private | 1<< PG_writeback);
518         }
519         set_compound_page_dtor(page, NULL);
520         set_page_refcounted(page);
521         arch_release_hugepage(page);
522         __free_pages(page, huge_page_order(h));
523 }
524
525 struct hstate *size_to_hstate(unsigned long size)
526 {
527         struct hstate *h;
528
529         for_each_hstate(h) {
530                 if (huge_page_size(h) == size)
531                         return h;
532         }
533         return NULL;
534 }
535
536 static void free_huge_page(struct page *page)
537 {
538         /*
539          * Can't pass hstate in here because it is called from the
540          * compound page destructor.
541          */
542         struct hstate *h = page_hstate(page);
543         int nid = page_to_nid(page);
544         struct address_space *mapping;
545
546         mapping = (struct address_space *) page_private(page);
547         set_page_private(page, 0);
548         page->mapping = NULL;
549         BUG_ON(page_count(page));
550         INIT_LIST_HEAD(&page->lru);
551
552         spin_lock(&hugetlb_lock);
553         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554                 update_and_free_page(h, page);
555                 h->surplus_huge_pages--;
556                 h->surplus_huge_pages_node[nid]--;
557         } else {
558                 enqueue_huge_page(h, page);
559         }
560         spin_unlock(&hugetlb_lock);
561         if (mapping)
562                 hugetlb_put_quota(mapping, 1);
563 }
564
565 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566 {
567         set_compound_page_dtor(page, free_huge_page);
568         spin_lock(&hugetlb_lock);
569         h->nr_huge_pages++;
570         h->nr_huge_pages_node[nid]++;
571         spin_unlock(&hugetlb_lock);
572         put_page(page); /* free it into the hugepage allocator */
573 }
574
575 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576 {
577         int i;
578         int nr_pages = 1 << order;
579         struct page *p = page + 1;
580
581         /* we rely on prep_new_huge_page to set the destructor */
582         set_compound_order(page, order);
583         __SetPageHead(page);
584         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585                 __SetPageTail(p);
586                 p->first_page = page;
587         }
588 }
589
590 int PageHuge(struct page *page)
591 {
592         compound_page_dtor *dtor;
593
594         if (!PageCompound(page))
595                 return 0;
596
597         page = compound_head(page);
598         dtor = get_compound_page_dtor(page);
599
600         return dtor == free_huge_page;
601 }
602
603 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
604 {
605         struct page *page;
606
607         if (h->order >= MAX_ORDER)
608                 return NULL;
609
610         page = alloc_pages_exact_node(nid,
611                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612                                                 __GFP_REPEAT|__GFP_NOWARN,
613                 huge_page_order(h));
614         if (page) {
615                 if (arch_prepare_hugepage(page)) {
616                         __free_pages(page, huge_page_order(h));
617                         return NULL;
618                 }
619                 prep_new_huge_page(h, page, nid);
620         }
621
622         return page;
623 }
624
625 /*
626  * Use a helper variable to find the next node and then
627  * copy it back to next_nid_to_alloc afterwards:
628  * otherwise there's a window in which a racer might
629  * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
630  * But we don't need to use a spin_lock here: it really
631  * doesn't matter if occasionally a racer chooses the
632  * same nid as we do.  Move nid forward in the mask even
633  * if we just successfully allocated a hugepage so that
634  * the next caller gets hugepages on the next node.
635  */
636 static int hstate_next_node_to_alloc(struct hstate *h)
637 {
638         int next_nid;
639         next_nid = next_node(h->next_nid_to_alloc, node_online_map);
640         if (next_nid == MAX_NUMNODES)
641                 next_nid = first_node(node_online_map);
642         h->next_nid_to_alloc = next_nid;
643         return next_nid;
644 }
645
646 static int alloc_fresh_huge_page(struct hstate *h)
647 {
648         struct page *page;
649         int start_nid;
650         int next_nid;
651         int ret = 0;
652
653         start_nid = h->next_nid_to_alloc;
654         next_nid = start_nid;
655
656         do {
657                 page = alloc_fresh_huge_page_node(h, next_nid);
658                 if (page)
659                         ret = 1;
660                 next_nid = hstate_next_node_to_alloc(h);
661         } while (!page && next_nid != start_nid);
662
663         if (ret)
664                 count_vm_event(HTLB_BUDDY_PGALLOC);
665         else
666                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
667
668         return ret;
669 }
670
671 /*
672  * helper for free_pool_huge_page() - find next node
673  * from which to free a huge page
674  */
675 static int hstate_next_node_to_free(struct hstate *h)
676 {
677         int next_nid;
678         next_nid = next_node(h->next_nid_to_free, node_online_map);
679         if (next_nid == MAX_NUMNODES)
680                 next_nid = first_node(node_online_map);
681         h->next_nid_to_free = next_nid;
682         return next_nid;
683 }
684
685 /*
686  * Free huge page from pool from next node to free.
687  * Attempt to keep persistent huge pages more or less
688  * balanced over allowed nodes.
689  * Called with hugetlb_lock locked.
690  */
691 static int free_pool_huge_page(struct hstate *h, bool acct_surplus)
692 {
693         int start_nid;
694         int next_nid;
695         int ret = 0;
696
697         start_nid = h->next_nid_to_free;
698         next_nid = start_nid;
699
700         do {
701                 /*
702                  * If we're returning unused surplus pages, only examine
703                  * nodes with surplus pages.
704                  */
705                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
706                     !list_empty(&h->hugepage_freelists[next_nid])) {
707                         struct page *page =
708                                 list_entry(h->hugepage_freelists[next_nid].next,
709                                           struct page, lru);
710                         list_del(&page->lru);
711                         h->free_huge_pages--;
712                         h->free_huge_pages_node[next_nid]--;
713                         if (acct_surplus) {
714                                 h->surplus_huge_pages--;
715                                 h->surplus_huge_pages_node[next_nid]--;
716                         }
717                         update_and_free_page(h, page);
718                         ret = 1;
719                 }
720                 next_nid = hstate_next_node_to_free(h);
721         } while (!ret && next_nid != start_nid);
722
723         return ret;
724 }
725
726 static struct page *alloc_buddy_huge_page(struct hstate *h,
727                         struct vm_area_struct *vma, unsigned long address)
728 {
729         struct page *page;
730         unsigned int nid;
731
732         if (h->order >= MAX_ORDER)
733                 return NULL;
734
735         /*
736          * Assume we will successfully allocate the surplus page to
737          * prevent racing processes from causing the surplus to exceed
738          * overcommit
739          *
740          * This however introduces a different race, where a process B
741          * tries to grow the static hugepage pool while alloc_pages() is
742          * called by process A. B will only examine the per-node
743          * counters in determining if surplus huge pages can be
744          * converted to normal huge pages in adjust_pool_surplus(). A
745          * won't be able to increment the per-node counter, until the
746          * lock is dropped by B, but B doesn't drop hugetlb_lock until
747          * no more huge pages can be converted from surplus to normal
748          * state (and doesn't try to convert again). Thus, we have a
749          * case where a surplus huge page exists, the pool is grown, and
750          * the surplus huge page still exists after, even though it
751          * should just have been converted to a normal huge page. This
752          * does not leak memory, though, as the hugepage will be freed
753          * once it is out of use. It also does not allow the counters to
754          * go out of whack in adjust_pool_surplus() as we don't modify
755          * the node values until we've gotten the hugepage and only the
756          * per-node value is checked there.
757          */
758         spin_lock(&hugetlb_lock);
759         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
760                 spin_unlock(&hugetlb_lock);
761                 return NULL;
762         } else {
763                 h->nr_huge_pages++;
764                 h->surplus_huge_pages++;
765         }
766         spin_unlock(&hugetlb_lock);
767
768         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
769                                         __GFP_REPEAT|__GFP_NOWARN,
770                                         huge_page_order(h));
771
772         if (page && arch_prepare_hugepage(page)) {
773                 __free_pages(page, huge_page_order(h));
774                 return NULL;
775         }
776
777         spin_lock(&hugetlb_lock);
778         if (page) {
779                 /*
780                  * This page is now managed by the hugetlb allocator and has
781                  * no users -- drop the buddy allocator's reference.
782                  */
783                 put_page_testzero(page);
784                 VM_BUG_ON(page_count(page));
785                 nid = page_to_nid(page);
786                 set_compound_page_dtor(page, free_huge_page);
787                 /*
788                  * We incremented the global counters already
789                  */
790                 h->nr_huge_pages_node[nid]++;
791                 h->surplus_huge_pages_node[nid]++;
792                 __count_vm_event(HTLB_BUDDY_PGALLOC);
793         } else {
794                 h->nr_huge_pages--;
795                 h->surplus_huge_pages--;
796                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
797         }
798         spin_unlock(&hugetlb_lock);
799
800         return page;
801 }
802
803 /*
804  * Increase the hugetlb pool such that it can accomodate a reservation
805  * of size 'delta'.
806  */
807 static int gather_surplus_pages(struct hstate *h, int delta)
808 {
809         struct list_head surplus_list;
810         struct page *page, *tmp;
811         int ret, i;
812         int needed, allocated;
813
814         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
815         if (needed <= 0) {
816                 h->resv_huge_pages += delta;
817                 return 0;
818         }
819
820         allocated = 0;
821         INIT_LIST_HEAD(&surplus_list);
822
823         ret = -ENOMEM;
824 retry:
825         spin_unlock(&hugetlb_lock);
826         for (i = 0; i < needed; i++) {
827                 page = alloc_buddy_huge_page(h, NULL, 0);
828                 if (!page) {
829                         /*
830                          * We were not able to allocate enough pages to
831                          * satisfy the entire reservation so we free what
832                          * we've allocated so far.
833                          */
834                         spin_lock(&hugetlb_lock);
835                         needed = 0;
836                         goto free;
837                 }
838
839                 list_add(&page->lru, &surplus_list);
840         }
841         allocated += needed;
842
843         /*
844          * After retaking hugetlb_lock, we need to recalculate 'needed'
845          * because either resv_huge_pages or free_huge_pages may have changed.
846          */
847         spin_lock(&hugetlb_lock);
848         needed = (h->resv_huge_pages + delta) -
849                         (h->free_huge_pages + allocated);
850         if (needed > 0)
851                 goto retry;
852
853         /*
854          * The surplus_list now contains _at_least_ the number of extra pages
855          * needed to accomodate the reservation.  Add the appropriate number
856          * of pages to the hugetlb pool and free the extras back to the buddy
857          * allocator.  Commit the entire reservation here to prevent another
858          * process from stealing the pages as they are added to the pool but
859          * before they are reserved.
860          */
861         needed += allocated;
862         h->resv_huge_pages += delta;
863         ret = 0;
864 free:
865         /* Free the needed pages to the hugetlb pool */
866         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
867                 if ((--needed) < 0)
868                         break;
869                 list_del(&page->lru);
870                 enqueue_huge_page(h, page);
871         }
872
873         /* Free unnecessary surplus pages to the buddy allocator */
874         if (!list_empty(&surplus_list)) {
875                 spin_unlock(&hugetlb_lock);
876                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
877                         list_del(&page->lru);
878                         /*
879                          * The page has a reference count of zero already, so
880                          * call free_huge_page directly instead of using
881                          * put_page.  This must be done with hugetlb_lock
882                          * unlocked which is safe because free_huge_page takes
883                          * hugetlb_lock before deciding how to free the page.
884                          */
885                         free_huge_page(page);
886                 }
887                 spin_lock(&hugetlb_lock);
888         }
889
890         return ret;
891 }
892
893 /*
894  * When releasing a hugetlb pool reservation, any surplus pages that were
895  * allocated to satisfy the reservation must be explicitly freed if they were
896  * never used.
897  * Called with hugetlb_lock held.
898  */
899 static void return_unused_surplus_pages(struct hstate *h,
900                                         unsigned long unused_resv_pages)
901 {
902         unsigned long nr_pages;
903
904         /* Uncommit the reservation */
905         h->resv_huge_pages -= unused_resv_pages;
906
907         /* Cannot return gigantic pages currently */
908         if (h->order >= MAX_ORDER)
909                 return;
910
911         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
912
913         /*
914          * We want to release as many surplus pages as possible, spread
915          * evenly across all nodes. Iterate across all nodes until we
916          * can no longer free unreserved surplus pages. This occurs when
917          * the nodes with surplus pages have no free pages.
918          * free_pool_huge_page() will balance the the frees across the
919          * on-line nodes for us and will handle the hstate accounting.
920          */
921         while (nr_pages--) {
922                 if (!free_pool_huge_page(h, 1))
923                         break;
924         }
925 }
926
927 /*
928  * Determine if the huge page at addr within the vma has an associated
929  * reservation.  Where it does not we will need to logically increase
930  * reservation and actually increase quota before an allocation can occur.
931  * Where any new reservation would be required the reservation change is
932  * prepared, but not committed.  Once the page has been quota'd allocated
933  * an instantiated the change should be committed via vma_commit_reservation.
934  * No action is required on failure.
935  */
936 static long vma_needs_reservation(struct hstate *h,
937                         struct vm_area_struct *vma, unsigned long addr)
938 {
939         struct address_space *mapping = vma->vm_file->f_mapping;
940         struct inode *inode = mapping->host;
941
942         if (vma->vm_flags & VM_MAYSHARE) {
943                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
944                 return region_chg(&inode->i_mapping->private_list,
945                                                         idx, idx + 1);
946
947         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
948                 return 1;
949
950         } else  {
951                 long err;
952                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
953                 struct resv_map *reservations = vma_resv_map(vma);
954
955                 err = region_chg(&reservations->regions, idx, idx + 1);
956                 if (err < 0)
957                         return err;
958                 return 0;
959         }
960 }
961 static void vma_commit_reservation(struct hstate *h,
962                         struct vm_area_struct *vma, unsigned long addr)
963 {
964         struct address_space *mapping = vma->vm_file->f_mapping;
965         struct inode *inode = mapping->host;
966
967         if (vma->vm_flags & VM_MAYSHARE) {
968                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
969                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
970
971         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
972                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
973                 struct resv_map *reservations = vma_resv_map(vma);
974
975                 /* Mark this page used in the map. */
976                 region_add(&reservations->regions, idx, idx + 1);
977         }
978 }
979
980 static struct page *alloc_huge_page(struct vm_area_struct *vma,
981                                     unsigned long addr, int avoid_reserve)
982 {
983         struct hstate *h = hstate_vma(vma);
984         struct page *page;
985         struct address_space *mapping = vma->vm_file->f_mapping;
986         struct inode *inode = mapping->host;
987         long chg;
988
989         /*
990          * Processes that did not create the mapping will have no reserves and
991          * will not have accounted against quota. Check that the quota can be
992          * made before satisfying the allocation
993          * MAP_NORESERVE mappings may also need pages and quota allocated
994          * if no reserve mapping overlaps.
995          */
996         chg = vma_needs_reservation(h, vma, addr);
997         if (chg < 0)
998                 return ERR_PTR(chg);
999         if (chg)
1000                 if (hugetlb_get_quota(inode->i_mapping, chg))
1001                         return ERR_PTR(-ENOSPC);
1002
1003         spin_lock(&hugetlb_lock);
1004         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1005         spin_unlock(&hugetlb_lock);
1006
1007         if (!page) {
1008                 page = alloc_buddy_huge_page(h, vma, addr);
1009                 if (!page) {
1010                         hugetlb_put_quota(inode->i_mapping, chg);
1011                         return ERR_PTR(-VM_FAULT_SIGBUS);
1012                 }
1013         }
1014
1015         set_page_refcounted(page);
1016         set_page_private(page, (unsigned long) mapping);
1017
1018         vma_commit_reservation(h, vma, addr);
1019
1020         return page;
1021 }
1022
1023 int __weak alloc_bootmem_huge_page(struct hstate *h)
1024 {
1025         struct huge_bootmem_page *m;
1026         int nr_nodes = nodes_weight(node_online_map);
1027
1028         while (nr_nodes) {
1029                 void *addr;
1030
1031                 addr = __alloc_bootmem_node_nopanic(
1032                                 NODE_DATA(h->next_nid_to_alloc),
1033                                 huge_page_size(h), huge_page_size(h), 0);
1034
1035                 hstate_next_node_to_alloc(h);
1036                 if (addr) {
1037                         /*
1038                          * Use the beginning of the huge page to store the
1039                          * huge_bootmem_page struct (until gather_bootmem
1040                          * puts them into the mem_map).
1041                          */
1042                         m = addr;
1043                         goto found;
1044                 }
1045                 nr_nodes--;
1046         }
1047         return 0;
1048
1049 found:
1050         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1051         /* Put them into a private list first because mem_map is not up yet */
1052         list_add(&m->list, &huge_boot_pages);
1053         m->hstate = h;
1054         return 1;
1055 }
1056
1057 static void prep_compound_huge_page(struct page *page, int order)
1058 {
1059         if (unlikely(order > (MAX_ORDER - 1)))
1060                 prep_compound_gigantic_page(page, order);
1061         else
1062                 prep_compound_page(page, order);
1063 }
1064
1065 /* Put bootmem huge pages into the standard lists after mem_map is up */
1066 static void __init gather_bootmem_prealloc(void)
1067 {
1068         struct huge_bootmem_page *m;
1069
1070         list_for_each_entry(m, &huge_boot_pages, list) {
1071                 struct page *page = virt_to_page(m);
1072                 struct hstate *h = m->hstate;
1073                 __ClearPageReserved(page);
1074                 WARN_ON(page_count(page) != 1);
1075                 prep_compound_huge_page(page, h->order);
1076                 prep_new_huge_page(h, page, page_to_nid(page));
1077         }
1078 }
1079
1080 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1081 {
1082         unsigned long i;
1083
1084         for (i = 0; i < h->max_huge_pages; ++i) {
1085                 if (h->order >= MAX_ORDER) {
1086                         if (!alloc_bootmem_huge_page(h))
1087                                 break;
1088                 } else if (!alloc_fresh_huge_page(h))
1089                         break;
1090         }
1091         h->max_huge_pages = i;
1092 }
1093
1094 static void __init hugetlb_init_hstates(void)
1095 {
1096         struct hstate *h;
1097
1098         for_each_hstate(h) {
1099                 /* oversize hugepages were init'ed in early boot */
1100                 if (h->order < MAX_ORDER)
1101                         hugetlb_hstate_alloc_pages(h);
1102         }
1103 }
1104
1105 static char * __init memfmt(char *buf, unsigned long n)
1106 {
1107         if (n >= (1UL << 30))
1108                 sprintf(buf, "%lu GB", n >> 30);
1109         else if (n >= (1UL << 20))
1110                 sprintf(buf, "%lu MB", n >> 20);
1111         else
1112                 sprintf(buf, "%lu KB", n >> 10);
1113         return buf;
1114 }
1115
1116 static void __init report_hugepages(void)
1117 {
1118         struct hstate *h;
1119
1120         for_each_hstate(h) {
1121                 char buf[32];
1122                 printk(KERN_INFO "HugeTLB registered %s page size, "
1123                                  "pre-allocated %ld pages\n",
1124                         memfmt(buf, huge_page_size(h)),
1125                         h->free_huge_pages);
1126         }
1127 }
1128
1129 #ifdef CONFIG_HIGHMEM
1130 static void try_to_free_low(struct hstate *h, unsigned long count)
1131 {
1132         int i;
1133
1134         if (h->order >= MAX_ORDER)
1135                 return;
1136
1137         for (i = 0; i < MAX_NUMNODES; ++i) {
1138                 struct page *page, *next;
1139                 struct list_head *freel = &h->hugepage_freelists[i];
1140                 list_for_each_entry_safe(page, next, freel, lru) {
1141                         if (count >= h->nr_huge_pages)
1142                                 return;
1143                         if (PageHighMem(page))
1144                                 continue;
1145                         list_del(&page->lru);
1146                         update_and_free_page(h, page);
1147                         h->free_huge_pages--;
1148                         h->free_huge_pages_node[page_to_nid(page)]--;
1149                 }
1150         }
1151 }
1152 #else
1153 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1154 {
1155 }
1156 #endif
1157
1158 /*
1159  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1160  * balanced by operating on them in a round-robin fashion.
1161  * Returns 1 if an adjustment was made.
1162  */
1163 static int adjust_pool_surplus(struct hstate *h, int delta)
1164 {
1165         int start_nid, next_nid;
1166         int ret = 0;
1167
1168         VM_BUG_ON(delta != -1 && delta != 1);
1169
1170         if (delta < 0)
1171                 start_nid = h->next_nid_to_alloc;
1172         else
1173                 start_nid = h->next_nid_to_free;
1174         next_nid = start_nid;
1175
1176         do {
1177                 int nid = next_nid;
1178                 if (delta < 0)  {
1179                         next_nid = hstate_next_node_to_alloc(h);
1180                         /*
1181                          * To shrink on this node, there must be a surplus page
1182                          */
1183                         if (!h->surplus_huge_pages_node[nid])
1184                                 continue;
1185                 }
1186                 if (delta > 0) {
1187                         next_nid = hstate_next_node_to_free(h);
1188                         /*
1189                          * Surplus cannot exceed the total number of pages
1190                          */
1191                         if (h->surplus_huge_pages_node[nid] >=
1192                                                 h->nr_huge_pages_node[nid])
1193                                 continue;
1194                 }
1195
1196                 h->surplus_huge_pages += delta;
1197                 h->surplus_huge_pages_node[nid] += delta;
1198                 ret = 1;
1199                 break;
1200         } while (next_nid != start_nid);
1201
1202         return ret;
1203 }
1204
1205 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1206 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1207 {
1208         unsigned long min_count, ret;
1209
1210         if (h->order >= MAX_ORDER)
1211                 return h->max_huge_pages;
1212
1213         /*
1214          * Increase the pool size
1215          * First take pages out of surplus state.  Then make up the
1216          * remaining difference by allocating fresh huge pages.
1217          *
1218          * We might race with alloc_buddy_huge_page() here and be unable
1219          * to convert a surplus huge page to a normal huge page. That is
1220          * not critical, though, it just means the overall size of the
1221          * pool might be one hugepage larger than it needs to be, but
1222          * within all the constraints specified by the sysctls.
1223          */
1224         spin_lock(&hugetlb_lock);
1225         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1226                 if (!adjust_pool_surplus(h, -1))
1227                         break;
1228         }
1229
1230         while (count > persistent_huge_pages(h)) {
1231                 /*
1232                  * If this allocation races such that we no longer need the
1233                  * page, free_huge_page will handle it by freeing the page
1234                  * and reducing the surplus.
1235                  */
1236                 spin_unlock(&hugetlb_lock);
1237                 ret = alloc_fresh_huge_page(h);
1238                 spin_lock(&hugetlb_lock);
1239                 if (!ret)
1240                         goto out;
1241
1242         }
1243
1244         /*
1245          * Decrease the pool size
1246          * First return free pages to the buddy allocator (being careful
1247          * to keep enough around to satisfy reservations).  Then place
1248          * pages into surplus state as needed so the pool will shrink
1249          * to the desired size as pages become free.
1250          *
1251          * By placing pages into the surplus state independent of the
1252          * overcommit value, we are allowing the surplus pool size to
1253          * exceed overcommit. There are few sane options here. Since
1254          * alloc_buddy_huge_page() is checking the global counter,
1255          * though, we'll note that we're not allowed to exceed surplus
1256          * and won't grow the pool anywhere else. Not until one of the
1257          * sysctls are changed, or the surplus pages go out of use.
1258          */
1259         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1260         min_count = max(count, min_count);
1261         try_to_free_low(h, min_count);
1262         while (min_count < persistent_huge_pages(h)) {
1263                 if (!free_pool_huge_page(h, 0))
1264                         break;
1265         }
1266         while (count < persistent_huge_pages(h)) {
1267                 if (!adjust_pool_surplus(h, 1))
1268                         break;
1269         }
1270 out:
1271         ret = persistent_huge_pages(h);
1272         spin_unlock(&hugetlb_lock);
1273         return ret;
1274 }
1275
1276 #define HSTATE_ATTR_RO(_name) \
1277         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1278
1279 #define HSTATE_ATTR(_name) \
1280         static struct kobj_attribute _name##_attr = \
1281                 __ATTR(_name, 0644, _name##_show, _name##_store)
1282
1283 static struct kobject *hugepages_kobj;
1284 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1285
1286 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1287 {
1288         int i;
1289         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1290                 if (hstate_kobjs[i] == kobj)
1291                         return &hstates[i];
1292         BUG();
1293         return NULL;
1294 }
1295
1296 static ssize_t nr_hugepages_show(struct kobject *kobj,
1297                                         struct kobj_attribute *attr, char *buf)
1298 {
1299         struct hstate *h = kobj_to_hstate(kobj);
1300         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1301 }
1302 static ssize_t nr_hugepages_store(struct kobject *kobj,
1303                 struct kobj_attribute *attr, const char *buf, size_t count)
1304 {
1305         int err;
1306         unsigned long input;
1307         struct hstate *h = kobj_to_hstate(kobj);
1308
1309         err = strict_strtoul(buf, 10, &input);
1310         if (err)
1311                 return 0;
1312
1313         h->max_huge_pages = set_max_huge_pages(h, input);
1314
1315         return count;
1316 }
1317 HSTATE_ATTR(nr_hugepages);
1318
1319 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1320                                         struct kobj_attribute *attr, char *buf)
1321 {
1322         struct hstate *h = kobj_to_hstate(kobj);
1323         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1324 }
1325 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1326                 struct kobj_attribute *attr, const char *buf, size_t count)
1327 {
1328         int err;
1329         unsigned long input;
1330         struct hstate *h = kobj_to_hstate(kobj);
1331
1332         err = strict_strtoul(buf, 10, &input);
1333         if (err)
1334                 return 0;
1335
1336         spin_lock(&hugetlb_lock);
1337         h->nr_overcommit_huge_pages = input;
1338         spin_unlock(&hugetlb_lock);
1339
1340         return count;
1341 }
1342 HSTATE_ATTR(nr_overcommit_hugepages);
1343
1344 static ssize_t free_hugepages_show(struct kobject *kobj,
1345                                         struct kobj_attribute *attr, char *buf)
1346 {
1347         struct hstate *h = kobj_to_hstate(kobj);
1348         return sprintf(buf, "%lu\n", h->free_huge_pages);
1349 }
1350 HSTATE_ATTR_RO(free_hugepages);
1351
1352 static ssize_t resv_hugepages_show(struct kobject *kobj,
1353                                         struct kobj_attribute *attr, char *buf)
1354 {
1355         struct hstate *h = kobj_to_hstate(kobj);
1356         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1357 }
1358 HSTATE_ATTR_RO(resv_hugepages);
1359
1360 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1361                                         struct kobj_attribute *attr, char *buf)
1362 {
1363         struct hstate *h = kobj_to_hstate(kobj);
1364         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1365 }
1366 HSTATE_ATTR_RO(surplus_hugepages);
1367
1368 static struct attribute *hstate_attrs[] = {
1369         &nr_hugepages_attr.attr,
1370         &nr_overcommit_hugepages_attr.attr,
1371         &free_hugepages_attr.attr,
1372         &resv_hugepages_attr.attr,
1373         &surplus_hugepages_attr.attr,
1374         NULL,
1375 };
1376
1377 static struct attribute_group hstate_attr_group = {
1378         .attrs = hstate_attrs,
1379 };
1380
1381 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1382 {
1383         int retval;
1384
1385         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1386                                                         hugepages_kobj);
1387         if (!hstate_kobjs[h - hstates])
1388                 return -ENOMEM;
1389
1390         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1391                                                         &hstate_attr_group);
1392         if (retval)
1393                 kobject_put(hstate_kobjs[h - hstates]);
1394
1395         return retval;
1396 }
1397
1398 static void __init hugetlb_sysfs_init(void)
1399 {
1400         struct hstate *h;
1401         int err;
1402
1403         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1404         if (!hugepages_kobj)
1405                 return;
1406
1407         for_each_hstate(h) {
1408                 err = hugetlb_sysfs_add_hstate(h);
1409                 if (err)
1410                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1411                                                                 h->name);
1412         }
1413 }
1414
1415 static void __exit hugetlb_exit(void)
1416 {
1417         struct hstate *h;
1418
1419         for_each_hstate(h) {
1420                 kobject_put(hstate_kobjs[h - hstates]);
1421         }
1422
1423         kobject_put(hugepages_kobj);
1424 }
1425 module_exit(hugetlb_exit);
1426
1427 static int __init hugetlb_init(void)
1428 {
1429         /* Some platform decide whether they support huge pages at boot
1430          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1431          * there is no such support
1432          */
1433         if (HPAGE_SHIFT == 0)
1434                 return 0;
1435
1436         if (!size_to_hstate(default_hstate_size)) {
1437                 default_hstate_size = HPAGE_SIZE;
1438                 if (!size_to_hstate(default_hstate_size))
1439                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1440         }
1441         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1442         if (default_hstate_max_huge_pages)
1443                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1444
1445         hugetlb_init_hstates();
1446
1447         gather_bootmem_prealloc();
1448
1449         report_hugepages();
1450
1451         hugetlb_sysfs_init();
1452
1453         return 0;
1454 }
1455 module_init(hugetlb_init);
1456
1457 /* Should be called on processing a hugepagesz=... option */
1458 void __init hugetlb_add_hstate(unsigned order)
1459 {
1460         struct hstate *h;
1461         unsigned long i;
1462
1463         if (size_to_hstate(PAGE_SIZE << order)) {
1464                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1465                 return;
1466         }
1467         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1468         BUG_ON(order == 0);
1469         h = &hstates[max_hstate++];
1470         h->order = order;
1471         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1472         h->nr_huge_pages = 0;
1473         h->free_huge_pages = 0;
1474         for (i = 0; i < MAX_NUMNODES; ++i)
1475                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1476         h->next_nid_to_alloc = first_node(node_online_map);
1477         h->next_nid_to_free = first_node(node_online_map);
1478         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1479                                         huge_page_size(h)/1024);
1480
1481         parsed_hstate = h;
1482 }
1483
1484 static int __init hugetlb_nrpages_setup(char *s)
1485 {
1486         unsigned long *mhp;
1487         static unsigned long *last_mhp;
1488
1489         /*
1490          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1491          * so this hugepages= parameter goes to the "default hstate".
1492          */
1493         if (!max_hstate)
1494                 mhp = &default_hstate_max_huge_pages;
1495         else
1496                 mhp = &parsed_hstate->max_huge_pages;
1497
1498         if (mhp == last_mhp) {
1499                 printk(KERN_WARNING "hugepages= specified twice without "
1500                         "interleaving hugepagesz=, ignoring\n");
1501                 return 1;
1502         }
1503
1504         if (sscanf(s, "%lu", mhp) <= 0)
1505                 *mhp = 0;
1506
1507         /*
1508          * Global state is always initialized later in hugetlb_init.
1509          * But we need to allocate >= MAX_ORDER hstates here early to still
1510          * use the bootmem allocator.
1511          */
1512         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1513                 hugetlb_hstate_alloc_pages(parsed_hstate);
1514
1515         last_mhp = mhp;
1516
1517         return 1;
1518 }
1519 __setup("hugepages=", hugetlb_nrpages_setup);
1520
1521 static int __init hugetlb_default_setup(char *s)
1522 {
1523         default_hstate_size = memparse(s, &s);
1524         return 1;
1525 }
1526 __setup("default_hugepagesz=", hugetlb_default_setup);
1527
1528 static unsigned int cpuset_mems_nr(unsigned int *array)
1529 {
1530         int node;
1531         unsigned int nr = 0;
1532
1533         for_each_node_mask(node, cpuset_current_mems_allowed)
1534                 nr += array[node];
1535
1536         return nr;
1537 }
1538
1539 #ifdef CONFIG_SYSCTL
1540 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1541                            void __user *buffer,
1542                            size_t *length, loff_t *ppos)
1543 {
1544         struct hstate *h = &default_hstate;
1545         unsigned long tmp;
1546
1547         if (!write)
1548                 tmp = h->max_huge_pages;
1549
1550         table->data = &tmp;
1551         table->maxlen = sizeof(unsigned long);
1552         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1553
1554         if (write)
1555                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1556
1557         return 0;
1558 }
1559
1560 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1561                         void __user *buffer,
1562                         size_t *length, loff_t *ppos)
1563 {
1564         proc_dointvec(table, write, buffer, length, ppos);
1565         if (hugepages_treat_as_movable)
1566                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1567         else
1568                 htlb_alloc_mask = GFP_HIGHUSER;
1569         return 0;
1570 }
1571
1572 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1573                         void __user *buffer,
1574                         size_t *length, loff_t *ppos)
1575 {
1576         struct hstate *h = &default_hstate;
1577         unsigned long tmp;
1578
1579         if (!write)
1580                 tmp = h->nr_overcommit_huge_pages;
1581
1582         table->data = &tmp;
1583         table->maxlen = sizeof(unsigned long);
1584         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1585
1586         if (write) {
1587                 spin_lock(&hugetlb_lock);
1588                 h->nr_overcommit_huge_pages = tmp;
1589                 spin_unlock(&hugetlb_lock);
1590         }
1591
1592         return 0;
1593 }
1594
1595 #endif /* CONFIG_SYSCTL */
1596
1597 void hugetlb_report_meminfo(struct seq_file *m)
1598 {
1599         struct hstate *h = &default_hstate;
1600         seq_printf(m,
1601                         "HugePages_Total:   %5lu\n"
1602                         "HugePages_Free:    %5lu\n"
1603                         "HugePages_Rsvd:    %5lu\n"
1604                         "HugePages_Surp:    %5lu\n"
1605                         "Hugepagesize:   %8lu kB\n",
1606                         h->nr_huge_pages,
1607                         h->free_huge_pages,
1608                         h->resv_huge_pages,
1609                         h->surplus_huge_pages,
1610                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1611 }
1612
1613 int hugetlb_report_node_meminfo(int nid, char *buf)
1614 {
1615         struct hstate *h = &default_hstate;
1616         return sprintf(buf,
1617                 "Node %d HugePages_Total: %5u\n"
1618                 "Node %d HugePages_Free:  %5u\n"
1619                 "Node %d HugePages_Surp:  %5u\n",
1620                 nid, h->nr_huge_pages_node[nid],
1621                 nid, h->free_huge_pages_node[nid],
1622                 nid, h->surplus_huge_pages_node[nid]);
1623 }
1624
1625 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1626 unsigned long hugetlb_total_pages(void)
1627 {
1628         struct hstate *h = &default_hstate;
1629         return h->nr_huge_pages * pages_per_huge_page(h);
1630 }
1631
1632 static int hugetlb_acct_memory(struct hstate *h, long delta)
1633 {
1634         int ret = -ENOMEM;
1635
1636         spin_lock(&hugetlb_lock);
1637         /*
1638          * When cpuset is configured, it breaks the strict hugetlb page
1639          * reservation as the accounting is done on a global variable. Such
1640          * reservation is completely rubbish in the presence of cpuset because
1641          * the reservation is not checked against page availability for the
1642          * current cpuset. Application can still potentially OOM'ed by kernel
1643          * with lack of free htlb page in cpuset that the task is in.
1644          * Attempt to enforce strict accounting with cpuset is almost
1645          * impossible (or too ugly) because cpuset is too fluid that
1646          * task or memory node can be dynamically moved between cpusets.
1647          *
1648          * The change of semantics for shared hugetlb mapping with cpuset is
1649          * undesirable. However, in order to preserve some of the semantics,
1650          * we fall back to check against current free page availability as
1651          * a best attempt and hopefully to minimize the impact of changing
1652          * semantics that cpuset has.
1653          */
1654         if (delta > 0) {
1655                 if (gather_surplus_pages(h, delta) < 0)
1656                         goto out;
1657
1658                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1659                         return_unused_surplus_pages(h, delta);
1660                         goto out;
1661                 }
1662         }
1663
1664         ret = 0;
1665         if (delta < 0)
1666                 return_unused_surplus_pages(h, (unsigned long) -delta);
1667
1668 out:
1669         spin_unlock(&hugetlb_lock);
1670         return ret;
1671 }
1672
1673 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1674 {
1675         struct resv_map *reservations = vma_resv_map(vma);
1676
1677         /*
1678          * This new VMA should share its siblings reservation map if present.
1679          * The VMA will only ever have a valid reservation map pointer where
1680          * it is being copied for another still existing VMA.  As that VMA
1681          * has a reference to the reservation map it cannot dissappear until
1682          * after this open call completes.  It is therefore safe to take a
1683          * new reference here without additional locking.
1684          */
1685         if (reservations)
1686                 kref_get(&reservations->refs);
1687 }
1688
1689 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1690 {
1691         struct hstate *h = hstate_vma(vma);
1692         struct resv_map *reservations = vma_resv_map(vma);
1693         unsigned long reserve;
1694         unsigned long start;
1695         unsigned long end;
1696
1697         if (reservations) {
1698                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1699                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1700
1701                 reserve = (end - start) -
1702                         region_count(&reservations->regions, start, end);
1703
1704                 kref_put(&reservations->refs, resv_map_release);
1705
1706                 if (reserve) {
1707                         hugetlb_acct_memory(h, -reserve);
1708                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1709                 }
1710         }
1711 }
1712
1713 /*
1714  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1715  * handle_mm_fault() to try to instantiate regular-sized pages in the
1716  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1717  * this far.
1718  */
1719 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1720 {
1721         BUG();
1722         return 0;
1723 }
1724
1725 const struct vm_operations_struct hugetlb_vm_ops = {
1726         .fault = hugetlb_vm_op_fault,
1727         .open = hugetlb_vm_op_open,
1728         .close = hugetlb_vm_op_close,
1729 };
1730
1731 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1732                                 int writable)
1733 {
1734         pte_t entry;
1735
1736         if (writable) {
1737                 entry =
1738                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1739         } else {
1740                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1741         }
1742         entry = pte_mkyoung(entry);
1743         entry = pte_mkhuge(entry);
1744
1745         return entry;
1746 }
1747
1748 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1749                                    unsigned long address, pte_t *ptep)
1750 {
1751         pte_t entry;
1752
1753         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1754         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1755                 update_mmu_cache(vma, address, entry);
1756         }
1757 }
1758
1759
1760 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1761                             struct vm_area_struct *vma)
1762 {
1763         pte_t *src_pte, *dst_pte, entry;
1764         struct page *ptepage;
1765         unsigned long addr;
1766         int cow;
1767         struct hstate *h = hstate_vma(vma);
1768         unsigned long sz = huge_page_size(h);
1769
1770         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1771
1772         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1773                 src_pte = huge_pte_offset(src, addr);
1774                 if (!src_pte)
1775                         continue;
1776                 dst_pte = huge_pte_alloc(dst, addr, sz);
1777                 if (!dst_pte)
1778                         goto nomem;
1779
1780                 /* If the pagetables are shared don't copy or take references */
1781                 if (dst_pte == src_pte)
1782                         continue;
1783
1784                 spin_lock(&dst->page_table_lock);
1785                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1786                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1787                         if (cow)
1788                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1789                         entry = huge_ptep_get(src_pte);
1790                         ptepage = pte_page(entry);
1791                         get_page(ptepage);
1792                         set_huge_pte_at(dst, addr, dst_pte, entry);
1793                 }
1794                 spin_unlock(&src->page_table_lock);
1795                 spin_unlock(&dst->page_table_lock);
1796         }
1797         return 0;
1798
1799 nomem:
1800         return -ENOMEM;
1801 }
1802
1803 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1804                             unsigned long end, struct page *ref_page)
1805 {
1806         struct mm_struct *mm = vma->vm_mm;
1807         unsigned long address;
1808         pte_t *ptep;
1809         pte_t pte;
1810         struct page *page;
1811         struct page *tmp;
1812         struct hstate *h = hstate_vma(vma);
1813         unsigned long sz = huge_page_size(h);
1814
1815         /*
1816          * A page gathering list, protected by per file i_mmap_lock. The
1817          * lock is used to avoid list corruption from multiple unmapping
1818          * of the same page since we are using page->lru.
1819          */
1820         LIST_HEAD(page_list);
1821
1822         WARN_ON(!is_vm_hugetlb_page(vma));
1823         BUG_ON(start & ~huge_page_mask(h));
1824         BUG_ON(end & ~huge_page_mask(h));
1825
1826         mmu_notifier_invalidate_range_start(mm, start, end);
1827         spin_lock(&mm->page_table_lock);
1828         for (address = start; address < end; address += sz) {
1829                 ptep = huge_pte_offset(mm, address);
1830                 if (!ptep)
1831                         continue;
1832
1833                 if (huge_pmd_unshare(mm, &address, ptep))
1834                         continue;
1835
1836                 /*
1837                  * If a reference page is supplied, it is because a specific
1838                  * page is being unmapped, not a range. Ensure the page we
1839                  * are about to unmap is the actual page of interest.
1840                  */
1841                 if (ref_page) {
1842                         pte = huge_ptep_get(ptep);
1843                         if (huge_pte_none(pte))
1844                                 continue;
1845                         page = pte_page(pte);
1846                         if (page != ref_page)
1847                                 continue;
1848
1849                         /*
1850                          * Mark the VMA as having unmapped its page so that
1851                          * future faults in this VMA will fail rather than
1852                          * looking like data was lost
1853                          */
1854                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1855                 }
1856
1857                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1858                 if (huge_pte_none(pte))
1859                         continue;
1860
1861                 page = pte_page(pte);
1862                 if (pte_dirty(pte))
1863                         set_page_dirty(page);
1864                 list_add(&page->lru, &page_list);
1865         }
1866         spin_unlock(&mm->page_table_lock);
1867         flush_tlb_range(vma, start, end);
1868         mmu_notifier_invalidate_range_end(mm, start, end);
1869         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1870                 list_del(&page->lru);
1871                 put_page(page);
1872         }
1873 }
1874
1875 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1876                           unsigned long end, struct page *ref_page)
1877 {
1878         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1879         __unmap_hugepage_range(vma, start, end, ref_page);
1880         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1881 }
1882
1883 /*
1884  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1885  * mappping it owns the reserve page for. The intention is to unmap the page
1886  * from other VMAs and let the children be SIGKILLed if they are faulting the
1887  * same region.
1888  */
1889 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1890                                 struct page *page, unsigned long address)
1891 {
1892         struct hstate *h = hstate_vma(vma);
1893         struct vm_area_struct *iter_vma;
1894         struct address_space *mapping;
1895         struct prio_tree_iter iter;
1896         pgoff_t pgoff;
1897
1898         /*
1899          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1900          * from page cache lookup which is in HPAGE_SIZE units.
1901          */
1902         address = address & huge_page_mask(h);
1903         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1904                 + (vma->vm_pgoff >> PAGE_SHIFT);
1905         mapping = (struct address_space *)page_private(page);
1906
1907         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1908                 /* Do not unmap the current VMA */
1909                 if (iter_vma == vma)
1910                         continue;
1911
1912                 /*
1913                  * Unmap the page from other VMAs without their own reserves.
1914                  * They get marked to be SIGKILLed if they fault in these
1915                  * areas. This is because a future no-page fault on this VMA
1916                  * could insert a zeroed page instead of the data existing
1917                  * from the time of fork. This would look like data corruption
1918                  */
1919                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1920                         unmap_hugepage_range(iter_vma,
1921                                 address, address + huge_page_size(h),
1922                                 page);
1923         }
1924
1925         return 1;
1926 }
1927
1928 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1929                         unsigned long address, pte_t *ptep, pte_t pte,
1930                         struct page *pagecache_page)
1931 {
1932         struct hstate *h = hstate_vma(vma);
1933         struct page *old_page, *new_page;
1934         int avoidcopy;
1935         int outside_reserve = 0;
1936
1937         old_page = pte_page(pte);
1938
1939 retry_avoidcopy:
1940         /* If no-one else is actually using this page, avoid the copy
1941          * and just make the page writable */
1942         avoidcopy = (page_count(old_page) == 1);
1943         if (avoidcopy) {
1944                 set_huge_ptep_writable(vma, address, ptep);
1945                 return 0;
1946         }
1947
1948         /*
1949          * If the process that created a MAP_PRIVATE mapping is about to
1950          * perform a COW due to a shared page count, attempt to satisfy
1951          * the allocation without using the existing reserves. The pagecache
1952          * page is used to determine if the reserve at this address was
1953          * consumed or not. If reserves were used, a partial faulted mapping
1954          * at the time of fork() could consume its reserves on COW instead
1955          * of the full address range.
1956          */
1957         if (!(vma->vm_flags & VM_MAYSHARE) &&
1958                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1959                         old_page != pagecache_page)
1960                 outside_reserve = 1;
1961
1962         page_cache_get(old_page);
1963         new_page = alloc_huge_page(vma, address, outside_reserve);
1964
1965         if (IS_ERR(new_page)) {
1966                 page_cache_release(old_page);
1967
1968                 /*
1969                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1970                  * it is due to references held by a child and an insufficient
1971                  * huge page pool. To guarantee the original mappers
1972                  * reliability, unmap the page from child processes. The child
1973                  * may get SIGKILLed if it later faults.
1974                  */
1975                 if (outside_reserve) {
1976                         BUG_ON(huge_pte_none(pte));
1977                         if (unmap_ref_private(mm, vma, old_page, address)) {
1978                                 BUG_ON(page_count(old_page) != 1);
1979                                 BUG_ON(huge_pte_none(pte));
1980                                 goto retry_avoidcopy;
1981                         }
1982                         WARN_ON_ONCE(1);
1983                 }
1984
1985                 return -PTR_ERR(new_page);
1986         }
1987
1988         spin_unlock(&mm->page_table_lock);
1989         copy_huge_page(new_page, old_page, address, vma);
1990         __SetPageUptodate(new_page);
1991         spin_lock(&mm->page_table_lock);
1992
1993         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1994         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1995                 /* Break COW */
1996                 huge_ptep_clear_flush(vma, address, ptep);
1997                 set_huge_pte_at(mm, address, ptep,
1998                                 make_huge_pte(vma, new_page, 1));
1999                 /* Make the old page be freed below */
2000                 new_page = old_page;
2001         }
2002         page_cache_release(new_page);
2003         page_cache_release(old_page);
2004         return 0;
2005 }
2006
2007 /* Return the pagecache page at a given address within a VMA */
2008 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2009                         struct vm_area_struct *vma, unsigned long address)
2010 {
2011         struct address_space *mapping;
2012         pgoff_t idx;
2013
2014         mapping = vma->vm_file->f_mapping;
2015         idx = vma_hugecache_offset(h, vma, address);
2016
2017         return find_lock_page(mapping, idx);
2018 }
2019
2020 /*
2021  * Return whether there is a pagecache page to back given address within VMA.
2022  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2023  */
2024 static bool hugetlbfs_pagecache_present(struct hstate *h,
2025                         struct vm_area_struct *vma, unsigned long address)
2026 {
2027         struct address_space *mapping;
2028         pgoff_t idx;
2029         struct page *page;
2030
2031         mapping = vma->vm_file->f_mapping;
2032         idx = vma_hugecache_offset(h, vma, address);
2033
2034         page = find_get_page(mapping, idx);
2035         if (page)
2036                 put_page(page);
2037         return page != NULL;
2038 }
2039
2040 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2041                         unsigned long address, pte_t *ptep, unsigned int flags)
2042 {
2043         struct hstate *h = hstate_vma(vma);
2044         int ret = VM_FAULT_SIGBUS;
2045         pgoff_t idx;
2046         unsigned long size;
2047         struct page *page;
2048         struct address_space *mapping;
2049         pte_t new_pte;
2050
2051         /*
2052          * Currently, we are forced to kill the process in the event the
2053          * original mapper has unmapped pages from the child due to a failed
2054          * COW. Warn that such a situation has occured as it may not be obvious
2055          */
2056         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2057                 printk(KERN_WARNING
2058                         "PID %d killed due to inadequate hugepage pool\n",
2059                         current->pid);
2060                 return ret;
2061         }
2062
2063         mapping = vma->vm_file->f_mapping;
2064         idx = vma_hugecache_offset(h, vma, address);
2065
2066         /*
2067          * Use page lock to guard against racing truncation
2068          * before we get page_table_lock.
2069          */
2070 retry:
2071         page = find_lock_page(mapping, idx);
2072         if (!page) {
2073                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2074                 if (idx >= size)
2075                         goto out;
2076                 page = alloc_huge_page(vma, address, 0);
2077                 if (IS_ERR(page)) {
2078                         ret = -PTR_ERR(page);
2079                         goto out;
2080                 }
2081                 clear_huge_page(page, address, huge_page_size(h));
2082                 __SetPageUptodate(page);
2083
2084                 if (vma->vm_flags & VM_MAYSHARE) {
2085                         int err;
2086                         struct inode *inode = mapping->host;
2087
2088                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2089                         if (err) {
2090                                 put_page(page);
2091                                 if (err == -EEXIST)
2092                                         goto retry;
2093                                 goto out;
2094                         }
2095
2096                         spin_lock(&inode->i_lock);
2097                         inode->i_blocks += blocks_per_huge_page(h);
2098                         spin_unlock(&inode->i_lock);
2099                 } else {
2100                         lock_page(page);
2101                         page->mapping = HUGETLB_POISON;
2102                 }
2103         }
2104
2105         /*
2106          * If we are going to COW a private mapping later, we examine the
2107          * pending reservations for this page now. This will ensure that
2108          * any allocations necessary to record that reservation occur outside
2109          * the spinlock.
2110          */
2111         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2112                 if (vma_needs_reservation(h, vma, address) < 0) {
2113                         ret = VM_FAULT_OOM;
2114                         goto backout_unlocked;
2115                 }
2116
2117         spin_lock(&mm->page_table_lock);
2118         size = i_size_read(mapping->host) >> huge_page_shift(h);
2119         if (idx >= size)
2120                 goto backout;
2121
2122         ret = 0;
2123         if (!huge_pte_none(huge_ptep_get(ptep)))
2124                 goto backout;
2125
2126         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2127                                 && (vma->vm_flags & VM_SHARED)));
2128         set_huge_pte_at(mm, address, ptep, new_pte);
2129
2130         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2131                 /* Optimization, do the COW without a second fault */
2132                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2133         }
2134
2135         spin_unlock(&mm->page_table_lock);
2136         unlock_page(page);
2137 out:
2138         return ret;
2139
2140 backout:
2141         spin_unlock(&mm->page_table_lock);
2142 backout_unlocked:
2143         unlock_page(page);
2144         put_page(page);
2145         goto out;
2146 }
2147
2148 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2149                         unsigned long address, unsigned int flags)
2150 {
2151         pte_t *ptep;
2152         pte_t entry;
2153         int ret;
2154         struct page *pagecache_page = NULL;
2155         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2156         struct hstate *h = hstate_vma(vma);
2157
2158         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2159         if (!ptep)
2160                 return VM_FAULT_OOM;
2161
2162         /*
2163          * Serialize hugepage allocation and instantiation, so that we don't
2164          * get spurious allocation failures if two CPUs race to instantiate
2165          * the same page in the page cache.
2166          */
2167         mutex_lock(&hugetlb_instantiation_mutex);
2168         entry = huge_ptep_get(ptep);
2169         if (huge_pte_none(entry)) {
2170                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2171                 goto out_mutex;
2172         }
2173
2174         ret = 0;
2175
2176         /*
2177          * If we are going to COW the mapping later, we examine the pending
2178          * reservations for this page now. This will ensure that any
2179          * allocations necessary to record that reservation occur outside the
2180          * spinlock. For private mappings, we also lookup the pagecache
2181          * page now as it is used to determine if a reservation has been
2182          * consumed.
2183          */
2184         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2185                 if (vma_needs_reservation(h, vma, address) < 0) {
2186                         ret = VM_FAULT_OOM;
2187                         goto out_mutex;
2188                 }
2189
2190                 if (!(vma->vm_flags & VM_MAYSHARE))
2191                         pagecache_page = hugetlbfs_pagecache_page(h,
2192                                                                 vma, address);
2193         }
2194
2195         spin_lock(&mm->page_table_lock);
2196         /* Check for a racing update before calling hugetlb_cow */
2197         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2198                 goto out_page_table_lock;
2199
2200
2201         if (flags & FAULT_FLAG_WRITE) {
2202                 if (!pte_write(entry)) {
2203                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2204                                                         pagecache_page);
2205                         goto out_page_table_lock;
2206                 }
2207                 entry = pte_mkdirty(entry);
2208         }
2209         entry = pte_mkyoung(entry);
2210         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2211                                                 flags & FAULT_FLAG_WRITE))
2212                 update_mmu_cache(vma, address, entry);
2213
2214 out_page_table_lock:
2215         spin_unlock(&mm->page_table_lock);
2216
2217         if (pagecache_page) {
2218                 unlock_page(pagecache_page);
2219                 put_page(pagecache_page);
2220         }
2221
2222 out_mutex:
2223         mutex_unlock(&hugetlb_instantiation_mutex);
2224
2225         return ret;
2226 }
2227
2228 /* Can be overriden by architectures */
2229 __attribute__((weak)) struct page *
2230 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2231                pud_t *pud, int write)
2232 {
2233         BUG();
2234         return NULL;
2235 }
2236
2237 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2238                         struct page **pages, struct vm_area_struct **vmas,
2239                         unsigned long *position, int *length, int i,
2240                         unsigned int flags)
2241 {
2242         unsigned long pfn_offset;
2243         unsigned long vaddr = *position;
2244         int remainder = *length;
2245         struct hstate *h = hstate_vma(vma);
2246
2247         spin_lock(&mm->page_table_lock);
2248         while (vaddr < vma->vm_end && remainder) {
2249                 pte_t *pte;
2250                 int absent;
2251                 struct page *page;
2252
2253                 /*
2254                  * Some archs (sparc64, sh*) have multiple pte_ts to
2255                  * each hugepage.  We have to make sure we get the
2256                  * first, for the page indexing below to work.
2257                  */
2258                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2259                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2260
2261                 /*
2262                  * When coredumping, it suits get_dump_page if we just return
2263                  * an error where there's an empty slot with no huge pagecache
2264                  * to back it.  This way, we avoid allocating a hugepage, and
2265                  * the sparse dumpfile avoids allocating disk blocks, but its
2266                  * huge holes still show up with zeroes where they need to be.
2267                  */
2268                 if (absent && (flags & FOLL_DUMP) &&
2269                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2270                         remainder = 0;
2271                         break;
2272                 }
2273
2274                 if (absent ||
2275                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2276                         int ret;
2277
2278                         spin_unlock(&mm->page_table_lock);
2279                         ret = hugetlb_fault(mm, vma, vaddr,
2280                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2281                         spin_lock(&mm->page_table_lock);
2282                         if (!(ret & VM_FAULT_ERROR))
2283                                 continue;
2284
2285                         remainder = 0;
2286                         break;
2287                 }
2288
2289                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2290                 page = pte_page(huge_ptep_get(pte));
2291 same_page:
2292                 if (pages) {
2293                         pages[i] = mem_map_offset(page, pfn_offset);
2294                         get_page(pages[i]);
2295                 }
2296
2297                 if (vmas)
2298                         vmas[i] = vma;
2299
2300                 vaddr += PAGE_SIZE;
2301                 ++pfn_offset;
2302                 --remainder;
2303                 ++i;
2304                 if (vaddr < vma->vm_end && remainder &&
2305                                 pfn_offset < pages_per_huge_page(h)) {
2306                         /*
2307                          * We use pfn_offset to avoid touching the pageframes
2308                          * of this compound page.
2309                          */
2310                         goto same_page;
2311                 }
2312         }
2313         spin_unlock(&mm->page_table_lock);
2314         *length = remainder;
2315         *position = vaddr;
2316
2317         return i ? i : -EFAULT;
2318 }
2319
2320 void hugetlb_change_protection(struct vm_area_struct *vma,
2321                 unsigned long address, unsigned long end, pgprot_t newprot)
2322 {
2323         struct mm_struct *mm = vma->vm_mm;
2324         unsigned long start = address;
2325         pte_t *ptep;
2326         pte_t pte;
2327         struct hstate *h = hstate_vma(vma);
2328
2329         BUG_ON(address >= end);
2330         flush_cache_range(vma, address, end);
2331
2332         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2333         spin_lock(&mm->page_table_lock);
2334         for (; address < end; address += huge_page_size(h)) {
2335                 ptep = huge_pte_offset(mm, address);
2336                 if (!ptep)
2337                         continue;
2338                 if (huge_pmd_unshare(mm, &address, ptep))
2339                         continue;
2340                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2341                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2342                         pte = pte_mkhuge(pte_modify(pte, newprot));
2343                         set_huge_pte_at(mm, address, ptep, pte);
2344                 }
2345         }
2346         spin_unlock(&mm->page_table_lock);
2347         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2348
2349         flush_tlb_range(vma, start, end);
2350 }
2351
2352 int hugetlb_reserve_pages(struct inode *inode,
2353                                         long from, long to,
2354                                         struct vm_area_struct *vma,
2355                                         int acctflag)
2356 {
2357         long ret, chg;
2358         struct hstate *h = hstate_inode(inode);
2359
2360         /*
2361          * Only apply hugepage reservation if asked. At fault time, an
2362          * attempt will be made for VM_NORESERVE to allocate a page
2363          * and filesystem quota without using reserves
2364          */
2365         if (acctflag & VM_NORESERVE)
2366                 return 0;
2367
2368         /*
2369          * Shared mappings base their reservation on the number of pages that
2370          * are already allocated on behalf of the file. Private mappings need
2371          * to reserve the full area even if read-only as mprotect() may be
2372          * called to make the mapping read-write. Assume !vma is a shm mapping
2373          */
2374         if (!vma || vma->vm_flags & VM_MAYSHARE)
2375                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2376         else {
2377                 struct resv_map *resv_map = resv_map_alloc();
2378                 if (!resv_map)
2379                         return -ENOMEM;
2380
2381                 chg = to - from;
2382
2383                 set_vma_resv_map(vma, resv_map);
2384                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2385         }
2386
2387         if (chg < 0)
2388                 return chg;
2389
2390         /* There must be enough filesystem quota for the mapping */
2391         if (hugetlb_get_quota(inode->i_mapping, chg))
2392                 return -ENOSPC;
2393
2394         /*
2395          * Check enough hugepages are available for the reservation.
2396          * Hand back the quota if there are not
2397          */
2398         ret = hugetlb_acct_memory(h, chg);
2399         if (ret < 0) {
2400                 hugetlb_put_quota(inode->i_mapping, chg);
2401                 return ret;
2402         }
2403
2404         /*
2405          * Account for the reservations made. Shared mappings record regions
2406          * that have reservations as they are shared by multiple VMAs.
2407          * When the last VMA disappears, the region map says how much
2408          * the reservation was and the page cache tells how much of
2409          * the reservation was consumed. Private mappings are per-VMA and
2410          * only the consumed reservations are tracked. When the VMA
2411          * disappears, the original reservation is the VMA size and the
2412          * consumed reservations are stored in the map. Hence, nothing
2413          * else has to be done for private mappings here
2414          */
2415         if (!vma || vma->vm_flags & VM_MAYSHARE)
2416                 region_add(&inode->i_mapping->private_list, from, to);
2417         return 0;
2418 }
2419
2420 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2421 {
2422         struct hstate *h = hstate_inode(inode);
2423         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2424
2425         spin_lock(&inode->i_lock);
2426         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2427         spin_unlock(&inode->i_lock);
2428
2429         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2430         hugetlb_acct_memory(h, -(chg - freed));
2431 }