]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memcontrol.c
mm: memcontrol: reclaim and OOM kill when shrinking memory.max below usage
[karo-tx-linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mem_cgroup *from;
211         struct mem_cgroup *to;
212         unsigned long flags;
213         unsigned long precharge;
214         unsigned long moved_charge;
215         unsigned long moved_swap;
216         struct task_struct *moving_task;        /* a task moving charges */
217         wait_queue_head_t waitq;                /* a waitq for other context */
218 } mc = {
219         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225  * limit reclaim to prevent infinite loops, if they ever occur.
226  */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232         MEM_CGROUP_CHARGE_TYPE_ANON,
233         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
235         NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240         _MEM,
241         _MEMSWAP,
242         _OOM_TYPE,
243         _KMEM,
244         _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL             (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256         if (!memcg)
257                 memcg = root_mem_cgroup;
258         return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268         return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274  * The main reason for not using cgroup id for this:
275  *  this works better in sparse environments, where we have a lot of memcgs,
276  *  but only a few kmem-limited. Or also, if we have, for instance, 200
277  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
278  *  200 entry array for that.
279  *
280  * The current size of the caches array is stored in memcg_nr_cache_ids. It
281  * will double each time we have to increase it.
282  */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291         down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296         up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300  * MIN_SIZE is different than 1, because we would like to avoid going through
301  * the alloc/free process all the time. In a small machine, 4 kmem-limited
302  * cgroups is a reasonable guess. In the future, it could be a parameter or
303  * tunable, but that is strictly not necessary.
304  *
305  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306  * this constant directly from cgroup, but it is understandable that this is
307  * better kept as an internal representation in cgroup.c. In any case, the
308  * cgrp_id space is not getting any smaller, and we don't have to necessarily
309  * increase ours as well if it increases.
310  */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315  * A lot of the calls to the cache allocation functions are expected to be
316  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317  * conditional to this static branch, we'll have to allow modules that does
318  * kmem_cache_alloc and the such to see this symbol as well
319  */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328         int nid = zone_to_nid(zone);
329         int zid = zone_idx(zone);
330
331         return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335  * mem_cgroup_css_from_page - css of the memcg associated with a page
336  * @page: page of interest
337  *
338  * If memcg is bound to the default hierarchy, css of the memcg associated
339  * with @page is returned.  The returned css remains associated with @page
340  * until it is released.
341  *
342  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343  * is returned.
344  */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347         struct mem_cgroup *memcg;
348
349         memcg = page->mem_cgroup;
350
351         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352                 memcg = root_mem_cgroup;
353
354         return &memcg->css;
355 }
356
357 /**
358  * page_cgroup_ino - return inode number of the memcg a page is charged to
359  * @page: the page
360  *
361  * Look up the closest online ancestor of the memory cgroup @page is charged to
362  * and return its inode number or 0 if @page is not charged to any cgroup. It
363  * is safe to call this function without holding a reference to @page.
364  *
365  * Note, this function is inherently racy, because there is nothing to prevent
366  * the cgroup inode from getting torn down and potentially reallocated a moment
367  * after page_cgroup_ino() returns, so it only should be used by callers that
368  * do not care (such as procfs interfaces).
369  */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372         struct mem_cgroup *memcg;
373         unsigned long ino = 0;
374
375         rcu_read_lock();
376         memcg = READ_ONCE(page->mem_cgroup);
377         while (memcg && !(memcg->css.flags & CSS_ONLINE))
378                 memcg = parent_mem_cgroup(memcg);
379         if (memcg)
380                 ino = cgroup_ino(memcg->css.cgroup);
381         rcu_read_unlock();
382         return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388         int nid = page_to_nid(page);
389         int zid = page_zonenum(page);
390
391         return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403         int nid = page_to_nid(page);
404         int zid = page_zonenum(page);
405
406         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410                                          struct mem_cgroup_tree_per_zone *mctz,
411                                          unsigned long new_usage_in_excess)
412 {
413         struct rb_node **p = &mctz->rb_root.rb_node;
414         struct rb_node *parent = NULL;
415         struct mem_cgroup_per_zone *mz_node;
416
417         if (mz->on_tree)
418                 return;
419
420         mz->usage_in_excess = new_usage_in_excess;
421         if (!mz->usage_in_excess)
422                 return;
423         while (*p) {
424                 parent = *p;
425                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426                                         tree_node);
427                 if (mz->usage_in_excess < mz_node->usage_in_excess)
428                         p = &(*p)->rb_left;
429                 /*
430                  * We can't avoid mem cgroups that are over their soft
431                  * limit by the same amount
432                  */
433                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434                         p = &(*p)->rb_right;
435         }
436         rb_link_node(&mz->tree_node, parent, p);
437         rb_insert_color(&mz->tree_node, &mctz->rb_root);
438         mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442                                          struct mem_cgroup_tree_per_zone *mctz)
443 {
444         if (!mz->on_tree)
445                 return;
446         rb_erase(&mz->tree_node, &mctz->rb_root);
447         mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451                                        struct mem_cgroup_tree_per_zone *mctz)
452 {
453         unsigned long flags;
454
455         spin_lock_irqsave(&mctz->lock, flags);
456         __mem_cgroup_remove_exceeded(mz, mctz);
457         spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462         unsigned long nr_pages = page_counter_read(&memcg->memory);
463         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464         unsigned long excess = 0;
465
466         if (nr_pages > soft_limit)
467                 excess = nr_pages - soft_limit;
468
469         return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474         unsigned long excess;
475         struct mem_cgroup_per_zone *mz;
476         struct mem_cgroup_tree_per_zone *mctz;
477
478         mctz = soft_limit_tree_from_page(page);
479         /*
480          * Necessary to update all ancestors when hierarchy is used.
481          * because their event counter is not touched.
482          */
483         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484                 mz = mem_cgroup_page_zoneinfo(memcg, page);
485                 excess = soft_limit_excess(memcg);
486                 /*
487                  * We have to update the tree if mz is on RB-tree or
488                  * mem is over its softlimit.
489                  */
490                 if (excess || mz->on_tree) {
491                         unsigned long flags;
492
493                         spin_lock_irqsave(&mctz->lock, flags);
494                         /* if on-tree, remove it */
495                         if (mz->on_tree)
496                                 __mem_cgroup_remove_exceeded(mz, mctz);
497                         /*
498                          * Insert again. mz->usage_in_excess will be updated.
499                          * If excess is 0, no tree ops.
500                          */
501                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
502                         spin_unlock_irqrestore(&mctz->lock, flags);
503                 }
504         }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509         struct mem_cgroup_tree_per_zone *mctz;
510         struct mem_cgroup_per_zone *mz;
511         int nid, zid;
512
513         for_each_node(nid) {
514                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516                         mctz = soft_limit_tree_node_zone(nid, zid);
517                         mem_cgroup_remove_exceeded(mz, mctz);
518                 }
519         }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525         struct rb_node *rightmost = NULL;
526         struct mem_cgroup_per_zone *mz;
527
528 retry:
529         mz = NULL;
530         rightmost = rb_last(&mctz->rb_root);
531         if (!rightmost)
532                 goto done;              /* Nothing to reclaim from */
533
534         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535         /*
536          * Remove the node now but someone else can add it back,
537          * we will to add it back at the end of reclaim to its correct
538          * position in the tree.
539          */
540         __mem_cgroup_remove_exceeded(mz, mctz);
541         if (!soft_limit_excess(mz->memcg) ||
542             !css_tryget_online(&mz->memcg->css))
543                 goto retry;
544 done:
545         return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551         struct mem_cgroup_per_zone *mz;
552
553         spin_lock_irq(&mctz->lock);
554         mz = __mem_cgroup_largest_soft_limit_node(mctz);
555         spin_unlock_irq(&mctz->lock);
556         return mz;
557 }
558
559 /*
560  * Return page count for single (non recursive) @memcg.
561  *
562  * Implementation Note: reading percpu statistics for memcg.
563  *
564  * Both of vmstat[] and percpu_counter has threshold and do periodic
565  * synchronization to implement "quick" read. There are trade-off between
566  * reading cost and precision of value. Then, we may have a chance to implement
567  * a periodic synchronization of counter in memcg's counter.
568  *
569  * But this _read() function is used for user interface now. The user accounts
570  * memory usage by memory cgroup and he _always_ requires exact value because
571  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572  * have to visit all online cpus and make sum. So, for now, unnecessary
573  * synchronization is not implemented. (just implemented for cpu hotplug)
574  *
575  * If there are kernel internal actions which can make use of some not-exact
576  * value, and reading all cpu value can be performance bottleneck in some
577  * common workload, threshold and synchronization as vmstat[] should be
578  * implemented.
579  */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583         long val = 0;
584         int cpu;
585
586         /* Per-cpu values can be negative, use a signed accumulator */
587         for_each_possible_cpu(cpu)
588                 val += per_cpu(memcg->stat->count[idx], cpu);
589         /*
590          * Summing races with updates, so val may be negative.  Avoid exposing
591          * transient negative values.
592          */
593         if (val < 0)
594                 val = 0;
595         return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599                                             enum mem_cgroup_events_index idx)
600 {
601         unsigned long val = 0;
602         int cpu;
603
604         for_each_possible_cpu(cpu)
605                 val += per_cpu(memcg->stat->events[idx], cpu);
606         return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610                                          struct page *page,
611                                          bool compound, int nr_pages)
612 {
613         /*
614          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615          * counted as CACHE even if it's on ANON LRU.
616          */
617         if (PageAnon(page))
618                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619                                 nr_pages);
620         else
621                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622                                 nr_pages);
623
624         if (compound) {
625                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627                                 nr_pages);
628         }
629
630         /* pagein of a big page is an event. So, ignore page size */
631         if (nr_pages > 0)
632                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633         else {
634                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635                 nr_pages = -nr_pages; /* for event */
636         }
637
638         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642                                            int nid, unsigned int lru_mask)
643 {
644         unsigned long nr = 0;
645         int zid;
646
647         VM_BUG_ON((unsigned)nid >= nr_node_ids);
648
649         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650                 struct mem_cgroup_per_zone *mz;
651                 enum lru_list lru;
652
653                 for_each_lru(lru) {
654                         if (!(BIT(lru) & lru_mask))
655                                 continue;
656                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657                         nr += mz->lru_size[lru];
658                 }
659         }
660         return nr;
661 }
662
663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
664                         unsigned int lru_mask)
665 {
666         unsigned long nr = 0;
667         int nid;
668
669         for_each_node_state(nid, N_MEMORY)
670                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671         return nr;
672 }
673
674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675                                        enum mem_cgroup_events_target target)
676 {
677         unsigned long val, next;
678
679         val = __this_cpu_read(memcg->stat->nr_page_events);
680         next = __this_cpu_read(memcg->stat->targets[target]);
681         /* from time_after() in jiffies.h */
682         if ((long)next - (long)val < 0) {
683                 switch (target) {
684                 case MEM_CGROUP_TARGET_THRESH:
685                         next = val + THRESHOLDS_EVENTS_TARGET;
686                         break;
687                 case MEM_CGROUP_TARGET_SOFTLIMIT:
688                         next = val + SOFTLIMIT_EVENTS_TARGET;
689                         break;
690                 case MEM_CGROUP_TARGET_NUMAINFO:
691                         next = val + NUMAINFO_EVENTS_TARGET;
692                         break;
693                 default:
694                         break;
695                 }
696                 __this_cpu_write(memcg->stat->targets[target], next);
697                 return true;
698         }
699         return false;
700 }
701
702 /*
703  * Check events in order.
704  *
705  */
706 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
707 {
708         /* threshold event is triggered in finer grain than soft limit */
709         if (unlikely(mem_cgroup_event_ratelimit(memcg,
710                                                 MEM_CGROUP_TARGET_THRESH))) {
711                 bool do_softlimit;
712                 bool do_numainfo __maybe_unused;
713
714                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
715                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
716 #if MAX_NUMNODES > 1
717                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
718                                                 MEM_CGROUP_TARGET_NUMAINFO);
719 #endif
720                 mem_cgroup_threshold(memcg);
721                 if (unlikely(do_softlimit))
722                         mem_cgroup_update_tree(memcg, page);
723 #if MAX_NUMNODES > 1
724                 if (unlikely(do_numainfo))
725                         atomic_inc(&memcg->numainfo_events);
726 #endif
727         }
728 }
729
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731 {
732         /*
733          * mm_update_next_owner() may clear mm->owner to NULL
734          * if it races with swapoff, page migration, etc.
735          * So this can be called with p == NULL.
736          */
737         if (unlikely(!p))
738                 return NULL;
739
740         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
741 }
742 EXPORT_SYMBOL(mem_cgroup_from_task);
743
744 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
745 {
746         struct mem_cgroup *memcg = NULL;
747
748         rcu_read_lock();
749         do {
750                 /*
751                  * Page cache insertions can happen withou an
752                  * actual mm context, e.g. during disk probing
753                  * on boot, loopback IO, acct() writes etc.
754                  */
755                 if (unlikely(!mm))
756                         memcg = root_mem_cgroup;
757                 else {
758                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759                         if (unlikely(!memcg))
760                                 memcg = root_mem_cgroup;
761                 }
762         } while (!css_tryget_online(&memcg->css));
763         rcu_read_unlock();
764         return memcg;
765 }
766
767 /**
768  * mem_cgroup_iter - iterate over memory cgroup hierarchy
769  * @root: hierarchy root
770  * @prev: previously returned memcg, NULL on first invocation
771  * @reclaim: cookie for shared reclaim walks, NULL for full walks
772  *
773  * Returns references to children of the hierarchy below @root, or
774  * @root itself, or %NULL after a full round-trip.
775  *
776  * Caller must pass the return value in @prev on subsequent
777  * invocations for reference counting, or use mem_cgroup_iter_break()
778  * to cancel a hierarchy walk before the round-trip is complete.
779  *
780  * Reclaimers can specify a zone and a priority level in @reclaim to
781  * divide up the memcgs in the hierarchy among all concurrent
782  * reclaimers operating on the same zone and priority.
783  */
784 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
785                                    struct mem_cgroup *prev,
786                                    struct mem_cgroup_reclaim_cookie *reclaim)
787 {
788         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
789         struct cgroup_subsys_state *css = NULL;
790         struct mem_cgroup *memcg = NULL;
791         struct mem_cgroup *pos = NULL;
792
793         if (mem_cgroup_disabled())
794                 return NULL;
795
796         if (!root)
797                 root = root_mem_cgroup;
798
799         if (prev && !reclaim)
800                 pos = prev;
801
802         if (!root->use_hierarchy && root != root_mem_cgroup) {
803                 if (prev)
804                         goto out;
805                 return root;
806         }
807
808         rcu_read_lock();
809
810         if (reclaim) {
811                 struct mem_cgroup_per_zone *mz;
812
813                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814                 iter = &mz->iter[reclaim->priority];
815
816                 if (prev && reclaim->generation != iter->generation)
817                         goto out_unlock;
818
819                 while (1) {
820                         pos = READ_ONCE(iter->position);
821                         if (!pos || css_tryget(&pos->css))
822                                 break;
823                         /*
824                          * css reference reached zero, so iter->position will
825                          * be cleared by ->css_released. However, we should not
826                          * rely on this happening soon, because ->css_released
827                          * is called from a work queue, and by busy-waiting we
828                          * might block it. So we clear iter->position right
829                          * away.
830                          */
831                         (void)cmpxchg(&iter->position, pos, NULL);
832                 }
833         }
834
835         if (pos)
836                 css = &pos->css;
837
838         for (;;) {
839                 css = css_next_descendant_pre(css, &root->css);
840                 if (!css) {
841                         /*
842                          * Reclaimers share the hierarchy walk, and a
843                          * new one might jump in right at the end of
844                          * the hierarchy - make sure they see at least
845                          * one group and restart from the beginning.
846                          */
847                         if (!prev)
848                                 continue;
849                         break;
850                 }
851
852                 /*
853                  * Verify the css and acquire a reference.  The root
854                  * is provided by the caller, so we know it's alive
855                  * and kicking, and don't take an extra reference.
856                  */
857                 memcg = mem_cgroup_from_css(css);
858
859                 if (css == &root->css)
860                         break;
861
862                 if (css_tryget(css))
863                         break;
864
865                 memcg = NULL;
866         }
867
868         if (reclaim) {
869                 /*
870                  * The position could have already been updated by a competing
871                  * thread, so check that the value hasn't changed since we read
872                  * it to avoid reclaiming from the same cgroup twice.
873                  */
874                 (void)cmpxchg(&iter->position, pos, memcg);
875
876                 if (pos)
877                         css_put(&pos->css);
878
879                 if (!memcg)
880                         iter->generation++;
881                 else if (!prev)
882                         reclaim->generation = iter->generation;
883         }
884
885 out_unlock:
886         rcu_read_unlock();
887 out:
888         if (prev && prev != root)
889                 css_put(&prev->css);
890
891         return memcg;
892 }
893
894 /**
895  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896  * @root: hierarchy root
897  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898  */
899 void mem_cgroup_iter_break(struct mem_cgroup *root,
900                            struct mem_cgroup *prev)
901 {
902         if (!root)
903                 root = root_mem_cgroup;
904         if (prev && prev != root)
905                 css_put(&prev->css);
906 }
907
908 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909 {
910         struct mem_cgroup *memcg = dead_memcg;
911         struct mem_cgroup_reclaim_iter *iter;
912         struct mem_cgroup_per_zone *mz;
913         int nid, zid;
914         int i;
915
916         while ((memcg = parent_mem_cgroup(memcg))) {
917                 for_each_node(nid) {
918                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920                                 for (i = 0; i <= DEF_PRIORITY; i++) {
921                                         iter = &mz->iter[i];
922                                         cmpxchg(&iter->position,
923                                                 dead_memcg, NULL);
924                                 }
925                         }
926                 }
927         }
928 }
929
930 /*
931  * Iteration constructs for visiting all cgroups (under a tree).  If
932  * loops are exited prematurely (break), mem_cgroup_iter_break() must
933  * be used for reference counting.
934  */
935 #define for_each_mem_cgroup_tree(iter, root)            \
936         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
937              iter != NULL;                              \
938              iter = mem_cgroup_iter(root, iter, NULL))
939
940 #define for_each_mem_cgroup(iter)                       \
941         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
942              iter != NULL;                              \
943              iter = mem_cgroup_iter(NULL, iter, NULL))
944
945 /**
946  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947  * @zone: zone of the wanted lruvec
948  * @memcg: memcg of the wanted lruvec
949  *
950  * Returns the lru list vector holding pages for the given @zone and
951  * @mem.  This can be the global zone lruvec, if the memory controller
952  * is disabled.
953  */
954 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955                                       struct mem_cgroup *memcg)
956 {
957         struct mem_cgroup_per_zone *mz;
958         struct lruvec *lruvec;
959
960         if (mem_cgroup_disabled()) {
961                 lruvec = &zone->lruvec;
962                 goto out;
963         }
964
965         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
966         lruvec = &mz->lruvec;
967 out:
968         /*
969          * Since a node can be onlined after the mem_cgroup was created,
970          * we have to be prepared to initialize lruvec->zone here;
971          * and if offlined then reonlined, we need to reinitialize it.
972          */
973         if (unlikely(lruvec->zone != zone))
974                 lruvec->zone = zone;
975         return lruvec;
976 }
977
978 /**
979  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
980  * @page: the page
981  * @zone: zone of the page
982  *
983  * This function is only safe when following the LRU page isolation
984  * and putback protocol: the LRU lock must be held, and the page must
985  * either be PageLRU() or the caller must have isolated/allocated it.
986  */
987 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
988 {
989         struct mem_cgroup_per_zone *mz;
990         struct mem_cgroup *memcg;
991         struct lruvec *lruvec;
992
993         if (mem_cgroup_disabled()) {
994                 lruvec = &zone->lruvec;
995                 goto out;
996         }
997
998         memcg = page->mem_cgroup;
999         /*
1000          * Swapcache readahead pages are added to the LRU - and
1001          * possibly migrated - before they are charged.
1002          */
1003         if (!memcg)
1004                 memcg = root_mem_cgroup;
1005
1006         mz = mem_cgroup_page_zoneinfo(memcg, page);
1007         lruvec = &mz->lruvec;
1008 out:
1009         /*
1010          * Since a node can be onlined after the mem_cgroup was created,
1011          * we have to be prepared to initialize lruvec->zone here;
1012          * and if offlined then reonlined, we need to reinitialize it.
1013          */
1014         if (unlikely(lruvec->zone != zone))
1015                 lruvec->zone = zone;
1016         return lruvec;
1017 }
1018
1019 /**
1020  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021  * @lruvec: mem_cgroup per zone lru vector
1022  * @lru: index of lru list the page is sitting on
1023  * @nr_pages: positive when adding or negative when removing
1024  *
1025  * This function must be called when a page is added to or removed from an
1026  * lru list.
1027  */
1028 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029                                 int nr_pages)
1030 {
1031         struct mem_cgroup_per_zone *mz;
1032         unsigned long *lru_size;
1033
1034         if (mem_cgroup_disabled())
1035                 return;
1036
1037         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038         lru_size = mz->lru_size + lru;
1039         *lru_size += nr_pages;
1040         VM_BUG_ON((long)(*lru_size) < 0);
1041 }
1042
1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 {
1045         struct mem_cgroup *task_memcg;
1046         struct task_struct *p;
1047         bool ret;
1048
1049         p = find_lock_task_mm(task);
1050         if (p) {
1051                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1052                 task_unlock(p);
1053         } else {
1054                 /*
1055                  * All threads may have already detached their mm's, but the oom
1056                  * killer still needs to detect if they have already been oom
1057                  * killed to prevent needlessly killing additional tasks.
1058                  */
1059                 rcu_read_lock();
1060                 task_memcg = mem_cgroup_from_task(task);
1061                 css_get(&task_memcg->css);
1062                 rcu_read_unlock();
1063         }
1064         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065         css_put(&task_memcg->css);
1066         return ret;
1067 }
1068
1069 /**
1070  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071  * @memcg: the memory cgroup
1072  *
1073  * Returns the maximum amount of memory @mem can be charged with, in
1074  * pages.
1075  */
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 {
1078         unsigned long margin = 0;
1079         unsigned long count;
1080         unsigned long limit;
1081
1082         count = page_counter_read(&memcg->memory);
1083         limit = READ_ONCE(memcg->memory.limit);
1084         if (count < limit)
1085                 margin = limit - count;
1086
1087         if (do_memsw_account()) {
1088                 count = page_counter_read(&memcg->memsw);
1089                 limit = READ_ONCE(memcg->memsw.limit);
1090                 if (count <= limit)
1091                         margin = min(margin, limit - count);
1092         }
1093
1094         return margin;
1095 }
1096
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106         struct mem_cgroup *from;
1107         struct mem_cgroup *to;
1108         bool ret = false;
1109         /*
1110          * Unlike task_move routines, we access mc.to, mc.from not under
1111          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112          */
1113         spin_lock(&mc.lock);
1114         from = mc.from;
1115         to = mc.to;
1116         if (!from)
1117                 goto unlock;
1118
1119         ret = mem_cgroup_is_descendant(from, memcg) ||
1120                 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122         spin_unlock(&mc.lock);
1123         return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128         if (mc.moving_task && current != mc.moving_task) {
1129                 if (mem_cgroup_under_move(memcg)) {
1130                         DEFINE_WAIT(wait);
1131                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132                         /* moving charge context might have finished. */
1133                         if (mc.moving_task)
1134                                 schedule();
1135                         finish_wait(&mc.waitq, &wait);
1136                         return true;
1137                 }
1138         }
1139         return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153         /* oom_info_lock ensures that parallel ooms do not interleave */
1154         static DEFINE_MUTEX(oom_info_lock);
1155         struct mem_cgroup *iter;
1156         unsigned int i;
1157
1158         mutex_lock(&oom_info_lock);
1159         rcu_read_lock();
1160
1161         if (p) {
1162                 pr_info("Task in ");
1163                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1164                 pr_cont(" killed as a result of limit of ");
1165         } else {
1166                 pr_info("Memory limit reached of cgroup ");
1167         }
1168
1169         pr_cont_cgroup_path(memcg->css.cgroup);
1170         pr_cont("\n");
1171
1172         rcu_read_unlock();
1173
1174         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1175                 K((u64)page_counter_read(&memcg->memory)),
1176                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1177         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1178                 K((u64)page_counter_read(&memcg->memsw)),
1179                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1180         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1181                 K((u64)page_counter_read(&memcg->kmem)),
1182                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1183
1184         for_each_mem_cgroup_tree(iter, memcg) {
1185                 pr_info("Memory cgroup stats for ");
1186                 pr_cont_cgroup_path(iter->css.cgroup);
1187                 pr_cont(":");
1188
1189                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1190                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1191                                 continue;
1192                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1193                                 K(mem_cgroup_read_stat(iter, i)));
1194                 }
1195
1196                 for (i = 0; i < NR_LRU_LISTS; i++)
1197                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1198                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1199
1200                 pr_cont("\n");
1201         }
1202         mutex_unlock(&oom_info_lock);
1203 }
1204
1205 /*
1206  * This function returns the number of memcg under hierarchy tree. Returns
1207  * 1(self count) if no children.
1208  */
1209 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1210 {
1211         int num = 0;
1212         struct mem_cgroup *iter;
1213
1214         for_each_mem_cgroup_tree(iter, memcg)
1215                 num++;
1216         return num;
1217 }
1218
1219 /*
1220  * Return the memory (and swap, if configured) limit for a memcg.
1221  */
1222 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1223 {
1224         unsigned long limit;
1225
1226         limit = memcg->memory.limit;
1227         if (mem_cgroup_swappiness(memcg)) {
1228                 unsigned long memsw_limit;
1229                 unsigned long swap_limit;
1230
1231                 memsw_limit = memcg->memsw.limit;
1232                 swap_limit = memcg->swap.limit;
1233                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1234                 limit = min(limit + swap_limit, memsw_limit);
1235         }
1236         return limit;
1237 }
1238
1239 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1240                                      int order)
1241 {
1242         struct oom_control oc = {
1243                 .zonelist = NULL,
1244                 .nodemask = NULL,
1245                 .gfp_mask = gfp_mask,
1246                 .order = order,
1247         };
1248         struct mem_cgroup *iter;
1249         unsigned long chosen_points = 0;
1250         unsigned long totalpages;
1251         unsigned int points = 0;
1252         struct task_struct *chosen = NULL;
1253
1254         mutex_lock(&oom_lock);
1255
1256         /*
1257          * If current has a pending SIGKILL or is exiting, then automatically
1258          * select it.  The goal is to allow it to allocate so that it may
1259          * quickly exit and free its memory.
1260          */
1261         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1262                 mark_oom_victim(current);
1263                 goto unlock;
1264         }
1265
1266         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1267         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1268         for_each_mem_cgroup_tree(iter, memcg) {
1269                 struct css_task_iter it;
1270                 struct task_struct *task;
1271
1272                 css_task_iter_start(&iter->css, &it);
1273                 while ((task = css_task_iter_next(&it))) {
1274                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1275                         case OOM_SCAN_SELECT:
1276                                 if (chosen)
1277                                         put_task_struct(chosen);
1278                                 chosen = task;
1279                                 chosen_points = ULONG_MAX;
1280                                 get_task_struct(chosen);
1281                                 /* fall through */
1282                         case OOM_SCAN_CONTINUE:
1283                                 continue;
1284                         case OOM_SCAN_ABORT:
1285                                 css_task_iter_end(&it);
1286                                 mem_cgroup_iter_break(memcg, iter);
1287                                 if (chosen)
1288                                         put_task_struct(chosen);
1289                                 goto unlock;
1290                         case OOM_SCAN_OK:
1291                                 break;
1292                         };
1293                         points = oom_badness(task, memcg, NULL, totalpages);
1294                         if (!points || points < chosen_points)
1295                                 continue;
1296                         /* Prefer thread group leaders for display purposes */
1297                         if (points == chosen_points &&
1298                             thread_group_leader(chosen))
1299                                 continue;
1300
1301                         if (chosen)
1302                                 put_task_struct(chosen);
1303                         chosen = task;
1304                         chosen_points = points;
1305                         get_task_struct(chosen);
1306                 }
1307                 css_task_iter_end(&it);
1308         }
1309
1310         if (chosen) {
1311                 points = chosen_points * 1000 / totalpages;
1312                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1313                                  "Memory cgroup out of memory");
1314         }
1315 unlock:
1316         mutex_unlock(&oom_lock);
1317         return chosen;
1318 }
1319
1320 #if MAX_NUMNODES > 1
1321
1322 /**
1323  * test_mem_cgroup_node_reclaimable
1324  * @memcg: the target memcg
1325  * @nid: the node ID to be checked.
1326  * @noswap : specify true here if the user wants flle only information.
1327  *
1328  * This function returns whether the specified memcg contains any
1329  * reclaimable pages on a node. Returns true if there are any reclaimable
1330  * pages in the node.
1331  */
1332 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333                 int nid, bool noswap)
1334 {
1335         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336                 return true;
1337         if (noswap || !total_swap_pages)
1338                 return false;
1339         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340                 return true;
1341         return false;
1342
1343 }
1344
1345 /*
1346  * Always updating the nodemask is not very good - even if we have an empty
1347  * list or the wrong list here, we can start from some node and traverse all
1348  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349  *
1350  */
1351 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 {
1353         int nid;
1354         /*
1355          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356          * pagein/pageout changes since the last update.
1357          */
1358         if (!atomic_read(&memcg->numainfo_events))
1359                 return;
1360         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361                 return;
1362
1363         /* make a nodemask where this memcg uses memory from */
1364         memcg->scan_nodes = node_states[N_MEMORY];
1365
1366         for_each_node_mask(nid, node_states[N_MEMORY]) {
1367
1368                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369                         node_clear(nid, memcg->scan_nodes);
1370         }
1371
1372         atomic_set(&memcg->numainfo_events, 0);
1373         atomic_set(&memcg->numainfo_updating, 0);
1374 }
1375
1376 /*
1377  * Selecting a node where we start reclaim from. Because what we need is just
1378  * reducing usage counter, start from anywhere is O,K. Considering
1379  * memory reclaim from current node, there are pros. and cons.
1380  *
1381  * Freeing memory from current node means freeing memory from a node which
1382  * we'll use or we've used. So, it may make LRU bad. And if several threads
1383  * hit limits, it will see a contention on a node. But freeing from remote
1384  * node means more costs for memory reclaim because of memory latency.
1385  *
1386  * Now, we use round-robin. Better algorithm is welcomed.
1387  */
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390         int node;
1391
1392         mem_cgroup_may_update_nodemask(memcg);
1393         node = memcg->last_scanned_node;
1394
1395         node = next_node(node, memcg->scan_nodes);
1396         if (node == MAX_NUMNODES)
1397                 node = first_node(memcg->scan_nodes);
1398         /*
1399          * We call this when we hit limit, not when pages are added to LRU.
1400          * No LRU may hold pages because all pages are UNEVICTABLE or
1401          * memcg is too small and all pages are not on LRU. In that case,
1402          * we use curret node.
1403          */
1404         if (unlikely(node == MAX_NUMNODES))
1405                 node = numa_node_id();
1406
1407         memcg->last_scanned_node = node;
1408         return node;
1409 }
1410 #else
1411 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 {
1413         return 0;
1414 }
1415 #endif
1416
1417 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418                                    struct zone *zone,
1419                                    gfp_t gfp_mask,
1420                                    unsigned long *total_scanned)
1421 {
1422         struct mem_cgroup *victim = NULL;
1423         int total = 0;
1424         int loop = 0;
1425         unsigned long excess;
1426         unsigned long nr_scanned;
1427         struct mem_cgroup_reclaim_cookie reclaim = {
1428                 .zone = zone,
1429                 .priority = 0,
1430         };
1431
1432         excess = soft_limit_excess(root_memcg);
1433
1434         while (1) {
1435                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436                 if (!victim) {
1437                         loop++;
1438                         if (loop >= 2) {
1439                                 /*
1440                                  * If we have not been able to reclaim
1441                                  * anything, it might because there are
1442                                  * no reclaimable pages under this hierarchy
1443                                  */
1444                                 if (!total)
1445                                         break;
1446                                 /*
1447                                  * We want to do more targeted reclaim.
1448                                  * excess >> 2 is not to excessive so as to
1449                                  * reclaim too much, nor too less that we keep
1450                                  * coming back to reclaim from this cgroup
1451                                  */
1452                                 if (total >= (excess >> 2) ||
1453                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454                                         break;
1455                         }
1456                         continue;
1457                 }
1458                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459                                                      zone, &nr_scanned);
1460                 *total_scanned += nr_scanned;
1461                 if (!soft_limit_excess(root_memcg))
1462                         break;
1463         }
1464         mem_cgroup_iter_break(root_memcg, victim);
1465         return total;
1466 }
1467
1468 #ifdef CONFIG_LOCKDEP
1469 static struct lockdep_map memcg_oom_lock_dep_map = {
1470         .name = "memcg_oom_lock",
1471 };
1472 #endif
1473
1474 static DEFINE_SPINLOCK(memcg_oom_lock);
1475
1476 /*
1477  * Check OOM-Killer is already running under our hierarchy.
1478  * If someone is running, return false.
1479  */
1480 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1481 {
1482         struct mem_cgroup *iter, *failed = NULL;
1483
1484         spin_lock(&memcg_oom_lock);
1485
1486         for_each_mem_cgroup_tree(iter, memcg) {
1487                 if (iter->oom_lock) {
1488                         /*
1489                          * this subtree of our hierarchy is already locked
1490                          * so we cannot give a lock.
1491                          */
1492                         failed = iter;
1493                         mem_cgroup_iter_break(memcg, iter);
1494                         break;
1495                 } else
1496                         iter->oom_lock = true;
1497         }
1498
1499         if (failed) {
1500                 /*
1501                  * OK, we failed to lock the whole subtree so we have
1502                  * to clean up what we set up to the failing subtree
1503                  */
1504                 for_each_mem_cgroup_tree(iter, memcg) {
1505                         if (iter == failed) {
1506                                 mem_cgroup_iter_break(memcg, iter);
1507                                 break;
1508                         }
1509                         iter->oom_lock = false;
1510                 }
1511         } else
1512                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513
1514         spin_unlock(&memcg_oom_lock);
1515
1516         return !failed;
1517 }
1518
1519 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520 {
1521         struct mem_cgroup *iter;
1522
1523         spin_lock(&memcg_oom_lock);
1524         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525         for_each_mem_cgroup_tree(iter, memcg)
1526                 iter->oom_lock = false;
1527         spin_unlock(&memcg_oom_lock);
1528 }
1529
1530 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 {
1532         struct mem_cgroup *iter;
1533
1534         spin_lock(&memcg_oom_lock);
1535         for_each_mem_cgroup_tree(iter, memcg)
1536                 iter->under_oom++;
1537         spin_unlock(&memcg_oom_lock);
1538 }
1539
1540 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 {
1542         struct mem_cgroup *iter;
1543
1544         /*
1545          * When a new child is created while the hierarchy is under oom,
1546          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1547          */
1548         spin_lock(&memcg_oom_lock);
1549         for_each_mem_cgroup_tree(iter, memcg)
1550                 if (iter->under_oom > 0)
1551                         iter->under_oom--;
1552         spin_unlock(&memcg_oom_lock);
1553 }
1554
1555 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
1557 struct oom_wait_info {
1558         struct mem_cgroup *memcg;
1559         wait_queue_t    wait;
1560 };
1561
1562 static int memcg_oom_wake_function(wait_queue_t *wait,
1563         unsigned mode, int sync, void *arg)
1564 {
1565         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566         struct mem_cgroup *oom_wait_memcg;
1567         struct oom_wait_info *oom_wait_info;
1568
1569         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570         oom_wait_memcg = oom_wait_info->memcg;
1571
1572         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1574                 return 0;
1575         return autoremove_wake_function(wait, mode, sync, arg);
1576 }
1577
1578 static void memcg_oom_recover(struct mem_cgroup *memcg)
1579 {
1580         /*
1581          * For the following lockless ->under_oom test, the only required
1582          * guarantee is that it must see the state asserted by an OOM when
1583          * this function is called as a result of userland actions
1584          * triggered by the notification of the OOM.  This is trivially
1585          * achieved by invoking mem_cgroup_mark_under_oom() before
1586          * triggering notification.
1587          */
1588         if (memcg && memcg->under_oom)
1589                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 }
1591
1592 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593 {
1594         if (!current->memcg_may_oom)
1595                 return;
1596         /*
1597          * We are in the middle of the charge context here, so we
1598          * don't want to block when potentially sitting on a callstack
1599          * that holds all kinds of filesystem and mm locks.
1600          *
1601          * Also, the caller may handle a failed allocation gracefully
1602          * (like optional page cache readahead) and so an OOM killer
1603          * invocation might not even be necessary.
1604          *
1605          * That's why we don't do anything here except remember the
1606          * OOM context and then deal with it at the end of the page
1607          * fault when the stack is unwound, the locks are released,
1608          * and when we know whether the fault was overall successful.
1609          */
1610         css_get(&memcg->css);
1611         current->memcg_in_oom = memcg;
1612         current->memcg_oom_gfp_mask = mask;
1613         current->memcg_oom_order = order;
1614 }
1615
1616 /**
1617  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618  * @handle: actually kill/wait or just clean up the OOM state
1619  *
1620  * This has to be called at the end of a page fault if the memcg OOM
1621  * handler was enabled.
1622  *
1623  * Memcg supports userspace OOM handling where failed allocations must
1624  * sleep on a waitqueue until the userspace task resolves the
1625  * situation.  Sleeping directly in the charge context with all kinds
1626  * of locks held is not a good idea, instead we remember an OOM state
1627  * in the task and mem_cgroup_oom_synchronize() has to be called at
1628  * the end of the page fault to complete the OOM handling.
1629  *
1630  * Returns %true if an ongoing memcg OOM situation was detected and
1631  * completed, %false otherwise.
1632  */
1633 bool mem_cgroup_oom_synchronize(bool handle)
1634 {
1635         struct mem_cgroup *memcg = current->memcg_in_oom;
1636         struct oom_wait_info owait;
1637         bool locked;
1638
1639         /* OOM is global, do not handle */
1640         if (!memcg)
1641                 return false;
1642
1643         if (!handle || oom_killer_disabled)
1644                 goto cleanup;
1645
1646         owait.memcg = memcg;
1647         owait.wait.flags = 0;
1648         owait.wait.func = memcg_oom_wake_function;
1649         owait.wait.private = current;
1650         INIT_LIST_HEAD(&owait.wait.task_list);
1651
1652         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653         mem_cgroup_mark_under_oom(memcg);
1654
1655         locked = mem_cgroup_oom_trylock(memcg);
1656
1657         if (locked)
1658                 mem_cgroup_oom_notify(memcg);
1659
1660         if (locked && !memcg->oom_kill_disable) {
1661                 mem_cgroup_unmark_under_oom(memcg);
1662                 finish_wait(&memcg_oom_waitq, &owait.wait);
1663                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664                                          current->memcg_oom_order);
1665         } else {
1666                 schedule();
1667                 mem_cgroup_unmark_under_oom(memcg);
1668                 finish_wait(&memcg_oom_waitq, &owait.wait);
1669         }
1670
1671         if (locked) {
1672                 mem_cgroup_oom_unlock(memcg);
1673                 /*
1674                  * There is no guarantee that an OOM-lock contender
1675                  * sees the wakeups triggered by the OOM kill
1676                  * uncharges.  Wake any sleepers explicitely.
1677                  */
1678                 memcg_oom_recover(memcg);
1679         }
1680 cleanup:
1681         current->memcg_in_oom = NULL;
1682         css_put(&memcg->css);
1683         return true;
1684 }
1685
1686 /**
1687  * lock_page_memcg - lock a page->mem_cgroup binding
1688  * @page: the page
1689  *
1690  * This function protects unlocked LRU pages from being moved to
1691  * another cgroup and stabilizes their page->mem_cgroup binding.
1692  */
1693 void lock_page_memcg(struct page *page)
1694 {
1695         struct mem_cgroup *memcg;
1696         unsigned long flags;
1697
1698         /*
1699          * The RCU lock is held throughout the transaction.  The fast
1700          * path can get away without acquiring the memcg->move_lock
1701          * because page moving starts with an RCU grace period.
1702          */
1703         rcu_read_lock();
1704
1705         if (mem_cgroup_disabled())
1706                 return;
1707 again:
1708         memcg = page->mem_cgroup;
1709         if (unlikely(!memcg))
1710                 return;
1711
1712         if (atomic_read(&memcg->moving_account) <= 0)
1713                 return;
1714
1715         spin_lock_irqsave(&memcg->move_lock, flags);
1716         if (memcg != page->mem_cgroup) {
1717                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1718                 goto again;
1719         }
1720
1721         /*
1722          * When charge migration first begins, we can have locked and
1723          * unlocked page stat updates happening concurrently.  Track
1724          * the task who has the lock for unlock_page_memcg().
1725          */
1726         memcg->move_lock_task = current;
1727         memcg->move_lock_flags = flags;
1728
1729         return;
1730 }
1731 EXPORT_SYMBOL(lock_page_memcg);
1732
1733 /**
1734  * unlock_page_memcg - unlock a page->mem_cgroup binding
1735  * @page: the page
1736  */
1737 void unlock_page_memcg(struct page *page)
1738 {
1739         struct mem_cgroup *memcg = page->mem_cgroup;
1740
1741         if (memcg && memcg->move_lock_task == current) {
1742                 unsigned long flags = memcg->move_lock_flags;
1743
1744                 memcg->move_lock_task = NULL;
1745                 memcg->move_lock_flags = 0;
1746
1747                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1748         }
1749
1750         rcu_read_unlock();
1751 }
1752 EXPORT_SYMBOL(unlock_page_memcg);
1753
1754 /*
1755  * size of first charge trial. "32" comes from vmscan.c's magic value.
1756  * TODO: maybe necessary to use big numbers in big irons.
1757  */
1758 #define CHARGE_BATCH    32U
1759 struct memcg_stock_pcp {
1760         struct mem_cgroup *cached; /* this never be root cgroup */
1761         unsigned int nr_pages;
1762         struct work_struct work;
1763         unsigned long flags;
1764 #define FLUSHING_CACHED_CHARGE  0
1765 };
1766 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1767 static DEFINE_MUTEX(percpu_charge_mutex);
1768
1769 /**
1770  * consume_stock: Try to consume stocked charge on this cpu.
1771  * @memcg: memcg to consume from.
1772  * @nr_pages: how many pages to charge.
1773  *
1774  * The charges will only happen if @memcg matches the current cpu's memcg
1775  * stock, and at least @nr_pages are available in that stock.  Failure to
1776  * service an allocation will refill the stock.
1777  *
1778  * returns true if successful, false otherwise.
1779  */
1780 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1781 {
1782         struct memcg_stock_pcp *stock;
1783         bool ret = false;
1784
1785         if (nr_pages > CHARGE_BATCH)
1786                 return ret;
1787
1788         stock = &get_cpu_var(memcg_stock);
1789         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1790                 stock->nr_pages -= nr_pages;
1791                 ret = true;
1792         }
1793         put_cpu_var(memcg_stock);
1794         return ret;
1795 }
1796
1797 /*
1798  * Returns stocks cached in percpu and reset cached information.
1799  */
1800 static void drain_stock(struct memcg_stock_pcp *stock)
1801 {
1802         struct mem_cgroup *old = stock->cached;
1803
1804         if (stock->nr_pages) {
1805                 page_counter_uncharge(&old->memory, stock->nr_pages);
1806                 if (do_memsw_account())
1807                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1808                 css_put_many(&old->css, stock->nr_pages);
1809                 stock->nr_pages = 0;
1810         }
1811         stock->cached = NULL;
1812 }
1813
1814 /*
1815  * This must be called under preempt disabled or must be called by
1816  * a thread which is pinned to local cpu.
1817  */
1818 static void drain_local_stock(struct work_struct *dummy)
1819 {
1820         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1821         drain_stock(stock);
1822         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 }
1824
1825 /*
1826  * Cache charges(val) to local per_cpu area.
1827  * This will be consumed by consume_stock() function, later.
1828  */
1829 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1830 {
1831         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832
1833         if (stock->cached != memcg) { /* reset if necessary */
1834                 drain_stock(stock);
1835                 stock->cached = memcg;
1836         }
1837         stock->nr_pages += nr_pages;
1838         put_cpu_var(memcg_stock);
1839 }
1840
1841 /*
1842  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1843  * of the hierarchy under it.
1844  */
1845 static void drain_all_stock(struct mem_cgroup *root_memcg)
1846 {
1847         int cpu, curcpu;
1848
1849         /* If someone's already draining, avoid adding running more workers. */
1850         if (!mutex_trylock(&percpu_charge_mutex))
1851                 return;
1852         /* Notify other cpus that system-wide "drain" is running */
1853         get_online_cpus();
1854         curcpu = get_cpu();
1855         for_each_online_cpu(cpu) {
1856                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1857                 struct mem_cgroup *memcg;
1858
1859                 memcg = stock->cached;
1860                 if (!memcg || !stock->nr_pages)
1861                         continue;
1862                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1863                         continue;
1864                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865                         if (cpu == curcpu)
1866                                 drain_local_stock(&stock->work);
1867                         else
1868                                 schedule_work_on(cpu, &stock->work);
1869                 }
1870         }
1871         put_cpu();
1872         put_online_cpus();
1873         mutex_unlock(&percpu_charge_mutex);
1874 }
1875
1876 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1877                                         unsigned long action,
1878                                         void *hcpu)
1879 {
1880         int cpu = (unsigned long)hcpu;
1881         struct memcg_stock_pcp *stock;
1882
1883         if (action == CPU_ONLINE)
1884                 return NOTIFY_OK;
1885
1886         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1887                 return NOTIFY_OK;
1888
1889         stock = &per_cpu(memcg_stock, cpu);
1890         drain_stock(stock);
1891         return NOTIFY_OK;
1892 }
1893
1894 static void reclaim_high(struct mem_cgroup *memcg,
1895                          unsigned int nr_pages,
1896                          gfp_t gfp_mask)
1897 {
1898         do {
1899                 if (page_counter_read(&memcg->memory) <= memcg->high)
1900                         continue;
1901                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903         } while ((memcg = parent_mem_cgroup(memcg)));
1904 }
1905
1906 static void high_work_func(struct work_struct *work)
1907 {
1908         struct mem_cgroup *memcg;
1909
1910         memcg = container_of(work, struct mem_cgroup, high_work);
1911         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912 }
1913
1914 /*
1915  * Scheduled by try_charge() to be executed from the userland return path
1916  * and reclaims memory over the high limit.
1917  */
1918 void mem_cgroup_handle_over_high(void)
1919 {
1920         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1921         struct mem_cgroup *memcg;
1922
1923         if (likely(!nr_pages))
1924                 return;
1925
1926         memcg = get_mem_cgroup_from_mm(current->mm);
1927         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1928         css_put(&memcg->css);
1929         current->memcg_nr_pages_over_high = 0;
1930 }
1931
1932 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933                       unsigned int nr_pages)
1934 {
1935         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1936         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1937         struct mem_cgroup *mem_over_limit;
1938         struct page_counter *counter;
1939         unsigned long nr_reclaimed;
1940         bool may_swap = true;
1941         bool drained = false;
1942
1943         if (mem_cgroup_is_root(memcg))
1944                 return 0;
1945 retry:
1946         if (consume_stock(memcg, nr_pages))
1947                 return 0;
1948
1949         if (!do_memsw_account() ||
1950             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1952                         goto done_restock;
1953                 if (do_memsw_account())
1954                         page_counter_uncharge(&memcg->memsw, batch);
1955                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1956         } else {
1957                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1958                 may_swap = false;
1959         }
1960
1961         if (batch > nr_pages) {
1962                 batch = nr_pages;
1963                 goto retry;
1964         }
1965
1966         /*
1967          * Unlike in global OOM situations, memcg is not in a physical
1968          * memory shortage.  Allow dying and OOM-killed tasks to
1969          * bypass the last charges so that they can exit quickly and
1970          * free their memory.
1971          */
1972         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973                      fatal_signal_pending(current) ||
1974                      current->flags & PF_EXITING))
1975                 goto force;
1976
1977         if (unlikely(task_in_memcg_oom(current)))
1978                 goto nomem;
1979
1980         if (!gfpflags_allow_blocking(gfp_mask))
1981                 goto nomem;
1982
1983         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984
1985         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986                                                     gfp_mask, may_swap);
1987
1988         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1989                 goto retry;
1990
1991         if (!drained) {
1992                 drain_all_stock(mem_over_limit);
1993                 drained = true;
1994                 goto retry;
1995         }
1996
1997         if (gfp_mask & __GFP_NORETRY)
1998                 goto nomem;
1999         /*
2000          * Even though the limit is exceeded at this point, reclaim
2001          * may have been able to free some pages.  Retry the charge
2002          * before killing the task.
2003          *
2004          * Only for regular pages, though: huge pages are rather
2005          * unlikely to succeed so close to the limit, and we fall back
2006          * to regular pages anyway in case of failure.
2007          */
2008         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2009                 goto retry;
2010         /*
2011          * At task move, charge accounts can be doubly counted. So, it's
2012          * better to wait until the end of task_move if something is going on.
2013          */
2014         if (mem_cgroup_wait_acct_move(mem_over_limit))
2015                 goto retry;
2016
2017         if (nr_retries--)
2018                 goto retry;
2019
2020         if (gfp_mask & __GFP_NOFAIL)
2021                 goto force;
2022
2023         if (fatal_signal_pending(current))
2024                 goto force;
2025
2026         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027
2028         mem_cgroup_oom(mem_over_limit, gfp_mask,
2029                        get_order(nr_pages * PAGE_SIZE));
2030 nomem:
2031         if (!(gfp_mask & __GFP_NOFAIL))
2032                 return -ENOMEM;
2033 force:
2034         /*
2035          * The allocation either can't fail or will lead to more memory
2036          * being freed very soon.  Allow memory usage go over the limit
2037          * temporarily by force charging it.
2038          */
2039         page_counter_charge(&memcg->memory, nr_pages);
2040         if (do_memsw_account())
2041                 page_counter_charge(&memcg->memsw, nr_pages);
2042         css_get_many(&memcg->css, nr_pages);
2043
2044         return 0;
2045
2046 done_restock:
2047         css_get_many(&memcg->css, batch);
2048         if (batch > nr_pages)
2049                 refill_stock(memcg, batch - nr_pages);
2050
2051         /*
2052          * If the hierarchy is above the normal consumption range, schedule
2053          * reclaim on returning to userland.  We can perform reclaim here
2054          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2055          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2056          * not recorded as it most likely matches current's and won't
2057          * change in the meantime.  As high limit is checked again before
2058          * reclaim, the cost of mismatch is negligible.
2059          */
2060         do {
2061                 if (page_counter_read(&memcg->memory) > memcg->high) {
2062                         /* Don't bother a random interrupted task */
2063                         if (in_interrupt()) {
2064                                 schedule_work(&memcg->high_work);
2065                                 break;
2066                         }
2067                         current->memcg_nr_pages_over_high += batch;
2068                         set_notify_resume(current);
2069                         break;
2070                 }
2071         } while ((memcg = parent_mem_cgroup(memcg)));
2072
2073         return 0;
2074 }
2075
2076 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 {
2078         if (mem_cgroup_is_root(memcg))
2079                 return;
2080
2081         page_counter_uncharge(&memcg->memory, nr_pages);
2082         if (do_memsw_account())
2083                 page_counter_uncharge(&memcg->memsw, nr_pages);
2084
2085         css_put_many(&memcg->css, nr_pages);
2086 }
2087
2088 static void lock_page_lru(struct page *page, int *isolated)
2089 {
2090         struct zone *zone = page_zone(page);
2091
2092         spin_lock_irq(&zone->lru_lock);
2093         if (PageLRU(page)) {
2094                 struct lruvec *lruvec;
2095
2096                 lruvec = mem_cgroup_page_lruvec(page, zone);
2097                 ClearPageLRU(page);
2098                 del_page_from_lru_list(page, lruvec, page_lru(page));
2099                 *isolated = 1;
2100         } else
2101                 *isolated = 0;
2102 }
2103
2104 static void unlock_page_lru(struct page *page, int isolated)
2105 {
2106         struct zone *zone = page_zone(page);
2107
2108         if (isolated) {
2109                 struct lruvec *lruvec;
2110
2111                 lruvec = mem_cgroup_page_lruvec(page, zone);
2112                 VM_BUG_ON_PAGE(PageLRU(page), page);
2113                 SetPageLRU(page);
2114                 add_page_to_lru_list(page, lruvec, page_lru(page));
2115         }
2116         spin_unlock_irq(&zone->lru_lock);
2117 }
2118
2119 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2120                           bool lrucare)
2121 {
2122         int isolated;
2123
2124         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2125
2126         /*
2127          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128          * may already be on some other mem_cgroup's LRU.  Take care of it.
2129          */
2130         if (lrucare)
2131                 lock_page_lru(page, &isolated);
2132
2133         /*
2134          * Nobody should be changing or seriously looking at
2135          * page->mem_cgroup at this point:
2136          *
2137          * - the page is uncharged
2138          *
2139          * - the page is off-LRU
2140          *
2141          * - an anonymous fault has exclusive page access, except for
2142          *   a locked page table
2143          *
2144          * - a page cache insertion, a swapin fault, or a migration
2145          *   have the page locked
2146          */
2147         page->mem_cgroup = memcg;
2148
2149         if (lrucare)
2150                 unlock_page_lru(page, isolated);
2151 }
2152
2153 #ifndef CONFIG_SLOB
2154 static int memcg_alloc_cache_id(void)
2155 {
2156         int id, size;
2157         int err;
2158
2159         id = ida_simple_get(&memcg_cache_ida,
2160                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161         if (id < 0)
2162                 return id;
2163
2164         if (id < memcg_nr_cache_ids)
2165                 return id;
2166
2167         /*
2168          * There's no space for the new id in memcg_caches arrays,
2169          * so we have to grow them.
2170          */
2171         down_write(&memcg_cache_ids_sem);
2172
2173         size = 2 * (id + 1);
2174         if (size < MEMCG_CACHES_MIN_SIZE)
2175                 size = MEMCG_CACHES_MIN_SIZE;
2176         else if (size > MEMCG_CACHES_MAX_SIZE)
2177                 size = MEMCG_CACHES_MAX_SIZE;
2178
2179         err = memcg_update_all_caches(size);
2180         if (!err)
2181                 err = memcg_update_all_list_lrus(size);
2182         if (!err)
2183                 memcg_nr_cache_ids = size;
2184
2185         up_write(&memcg_cache_ids_sem);
2186
2187         if (err) {
2188                 ida_simple_remove(&memcg_cache_ida, id);
2189                 return err;
2190         }
2191         return id;
2192 }
2193
2194 static void memcg_free_cache_id(int id)
2195 {
2196         ida_simple_remove(&memcg_cache_ida, id);
2197 }
2198
2199 struct memcg_kmem_cache_create_work {
2200         struct mem_cgroup *memcg;
2201         struct kmem_cache *cachep;
2202         struct work_struct work;
2203 };
2204
2205 static void memcg_kmem_cache_create_func(struct work_struct *w)
2206 {
2207         struct memcg_kmem_cache_create_work *cw =
2208                 container_of(w, struct memcg_kmem_cache_create_work, work);
2209         struct mem_cgroup *memcg = cw->memcg;
2210         struct kmem_cache *cachep = cw->cachep;
2211
2212         memcg_create_kmem_cache(memcg, cachep);
2213
2214         css_put(&memcg->css);
2215         kfree(cw);
2216 }
2217
2218 /*
2219  * Enqueue the creation of a per-memcg kmem_cache.
2220  */
2221 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222                                                struct kmem_cache *cachep)
2223 {
2224         struct memcg_kmem_cache_create_work *cw;
2225
2226         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2227         if (!cw)
2228                 return;
2229
2230         css_get(&memcg->css);
2231
2232         cw->memcg = memcg;
2233         cw->cachep = cachep;
2234         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2235
2236         schedule_work(&cw->work);
2237 }
2238
2239 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240                                              struct kmem_cache *cachep)
2241 {
2242         /*
2243          * We need to stop accounting when we kmalloc, because if the
2244          * corresponding kmalloc cache is not yet created, the first allocation
2245          * in __memcg_schedule_kmem_cache_create will recurse.
2246          *
2247          * However, it is better to enclose the whole function. Depending on
2248          * the debugging options enabled, INIT_WORK(), for instance, can
2249          * trigger an allocation. This too, will make us recurse. Because at
2250          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251          * the safest choice is to do it like this, wrapping the whole function.
2252          */
2253         current->memcg_kmem_skip_account = 1;
2254         __memcg_schedule_kmem_cache_create(memcg, cachep);
2255         current->memcg_kmem_skip_account = 0;
2256 }
2257
2258 /*
2259  * Return the kmem_cache we're supposed to use for a slab allocation.
2260  * We try to use the current memcg's version of the cache.
2261  *
2262  * If the cache does not exist yet, if we are the first user of it,
2263  * we either create it immediately, if possible, or create it asynchronously
2264  * in a workqueue.
2265  * In the latter case, we will let the current allocation go through with
2266  * the original cache.
2267  *
2268  * Can't be called in interrupt context or from kernel threads.
2269  * This function needs to be called with rcu_read_lock() held.
2270  */
2271 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2272 {
2273         struct mem_cgroup *memcg;
2274         struct kmem_cache *memcg_cachep;
2275         int kmemcg_id;
2276
2277         VM_BUG_ON(!is_root_cache(cachep));
2278
2279         if (cachep->flags & SLAB_ACCOUNT)
2280                 gfp |= __GFP_ACCOUNT;
2281
2282         if (!(gfp & __GFP_ACCOUNT))
2283                 return cachep;
2284
2285         if (current->memcg_kmem_skip_account)
2286                 return cachep;
2287
2288         memcg = get_mem_cgroup_from_mm(current->mm);
2289         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2290         if (kmemcg_id < 0)
2291                 goto out;
2292
2293         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2294         if (likely(memcg_cachep))
2295                 return memcg_cachep;
2296
2297         /*
2298          * If we are in a safe context (can wait, and not in interrupt
2299          * context), we could be be predictable and return right away.
2300          * This would guarantee that the allocation being performed
2301          * already belongs in the new cache.
2302          *
2303          * However, there are some clashes that can arrive from locking.
2304          * For instance, because we acquire the slab_mutex while doing
2305          * memcg_create_kmem_cache, this means no further allocation
2306          * could happen with the slab_mutex held. So it's better to
2307          * defer everything.
2308          */
2309         memcg_schedule_kmem_cache_create(memcg, cachep);
2310 out:
2311         css_put(&memcg->css);
2312         return cachep;
2313 }
2314
2315 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316 {
2317         if (!is_root_cache(cachep))
2318                 css_put(&cachep->memcg_params.memcg->css);
2319 }
2320
2321 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322                               struct mem_cgroup *memcg)
2323 {
2324         unsigned int nr_pages = 1 << order;
2325         struct page_counter *counter;
2326         int ret;
2327
2328         ret = try_charge(memcg, gfp, nr_pages);
2329         if (ret)
2330                 return ret;
2331
2332         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2333             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2334                 cancel_charge(memcg, nr_pages);
2335                 return -ENOMEM;
2336         }
2337
2338         page->mem_cgroup = memcg;
2339
2340         return 0;
2341 }
2342
2343 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2344 {
2345         struct mem_cgroup *memcg;
2346         int ret = 0;
2347
2348         memcg = get_mem_cgroup_from_mm(current->mm);
2349         if (!mem_cgroup_is_root(memcg))
2350                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351         css_put(&memcg->css);
2352         return ret;
2353 }
2354
2355 void __memcg_kmem_uncharge(struct page *page, int order)
2356 {
2357         struct mem_cgroup *memcg = page->mem_cgroup;
2358         unsigned int nr_pages = 1 << order;
2359
2360         if (!memcg)
2361                 return;
2362
2363         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2364
2365         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2366                 page_counter_uncharge(&memcg->kmem, nr_pages);
2367
2368         page_counter_uncharge(&memcg->memory, nr_pages);
2369         if (do_memsw_account())
2370                 page_counter_uncharge(&memcg->memsw, nr_pages);
2371
2372         page->mem_cgroup = NULL;
2373         css_put_many(&memcg->css, nr_pages);
2374 }
2375 #endif /* !CONFIG_SLOB */
2376
2377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378
2379 /*
2380  * Because tail pages are not marked as "used", set it. We're under
2381  * zone->lru_lock and migration entries setup in all page mappings.
2382  */
2383 void mem_cgroup_split_huge_fixup(struct page *head)
2384 {
2385         int i;
2386
2387         if (mem_cgroup_disabled())
2388                 return;
2389
2390         for (i = 1; i < HPAGE_PMD_NR; i++)
2391                 head[i].mem_cgroup = head->mem_cgroup;
2392
2393         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2394                        HPAGE_PMD_NR);
2395 }
2396 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2397
2398 #ifdef CONFIG_MEMCG_SWAP
2399 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2400                                          bool charge)
2401 {
2402         int val = (charge) ? 1 : -1;
2403         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2404 }
2405
2406 /**
2407  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2408  * @entry: swap entry to be moved
2409  * @from:  mem_cgroup which the entry is moved from
2410  * @to:  mem_cgroup which the entry is moved to
2411  *
2412  * It succeeds only when the swap_cgroup's record for this entry is the same
2413  * as the mem_cgroup's id of @from.
2414  *
2415  * Returns 0 on success, -EINVAL on failure.
2416  *
2417  * The caller must have charged to @to, IOW, called page_counter_charge() about
2418  * both res and memsw, and called css_get().
2419  */
2420 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2421                                 struct mem_cgroup *from, struct mem_cgroup *to)
2422 {
2423         unsigned short old_id, new_id;
2424
2425         old_id = mem_cgroup_id(from);
2426         new_id = mem_cgroup_id(to);
2427
2428         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2429                 mem_cgroup_swap_statistics(from, false);
2430                 mem_cgroup_swap_statistics(to, true);
2431                 return 0;
2432         }
2433         return -EINVAL;
2434 }
2435 #else
2436 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2437                                 struct mem_cgroup *from, struct mem_cgroup *to)
2438 {
2439         return -EINVAL;
2440 }
2441 #endif
2442
2443 static DEFINE_MUTEX(memcg_limit_mutex);
2444
2445 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2446                                    unsigned long limit)
2447 {
2448         unsigned long curusage;
2449         unsigned long oldusage;
2450         bool enlarge = false;
2451         int retry_count;
2452         int ret;
2453
2454         /*
2455          * For keeping hierarchical_reclaim simple, how long we should retry
2456          * is depends on callers. We set our retry-count to be function
2457          * of # of children which we should visit in this loop.
2458          */
2459         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2460                       mem_cgroup_count_children(memcg);
2461
2462         oldusage = page_counter_read(&memcg->memory);
2463
2464         do {
2465                 if (signal_pending(current)) {
2466                         ret = -EINTR;
2467                         break;
2468                 }
2469
2470                 mutex_lock(&memcg_limit_mutex);
2471                 if (limit > memcg->memsw.limit) {
2472                         mutex_unlock(&memcg_limit_mutex);
2473                         ret = -EINVAL;
2474                         break;
2475                 }
2476                 if (limit > memcg->memory.limit)
2477                         enlarge = true;
2478                 ret = page_counter_limit(&memcg->memory, limit);
2479                 mutex_unlock(&memcg_limit_mutex);
2480
2481                 if (!ret)
2482                         break;
2483
2484                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2485
2486                 curusage = page_counter_read(&memcg->memory);
2487                 /* Usage is reduced ? */
2488                 if (curusage >= oldusage)
2489                         retry_count--;
2490                 else
2491                         oldusage = curusage;
2492         } while (retry_count);
2493
2494         if (!ret && enlarge)
2495                 memcg_oom_recover(memcg);
2496
2497         return ret;
2498 }
2499
2500 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2501                                          unsigned long limit)
2502 {
2503         unsigned long curusage;
2504         unsigned long oldusage;
2505         bool enlarge = false;
2506         int retry_count;
2507         int ret;
2508
2509         /* see mem_cgroup_resize_res_limit */
2510         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2511                       mem_cgroup_count_children(memcg);
2512
2513         oldusage = page_counter_read(&memcg->memsw);
2514
2515         do {
2516                 if (signal_pending(current)) {
2517                         ret = -EINTR;
2518                         break;
2519                 }
2520
2521                 mutex_lock(&memcg_limit_mutex);
2522                 if (limit < memcg->memory.limit) {
2523                         mutex_unlock(&memcg_limit_mutex);
2524                         ret = -EINVAL;
2525                         break;
2526                 }
2527                 if (limit > memcg->memsw.limit)
2528                         enlarge = true;
2529                 ret = page_counter_limit(&memcg->memsw, limit);
2530                 mutex_unlock(&memcg_limit_mutex);
2531
2532                 if (!ret)
2533                         break;
2534
2535                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2536
2537                 curusage = page_counter_read(&memcg->memsw);
2538                 /* Usage is reduced ? */
2539                 if (curusage >= oldusage)
2540                         retry_count--;
2541                 else
2542                         oldusage = curusage;
2543         } while (retry_count);
2544
2545         if (!ret && enlarge)
2546                 memcg_oom_recover(memcg);
2547
2548         return ret;
2549 }
2550
2551 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2552                                             gfp_t gfp_mask,
2553                                             unsigned long *total_scanned)
2554 {
2555         unsigned long nr_reclaimed = 0;
2556         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2557         unsigned long reclaimed;
2558         int loop = 0;
2559         struct mem_cgroup_tree_per_zone *mctz;
2560         unsigned long excess;
2561         unsigned long nr_scanned;
2562
2563         if (order > 0)
2564                 return 0;
2565
2566         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2567         /*
2568          * This loop can run a while, specially if mem_cgroup's continuously
2569          * keep exceeding their soft limit and putting the system under
2570          * pressure
2571          */
2572         do {
2573                 if (next_mz)
2574                         mz = next_mz;
2575                 else
2576                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2577                 if (!mz)
2578                         break;
2579
2580                 nr_scanned = 0;
2581                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2582                                                     gfp_mask, &nr_scanned);
2583                 nr_reclaimed += reclaimed;
2584                 *total_scanned += nr_scanned;
2585                 spin_lock_irq(&mctz->lock);
2586                 __mem_cgroup_remove_exceeded(mz, mctz);
2587
2588                 /*
2589                  * If we failed to reclaim anything from this memory cgroup
2590                  * it is time to move on to the next cgroup
2591                  */
2592                 next_mz = NULL;
2593                 if (!reclaimed)
2594                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595
2596                 excess = soft_limit_excess(mz->memcg);
2597                 /*
2598                  * One school of thought says that we should not add
2599                  * back the node to the tree if reclaim returns 0.
2600                  * But our reclaim could return 0, simply because due
2601                  * to priority we are exposing a smaller subset of
2602                  * memory to reclaim from. Consider this as a longer
2603                  * term TODO.
2604                  */
2605                 /* If excess == 0, no tree ops */
2606                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2607                 spin_unlock_irq(&mctz->lock);
2608                 css_put(&mz->memcg->css);
2609                 loop++;
2610                 /*
2611                  * Could not reclaim anything and there are no more
2612                  * mem cgroups to try or we seem to be looping without
2613                  * reclaiming anything.
2614                  */
2615                 if (!nr_reclaimed &&
2616                         (next_mz == NULL ||
2617                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618                         break;
2619         } while (!nr_reclaimed);
2620         if (next_mz)
2621                 css_put(&next_mz->memcg->css);
2622         return nr_reclaimed;
2623 }
2624
2625 /*
2626  * Test whether @memcg has children, dead or alive.  Note that this
2627  * function doesn't care whether @memcg has use_hierarchy enabled and
2628  * returns %true if there are child csses according to the cgroup
2629  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2630  */
2631 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632 {
2633         bool ret;
2634
2635         rcu_read_lock();
2636         ret = css_next_child(NULL, &memcg->css);
2637         rcu_read_unlock();
2638         return ret;
2639 }
2640
2641 /*
2642  * Reclaims as many pages from the given memcg as possible and moves
2643  * the rest to the parent.
2644  *
2645  * Caller is responsible for holding css reference for memcg.
2646  */
2647 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2648 {
2649         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2650
2651         /* we call try-to-free pages for make this cgroup empty */
2652         lru_add_drain_all();
2653         /* try to free all pages in this cgroup */
2654         while (nr_retries && page_counter_read(&memcg->memory)) {
2655                 int progress;
2656
2657                 if (signal_pending(current))
2658                         return -EINTR;
2659
2660                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2661                                                         GFP_KERNEL, true);
2662                 if (!progress) {
2663                         nr_retries--;
2664                         /* maybe some writeback is necessary */
2665                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2666                 }
2667
2668         }
2669
2670         return 0;
2671 }
2672
2673 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2674                                             char *buf, size_t nbytes,
2675                                             loff_t off)
2676 {
2677         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2678
2679         if (mem_cgroup_is_root(memcg))
2680                 return -EINVAL;
2681         return mem_cgroup_force_empty(memcg) ?: nbytes;
2682 }
2683
2684 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2685                                      struct cftype *cft)
2686 {
2687         return mem_cgroup_from_css(css)->use_hierarchy;
2688 }
2689
2690 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2691                                       struct cftype *cft, u64 val)
2692 {
2693         int retval = 0;
2694         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2695         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2696
2697         if (memcg->use_hierarchy == val)
2698                 return 0;
2699
2700         /*
2701          * If parent's use_hierarchy is set, we can't make any modifications
2702          * in the child subtrees. If it is unset, then the change can
2703          * occur, provided the current cgroup has no children.
2704          *
2705          * For the root cgroup, parent_mem is NULL, we allow value to be
2706          * set if there are no children.
2707          */
2708         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2709                                 (val == 1 || val == 0)) {
2710                 if (!memcg_has_children(memcg))
2711                         memcg->use_hierarchy = val;
2712                 else
2713                         retval = -EBUSY;
2714         } else
2715                 retval = -EINVAL;
2716
2717         return retval;
2718 }
2719
2720 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2721 {
2722         struct mem_cgroup *iter;
2723         int i;
2724
2725         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2726
2727         for_each_mem_cgroup_tree(iter, memcg) {
2728                 for (i = 0; i < MEMCG_NR_STAT; i++)
2729                         stat[i] += mem_cgroup_read_stat(iter, i);
2730         }
2731 }
2732
2733 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2734 {
2735         struct mem_cgroup *iter;
2736         int i;
2737
2738         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2739
2740         for_each_mem_cgroup_tree(iter, memcg) {
2741                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2742                         events[i] += mem_cgroup_read_events(iter, i);
2743         }
2744 }
2745
2746 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2747 {
2748         unsigned long val = 0;
2749
2750         if (mem_cgroup_is_root(memcg)) {
2751                 struct mem_cgroup *iter;
2752
2753                 for_each_mem_cgroup_tree(iter, memcg) {
2754                         val += mem_cgroup_read_stat(iter,
2755                                         MEM_CGROUP_STAT_CACHE);
2756                         val += mem_cgroup_read_stat(iter,
2757                                         MEM_CGROUP_STAT_RSS);
2758                         if (swap)
2759                                 val += mem_cgroup_read_stat(iter,
2760                                                 MEM_CGROUP_STAT_SWAP);
2761                 }
2762         } else {
2763                 if (!swap)
2764                         val = page_counter_read(&memcg->memory);
2765                 else
2766                         val = page_counter_read(&memcg->memsw);
2767         }
2768         return val;
2769 }
2770
2771 enum {
2772         RES_USAGE,
2773         RES_LIMIT,
2774         RES_MAX_USAGE,
2775         RES_FAILCNT,
2776         RES_SOFT_LIMIT,
2777 };
2778
2779 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2780                                struct cftype *cft)
2781 {
2782         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2783         struct page_counter *counter;
2784
2785         switch (MEMFILE_TYPE(cft->private)) {
2786         case _MEM:
2787                 counter = &memcg->memory;
2788                 break;
2789         case _MEMSWAP:
2790                 counter = &memcg->memsw;
2791                 break;
2792         case _KMEM:
2793                 counter = &memcg->kmem;
2794                 break;
2795         case _TCP:
2796                 counter = &memcg->tcpmem;
2797                 break;
2798         default:
2799                 BUG();
2800         }
2801
2802         switch (MEMFILE_ATTR(cft->private)) {
2803         case RES_USAGE:
2804                 if (counter == &memcg->memory)
2805                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2806                 if (counter == &memcg->memsw)
2807                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2808                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2809         case RES_LIMIT:
2810                 return (u64)counter->limit * PAGE_SIZE;
2811         case RES_MAX_USAGE:
2812                 return (u64)counter->watermark * PAGE_SIZE;
2813         case RES_FAILCNT:
2814                 return counter->failcnt;
2815         case RES_SOFT_LIMIT:
2816                 return (u64)memcg->soft_limit * PAGE_SIZE;
2817         default:
2818                 BUG();
2819         }
2820 }
2821
2822 #ifndef CONFIG_SLOB
2823 static int memcg_online_kmem(struct mem_cgroup *memcg)
2824 {
2825         int memcg_id;
2826
2827         if (cgroup_memory_nokmem)
2828                 return 0;
2829
2830         BUG_ON(memcg->kmemcg_id >= 0);
2831         BUG_ON(memcg->kmem_state);
2832
2833         memcg_id = memcg_alloc_cache_id();
2834         if (memcg_id < 0)
2835                 return memcg_id;
2836
2837         static_branch_inc(&memcg_kmem_enabled_key);
2838         /*
2839          * A memory cgroup is considered kmem-online as soon as it gets
2840          * kmemcg_id. Setting the id after enabling static branching will
2841          * guarantee no one starts accounting before all call sites are
2842          * patched.
2843          */
2844         memcg->kmemcg_id = memcg_id;
2845         memcg->kmem_state = KMEM_ONLINE;
2846
2847         return 0;
2848 }
2849
2850 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2851 {
2852         struct cgroup_subsys_state *css;
2853         struct mem_cgroup *parent, *child;
2854         int kmemcg_id;
2855
2856         if (memcg->kmem_state != KMEM_ONLINE)
2857                 return;
2858         /*
2859          * Clear the online state before clearing memcg_caches array
2860          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2861          * guarantees that no cache will be created for this cgroup
2862          * after we are done (see memcg_create_kmem_cache()).
2863          */
2864         memcg->kmem_state = KMEM_ALLOCATED;
2865
2866         memcg_deactivate_kmem_caches(memcg);
2867
2868         kmemcg_id = memcg->kmemcg_id;
2869         BUG_ON(kmemcg_id < 0);
2870
2871         parent = parent_mem_cgroup(memcg);
2872         if (!parent)
2873                 parent = root_mem_cgroup;
2874
2875         /*
2876          * Change kmemcg_id of this cgroup and all its descendants to the
2877          * parent's id, and then move all entries from this cgroup's list_lrus
2878          * to ones of the parent. After we have finished, all list_lrus
2879          * corresponding to this cgroup are guaranteed to remain empty. The
2880          * ordering is imposed by list_lru_node->lock taken by
2881          * memcg_drain_all_list_lrus().
2882          */
2883         css_for_each_descendant_pre(css, &memcg->css) {
2884                 child = mem_cgroup_from_css(css);
2885                 BUG_ON(child->kmemcg_id != kmemcg_id);
2886                 child->kmemcg_id = parent->kmemcg_id;
2887                 if (!memcg->use_hierarchy)
2888                         break;
2889         }
2890         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891
2892         memcg_free_cache_id(kmemcg_id);
2893 }
2894
2895 static void memcg_free_kmem(struct mem_cgroup *memcg)
2896 {
2897         /* css_alloc() failed, offlining didn't happen */
2898         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899                 memcg_offline_kmem(memcg);
2900
2901         if (memcg->kmem_state == KMEM_ALLOCATED) {
2902                 memcg_destroy_kmem_caches(memcg);
2903                 static_branch_dec(&memcg_kmem_enabled_key);
2904                 WARN_ON(page_counter_read(&memcg->kmem));
2905         }
2906 }
2907 #else
2908 static int memcg_online_kmem(struct mem_cgroup *memcg)
2909 {
2910         return 0;
2911 }
2912 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 #endif /* !CONFIG_SLOB */
2919
2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921                                    unsigned long limit)
2922 {
2923         int ret;
2924
2925         mutex_lock(&memcg_limit_mutex);
2926         ret = page_counter_limit(&memcg->kmem, limit);
2927         mutex_unlock(&memcg_limit_mutex);
2928         return ret;
2929 }
2930
2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932 {
2933         int ret;
2934
2935         mutex_lock(&memcg_limit_mutex);
2936
2937         ret = page_counter_limit(&memcg->tcpmem, limit);
2938         if (ret)
2939                 goto out;
2940
2941         if (!memcg->tcpmem_active) {
2942                 /*
2943                  * The active flag needs to be written after the static_key
2944                  * update. This is what guarantees that the socket activation
2945                  * function is the last one to run. See sock_update_memcg() for
2946                  * details, and note that we don't mark any socket as belonging
2947                  * to this memcg until that flag is up.
2948                  *
2949                  * We need to do this, because static_keys will span multiple
2950                  * sites, but we can't control their order. If we mark a socket
2951                  * as accounted, but the accounting functions are not patched in
2952                  * yet, we'll lose accounting.
2953                  *
2954                  * We never race with the readers in sock_update_memcg(),
2955                  * because when this value change, the code to process it is not
2956                  * patched in yet.
2957                  */
2958                 static_branch_inc(&memcg_sockets_enabled_key);
2959                 memcg->tcpmem_active = true;
2960         }
2961 out:
2962         mutex_unlock(&memcg_limit_mutex);
2963         return ret;
2964 }
2965
2966 /*
2967  * The user of this function is...
2968  * RES_LIMIT.
2969  */
2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971                                 char *buf, size_t nbytes, loff_t off)
2972 {
2973         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974         unsigned long nr_pages;
2975         int ret;
2976
2977         buf = strstrip(buf);
2978         ret = page_counter_memparse(buf, "-1", &nr_pages);
2979         if (ret)
2980                 return ret;
2981
2982         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983         case RES_LIMIT:
2984                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985                         ret = -EINVAL;
2986                         break;
2987                 }
2988                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989                 case _MEM:
2990                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991                         break;
2992                 case _MEMSWAP:
2993                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994                         break;
2995                 case _KMEM:
2996                         ret = memcg_update_kmem_limit(memcg, nr_pages);
2997                         break;
2998                 case _TCP:
2999                         ret = memcg_update_tcp_limit(memcg, nr_pages);
3000                         break;
3001                 }
3002                 break;
3003         case RES_SOFT_LIMIT:
3004                 memcg->soft_limit = nr_pages;
3005                 ret = 0;
3006                 break;
3007         }
3008         return ret ?: nbytes;
3009 }
3010
3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012                                 size_t nbytes, loff_t off)
3013 {
3014         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015         struct page_counter *counter;
3016
3017         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018         case _MEM:
3019                 counter = &memcg->memory;
3020                 break;
3021         case _MEMSWAP:
3022                 counter = &memcg->memsw;
3023                 break;
3024         case _KMEM:
3025                 counter = &memcg->kmem;
3026                 break;
3027         case _TCP:
3028                 counter = &memcg->tcpmem;
3029                 break;
3030         default:
3031                 BUG();
3032         }
3033
3034         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035         case RES_MAX_USAGE:
3036                 page_counter_reset_watermark(counter);
3037                 break;
3038         case RES_FAILCNT:
3039                 counter->failcnt = 0;
3040                 break;
3041         default:
3042                 BUG();
3043         }
3044
3045         return nbytes;
3046 }
3047
3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049                                         struct cftype *cft)
3050 {
3051         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052 }
3053
3054 #ifdef CONFIG_MMU
3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056                                         struct cftype *cft, u64 val)
3057 {
3058         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059
3060         if (val & ~MOVE_MASK)
3061                 return -EINVAL;
3062
3063         /*
3064          * No kind of locking is needed in here, because ->can_attach() will
3065          * check this value once in the beginning of the process, and then carry
3066          * on with stale data. This means that changes to this value will only
3067          * affect task migrations starting after the change.
3068          */
3069         memcg->move_charge_at_immigrate = val;
3070         return 0;
3071 }
3072 #else
3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074                                         struct cftype *cft, u64 val)
3075 {
3076         return -ENOSYS;
3077 }
3078 #endif
3079
3080 #ifdef CONFIG_NUMA
3081 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082 {
3083         struct numa_stat {
3084                 const char *name;
3085                 unsigned int lru_mask;
3086         };
3087
3088         static const struct numa_stat stats[] = {
3089                 { "total", LRU_ALL },
3090                 { "file", LRU_ALL_FILE },
3091                 { "anon", LRU_ALL_ANON },
3092                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093         };
3094         const struct numa_stat *stat;
3095         int nid;
3096         unsigned long nr;
3097         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098
3099         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101                 seq_printf(m, "%s=%lu", stat->name, nr);
3102                 for_each_node_state(nid, N_MEMORY) {
3103                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104                                                           stat->lru_mask);
3105                         seq_printf(m, " N%d=%lu", nid, nr);
3106                 }
3107                 seq_putc(m, '\n');
3108         }
3109
3110         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111                 struct mem_cgroup *iter;
3112
3113                 nr = 0;
3114                 for_each_mem_cgroup_tree(iter, memcg)
3115                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117                 for_each_node_state(nid, N_MEMORY) {
3118                         nr = 0;
3119                         for_each_mem_cgroup_tree(iter, memcg)
3120                                 nr += mem_cgroup_node_nr_lru_pages(
3121                                         iter, nid, stat->lru_mask);
3122                         seq_printf(m, " N%d=%lu", nid, nr);
3123                 }
3124                 seq_putc(m, '\n');
3125         }
3126
3127         return 0;
3128 }
3129 #endif /* CONFIG_NUMA */
3130
3131 static int memcg_stat_show(struct seq_file *m, void *v)
3132 {
3133         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134         unsigned long memory, memsw;
3135         struct mem_cgroup *mi;
3136         unsigned int i;
3137
3138         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139                      MEM_CGROUP_STAT_NSTATS);
3140         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141                      MEM_CGROUP_EVENTS_NSTATS);
3142         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
3144         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146                         continue;
3147                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149         }
3150
3151         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153                            mem_cgroup_read_events(memcg, i));
3154
3155         for (i = 0; i < NR_LRU_LISTS; i++)
3156                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
3159         /* Hierarchical information */
3160         memory = memsw = PAGE_COUNTER_MAX;
3161         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162                 memory = min(memory, mi->memory.limit);
3163                 memsw = min(memsw, mi->memsw.limit);
3164         }
3165         seq_printf(m, "hierarchical_memory_limit %llu\n",
3166                    (u64)memory * PAGE_SIZE);
3167         if (do_memsw_account())
3168                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169                            (u64)memsw * PAGE_SIZE);
3170
3171         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172                 unsigned long long val = 0;
3173
3174                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175                         continue;
3176                 for_each_mem_cgroup_tree(mi, memcg)
3177                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179         }
3180
3181         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182                 unsigned long long val = 0;
3183
3184                 for_each_mem_cgroup_tree(mi, memcg)
3185                         val += mem_cgroup_read_events(mi, i);
3186                 seq_printf(m, "total_%s %llu\n",
3187                            mem_cgroup_events_names[i], val);
3188         }
3189
3190         for (i = 0; i < NR_LRU_LISTS; i++) {
3191                 unsigned long long val = 0;
3192
3193                 for_each_mem_cgroup_tree(mi, memcg)
3194                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196         }
3197
3198 #ifdef CONFIG_DEBUG_VM
3199         {
3200                 int nid, zid;
3201                 struct mem_cgroup_per_zone *mz;
3202                 struct zone_reclaim_stat *rstat;
3203                 unsigned long recent_rotated[2] = {0, 0};
3204                 unsigned long recent_scanned[2] = {0, 0};
3205
3206                 for_each_online_node(nid)
3207                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3208                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3209                                 rstat = &mz->lruvec.reclaim_stat;
3210
3211                                 recent_rotated[0] += rstat->recent_rotated[0];
3212                                 recent_rotated[1] += rstat->recent_rotated[1];
3213                                 recent_scanned[0] += rstat->recent_scanned[0];
3214                                 recent_scanned[1] += rstat->recent_scanned[1];
3215                         }
3216                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3217                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3218                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3219                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3220         }
3221 #endif
3222
3223         return 0;
3224 }
3225
3226 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3227                                       struct cftype *cft)
3228 {
3229         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3230
3231         return mem_cgroup_swappiness(memcg);
3232 }
3233
3234 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3235                                        struct cftype *cft, u64 val)
3236 {
3237         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3238
3239         if (val > 100)
3240                 return -EINVAL;
3241
3242         if (css->parent)
3243                 memcg->swappiness = val;
3244         else
3245                 vm_swappiness = val;
3246
3247         return 0;
3248 }
3249
3250 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3251 {
3252         struct mem_cgroup_threshold_ary *t;
3253         unsigned long usage;
3254         int i;
3255
3256         rcu_read_lock();
3257         if (!swap)
3258                 t = rcu_dereference(memcg->thresholds.primary);
3259         else
3260                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3261
3262         if (!t)
3263                 goto unlock;
3264
3265         usage = mem_cgroup_usage(memcg, swap);
3266
3267         /*
3268          * current_threshold points to threshold just below or equal to usage.
3269          * If it's not true, a threshold was crossed after last
3270          * call of __mem_cgroup_threshold().
3271          */
3272         i = t->current_threshold;
3273
3274         /*
3275          * Iterate backward over array of thresholds starting from
3276          * current_threshold and check if a threshold is crossed.
3277          * If none of thresholds below usage is crossed, we read
3278          * only one element of the array here.
3279          */
3280         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3281                 eventfd_signal(t->entries[i].eventfd, 1);
3282
3283         /* i = current_threshold + 1 */
3284         i++;
3285
3286         /*
3287          * Iterate forward over array of thresholds starting from
3288          * current_threshold+1 and check if a threshold is crossed.
3289          * If none of thresholds above usage is crossed, we read
3290          * only one element of the array here.
3291          */
3292         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3293                 eventfd_signal(t->entries[i].eventfd, 1);
3294
3295         /* Update current_threshold */
3296         t->current_threshold = i - 1;
3297 unlock:
3298         rcu_read_unlock();
3299 }
3300
3301 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3302 {
3303         while (memcg) {
3304                 __mem_cgroup_threshold(memcg, false);
3305                 if (do_memsw_account())
3306                         __mem_cgroup_threshold(memcg, true);
3307
3308                 memcg = parent_mem_cgroup(memcg);
3309         }
3310 }
3311
3312 static int compare_thresholds(const void *a, const void *b)
3313 {
3314         const struct mem_cgroup_threshold *_a = a;
3315         const struct mem_cgroup_threshold *_b = b;
3316
3317         if (_a->threshold > _b->threshold)
3318                 return 1;
3319
3320         if (_a->threshold < _b->threshold)
3321                 return -1;
3322
3323         return 0;
3324 }
3325
3326 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3327 {
3328         struct mem_cgroup_eventfd_list *ev;
3329
3330         spin_lock(&memcg_oom_lock);
3331
3332         list_for_each_entry(ev, &memcg->oom_notify, list)
3333                 eventfd_signal(ev->eventfd, 1);
3334
3335         spin_unlock(&memcg_oom_lock);
3336         return 0;
3337 }
3338
3339 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3340 {
3341         struct mem_cgroup *iter;
3342
3343         for_each_mem_cgroup_tree(iter, memcg)
3344                 mem_cgroup_oom_notify_cb(iter);
3345 }
3346
3347 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3348         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3349 {
3350         struct mem_cgroup_thresholds *thresholds;
3351         struct mem_cgroup_threshold_ary *new;
3352         unsigned long threshold;
3353         unsigned long usage;
3354         int i, size, ret;
3355
3356         ret = page_counter_memparse(args, "-1", &threshold);
3357         if (ret)
3358                 return ret;
3359
3360         mutex_lock(&memcg->thresholds_lock);
3361
3362         if (type == _MEM) {
3363                 thresholds = &memcg->thresholds;
3364                 usage = mem_cgroup_usage(memcg, false);
3365         } else if (type == _MEMSWAP) {
3366                 thresholds = &memcg->memsw_thresholds;
3367                 usage = mem_cgroup_usage(memcg, true);
3368         } else
3369                 BUG();
3370
3371         /* Check if a threshold crossed before adding a new one */
3372         if (thresholds->primary)
3373                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3374
3375         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3376
3377         /* Allocate memory for new array of thresholds */
3378         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3379                         GFP_KERNEL);
3380         if (!new) {
3381                 ret = -ENOMEM;
3382                 goto unlock;
3383         }
3384         new->size = size;
3385
3386         /* Copy thresholds (if any) to new array */
3387         if (thresholds->primary) {
3388                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3389                                 sizeof(struct mem_cgroup_threshold));
3390         }
3391
3392         /* Add new threshold */
3393         new->entries[size - 1].eventfd = eventfd;
3394         new->entries[size - 1].threshold = threshold;
3395
3396         /* Sort thresholds. Registering of new threshold isn't time-critical */
3397         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3398                         compare_thresholds, NULL);
3399
3400         /* Find current threshold */
3401         new->current_threshold = -1;
3402         for (i = 0; i < size; i++) {
3403                 if (new->entries[i].threshold <= usage) {
3404                         /*
3405                          * new->current_threshold will not be used until
3406                          * rcu_assign_pointer(), so it's safe to increment
3407                          * it here.
3408                          */
3409                         ++new->current_threshold;
3410                 } else
3411                         break;
3412         }
3413
3414         /* Free old spare buffer and save old primary buffer as spare */
3415         kfree(thresholds->spare);
3416         thresholds->spare = thresholds->primary;
3417
3418         rcu_assign_pointer(thresholds->primary, new);
3419
3420         /* To be sure that nobody uses thresholds */
3421         synchronize_rcu();
3422
3423 unlock:
3424         mutex_unlock(&memcg->thresholds_lock);
3425
3426         return ret;
3427 }
3428
3429 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3430         struct eventfd_ctx *eventfd, const char *args)
3431 {
3432         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3433 }
3434
3435 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3436         struct eventfd_ctx *eventfd, const char *args)
3437 {
3438         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3439 }
3440
3441 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3442         struct eventfd_ctx *eventfd, enum res_type type)
3443 {
3444         struct mem_cgroup_thresholds *thresholds;
3445         struct mem_cgroup_threshold_ary *new;
3446         unsigned long usage;
3447         int i, j, size;
3448
3449         mutex_lock(&memcg->thresholds_lock);
3450
3451         if (type == _MEM) {
3452                 thresholds = &memcg->thresholds;
3453                 usage = mem_cgroup_usage(memcg, false);
3454         } else if (type == _MEMSWAP) {
3455                 thresholds = &memcg->memsw_thresholds;
3456                 usage = mem_cgroup_usage(memcg, true);
3457         } else
3458                 BUG();
3459
3460         if (!thresholds->primary)
3461                 goto unlock;
3462
3463         /* Check if a threshold crossed before removing */
3464         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3465
3466         /* Calculate new number of threshold */
3467         size = 0;
3468         for (i = 0; i < thresholds->primary->size; i++) {
3469                 if (thresholds->primary->entries[i].eventfd != eventfd)
3470                         size++;
3471         }
3472
3473         new = thresholds->spare;
3474
3475         /* Set thresholds array to NULL if we don't have thresholds */
3476         if (!size) {
3477                 kfree(new);
3478                 new = NULL;
3479                 goto swap_buffers;
3480         }
3481
3482         new->size = size;
3483
3484         /* Copy thresholds and find current threshold */
3485         new->current_threshold = -1;
3486         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3487                 if (thresholds->primary->entries[i].eventfd == eventfd)
3488                         continue;
3489
3490                 new->entries[j] = thresholds->primary->entries[i];
3491                 if (new->entries[j].threshold <= usage) {
3492                         /*
3493                          * new->current_threshold will not be used
3494                          * until rcu_assign_pointer(), so it's safe to increment
3495                          * it here.
3496                          */
3497                         ++new->current_threshold;
3498                 }
3499                 j++;
3500         }
3501
3502 swap_buffers:
3503         /* Swap primary and spare array */
3504         thresholds->spare = thresholds->primary;
3505
3506         rcu_assign_pointer(thresholds->primary, new);
3507
3508         /* To be sure that nobody uses thresholds */
3509         synchronize_rcu();
3510
3511         /* If all events are unregistered, free the spare array */
3512         if (!new) {
3513                 kfree(thresholds->spare);
3514                 thresholds->spare = NULL;
3515         }
3516 unlock:
3517         mutex_unlock(&memcg->thresholds_lock);
3518 }
3519
3520 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3521         struct eventfd_ctx *eventfd)
3522 {
3523         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3524 }
3525
3526 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3527         struct eventfd_ctx *eventfd)
3528 {
3529         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3530 }
3531
3532 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3533         struct eventfd_ctx *eventfd, const char *args)
3534 {
3535         struct mem_cgroup_eventfd_list *event;
3536
3537         event = kmalloc(sizeof(*event), GFP_KERNEL);
3538         if (!event)
3539                 return -ENOMEM;
3540
3541         spin_lock(&memcg_oom_lock);
3542
3543         event->eventfd = eventfd;
3544         list_add(&event->list, &memcg->oom_notify);
3545
3546         /* already in OOM ? */
3547         if (memcg->under_oom)
3548                 eventfd_signal(eventfd, 1);
3549         spin_unlock(&memcg_oom_lock);
3550
3551         return 0;
3552 }
3553
3554 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3555         struct eventfd_ctx *eventfd)
3556 {
3557         struct mem_cgroup_eventfd_list *ev, *tmp;
3558
3559         spin_lock(&memcg_oom_lock);
3560
3561         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3562                 if (ev->eventfd == eventfd) {
3563                         list_del(&ev->list);
3564                         kfree(ev);
3565                 }
3566         }
3567
3568         spin_unlock(&memcg_oom_lock);
3569 }
3570
3571 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3572 {
3573         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3574
3575         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3576         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3577         return 0;
3578 }
3579
3580 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3581         struct cftype *cft, u64 val)
3582 {
3583         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584
3585         /* cannot set to root cgroup and only 0 and 1 are allowed */
3586         if (!css->parent || !((val == 0) || (val == 1)))
3587                 return -EINVAL;
3588
3589         memcg->oom_kill_disable = val;
3590         if (!val)
3591                 memcg_oom_recover(memcg);
3592
3593         return 0;
3594 }
3595
3596 #ifdef CONFIG_CGROUP_WRITEBACK
3597
3598 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3599 {
3600         return &memcg->cgwb_list;
3601 }
3602
3603 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3604 {
3605         return wb_domain_init(&memcg->cgwb_domain, gfp);
3606 }
3607
3608 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3609 {
3610         wb_domain_exit(&memcg->cgwb_domain);
3611 }
3612
3613 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3614 {
3615         wb_domain_size_changed(&memcg->cgwb_domain);
3616 }
3617
3618 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3619 {
3620         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3621
3622         if (!memcg->css.parent)
3623                 return NULL;
3624
3625         return &memcg->cgwb_domain;
3626 }
3627
3628 /**
3629  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3630  * @wb: bdi_writeback in question
3631  * @pfilepages: out parameter for number of file pages
3632  * @pheadroom: out parameter for number of allocatable pages according to memcg
3633  * @pdirty: out parameter for number of dirty pages
3634  * @pwriteback: out parameter for number of pages under writeback
3635  *
3636  * Determine the numbers of file, headroom, dirty, and writeback pages in
3637  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3638  * is a bit more involved.
3639  *
3640  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3641  * headroom is calculated as the lowest headroom of itself and the
3642  * ancestors.  Note that this doesn't consider the actual amount of
3643  * available memory in the system.  The caller should further cap
3644  * *@pheadroom accordingly.
3645  */
3646 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3647                          unsigned long *pheadroom, unsigned long *pdirty,
3648                          unsigned long *pwriteback)
3649 {
3650         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3651         struct mem_cgroup *parent;
3652
3653         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3654
3655         /* this should eventually include NR_UNSTABLE_NFS */
3656         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3657         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3658                                                      (1 << LRU_ACTIVE_FILE));
3659         *pheadroom = PAGE_COUNTER_MAX;
3660
3661         while ((parent = parent_mem_cgroup(memcg))) {
3662                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3663                 unsigned long used = page_counter_read(&memcg->memory);
3664
3665                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3666                 memcg = parent;
3667         }
3668 }
3669
3670 #else   /* CONFIG_CGROUP_WRITEBACK */
3671
3672 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3673 {
3674         return 0;
3675 }
3676
3677 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682 {
3683 }
3684
3685 #endif  /* CONFIG_CGROUP_WRITEBACK */
3686
3687 /*
3688  * DO NOT USE IN NEW FILES.
3689  *
3690  * "cgroup.event_control" implementation.
3691  *
3692  * This is way over-engineered.  It tries to support fully configurable
3693  * events for each user.  Such level of flexibility is completely
3694  * unnecessary especially in the light of the planned unified hierarchy.
3695  *
3696  * Please deprecate this and replace with something simpler if at all
3697  * possible.
3698  */
3699
3700 /*
3701  * Unregister event and free resources.
3702  *
3703  * Gets called from workqueue.
3704  */
3705 static void memcg_event_remove(struct work_struct *work)
3706 {
3707         struct mem_cgroup_event *event =
3708                 container_of(work, struct mem_cgroup_event, remove);
3709         struct mem_cgroup *memcg = event->memcg;
3710
3711         remove_wait_queue(event->wqh, &event->wait);
3712
3713         event->unregister_event(memcg, event->eventfd);
3714
3715         /* Notify userspace the event is going away. */
3716         eventfd_signal(event->eventfd, 1);
3717
3718         eventfd_ctx_put(event->eventfd);
3719         kfree(event);
3720         css_put(&memcg->css);
3721 }
3722
3723 /*
3724  * Gets called on POLLHUP on eventfd when user closes it.
3725  *
3726  * Called with wqh->lock held and interrupts disabled.
3727  */
3728 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3729                             int sync, void *key)
3730 {
3731         struct mem_cgroup_event *event =
3732                 container_of(wait, struct mem_cgroup_event, wait);
3733         struct mem_cgroup *memcg = event->memcg;
3734         unsigned long flags = (unsigned long)key;
3735
3736         if (flags & POLLHUP) {
3737                 /*
3738                  * If the event has been detached at cgroup removal, we
3739                  * can simply return knowing the other side will cleanup
3740                  * for us.
3741                  *
3742                  * We can't race against event freeing since the other
3743                  * side will require wqh->lock via remove_wait_queue(),
3744                  * which we hold.
3745                  */
3746                 spin_lock(&memcg->event_list_lock);
3747                 if (!list_empty(&event->list)) {
3748                         list_del_init(&event->list);
3749                         /*
3750                          * We are in atomic context, but cgroup_event_remove()
3751                          * may sleep, so we have to call it in workqueue.
3752                          */
3753                         schedule_work(&event->remove);
3754                 }
3755                 spin_unlock(&memcg->event_list_lock);
3756         }
3757
3758         return 0;
3759 }
3760
3761 static void memcg_event_ptable_queue_proc(struct file *file,
3762                 wait_queue_head_t *wqh, poll_table *pt)
3763 {
3764         struct mem_cgroup_event *event =
3765                 container_of(pt, struct mem_cgroup_event, pt);
3766
3767         event->wqh = wqh;
3768         add_wait_queue(wqh, &event->wait);
3769 }
3770
3771 /*
3772  * DO NOT USE IN NEW FILES.
3773  *
3774  * Parse input and register new cgroup event handler.
3775  *
3776  * Input must be in format '<event_fd> <control_fd> <args>'.
3777  * Interpretation of args is defined by control file implementation.
3778  */
3779 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3780                                          char *buf, size_t nbytes, loff_t off)
3781 {
3782         struct cgroup_subsys_state *css = of_css(of);
3783         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3784         struct mem_cgroup_event *event;
3785         struct cgroup_subsys_state *cfile_css;
3786         unsigned int efd, cfd;
3787         struct fd efile;
3788         struct fd cfile;
3789         const char *name;
3790         char *endp;
3791         int ret;
3792
3793         buf = strstrip(buf);
3794
3795         efd = simple_strtoul(buf, &endp, 10);
3796         if (*endp != ' ')
3797                 return -EINVAL;
3798         buf = endp + 1;
3799
3800         cfd = simple_strtoul(buf, &endp, 10);
3801         if ((*endp != ' ') && (*endp != '\0'))
3802                 return -EINVAL;
3803         buf = endp + 1;
3804
3805         event = kzalloc(sizeof(*event), GFP_KERNEL);
3806         if (!event)
3807                 return -ENOMEM;
3808
3809         event->memcg = memcg;
3810         INIT_LIST_HEAD(&event->list);
3811         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3812         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3813         INIT_WORK(&event->remove, memcg_event_remove);
3814
3815         efile = fdget(efd);
3816         if (!efile.file) {
3817                 ret = -EBADF;
3818                 goto out_kfree;
3819         }
3820
3821         event->eventfd = eventfd_ctx_fileget(efile.file);
3822         if (IS_ERR(event->eventfd)) {
3823                 ret = PTR_ERR(event->eventfd);
3824                 goto out_put_efile;
3825         }
3826
3827         cfile = fdget(cfd);
3828         if (!cfile.file) {
3829                 ret = -EBADF;
3830                 goto out_put_eventfd;
3831         }
3832
3833         /* the process need read permission on control file */
3834         /* AV: shouldn't we check that it's been opened for read instead? */
3835         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3836         if (ret < 0)
3837                 goto out_put_cfile;
3838
3839         /*
3840          * Determine the event callbacks and set them in @event.  This used
3841          * to be done via struct cftype but cgroup core no longer knows
3842          * about these events.  The following is crude but the whole thing
3843          * is for compatibility anyway.
3844          *
3845          * DO NOT ADD NEW FILES.
3846          */
3847         name = cfile.file->f_path.dentry->d_name.name;
3848
3849         if (!strcmp(name, "memory.usage_in_bytes")) {
3850                 event->register_event = mem_cgroup_usage_register_event;
3851                 event->unregister_event = mem_cgroup_usage_unregister_event;
3852         } else if (!strcmp(name, "memory.oom_control")) {
3853                 event->register_event = mem_cgroup_oom_register_event;
3854                 event->unregister_event = mem_cgroup_oom_unregister_event;
3855         } else if (!strcmp(name, "memory.pressure_level")) {
3856                 event->register_event = vmpressure_register_event;
3857                 event->unregister_event = vmpressure_unregister_event;
3858         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3859                 event->register_event = memsw_cgroup_usage_register_event;
3860                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3861         } else {
3862                 ret = -EINVAL;
3863                 goto out_put_cfile;
3864         }
3865
3866         /*
3867          * Verify @cfile should belong to @css.  Also, remaining events are
3868          * automatically removed on cgroup destruction but the removal is
3869          * asynchronous, so take an extra ref on @css.
3870          */
3871         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3872                                                &memory_cgrp_subsys);
3873         ret = -EINVAL;
3874         if (IS_ERR(cfile_css))
3875                 goto out_put_cfile;
3876         if (cfile_css != css) {
3877                 css_put(cfile_css);
3878                 goto out_put_cfile;
3879         }
3880
3881         ret = event->register_event(memcg, event->eventfd, buf);
3882         if (ret)
3883                 goto out_put_css;
3884
3885         efile.file->f_op->poll(efile.file, &event->pt);
3886
3887         spin_lock(&memcg->event_list_lock);
3888         list_add(&event->list, &memcg->event_list);
3889         spin_unlock(&memcg->event_list_lock);
3890
3891         fdput(cfile);
3892         fdput(efile);
3893
3894         return nbytes;
3895
3896 out_put_css:
3897         css_put(css);
3898 out_put_cfile:
3899         fdput(cfile);
3900 out_put_eventfd:
3901         eventfd_ctx_put(event->eventfd);
3902 out_put_efile:
3903         fdput(efile);
3904 out_kfree:
3905         kfree(event);
3906
3907         return ret;
3908 }
3909
3910 static struct cftype mem_cgroup_legacy_files[] = {
3911         {
3912                 .name = "usage_in_bytes",
3913                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3914                 .read_u64 = mem_cgroup_read_u64,
3915         },
3916         {
3917                 .name = "max_usage_in_bytes",
3918                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3919                 .write = mem_cgroup_reset,
3920                 .read_u64 = mem_cgroup_read_u64,
3921         },
3922         {
3923                 .name = "limit_in_bytes",
3924                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3925                 .write = mem_cgroup_write,
3926                 .read_u64 = mem_cgroup_read_u64,
3927         },
3928         {
3929                 .name = "soft_limit_in_bytes",
3930                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3931                 .write = mem_cgroup_write,
3932                 .read_u64 = mem_cgroup_read_u64,
3933         },
3934         {
3935                 .name = "failcnt",
3936                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3937                 .write = mem_cgroup_reset,
3938                 .read_u64 = mem_cgroup_read_u64,
3939         },
3940         {
3941                 .name = "stat",
3942                 .seq_show = memcg_stat_show,
3943         },
3944         {
3945                 .name = "force_empty",
3946                 .write = mem_cgroup_force_empty_write,
3947         },
3948         {
3949                 .name = "use_hierarchy",
3950                 .write_u64 = mem_cgroup_hierarchy_write,
3951                 .read_u64 = mem_cgroup_hierarchy_read,
3952         },
3953         {
3954                 .name = "cgroup.event_control",         /* XXX: for compat */
3955                 .write = memcg_write_event_control,
3956                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957         },
3958         {
3959                 .name = "swappiness",
3960                 .read_u64 = mem_cgroup_swappiness_read,
3961                 .write_u64 = mem_cgroup_swappiness_write,
3962         },
3963         {
3964                 .name = "move_charge_at_immigrate",
3965                 .read_u64 = mem_cgroup_move_charge_read,
3966                 .write_u64 = mem_cgroup_move_charge_write,
3967         },
3968         {
3969                 .name = "oom_control",
3970                 .seq_show = mem_cgroup_oom_control_read,
3971                 .write_u64 = mem_cgroup_oom_control_write,
3972                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973         },
3974         {
3975                 .name = "pressure_level",
3976         },
3977 #ifdef CONFIG_NUMA
3978         {
3979                 .name = "numa_stat",
3980                 .seq_show = memcg_numa_stat_show,
3981         },
3982 #endif
3983         {
3984                 .name = "kmem.limit_in_bytes",
3985                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3986                 .write = mem_cgroup_write,
3987                 .read_u64 = mem_cgroup_read_u64,
3988         },
3989         {
3990                 .name = "kmem.usage_in_bytes",
3991                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3992                 .read_u64 = mem_cgroup_read_u64,
3993         },
3994         {
3995                 .name = "kmem.failcnt",
3996                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3997                 .write = mem_cgroup_reset,
3998                 .read_u64 = mem_cgroup_read_u64,
3999         },
4000         {
4001                 .name = "kmem.max_usage_in_bytes",
4002                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4003                 .write = mem_cgroup_reset,
4004                 .read_u64 = mem_cgroup_read_u64,
4005         },
4006 #ifdef CONFIG_SLABINFO
4007         {
4008                 .name = "kmem.slabinfo",
4009                 .seq_start = slab_start,
4010                 .seq_next = slab_next,
4011                 .seq_stop = slab_stop,
4012                 .seq_show = memcg_slab_show,
4013         },
4014 #endif
4015         {
4016                 .name = "kmem.tcp.limit_in_bytes",
4017                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4018                 .write = mem_cgroup_write,
4019                 .read_u64 = mem_cgroup_read_u64,
4020         },
4021         {
4022                 .name = "kmem.tcp.usage_in_bytes",
4023                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4024                 .read_u64 = mem_cgroup_read_u64,
4025         },
4026         {
4027                 .name = "kmem.tcp.failcnt",
4028                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4029                 .write = mem_cgroup_reset,
4030                 .read_u64 = mem_cgroup_read_u64,
4031         },
4032         {
4033                 .name = "kmem.tcp.max_usage_in_bytes",
4034                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4035                 .write = mem_cgroup_reset,
4036                 .read_u64 = mem_cgroup_read_u64,
4037         },
4038         { },    /* terminate */
4039 };
4040
4041 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4042 {
4043         struct mem_cgroup_per_node *pn;
4044         struct mem_cgroup_per_zone *mz;
4045         int zone, tmp = node;
4046         /*
4047          * This routine is called against possible nodes.
4048          * But it's BUG to call kmalloc() against offline node.
4049          *
4050          * TODO: this routine can waste much memory for nodes which will
4051          *       never be onlined. It's better to use memory hotplug callback
4052          *       function.
4053          */
4054         if (!node_state(node, N_NORMAL_MEMORY))
4055                 tmp = -1;
4056         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4057         if (!pn)
4058                 return 1;
4059
4060         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4061                 mz = &pn->zoneinfo[zone];
4062                 lruvec_init(&mz->lruvec);
4063                 mz->usage_in_excess = 0;
4064                 mz->on_tree = false;
4065                 mz->memcg = memcg;
4066         }
4067         memcg->nodeinfo[node] = pn;
4068         return 0;
4069 }
4070
4071 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4072 {
4073         kfree(memcg->nodeinfo[node]);
4074 }
4075
4076 static void mem_cgroup_free(struct mem_cgroup *memcg)
4077 {
4078         int node;
4079
4080         memcg_wb_domain_exit(memcg);
4081         for_each_node(node)
4082                 free_mem_cgroup_per_zone_info(memcg, node);
4083         free_percpu(memcg->stat);
4084         kfree(memcg);
4085 }
4086
4087 static struct mem_cgroup *mem_cgroup_alloc(void)
4088 {
4089         struct mem_cgroup *memcg;
4090         size_t size;
4091         int node;
4092
4093         size = sizeof(struct mem_cgroup);
4094         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4095
4096         memcg = kzalloc(size, GFP_KERNEL);
4097         if (!memcg)
4098                 return NULL;
4099
4100         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4101         if (!memcg->stat)
4102                 goto fail;
4103
4104         for_each_node(node)
4105                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4106                         goto fail;
4107
4108         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4109                 goto fail;
4110
4111         INIT_WORK(&memcg->high_work, high_work_func);
4112         memcg->last_scanned_node = MAX_NUMNODES;
4113         INIT_LIST_HEAD(&memcg->oom_notify);
4114         mutex_init(&memcg->thresholds_lock);
4115         spin_lock_init(&memcg->move_lock);
4116         vmpressure_init(&memcg->vmpressure);
4117         INIT_LIST_HEAD(&memcg->event_list);
4118         spin_lock_init(&memcg->event_list_lock);
4119         memcg->socket_pressure = jiffies;
4120 #ifndef CONFIG_SLOB
4121         memcg->kmemcg_id = -1;
4122 #endif
4123 #ifdef CONFIG_CGROUP_WRITEBACK
4124         INIT_LIST_HEAD(&memcg->cgwb_list);
4125 #endif
4126         return memcg;
4127 fail:
4128         mem_cgroup_free(memcg);
4129         return NULL;
4130 }
4131
4132 static struct cgroup_subsys_state * __ref
4133 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4134 {
4135         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4136         struct mem_cgroup *memcg;
4137         long error = -ENOMEM;
4138
4139         memcg = mem_cgroup_alloc();
4140         if (!memcg)
4141                 return ERR_PTR(error);
4142
4143         memcg->high = PAGE_COUNTER_MAX;
4144         memcg->soft_limit = PAGE_COUNTER_MAX;
4145         if (parent) {
4146                 memcg->swappiness = mem_cgroup_swappiness(parent);
4147                 memcg->oom_kill_disable = parent->oom_kill_disable;
4148         }
4149         if (parent && parent->use_hierarchy) {
4150                 memcg->use_hierarchy = true;
4151                 page_counter_init(&memcg->memory, &parent->memory);
4152                 page_counter_init(&memcg->swap, &parent->swap);
4153                 page_counter_init(&memcg->memsw, &parent->memsw);
4154                 page_counter_init(&memcg->kmem, &parent->kmem);
4155                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4156         } else {
4157                 page_counter_init(&memcg->memory, NULL);
4158                 page_counter_init(&memcg->swap, NULL);
4159                 page_counter_init(&memcg->memsw, NULL);
4160                 page_counter_init(&memcg->kmem, NULL);
4161                 page_counter_init(&memcg->tcpmem, NULL);
4162                 /*
4163                  * Deeper hierachy with use_hierarchy == false doesn't make
4164                  * much sense so let cgroup subsystem know about this
4165                  * unfortunate state in our controller.
4166                  */
4167                 if (parent != root_mem_cgroup)
4168                         memory_cgrp_subsys.broken_hierarchy = true;
4169         }
4170
4171         /* The following stuff does not apply to the root */
4172         if (!parent) {
4173                 root_mem_cgroup = memcg;
4174                 return &memcg->css;
4175         }
4176
4177         error = memcg_online_kmem(memcg);
4178         if (error)
4179                 goto fail;
4180
4181         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4182                 static_branch_inc(&memcg_sockets_enabled_key);
4183
4184         return &memcg->css;
4185 fail:
4186         mem_cgroup_free(memcg);
4187         return NULL;
4188 }
4189
4190 static int
4191 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4192 {
4193         if (css->id > MEM_CGROUP_ID_MAX)
4194                 return -ENOSPC;
4195
4196         return 0;
4197 }
4198
4199 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4200 {
4201         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4202         struct mem_cgroup_event *event, *tmp;
4203
4204         /*
4205          * Unregister events and notify userspace.
4206          * Notify userspace about cgroup removing only after rmdir of cgroup
4207          * directory to avoid race between userspace and kernelspace.
4208          */
4209         spin_lock(&memcg->event_list_lock);
4210         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4211                 list_del_init(&event->list);
4212                 schedule_work(&event->remove);
4213         }
4214         spin_unlock(&memcg->event_list_lock);
4215
4216         memcg_offline_kmem(memcg);
4217         wb_memcg_offline(memcg);
4218 }
4219
4220 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4221 {
4222         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4223
4224         invalidate_reclaim_iterators(memcg);
4225 }
4226
4227 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4228 {
4229         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4230
4231         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4232                 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4235                 static_branch_dec(&memcg_sockets_enabled_key);
4236
4237         vmpressure_cleanup(&memcg->vmpressure);
4238         cancel_work_sync(&memcg->high_work);
4239         mem_cgroup_remove_from_trees(memcg);
4240         memcg_free_kmem(memcg);
4241         mem_cgroup_free(memcg);
4242 }
4243
4244 /**
4245  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4246  * @css: the target css
4247  *
4248  * Reset the states of the mem_cgroup associated with @css.  This is
4249  * invoked when the userland requests disabling on the default hierarchy
4250  * but the memcg is pinned through dependency.  The memcg should stop
4251  * applying policies and should revert to the vanilla state as it may be
4252  * made visible again.
4253  *
4254  * The current implementation only resets the essential configurations.
4255  * This needs to be expanded to cover all the visible parts.
4256  */
4257 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4258 {
4259         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4260
4261         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4262         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4263         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4264         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4265         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4266         memcg->low = 0;
4267         memcg->high = PAGE_COUNTER_MAX;
4268         memcg->soft_limit = PAGE_COUNTER_MAX;
4269         memcg_wb_domain_size_changed(memcg);
4270 }
4271
4272 #ifdef CONFIG_MMU
4273 /* Handlers for move charge at task migration. */
4274 static int mem_cgroup_do_precharge(unsigned long count)
4275 {
4276         int ret;
4277
4278         /* Try a single bulk charge without reclaim first, kswapd may wake */
4279         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4280         if (!ret) {
4281                 mc.precharge += count;
4282                 return ret;
4283         }
4284
4285         /* Try charges one by one with reclaim */
4286         while (count--) {
4287                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4288                 if (ret)
4289                         return ret;
4290                 mc.precharge++;
4291                 cond_resched();
4292         }
4293         return 0;
4294 }
4295
4296 /**
4297  * get_mctgt_type - get target type of moving charge
4298  * @vma: the vma the pte to be checked belongs
4299  * @addr: the address corresponding to the pte to be checked
4300  * @ptent: the pte to be checked
4301  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4302  *
4303  * Returns
4304  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4305  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4306  *     move charge. if @target is not NULL, the page is stored in target->page
4307  *     with extra refcnt got(Callers should handle it).
4308  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4309  *     target for charge migration. if @target is not NULL, the entry is stored
4310  *     in target->ent.
4311  *
4312  * Called with pte lock held.
4313  */
4314 union mc_target {
4315         struct page     *page;
4316         swp_entry_t     ent;
4317 };
4318
4319 enum mc_target_type {
4320         MC_TARGET_NONE = 0,
4321         MC_TARGET_PAGE,
4322         MC_TARGET_SWAP,
4323 };
4324
4325 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4326                                                 unsigned long addr, pte_t ptent)
4327 {
4328         struct page *page = vm_normal_page(vma, addr, ptent);
4329
4330         if (!page || !page_mapped(page))
4331                 return NULL;
4332         if (PageAnon(page)) {
4333                 if (!(mc.flags & MOVE_ANON))
4334                         return NULL;
4335         } else {
4336                 if (!(mc.flags & MOVE_FILE))
4337                         return NULL;
4338         }
4339         if (!get_page_unless_zero(page))
4340                 return NULL;
4341
4342         return page;
4343 }
4344
4345 #ifdef CONFIG_SWAP
4346 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4347                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4348 {
4349         struct page *page = NULL;
4350         swp_entry_t ent = pte_to_swp_entry(ptent);
4351
4352         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4353                 return NULL;
4354         /*
4355          * Because lookup_swap_cache() updates some statistics counter,
4356          * we call find_get_page() with swapper_space directly.
4357          */
4358         page = find_get_page(swap_address_space(ent), ent.val);
4359         if (do_memsw_account())
4360                 entry->val = ent.val;
4361
4362         return page;
4363 }
4364 #else
4365 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4366                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4367 {
4368         return NULL;
4369 }
4370 #endif
4371
4372 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4373                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4374 {
4375         struct page *page = NULL;
4376         struct address_space *mapping;
4377         pgoff_t pgoff;
4378
4379         if (!vma->vm_file) /* anonymous vma */
4380                 return NULL;
4381         if (!(mc.flags & MOVE_FILE))
4382                 return NULL;
4383
4384         mapping = vma->vm_file->f_mapping;
4385         pgoff = linear_page_index(vma, addr);
4386
4387         /* page is moved even if it's not RSS of this task(page-faulted). */
4388 #ifdef CONFIG_SWAP
4389         /* shmem/tmpfs may report page out on swap: account for that too. */
4390         if (shmem_mapping(mapping)) {
4391                 page = find_get_entry(mapping, pgoff);
4392                 if (radix_tree_exceptional_entry(page)) {
4393                         swp_entry_t swp = radix_to_swp_entry(page);
4394                         if (do_memsw_account())
4395                                 *entry = swp;
4396                         page = find_get_page(swap_address_space(swp), swp.val);
4397                 }
4398         } else
4399                 page = find_get_page(mapping, pgoff);
4400 #else
4401         page = find_get_page(mapping, pgoff);
4402 #endif
4403         return page;
4404 }
4405
4406 /**
4407  * mem_cgroup_move_account - move account of the page
4408  * @page: the page
4409  * @nr_pages: number of regular pages (>1 for huge pages)
4410  * @from: mem_cgroup which the page is moved from.
4411  * @to: mem_cgroup which the page is moved to. @from != @to.
4412  *
4413  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4414  *
4415  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4416  * from old cgroup.
4417  */
4418 static int mem_cgroup_move_account(struct page *page,
4419                                    bool compound,
4420                                    struct mem_cgroup *from,
4421                                    struct mem_cgroup *to)
4422 {
4423         unsigned long flags;
4424         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4425         int ret;
4426         bool anon;
4427
4428         VM_BUG_ON(from == to);
4429         VM_BUG_ON_PAGE(PageLRU(page), page);
4430         VM_BUG_ON(compound && !PageTransHuge(page));
4431
4432         /*
4433          * Prevent mem_cgroup_migrate() from looking at
4434          * page->mem_cgroup of its source page while we change it.
4435          */
4436         ret = -EBUSY;
4437         if (!trylock_page(page))
4438                 goto out;
4439
4440         ret = -EINVAL;
4441         if (page->mem_cgroup != from)
4442                 goto out_unlock;
4443
4444         anon = PageAnon(page);
4445
4446         spin_lock_irqsave(&from->move_lock, flags);
4447
4448         if (!anon && page_mapped(page)) {
4449                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4450                                nr_pages);
4451                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4452                                nr_pages);
4453         }
4454
4455         /*
4456          * move_lock grabbed above and caller set from->moving_account, so
4457          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4458          * So mapping should be stable for dirty pages.
4459          */
4460         if (!anon && PageDirty(page)) {
4461                 struct address_space *mapping = page_mapping(page);
4462
4463                 if (mapping_cap_account_dirty(mapping)) {
4464                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4465                                        nr_pages);
4466                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4467                                        nr_pages);
4468                 }
4469         }
4470
4471         if (PageWriteback(page)) {
4472                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4473                                nr_pages);
4474                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4475                                nr_pages);
4476         }
4477
4478         /*
4479          * It is safe to change page->mem_cgroup here because the page
4480          * is referenced, charged, and isolated - we can't race with
4481          * uncharging, charging, migration, or LRU putback.
4482          */
4483
4484         /* caller should have done css_get */
4485         page->mem_cgroup = to;
4486         spin_unlock_irqrestore(&from->move_lock, flags);
4487
4488         ret = 0;
4489
4490         local_irq_disable();
4491         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4492         memcg_check_events(to, page);
4493         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4494         memcg_check_events(from, page);
4495         local_irq_enable();
4496 out_unlock:
4497         unlock_page(page);
4498 out:
4499         return ret;
4500 }
4501
4502 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4503                 unsigned long addr, pte_t ptent, union mc_target *target)
4504 {
4505         struct page *page = NULL;
4506         enum mc_target_type ret = MC_TARGET_NONE;
4507         swp_entry_t ent = { .val = 0 };
4508
4509         if (pte_present(ptent))
4510                 page = mc_handle_present_pte(vma, addr, ptent);
4511         else if (is_swap_pte(ptent))
4512                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4513         else if (pte_none(ptent))
4514                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4515
4516         if (!page && !ent.val)
4517                 return ret;
4518         if (page) {
4519                 /*
4520                  * Do only loose check w/o serialization.
4521                  * mem_cgroup_move_account() checks the page is valid or
4522                  * not under LRU exclusion.
4523                  */
4524                 if (page->mem_cgroup == mc.from) {
4525                         ret = MC_TARGET_PAGE;
4526                         if (target)
4527                                 target->page = page;
4528                 }
4529                 if (!ret || !target)
4530                         put_page(page);
4531         }
4532         /* There is a swap entry and a page doesn't exist or isn't charged */
4533         if (ent.val && !ret &&
4534             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4535                 ret = MC_TARGET_SWAP;
4536                 if (target)
4537                         target->ent = ent;
4538         }
4539         return ret;
4540 }
4541
4542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4543 /*
4544  * We don't consider swapping or file mapped pages because THP does not
4545  * support them for now.
4546  * Caller should make sure that pmd_trans_huge(pmd) is true.
4547  */
4548 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4549                 unsigned long addr, pmd_t pmd, union mc_target *target)
4550 {
4551         struct page *page = NULL;
4552         enum mc_target_type ret = MC_TARGET_NONE;
4553
4554         page = pmd_page(pmd);
4555         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4556         if (!(mc.flags & MOVE_ANON))
4557                 return ret;
4558         if (page->mem_cgroup == mc.from) {
4559                 ret = MC_TARGET_PAGE;
4560                 if (target) {
4561                         get_page(page);
4562                         target->page = page;
4563                 }
4564         }
4565         return ret;
4566 }
4567 #else
4568 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4569                 unsigned long addr, pmd_t pmd, union mc_target *target)
4570 {
4571         return MC_TARGET_NONE;
4572 }
4573 #endif
4574
4575 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4576                                         unsigned long addr, unsigned long end,
4577                                         struct mm_walk *walk)
4578 {
4579         struct vm_area_struct *vma = walk->vma;
4580         pte_t *pte;
4581         spinlock_t *ptl;
4582
4583         ptl = pmd_trans_huge_lock(pmd, vma);
4584         if (ptl) {
4585                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4586                         mc.precharge += HPAGE_PMD_NR;
4587                 spin_unlock(ptl);
4588                 return 0;
4589         }
4590
4591         if (pmd_trans_unstable(pmd))
4592                 return 0;
4593         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4594         for (; addr != end; pte++, addr += PAGE_SIZE)
4595                 if (get_mctgt_type(vma, addr, *pte, NULL))
4596                         mc.precharge++; /* increment precharge temporarily */
4597         pte_unmap_unlock(pte - 1, ptl);
4598         cond_resched();
4599
4600         return 0;
4601 }
4602
4603 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4604 {
4605         unsigned long precharge;
4606
4607         struct mm_walk mem_cgroup_count_precharge_walk = {
4608                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4609                 .mm = mm,
4610         };
4611         down_read(&mm->mmap_sem);
4612         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4613         up_read(&mm->mmap_sem);
4614
4615         precharge = mc.precharge;
4616         mc.precharge = 0;
4617
4618         return precharge;
4619 }
4620
4621 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4622 {
4623         unsigned long precharge = mem_cgroup_count_precharge(mm);
4624
4625         VM_BUG_ON(mc.moving_task);
4626         mc.moving_task = current;
4627         return mem_cgroup_do_precharge(precharge);
4628 }
4629
4630 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4631 static void __mem_cgroup_clear_mc(void)
4632 {
4633         struct mem_cgroup *from = mc.from;
4634         struct mem_cgroup *to = mc.to;
4635
4636         /* we must uncharge all the leftover precharges from mc.to */
4637         if (mc.precharge) {
4638                 cancel_charge(mc.to, mc.precharge);
4639                 mc.precharge = 0;
4640         }
4641         /*
4642          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4643          * we must uncharge here.
4644          */
4645         if (mc.moved_charge) {
4646                 cancel_charge(mc.from, mc.moved_charge);
4647                 mc.moved_charge = 0;
4648         }
4649         /* we must fixup refcnts and charges */
4650         if (mc.moved_swap) {
4651                 /* uncharge swap account from the old cgroup */
4652                 if (!mem_cgroup_is_root(mc.from))
4653                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4654
4655                 /*
4656                  * we charged both to->memory and to->memsw, so we
4657                  * should uncharge to->memory.
4658                  */
4659                 if (!mem_cgroup_is_root(mc.to))
4660                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4661
4662                 css_put_many(&mc.from->css, mc.moved_swap);
4663
4664                 /* we've already done css_get(mc.to) */
4665                 mc.moved_swap = 0;
4666         }
4667         memcg_oom_recover(from);
4668         memcg_oom_recover(to);
4669         wake_up_all(&mc.waitq);
4670 }
4671
4672 static void mem_cgroup_clear_mc(void)
4673 {
4674         /*
4675          * we must clear moving_task before waking up waiters at the end of
4676          * task migration.
4677          */
4678         mc.moving_task = NULL;
4679         __mem_cgroup_clear_mc();
4680         spin_lock(&mc.lock);
4681         mc.from = NULL;
4682         mc.to = NULL;
4683         spin_unlock(&mc.lock);
4684 }
4685
4686 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4687 {
4688         struct cgroup_subsys_state *css;
4689         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4690         struct mem_cgroup *from;
4691         struct task_struct *leader, *p;
4692         struct mm_struct *mm;
4693         unsigned long move_flags;
4694         int ret = 0;
4695
4696         /* charge immigration isn't supported on the default hierarchy */
4697         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4698                 return 0;
4699
4700         /*
4701          * Multi-process migrations only happen on the default hierarchy
4702          * where charge immigration is not used.  Perform charge
4703          * immigration if @tset contains a leader and whine if there are
4704          * multiple.
4705          */
4706         p = NULL;
4707         cgroup_taskset_for_each_leader(leader, css, tset) {
4708                 WARN_ON_ONCE(p);
4709                 p = leader;
4710                 memcg = mem_cgroup_from_css(css);
4711         }
4712         if (!p)
4713                 return 0;
4714
4715         /*
4716          * We are now commited to this value whatever it is. Changes in this
4717          * tunable will only affect upcoming migrations, not the current one.
4718          * So we need to save it, and keep it going.
4719          */
4720         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4721         if (!move_flags)
4722                 return 0;
4723
4724         from = mem_cgroup_from_task(p);
4725
4726         VM_BUG_ON(from == memcg);
4727
4728         mm = get_task_mm(p);
4729         if (!mm)
4730                 return 0;
4731         /* We move charges only when we move a owner of the mm */
4732         if (mm->owner == p) {
4733                 VM_BUG_ON(mc.from);
4734                 VM_BUG_ON(mc.to);
4735                 VM_BUG_ON(mc.precharge);
4736                 VM_BUG_ON(mc.moved_charge);
4737                 VM_BUG_ON(mc.moved_swap);
4738
4739                 spin_lock(&mc.lock);
4740                 mc.from = from;
4741                 mc.to = memcg;
4742                 mc.flags = move_flags;
4743                 spin_unlock(&mc.lock);
4744                 /* We set mc.moving_task later */
4745
4746                 ret = mem_cgroup_precharge_mc(mm);
4747                 if (ret)
4748                         mem_cgroup_clear_mc();
4749         }
4750         mmput(mm);
4751         return ret;
4752 }
4753
4754 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4755 {
4756         if (mc.to)
4757                 mem_cgroup_clear_mc();
4758 }
4759
4760 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4761                                 unsigned long addr, unsigned long end,
4762                                 struct mm_walk *walk)
4763 {
4764         int ret = 0;
4765         struct vm_area_struct *vma = walk->vma;
4766         pte_t *pte;
4767         spinlock_t *ptl;
4768         enum mc_target_type target_type;
4769         union mc_target target;
4770         struct page *page;
4771
4772         ptl = pmd_trans_huge_lock(pmd, vma);
4773         if (ptl) {
4774                 if (mc.precharge < HPAGE_PMD_NR) {
4775                         spin_unlock(ptl);
4776                         return 0;
4777                 }
4778                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4779                 if (target_type == MC_TARGET_PAGE) {
4780                         page = target.page;
4781                         if (!isolate_lru_page(page)) {
4782                                 if (!mem_cgroup_move_account(page, true,
4783                                                              mc.from, mc.to)) {
4784                                         mc.precharge -= HPAGE_PMD_NR;
4785                                         mc.moved_charge += HPAGE_PMD_NR;
4786                                 }
4787                                 putback_lru_page(page);
4788                         }
4789                         put_page(page);
4790                 }
4791                 spin_unlock(ptl);
4792                 return 0;
4793         }
4794
4795         if (pmd_trans_unstable(pmd))
4796                 return 0;
4797 retry:
4798         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4799         for (; addr != end; addr += PAGE_SIZE) {
4800                 pte_t ptent = *(pte++);
4801                 swp_entry_t ent;
4802
4803                 if (!mc.precharge)
4804                         break;
4805
4806                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4807                 case MC_TARGET_PAGE:
4808                         page = target.page;
4809                         /*
4810                          * We can have a part of the split pmd here. Moving it
4811                          * can be done but it would be too convoluted so simply
4812                          * ignore such a partial THP and keep it in original
4813                          * memcg. There should be somebody mapping the head.
4814                          */
4815                         if (PageTransCompound(page))
4816                                 goto put;
4817                         if (isolate_lru_page(page))
4818                                 goto put;
4819                         if (!mem_cgroup_move_account(page, false,
4820                                                 mc.from, mc.to)) {
4821                                 mc.precharge--;
4822                                 /* we uncharge from mc.from later. */
4823                                 mc.moved_charge++;
4824                         }
4825                         putback_lru_page(page);
4826 put:                    /* get_mctgt_type() gets the page */
4827                         put_page(page);
4828                         break;
4829                 case MC_TARGET_SWAP:
4830                         ent = target.ent;
4831                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4832                                 mc.precharge--;
4833                                 /* we fixup refcnts and charges later. */
4834                                 mc.moved_swap++;
4835                         }
4836                         break;
4837                 default:
4838                         break;
4839                 }
4840         }
4841         pte_unmap_unlock(pte - 1, ptl);
4842         cond_resched();
4843
4844         if (addr != end) {
4845                 /*
4846                  * We have consumed all precharges we got in can_attach().
4847                  * We try charge one by one, but don't do any additional
4848                  * charges to mc.to if we have failed in charge once in attach()
4849                  * phase.
4850                  */
4851                 ret = mem_cgroup_do_precharge(1);
4852                 if (!ret)
4853                         goto retry;
4854         }
4855
4856         return ret;
4857 }
4858
4859 static void mem_cgroup_move_charge(struct mm_struct *mm)
4860 {
4861         struct mm_walk mem_cgroup_move_charge_walk = {
4862                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4863                 .mm = mm,
4864         };
4865
4866         lru_add_drain_all();
4867         /*
4868          * Signal lock_page_memcg() to take the memcg's move_lock
4869          * while we're moving its pages to another memcg. Then wait
4870          * for already started RCU-only updates to finish.
4871          */
4872         atomic_inc(&mc.from->moving_account);
4873         synchronize_rcu();
4874 retry:
4875         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4876                 /*
4877                  * Someone who are holding the mmap_sem might be waiting in
4878                  * waitq. So we cancel all extra charges, wake up all waiters,
4879                  * and retry. Because we cancel precharges, we might not be able
4880                  * to move enough charges, but moving charge is a best-effort
4881                  * feature anyway, so it wouldn't be a big problem.
4882                  */
4883                 __mem_cgroup_clear_mc();
4884                 cond_resched();
4885                 goto retry;
4886         }
4887         /*
4888          * When we have consumed all precharges and failed in doing
4889          * additional charge, the page walk just aborts.
4890          */
4891         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4892         up_read(&mm->mmap_sem);
4893         atomic_dec(&mc.from->moving_account);
4894 }
4895
4896 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4897 {
4898         struct cgroup_subsys_state *css;
4899         struct task_struct *p = cgroup_taskset_first(tset, &css);
4900         struct mm_struct *mm = get_task_mm(p);
4901
4902         if (mm) {
4903                 if (mc.to)
4904                         mem_cgroup_move_charge(mm);
4905                 mmput(mm);
4906         }
4907         if (mc.to)
4908                 mem_cgroup_clear_mc();
4909 }
4910 #else   /* !CONFIG_MMU */
4911 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4912 {
4913         return 0;
4914 }
4915 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4916 {
4917 }
4918 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4919 {
4920 }
4921 #endif
4922
4923 /*
4924  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4925  * to verify whether we're attached to the default hierarchy on each mount
4926  * attempt.
4927  */
4928 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4929 {
4930         /*
4931          * use_hierarchy is forced on the default hierarchy.  cgroup core
4932          * guarantees that @root doesn't have any children, so turning it
4933          * on for the root memcg is enough.
4934          */
4935         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4936                 root_mem_cgroup->use_hierarchy = true;
4937         else
4938                 root_mem_cgroup->use_hierarchy = false;
4939 }
4940
4941 static u64 memory_current_read(struct cgroup_subsys_state *css,
4942                                struct cftype *cft)
4943 {
4944         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4945
4946         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4947 }
4948
4949 static int memory_low_show(struct seq_file *m, void *v)
4950 {
4951         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4952         unsigned long low = READ_ONCE(memcg->low);
4953
4954         if (low == PAGE_COUNTER_MAX)
4955                 seq_puts(m, "max\n");
4956         else
4957                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4958
4959         return 0;
4960 }
4961
4962 static ssize_t memory_low_write(struct kernfs_open_file *of,
4963                                 char *buf, size_t nbytes, loff_t off)
4964 {
4965         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4966         unsigned long low;
4967         int err;
4968
4969         buf = strstrip(buf);
4970         err = page_counter_memparse(buf, "max", &low);
4971         if (err)
4972                 return err;
4973
4974         memcg->low = low;
4975
4976         return nbytes;
4977 }
4978
4979 static int memory_high_show(struct seq_file *m, void *v)
4980 {
4981         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4982         unsigned long high = READ_ONCE(memcg->high);
4983
4984         if (high == PAGE_COUNTER_MAX)
4985                 seq_puts(m, "max\n");
4986         else
4987                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4988
4989         return 0;
4990 }
4991
4992 static ssize_t memory_high_write(struct kernfs_open_file *of,
4993                                  char *buf, size_t nbytes, loff_t off)
4994 {
4995         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4996         unsigned long nr_pages;
4997         unsigned long high;
4998         int err;
4999
5000         buf = strstrip(buf);
5001         err = page_counter_memparse(buf, "max", &high);
5002         if (err)
5003                 return err;
5004
5005         memcg->high = high;
5006
5007         nr_pages = page_counter_read(&memcg->memory);
5008         if (nr_pages > high)
5009                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5010                                              GFP_KERNEL, true);
5011
5012         memcg_wb_domain_size_changed(memcg);
5013         return nbytes;
5014 }
5015
5016 static int memory_max_show(struct seq_file *m, void *v)
5017 {
5018         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5019         unsigned long max = READ_ONCE(memcg->memory.limit);
5020
5021         if (max == PAGE_COUNTER_MAX)
5022                 seq_puts(m, "max\n");
5023         else
5024                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5025
5026         return 0;
5027 }
5028
5029 static ssize_t memory_max_write(struct kernfs_open_file *of,
5030                                 char *buf, size_t nbytes, loff_t off)
5031 {
5032         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5033         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5034         bool drained = false;
5035         unsigned long max;
5036         int err;
5037
5038         buf = strstrip(buf);
5039         err = page_counter_memparse(buf, "max", &max);
5040         if (err)
5041                 return err;
5042
5043         xchg(&memcg->memory.limit, max);
5044
5045         for (;;) {
5046                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5047
5048                 if (nr_pages <= max)
5049                         break;
5050
5051                 if (signal_pending(current)) {
5052                         err = -EINTR;
5053                         break;
5054                 }
5055
5056                 if (!drained) {
5057                         drain_all_stock(memcg);
5058                         drained = true;
5059                         continue;
5060                 }
5061
5062                 if (nr_reclaims) {
5063                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5064                                                           GFP_KERNEL, true))
5065                                 nr_reclaims--;
5066                         continue;
5067                 }
5068
5069                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5070                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5071                         break;
5072         }
5073
5074         memcg_wb_domain_size_changed(memcg);
5075         return nbytes;
5076 }
5077
5078 static int memory_events_show(struct seq_file *m, void *v)
5079 {
5080         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5081
5082         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5083         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5084         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5085         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5086
5087         return 0;
5088 }
5089
5090 static int memory_stat_show(struct seq_file *m, void *v)
5091 {
5092         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5093         unsigned long stat[MEMCG_NR_STAT];
5094         unsigned long events[MEMCG_NR_EVENTS];
5095         int i;
5096
5097         /*
5098          * Provide statistics on the state of the memory subsystem as
5099          * well as cumulative event counters that show past behavior.
5100          *
5101          * This list is ordered following a combination of these gradients:
5102          * 1) generic big picture -> specifics and details
5103          * 2) reflecting userspace activity -> reflecting kernel heuristics
5104          *
5105          * Current memory state:
5106          */
5107
5108         tree_stat(memcg, stat);
5109         tree_events(memcg, events);
5110
5111         seq_printf(m, "anon %llu\n",
5112                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5113         seq_printf(m, "file %llu\n",
5114                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5115         seq_printf(m, "kernel_stack %llu\n",
5116                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5117         seq_printf(m, "slab %llu\n",
5118                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5119                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5120         seq_printf(m, "sock %llu\n",
5121                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5122
5123         seq_printf(m, "file_mapped %llu\n",
5124                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5125         seq_printf(m, "file_dirty %llu\n",
5126                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5127         seq_printf(m, "file_writeback %llu\n",
5128                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5129
5130         for (i = 0; i < NR_LRU_LISTS; i++) {
5131                 struct mem_cgroup *mi;
5132                 unsigned long val = 0;
5133
5134                 for_each_mem_cgroup_tree(mi, memcg)
5135                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5136                 seq_printf(m, "%s %llu\n",
5137                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5138         }
5139
5140         seq_printf(m, "slab_reclaimable %llu\n",
5141                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5142         seq_printf(m, "slab_unreclaimable %llu\n",
5143                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5144
5145         /* Accumulated memory events */
5146
5147         seq_printf(m, "pgfault %lu\n",
5148                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5149         seq_printf(m, "pgmajfault %lu\n",
5150                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5151
5152         return 0;
5153 }
5154
5155 static struct cftype memory_files[] = {
5156         {
5157                 .name = "current",
5158                 .flags = CFTYPE_NOT_ON_ROOT,
5159                 .read_u64 = memory_current_read,
5160         },
5161         {
5162                 .name = "low",
5163                 .flags = CFTYPE_NOT_ON_ROOT,
5164                 .seq_show = memory_low_show,
5165                 .write = memory_low_write,
5166         },
5167         {
5168                 .name = "high",
5169                 .flags = CFTYPE_NOT_ON_ROOT,
5170                 .seq_show = memory_high_show,
5171                 .write = memory_high_write,
5172         },
5173         {
5174                 .name = "max",
5175                 .flags = CFTYPE_NOT_ON_ROOT,
5176                 .seq_show = memory_max_show,
5177                 .write = memory_max_write,
5178         },
5179         {
5180                 .name = "events",
5181                 .flags = CFTYPE_NOT_ON_ROOT,
5182                 .file_offset = offsetof(struct mem_cgroup, events_file),
5183                 .seq_show = memory_events_show,
5184         },
5185         {
5186                 .name = "stat",
5187                 .flags = CFTYPE_NOT_ON_ROOT,
5188                 .seq_show = memory_stat_show,
5189         },
5190         { }     /* terminate */
5191 };
5192
5193 struct cgroup_subsys memory_cgrp_subsys = {
5194         .css_alloc = mem_cgroup_css_alloc,
5195         .css_online = mem_cgroup_css_online,
5196         .css_offline = mem_cgroup_css_offline,
5197         .css_released = mem_cgroup_css_released,
5198         .css_free = mem_cgroup_css_free,
5199         .css_reset = mem_cgroup_css_reset,
5200         .can_attach = mem_cgroup_can_attach,
5201         .cancel_attach = mem_cgroup_cancel_attach,
5202         .attach = mem_cgroup_move_task,
5203         .bind = mem_cgroup_bind,
5204         .dfl_cftypes = memory_files,
5205         .legacy_cftypes = mem_cgroup_legacy_files,
5206         .early_init = 0,
5207 };
5208
5209 /**
5210  * mem_cgroup_low - check if memory consumption is below the normal range
5211  * @root: the highest ancestor to consider
5212  * @memcg: the memory cgroup to check
5213  *
5214  * Returns %true if memory consumption of @memcg, and that of all
5215  * configurable ancestors up to @root, is below the normal range.
5216  */
5217 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5218 {
5219         if (mem_cgroup_disabled())
5220                 return false;
5221
5222         /*
5223          * The toplevel group doesn't have a configurable range, so
5224          * it's never low when looked at directly, and it is not
5225          * considered an ancestor when assessing the hierarchy.
5226          */
5227
5228         if (memcg == root_mem_cgroup)
5229                 return false;
5230
5231         if (page_counter_read(&memcg->memory) >= memcg->low)
5232                 return false;
5233
5234         while (memcg != root) {
5235                 memcg = parent_mem_cgroup(memcg);
5236
5237                 if (memcg == root_mem_cgroup)
5238                         break;
5239
5240                 if (page_counter_read(&memcg->memory) >= memcg->low)
5241                         return false;
5242         }
5243         return true;
5244 }
5245
5246 /**
5247  * mem_cgroup_try_charge - try charging a page
5248  * @page: page to charge
5249  * @mm: mm context of the victim
5250  * @gfp_mask: reclaim mode
5251  * @memcgp: charged memcg return
5252  *
5253  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5254  * pages according to @gfp_mask if necessary.
5255  *
5256  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5257  * Otherwise, an error code is returned.
5258  *
5259  * After page->mapping has been set up, the caller must finalize the
5260  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5261  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5262  */
5263 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5264                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5265                           bool compound)
5266 {
5267         struct mem_cgroup *memcg = NULL;
5268         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5269         int ret = 0;
5270
5271         if (mem_cgroup_disabled())
5272                 goto out;
5273
5274         if (PageSwapCache(page)) {
5275                 /*
5276                  * Every swap fault against a single page tries to charge the
5277                  * page, bail as early as possible.  shmem_unuse() encounters
5278                  * already charged pages, too.  The USED bit is protected by
5279                  * the page lock, which serializes swap cache removal, which
5280                  * in turn serializes uncharging.
5281                  */
5282                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5283                 if (page->mem_cgroup)
5284                         goto out;
5285
5286                 if (do_swap_account) {
5287                         swp_entry_t ent = { .val = page_private(page), };
5288                         unsigned short id = lookup_swap_cgroup_id(ent);
5289
5290                         rcu_read_lock();
5291                         memcg = mem_cgroup_from_id(id);
5292                         if (memcg && !css_tryget_online(&memcg->css))
5293                                 memcg = NULL;
5294                         rcu_read_unlock();
5295                 }
5296         }
5297
5298         if (!memcg)
5299                 memcg = get_mem_cgroup_from_mm(mm);
5300
5301         ret = try_charge(memcg, gfp_mask, nr_pages);
5302
5303         css_put(&memcg->css);
5304 out:
5305         *memcgp = memcg;
5306         return ret;
5307 }
5308
5309 /**
5310  * mem_cgroup_commit_charge - commit a page charge
5311  * @page: page to charge
5312  * @memcg: memcg to charge the page to
5313  * @lrucare: page might be on LRU already
5314  *
5315  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5316  * after page->mapping has been set up.  This must happen atomically
5317  * as part of the page instantiation, i.e. under the page table lock
5318  * for anonymous pages, under the page lock for page and swap cache.
5319  *
5320  * In addition, the page must not be on the LRU during the commit, to
5321  * prevent racing with task migration.  If it might be, use @lrucare.
5322  *
5323  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5324  */
5325 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5326                               bool lrucare, bool compound)
5327 {
5328         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5329
5330         VM_BUG_ON_PAGE(!page->mapping, page);
5331         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5332
5333         if (mem_cgroup_disabled())
5334                 return;
5335         /*
5336          * Swap faults will attempt to charge the same page multiple
5337          * times.  But reuse_swap_page() might have removed the page
5338          * from swapcache already, so we can't check PageSwapCache().
5339          */
5340         if (!memcg)
5341                 return;
5342
5343         commit_charge(page, memcg, lrucare);
5344
5345         local_irq_disable();
5346         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5347         memcg_check_events(memcg, page);
5348         local_irq_enable();
5349
5350         if (do_memsw_account() && PageSwapCache(page)) {
5351                 swp_entry_t entry = { .val = page_private(page) };
5352                 /*
5353                  * The swap entry might not get freed for a long time,
5354                  * let's not wait for it.  The page already received a
5355                  * memory+swap charge, drop the swap entry duplicate.
5356                  */
5357                 mem_cgroup_uncharge_swap(entry);
5358         }
5359 }
5360
5361 /**
5362  * mem_cgroup_cancel_charge - cancel a page charge
5363  * @page: page to charge
5364  * @memcg: memcg to charge the page to
5365  *
5366  * Cancel a charge transaction started by mem_cgroup_try_charge().
5367  */
5368 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5369                 bool compound)
5370 {
5371         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5372
5373         if (mem_cgroup_disabled())
5374                 return;
5375         /*
5376          * Swap faults will attempt to charge the same page multiple
5377          * times.  But reuse_swap_page() might have removed the page
5378          * from swapcache already, so we can't check PageSwapCache().
5379          */
5380         if (!memcg)
5381                 return;
5382
5383         cancel_charge(memcg, nr_pages);
5384 }
5385
5386 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5387                            unsigned long nr_anon, unsigned long nr_file,
5388                            unsigned long nr_huge, struct page *dummy_page)
5389 {
5390         unsigned long nr_pages = nr_anon + nr_file;
5391         unsigned long flags;
5392
5393         if (!mem_cgroup_is_root(memcg)) {
5394                 page_counter_uncharge(&memcg->memory, nr_pages);
5395                 if (do_memsw_account())
5396                         page_counter_uncharge(&memcg->memsw, nr_pages);
5397                 memcg_oom_recover(memcg);
5398         }
5399
5400         local_irq_save(flags);
5401         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5402         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5403         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5404         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5405         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5406         memcg_check_events(memcg, dummy_page);
5407         local_irq_restore(flags);
5408
5409         if (!mem_cgroup_is_root(memcg))
5410                 css_put_many(&memcg->css, nr_pages);
5411 }
5412
5413 static void uncharge_list(struct list_head *page_list)
5414 {
5415         struct mem_cgroup *memcg = NULL;
5416         unsigned long nr_anon = 0;
5417         unsigned long nr_file = 0;
5418         unsigned long nr_huge = 0;
5419         unsigned long pgpgout = 0;
5420         struct list_head *next;
5421         struct page *page;
5422
5423         next = page_list->next;
5424         do {
5425                 unsigned int nr_pages = 1;
5426
5427                 page = list_entry(next, struct page, lru);
5428                 next = page->lru.next;
5429
5430                 VM_BUG_ON_PAGE(PageLRU(page), page);
5431                 VM_BUG_ON_PAGE(page_count(page), page);
5432
5433                 if (!page->mem_cgroup)
5434                         continue;
5435
5436                 /*
5437                  * Nobody should be changing or seriously looking at
5438                  * page->mem_cgroup at this point, we have fully
5439                  * exclusive access to the page.
5440                  */
5441
5442                 if (memcg != page->mem_cgroup) {
5443                         if (memcg) {
5444                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5445                                                nr_huge, page);
5446                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5447                         }
5448                         memcg = page->mem_cgroup;
5449                 }
5450
5451                 if (PageTransHuge(page)) {
5452                         nr_pages <<= compound_order(page);
5453                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5454                         nr_huge += nr_pages;
5455                 }
5456
5457                 if (PageAnon(page))
5458                         nr_anon += nr_pages;
5459                 else
5460                         nr_file += nr_pages;
5461
5462                 page->mem_cgroup = NULL;
5463
5464                 pgpgout++;
5465         } while (next != page_list);
5466
5467         if (memcg)
5468                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5469                                nr_huge, page);
5470 }
5471
5472 /**
5473  * mem_cgroup_uncharge - uncharge a page
5474  * @page: page to uncharge
5475  *
5476  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5477  * mem_cgroup_commit_charge().
5478  */
5479 void mem_cgroup_uncharge(struct page *page)
5480 {
5481         if (mem_cgroup_disabled())
5482                 return;
5483
5484         /* Don't touch page->lru of any random page, pre-check: */
5485         if (!page->mem_cgroup)
5486                 return;
5487
5488         INIT_LIST_HEAD(&page->lru);
5489         uncharge_list(&page->lru);
5490 }
5491
5492 /**
5493  * mem_cgroup_uncharge_list - uncharge a list of page
5494  * @page_list: list of pages to uncharge
5495  *
5496  * Uncharge a list of pages previously charged with
5497  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5498  */
5499 void mem_cgroup_uncharge_list(struct list_head *page_list)
5500 {
5501         if (mem_cgroup_disabled())
5502                 return;
5503
5504         if (!list_empty(page_list))
5505                 uncharge_list(page_list);
5506 }
5507
5508 /**
5509  * mem_cgroup_migrate - charge a page's replacement
5510  * @oldpage: currently circulating page
5511  * @newpage: replacement page
5512  *
5513  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5514  * be uncharged upon free.
5515  *
5516  * Both pages must be locked, @newpage->mapping must be set up.
5517  */
5518 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5519 {
5520         struct mem_cgroup *memcg;
5521         unsigned int nr_pages;
5522         bool compound;
5523
5524         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5525         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5526         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5527         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5528                        newpage);
5529
5530         if (mem_cgroup_disabled())
5531                 return;
5532
5533         /* Page cache replacement: new page already charged? */
5534         if (newpage->mem_cgroup)
5535                 return;
5536
5537         /* Swapcache readahead pages can get replaced before being charged */
5538         memcg = oldpage->mem_cgroup;
5539         if (!memcg)
5540                 return;
5541
5542         /* Force-charge the new page. The old one will be freed soon */
5543         compound = PageTransHuge(newpage);
5544         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5545
5546         page_counter_charge(&memcg->memory, nr_pages);
5547         if (do_memsw_account())
5548                 page_counter_charge(&memcg->memsw, nr_pages);
5549         css_get_many(&memcg->css, nr_pages);
5550
5551         commit_charge(newpage, memcg, false);
5552
5553         local_irq_disable();
5554         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5555         memcg_check_events(memcg, newpage);
5556         local_irq_enable();
5557 }
5558
5559 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5560 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5561
5562 void sock_update_memcg(struct sock *sk)
5563 {
5564         struct mem_cgroup *memcg;
5565
5566         /* Socket cloning can throw us here with sk_cgrp already
5567          * filled. It won't however, necessarily happen from
5568          * process context. So the test for root memcg given
5569          * the current task's memcg won't help us in this case.
5570          *
5571          * Respecting the original socket's memcg is a better
5572          * decision in this case.
5573          */
5574         if (sk->sk_memcg) {
5575                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5576                 css_get(&sk->sk_memcg->css);
5577                 return;
5578         }
5579
5580         rcu_read_lock();
5581         memcg = mem_cgroup_from_task(current);
5582         if (memcg == root_mem_cgroup)
5583                 goto out;
5584         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5585                 goto out;
5586         if (css_tryget_online(&memcg->css))
5587                 sk->sk_memcg = memcg;
5588 out:
5589         rcu_read_unlock();
5590 }
5591 EXPORT_SYMBOL(sock_update_memcg);
5592
5593 void sock_release_memcg(struct sock *sk)
5594 {
5595         WARN_ON(!sk->sk_memcg);
5596         css_put(&sk->sk_memcg->css);
5597 }
5598
5599 /**
5600  * mem_cgroup_charge_skmem - charge socket memory
5601  * @memcg: memcg to charge
5602  * @nr_pages: number of pages to charge
5603  *
5604  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5605  * @memcg's configured limit, %false if the charge had to be forced.
5606  */
5607 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5608 {
5609         gfp_t gfp_mask = GFP_KERNEL;
5610
5611         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5612                 struct page_counter *fail;
5613
5614                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5615                         memcg->tcpmem_pressure = 0;
5616                         return true;
5617                 }
5618                 page_counter_charge(&memcg->tcpmem, nr_pages);
5619                 memcg->tcpmem_pressure = 1;
5620                 return false;
5621         }
5622
5623         /* Don't block in the packet receive path */
5624         if (in_softirq())
5625                 gfp_mask = GFP_NOWAIT;
5626
5627         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5628
5629         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5630                 return true;
5631
5632         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5633         return false;
5634 }
5635
5636 /**
5637  * mem_cgroup_uncharge_skmem - uncharge socket memory
5638  * @memcg - memcg to uncharge
5639  * @nr_pages - number of pages to uncharge
5640  */
5641 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5642 {
5643         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5644                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5645                 return;
5646         }
5647
5648         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649
5650         page_counter_uncharge(&memcg->memory, nr_pages);
5651         css_put_many(&memcg->css, nr_pages);
5652 }
5653
5654 static int __init cgroup_memory(char *s)
5655 {
5656         char *token;
5657
5658         while ((token = strsep(&s, ",")) != NULL) {
5659                 if (!*token)
5660                         continue;
5661                 if (!strcmp(token, "nosocket"))
5662                         cgroup_memory_nosocket = true;
5663                 if (!strcmp(token, "nokmem"))
5664                         cgroup_memory_nokmem = true;
5665         }
5666         return 0;
5667 }
5668 __setup("cgroup.memory=", cgroup_memory);
5669
5670 /*
5671  * subsys_initcall() for memory controller.
5672  *
5673  * Some parts like hotcpu_notifier() have to be initialized from this context
5674  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5675  * everything that doesn't depend on a specific mem_cgroup structure should
5676  * be initialized from here.
5677  */
5678 static int __init mem_cgroup_init(void)
5679 {
5680         int cpu, node;
5681
5682         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5683
5684         for_each_possible_cpu(cpu)
5685                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5686                           drain_local_stock);
5687
5688         for_each_node(node) {
5689                 struct mem_cgroup_tree_per_node *rtpn;
5690                 int zone;
5691
5692                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5693                                     node_online(node) ? node : NUMA_NO_NODE);
5694
5695                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5696                         struct mem_cgroup_tree_per_zone *rtpz;
5697
5698                         rtpz = &rtpn->rb_tree_per_zone[zone];
5699                         rtpz->rb_root = RB_ROOT;
5700                         spin_lock_init(&rtpz->lock);
5701                 }
5702                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5703         }
5704
5705         return 0;
5706 }
5707 subsys_initcall(mem_cgroup_init);
5708
5709 #ifdef CONFIG_MEMCG_SWAP
5710 /**
5711  * mem_cgroup_swapout - transfer a memsw charge to swap
5712  * @page: page whose memsw charge to transfer
5713  * @entry: swap entry to move the charge to
5714  *
5715  * Transfer the memsw charge of @page to @entry.
5716  */
5717 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5718 {
5719         struct mem_cgroup *memcg;
5720         unsigned short oldid;
5721
5722         VM_BUG_ON_PAGE(PageLRU(page), page);
5723         VM_BUG_ON_PAGE(page_count(page), page);
5724
5725         if (!do_memsw_account())
5726                 return;
5727
5728         memcg = page->mem_cgroup;
5729
5730         /* Readahead page, never charged */
5731         if (!memcg)
5732                 return;
5733
5734         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5735         VM_BUG_ON_PAGE(oldid, page);
5736         mem_cgroup_swap_statistics(memcg, true);
5737
5738         page->mem_cgroup = NULL;
5739
5740         if (!mem_cgroup_is_root(memcg))
5741                 page_counter_uncharge(&memcg->memory, 1);
5742
5743         /*
5744          * Interrupts should be disabled here because the caller holds the
5745          * mapping->tree_lock lock which is taken with interrupts-off. It is
5746          * important here to have the interrupts disabled because it is the
5747          * only synchronisation we have for udpating the per-CPU variables.
5748          */
5749         VM_BUG_ON(!irqs_disabled());
5750         mem_cgroup_charge_statistics(memcg, page, false, -1);
5751         memcg_check_events(memcg, page);
5752 }
5753
5754 /*
5755  * mem_cgroup_try_charge_swap - try charging a swap entry
5756  * @page: page being added to swap
5757  * @entry: swap entry to charge
5758  *
5759  * Try to charge @entry to the memcg that @page belongs to.
5760  *
5761  * Returns 0 on success, -ENOMEM on failure.
5762  */
5763 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5764 {
5765         struct mem_cgroup *memcg;
5766         struct page_counter *counter;
5767         unsigned short oldid;
5768
5769         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5770                 return 0;
5771
5772         memcg = page->mem_cgroup;
5773
5774         /* Readahead page, never charged */
5775         if (!memcg)
5776                 return 0;
5777
5778         if (!mem_cgroup_is_root(memcg) &&
5779             !page_counter_try_charge(&memcg->swap, 1, &counter))
5780                 return -ENOMEM;
5781
5782         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5783         VM_BUG_ON_PAGE(oldid, page);
5784         mem_cgroup_swap_statistics(memcg, true);
5785
5786         css_get(&memcg->css);
5787         return 0;
5788 }
5789
5790 /**
5791  * mem_cgroup_uncharge_swap - uncharge a swap entry
5792  * @entry: swap entry to uncharge
5793  *
5794  * Drop the swap charge associated with @entry.
5795  */
5796 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5797 {
5798         struct mem_cgroup *memcg;
5799         unsigned short id;
5800
5801         if (!do_swap_account)
5802                 return;
5803
5804         id = swap_cgroup_record(entry, 0);
5805         rcu_read_lock();
5806         memcg = mem_cgroup_from_id(id);
5807         if (memcg) {
5808                 if (!mem_cgroup_is_root(memcg)) {
5809                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5810                                 page_counter_uncharge(&memcg->swap, 1);
5811                         else
5812                                 page_counter_uncharge(&memcg->memsw, 1);
5813                 }
5814                 mem_cgroup_swap_statistics(memcg, false);
5815                 css_put(&memcg->css);
5816         }
5817         rcu_read_unlock();
5818 }
5819
5820 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5821 {
5822         long nr_swap_pages = get_nr_swap_pages();
5823
5824         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5825                 return nr_swap_pages;
5826         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5827                 nr_swap_pages = min_t(long, nr_swap_pages,
5828                                       READ_ONCE(memcg->swap.limit) -
5829                                       page_counter_read(&memcg->swap));
5830         return nr_swap_pages;
5831 }
5832
5833 bool mem_cgroup_swap_full(struct page *page)
5834 {
5835         struct mem_cgroup *memcg;
5836
5837         VM_BUG_ON_PAGE(!PageLocked(page), page);
5838
5839         if (vm_swap_full())
5840                 return true;
5841         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842                 return false;
5843
5844         memcg = page->mem_cgroup;
5845         if (!memcg)
5846                 return false;
5847
5848         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5849                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5850                         return true;
5851
5852         return false;
5853 }
5854
5855 /* for remember boot option*/
5856 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5857 static int really_do_swap_account __initdata = 1;
5858 #else
5859 static int really_do_swap_account __initdata;
5860 #endif
5861
5862 static int __init enable_swap_account(char *s)
5863 {
5864         if (!strcmp(s, "1"))
5865                 really_do_swap_account = 1;
5866         else if (!strcmp(s, "0"))
5867                 really_do_swap_account = 0;
5868         return 1;
5869 }
5870 __setup("swapaccount=", enable_swap_account);
5871
5872 static u64 swap_current_read(struct cgroup_subsys_state *css,
5873                              struct cftype *cft)
5874 {
5875         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5876
5877         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5878 }
5879
5880 static int swap_max_show(struct seq_file *m, void *v)
5881 {
5882         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5883         unsigned long max = READ_ONCE(memcg->swap.limit);
5884
5885         if (max == PAGE_COUNTER_MAX)
5886                 seq_puts(m, "max\n");
5887         else
5888                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5889
5890         return 0;
5891 }
5892
5893 static ssize_t swap_max_write(struct kernfs_open_file *of,
5894                               char *buf, size_t nbytes, loff_t off)
5895 {
5896         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5897         unsigned long max;
5898         int err;
5899
5900         buf = strstrip(buf);
5901         err = page_counter_memparse(buf, "max", &max);
5902         if (err)
5903                 return err;
5904
5905         mutex_lock(&memcg_limit_mutex);
5906         err = page_counter_limit(&memcg->swap, max);
5907         mutex_unlock(&memcg_limit_mutex);
5908         if (err)
5909                 return err;
5910
5911         return nbytes;
5912 }
5913
5914 static struct cftype swap_files[] = {
5915         {
5916                 .name = "swap.current",
5917                 .flags = CFTYPE_NOT_ON_ROOT,
5918                 .read_u64 = swap_current_read,
5919         },
5920         {
5921                 .name = "swap.max",
5922                 .flags = CFTYPE_NOT_ON_ROOT,
5923                 .seq_show = swap_max_show,
5924                 .write = swap_max_write,
5925         },
5926         { }     /* terminate */
5927 };
5928
5929 static struct cftype memsw_cgroup_files[] = {
5930         {
5931                 .name = "memsw.usage_in_bytes",
5932                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5933                 .read_u64 = mem_cgroup_read_u64,
5934         },
5935         {
5936                 .name = "memsw.max_usage_in_bytes",
5937                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5938                 .write = mem_cgroup_reset,
5939                 .read_u64 = mem_cgroup_read_u64,
5940         },
5941         {
5942                 .name = "memsw.limit_in_bytes",
5943                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5944                 .write = mem_cgroup_write,
5945                 .read_u64 = mem_cgroup_read_u64,
5946         },
5947         {
5948                 .name = "memsw.failcnt",
5949                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5950                 .write = mem_cgroup_reset,
5951                 .read_u64 = mem_cgroup_read_u64,
5952         },
5953         { },    /* terminate */
5954 };
5955
5956 static int __init mem_cgroup_swap_init(void)
5957 {
5958         if (!mem_cgroup_disabled() && really_do_swap_account) {
5959                 do_swap_account = 1;
5960                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5961                                                swap_files));
5962                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5963                                                   memsw_cgroup_files));
5964         }
5965         return 0;
5966 }
5967 subsys_initcall(mem_cgroup_swap_init);
5968
5969 #endif /* CONFIG_MEMCG_SWAP */