]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memcontrol.c
Merge remote-tracking branch 'moduleh/module.h-split'
[karo-tx-linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53
54 #include <asm/uaccess.h>
55
56 #include <trace/events/vmscan.h>
57
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES      5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72
73 #else
74 #define do_swap_account         (0)
75 #endif
76
77
78 /*
79  * Statistics for memory cgroup.
80  */
81 enum mem_cgroup_stat_index {
82         /*
83          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84          */
85         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
86         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
87         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
91         MEM_CGROUP_STAT_NSTATS,
92 };
93
94 enum mem_cgroup_events_index {
95         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
96         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
97         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
98         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
99         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
100         MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103  * Per memcg event counter is incremented at every pagein/pageout. With THP,
104  * it will be incremated by the number of pages. This counter is used for
105  * for trigger some periodic events. This is straightforward and better
106  * than using jiffies etc. to handle periodic memcg event.
107  */
108 enum mem_cgroup_events_target {
109         MEM_CGROUP_TARGET_THRESH,
110         MEM_CGROUP_TARGET_SOFTLIMIT,
111         MEM_CGROUP_TARGET_NUMAINFO,
112         MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET  (1024)
117
118 struct mem_cgroup_stat_cpu {
119         long count[MEM_CGROUP_STAT_NSTATS];
120         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121         unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 /*
125  * per-zone information in memory controller.
126  */
127 struct mem_cgroup_per_zone {
128         /*
129          * spin_lock to protect the per cgroup LRU
130          */
131         struct list_head        lists[NR_LRU_LISTS];
132         unsigned long           count[NR_LRU_LISTS];
133
134         struct zone_reclaim_stat reclaim_stat;
135         struct rb_node          tree_node;      /* RB tree node */
136         unsigned long long      usage_in_excess;/* Set to the value by which */
137                                                 /* the soft limit is exceeded*/
138         bool                    on_tree;
139         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
140                                                 /* use container_of        */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
144
145 struct mem_cgroup_per_node {
146         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148
149 struct mem_cgroup_lru_info {
150         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152
153 /*
154  * Cgroups above their limits are maintained in a RB-Tree, independent of
155  * their hierarchy representation
156  */
157
158 struct mem_cgroup_tree_per_zone {
159         struct rb_root rb_root;
160         spinlock_t lock;
161 };
162
163 struct mem_cgroup_tree_per_node {
164         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_tree {
168         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
173 struct mem_cgroup_threshold {
174         struct eventfd_ctx *eventfd;
175         u64 threshold;
176 };
177
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180         /* An array index points to threshold just below usage. */
181         int current_threshold;
182         /* Size of entries[] */
183         unsigned int size;
184         /* Array of thresholds */
185         struct mem_cgroup_threshold entries[0];
186 };
187
188 struct mem_cgroup_thresholds {
189         /* Primary thresholds array */
190         struct mem_cgroup_threshold_ary *primary;
191         /*
192          * Spare threshold array.
193          * This is needed to make mem_cgroup_unregister_event() "never fail".
194          * It must be able to store at least primary->size - 1 entries.
195          */
196         struct mem_cgroup_threshold_ary *spare;
197 };
198
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201         struct list_head list;
202         struct eventfd_ctx *eventfd;
203 };
204
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207
208 enum {
209         SCAN_BY_LIMIT,
210         SCAN_BY_SYSTEM,
211         NR_SCAN_CONTEXT,
212         SCAN_BY_SHRINK, /* not recorded now */
213 };
214
215 enum {
216         SCAN,
217         SCAN_ANON,
218         SCAN_FILE,
219         ROTATE,
220         ROTATE_ANON,
221         ROTATE_FILE,
222         FREED,
223         FREED_ANON,
224         FREED_FILE,
225         ELAPSED,
226         NR_SCANSTATS,
227 };
228
229 struct scanstat {
230         spinlock_t      lock;
231         unsigned long   stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232         unsigned long   rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
233 };
234
235 const char *scanstat_string[NR_SCANSTATS] = {
236         "scanned_pages",
237         "scanned_anon_pages",
238         "scanned_file_pages",
239         "rotated_pages",
240         "rotated_anon_pages",
241         "rotated_file_pages",
242         "freed_pages",
243         "freed_anon_pages",
244         "freed_file_pages",
245         "elapsed_ns",
246 };
247 #define SCANSTAT_WORD_LIMIT     "_by_limit"
248 #define SCANSTAT_WORD_SYSTEM    "_by_system"
249 #define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
250
251
252 /*
253  * The memory controller data structure. The memory controller controls both
254  * page cache and RSS per cgroup. We would eventually like to provide
255  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
256  * to help the administrator determine what knobs to tune.
257  *
258  * TODO: Add a water mark for the memory controller. Reclaim will begin when
259  * we hit the water mark. May be even add a low water mark, such that
260  * no reclaim occurs from a cgroup at it's low water mark, this is
261  * a feature that will be implemented much later in the future.
262  */
263 struct mem_cgroup {
264         struct cgroup_subsys_state css;
265         /*
266          * the counter to account for memory usage
267          */
268         struct res_counter res;
269         /*
270          * the counter to account for mem+swap usage.
271          */
272         struct res_counter memsw;
273         /*
274          * Per cgroup active and inactive list, similar to the
275          * per zone LRU lists.
276          */
277         struct mem_cgroup_lru_info info;
278         /*
279          * While reclaiming in a hierarchy, we cache the last child we
280          * reclaimed from.
281          */
282         int last_scanned_child;
283         int last_scanned_node;
284 #if MAX_NUMNODES > 1
285         nodemask_t      scan_nodes;
286         atomic_t        numainfo_events;
287         atomic_t        numainfo_updating;
288 #endif
289         /*
290          * Should the accounting and control be hierarchical, per subtree?
291          */
292         bool use_hierarchy;
293
294         bool            oom_lock;
295         atomic_t        under_oom;
296
297         atomic_t        refcnt;
298
299         int     swappiness;
300         /* OOM-Killer disable */
301         int             oom_kill_disable;
302
303         /* set when res.limit == memsw.limit */
304         bool            memsw_is_minimum;
305
306         /* protect arrays of thresholds */
307         struct mutex thresholds_lock;
308
309         /* thresholds for memory usage. RCU-protected */
310         struct mem_cgroup_thresholds thresholds;
311
312         /* thresholds for mem+swap usage. RCU-protected */
313         struct mem_cgroup_thresholds memsw_thresholds;
314
315         /* For oom notifier event fd */
316         struct list_head oom_notify;
317         /* For recording LRU-scan statistics */
318         struct scanstat scanstat;
319         /*
320          * Should we move charges of a task when a task is moved into this
321          * mem_cgroup ? And what type of charges should we move ?
322          */
323         unsigned long   move_charge_at_immigrate;
324         /*
325          * percpu counter.
326          */
327         struct mem_cgroup_stat_cpu *stat;
328         /*
329          * used when a cpu is offlined or other synchronizations
330          * See mem_cgroup_read_stat().
331          */
332         struct mem_cgroup_stat_cpu nocpu_base;
333         spinlock_t pcp_counter_lock;
334 };
335
336 /* Stuffs for move charges at task migration. */
337 /*
338  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
339  * left-shifted bitmap of these types.
340  */
341 enum move_type {
342         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
343         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
344         NR_MOVE_TYPE,
345 };
346
347 /* "mc" and its members are protected by cgroup_mutex */
348 static struct move_charge_struct {
349         spinlock_t        lock; /* for from, to */
350         struct mem_cgroup *from;
351         struct mem_cgroup *to;
352         unsigned long precharge;
353         unsigned long moved_charge;
354         unsigned long moved_swap;
355         struct task_struct *moving_task;        /* a task moving charges */
356         wait_queue_head_t waitq;                /* a waitq for other context */
357 } mc = {
358         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
360 };
361
362 static bool move_anon(void)
363 {
364         return test_bit(MOVE_CHARGE_TYPE_ANON,
365                                         &mc.to->move_charge_at_immigrate);
366 }
367
368 static bool move_file(void)
369 {
370         return test_bit(MOVE_CHARGE_TYPE_FILE,
371                                         &mc.to->move_charge_at_immigrate);
372 }
373
374 /*
375  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
376  * limit reclaim to prevent infinite loops, if they ever occur.
377  */
378 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
379 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
380
381 enum charge_type {
382         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
383         MEM_CGROUP_CHARGE_TYPE_MAPPED,
384         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
385         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
386         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
387         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
388         NR_CHARGE_TYPE,
389 };
390
391 /* for encoding cft->private value on file */
392 #define _MEM                    (0)
393 #define _MEMSWAP                (1)
394 #define _OOM_TYPE               (2)
395 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
396 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
397 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
398 /* Used for OOM nofiier */
399 #define OOM_CONTROL             (0)
400
401 /*
402  * Reclaim flags for mem_cgroup_hierarchical_reclaim
403  */
404 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
405 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
406 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
407 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
409 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410
411 static void mem_cgroup_get(struct mem_cgroup *mem);
412 static void mem_cgroup_put(struct mem_cgroup *mem);
413 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414 static void drain_all_stock_async(struct mem_cgroup *mem);
415
416 static struct mem_cgroup_per_zone *
417 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
418 {
419         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
420 }
421
422 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
423 {
424         return &mem->css;
425 }
426
427 static struct mem_cgroup_per_zone *
428 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429 {
430         int nid = page_to_nid(page);
431         int zid = page_zonenum(page);
432
433         return mem_cgroup_zoneinfo(mem, nid, zid);
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_node_zone(int nid, int zid)
438 {
439         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
440 }
441
442 static struct mem_cgroup_tree_per_zone *
443 soft_limit_tree_from_page(struct page *page)
444 {
445         int nid = page_to_nid(page);
446         int zid = page_zonenum(page);
447
448         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
449 }
450
451 static void
452 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453                                 struct mem_cgroup_per_zone *mz,
454                                 struct mem_cgroup_tree_per_zone *mctz,
455                                 unsigned long long new_usage_in_excess)
456 {
457         struct rb_node **p = &mctz->rb_root.rb_node;
458         struct rb_node *parent = NULL;
459         struct mem_cgroup_per_zone *mz_node;
460
461         if (mz->on_tree)
462                 return;
463
464         mz->usage_in_excess = new_usage_in_excess;
465         if (!mz->usage_in_excess)
466                 return;
467         while (*p) {
468                 parent = *p;
469                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
470                                         tree_node);
471                 if (mz->usage_in_excess < mz_node->usage_in_excess)
472                         p = &(*p)->rb_left;
473                 /*
474                  * We can't avoid mem cgroups that are over their soft
475                  * limit by the same amount
476                  */
477                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
478                         p = &(*p)->rb_right;
479         }
480         rb_link_node(&mz->tree_node, parent, p);
481         rb_insert_color(&mz->tree_node, &mctz->rb_root);
482         mz->on_tree = true;
483 }
484
485 static void
486 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
487                                 struct mem_cgroup_per_zone *mz,
488                                 struct mem_cgroup_tree_per_zone *mctz)
489 {
490         if (!mz->on_tree)
491                 return;
492         rb_erase(&mz->tree_node, &mctz->rb_root);
493         mz->on_tree = false;
494 }
495
496 static void
497 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
498                                 struct mem_cgroup_per_zone *mz,
499                                 struct mem_cgroup_tree_per_zone *mctz)
500 {
501         spin_lock(&mctz->lock);
502         __mem_cgroup_remove_exceeded(mem, mz, mctz);
503         spin_unlock(&mctz->lock);
504 }
505
506
507 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
508 {
509         unsigned long long excess;
510         struct mem_cgroup_per_zone *mz;
511         struct mem_cgroup_tree_per_zone *mctz;
512         int nid = page_to_nid(page);
513         int zid = page_zonenum(page);
514         mctz = soft_limit_tree_from_page(page);
515
516         /*
517          * Necessary to update all ancestors when hierarchy is used.
518          * because their event counter is not touched.
519          */
520         for (; mem; mem = parent_mem_cgroup(mem)) {
521                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
522                 excess = res_counter_soft_limit_excess(&mem->res);
523                 /*
524                  * We have to update the tree if mz is on RB-tree or
525                  * mem is over its softlimit.
526                  */
527                 if (excess || mz->on_tree) {
528                         spin_lock(&mctz->lock);
529                         /* if on-tree, remove it */
530                         if (mz->on_tree)
531                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
532                         /*
533                          * Insert again. mz->usage_in_excess will be updated.
534                          * If excess is 0, no tree ops.
535                          */
536                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537                         spin_unlock(&mctz->lock);
538                 }
539         }
540 }
541
542 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
543 {
544         int node, zone;
545         struct mem_cgroup_per_zone *mz;
546         struct mem_cgroup_tree_per_zone *mctz;
547
548         for_each_node_state(node, N_POSSIBLE) {
549                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
550                         mz = mem_cgroup_zoneinfo(mem, node, zone);
551                         mctz = soft_limit_tree_node_zone(node, zone);
552                         mem_cgroup_remove_exceeded(mem, mz, mctz);
553                 }
554         }
555 }
556
557 static struct mem_cgroup_per_zone *
558 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
559 {
560         struct rb_node *rightmost = NULL;
561         struct mem_cgroup_per_zone *mz;
562
563 retry:
564         mz = NULL;
565         rightmost = rb_last(&mctz->rb_root);
566         if (!rightmost)
567                 goto done;              /* Nothing to reclaim from */
568
569         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
570         /*
571          * Remove the node now but someone else can add it back,
572          * we will to add it back at the end of reclaim to its correct
573          * position in the tree.
574          */
575         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
576         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
577                 !css_tryget(&mz->mem->css))
578                 goto retry;
579 done:
580         return mz;
581 }
582
583 static struct mem_cgroup_per_zone *
584 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
585 {
586         struct mem_cgroup_per_zone *mz;
587
588         spin_lock(&mctz->lock);
589         mz = __mem_cgroup_largest_soft_limit_node(mctz);
590         spin_unlock(&mctz->lock);
591         return mz;
592 }
593
594 /*
595  * Implementation Note: reading percpu statistics for memcg.
596  *
597  * Both of vmstat[] and percpu_counter has threshold and do periodic
598  * synchronization to implement "quick" read. There are trade-off between
599  * reading cost and precision of value. Then, we may have a chance to implement
600  * a periodic synchronizion of counter in memcg's counter.
601  *
602  * But this _read() function is used for user interface now. The user accounts
603  * memory usage by memory cgroup and he _always_ requires exact value because
604  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
605  * have to visit all online cpus and make sum. So, for now, unnecessary
606  * synchronization is not implemented. (just implemented for cpu hotplug)
607  *
608  * If there are kernel internal actions which can make use of some not-exact
609  * value, and reading all cpu value can be performance bottleneck in some
610  * common workload, threashold and synchonization as vmstat[] should be
611  * implemented.
612  */
613 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
614                                  enum mem_cgroup_stat_index idx)
615 {
616         long val = 0;
617         int cpu;
618
619         get_online_cpus();
620         for_each_online_cpu(cpu)
621                 val += per_cpu(mem->stat->count[idx], cpu);
622 #ifdef CONFIG_HOTPLUG_CPU
623         spin_lock(&mem->pcp_counter_lock);
624         val += mem->nocpu_base.count[idx];
625         spin_unlock(&mem->pcp_counter_lock);
626 #endif
627         put_online_cpus();
628         return val;
629 }
630
631 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
632                                          bool charge)
633 {
634         int val = (charge) ? 1 : -1;
635         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 }
637
638 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
639 {
640         this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
641 }
642
643 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
644 {
645         this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
646 }
647
648 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
649                                             enum mem_cgroup_events_index idx)
650 {
651         unsigned long val = 0;
652         int cpu;
653
654         for_each_online_cpu(cpu)
655                 val += per_cpu(mem->stat->events[idx], cpu);
656 #ifdef CONFIG_HOTPLUG_CPU
657         spin_lock(&mem->pcp_counter_lock);
658         val += mem->nocpu_base.events[idx];
659         spin_unlock(&mem->pcp_counter_lock);
660 #endif
661         return val;
662 }
663
664 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665                                          bool file, int nr_pages)
666 {
667         preempt_disable();
668
669         if (file)
670                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671         else
672                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673
674         /* pagein of a big page is an event. So, ignore page size */
675         if (nr_pages > 0)
676                 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677         else {
678                 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679                 nr_pages = -nr_pages; /* for event */
680         }
681
682         __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683
684         preempt_enable();
685 }
686
687 unsigned long
688 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
689                         unsigned int lru_mask)
690 {
691         struct mem_cgroup_per_zone *mz;
692         enum lru_list l;
693         unsigned long ret = 0;
694
695         mz = mem_cgroup_zoneinfo(mem, nid, zid);
696
697         for_each_lru(l) {
698                 if (BIT(l) & lru_mask)
699                         ret += MEM_CGROUP_ZSTAT(mz, l);
700         }
701         return ret;
702 }
703
704 static unsigned long
705 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
706                         int nid, unsigned int lru_mask)
707 {
708         u64 total = 0;
709         int zid;
710
711         for (zid = 0; zid < MAX_NR_ZONES; zid++)
712                 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
713
714         return total;
715 }
716
717 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
718                         unsigned int lru_mask)
719 {
720         int nid;
721         u64 total = 0;
722
723         for_each_node_state(nid, N_HIGH_MEMORY)
724                 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725         return total;
726 }
727
728 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
729 {
730         unsigned long val, next;
731
732         val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
733         next = this_cpu_read(mem->stat->targets[target]);
734         /* from time_after() in jiffies.h */
735         return ((long)next - (long)val < 0);
736 }
737
738 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739 {
740         unsigned long val, next;
741
742         val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743
744         switch (target) {
745         case MEM_CGROUP_TARGET_THRESH:
746                 next = val + THRESHOLDS_EVENTS_TARGET;
747                 break;
748         case MEM_CGROUP_TARGET_SOFTLIMIT:
749                 next = val + SOFTLIMIT_EVENTS_TARGET;
750                 break;
751         case MEM_CGROUP_TARGET_NUMAINFO:
752                 next = val + NUMAINFO_EVENTS_TARGET;
753                 break;
754         default:
755                 return;
756         }
757
758         this_cpu_write(mem->stat->targets[target], next);
759 }
760
761 /*
762  * Check events in order.
763  *
764  */
765 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
766 {
767         /* threshold event is triggered in finer grain than soft limit */
768         if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769                 mem_cgroup_threshold(mem);
770                 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
771                 if (unlikely(__memcg_event_check(mem,
772                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
773                         mem_cgroup_update_tree(mem, page);
774                         __mem_cgroup_target_update(mem,
775                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
776                 }
777 #if MAX_NUMNODES > 1
778                 if (unlikely(__memcg_event_check(mem,
779                         MEM_CGROUP_TARGET_NUMAINFO))) {
780                         atomic_inc(&mem->numainfo_events);
781                         __mem_cgroup_target_update(mem,
782                                 MEM_CGROUP_TARGET_NUMAINFO);
783                 }
784 #endif
785         }
786 }
787
788 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
789 {
790         return container_of(cgroup_subsys_state(cont,
791                                 mem_cgroup_subsys_id), struct mem_cgroup,
792                                 css);
793 }
794
795 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796 {
797         /*
798          * mm_update_next_owner() may clear mm->owner to NULL
799          * if it races with swapoff, page migration, etc.
800          * So this can be called with p == NULL.
801          */
802         if (unlikely(!p))
803                 return NULL;
804
805         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
806                                 struct mem_cgroup, css);
807 }
808
809 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 {
811         struct mem_cgroup *mem = NULL;
812
813         if (!mm)
814                 return NULL;
815         /*
816          * Because we have no locks, mm->owner's may be being moved to other
817          * cgroup. We use css_tryget() here even if this looks
818          * pessimistic (rather than adding locks here).
819          */
820         rcu_read_lock();
821         do {
822                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
823                 if (unlikely(!mem))
824                         break;
825         } while (!css_tryget(&mem->css));
826         rcu_read_unlock();
827         return mem;
828 }
829
830 /* The caller has to guarantee "mem" exists before calling this */
831 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
832 {
833         struct cgroup_subsys_state *css;
834         int found;
835
836         if (!mem) /* ROOT cgroup has the smallest ID */
837                 return root_mem_cgroup; /*css_put/get against root is ignored*/
838         if (!mem->use_hierarchy) {
839                 if (css_tryget(&mem->css))
840                         return mem;
841                 return NULL;
842         }
843         rcu_read_lock();
844         /*
845          * searching a memory cgroup which has the smallest ID under given
846          * ROOT cgroup. (ID >= 1)
847          */
848         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
849         if (css && css_tryget(css))
850                 mem = container_of(css, struct mem_cgroup, css);
851         else
852                 mem = NULL;
853         rcu_read_unlock();
854         return mem;
855 }
856
857 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
858                                         struct mem_cgroup *root,
859                                         bool cond)
860 {
861         int nextid = css_id(&iter->css) + 1;
862         int found;
863         int hierarchy_used;
864         struct cgroup_subsys_state *css;
865
866         hierarchy_used = iter->use_hierarchy;
867
868         css_put(&iter->css);
869         /* If no ROOT, walk all, ignore hierarchy */
870         if (!cond || (root && !hierarchy_used))
871                 return NULL;
872
873         if (!root)
874                 root = root_mem_cgroup;
875
876         do {
877                 iter = NULL;
878                 rcu_read_lock();
879
880                 css = css_get_next(&mem_cgroup_subsys, nextid,
881                                 &root->css, &found);
882                 if (css && css_tryget(css))
883                         iter = container_of(css, struct mem_cgroup, css);
884                 rcu_read_unlock();
885                 /* If css is NULL, no more cgroups will be found */
886                 nextid = found + 1;
887         } while (css && !iter);
888
889         return iter;
890 }
891 /*
892  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
893  * be careful that "break" loop is not allowed. We have reference count.
894  * Instead of that modify "cond" to be false and "continue" to exit the loop.
895  */
896 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
897         for (iter = mem_cgroup_start_loop(root);\
898              iter != NULL;\
899              iter = mem_cgroup_get_next(iter, root, cond))
900
901 #define for_each_mem_cgroup_tree(iter, root) \
902         for_each_mem_cgroup_tree_cond(iter, root, true)
903
904 #define for_each_mem_cgroup_all(iter) \
905         for_each_mem_cgroup_tree_cond(iter, NULL, true)
906
907
908 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
909 {
910         return (mem == root_mem_cgroup);
911 }
912
913 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
914 {
915         struct mem_cgroup *mem;
916
917         if (!mm)
918                 return;
919
920         rcu_read_lock();
921         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
922         if (unlikely(!mem))
923                 goto out;
924
925         switch (idx) {
926         case PGMAJFAULT:
927                 mem_cgroup_pgmajfault(mem, 1);
928                 break;
929         case PGFAULT:
930                 mem_cgroup_pgfault(mem, 1);
931                 break;
932         default:
933                 BUG();
934         }
935 out:
936         rcu_read_unlock();
937 }
938 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
939
940 /*
941  * Following LRU functions are allowed to be used without PCG_LOCK.
942  * Operations are called by routine of global LRU independently from memcg.
943  * What we have to take care of here is validness of pc->mem_cgroup.
944  *
945  * Changes to pc->mem_cgroup happens when
946  * 1. charge
947  * 2. moving account
948  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
949  * It is added to LRU before charge.
950  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
951  * When moving account, the page is not on LRU. It's isolated.
952  */
953
954 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
955 {
956         struct page_cgroup *pc;
957         struct mem_cgroup_per_zone *mz;
958
959         if (mem_cgroup_disabled())
960                 return;
961         pc = lookup_page_cgroup(page);
962         /* can happen while we handle swapcache. */
963         if (!TestClearPageCgroupAcctLRU(pc))
964                 return;
965         VM_BUG_ON(!pc->mem_cgroup);
966         /*
967          * We don't check PCG_USED bit. It's cleared when the "page" is finally
968          * removed from global LRU.
969          */
970         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971         /* huge page split is done under lru_lock. so, we have no races. */
972         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973         if (mem_cgroup_is_root(pc->mem_cgroup))
974                 return;
975         VM_BUG_ON(list_empty(&pc->lru));
976         list_del_init(&pc->lru);
977 }
978
979 void mem_cgroup_del_lru(struct page *page)
980 {
981         mem_cgroup_del_lru_list(page, page_lru(page));
982 }
983
984 /*
985  * Writeback is about to end against a page which has been marked for immediate
986  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
987  * inactive list.
988  */
989 void mem_cgroup_rotate_reclaimable_page(struct page *page)
990 {
991         struct mem_cgroup_per_zone *mz;
992         struct page_cgroup *pc;
993         enum lru_list lru = page_lru(page);
994
995         if (mem_cgroup_disabled())
996                 return;
997
998         pc = lookup_page_cgroup(page);
999         /* unused or root page is not rotated. */
1000         if (!PageCgroupUsed(pc))
1001                 return;
1002         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1003         smp_rmb();
1004         if (mem_cgroup_is_root(pc->mem_cgroup))
1005                 return;
1006         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007         list_move_tail(&pc->lru, &mz->lists[lru]);
1008 }
1009
1010 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1011 {
1012         struct mem_cgroup_per_zone *mz;
1013         struct page_cgroup *pc;
1014
1015         if (mem_cgroup_disabled())
1016                 return;
1017
1018         pc = lookup_page_cgroup(page);
1019         /* unused or root page is not rotated. */
1020         if (!PageCgroupUsed(pc))
1021                 return;
1022         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1023         smp_rmb();
1024         if (mem_cgroup_is_root(pc->mem_cgroup))
1025                 return;
1026         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1027         list_move(&pc->lru, &mz->lists[lru]);
1028 }
1029
1030 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031 {
1032         struct page_cgroup *pc;
1033         struct mem_cgroup_per_zone *mz;
1034
1035         if (mem_cgroup_disabled())
1036                 return;
1037         pc = lookup_page_cgroup(page);
1038         VM_BUG_ON(PageCgroupAcctLRU(pc));
1039         if (!PageCgroupUsed(pc))
1040                 return;
1041         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1042         smp_rmb();
1043         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044         /* huge page split is done under lru_lock. so, we have no races. */
1045         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046         SetPageCgroupAcctLRU(pc);
1047         if (mem_cgroup_is_root(pc->mem_cgroup))
1048                 return;
1049         list_add(&pc->lru, &mz->lists[lru]);
1050 }
1051
1052 /*
1053  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1054  * while it's linked to lru because the page may be reused after it's fully
1055  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1056  * It's done under lock_page and expected that zone->lru_lock isnever held.
1057  */
1058 static void mem_cgroup_lru_del_before_commit(struct page *page)
1059 {
1060         unsigned long flags;
1061         struct zone *zone = page_zone(page);
1062         struct page_cgroup *pc = lookup_page_cgroup(page);
1063
1064         /*
1065          * Doing this check without taking ->lru_lock seems wrong but this
1066          * is safe. Because if page_cgroup's USED bit is unset, the page
1067          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1068          * set, the commit after this will fail, anyway.
1069          * This all charge/uncharge is done under some mutual execustion.
1070          * So, we don't need to taking care of changes in USED bit.
1071          */
1072         if (likely(!PageLRU(page)))
1073                 return;
1074
1075         spin_lock_irqsave(&zone->lru_lock, flags);
1076         /*
1077          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1078          * is guarded by lock_page() because the page is SwapCache.
1079          */
1080         if (!PageCgroupUsed(pc))
1081                 mem_cgroup_del_lru_list(page, page_lru(page));
1082         spin_unlock_irqrestore(&zone->lru_lock, flags);
1083 }
1084
1085 static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 {
1087         unsigned long flags;
1088         struct zone *zone = page_zone(page);
1089         struct page_cgroup *pc = lookup_page_cgroup(page);
1090
1091         /* taking care of that the page is added to LRU while we commit it */
1092         if (likely(!PageLRU(page)))
1093                 return;
1094         spin_lock_irqsave(&zone->lru_lock, flags);
1095         /* link when the page is linked to LRU but page_cgroup isn't */
1096         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097                 mem_cgroup_add_lru_list(page, page_lru(page));
1098         spin_unlock_irqrestore(&zone->lru_lock, flags);
1099 }
1100
1101
1102 void mem_cgroup_move_lists(struct page *page,
1103                            enum lru_list from, enum lru_list to)
1104 {
1105         if (mem_cgroup_disabled())
1106                 return;
1107         mem_cgroup_del_lru_list(page, from);
1108         mem_cgroup_add_lru_list(page, to);
1109 }
1110
1111 /*
1112  * Checks whether given mem is same or in the root_mem's
1113  * hierarchy subtree
1114  */
1115 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1116                 struct mem_cgroup *mem)
1117 {
1118         if (root_mem != mem) {
1119                 return (root_mem->use_hierarchy &&
1120                         css_is_ancestor(&mem->css, &root_mem->css));
1121         }
1122
1123         return true;
1124 }
1125
1126 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1127 {
1128         int ret;
1129         struct mem_cgroup *curr = NULL;
1130         struct task_struct *p;
1131
1132         p = find_lock_task_mm(task);
1133         if (!p)
1134                 return 0;
1135         curr = try_get_mem_cgroup_from_mm(p->mm);
1136         task_unlock(p);
1137         if (!curr)
1138                 return 0;
1139         /*
1140          * We should check use_hierarchy of "mem" not "curr". Because checking
1141          * use_hierarchy of "curr" here make this function true if hierarchy is
1142          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1143          * hierarchy(even if use_hierarchy is disabled in "mem").
1144          */
1145         ret = mem_cgroup_same_or_subtree(mem, curr);
1146         css_put(&curr->css);
1147         return ret;
1148 }
1149
1150 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1151 {
1152         unsigned long active;
1153         unsigned long inactive;
1154         unsigned long gb;
1155         unsigned long inactive_ratio;
1156
1157         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1158         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1159
1160         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1161         if (gb)
1162                 inactive_ratio = int_sqrt(10 * gb);
1163         else
1164                 inactive_ratio = 1;
1165
1166         if (present_pages) {
1167                 present_pages[0] = inactive;
1168                 present_pages[1] = active;
1169         }
1170
1171         return inactive_ratio;
1172 }
1173
1174 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1175 {
1176         unsigned long active;
1177         unsigned long inactive;
1178         unsigned long present_pages[2];
1179         unsigned long inactive_ratio;
1180
1181         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1182
1183         inactive = present_pages[0];
1184         active = present_pages[1];
1185
1186         if (inactive * inactive_ratio < active)
1187                 return 1;
1188
1189         return 0;
1190 }
1191
1192 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1193 {
1194         unsigned long active;
1195         unsigned long inactive;
1196
1197         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1198         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1199
1200         return (active > inactive);
1201 }
1202
1203 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1204                                                       struct zone *zone)
1205 {
1206         int nid = zone_to_nid(zone);
1207         int zid = zone_idx(zone);
1208         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1209
1210         return &mz->reclaim_stat;
1211 }
1212
1213 struct zone_reclaim_stat *
1214 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1215 {
1216         struct page_cgroup *pc;
1217         struct mem_cgroup_per_zone *mz;
1218
1219         if (mem_cgroup_disabled())
1220                 return NULL;
1221
1222         pc = lookup_page_cgroup(page);
1223         if (!PageCgroupUsed(pc))
1224                 return NULL;
1225         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1226         smp_rmb();
1227         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1228         return &mz->reclaim_stat;
1229 }
1230
1231 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1232                                         struct list_head *dst,
1233                                         unsigned long *scanned, int order,
1234                                         int mode, struct zone *z,
1235                                         struct mem_cgroup *mem_cont,
1236                                         int active, int file)
1237 {
1238         unsigned long nr_taken = 0;
1239         struct page *page;
1240         unsigned long scan;
1241         LIST_HEAD(pc_list);
1242         struct list_head *src;
1243         struct page_cgroup *pc, *tmp;
1244         int nid = zone_to_nid(z);
1245         int zid = zone_idx(z);
1246         struct mem_cgroup_per_zone *mz;
1247         int lru = LRU_FILE * file + active;
1248         int ret;
1249
1250         BUG_ON(!mem_cont);
1251         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1252         src = &mz->lists[lru];
1253
1254         scan = 0;
1255         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1256                 if (scan >= nr_to_scan)
1257                         break;
1258
1259                 if (unlikely(!PageCgroupUsed(pc)))
1260                         continue;
1261
1262                 page = lookup_cgroup_page(pc);
1263
1264                 if (unlikely(!PageLRU(page)))
1265                         continue;
1266
1267                 scan++;
1268                 ret = __isolate_lru_page(page, mode, file);
1269                 switch (ret) {
1270                 case 0:
1271                         list_move(&page->lru, dst);
1272                         mem_cgroup_del_lru(page);
1273                         nr_taken += hpage_nr_pages(page);
1274                         break;
1275                 case -EBUSY:
1276                         /* we don't affect global LRU but rotate in our LRU */
1277                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1278                         break;
1279                 default:
1280                         break;
1281                 }
1282         }
1283
1284         *scanned = scan;
1285
1286         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1287                                       0, 0, 0, mode);
1288
1289         return nr_taken;
1290 }
1291
1292 #define mem_cgroup_from_res_counter(counter, member)    \
1293         container_of(counter, struct mem_cgroup, member)
1294
1295 /**
1296  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1297  * @mem: the memory cgroup
1298  *
1299  * Returns the maximum amount of memory @mem can be charged with, in
1300  * pages.
1301  */
1302 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1303 {
1304         unsigned long long margin;
1305
1306         margin = res_counter_margin(&mem->res);
1307         if (do_swap_account)
1308                 margin = min(margin, res_counter_margin(&mem->memsw));
1309         return margin >> PAGE_SHIFT;
1310 }
1311
1312 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1313 {
1314         struct cgroup *cgrp = memcg->css.cgroup;
1315
1316         /* root ? */
1317         if (cgrp->parent == NULL)
1318                 return vm_swappiness;
1319
1320         return memcg->swappiness;
1321 }
1322
1323 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1324 {
1325         int cpu;
1326
1327         get_online_cpus();
1328         spin_lock(&mem->pcp_counter_lock);
1329         for_each_online_cpu(cpu)
1330                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1331         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1332         spin_unlock(&mem->pcp_counter_lock);
1333         put_online_cpus();
1334
1335         synchronize_rcu();
1336 }
1337
1338 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1339 {
1340         int cpu;
1341
1342         if (!mem)
1343                 return;
1344         get_online_cpus();
1345         spin_lock(&mem->pcp_counter_lock);
1346         for_each_online_cpu(cpu)
1347                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1348         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1349         spin_unlock(&mem->pcp_counter_lock);
1350         put_online_cpus();
1351 }
1352 /*
1353  * 2 routines for checking "mem" is under move_account() or not.
1354  *
1355  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1356  *                        for avoiding race in accounting. If true,
1357  *                        pc->mem_cgroup may be overwritten.
1358  *
1359  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1360  *                        under hierarchy of moving cgroups. This is for
1361  *                        waiting at hith-memory prressure caused by "move".
1362  */
1363
1364 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1365 {
1366         VM_BUG_ON(!rcu_read_lock_held());
1367         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1368 }
1369
1370 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1371 {
1372         struct mem_cgroup *from;
1373         struct mem_cgroup *to;
1374         bool ret = false;
1375         /*
1376          * Unlike task_move routines, we access mc.to, mc.from not under
1377          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1378          */
1379         spin_lock(&mc.lock);
1380         from = mc.from;
1381         to = mc.to;
1382         if (!from)
1383                 goto unlock;
1384
1385         ret = mem_cgroup_same_or_subtree(mem, from)
1386                 || mem_cgroup_same_or_subtree(mem, to);
1387 unlock:
1388         spin_unlock(&mc.lock);
1389         return ret;
1390 }
1391
1392 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1393 {
1394         if (mc.moving_task && current != mc.moving_task) {
1395                 if (mem_cgroup_under_move(mem)) {
1396                         DEFINE_WAIT(wait);
1397                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1398                         /* moving charge context might have finished. */
1399                         if (mc.moving_task)
1400                                 schedule();
1401                         finish_wait(&mc.waitq, &wait);
1402                         return true;
1403                 }
1404         }
1405         return false;
1406 }
1407
1408 /**
1409  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1410  * @memcg: The memory cgroup that went over limit
1411  * @p: Task that is going to be killed
1412  *
1413  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1414  * enabled
1415  */
1416 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1417 {
1418         struct cgroup *task_cgrp;
1419         struct cgroup *mem_cgrp;
1420         /*
1421          * Need a buffer in BSS, can't rely on allocations. The code relies
1422          * on the assumption that OOM is serialized for memory controller.
1423          * If this assumption is broken, revisit this code.
1424          */
1425         static char memcg_name[PATH_MAX];
1426         int ret;
1427
1428         if (!memcg || !p)
1429                 return;
1430
1431
1432         rcu_read_lock();
1433
1434         mem_cgrp = memcg->css.cgroup;
1435         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1436
1437         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1438         if (ret < 0) {
1439                 /*
1440                  * Unfortunately, we are unable to convert to a useful name
1441                  * But we'll still print out the usage information
1442                  */
1443                 rcu_read_unlock();
1444                 goto done;
1445         }
1446         rcu_read_unlock();
1447
1448         printk(KERN_INFO "Task in %s killed", memcg_name);
1449
1450         rcu_read_lock();
1451         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1452         if (ret < 0) {
1453                 rcu_read_unlock();
1454                 goto done;
1455         }
1456         rcu_read_unlock();
1457
1458         /*
1459          * Continues from above, so we don't need an KERN_ level
1460          */
1461         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1462 done:
1463
1464         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1465                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1466                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1467                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1468         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1469                 "failcnt %llu\n",
1470                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1471                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1472                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1473 }
1474
1475 /*
1476  * This function returns the number of memcg under hierarchy tree. Returns
1477  * 1(self count) if no children.
1478  */
1479 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1480 {
1481         int num = 0;
1482         struct mem_cgroup *iter;
1483
1484         for_each_mem_cgroup_tree(iter, mem)
1485                 num++;
1486         return num;
1487 }
1488
1489 /*
1490  * Return the memory (and swap, if configured) limit for a memcg.
1491  */
1492 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1493 {
1494         u64 limit;
1495         u64 memsw;
1496
1497         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1498         limit += total_swap_pages << PAGE_SHIFT;
1499
1500         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1501         /*
1502          * If memsw is finite and limits the amount of swap space available
1503          * to this memcg, return that limit.
1504          */
1505         return min(limit, memsw);
1506 }
1507
1508 /*
1509  * Visit the first child (need not be the first child as per the ordering
1510  * of the cgroup list, since we track last_scanned_child) of @mem and use
1511  * that to reclaim free pages from.
1512  */
1513 static struct mem_cgroup *
1514 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1515 {
1516         struct mem_cgroup *ret = NULL;
1517         struct cgroup_subsys_state *css;
1518         int nextid, found;
1519
1520         if (!root_mem->use_hierarchy) {
1521                 css_get(&root_mem->css);
1522                 ret = root_mem;
1523         }
1524
1525         while (!ret) {
1526                 rcu_read_lock();
1527                 nextid = root_mem->last_scanned_child + 1;
1528                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1529                                    &found);
1530                 if (css && css_tryget(css))
1531                         ret = container_of(css, struct mem_cgroup, css);
1532
1533                 rcu_read_unlock();
1534                 /* Updates scanning parameter */
1535                 if (!css) {
1536                         /* this means start scan from ID:1 */
1537                         root_mem->last_scanned_child = 0;
1538                 } else
1539                         root_mem->last_scanned_child = found;
1540         }
1541
1542         return ret;
1543 }
1544
1545 /**
1546  * test_mem_cgroup_node_reclaimable
1547  * @mem: the target memcg
1548  * @nid: the node ID to be checked.
1549  * @noswap : specify true here if the user wants flle only information.
1550  *
1551  * This function returns whether the specified memcg contains any
1552  * reclaimable pages on a node. Returns true if there are any reclaimable
1553  * pages in the node.
1554  */
1555 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1556                 int nid, bool noswap)
1557 {
1558         if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1559                 return true;
1560         if (noswap || !total_swap_pages)
1561                 return false;
1562         if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1563                 return true;
1564         return false;
1565
1566 }
1567 #if MAX_NUMNODES > 1
1568
1569 /*
1570  * Always updating the nodemask is not very good - even if we have an empty
1571  * list or the wrong list here, we can start from some node and traverse all
1572  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1573  *
1574  */
1575 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1576 {
1577         int nid;
1578         /*
1579          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1580          * pagein/pageout changes since the last update.
1581          */
1582         if (!atomic_read(&mem->numainfo_events))
1583                 return;
1584         if (atomic_inc_return(&mem->numainfo_updating) > 1)
1585                 return;
1586
1587         /* make a nodemask where this memcg uses memory from */
1588         mem->scan_nodes = node_states[N_HIGH_MEMORY];
1589
1590         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1591
1592                 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1593                         node_clear(nid, mem->scan_nodes);
1594         }
1595
1596         atomic_set(&mem->numainfo_events, 0);
1597         atomic_set(&mem->numainfo_updating, 0);
1598 }
1599
1600 /*
1601  * Selecting a node where we start reclaim from. Because what we need is just
1602  * reducing usage counter, start from anywhere is O,K. Considering
1603  * memory reclaim from current node, there are pros. and cons.
1604  *
1605  * Freeing memory from current node means freeing memory from a node which
1606  * we'll use or we've used. So, it may make LRU bad. And if several threads
1607  * hit limits, it will see a contention on a node. But freeing from remote
1608  * node means more costs for memory reclaim because of memory latency.
1609  *
1610  * Now, we use round-robin. Better algorithm is welcomed.
1611  */
1612 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1613 {
1614         int node;
1615
1616         mem_cgroup_may_update_nodemask(mem);
1617         node = mem->last_scanned_node;
1618
1619         node = next_node(node, mem->scan_nodes);
1620         if (node == MAX_NUMNODES)
1621                 node = first_node(mem->scan_nodes);
1622         /*
1623          * We call this when we hit limit, not when pages are added to LRU.
1624          * No LRU may hold pages because all pages are UNEVICTABLE or
1625          * memcg is too small and all pages are not on LRU. In that case,
1626          * we use curret node.
1627          */
1628         if (unlikely(node == MAX_NUMNODES))
1629                 node = numa_node_id();
1630
1631         mem->last_scanned_node = node;
1632         return node;
1633 }
1634
1635 /*
1636  * Check all nodes whether it contains reclaimable pages or not.
1637  * For quick scan, we make use of scan_nodes. This will allow us to skip
1638  * unused nodes. But scan_nodes is lazily updated and may not cotain
1639  * enough new information. We need to do double check.
1640  */
1641 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1642 {
1643         int nid;
1644
1645         /*
1646          * quick check...making use of scan_node.
1647          * We can skip unused nodes.
1648          */
1649         if (!nodes_empty(mem->scan_nodes)) {
1650                 for (nid = first_node(mem->scan_nodes);
1651                      nid < MAX_NUMNODES;
1652                      nid = next_node(nid, mem->scan_nodes)) {
1653
1654                         if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1655                                 return true;
1656                 }
1657         }
1658         /*
1659          * Check rest of nodes.
1660          */
1661         for_each_node_state(nid, N_HIGH_MEMORY) {
1662                 if (node_isset(nid, mem->scan_nodes))
1663                         continue;
1664                 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1665                         return true;
1666         }
1667         return false;
1668 }
1669
1670 #else
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1672 {
1673         return 0;
1674 }
1675
1676 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1677 {
1678         return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1679 }
1680 #endif
1681
1682 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1683                            struct memcg_scanrecord *rec)
1684 {
1685
1686         stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1687         stats[SCAN_ANON] += rec->nr_scanned[0];
1688         stats[SCAN_FILE] += rec->nr_scanned[1];
1689
1690         stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1691         stats[ROTATE_ANON] += rec->nr_rotated[0];
1692         stats[ROTATE_FILE] += rec->nr_rotated[1];
1693
1694         stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1695         stats[FREED_ANON] += rec->nr_freed[0];
1696         stats[FREED_FILE] += rec->nr_freed[1];
1697
1698         stats[ELAPSED] += rec->elapsed;
1699 }
1700
1701 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1702 {
1703         struct mem_cgroup *mem;
1704         int context = rec->context;
1705
1706         if (context >= NR_SCAN_CONTEXT)
1707                 return;
1708
1709         mem = rec->mem;
1710         spin_lock(&mem->scanstat.lock);
1711         __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1712         spin_unlock(&mem->scanstat.lock);
1713
1714         mem = rec->root;
1715         spin_lock(&mem->scanstat.lock);
1716         __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1717         spin_unlock(&mem->scanstat.lock);
1718 }
1719
1720 /*
1721  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1722  * we reclaimed from, so that we don't end up penalizing one child extensively
1723  * based on its position in the children list.
1724  *
1725  * root_mem is the original ancestor that we've been reclaim from.
1726  *
1727  * We give up and return to the caller when we visit root_mem twice.
1728  * (other groups can be removed while we're walking....)
1729  *
1730  * If shrink==true, for avoiding to free too much, this returns immedieately.
1731  */
1732 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1733                                                 struct zone *zone,
1734                                                 gfp_t gfp_mask,
1735                                                 unsigned long reclaim_options,
1736                                                 unsigned long *total_scanned)
1737 {
1738         struct mem_cgroup *victim;
1739         int ret, total = 0;
1740         int loop = 0;
1741         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1742         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1743         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1744         struct memcg_scanrecord rec;
1745         unsigned long excess;
1746         unsigned long scanned;
1747
1748         excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1749
1750         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1751         if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1752                 noswap = true;
1753
1754         if (shrink)
1755                 rec.context = SCAN_BY_SHRINK;
1756         else if (check_soft)
1757                 rec.context = SCAN_BY_SYSTEM;
1758         else
1759                 rec.context = SCAN_BY_LIMIT;
1760
1761         rec.root = root_mem;
1762
1763         while (1) {
1764                 victim = mem_cgroup_select_victim(root_mem);
1765                 if (victim == root_mem) {
1766                         loop++;
1767                         /*
1768                          * We are not draining per cpu cached charges during
1769                          * soft limit reclaim  because global reclaim doesn't
1770                          * care about charges. It tries to free some memory and
1771                          * charges will not give any.
1772                          */
1773                         if (!check_soft && loop >= 1)
1774                                 drain_all_stock_async(root_mem);
1775                         if (loop >= 2) {
1776                                 /*
1777                                  * If we have not been able to reclaim
1778                                  * anything, it might because there are
1779                                  * no reclaimable pages under this hierarchy
1780                                  */
1781                                 if (!check_soft || !total) {
1782                                         css_put(&victim->css);
1783                                         break;
1784                                 }
1785                                 /*
1786                                  * We want to do more targeted reclaim.
1787                                  * excess >> 2 is not to excessive so as to
1788                                  * reclaim too much, nor too less that we keep
1789                                  * coming back to reclaim from this cgroup
1790                                  */
1791                                 if (total >= (excess >> 2) ||
1792                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1793                                         css_put(&victim->css);
1794                                         break;
1795                                 }
1796                         }
1797                 }
1798                 if (!mem_cgroup_reclaimable(victim, noswap)) {
1799                         /* this cgroup's local usage == 0 */
1800                         css_put(&victim->css);
1801                         continue;
1802                 }
1803                 rec.mem = victim;
1804                 rec.nr_scanned[0] = 0;
1805                 rec.nr_scanned[1] = 0;
1806                 rec.nr_rotated[0] = 0;
1807                 rec.nr_rotated[1] = 0;
1808                 rec.nr_freed[0] = 0;
1809                 rec.nr_freed[1] = 0;
1810                 rec.elapsed = 0;
1811                 /* we use swappiness of local cgroup */
1812                 if (check_soft) {
1813                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1814                                 noswap, zone, &rec, &scanned);
1815                         *total_scanned += scanned;
1816                 } else
1817                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1818                                                 noswap, &rec);
1819                 mem_cgroup_record_scanstat(&rec);
1820                 css_put(&victim->css);
1821                 /*
1822                  * At shrinking usage, we can't check we should stop here or
1823                  * reclaim more. It's depends on callers. last_scanned_child
1824                  * will work enough for keeping fairness under tree.
1825                  */
1826                 if (shrink)
1827                         return ret;
1828                 total += ret;
1829                 if (check_soft) {
1830                         if (!res_counter_soft_limit_excess(&root_mem->res))
1831                                 return total;
1832                 } else if (mem_cgroup_margin(root_mem))
1833                         return total;
1834         }
1835         return total;
1836 }
1837
1838 /*
1839  * Check OOM-Killer is already running under our hierarchy.
1840  * If someone is running, return false.
1841  * Has to be called with memcg_oom_lock
1842  */
1843 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1844 {
1845         struct mem_cgroup *iter, *failed = NULL;
1846         bool cond = true;
1847
1848         for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1849                 if (iter->oom_lock) {
1850                         /*
1851                          * this subtree of our hierarchy is already locked
1852                          * so we cannot give a lock.
1853                          */
1854                         failed = iter;
1855                         cond = false;
1856                 } else
1857                         iter->oom_lock = true;
1858         }
1859
1860         if (!failed)
1861                 return true;
1862
1863         /*
1864          * OK, we failed to lock the whole subtree so we have to clean up
1865          * what we set up to the failing subtree
1866          */
1867         cond = true;
1868         for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1869                 if (iter == failed) {
1870                         cond = false;
1871                         continue;
1872                 }
1873                 iter->oom_lock = false;
1874         }
1875         return false;
1876 }
1877
1878 /*
1879  * Has to be called with memcg_oom_lock
1880  */
1881 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1882 {
1883         struct mem_cgroup *iter;
1884
1885         for_each_mem_cgroup_tree(iter, mem)
1886                 iter->oom_lock = false;
1887         return 0;
1888 }
1889
1890 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1891 {
1892         struct mem_cgroup *iter;
1893
1894         for_each_mem_cgroup_tree(iter, mem)
1895                 atomic_inc(&iter->under_oom);
1896 }
1897
1898 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1899 {
1900         struct mem_cgroup *iter;
1901
1902         /*
1903          * When a new child is created while the hierarchy is under oom,
1904          * mem_cgroup_oom_lock() may not be called. We have to use
1905          * atomic_add_unless() here.
1906          */
1907         for_each_mem_cgroup_tree(iter, mem)
1908                 atomic_add_unless(&iter->under_oom, -1, 0);
1909 }
1910
1911 static DEFINE_SPINLOCK(memcg_oom_lock);
1912 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1913
1914 struct oom_wait_info {
1915         struct mem_cgroup *mem;
1916         wait_queue_t    wait;
1917 };
1918
1919 static int memcg_oom_wake_function(wait_queue_t *wait,
1920         unsigned mode, int sync, void *arg)
1921 {
1922         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1923                           *oom_wait_mem;
1924         struct oom_wait_info *oom_wait_info;
1925
1926         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1927         oom_wait_mem = oom_wait_info->mem;
1928
1929         /*
1930          * Both of oom_wait_info->mem and wake_mem are stable under us.
1931          * Then we can use css_is_ancestor without taking care of RCU.
1932          */
1933         if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1934                         && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1935                 return 0;
1936         return autoremove_wake_function(wait, mode, sync, arg);
1937 }
1938
1939 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1940 {
1941         /* for filtering, pass "mem" as argument. */
1942         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1943 }
1944
1945 static void memcg_oom_recover(struct mem_cgroup *mem)
1946 {
1947         if (mem && atomic_read(&mem->under_oom))
1948                 memcg_wakeup_oom(mem);
1949 }
1950
1951 /*
1952  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1953  */
1954 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1955 {
1956         struct oom_wait_info owait;
1957         bool locked, need_to_kill;
1958
1959         owait.mem = mem;
1960         owait.wait.flags = 0;
1961         owait.wait.func = memcg_oom_wake_function;
1962         owait.wait.private = current;
1963         INIT_LIST_HEAD(&owait.wait.task_list);
1964         need_to_kill = true;
1965         mem_cgroup_mark_under_oom(mem);
1966
1967         /* At first, try to OOM lock hierarchy under mem.*/
1968         spin_lock(&memcg_oom_lock);
1969         locked = mem_cgroup_oom_lock(mem);
1970         /*
1971          * Even if signal_pending(), we can't quit charge() loop without
1972          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1973          * under OOM is always welcomed, use TASK_KILLABLE here.
1974          */
1975         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1976         if (!locked || mem->oom_kill_disable)
1977                 need_to_kill = false;
1978         if (locked)
1979                 mem_cgroup_oom_notify(mem);
1980         spin_unlock(&memcg_oom_lock);
1981
1982         if (need_to_kill) {
1983                 finish_wait(&memcg_oom_waitq, &owait.wait);
1984                 mem_cgroup_out_of_memory(mem, mask);
1985         } else {
1986                 schedule();
1987                 finish_wait(&memcg_oom_waitq, &owait.wait);
1988         }
1989         spin_lock(&memcg_oom_lock);
1990         if (locked)
1991                 mem_cgroup_oom_unlock(mem);
1992         memcg_wakeup_oom(mem);
1993         spin_unlock(&memcg_oom_lock);
1994
1995         mem_cgroup_unmark_under_oom(mem);
1996
1997         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1998                 return false;
1999         /* Give chance to dying process */
2000         schedule_timeout(1);
2001         return true;
2002 }
2003
2004 /*
2005  * Currently used to update mapped file statistics, but the routine can be
2006  * generalized to update other statistics as well.
2007  *
2008  * Notes: Race condition
2009  *
2010  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2011  * it tends to be costly. But considering some conditions, we doesn't need
2012  * to do so _always_.
2013  *
2014  * Considering "charge", lock_page_cgroup() is not required because all
2015  * file-stat operations happen after a page is attached to radix-tree. There
2016  * are no race with "charge".
2017  *
2018  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2019  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2020  * if there are race with "uncharge". Statistics itself is properly handled
2021  * by flags.
2022  *
2023  * Considering "move", this is an only case we see a race. To make the race
2024  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2025  * possibility of race condition. If there is, we take a lock.
2026  */
2027
2028 void mem_cgroup_update_page_stat(struct page *page,
2029                                  enum mem_cgroup_page_stat_item idx, int val)
2030 {
2031         struct mem_cgroup *mem;
2032         struct page_cgroup *pc = lookup_page_cgroup(page);
2033         bool need_unlock = false;
2034         unsigned long uninitialized_var(flags);
2035
2036         if (unlikely(!pc))
2037                 return;
2038
2039         rcu_read_lock();
2040         mem = pc->mem_cgroup;
2041         if (unlikely(!mem || !PageCgroupUsed(pc)))
2042                 goto out;
2043         /* pc->mem_cgroup is unstable ? */
2044         if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2045                 /* take a lock against to access pc->mem_cgroup */
2046                 move_lock_page_cgroup(pc, &flags);
2047                 need_unlock = true;
2048                 mem = pc->mem_cgroup;
2049                 if (!mem || !PageCgroupUsed(pc))
2050                         goto out;
2051         }
2052
2053         switch (idx) {
2054         case MEMCG_NR_FILE_MAPPED:
2055                 if (val > 0)
2056                         SetPageCgroupFileMapped(pc);
2057                 else if (!page_mapped(page))
2058                         ClearPageCgroupFileMapped(pc);
2059                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2060                 break;
2061         default:
2062                 BUG();
2063         }
2064
2065         this_cpu_add(mem->stat->count[idx], val);
2066
2067 out:
2068         if (unlikely(need_unlock))
2069                 move_unlock_page_cgroup(pc, &flags);
2070         rcu_read_unlock();
2071         return;
2072 }
2073 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2074
2075 /*
2076  * size of first charge trial. "32" comes from vmscan.c's magic value.
2077  * TODO: maybe necessary to use big numbers in big irons.
2078  */
2079 #define CHARGE_BATCH    32U
2080 struct memcg_stock_pcp {
2081         struct mem_cgroup *cached; /* this never be root cgroup */
2082         unsigned int nr_pages;
2083         struct work_struct work;
2084         unsigned long flags;
2085 #define FLUSHING_CACHED_CHARGE  (0)
2086 };
2087 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2088 static DEFINE_MUTEX(percpu_charge_mutex);
2089
2090 /*
2091  * Try to consume stocked charge on this cpu. If success, one page is consumed
2092  * from local stock and true is returned. If the stock is 0 or charges from a
2093  * cgroup which is not current target, returns false. This stock will be
2094  * refilled.
2095  */
2096 static bool consume_stock(struct mem_cgroup *mem)
2097 {
2098         struct memcg_stock_pcp *stock;
2099         bool ret = true;
2100
2101         stock = &get_cpu_var(memcg_stock);
2102         if (mem == stock->cached && stock->nr_pages)
2103                 stock->nr_pages--;
2104         else /* need to call res_counter_charge */
2105                 ret = false;
2106         put_cpu_var(memcg_stock);
2107         return ret;
2108 }
2109
2110 /*
2111  * Returns stocks cached in percpu to res_counter and reset cached information.
2112  */
2113 static void drain_stock(struct memcg_stock_pcp *stock)
2114 {
2115         struct mem_cgroup *old = stock->cached;
2116
2117         if (stock->nr_pages) {
2118                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2119
2120                 res_counter_uncharge(&old->res, bytes);
2121                 if (do_swap_account)
2122                         res_counter_uncharge(&old->memsw, bytes);
2123                 stock->nr_pages = 0;
2124         }
2125         stock->cached = NULL;
2126 }
2127
2128 /*
2129  * This must be called under preempt disabled or must be called by
2130  * a thread which is pinned to local cpu.
2131  */
2132 static void drain_local_stock(struct work_struct *dummy)
2133 {
2134         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2135         drain_stock(stock);
2136         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2137 }
2138
2139 /*
2140  * Cache charges(val) which is from res_counter, to local per_cpu area.
2141  * This will be consumed by consume_stock() function, later.
2142  */
2143 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2144 {
2145         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2146
2147         if (stock->cached != mem) { /* reset if necessary */
2148                 drain_stock(stock);
2149                 stock->cached = mem;
2150         }
2151         stock->nr_pages += nr_pages;
2152         put_cpu_var(memcg_stock);
2153 }
2154
2155 /*
2156  * Drains all per-CPU charge caches for given root_mem resp. subtree
2157  * of the hierarchy under it. sync flag says whether we should block
2158  * until the work is done.
2159  */
2160 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2161 {
2162         int cpu, curcpu;
2163
2164         /* Notify other cpus that system-wide "drain" is running */
2165         get_online_cpus();
2166         curcpu = get_cpu();
2167         for_each_online_cpu(cpu) {
2168                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2169                 struct mem_cgroup *mem;
2170
2171                 mem = stock->cached;
2172                 if (!mem || !stock->nr_pages)
2173                         continue;
2174                 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2175                         continue;
2176                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2177                         if (cpu == curcpu)
2178                                 drain_local_stock(&stock->work);
2179                         else
2180                                 schedule_work_on(cpu, &stock->work);
2181                 }
2182         }
2183         put_cpu();
2184
2185         if (!sync)
2186                 goto out;
2187
2188         for_each_online_cpu(cpu) {
2189                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2190                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2191                         flush_work(&stock->work);
2192         }
2193 out:
2194         put_online_cpus();
2195 }
2196
2197 /*
2198  * Tries to drain stocked charges in other cpus. This function is asynchronous
2199  * and just put a work per cpu for draining localy on each cpu. Caller can
2200  * expects some charges will be back to res_counter later but cannot wait for
2201  * it.
2202  */
2203 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2204 {
2205         /*
2206          * If someone calls draining, avoid adding more kworker runs.
2207          */
2208         if (!mutex_trylock(&percpu_charge_mutex))
2209                 return;
2210         drain_all_stock(root_mem, false);
2211         mutex_unlock(&percpu_charge_mutex);
2212 }
2213
2214 /* This is a synchronous drain interface. */
2215 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2216 {
2217         /* called when force_empty is called */
2218         mutex_lock(&percpu_charge_mutex);
2219         drain_all_stock(root_mem, true);
2220         mutex_unlock(&percpu_charge_mutex);
2221 }
2222
2223 /*
2224  * This function drains percpu counter value from DEAD cpu and
2225  * move it to local cpu. Note that this function can be preempted.
2226  */
2227 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2228 {
2229         int i;
2230
2231         spin_lock(&mem->pcp_counter_lock);
2232         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2233                 long x = per_cpu(mem->stat->count[i], cpu);
2234
2235                 per_cpu(mem->stat->count[i], cpu) = 0;
2236                 mem->nocpu_base.count[i] += x;
2237         }
2238         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2239                 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2240
2241                 per_cpu(mem->stat->events[i], cpu) = 0;
2242                 mem->nocpu_base.events[i] += x;
2243         }
2244         /* need to clear ON_MOVE value, works as a kind of lock. */
2245         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2246         spin_unlock(&mem->pcp_counter_lock);
2247 }
2248
2249 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2250 {
2251         int idx = MEM_CGROUP_ON_MOVE;
2252
2253         spin_lock(&mem->pcp_counter_lock);
2254         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2255         spin_unlock(&mem->pcp_counter_lock);
2256 }
2257
2258 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2259                                         unsigned long action,
2260                                         void *hcpu)
2261 {
2262         int cpu = (unsigned long)hcpu;
2263         struct memcg_stock_pcp *stock;
2264         struct mem_cgroup *iter;
2265
2266         if ((action == CPU_ONLINE)) {
2267                 for_each_mem_cgroup_all(iter)
2268                         synchronize_mem_cgroup_on_move(iter, cpu);
2269                 return NOTIFY_OK;
2270         }
2271
2272         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2273                 return NOTIFY_OK;
2274
2275         for_each_mem_cgroup_all(iter)
2276                 mem_cgroup_drain_pcp_counter(iter, cpu);
2277
2278         stock = &per_cpu(memcg_stock, cpu);
2279         drain_stock(stock);
2280         return NOTIFY_OK;
2281 }
2282
2283
2284 /* See __mem_cgroup_try_charge() for details */
2285 enum {
2286         CHARGE_OK,              /* success */
2287         CHARGE_RETRY,           /* need to retry but retry is not bad */
2288         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2289         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2290         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2291 };
2292
2293 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2294                                 unsigned int nr_pages, bool oom_check)
2295 {
2296         unsigned long csize = nr_pages * PAGE_SIZE;
2297         struct mem_cgroup *mem_over_limit;
2298         struct res_counter *fail_res;
2299         unsigned long flags = 0;
2300         int ret;
2301
2302         ret = res_counter_charge(&mem->res, csize, &fail_res);
2303
2304         if (likely(!ret)) {
2305                 if (!do_swap_account)
2306                         return CHARGE_OK;
2307                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2308                 if (likely(!ret))
2309                         return CHARGE_OK;
2310
2311                 res_counter_uncharge(&mem->res, csize);
2312                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2313                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2314         } else
2315                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2316         /*
2317          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2318          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2319          *
2320          * Never reclaim on behalf of optional batching, retry with a
2321          * single page instead.
2322          */
2323         if (nr_pages == CHARGE_BATCH)
2324                 return CHARGE_RETRY;
2325
2326         if (!(gfp_mask & __GFP_WAIT))
2327                 return CHARGE_WOULDBLOCK;
2328
2329         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2330                                               gfp_mask, flags, NULL);
2331         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2332                 return CHARGE_RETRY;
2333         /*
2334          * Even though the limit is exceeded at this point, reclaim
2335          * may have been able to free some pages.  Retry the charge
2336          * before killing the task.
2337          *
2338          * Only for regular pages, though: huge pages are rather
2339          * unlikely to succeed so close to the limit, and we fall back
2340          * to regular pages anyway in case of failure.
2341          */
2342         if (nr_pages == 1 && ret)
2343                 return CHARGE_RETRY;
2344
2345         /*
2346          * At task move, charge accounts can be doubly counted. So, it's
2347          * better to wait until the end of task_move if something is going on.
2348          */
2349         if (mem_cgroup_wait_acct_move(mem_over_limit))
2350                 return CHARGE_RETRY;
2351
2352         /* If we don't need to call oom-killer at el, return immediately */
2353         if (!oom_check)
2354                 return CHARGE_NOMEM;
2355         /* check OOM */
2356         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2357                 return CHARGE_OOM_DIE;
2358
2359         return CHARGE_RETRY;
2360 }
2361
2362 /*
2363  * Unlike exported interface, "oom" parameter is added. if oom==true,
2364  * oom-killer can be invoked.
2365  */
2366 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2367                                    gfp_t gfp_mask,
2368                                    unsigned int nr_pages,
2369                                    struct mem_cgroup **memcg,
2370                                    bool oom)
2371 {
2372         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2373         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2374         struct mem_cgroup *mem = NULL;
2375         int ret;
2376
2377         /*
2378          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2379          * in system level. So, allow to go ahead dying process in addition to
2380          * MEMDIE process.
2381          */
2382         if (unlikely(test_thread_flag(TIF_MEMDIE)
2383                      || fatal_signal_pending(current)))
2384                 goto bypass;
2385
2386         /*
2387          * We always charge the cgroup the mm_struct belongs to.
2388          * The mm_struct's mem_cgroup changes on task migration if the
2389          * thread group leader migrates. It's possible that mm is not
2390          * set, if so charge the init_mm (happens for pagecache usage).
2391          */
2392         if (!*memcg && !mm)
2393                 goto bypass;
2394 again:
2395         if (*memcg) { /* css should be a valid one */
2396                 mem = *memcg;
2397                 VM_BUG_ON(css_is_removed(&mem->css));
2398                 if (mem_cgroup_is_root(mem))
2399                         goto done;
2400                 if (nr_pages == 1 && consume_stock(mem))
2401                         goto done;
2402                 css_get(&mem->css);
2403         } else {
2404                 struct task_struct *p;
2405
2406                 rcu_read_lock();
2407                 p = rcu_dereference(mm->owner);
2408                 /*
2409                  * Because we don't have task_lock(), "p" can exit.
2410                  * In that case, "mem" can point to root or p can be NULL with
2411                  * race with swapoff. Then, we have small risk of mis-accouning.
2412                  * But such kind of mis-account by race always happens because
2413                  * we don't have cgroup_mutex(). It's overkill and we allo that
2414                  * small race, here.
2415                  * (*) swapoff at el will charge against mm-struct not against
2416                  * task-struct. So, mm->owner can be NULL.
2417                  */
2418                 mem = mem_cgroup_from_task(p);
2419                 if (!mem || mem_cgroup_is_root(mem)) {
2420                         rcu_read_unlock();
2421                         goto done;
2422                 }
2423                 if (nr_pages == 1 && consume_stock(mem)) {
2424                         /*
2425                          * It seems dagerous to access memcg without css_get().
2426                          * But considering how consume_stok works, it's not
2427                          * necessary. If consume_stock success, some charges
2428                          * from this memcg are cached on this cpu. So, we
2429                          * don't need to call css_get()/css_tryget() before
2430                          * calling consume_stock().
2431                          */
2432                         rcu_read_unlock();
2433                         goto done;
2434                 }
2435                 /* after here, we may be blocked. we need to get refcnt */
2436                 if (!css_tryget(&mem->css)) {
2437                         rcu_read_unlock();
2438                         goto again;
2439                 }
2440                 rcu_read_unlock();
2441         }
2442
2443         do {
2444                 bool oom_check;
2445
2446                 /* If killed, bypass charge */
2447                 if (fatal_signal_pending(current)) {
2448                         css_put(&mem->css);
2449                         goto bypass;
2450                 }
2451
2452                 oom_check = false;
2453                 if (oom && !nr_oom_retries) {
2454                         oom_check = true;
2455                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2456                 }
2457
2458                 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2459                 switch (ret) {
2460                 case CHARGE_OK:
2461                         break;
2462                 case CHARGE_RETRY: /* not in OOM situation but retry */
2463                         batch = nr_pages;
2464                         css_put(&mem->css);
2465                         mem = NULL;
2466                         goto again;
2467                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2468                         css_put(&mem->css);
2469                         goto nomem;
2470                 case CHARGE_NOMEM: /* OOM routine works */
2471                         if (!oom) {
2472                                 css_put(&mem->css);
2473                                 goto nomem;
2474                         }
2475                         /* If oom, we never return -ENOMEM */
2476                         nr_oom_retries--;
2477                         break;
2478                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2479                         css_put(&mem->css);
2480                         goto bypass;
2481                 }
2482         } while (ret != CHARGE_OK);
2483
2484         if (batch > nr_pages)
2485                 refill_stock(mem, batch - nr_pages);
2486         css_put(&mem->css);
2487 done:
2488         *memcg = mem;
2489         return 0;
2490 nomem:
2491         *memcg = NULL;
2492         return -ENOMEM;
2493 bypass:
2494         *memcg = NULL;
2495         return 0;
2496 }
2497
2498 /*
2499  * Somemtimes we have to undo a charge we got by try_charge().
2500  * This function is for that and do uncharge, put css's refcnt.
2501  * gotten by try_charge().
2502  */
2503 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2504                                        unsigned int nr_pages)
2505 {
2506         if (!mem_cgroup_is_root(mem)) {
2507                 unsigned long bytes = nr_pages * PAGE_SIZE;
2508
2509                 res_counter_uncharge(&mem->res, bytes);
2510                 if (do_swap_account)
2511                         res_counter_uncharge(&mem->memsw, bytes);
2512         }
2513 }
2514
2515 /*
2516  * A helper function to get mem_cgroup from ID. must be called under
2517  * rcu_read_lock(). The caller must check css_is_removed() or some if
2518  * it's concern. (dropping refcnt from swap can be called against removed
2519  * memcg.)
2520  */
2521 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2522 {
2523         struct cgroup_subsys_state *css;
2524
2525         /* ID 0 is unused ID */
2526         if (!id)
2527                 return NULL;
2528         css = css_lookup(&mem_cgroup_subsys, id);
2529         if (!css)
2530                 return NULL;
2531         return container_of(css, struct mem_cgroup, css);
2532 }
2533
2534 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2535 {
2536         struct mem_cgroup *mem = NULL;
2537         struct page_cgroup *pc;
2538         unsigned short id;
2539         swp_entry_t ent;
2540
2541         VM_BUG_ON(!PageLocked(page));
2542
2543         pc = lookup_page_cgroup(page);
2544         lock_page_cgroup(pc);
2545         if (PageCgroupUsed(pc)) {
2546                 mem = pc->mem_cgroup;
2547                 if (mem && !css_tryget(&mem->css))
2548                         mem = NULL;
2549         } else if (PageSwapCache(page)) {
2550                 ent.val = page_private(page);
2551                 id = lookup_swap_cgroup(ent);
2552                 rcu_read_lock();
2553                 mem = mem_cgroup_lookup(id);
2554                 if (mem && !css_tryget(&mem->css))
2555                         mem = NULL;
2556                 rcu_read_unlock();
2557         }
2558         unlock_page_cgroup(pc);
2559         return mem;
2560 }
2561
2562 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2563                                        struct page *page,
2564                                        unsigned int nr_pages,
2565                                        struct page_cgroup *pc,
2566                                        enum charge_type ctype)
2567 {
2568         lock_page_cgroup(pc);
2569         if (unlikely(PageCgroupUsed(pc))) {
2570                 unlock_page_cgroup(pc);
2571                 __mem_cgroup_cancel_charge(mem, nr_pages);
2572                 return;
2573         }
2574         /*
2575          * we don't need page_cgroup_lock about tail pages, becase they are not
2576          * accessed by any other context at this point.
2577          */
2578         pc->mem_cgroup = mem;
2579         /*
2580          * We access a page_cgroup asynchronously without lock_page_cgroup().
2581          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2582          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2583          * before USED bit, we need memory barrier here.
2584          * See mem_cgroup_add_lru_list(), etc.
2585          */
2586         smp_wmb();
2587         switch (ctype) {
2588         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2589         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2590                 SetPageCgroupCache(pc);
2591                 SetPageCgroupUsed(pc);
2592                 break;
2593         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2594                 ClearPageCgroupCache(pc);
2595                 SetPageCgroupUsed(pc);
2596                 break;
2597         default:
2598                 break;
2599         }
2600
2601         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2602         unlock_page_cgroup(pc);
2603         /*
2604          * "charge_statistics" updated event counter. Then, check it.
2605          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2606          * if they exceeds softlimit.
2607          */
2608         memcg_check_events(mem, page);
2609 }
2610
2611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2612
2613 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2614                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2615 /*
2616  * Because tail pages are not marked as "used", set it. We're under
2617  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2618  */
2619 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2620 {
2621         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2622         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2623         unsigned long flags;
2624
2625         if (mem_cgroup_disabled())
2626                 return;
2627         /*
2628          * We have no races with charge/uncharge but will have races with
2629          * page state accounting.
2630          */
2631         move_lock_page_cgroup(head_pc, &flags);
2632
2633         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2634         smp_wmb(); /* see __commit_charge() */
2635         if (PageCgroupAcctLRU(head_pc)) {
2636                 enum lru_list lru;
2637                 struct mem_cgroup_per_zone *mz;
2638
2639                 /*
2640                  * LRU flags cannot be copied because we need to add tail
2641                  *.page to LRU by generic call and our hook will be called.
2642                  * We hold lru_lock, then, reduce counter directly.
2643                  */
2644                 lru = page_lru(head);
2645                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2646                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2647         }
2648         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2649         move_unlock_page_cgroup(head_pc, &flags);
2650 }
2651 #endif
2652
2653 /**
2654  * mem_cgroup_move_account - move account of the page
2655  * @page: the page
2656  * @nr_pages: number of regular pages (>1 for huge pages)
2657  * @pc: page_cgroup of the page.
2658  * @from: mem_cgroup which the page is moved from.
2659  * @to: mem_cgroup which the page is moved to. @from != @to.
2660  * @uncharge: whether we should call uncharge and css_put against @from.
2661  *
2662  * The caller must confirm following.
2663  * - page is not on LRU (isolate_page() is useful.)
2664  * - compound_lock is held when nr_pages > 1
2665  *
2666  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2667  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2668  * true, this function does "uncharge" from old cgroup, but it doesn't if
2669  * @uncharge is false, so a caller should do "uncharge".
2670  */
2671 static int mem_cgroup_move_account(struct page *page,
2672                                    unsigned int nr_pages,
2673                                    struct page_cgroup *pc,
2674                                    struct mem_cgroup *from,
2675                                    struct mem_cgroup *to,
2676                                    bool uncharge)
2677 {
2678         unsigned long flags;
2679         int ret;
2680
2681         VM_BUG_ON(from == to);
2682         VM_BUG_ON(PageLRU(page));
2683         /*
2684          * The page is isolated from LRU. So, collapse function
2685          * will not handle this page. But page splitting can happen.
2686          * Do this check under compound_page_lock(). The caller should
2687          * hold it.
2688          */
2689         ret = -EBUSY;
2690         if (nr_pages > 1 && !PageTransHuge(page))
2691                 goto out;
2692
2693         lock_page_cgroup(pc);
2694
2695         ret = -EINVAL;
2696         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2697                 goto unlock;
2698
2699         move_lock_page_cgroup(pc, &flags);
2700
2701         if (PageCgroupFileMapped(pc)) {
2702                 /* Update mapped_file data for mem_cgroup */
2703                 preempt_disable();
2704                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2705                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2706                 preempt_enable();
2707         }
2708         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2709         if (uncharge)
2710                 /* This is not "cancel", but cancel_charge does all we need. */
2711                 __mem_cgroup_cancel_charge(from, nr_pages);
2712
2713         /* caller should have done css_get */
2714         pc->mem_cgroup = to;
2715         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2716         /*
2717          * We charges against "to" which may not have any tasks. Then, "to"
2718          * can be under rmdir(). But in current implementation, caller of
2719          * this function is just force_empty() and move charge, so it's
2720          * guaranteed that "to" is never removed. So, we don't check rmdir
2721          * status here.
2722          */
2723         move_unlock_page_cgroup(pc, &flags);
2724         ret = 0;
2725 unlock:
2726         unlock_page_cgroup(pc);
2727         /*
2728          * check events
2729          */
2730         memcg_check_events(to, page);
2731         memcg_check_events(from, page);
2732 out:
2733         return ret;
2734 }
2735
2736 /*
2737  * move charges to its parent.
2738  */
2739
2740 static int mem_cgroup_move_parent(struct page *page,
2741                                   struct page_cgroup *pc,
2742                                   struct mem_cgroup *child,
2743                                   gfp_t gfp_mask)
2744 {
2745         struct cgroup *cg = child->css.cgroup;
2746         struct cgroup *pcg = cg->parent;
2747         struct mem_cgroup *parent;
2748         unsigned int nr_pages;
2749         unsigned long uninitialized_var(flags);
2750         int ret;
2751
2752         /* Is ROOT ? */
2753         if (!pcg)
2754                 return -EINVAL;
2755
2756         ret = -EBUSY;
2757         if (!get_page_unless_zero(page))
2758                 goto out;
2759         if (isolate_lru_page(page))
2760                 goto put;
2761
2762         nr_pages = hpage_nr_pages(page);
2763
2764         parent = mem_cgroup_from_cont(pcg);
2765         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2766         if (ret || !parent)
2767                 goto put_back;
2768
2769         if (nr_pages > 1)
2770                 flags = compound_lock_irqsave(page);
2771
2772         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2773         if (ret)
2774                 __mem_cgroup_cancel_charge(parent, nr_pages);
2775
2776         if (nr_pages > 1)
2777                 compound_unlock_irqrestore(page, flags);
2778 put_back:
2779         putback_lru_page(page);
2780 put:
2781         put_page(page);
2782 out:
2783         return ret;
2784 }
2785
2786 /*
2787  * Charge the memory controller for page usage.
2788  * Return
2789  * 0 if the charge was successful
2790  * < 0 if the cgroup is over its limit
2791  */
2792 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2793                                 gfp_t gfp_mask, enum charge_type ctype)
2794 {
2795         struct mem_cgroup *mem = NULL;
2796         unsigned int nr_pages = 1;
2797         struct page_cgroup *pc;
2798         bool oom = true;
2799         int ret;
2800
2801         if (PageTransHuge(page)) {
2802                 nr_pages <<= compound_order(page);
2803                 VM_BUG_ON(!PageTransHuge(page));
2804                 /*
2805                  * Never OOM-kill a process for a huge page.  The
2806                  * fault handler will fall back to regular pages.
2807                  */
2808                 oom = false;
2809         }
2810
2811         pc = lookup_page_cgroup(page);
2812         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2813
2814         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2815         if (ret || !mem)
2816                 return ret;
2817
2818         __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2819         return 0;
2820 }
2821
2822 int mem_cgroup_newpage_charge(struct page *page,
2823                               struct mm_struct *mm, gfp_t gfp_mask)
2824 {
2825         if (mem_cgroup_disabled())
2826                 return 0;
2827         /*
2828          * If already mapped, we don't have to account.
2829          * If page cache, page->mapping has address_space.
2830          * But page->mapping may have out-of-use anon_vma pointer,
2831          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2832          * is NULL.
2833          */
2834         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2835                 return 0;
2836         if (unlikely(!mm))
2837                 mm = &init_mm;
2838         return mem_cgroup_charge_common(page, mm, gfp_mask,
2839                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2840 }
2841
2842 static void
2843 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2844                                         enum charge_type ctype);
2845
2846 static void
2847 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2848                                         enum charge_type ctype)
2849 {
2850         struct page_cgroup *pc = lookup_page_cgroup(page);
2851         /*
2852          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2853          * is already on LRU. It means the page may on some other page_cgroup's
2854          * LRU. Take care of it.
2855          */
2856         mem_cgroup_lru_del_before_commit(page);
2857         __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2858         mem_cgroup_lru_add_after_commit(page);
2859         return;
2860 }
2861
2862 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2863                                 gfp_t gfp_mask)
2864 {
2865         struct mem_cgroup *mem = NULL;
2866         int ret;
2867
2868         if (mem_cgroup_disabled())
2869                 return 0;
2870         if (PageCompound(page))
2871                 return 0;
2872
2873         if (unlikely(!mm))
2874                 mm = &init_mm;
2875
2876         if (page_is_file_cache(page)) {
2877                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2878                 if (ret || !mem)
2879                         return ret;
2880
2881                 /*
2882                  * FUSE reuses pages without going through the final
2883                  * put that would remove them from the LRU list, make
2884                  * sure that they get relinked properly.
2885                  */
2886                 __mem_cgroup_commit_charge_lrucare(page, mem,
2887                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2888                 return ret;
2889         }
2890         /* shmem */
2891         if (PageSwapCache(page)) {
2892                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2893                 if (!ret)
2894                         __mem_cgroup_commit_charge_swapin(page, mem,
2895                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2896         } else
2897                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2898                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2899
2900         return ret;
2901 }
2902
2903 /*
2904  * While swap-in, try_charge -> commit or cancel, the page is locked.
2905  * And when try_charge() successfully returns, one refcnt to memcg without
2906  * struct page_cgroup is acquired. This refcnt will be consumed by
2907  * "commit()" or removed by "cancel()"
2908  */
2909 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2910                                  struct page *page,
2911                                  gfp_t mask, struct mem_cgroup **ptr)
2912 {
2913         struct mem_cgroup *mem;
2914         int ret;
2915
2916         *ptr = NULL;
2917
2918         if (mem_cgroup_disabled())
2919                 return 0;
2920
2921         if (!do_swap_account)
2922                 goto charge_cur_mm;
2923         /*
2924          * A racing thread's fault, or swapoff, may have already updated
2925          * the pte, and even removed page from swap cache: in those cases
2926          * do_swap_page()'s pte_same() test will fail; but there's also a
2927          * KSM case which does need to charge the page.
2928          */
2929         if (!PageSwapCache(page))
2930                 goto charge_cur_mm;
2931         mem = try_get_mem_cgroup_from_page(page);
2932         if (!mem)
2933                 goto charge_cur_mm;
2934         *ptr = mem;
2935         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2936         css_put(&mem->css);
2937         return ret;
2938 charge_cur_mm:
2939         if (unlikely(!mm))
2940                 mm = &init_mm;
2941         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2942 }
2943
2944 static void
2945 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2946                                         enum charge_type ctype)
2947 {
2948         if (mem_cgroup_disabled())
2949                 return;
2950         if (!ptr)
2951                 return;
2952         cgroup_exclude_rmdir(&ptr->css);
2953
2954         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2955         /*
2956          * Now swap is on-memory. This means this page may be
2957          * counted both as mem and swap....double count.
2958          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2959          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2960          * may call delete_from_swap_cache() before reach here.
2961          */
2962         if (do_swap_account && PageSwapCache(page)) {
2963                 swp_entry_t ent = {.val = page_private(page)};
2964                 unsigned short id;
2965                 struct mem_cgroup *memcg;
2966
2967                 id = swap_cgroup_record(ent, 0);
2968                 rcu_read_lock();
2969                 memcg = mem_cgroup_lookup(id);
2970                 if (memcg) {
2971                         /*
2972                          * This recorded memcg can be obsolete one. So, avoid
2973                          * calling css_tryget
2974                          */
2975                         if (!mem_cgroup_is_root(memcg))
2976                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2977                         mem_cgroup_swap_statistics(memcg, false);
2978                         mem_cgroup_put(memcg);
2979                 }
2980                 rcu_read_unlock();
2981         }
2982         /*
2983          * At swapin, we may charge account against cgroup which has no tasks.
2984          * So, rmdir()->pre_destroy() can be called while we do this charge.
2985          * In that case, we need to call pre_destroy() again. check it here.
2986          */
2987         cgroup_release_and_wakeup_rmdir(&ptr->css);
2988 }
2989
2990 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2991 {
2992         __mem_cgroup_commit_charge_swapin(page, ptr,
2993                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2994 }
2995
2996 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2997 {
2998         if (mem_cgroup_disabled())
2999                 return;
3000         if (!mem)
3001                 return;
3002         __mem_cgroup_cancel_charge(mem, 1);
3003 }
3004
3005 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3006                                    unsigned int nr_pages,
3007                                    const enum charge_type ctype)
3008 {
3009         struct memcg_batch_info *batch = NULL;
3010         bool uncharge_memsw = true;
3011
3012         /* If swapout, usage of swap doesn't decrease */
3013         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3014                 uncharge_memsw = false;
3015
3016         batch = &current->memcg_batch;
3017         /*
3018          * In usual, we do css_get() when we remember memcg pointer.
3019          * But in this case, we keep res->usage until end of a series of
3020          * uncharges. Then, it's ok to ignore memcg's refcnt.
3021          */
3022         if (!batch->memcg)
3023                 batch->memcg = mem;
3024         /*
3025          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3026          * In those cases, all pages freed continuously can be expected to be in
3027          * the same cgroup and we have chance to coalesce uncharges.
3028          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3029          * because we want to do uncharge as soon as possible.
3030          */
3031
3032         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3033                 goto direct_uncharge;
3034
3035         if (nr_pages > 1)
3036                 goto direct_uncharge;
3037
3038         /*
3039          * In typical case, batch->memcg == mem. This means we can
3040          * merge a series of uncharges to an uncharge of res_counter.
3041          * If not, we uncharge res_counter ony by one.
3042          */
3043         if (batch->memcg != mem)
3044                 goto direct_uncharge;
3045         /* remember freed charge and uncharge it later */
3046         batch->nr_pages++;
3047         if (uncharge_memsw)
3048                 batch->memsw_nr_pages++;
3049         return;
3050 direct_uncharge:
3051         res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3052         if (uncharge_memsw)
3053                 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3054         if (unlikely(batch->memcg != mem))
3055                 memcg_oom_recover(mem);
3056         return;
3057 }
3058
3059 /*
3060  * uncharge if !page_mapped(page)
3061  */
3062 static struct mem_cgroup *
3063 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3064 {
3065         struct mem_cgroup *mem = NULL;
3066         unsigned int nr_pages = 1;
3067         struct page_cgroup *pc;
3068
3069         if (mem_cgroup_disabled())
3070                 return NULL;
3071
3072         if (PageSwapCache(page))
3073                 return NULL;
3074
3075         if (PageTransHuge(page)) {
3076                 nr_pages <<= compound_order(page);
3077                 VM_BUG_ON(!PageTransHuge(page));
3078         }
3079         /*
3080          * Check if our page_cgroup is valid
3081          */
3082         pc = lookup_page_cgroup(page);
3083         if (unlikely(!pc || !PageCgroupUsed(pc)))
3084                 return NULL;
3085
3086         lock_page_cgroup(pc);
3087
3088         mem = pc->mem_cgroup;
3089
3090         if (!PageCgroupUsed(pc))
3091                 goto unlock_out;
3092
3093         switch (ctype) {
3094         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3095         case MEM_CGROUP_CHARGE_TYPE_DROP:
3096                 /* See mem_cgroup_prepare_migration() */
3097                 if (page_mapped(page) || PageCgroupMigration(pc))
3098                         goto unlock_out;
3099                 break;
3100         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3101                 if (!PageAnon(page)) {  /* Shared memory */
3102                         if (page->mapping && !page_is_file_cache(page))
3103                                 goto unlock_out;
3104                 } else if (page_mapped(page)) /* Anon */
3105                                 goto unlock_out;
3106                 break;
3107         default:
3108                 break;
3109         }
3110
3111         mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3112
3113         ClearPageCgroupUsed(pc);
3114         /*
3115          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3116          * freed from LRU. This is safe because uncharged page is expected not
3117          * to be reused (freed soon). Exception is SwapCache, it's handled by
3118          * special functions.
3119          */
3120
3121         unlock_page_cgroup(pc);
3122         /*
3123          * even after unlock, we have mem->res.usage here and this memcg
3124          * will never be freed.
3125          */
3126         memcg_check_events(mem, page);
3127         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3128                 mem_cgroup_swap_statistics(mem, true);
3129                 mem_cgroup_get(mem);
3130         }
3131         if (!mem_cgroup_is_root(mem))
3132                 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3133
3134         return mem;
3135
3136 unlock_out:
3137         unlock_page_cgroup(pc);
3138         return NULL;
3139 }
3140
3141 void mem_cgroup_uncharge_page(struct page *page)
3142 {
3143         /* early check. */
3144         if (page_mapped(page))
3145                 return;
3146         if (page->mapping && !PageAnon(page))
3147                 return;
3148         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3149 }
3150
3151 void mem_cgroup_uncharge_cache_page(struct page *page)
3152 {
3153         VM_BUG_ON(page_mapped(page));
3154         VM_BUG_ON(page->mapping);
3155         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3156 }
3157
3158 /*
3159  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3160  * In that cases, pages are freed continuously and we can expect pages
3161  * are in the same memcg. All these calls itself limits the number of
3162  * pages freed at once, then uncharge_start/end() is called properly.
3163  * This may be called prural(2) times in a context,
3164  */
3165
3166 void mem_cgroup_uncharge_start(void)
3167 {
3168         current->memcg_batch.do_batch++;
3169         /* We can do nest. */
3170         if (current->memcg_batch.do_batch == 1) {
3171                 current->memcg_batch.memcg = NULL;
3172                 current->memcg_batch.nr_pages = 0;
3173                 current->memcg_batch.memsw_nr_pages = 0;
3174         }
3175 }
3176
3177 void mem_cgroup_uncharge_end(void)
3178 {
3179         struct memcg_batch_info *batch = &current->memcg_batch;
3180
3181         if (!batch->do_batch)
3182                 return;
3183
3184         batch->do_batch--;
3185         if (batch->do_batch) /* If stacked, do nothing. */
3186                 return;
3187
3188         if (!batch->memcg)
3189                 return;
3190         /*
3191          * This "batch->memcg" is valid without any css_get/put etc...
3192          * bacause we hide charges behind us.
3193          */
3194         if (batch->nr_pages)
3195                 res_counter_uncharge(&batch->memcg->res,
3196                                      batch->nr_pages * PAGE_SIZE);
3197         if (batch->memsw_nr_pages)
3198                 res_counter_uncharge(&batch->memcg->memsw,
3199                                      batch->memsw_nr_pages * PAGE_SIZE);
3200         memcg_oom_recover(batch->memcg);
3201         /* forget this pointer (for sanity check) */
3202         batch->memcg = NULL;
3203 }
3204
3205 #ifdef CONFIG_SWAP
3206 /*
3207  * called after __delete_from_swap_cache() and drop "page" account.
3208  * memcg information is recorded to swap_cgroup of "ent"
3209  */
3210 void
3211 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3212 {
3213         struct mem_cgroup *memcg;
3214         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3215
3216         if (!swapout) /* this was a swap cache but the swap is unused ! */
3217                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3218
3219         memcg = __mem_cgroup_uncharge_common(page, ctype);
3220
3221         /*
3222          * record memcg information,  if swapout && memcg != NULL,
3223          * mem_cgroup_get() was called in uncharge().
3224          */
3225         if (do_swap_account && swapout && memcg)
3226                 swap_cgroup_record(ent, css_id(&memcg->css));
3227 }
3228 #endif
3229
3230 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3231 /*
3232  * called from swap_entry_free(). remove record in swap_cgroup and
3233  * uncharge "memsw" account.
3234  */
3235 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3236 {
3237         struct mem_cgroup *memcg;
3238         unsigned short id;
3239
3240         if (!do_swap_account)
3241                 return;
3242
3243         id = swap_cgroup_record(ent, 0);
3244         rcu_read_lock();
3245         memcg = mem_cgroup_lookup(id);
3246         if (memcg) {
3247                 /*
3248                  * We uncharge this because swap is freed.
3249                  * This memcg can be obsolete one. We avoid calling css_tryget
3250                  */
3251                 if (!mem_cgroup_is_root(memcg))
3252                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3253                 mem_cgroup_swap_statistics(memcg, false);
3254                 mem_cgroup_put(memcg);
3255         }
3256         rcu_read_unlock();
3257 }
3258
3259 /**
3260  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3261  * @entry: swap entry to be moved
3262  * @from:  mem_cgroup which the entry is moved from
3263  * @to:  mem_cgroup which the entry is moved to
3264  * @need_fixup: whether we should fixup res_counters and refcounts.
3265  *
3266  * It succeeds only when the swap_cgroup's record for this entry is the same
3267  * as the mem_cgroup's id of @from.
3268  *
3269  * Returns 0 on success, -EINVAL on failure.
3270  *
3271  * The caller must have charged to @to, IOW, called res_counter_charge() about
3272  * both res and memsw, and called css_get().
3273  */
3274 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3275                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3276 {
3277         unsigned short old_id, new_id;
3278
3279         old_id = css_id(&from->css);
3280         new_id = css_id(&to->css);
3281
3282         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3283                 mem_cgroup_swap_statistics(from, false);
3284                 mem_cgroup_swap_statistics(to, true);
3285                 /*
3286                  * This function is only called from task migration context now.
3287                  * It postpones res_counter and refcount handling till the end
3288                  * of task migration(mem_cgroup_clear_mc()) for performance
3289                  * improvement. But we cannot postpone mem_cgroup_get(to)
3290                  * because if the process that has been moved to @to does
3291                  * swap-in, the refcount of @to might be decreased to 0.
3292                  */
3293                 mem_cgroup_get(to);
3294                 if (need_fixup) {
3295                         if (!mem_cgroup_is_root(from))
3296                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3297                         mem_cgroup_put(from);
3298                         /*
3299                          * we charged both to->res and to->memsw, so we should
3300                          * uncharge to->res.
3301                          */
3302                         if (!mem_cgroup_is_root(to))
3303                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3304                 }
3305                 return 0;
3306         }
3307         return -EINVAL;
3308 }
3309 #else
3310 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3311                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3312 {
3313         return -EINVAL;
3314 }
3315 #endif
3316
3317 /*
3318  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3319  * page belongs to.
3320  */
3321 int mem_cgroup_prepare_migration(struct page *page,
3322         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3323 {
3324         struct mem_cgroup *mem = NULL;
3325         struct page_cgroup *pc;
3326         enum charge_type ctype;
3327         int ret = 0;
3328
3329         *ptr = NULL;
3330
3331         VM_BUG_ON(PageTransHuge(page));
3332         if (mem_cgroup_disabled())
3333                 return 0;
3334
3335         pc = lookup_page_cgroup(page);
3336         lock_page_cgroup(pc);
3337         if (PageCgroupUsed(pc)) {
3338                 mem = pc->mem_cgroup;
3339                 css_get(&mem->css);
3340                 /*
3341                  * At migrating an anonymous page, its mapcount goes down
3342                  * to 0 and uncharge() will be called. But, even if it's fully
3343                  * unmapped, migration may fail and this page has to be
3344                  * charged again. We set MIGRATION flag here and delay uncharge
3345                  * until end_migration() is called
3346                  *
3347                  * Corner Case Thinking
3348                  * A)
3349                  * When the old page was mapped as Anon and it's unmap-and-freed
3350                  * while migration was ongoing.
3351                  * If unmap finds the old page, uncharge() of it will be delayed
3352                  * until end_migration(). If unmap finds a new page, it's
3353                  * uncharged when it make mapcount to be 1->0. If unmap code
3354                  * finds swap_migration_entry, the new page will not be mapped
3355                  * and end_migration() will find it(mapcount==0).
3356                  *
3357                  * B)
3358                  * When the old page was mapped but migraion fails, the kernel
3359                  * remaps it. A charge for it is kept by MIGRATION flag even
3360                  * if mapcount goes down to 0. We can do remap successfully
3361                  * without charging it again.
3362                  *
3363                  * C)
3364                  * The "old" page is under lock_page() until the end of
3365                  * migration, so, the old page itself will not be swapped-out.
3366                  * If the new page is swapped out before end_migraton, our
3367                  * hook to usual swap-out path will catch the event.
3368                  */
3369                 if (PageAnon(page))
3370                         SetPageCgroupMigration(pc);
3371         }
3372         unlock_page_cgroup(pc);
3373         /*
3374          * If the page is not charged at this point,
3375          * we return here.
3376          */
3377         if (!mem)
3378                 return 0;
3379
3380         *ptr = mem;
3381         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3382         css_put(&mem->css);/* drop extra refcnt */
3383         if (ret || *ptr == NULL) {
3384                 if (PageAnon(page)) {
3385                         lock_page_cgroup(pc);
3386                         ClearPageCgroupMigration(pc);
3387                         unlock_page_cgroup(pc);
3388                         /*
3389                          * The old page may be fully unmapped while we kept it.
3390                          */
3391                         mem_cgroup_uncharge_page(page);
3392                 }
3393                 return -ENOMEM;
3394         }
3395         /*
3396          * We charge new page before it's used/mapped. So, even if unlock_page()
3397          * is called before end_migration, we can catch all events on this new
3398          * page. In the case new page is migrated but not remapped, new page's
3399          * mapcount will be finally 0 and we call uncharge in end_migration().
3400          */
3401         pc = lookup_page_cgroup(newpage);
3402         if (PageAnon(page))
3403                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3404         else if (page_is_file_cache(page))
3405                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3406         else
3407                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3408         __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3409         return ret;
3410 }
3411
3412 /* remove redundant charge if migration failed*/
3413 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3414         struct page *oldpage, struct page *newpage, bool migration_ok)
3415 {
3416         struct page *used, *unused;
3417         struct page_cgroup *pc;
3418
3419         if (!mem)
3420                 return;
3421         /* blocks rmdir() */
3422         cgroup_exclude_rmdir(&mem->css);
3423         if (!migration_ok) {
3424                 used = oldpage;
3425                 unused = newpage;
3426         } else {
3427                 used = newpage;
3428                 unused = oldpage;
3429         }
3430         /*
3431          * We disallowed uncharge of pages under migration because mapcount
3432          * of the page goes down to zero, temporarly.
3433          * Clear the flag and check the page should be charged.
3434          */
3435         pc = lookup_page_cgroup(oldpage);
3436         lock_page_cgroup(pc);
3437         ClearPageCgroupMigration(pc);
3438         unlock_page_cgroup(pc);
3439
3440         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3441
3442         /*
3443          * If a page is a file cache, radix-tree replacement is very atomic
3444          * and we can skip this check. When it was an Anon page, its mapcount
3445          * goes down to 0. But because we added MIGRATION flage, it's not
3446          * uncharged yet. There are several case but page->mapcount check
3447          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3448          * check. (see prepare_charge() also)
3449          */
3450         if (PageAnon(used))
3451                 mem_cgroup_uncharge_page(used);
3452         /*
3453          * At migration, we may charge account against cgroup which has no
3454          * tasks.
3455          * So, rmdir()->pre_destroy() can be called while we do this charge.
3456          * In that case, we need to call pre_destroy() again. check it here.
3457          */
3458         cgroup_release_and_wakeup_rmdir(&mem->css);
3459 }
3460
3461 #ifdef CONFIG_DEBUG_VM
3462 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3463 {
3464         struct page_cgroup *pc;
3465
3466         pc = lookup_page_cgroup(page);
3467         if (likely(pc) && PageCgroupUsed(pc))
3468                 return pc;
3469         return NULL;
3470 }
3471
3472 bool mem_cgroup_bad_page_check(struct page *page)
3473 {
3474         if (mem_cgroup_disabled())
3475                 return false;
3476
3477         return lookup_page_cgroup_used(page) != NULL;
3478 }
3479
3480 void mem_cgroup_print_bad_page(struct page *page)
3481 {
3482         struct page_cgroup *pc;
3483
3484         pc = lookup_page_cgroup_used(page);
3485         if (pc) {
3486                 int ret = -1;
3487                 char *path;
3488
3489                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3490                        pc, pc->flags, pc->mem_cgroup);
3491
3492                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3493                 if (path) {
3494                         rcu_read_lock();
3495                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3496                                                         path, PATH_MAX);
3497                         rcu_read_unlock();
3498                 }
3499
3500                 printk(KERN_CONT "(%s)\n",
3501                                 (ret < 0) ? "cannot get the path" : path);
3502                 kfree(path);
3503         }
3504 }
3505 #endif
3506
3507 static DEFINE_MUTEX(set_limit_mutex);
3508
3509 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3510                                 unsigned long long val)
3511 {
3512         int retry_count;
3513         u64 memswlimit, memlimit;
3514         int ret = 0;
3515         int children = mem_cgroup_count_children(memcg);
3516         u64 curusage, oldusage;
3517         int enlarge;
3518
3519         /*
3520          * For keeping hierarchical_reclaim simple, how long we should retry
3521          * is depends on callers. We set our retry-count to be function
3522          * of # of children which we should visit in this loop.
3523          */
3524         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3525
3526         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3527
3528         enlarge = 0;
3529         while (retry_count) {
3530                 if (signal_pending(current)) {
3531                         ret = -EINTR;
3532                         break;
3533                 }
3534                 /*
3535                  * Rather than hide all in some function, I do this in
3536                  * open coded manner. You see what this really does.
3537                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3538                  */
3539                 mutex_lock(&set_limit_mutex);
3540                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3541                 if (memswlimit < val) {
3542                         ret = -EINVAL;
3543                         mutex_unlock(&set_limit_mutex);
3544                         break;
3545                 }
3546
3547                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3548                 if (memlimit < val)
3549                         enlarge = 1;
3550
3551                 ret = res_counter_set_limit(&memcg->res, val);
3552                 if (!ret) {
3553                         if (memswlimit == val)
3554                                 memcg->memsw_is_minimum = true;
3555                         else
3556                                 memcg->memsw_is_minimum = false;
3557                 }
3558                 mutex_unlock(&set_limit_mutex);
3559
3560                 if (!ret)
3561                         break;
3562
3563                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3564                                                 MEM_CGROUP_RECLAIM_SHRINK,
3565                                                 NULL);
3566                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3567                 /* Usage is reduced ? */
3568                 if (curusage >= oldusage)
3569                         retry_count--;
3570                 else
3571                         oldusage = curusage;
3572         }
3573         if (!ret && enlarge)
3574                 memcg_oom_recover(memcg);
3575
3576         return ret;
3577 }
3578
3579 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3580                                         unsigned long long val)
3581 {
3582         int retry_count;
3583         u64 memlimit, memswlimit, oldusage, curusage;
3584         int children = mem_cgroup_count_children(memcg);
3585         int ret = -EBUSY;
3586         int enlarge = 0;
3587
3588         /* see mem_cgroup_resize_res_limit */
3589         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3590         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3591         while (retry_count) {
3592                 if (signal_pending(current)) {
3593                         ret = -EINTR;
3594                         break;
3595                 }
3596                 /*
3597                  * Rather than hide all in some function, I do this in
3598                  * open coded manner. You see what this really does.
3599                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3600                  */
3601                 mutex_lock(&set_limit_mutex);
3602                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3603                 if (memlimit > val) {
3604                         ret = -EINVAL;
3605                         mutex_unlock(&set_limit_mutex);
3606                         break;
3607                 }
3608                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3609                 if (memswlimit < val)
3610                         enlarge = 1;
3611                 ret = res_counter_set_limit(&memcg->memsw, val);
3612                 if (!ret) {
3613                         if (memlimit == val)
3614                                 memcg->memsw_is_minimum = true;
3615                         else
3616                                 memcg->memsw_is_minimum = false;
3617                 }
3618                 mutex_unlock(&set_limit_mutex);
3619
3620                 if (!ret)
3621                         break;
3622
3623                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3624                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3625                                                 MEM_CGROUP_RECLAIM_SHRINK,
3626                                                 NULL);
3627                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3628                 /* Usage is reduced ? */
3629                 if (curusage >= oldusage)
3630                         retry_count--;
3631                 else
3632                         oldusage = curusage;
3633         }
3634         if (!ret && enlarge)
3635                 memcg_oom_recover(memcg);
3636         return ret;
3637 }
3638
3639 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3640                                             gfp_t gfp_mask,
3641                                             unsigned long *total_scanned)
3642 {
3643         unsigned long nr_reclaimed = 0;
3644         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3645         unsigned long reclaimed;
3646         int loop = 0;
3647         struct mem_cgroup_tree_per_zone *mctz;
3648         unsigned long long excess;
3649         unsigned long nr_scanned;
3650
3651         if (order > 0)
3652                 return 0;
3653
3654         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3655         /*
3656          * This loop can run a while, specially if mem_cgroup's continuously
3657          * keep exceeding their soft limit and putting the system under
3658          * pressure
3659          */
3660         do {
3661                 if (next_mz)
3662                         mz = next_mz;
3663                 else
3664                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3665                 if (!mz)
3666                         break;
3667
3668                 nr_scanned = 0;
3669                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3670                                                 gfp_mask,
3671                                                 MEM_CGROUP_RECLAIM_SOFT,
3672                                                 &nr_scanned);
3673                 nr_reclaimed += reclaimed;
3674                 *total_scanned += nr_scanned;
3675                 spin_lock(&mctz->lock);
3676
3677                 /*
3678                  * If we failed to reclaim anything from this memory cgroup
3679                  * it is time to move on to the next cgroup
3680                  */
3681                 next_mz = NULL;
3682                 if (!reclaimed) {
3683                         do {
3684                                 /*
3685                                  * Loop until we find yet another one.
3686                                  *
3687                                  * By the time we get the soft_limit lock
3688                                  * again, someone might have aded the
3689                                  * group back on the RB tree. Iterate to
3690                                  * make sure we get a different mem.
3691                                  * mem_cgroup_largest_soft_limit_node returns
3692                                  * NULL if no other cgroup is present on
3693                                  * the tree
3694                                  */
3695                                 next_mz =
3696                                 __mem_cgroup_largest_soft_limit_node(mctz);
3697                                 if (next_mz == mz)
3698                                         css_put(&next_mz->mem->css);
3699                                 else /* next_mz == NULL or other memcg */
3700                                         break;
3701                         } while (1);
3702                 }
3703                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3704                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3705                 /*
3706                  * One school of thought says that we should not add
3707                  * back the node to the tree if reclaim returns 0.
3708                  * But our reclaim could return 0, simply because due
3709                  * to priority we are exposing a smaller subset of
3710                  * memory to reclaim from. Consider this as a longer
3711                  * term TODO.
3712                  */
3713                 /* If excess == 0, no tree ops */
3714                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3715                 spin_unlock(&mctz->lock);
3716                 css_put(&mz->mem->css);
3717                 loop++;
3718                 /*
3719                  * Could not reclaim anything and there are no more
3720                  * mem cgroups to try or we seem to be looping without
3721                  * reclaiming anything.
3722                  */
3723                 if (!nr_reclaimed &&
3724                         (next_mz == NULL ||
3725                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3726                         break;
3727         } while (!nr_reclaimed);
3728         if (next_mz)
3729                 css_put(&next_mz->mem->css);
3730         return nr_reclaimed;
3731 }
3732
3733 /*
3734  * This routine traverse page_cgroup in given list and drop them all.
3735  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3736  */
3737 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3738                                 int node, int zid, enum lru_list lru)
3739 {
3740         struct zone *zone;
3741         struct mem_cgroup_per_zone *mz;
3742         struct page_cgroup *pc, *busy;
3743         unsigned long flags, loop;
3744         struct list_head *list;
3745         int ret = 0;
3746
3747         zone = &NODE_DATA(node)->node_zones[zid];
3748         mz = mem_cgroup_zoneinfo(mem, node, zid);
3749         list = &mz->lists[lru];
3750
3751         loop = MEM_CGROUP_ZSTAT(mz, lru);
3752         /* give some margin against EBUSY etc...*/
3753         loop += 256;
3754         busy = NULL;
3755         while (loop--) {
3756                 struct page *page;
3757
3758                 ret = 0;
3759                 spin_lock_irqsave(&zone->lru_lock, flags);
3760                 if (list_empty(list)) {
3761                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3762                         break;
3763                 }
3764                 pc = list_entry(list->prev, struct page_cgroup, lru);
3765                 if (busy == pc) {
3766                         list_move(&pc->lru, list);
3767                         busy = NULL;
3768                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3769                         continue;
3770                 }
3771                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3772
3773                 page = lookup_cgroup_page(pc);
3774
3775                 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3776                 if (ret == -ENOMEM)
3777                         break;
3778
3779                 if (ret == -EBUSY || ret == -EINVAL) {
3780                         /* found lock contention or "pc" is obsolete. */
3781                         busy = pc;
3782                         cond_resched();
3783                 } else
3784                         busy = NULL;
3785         }
3786
3787         if (!ret && !list_empty(list))
3788                 return -EBUSY;
3789         return ret;
3790 }
3791
3792 /*
3793  * make mem_cgroup's charge to be 0 if there is no task.
3794  * This enables deleting this mem_cgroup.
3795  */
3796 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3797 {
3798         int ret;
3799         int node, zid, shrink;
3800         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3801         struct cgroup *cgrp = mem->css.cgroup;
3802
3803         css_get(&mem->css);
3804
3805         shrink = 0;
3806         /* should free all ? */
3807         if (free_all)
3808                 goto try_to_free;
3809 move_account:
3810         do {
3811                 ret = -EBUSY;
3812                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3813                         goto out;
3814                 ret = -EINTR;
3815                 if (signal_pending(current))
3816                         goto out;
3817                 /* This is for making all *used* pages to be on LRU. */
3818                 lru_add_drain_all();
3819                 drain_all_stock_sync(mem);
3820                 ret = 0;
3821                 mem_cgroup_start_move(mem);
3822                 for_each_node_state(node, N_HIGH_MEMORY) {
3823                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3824                                 enum lru_list l;
3825                                 for_each_lru(l) {
3826                                         ret = mem_cgroup_force_empty_list(mem,
3827                                                         node, zid, l);
3828                                         if (ret)
3829                                                 break;
3830                                 }
3831                         }
3832                         if (ret)
3833                                 break;
3834                 }
3835                 mem_cgroup_end_move(mem);
3836                 memcg_oom_recover(mem);
3837                 /* it seems parent cgroup doesn't have enough mem */
3838                 if (ret == -ENOMEM)
3839                         goto try_to_free;
3840                 cond_resched();
3841         /* "ret" should also be checked to ensure all lists are empty. */
3842         } while (mem->res.usage > 0 || ret);
3843 out:
3844         css_put(&mem->css);
3845         return ret;
3846
3847 try_to_free:
3848         /* returns EBUSY if there is a task or if we come here twice. */
3849         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3850                 ret = -EBUSY;
3851                 goto out;
3852         }
3853         /* we call try-to-free pages for make this cgroup empty */
3854         lru_add_drain_all();
3855         /* try to free all pages in this cgroup */
3856         shrink = 1;
3857         while (nr_retries && mem->res.usage > 0) {
3858                 struct memcg_scanrecord rec;
3859                 int progress;
3860
3861                 if (signal_pending(current)) {
3862                         ret = -EINTR;
3863                         goto out;
3864                 }
3865                 rec.context = SCAN_BY_SHRINK;
3866                 rec.mem = mem;
3867                 rec.root = mem;
3868                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3869                                                 false, &rec);
3870                 if (!progress) {
3871                         nr_retries--;
3872                         /* maybe some writeback is necessary */
3873                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3874                 }
3875
3876         }
3877         lru_add_drain();
3878         /* try move_account...there may be some *locked* pages. */
3879         goto move_account;
3880 }
3881
3882 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3883 {
3884         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3885 }
3886
3887
3888 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3889 {
3890         return mem_cgroup_from_cont(cont)->use_hierarchy;
3891 }
3892
3893 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3894                                         u64 val)
3895 {
3896         int retval = 0;
3897         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3898         struct cgroup *parent = cont->parent;
3899         struct mem_cgroup *parent_mem = NULL;
3900
3901         if (parent)
3902                 parent_mem = mem_cgroup_from_cont(parent);
3903
3904         cgroup_lock();
3905         /*
3906          * If parent's use_hierarchy is set, we can't make any modifications
3907          * in the child subtrees. If it is unset, then the change can
3908          * occur, provided the current cgroup has no children.
3909          *
3910          * For the root cgroup, parent_mem is NULL, we allow value to be
3911          * set if there are no children.
3912          */
3913         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3914                                 (val == 1 || val == 0)) {
3915                 if (list_empty(&cont->children))
3916                         mem->use_hierarchy = val;
3917                 else
3918                         retval = -EBUSY;
3919         } else
3920                 retval = -EINVAL;
3921         cgroup_unlock();
3922
3923         return retval;
3924 }
3925
3926
3927 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3928                                                enum mem_cgroup_stat_index idx)
3929 {
3930         struct mem_cgroup *iter;
3931         long val = 0;
3932
3933         /* Per-cpu values can be negative, use a signed accumulator */
3934         for_each_mem_cgroup_tree(iter, mem)
3935                 val += mem_cgroup_read_stat(iter, idx);
3936
3937         if (val < 0) /* race ? */
3938                 val = 0;
3939         return val;
3940 }
3941
3942 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3943 {
3944         u64 val;
3945
3946         if (!mem_cgroup_is_root(mem)) {
3947                 if (!swap)
3948                         return res_counter_read_u64(&mem->res, RES_USAGE);
3949                 else
3950                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3951         }
3952
3953         val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3954         val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3955
3956         if (swap)
3957                 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3958
3959         return val << PAGE_SHIFT;
3960 }
3961
3962 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3963 {
3964         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3965         u64 val;
3966         int type, name;
3967
3968         type = MEMFILE_TYPE(cft->private);
3969         name = MEMFILE_ATTR(cft->private);
3970         switch (type) {
3971         case _MEM:
3972                 if (name == RES_USAGE)
3973                         val = mem_cgroup_usage(mem, false);
3974                 else
3975                         val = res_counter_read_u64(&mem->res, name);
3976                 break;
3977         case _MEMSWAP:
3978                 if (name == RES_USAGE)
3979                         val = mem_cgroup_usage(mem, true);
3980                 else
3981                         val = res_counter_read_u64(&mem->memsw, name);
3982                 break;
3983         default:
3984                 BUG();
3985                 break;
3986         }
3987         return val;
3988 }
3989 /*
3990  * The user of this function is...
3991  * RES_LIMIT.
3992  */
3993 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3994                             const char *buffer)
3995 {
3996         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3997         int type, name;
3998         unsigned long long val;
3999         int ret;
4000
4001         type = MEMFILE_TYPE(cft->private);
4002         name = MEMFILE_ATTR(cft->private);
4003         switch (name) {
4004         case RES_LIMIT:
4005                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4006                         ret = -EINVAL;
4007                         break;
4008                 }
4009                 /* This function does all necessary parse...reuse it */
4010                 ret = res_counter_memparse_write_strategy(buffer, &val);
4011                 if (ret)
4012                         break;
4013                 if (type == _MEM)
4014                         ret = mem_cgroup_resize_limit(memcg, val);
4015                 else
4016                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
4017                 break;
4018         case RES_SOFT_LIMIT:
4019                 ret = res_counter_memparse_write_strategy(buffer, &val);
4020                 if (ret)
4021                         break;
4022                 /*
4023                  * For memsw, soft limits are hard to implement in terms
4024                  * of semantics, for now, we support soft limits for
4025                  * control without swap
4026                  */
4027                 if (type == _MEM)
4028                         ret = res_counter_set_soft_limit(&memcg->res, val);
4029                 else
4030                         ret = -EINVAL;
4031                 break;
4032         default:
4033                 ret = -EINVAL; /* should be BUG() ? */
4034                 break;
4035         }
4036         return ret;
4037 }
4038
4039 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4040                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4041 {
4042         struct cgroup *cgroup;
4043         unsigned long long min_limit, min_memsw_limit, tmp;
4044
4045         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4046         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4047         cgroup = memcg->css.cgroup;
4048         if (!memcg->use_hierarchy)
4049                 goto out;
4050
4051         while (cgroup->parent) {
4052                 cgroup = cgroup->parent;
4053                 memcg = mem_cgroup_from_cont(cgroup);
4054                 if (!memcg->use_hierarchy)
4055                         break;
4056                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4057                 min_limit = min(min_limit, tmp);
4058                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4059                 min_memsw_limit = min(min_memsw_limit, tmp);
4060         }
4061 out:
4062         *mem_limit = min_limit;
4063         *memsw_limit = min_memsw_limit;
4064         return;
4065 }
4066
4067 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4068 {
4069         struct mem_cgroup *mem;
4070         int type, name;
4071
4072         mem = mem_cgroup_from_cont(cont);
4073         type = MEMFILE_TYPE(event);
4074         name = MEMFILE_ATTR(event);
4075         switch (name) {
4076         case RES_MAX_USAGE:
4077                 if (type == _MEM)
4078                         res_counter_reset_max(&mem->res);
4079                 else
4080                         res_counter_reset_max(&mem->memsw);
4081                 break;
4082         case RES_FAILCNT:
4083                 if (type == _MEM)
4084                         res_counter_reset_failcnt(&mem->res);
4085                 else
4086                         res_counter_reset_failcnt(&mem->memsw);
4087                 break;
4088         }
4089
4090         return 0;
4091 }
4092
4093 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4094                                         struct cftype *cft)
4095 {
4096         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4097 }
4098
4099 #ifdef CONFIG_MMU
4100 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4101                                         struct cftype *cft, u64 val)
4102 {
4103         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4104
4105         if (val >= (1 << NR_MOVE_TYPE))
4106                 return -EINVAL;
4107         /*
4108          * We check this value several times in both in can_attach() and
4109          * attach(), so we need cgroup lock to prevent this value from being
4110          * inconsistent.
4111          */
4112         cgroup_lock();
4113         mem->move_charge_at_immigrate = val;
4114         cgroup_unlock();
4115
4116         return 0;
4117 }
4118 #else
4119 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4120                                         struct cftype *cft, u64 val)
4121 {
4122         return -ENOSYS;
4123 }
4124 #endif
4125
4126
4127 /* For read statistics */
4128 enum {
4129         MCS_CACHE,
4130         MCS_RSS,
4131         MCS_FILE_MAPPED,
4132         MCS_PGPGIN,
4133         MCS_PGPGOUT,
4134         MCS_SWAP,
4135         MCS_PGFAULT,
4136         MCS_PGMAJFAULT,
4137         MCS_INACTIVE_ANON,
4138         MCS_ACTIVE_ANON,
4139         MCS_INACTIVE_FILE,
4140         MCS_ACTIVE_FILE,
4141         MCS_UNEVICTABLE,
4142         NR_MCS_STAT,
4143 };
4144
4145 struct mcs_total_stat {
4146         s64 stat[NR_MCS_STAT];
4147 };
4148
4149 struct {
4150         char *local_name;
4151         char *total_name;
4152 } memcg_stat_strings[NR_MCS_STAT] = {
4153         {"cache", "total_cache"},
4154         {"rss", "total_rss"},
4155         {"mapped_file", "total_mapped_file"},
4156         {"pgpgin", "total_pgpgin"},
4157         {"pgpgout", "total_pgpgout"},
4158         {"swap", "total_swap"},
4159         {"pgfault", "total_pgfault"},
4160         {"pgmajfault", "total_pgmajfault"},
4161         {"inactive_anon", "total_inactive_anon"},
4162         {"active_anon", "total_active_anon"},
4163         {"inactive_file", "total_inactive_file"},
4164         {"active_file", "total_active_file"},
4165         {"unevictable", "total_unevictable"}
4166 };
4167
4168
4169 static void
4170 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4171 {
4172         s64 val;
4173
4174         /* per cpu stat */
4175         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4176         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4177         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4178         s->stat[MCS_RSS] += val * PAGE_SIZE;
4179         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4180         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4181         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4182         s->stat[MCS_PGPGIN] += val;
4183         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4184         s->stat[MCS_PGPGOUT] += val;
4185         if (do_swap_account) {
4186                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4187                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4188         }
4189         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4190         s->stat[MCS_PGFAULT] += val;
4191         val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4192         s->stat[MCS_PGMAJFAULT] += val;
4193
4194         /* per zone stat */
4195         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4196         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4197         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4198         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4199         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4200         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4201         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4202         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4203         val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4204         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4205 }
4206
4207 static void
4208 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4209 {
4210         struct mem_cgroup *iter;
4211
4212         for_each_mem_cgroup_tree(iter, mem)
4213                 mem_cgroup_get_local_stat(iter, s);
4214 }
4215
4216 #ifdef CONFIG_NUMA
4217 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4218 {
4219         int nid;
4220         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4221         unsigned long node_nr;
4222         struct cgroup *cont = m->private;
4223         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4224
4225         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4226         seq_printf(m, "total=%lu", total_nr);
4227         for_each_node_state(nid, N_HIGH_MEMORY) {
4228                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4229                 seq_printf(m, " N%d=%lu", nid, node_nr);
4230         }
4231         seq_putc(m, '\n');
4232
4233         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4234         seq_printf(m, "file=%lu", file_nr);
4235         for_each_node_state(nid, N_HIGH_MEMORY) {
4236                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4237                                 LRU_ALL_FILE);
4238                 seq_printf(m, " N%d=%lu", nid, node_nr);
4239         }
4240         seq_putc(m, '\n');
4241
4242         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4243         seq_printf(m, "anon=%lu", anon_nr);
4244         for_each_node_state(nid, N_HIGH_MEMORY) {
4245                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4246                                 LRU_ALL_ANON);
4247                 seq_printf(m, " N%d=%lu", nid, node_nr);
4248         }
4249         seq_putc(m, '\n');
4250
4251         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4252         seq_printf(m, "unevictable=%lu", unevictable_nr);
4253         for_each_node_state(nid, N_HIGH_MEMORY) {
4254                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4255                                 BIT(LRU_UNEVICTABLE));
4256                 seq_printf(m, " N%d=%lu", nid, node_nr);
4257         }
4258         seq_putc(m, '\n');
4259         return 0;
4260 }
4261 #endif /* CONFIG_NUMA */
4262
4263 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4264                                  struct cgroup_map_cb *cb)
4265 {
4266         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4267         struct mcs_total_stat mystat;
4268         int i;
4269
4270         memset(&mystat, 0, sizeof(mystat));
4271         mem_cgroup_get_local_stat(mem_cont, &mystat);
4272
4273
4274         for (i = 0; i < NR_MCS_STAT; i++) {
4275                 if (i == MCS_SWAP && !do_swap_account)
4276                         continue;
4277                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4278         }
4279
4280         /* Hierarchical information */
4281         {
4282                 unsigned long long limit, memsw_limit;
4283                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4284                 cb->fill(cb, "hierarchical_memory_limit", limit);
4285                 if (do_swap_account)
4286                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4287         }
4288
4289         memset(&mystat, 0, sizeof(mystat));
4290         mem_cgroup_get_total_stat(mem_cont, &mystat);
4291         for (i = 0; i < NR_MCS_STAT; i++) {
4292                 if (i == MCS_SWAP && !do_swap_account)
4293                         continue;
4294                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4295         }
4296
4297 #ifdef CONFIG_DEBUG_VM
4298         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4299
4300         {
4301                 int nid, zid;
4302                 struct mem_cgroup_per_zone *mz;
4303                 unsigned long recent_rotated[2] = {0, 0};
4304                 unsigned long recent_scanned[2] = {0, 0};
4305
4306                 for_each_online_node(nid)
4307                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4308                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4309
4310                                 recent_rotated[0] +=
4311                                         mz->reclaim_stat.recent_rotated[0];
4312                                 recent_rotated[1] +=
4313                                         mz->reclaim_stat.recent_rotated[1];
4314                                 recent_scanned[0] +=
4315                                         mz->reclaim_stat.recent_scanned[0];
4316                                 recent_scanned[1] +=
4317                                         mz->reclaim_stat.recent_scanned[1];
4318                         }
4319                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4320                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4321                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4322                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4323         }
4324 #endif
4325
4326         return 0;
4327 }
4328
4329 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4330 {
4331         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4332
4333         return mem_cgroup_swappiness(memcg);
4334 }
4335
4336 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4337                                        u64 val)
4338 {
4339         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4340         struct mem_cgroup *parent;
4341
4342         if (val > 100)
4343                 return -EINVAL;
4344
4345         if (cgrp->parent == NULL)
4346                 return -EINVAL;
4347
4348         parent = mem_cgroup_from_cont(cgrp->parent);
4349
4350         cgroup_lock();
4351
4352         /* If under hierarchy, only empty-root can set this value */
4353         if ((parent->use_hierarchy) ||
4354             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4355                 cgroup_unlock();
4356                 return -EINVAL;
4357         }
4358
4359         memcg->swappiness = val;
4360
4361         cgroup_unlock();
4362
4363         return 0;
4364 }
4365
4366 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4367 {
4368         struct mem_cgroup_threshold_ary *t;
4369         u64 usage;
4370         int i;
4371
4372         rcu_read_lock();
4373         if (!swap)
4374                 t = rcu_dereference(memcg->thresholds.primary);
4375         else
4376                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4377
4378         if (!t)
4379                 goto unlock;
4380
4381         usage = mem_cgroup_usage(memcg, swap);
4382
4383         /*
4384          * current_threshold points to threshold just below usage.
4385          * If it's not true, a threshold was crossed after last
4386          * call of __mem_cgroup_threshold().
4387          */
4388         i = t->current_threshold;
4389
4390         /*
4391          * Iterate backward over array of thresholds starting from
4392          * current_threshold and check if a threshold is crossed.
4393          * If none of thresholds below usage is crossed, we read
4394          * only one element of the array here.
4395          */
4396         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4397                 eventfd_signal(t->entries[i].eventfd, 1);
4398
4399         /* i = current_threshold + 1 */
4400         i++;
4401
4402         /*
4403          * Iterate forward over array of thresholds starting from
4404          * current_threshold+1 and check if a threshold is crossed.
4405          * If none of thresholds above usage is crossed, we read
4406          * only one element of the array here.
4407          */
4408         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4409                 eventfd_signal(t->entries[i].eventfd, 1);
4410
4411         /* Update current_threshold */
4412         t->current_threshold = i - 1;
4413 unlock:
4414         rcu_read_unlock();
4415 }
4416
4417 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4418 {
4419         while (memcg) {
4420                 __mem_cgroup_threshold(memcg, false);
4421                 if (do_swap_account)
4422                         __mem_cgroup_threshold(memcg, true);
4423
4424                 memcg = parent_mem_cgroup(memcg);
4425         }
4426 }
4427
4428 static int compare_thresholds(const void *a, const void *b)
4429 {
4430         const struct mem_cgroup_threshold *_a = a;
4431         const struct mem_cgroup_threshold *_b = b;
4432
4433         return _a->threshold - _b->threshold;
4434 }
4435
4436 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4437 {
4438         struct mem_cgroup_eventfd_list *ev;
4439
4440         list_for_each_entry(ev, &mem->oom_notify, list)
4441                 eventfd_signal(ev->eventfd, 1);
4442         return 0;
4443 }
4444
4445 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4446 {
4447         struct mem_cgroup *iter;
4448
4449         for_each_mem_cgroup_tree(iter, mem)
4450                 mem_cgroup_oom_notify_cb(iter);
4451 }
4452
4453 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4454         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4455 {
4456         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4457         struct mem_cgroup_thresholds *thresholds;
4458         struct mem_cgroup_threshold_ary *new;
4459         int type = MEMFILE_TYPE(cft->private);
4460         u64 threshold, usage;
4461         int i, size, ret;
4462
4463         ret = res_counter_memparse_write_strategy(args, &threshold);
4464         if (ret)
4465                 return ret;
4466
4467         mutex_lock(&memcg->thresholds_lock);
4468
4469         if (type == _MEM)
4470                 thresholds = &memcg->thresholds;
4471         else if (type == _MEMSWAP)
4472                 thresholds = &memcg->memsw_thresholds;
4473         else
4474                 BUG();
4475
4476         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4477
4478         /* Check if a threshold crossed before adding a new one */
4479         if (thresholds->primary)
4480                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4481
4482         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4483
4484         /* Allocate memory for new array of thresholds */
4485         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4486                         GFP_KERNEL);
4487         if (!new) {
4488                 ret = -ENOMEM;
4489                 goto unlock;
4490         }
4491         new->size = size;
4492
4493         /* Copy thresholds (if any) to new array */
4494         if (thresholds->primary) {
4495                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4496                                 sizeof(struct mem_cgroup_threshold));
4497         }
4498
4499         /* Add new threshold */
4500         new->entries[size - 1].eventfd = eventfd;
4501         new->entries[size - 1].threshold = threshold;
4502
4503         /* Sort thresholds. Registering of new threshold isn't time-critical */
4504         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4505                         compare_thresholds, NULL);
4506
4507         /* Find current threshold */
4508         new->current_threshold = -1;
4509         for (i = 0; i < size; i++) {
4510                 if (new->entries[i].threshold < usage) {
4511                         /*
4512                          * new->current_threshold will not be used until
4513                          * rcu_assign_pointer(), so it's safe to increment
4514                          * it here.
4515                          */
4516                         ++new->current_threshold;
4517                 }
4518         }
4519
4520         /* Free old spare buffer and save old primary buffer as spare */
4521         kfree(thresholds->spare);
4522         thresholds->spare = thresholds->primary;
4523
4524         rcu_assign_pointer(thresholds->primary, new);
4525
4526         /* To be sure that nobody uses thresholds */
4527         synchronize_rcu();
4528
4529 unlock:
4530         mutex_unlock(&memcg->thresholds_lock);
4531
4532         return ret;
4533 }
4534
4535 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4536         struct cftype *cft, struct eventfd_ctx *eventfd)
4537 {
4538         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4539         struct mem_cgroup_thresholds *thresholds;
4540         struct mem_cgroup_threshold_ary *new;
4541         int type = MEMFILE_TYPE(cft->private);
4542         u64 usage;
4543         int i, j, size;
4544
4545         mutex_lock(&memcg->thresholds_lock);
4546         if (type == _MEM)
4547                 thresholds = &memcg->thresholds;
4548         else if (type == _MEMSWAP)
4549                 thresholds = &memcg->memsw_thresholds;
4550         else
4551                 BUG();
4552
4553         /*
4554          * Something went wrong if we trying to unregister a threshold
4555          * if we don't have thresholds
4556          */
4557         BUG_ON(!thresholds);
4558
4559         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4560
4561         /* Check if a threshold crossed before removing */
4562         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4563
4564         /* Calculate new number of threshold */
4565         size = 0;
4566         for (i = 0; i < thresholds->primary->size; i++) {
4567                 if (thresholds->primary->entries[i].eventfd != eventfd)
4568                         size++;
4569         }
4570
4571         new = thresholds->spare;
4572
4573         /* Set thresholds array to NULL if we don't have thresholds */
4574         if (!size) {
4575                 kfree(new);
4576                 new = NULL;
4577                 goto swap_buffers;
4578         }
4579
4580         new->size = size;
4581
4582         /* Copy thresholds and find current threshold */
4583         new->current_threshold = -1;
4584         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4585                 if (thresholds->primary->entries[i].eventfd == eventfd)
4586                         continue;
4587
4588                 new->entries[j] = thresholds->primary->entries[i];
4589                 if (new->entries[j].threshold < usage) {
4590                         /*
4591                          * new->current_threshold will not be used
4592                          * until rcu_assign_pointer(), so it's safe to increment
4593                          * it here.
4594                          */
4595                         ++new->current_threshold;
4596                 }
4597                 j++;
4598         }
4599
4600 swap_buffers:
4601         /* Swap primary and spare array */
4602         thresholds->spare = thresholds->primary;
4603         rcu_assign_pointer(thresholds->primary, new);
4604
4605         /* To be sure that nobody uses thresholds */
4606         synchronize_rcu();
4607
4608         mutex_unlock(&memcg->thresholds_lock);
4609 }
4610
4611 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4612         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4613 {
4614         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4615         struct mem_cgroup_eventfd_list *event;
4616         int type = MEMFILE_TYPE(cft->private);
4617
4618         BUG_ON(type != _OOM_TYPE);
4619         event = kmalloc(sizeof(*event), GFP_KERNEL);
4620         if (!event)
4621                 return -ENOMEM;
4622
4623         spin_lock(&memcg_oom_lock);
4624
4625         event->eventfd = eventfd;
4626         list_add(&event->list, &memcg->oom_notify);
4627
4628         /* already in OOM ? */
4629         if (atomic_read(&memcg->under_oom))
4630                 eventfd_signal(eventfd, 1);
4631         spin_unlock(&memcg_oom_lock);
4632
4633         return 0;
4634 }
4635
4636 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4637         struct cftype *cft, struct eventfd_ctx *eventfd)
4638 {
4639         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4640         struct mem_cgroup_eventfd_list *ev, *tmp;
4641         int type = MEMFILE_TYPE(cft->private);
4642
4643         BUG_ON(type != _OOM_TYPE);
4644
4645         spin_lock(&memcg_oom_lock);
4646
4647         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4648                 if (ev->eventfd == eventfd) {
4649                         list_del(&ev->list);
4650                         kfree(ev);
4651                 }
4652         }
4653
4654         spin_unlock(&memcg_oom_lock);
4655 }
4656
4657 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4658         struct cftype *cft,  struct cgroup_map_cb *cb)
4659 {
4660         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4661
4662         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4663
4664         if (atomic_read(&mem->under_oom))
4665                 cb->fill(cb, "under_oom", 1);
4666         else
4667                 cb->fill(cb, "under_oom", 0);
4668         return 0;
4669 }
4670
4671 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4672         struct cftype *cft, u64 val)
4673 {
4674         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4675         struct mem_cgroup *parent;
4676
4677         /* cannot set to root cgroup and only 0 and 1 are allowed */
4678         if (!cgrp->parent || !((val == 0) || (val == 1)))
4679                 return -EINVAL;
4680
4681         parent = mem_cgroup_from_cont(cgrp->parent);
4682
4683         cgroup_lock();
4684         /* oom-kill-disable is a flag for subhierarchy. */
4685         if ((parent->use_hierarchy) ||
4686             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4687                 cgroup_unlock();
4688                 return -EINVAL;
4689         }
4690         mem->oom_kill_disable = val;
4691         if (!val)
4692                 memcg_oom_recover(mem);
4693         cgroup_unlock();
4694         return 0;
4695 }
4696
4697 #ifdef CONFIG_NUMA
4698 static const struct file_operations mem_control_numa_stat_file_operations = {
4699         .read = seq_read,
4700         .llseek = seq_lseek,
4701         .release = single_release,
4702 };
4703
4704 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4705 {
4706         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4707
4708         file->f_op = &mem_control_numa_stat_file_operations;
4709         return single_open(file, mem_control_numa_stat_show, cont);
4710 }
4711 #endif /* CONFIG_NUMA */
4712
4713 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4714                                 struct cftype *cft,
4715                                 struct cgroup_map_cb *cb)
4716 {
4717         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4718         char string[64];
4719         int i;
4720
4721         for (i = 0; i < NR_SCANSTATS; i++) {
4722                 strcpy(string, scanstat_string[i]);
4723                 strcat(string, SCANSTAT_WORD_LIMIT);
4724                 cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4725         }
4726
4727         for (i = 0; i < NR_SCANSTATS; i++) {
4728                 strcpy(string, scanstat_string[i]);
4729                 strcat(string, SCANSTAT_WORD_SYSTEM);
4730                 cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4731         }
4732
4733         for (i = 0; i < NR_SCANSTATS; i++) {
4734                 strcpy(string, scanstat_string[i]);
4735                 strcat(string, SCANSTAT_WORD_LIMIT);
4736                 strcat(string, SCANSTAT_WORD_HIERARCHY);
4737                 cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4738         }
4739         for (i = 0; i < NR_SCANSTATS; i++) {
4740                 strcpy(string, scanstat_string[i]);
4741                 strcat(string, SCANSTAT_WORD_SYSTEM);
4742                 strcat(string, SCANSTAT_WORD_HIERARCHY);
4743                 cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4744         }
4745         return 0;
4746 }
4747
4748 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4749                                 unsigned int event)
4750 {
4751         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4752
4753         spin_lock(&mem->scanstat.lock);
4754         memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4755         memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4756         spin_unlock(&mem->scanstat.lock);
4757         return 0;
4758 }
4759
4760
4761 static struct cftype mem_cgroup_files[] = {
4762         {
4763                 .name = "usage_in_bytes",
4764                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4765                 .read_u64 = mem_cgroup_read,
4766                 .register_event = mem_cgroup_usage_register_event,
4767                 .unregister_event = mem_cgroup_usage_unregister_event,
4768         },
4769         {
4770                 .name = "max_usage_in_bytes",
4771                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4772                 .trigger = mem_cgroup_reset,
4773                 .read_u64 = mem_cgroup_read,
4774         },
4775         {
4776                 .name = "limit_in_bytes",
4777                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4778                 .write_string = mem_cgroup_write,
4779                 .read_u64 = mem_cgroup_read,
4780         },
4781         {
4782                 .name = "soft_limit_in_bytes",
4783                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4784                 .write_string = mem_cgroup_write,
4785                 .read_u64 = mem_cgroup_read,
4786         },
4787         {
4788                 .name = "failcnt",
4789                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4790                 .trigger = mem_cgroup_reset,
4791                 .read_u64 = mem_cgroup_read,
4792         },
4793         {
4794                 .name = "stat",
4795                 .read_map = mem_control_stat_show,
4796         },
4797         {
4798                 .name = "force_empty",
4799                 .trigger = mem_cgroup_force_empty_write,
4800         },
4801         {
4802                 .name = "use_hierarchy",
4803                 .write_u64 = mem_cgroup_hierarchy_write,
4804                 .read_u64 = mem_cgroup_hierarchy_read,
4805         },
4806         {
4807                 .name = "swappiness",
4808                 .read_u64 = mem_cgroup_swappiness_read,
4809                 .write_u64 = mem_cgroup_swappiness_write,
4810         },
4811         {
4812                 .name = "move_charge_at_immigrate",
4813                 .read_u64 = mem_cgroup_move_charge_read,
4814                 .write_u64 = mem_cgroup_move_charge_write,
4815         },
4816         {
4817                 .name = "oom_control",
4818                 .read_map = mem_cgroup_oom_control_read,
4819                 .write_u64 = mem_cgroup_oom_control_write,
4820                 .register_event = mem_cgroup_oom_register_event,
4821                 .unregister_event = mem_cgroup_oom_unregister_event,
4822                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4823         },
4824 #ifdef CONFIG_NUMA
4825         {
4826                 .name = "numa_stat",
4827                 .open = mem_control_numa_stat_open,
4828                 .mode = S_IRUGO,
4829         },
4830 #endif
4831         {
4832                 .name = "vmscan_stat",
4833                 .read_map = mem_cgroup_vmscan_stat_read,
4834                 .trigger = mem_cgroup_reset_vmscan_stat,
4835         },
4836 };
4837
4838 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4839 static struct cftype memsw_cgroup_files[] = {
4840         {
4841                 .name = "memsw.usage_in_bytes",
4842                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4843                 .read_u64 = mem_cgroup_read,
4844                 .register_event = mem_cgroup_usage_register_event,
4845                 .unregister_event = mem_cgroup_usage_unregister_event,
4846         },
4847         {
4848                 .name = "memsw.max_usage_in_bytes",
4849                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4850                 .trigger = mem_cgroup_reset,
4851                 .read_u64 = mem_cgroup_read,
4852         },
4853         {
4854                 .name = "memsw.limit_in_bytes",
4855                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4856                 .write_string = mem_cgroup_write,
4857                 .read_u64 = mem_cgroup_read,
4858         },
4859         {
4860                 .name = "memsw.failcnt",
4861                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4862                 .trigger = mem_cgroup_reset,
4863                 .read_u64 = mem_cgroup_read,
4864         },
4865 };
4866
4867 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4868 {
4869         if (!do_swap_account)
4870                 return 0;
4871         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4872                                 ARRAY_SIZE(memsw_cgroup_files));
4873 };
4874 #else
4875 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4876 {
4877         return 0;
4878 }
4879 #endif
4880
4881 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4882 {
4883         struct mem_cgroup_per_node *pn;
4884         struct mem_cgroup_per_zone *mz;
4885         enum lru_list l;
4886         int zone, tmp = node;
4887         /*
4888          * This routine is called against possible nodes.
4889          * But it's BUG to call kmalloc() against offline node.
4890          *
4891          * TODO: this routine can waste much memory for nodes which will
4892          *       never be onlined. It's better to use memory hotplug callback
4893          *       function.
4894          */
4895         if (!node_state(node, N_NORMAL_MEMORY))
4896                 tmp = -1;
4897         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4898         if (!pn)
4899                 return 1;
4900
4901         mem->info.nodeinfo[node] = pn;
4902         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4903                 mz = &pn->zoneinfo[zone];
4904                 for_each_lru(l)
4905                         INIT_LIST_HEAD(&mz->lists[l]);
4906                 mz->usage_in_excess = 0;
4907                 mz->on_tree = false;
4908                 mz->mem = mem;
4909         }
4910         return 0;
4911 }
4912
4913 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4914 {
4915         kfree(mem->info.nodeinfo[node]);
4916 }
4917
4918 static struct mem_cgroup *mem_cgroup_alloc(void)
4919 {
4920         struct mem_cgroup *mem;
4921         int size = sizeof(struct mem_cgroup);
4922
4923         /* Can be very big if MAX_NUMNODES is very big */
4924         if (size < PAGE_SIZE)
4925                 mem = kzalloc(size, GFP_KERNEL);
4926         else
4927                 mem = vzalloc(size);
4928
4929         if (!mem)
4930                 return NULL;
4931
4932         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4933         if (!mem->stat)
4934                 goto out_free;
4935         spin_lock_init(&mem->pcp_counter_lock);
4936         return mem;
4937
4938 out_free:
4939         if (size < PAGE_SIZE)
4940                 kfree(mem);
4941         else
4942                 vfree(mem);
4943         return NULL;
4944 }
4945
4946 /*
4947  * At destroying mem_cgroup, references from swap_cgroup can remain.
4948  * (scanning all at force_empty is too costly...)
4949  *
4950  * Instead of clearing all references at force_empty, we remember
4951  * the number of reference from swap_cgroup and free mem_cgroup when
4952  * it goes down to 0.
4953  *
4954  * Removal of cgroup itself succeeds regardless of refs from swap.
4955  */
4956
4957 static void __mem_cgroup_free(struct mem_cgroup *mem)
4958 {
4959         int node;
4960
4961         mem_cgroup_remove_from_trees(mem);
4962         free_css_id(&mem_cgroup_subsys, &mem->css);
4963
4964         for_each_node_state(node, N_POSSIBLE)
4965                 free_mem_cgroup_per_zone_info(mem, node);
4966
4967         free_percpu(mem->stat);
4968         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4969                 kfree(mem);
4970         else
4971                 vfree(mem);
4972 }
4973
4974 static void mem_cgroup_get(struct mem_cgroup *mem)
4975 {
4976         atomic_inc(&mem->refcnt);
4977 }
4978
4979 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4980 {
4981         if (atomic_sub_and_test(count, &mem->refcnt)) {
4982                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4983                 __mem_cgroup_free(mem);
4984                 if (parent)
4985                         mem_cgroup_put(parent);
4986         }
4987 }
4988
4989 static void mem_cgroup_put(struct mem_cgroup *mem)
4990 {
4991         __mem_cgroup_put(mem, 1);
4992 }
4993
4994 /*
4995  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4996  */
4997 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4998 {
4999         if (!mem->res.parent)
5000                 return NULL;
5001         return mem_cgroup_from_res_counter(mem->res.parent, res);
5002 }
5003
5004 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5005 static void __init enable_swap_cgroup(void)
5006 {
5007         if (!mem_cgroup_disabled() && really_do_swap_account)
5008                 do_swap_account = 1;
5009 }
5010 #else
5011 static void __init enable_swap_cgroup(void)
5012 {
5013 }
5014 #endif
5015
5016 static int mem_cgroup_soft_limit_tree_init(void)
5017 {
5018         struct mem_cgroup_tree_per_node *rtpn;
5019         struct mem_cgroup_tree_per_zone *rtpz;
5020         int tmp, node, zone;
5021
5022         for_each_node_state(node, N_POSSIBLE) {
5023                 tmp = node;
5024                 if (!node_state(node, N_NORMAL_MEMORY))
5025                         tmp = -1;
5026                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5027                 if (!rtpn)
5028                         return 1;
5029
5030                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5031
5032                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5033                         rtpz = &rtpn->rb_tree_per_zone[zone];
5034                         rtpz->rb_root = RB_ROOT;
5035                         spin_lock_init(&rtpz->lock);
5036                 }
5037         }
5038         return 0;
5039 }
5040
5041 static struct cgroup_subsys_state * __ref
5042 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5043 {
5044         struct mem_cgroup *mem, *parent;
5045         long error = -ENOMEM;
5046         int node;
5047
5048         mem = mem_cgroup_alloc();
5049         if (!mem)
5050                 return ERR_PTR(error);
5051
5052         for_each_node_state(node, N_POSSIBLE)
5053                 if (alloc_mem_cgroup_per_zone_info(mem, node))
5054                         goto free_out;
5055
5056         /* root ? */
5057         if (cont->parent == NULL) {
5058                 int cpu;
5059                 enable_swap_cgroup();
5060                 parent = NULL;
5061                 root_mem_cgroup = mem;
5062                 if (mem_cgroup_soft_limit_tree_init())
5063                         goto free_out;
5064                 for_each_possible_cpu(cpu) {
5065                         struct memcg_stock_pcp *stock =
5066                                                 &per_cpu(memcg_stock, cpu);
5067                         INIT_WORK(&stock->work, drain_local_stock);
5068                 }
5069                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5070         } else {
5071                 parent = mem_cgroup_from_cont(cont->parent);
5072                 mem->use_hierarchy = parent->use_hierarchy;
5073                 mem->oom_kill_disable = parent->oom_kill_disable;
5074         }
5075
5076         if (parent && parent->use_hierarchy) {
5077                 res_counter_init(&mem->res, &parent->res);
5078                 res_counter_init(&mem->memsw, &parent->memsw);
5079                 /*
5080                  * We increment refcnt of the parent to ensure that we can
5081                  * safely access it on res_counter_charge/uncharge.
5082                  * This refcnt will be decremented when freeing this
5083                  * mem_cgroup(see mem_cgroup_put).
5084                  */
5085                 mem_cgroup_get(parent);
5086         } else {
5087                 res_counter_init(&mem->res, NULL);
5088                 res_counter_init(&mem->memsw, NULL);
5089         }
5090         mem->last_scanned_child = 0;
5091         mem->last_scanned_node = MAX_NUMNODES;
5092         INIT_LIST_HEAD(&mem->oom_notify);
5093
5094         if (parent)
5095                 mem->swappiness = mem_cgroup_swappiness(parent);
5096         atomic_set(&mem->refcnt, 1);
5097         mem->move_charge_at_immigrate = 0;
5098         mutex_init(&mem->thresholds_lock);
5099         spin_lock_init(&mem->scanstat.lock);
5100         return &mem->css;
5101 free_out:
5102         __mem_cgroup_free(mem);
5103         root_mem_cgroup = NULL;
5104         return ERR_PTR(error);
5105 }
5106
5107 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5108                                         struct cgroup *cont)
5109 {
5110         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5111
5112         return mem_cgroup_force_empty(mem, false);
5113 }
5114
5115 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5116                                 struct cgroup *cont)
5117 {
5118         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5119
5120         mem_cgroup_put(mem);
5121 }
5122
5123 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5124                                 struct cgroup *cont)
5125 {
5126         int ret;
5127
5128         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5129                                 ARRAY_SIZE(mem_cgroup_files));
5130
5131         if (!ret)
5132                 ret = register_memsw_files(cont, ss);
5133         return ret;
5134 }
5135
5136 #ifdef CONFIG_MMU
5137 /* Handlers for move charge at task migration. */
5138 #define PRECHARGE_COUNT_AT_ONCE 256
5139 static int mem_cgroup_do_precharge(unsigned long count)
5140 {
5141         int ret = 0;
5142         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5143         struct mem_cgroup *mem = mc.to;
5144
5145         if (mem_cgroup_is_root(mem)) {
5146                 mc.precharge += count;
5147                 /* we don't need css_get for root */
5148                 return ret;
5149         }
5150         /* try to charge at once */
5151         if (count > 1) {
5152                 struct res_counter *dummy;
5153                 /*
5154                  * "mem" cannot be under rmdir() because we've already checked
5155                  * by cgroup_lock_live_cgroup() that it is not removed and we
5156                  * are still under the same cgroup_mutex. So we can postpone
5157                  * css_get().
5158                  */
5159                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5160                         goto one_by_one;
5161                 if (do_swap_account && res_counter_charge(&mem->memsw,
5162                                                 PAGE_SIZE * count, &dummy)) {
5163                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5164                         goto one_by_one;
5165                 }
5166                 mc.precharge += count;
5167                 return ret;
5168         }
5169 one_by_one:
5170         /* fall back to one by one charge */
5171         while (count--) {
5172                 if (signal_pending(current)) {
5173                         ret = -EINTR;
5174                         break;
5175                 }
5176                 if (!batch_count--) {
5177                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5178                         cond_resched();
5179                 }
5180                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5181                 if (ret || !mem)
5182                         /* mem_cgroup_clear_mc() will do uncharge later */
5183                         return -ENOMEM;
5184                 mc.precharge++;
5185         }
5186         return ret;
5187 }
5188
5189 /**
5190  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5191  * @vma: the vma the pte to be checked belongs
5192  * @addr: the address corresponding to the pte to be checked
5193  * @ptent: the pte to be checked
5194  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5195  *
5196  * Returns
5197  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5198  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5199  *     move charge. if @target is not NULL, the page is stored in target->page
5200  *     with extra refcnt got(Callers should handle it).
5201  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5202  *     target for charge migration. if @target is not NULL, the entry is stored
5203  *     in target->ent.
5204  *
5205  * Called with pte lock held.
5206  */
5207 union mc_target {
5208         struct page     *page;
5209         swp_entry_t     ent;
5210 };
5211
5212 enum mc_target_type {
5213         MC_TARGET_NONE, /* not used */
5214         MC_TARGET_PAGE,
5215         MC_TARGET_SWAP,
5216 };
5217
5218 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5219                                                 unsigned long addr, pte_t ptent)
5220 {
5221         struct page *page = vm_normal_page(vma, addr, ptent);
5222
5223         if (!page || !page_mapped(page))
5224                 return NULL;
5225         if (PageAnon(page)) {
5226                 /* we don't move shared anon */
5227                 if (!move_anon() || page_mapcount(page) > 2)
5228                         return NULL;
5229         } else if (!move_file())
5230                 /* we ignore mapcount for file pages */
5231                 return NULL;
5232         if (!get_page_unless_zero(page))
5233                 return NULL;
5234
5235         return page;
5236 }
5237
5238 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5239                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5240 {
5241         int usage_count;
5242         struct page *page = NULL;
5243         swp_entry_t ent = pte_to_swp_entry(ptent);
5244
5245         if (!move_anon() || non_swap_entry(ent))
5246                 return NULL;
5247         usage_count = mem_cgroup_count_swap_user(ent, &page);
5248         if (usage_count > 1) { /* we don't move shared anon */
5249                 if (page)
5250                         put_page(page);
5251                 return NULL;
5252         }
5253         if (do_swap_account)
5254                 entry->val = ent.val;
5255
5256         return page;
5257 }
5258
5259 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5260                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5261 {
5262         struct page *page = NULL;
5263         struct inode *inode;
5264         struct address_space *mapping;
5265         pgoff_t pgoff;
5266
5267         if (!vma->vm_file) /* anonymous vma */
5268                 return NULL;
5269         if (!move_file())
5270                 return NULL;
5271
5272         inode = vma->vm_file->f_path.dentry->d_inode;
5273         mapping = vma->vm_file->f_mapping;
5274         if (pte_none(ptent))
5275                 pgoff = linear_page_index(vma, addr);
5276         else /* pte_file(ptent) is true */
5277                 pgoff = pte_to_pgoff(ptent);
5278
5279         /* page is moved even if it's not RSS of this task(page-faulted). */
5280         page = find_get_page(mapping, pgoff);
5281
5282 #ifdef CONFIG_SWAP
5283         /* shmem/tmpfs may report page out on swap: account for that too. */
5284         if (radix_tree_exceptional_entry(page)) {
5285                 swp_entry_t swap = radix_to_swp_entry(page);
5286                 if (do_swap_account)
5287                         *entry = swap;
5288                 page = find_get_page(&swapper_space, swap.val);
5289         }
5290 #endif
5291         return page;
5292 }
5293
5294 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5295                 unsigned long addr, pte_t ptent, union mc_target *target)
5296 {
5297         struct page *page = NULL;
5298         struct page_cgroup *pc;
5299         int ret = 0;
5300         swp_entry_t ent = { .val = 0 };
5301
5302         if (pte_present(ptent))
5303                 page = mc_handle_present_pte(vma, addr, ptent);
5304         else if (is_swap_pte(ptent))
5305                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5306         else if (pte_none(ptent) || pte_file(ptent))
5307                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5308
5309         if (!page && !ent.val)
5310                 return 0;
5311         if (page) {
5312                 pc = lookup_page_cgroup(page);
5313                 /*
5314                  * Do only loose check w/o page_cgroup lock.
5315                  * mem_cgroup_move_account() checks the pc is valid or not under
5316                  * the lock.
5317                  */
5318                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5319                         ret = MC_TARGET_PAGE;
5320                         if (target)
5321                                 target->page = page;
5322                 }
5323                 if (!ret || !target)
5324                         put_page(page);
5325         }
5326         /* There is a swap entry and a page doesn't exist or isn't charged */
5327         if (ent.val && !ret &&
5328                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5329                 ret = MC_TARGET_SWAP;
5330                 if (target)
5331                         target->ent = ent;
5332         }
5333         return ret;
5334 }
5335
5336 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5337                                         unsigned long addr, unsigned long end,
5338                                         struct mm_walk *walk)
5339 {
5340         struct vm_area_struct *vma = walk->private;
5341         pte_t *pte;
5342         spinlock_t *ptl;
5343
5344         split_huge_page_pmd(walk->mm, pmd);
5345
5346         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347         for (; addr != end; pte++, addr += PAGE_SIZE)
5348                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5349                         mc.precharge++; /* increment precharge temporarily */
5350         pte_unmap_unlock(pte - 1, ptl);
5351         cond_resched();
5352
5353         return 0;
5354 }
5355
5356 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5357 {
5358         unsigned long precharge;
5359         struct vm_area_struct *vma;
5360
5361         down_read(&mm->mmap_sem);
5362         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5363                 struct mm_walk mem_cgroup_count_precharge_walk = {
5364                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5365                         .mm = mm,
5366                         .private = vma,
5367                 };
5368                 if (is_vm_hugetlb_page(vma))
5369                         continue;
5370                 walk_page_range(vma->vm_start, vma->vm_end,
5371                                         &mem_cgroup_count_precharge_walk);
5372         }
5373         up_read(&mm->mmap_sem);
5374
5375         precharge = mc.precharge;
5376         mc.precharge = 0;
5377
5378         return precharge;
5379 }
5380
5381 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5382 {
5383         unsigned long precharge = mem_cgroup_count_precharge(mm);
5384
5385         VM_BUG_ON(mc.moving_task);
5386         mc.moving_task = current;
5387         return mem_cgroup_do_precharge(precharge);
5388 }
5389
5390 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5391 static void __mem_cgroup_clear_mc(void)
5392 {
5393         struct mem_cgroup *from = mc.from;
5394         struct mem_cgroup *to = mc.to;
5395
5396         /* we must uncharge all the leftover precharges from mc.to */
5397         if (mc.precharge) {
5398                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5399                 mc.precharge = 0;
5400         }
5401         /*
5402          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5403          * we must uncharge here.
5404          */
5405         if (mc.moved_charge) {
5406                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5407                 mc.moved_charge = 0;
5408         }
5409         /* we must fixup refcnts and charges */
5410         if (mc.moved_swap) {
5411                 /* uncharge swap account from the old cgroup */
5412                 if (!mem_cgroup_is_root(mc.from))
5413                         res_counter_uncharge(&mc.from->memsw,
5414                                                 PAGE_SIZE * mc.moved_swap);
5415                 __mem_cgroup_put(mc.from, mc.moved_swap);
5416
5417                 if (!mem_cgroup_is_root(mc.to)) {
5418                         /*
5419                          * we charged both to->res and to->memsw, so we should
5420                          * uncharge to->res.
5421                          */
5422                         res_counter_uncharge(&mc.to->res,
5423                                                 PAGE_SIZE * mc.moved_swap);
5424                 }
5425                 /* we've already done mem_cgroup_get(mc.to) */
5426                 mc.moved_swap = 0;
5427         }
5428         memcg_oom_recover(from);
5429         memcg_oom_recover(to);
5430         wake_up_all(&mc.waitq);
5431 }
5432
5433 static void mem_cgroup_clear_mc(void)
5434 {
5435         struct mem_cgroup *from = mc.from;
5436
5437         /*
5438          * we must clear moving_task before waking up waiters at the end of
5439          * task migration.
5440          */
5441         mc.moving_task = NULL;
5442         __mem_cgroup_clear_mc();
5443         spin_lock(&mc.lock);
5444         mc.from = NULL;
5445         mc.to = NULL;
5446         spin_unlock(&mc.lock);
5447         mem_cgroup_end_move(from);
5448 }
5449
5450 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5451                                 struct cgroup *cgroup,
5452                                 struct task_struct *p)
5453 {
5454         int ret = 0;
5455         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5456
5457         if (mem->move_charge_at_immigrate) {
5458                 struct mm_struct *mm;
5459                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5460
5461                 VM_BUG_ON(from == mem);
5462
5463                 mm = get_task_mm(p);
5464                 if (!mm)
5465                         return 0;
5466                 /* We move charges only when we move a owner of the mm */
5467                 if (mm->owner == p) {
5468                         VM_BUG_ON(mc.from);
5469                         VM_BUG_ON(mc.to);
5470                         VM_BUG_ON(mc.precharge);
5471                         VM_BUG_ON(mc.moved_charge);
5472                         VM_BUG_ON(mc.moved_swap);
5473                         mem_cgroup_start_move(from);
5474                         spin_lock(&mc.lock);
5475                         mc.from = from;
5476                         mc.to = mem;
5477                         spin_unlock(&mc.lock);
5478                         /* We set mc.moving_task later */
5479
5480                         ret = mem_cgroup_precharge_mc(mm);
5481                         if (ret)
5482                                 mem_cgroup_clear_mc();
5483                 }
5484                 mmput(mm);
5485         }
5486         return ret;
5487 }
5488
5489 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5490                                 struct cgroup *cgroup,
5491                                 struct task_struct *p)
5492 {
5493         mem_cgroup_clear_mc();
5494 }
5495
5496 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5497                                 unsigned long addr, unsigned long end,
5498                                 struct mm_walk *walk)
5499 {
5500         int ret = 0;
5501         struct vm_area_struct *vma = walk->private;
5502         pte_t *pte;
5503         spinlock_t *ptl;
5504
5505         split_huge_page_pmd(walk->mm, pmd);
5506 retry:
5507         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5508         for (; addr != end; addr += PAGE_SIZE) {
5509                 pte_t ptent = *(pte++);
5510                 union mc_target target;
5511                 int type;
5512                 struct page *page;
5513                 struct page_cgroup *pc;
5514                 swp_entry_t ent;
5515
5516                 if (!mc.precharge)
5517                         break;
5518
5519                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5520                 switch (type) {
5521                 case MC_TARGET_PAGE:
5522                         page = target.page;
5523                         if (isolate_lru_page(page))
5524                                 goto put;
5525                         pc = lookup_page_cgroup(page);
5526                         if (!mem_cgroup_move_account(page, 1, pc,
5527                                                      mc.from, mc.to, false)) {
5528                                 mc.precharge--;
5529                                 /* we uncharge from mc.from later. */
5530                                 mc.moved_charge++;
5531                         }
5532                         putback_lru_page(page);
5533 put:                    /* is_target_pte_for_mc() gets the page */
5534                         put_page(page);
5535                         break;
5536                 case MC_TARGET_SWAP:
5537                         ent = target.ent;
5538                         if (!mem_cgroup_move_swap_account(ent,
5539                                                 mc.from, mc.to, false)) {
5540                                 mc.precharge--;
5541                                 /* we fixup refcnts and charges later. */
5542                                 mc.moved_swap++;
5543                         }
5544                         break;
5545                 default:
5546                         break;
5547                 }
5548         }
5549         pte_unmap_unlock(pte - 1, ptl);
5550         cond_resched();
5551
5552         if (addr != end) {
5553                 /*
5554                  * We have consumed all precharges we got in can_attach().
5555                  * We try charge one by one, but don't do any additional
5556                  * charges to mc.to if we have failed in charge once in attach()
5557                  * phase.
5558                  */
5559                 ret = mem_cgroup_do_precharge(1);
5560                 if (!ret)
5561                         goto retry;
5562         }
5563
5564         return ret;
5565 }
5566
5567 static void mem_cgroup_move_charge(struct mm_struct *mm)
5568 {
5569         struct vm_area_struct *vma;
5570
5571         lru_add_drain_all();
5572 retry:
5573         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5574                 /*
5575                  * Someone who are holding the mmap_sem might be waiting in
5576                  * waitq. So we cancel all extra charges, wake up all waiters,
5577                  * and retry. Because we cancel precharges, we might not be able
5578                  * to move enough charges, but moving charge is a best-effort
5579                  * feature anyway, so it wouldn't be a big problem.
5580                  */
5581                 __mem_cgroup_clear_mc();
5582                 cond_resched();
5583                 goto retry;
5584         }
5585         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5586                 int ret;
5587                 struct mm_walk mem_cgroup_move_charge_walk = {
5588                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5589                         .mm = mm,
5590                         .private = vma,
5591                 };
5592                 if (is_vm_hugetlb_page(vma))
5593                         continue;
5594                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5595                                                 &mem_cgroup_move_charge_walk);
5596                 if (ret)
5597                         /*
5598                          * means we have consumed all precharges and failed in
5599                          * doing additional charge. Just abandon here.
5600                          */
5601                         break;
5602         }
5603         up_read(&mm->mmap_sem);
5604 }
5605
5606 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5607                                 struct cgroup *cont,
5608                                 struct cgroup *old_cont,
5609                                 struct task_struct *p)
5610 {
5611         struct mm_struct *mm = get_task_mm(p);
5612
5613         if (mm) {
5614                 if (mc.to)
5615                         mem_cgroup_move_charge(mm);
5616                 put_swap_token(mm);
5617                 mmput(mm);
5618         }
5619         if (mc.to)
5620                 mem_cgroup_clear_mc();
5621 }
5622 #else   /* !CONFIG_MMU */
5623 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5624                                 struct cgroup *cgroup,
5625                                 struct task_struct *p)
5626 {
5627         return 0;
5628 }
5629 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5630                                 struct cgroup *cgroup,
5631                                 struct task_struct *p)
5632 {
5633 }
5634 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5635                                 struct cgroup *cont,
5636                                 struct cgroup *old_cont,
5637                                 struct task_struct *p)
5638 {
5639 }
5640 #endif
5641
5642 struct cgroup_subsys mem_cgroup_subsys = {
5643         .name = "memory",
5644         .subsys_id = mem_cgroup_subsys_id,
5645         .create = mem_cgroup_create,
5646         .pre_destroy = mem_cgroup_pre_destroy,
5647         .destroy = mem_cgroup_destroy,
5648         .populate = mem_cgroup_populate,
5649         .can_attach = mem_cgroup_can_attach,
5650         .cancel_attach = mem_cgroup_cancel_attach,
5651         .attach = mem_cgroup_move_task,
5652         .early_init = 0,
5653         .use_id = 1,
5654 };
5655
5656 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5657 static int __init enable_swap_account(char *s)
5658 {
5659         /* consider enabled if no parameter or 1 is given */
5660         if (!strcmp(s, "1"))
5661                 really_do_swap_account = 1;
5662         else if (!strcmp(s, "0"))
5663                 really_do_swap_account = 0;
5664         return 1;
5665 }
5666 __setup("swapaccount=", enable_swap_account);
5667
5668 #endif