]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
swap: add a simple detector for inappropriate swapin readahead
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  *
40  * 2012 - NUMA placement page faults (Andrea Arcangeli, Peter Zijlstra)
41  */
42
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/hugetlb.h>
46 #include <linux/mman.h>
47 #include <linux/swap.h>
48 #include <linux/highmem.h>
49 #include <linux/pagemap.h>
50 #include <linux/ksm.h>
51 #include <linux/rmap.h>
52 #include <linux/export.h>
53 #include <linux/delayacct.h>
54 #include <linux/init.h>
55 #include <linux/writeback.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/kallsyms.h>
59 #include <linux/swapops.h>
60 #include <linux/elf.h>
61 #include <linux/gfp.h>
62 #include <linux/migrate.h>
63
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
70
71 #include "internal.h"
72
73 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA config, growing page-frame for last_nid.
75 #endif
76
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
81
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
85
86 unsigned long num_physpages;
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(num_physpages);
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 /*
123  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124  */
125 static int __init init_zero_pfn(void)
126 {
127         zero_pfn = page_to_pfn(ZERO_PAGE(0));
128         return 0;
129 }
130 core_initcall(init_zero_pfn);
131
132
133 #if defined(SPLIT_RSS_COUNTING)
134
135 void sync_mm_rss(struct mm_struct *mm)
136 {
137         int i;
138
139         for (i = 0; i < NR_MM_COUNTERS; i++) {
140                 if (current->rss_stat.count[i]) {
141                         add_mm_counter(mm, i, current->rss_stat.count[i]);
142                         current->rss_stat.count[i] = 0;
143                 }
144         }
145         current->rss_stat.events = 0;
146 }
147
148 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 {
150         struct task_struct *task = current;
151
152         if (likely(task->mm == mm))
153                 task->rss_stat.count[member] += val;
154         else
155                 add_mm_counter(mm, member, val);
156 }
157 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
158 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159
160 /* sync counter once per 64 page faults */
161 #define TASK_RSS_EVENTS_THRESH  (64)
162 static void check_sync_rss_stat(struct task_struct *task)
163 {
164         if (unlikely(task != current))
165                 return;
166         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
167                 sync_mm_rss(task->mm);
168 }
169 #else /* SPLIT_RSS_COUNTING */
170
171 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
172 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173
174 static void check_sync_rss_stat(struct task_struct *task)
175 {
176 }
177
178 #endif /* SPLIT_RSS_COUNTING */
179
180 #ifdef HAVE_GENERIC_MMU_GATHER
181
182 static int tlb_next_batch(struct mmu_gather *tlb)
183 {
184         struct mmu_gather_batch *batch;
185
186         batch = tlb->active;
187         if (batch->next) {
188                 tlb->active = batch->next;
189                 return 1;
190         }
191
192         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193         if (!batch)
194                 return 0;
195
196         batch->next = NULL;
197         batch->nr   = 0;
198         batch->max  = MAX_GATHER_BATCH;
199
200         tlb->active->next = batch;
201         tlb->active = batch;
202
203         return 1;
204 }
205
206 /* tlb_gather_mmu
207  *      Called to initialize an (on-stack) mmu_gather structure for page-table
208  *      tear-down from @mm. The @fullmm argument is used when @mm is without
209  *      users and we're going to destroy the full address space (exit/execve).
210  */
211 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
212 {
213         tlb->mm = mm;
214
215         tlb->fullmm     = fullmm;
216         tlb->start      = -1UL;
217         tlb->end        = 0;
218         tlb->need_flush = 0;
219         tlb->fast_mode  = (num_possible_cpus() == 1);
220         tlb->local.next = NULL;
221         tlb->local.nr   = 0;
222         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
223         tlb->active     = &tlb->local;
224
225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
226         tlb->batch = NULL;
227 #endif
228 }
229
230 void tlb_flush_mmu(struct mmu_gather *tlb)
231 {
232         struct mmu_gather_batch *batch;
233
234         if (!tlb->need_flush)
235                 return;
236         tlb->need_flush = 0;
237         tlb_flush(tlb);
238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239         tlb_table_flush(tlb);
240 #endif
241
242         if (tlb_fast_mode(tlb))
243                 return;
244
245         for (batch = &tlb->local; batch; batch = batch->next) {
246                 free_pages_and_swap_cache(batch->pages, batch->nr);
247                 batch->nr = 0;
248         }
249         tlb->active = &tlb->local;
250 }
251
252 /* tlb_finish_mmu
253  *      Called at the end of the shootdown operation to free up any resources
254  *      that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258         struct mmu_gather_batch *batch, *next;
259
260         tlb->start = start;
261         tlb->end   = end;
262         tlb_flush_mmu(tlb);
263
264         /* keep the page table cache within bounds */
265         check_pgt_cache();
266
267         for (batch = tlb->local.next; batch; batch = next) {
268                 next = batch->next;
269                 free_pages((unsigned long)batch, 0);
270         }
271         tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *      handling the additional races in SMP caused by other CPUs caching valid
277  *      mappings in their TLBs. Returns the number of free page slots left.
278  *      When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282         struct mmu_gather_batch *batch;
283
284         VM_BUG_ON(!tlb->need_flush);
285
286         if (tlb_fast_mode(tlb)) {
287                 free_page_and_swap_cache(page);
288                 return 1; /* avoid calling tlb_flush_mmu() */
289         }
290
291         batch = tlb->active;
292         batch->pages[batch->nr++] = page;
293         if (batch->nr == batch->max) {
294                 if (!tlb_next_batch(tlb))
295                         return 0;
296                 batch = tlb->active;
297         }
298         VM_BUG_ON(batch->nr > batch->max);
299
300         return batch->max - batch->nr;
301 }
302
303 #endif /* HAVE_GENERIC_MMU_GATHER */
304
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
306
307 /*
308  * See the comment near struct mmu_table_batch.
309  */
310
311 static void tlb_remove_table_smp_sync(void *arg)
312 {
313         /* Simply deliver the interrupt */
314 }
315
316 static void tlb_remove_table_one(void *table)
317 {
318         /*
319          * This isn't an RCU grace period and hence the page-tables cannot be
320          * assumed to be actually RCU-freed.
321          *
322          * It is however sufficient for software page-table walkers that rely on
323          * IRQ disabling. See the comment near struct mmu_table_batch.
324          */
325         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326         __tlb_remove_table(table);
327 }
328
329 static void tlb_remove_table_rcu(struct rcu_head *head)
330 {
331         struct mmu_table_batch *batch;
332         int i;
333
334         batch = container_of(head, struct mmu_table_batch, rcu);
335
336         for (i = 0; i < batch->nr; i++)
337                 __tlb_remove_table(batch->tables[i]);
338
339         free_page((unsigned long)batch);
340 }
341
342 void tlb_table_flush(struct mmu_gather *tlb)
343 {
344         struct mmu_table_batch **batch = &tlb->batch;
345
346         if (*batch) {
347                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348                 *batch = NULL;
349         }
350 }
351
352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
353 {
354         struct mmu_table_batch **batch = &tlb->batch;
355
356         tlb->need_flush = 1;
357
358         /*
359          * When there's less then two users of this mm there cannot be a
360          * concurrent page-table walk.
361          */
362         if (atomic_read(&tlb->mm->mm_users) < 2) {
363                 __tlb_remove_table(table);
364                 return;
365         }
366
367         if (*batch == NULL) {
368                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369                 if (*batch == NULL) {
370                         tlb_remove_table_one(table);
371                         return;
372                 }
373                 (*batch)->nr = 0;
374         }
375         (*batch)->tables[(*batch)->nr++] = table;
376         if ((*batch)->nr == MAX_TABLE_BATCH)
377                 tlb_table_flush(tlb);
378 }
379
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
381
382 /*
383  * If a p?d_bad entry is found while walking page tables, report
384  * the error, before resetting entry to p?d_none.  Usually (but
385  * very seldom) called out from the p?d_none_or_clear_bad macros.
386  */
387
388 void pgd_clear_bad(pgd_t *pgd)
389 {
390         pgd_ERROR(*pgd);
391         pgd_clear(pgd);
392 }
393
394 void pud_clear_bad(pud_t *pud)
395 {
396         pud_ERROR(*pud);
397         pud_clear(pud);
398 }
399
400 void pmd_clear_bad(pmd_t *pmd)
401 {
402         pmd_ERROR(*pmd);
403         pmd_clear(pmd);
404 }
405
406 /*
407  * Note: this doesn't free the actual pages themselves. That
408  * has been handled earlier when unmapping all the memory regions.
409  */
410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411                            unsigned long addr)
412 {
413         pgtable_t token = pmd_pgtable(*pmd);
414         pmd_clear(pmd);
415         pte_free_tlb(tlb, token, addr);
416         tlb->mm->nr_ptes--;
417 }
418
419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420                                 unsigned long addr, unsigned long end,
421                                 unsigned long floor, unsigned long ceiling)
422 {
423         pmd_t *pmd;
424         unsigned long next;
425         unsigned long start;
426
427         start = addr;
428         pmd = pmd_offset(pud, addr);
429         do {
430                 next = pmd_addr_end(addr, end);
431                 if (pmd_none_or_clear_bad(pmd))
432                         continue;
433                 free_pte_range(tlb, pmd, addr);
434         } while (pmd++, addr = next, addr != end);
435
436         start &= PUD_MASK;
437         if (start < floor)
438                 return;
439         if (ceiling) {
440                 ceiling &= PUD_MASK;
441                 if (!ceiling)
442                         return;
443         }
444         if (end - 1 > ceiling - 1)
445                 return;
446
447         pmd = pmd_offset(pud, start);
448         pud_clear(pud);
449         pmd_free_tlb(tlb, pmd, start);
450 }
451
452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453                                 unsigned long addr, unsigned long end,
454                                 unsigned long floor, unsigned long ceiling)
455 {
456         pud_t *pud;
457         unsigned long next;
458         unsigned long start;
459
460         start = addr;
461         pud = pud_offset(pgd, addr);
462         do {
463                 next = pud_addr_end(addr, end);
464                 if (pud_none_or_clear_bad(pud))
465                         continue;
466                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467         } while (pud++, addr = next, addr != end);
468
469         start &= PGDIR_MASK;
470         if (start < floor)
471                 return;
472         if (ceiling) {
473                 ceiling &= PGDIR_MASK;
474                 if (!ceiling)
475                         return;
476         }
477         if (end - 1 > ceiling - 1)
478                 return;
479
480         pud = pud_offset(pgd, start);
481         pgd_clear(pgd);
482         pud_free_tlb(tlb, pud, start);
483 }
484
485 /*
486  * This function frees user-level page tables of a process.
487  *
488  * Must be called with pagetable lock held.
489  */
490 void free_pgd_range(struct mmu_gather *tlb,
491                         unsigned long addr, unsigned long end,
492                         unsigned long floor, unsigned long ceiling)
493 {
494         pgd_t *pgd;
495         unsigned long next;
496
497         /*
498          * The next few lines have given us lots of grief...
499          *
500          * Why are we testing PMD* at this top level?  Because often
501          * there will be no work to do at all, and we'd prefer not to
502          * go all the way down to the bottom just to discover that.
503          *
504          * Why all these "- 1"s?  Because 0 represents both the bottom
505          * of the address space and the top of it (using -1 for the
506          * top wouldn't help much: the masks would do the wrong thing).
507          * The rule is that addr 0 and floor 0 refer to the bottom of
508          * the address space, but end 0 and ceiling 0 refer to the top
509          * Comparisons need to use "end - 1" and "ceiling - 1" (though
510          * that end 0 case should be mythical).
511          *
512          * Wherever addr is brought up or ceiling brought down, we must
513          * be careful to reject "the opposite 0" before it confuses the
514          * subsequent tests.  But what about where end is brought down
515          * by PMD_SIZE below? no, end can't go down to 0 there.
516          *
517          * Whereas we round start (addr) and ceiling down, by different
518          * masks at different levels, in order to test whether a table
519          * now has no other vmas using it, so can be freed, we don't
520          * bother to round floor or end up - the tests don't need that.
521          */
522
523         addr &= PMD_MASK;
524         if (addr < floor) {
525                 addr += PMD_SIZE;
526                 if (!addr)
527                         return;
528         }
529         if (ceiling) {
530                 ceiling &= PMD_MASK;
531                 if (!ceiling)
532                         return;
533         }
534         if (end - 1 > ceiling - 1)
535                 end -= PMD_SIZE;
536         if (addr > end - 1)
537                 return;
538
539         pgd = pgd_offset(tlb->mm, addr);
540         do {
541                 next = pgd_addr_end(addr, end);
542                 if (pgd_none_or_clear_bad(pgd))
543                         continue;
544                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545         } while (pgd++, addr = next, addr != end);
546 }
547
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549                 unsigned long floor, unsigned long ceiling)
550 {
551         while (vma) {
552                 struct vm_area_struct *next = vma->vm_next;
553                 unsigned long addr = vma->vm_start;
554
555                 /*
556                  * Hide vma from rmap and truncate_pagecache before freeing
557                  * pgtables
558                  */
559                 unlink_anon_vmas(vma);
560                 unlink_file_vma(vma);
561
562                 if (is_vm_hugetlb_page(vma)) {
563                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564                                 floor, next? next->vm_start: ceiling);
565                 } else {
566                         /*
567                          * Optimization: gather nearby vmas into one call down
568                          */
569                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570                                && !is_vm_hugetlb_page(next)) {
571                                 vma = next;
572                                 next = vma->vm_next;
573                                 unlink_anon_vmas(vma);
574                                 unlink_file_vma(vma);
575                         }
576                         free_pgd_range(tlb, addr, vma->vm_end,
577                                 floor, next? next->vm_start: ceiling);
578                 }
579                 vma = next;
580         }
581 }
582
583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584                 pmd_t *pmd, unsigned long address)
585 {
586         pgtable_t new = pte_alloc_one(mm, address);
587         int wait_split_huge_page;
588         if (!new)
589                 return -ENOMEM;
590
591         /*
592          * Ensure all pte setup (eg. pte page lock and page clearing) are
593          * visible before the pte is made visible to other CPUs by being
594          * put into page tables.
595          *
596          * The other side of the story is the pointer chasing in the page
597          * table walking code (when walking the page table without locking;
598          * ie. most of the time). Fortunately, these data accesses consist
599          * of a chain of data-dependent loads, meaning most CPUs (alpha
600          * being the notable exception) will already guarantee loads are
601          * seen in-order. See the alpha page table accessors for the
602          * smp_read_barrier_depends() barriers in page table walking code.
603          */
604         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
605
606         spin_lock(&mm->page_table_lock);
607         wait_split_huge_page = 0;
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 mm->nr_ptes++;
610                 pmd_populate(mm, pmd, new);
611                 new = NULL;
612         } else if (unlikely(pmd_trans_splitting(*pmd)))
613                 wait_split_huge_page = 1;
614         spin_unlock(&mm->page_table_lock);
615         if (new)
616                 pte_free(mm, new);
617         if (wait_split_huge_page)
618                 wait_split_huge_page(vma->anon_vma, pmd);
619         return 0;
620 }
621
622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
623 {
624         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625         if (!new)
626                 return -ENOMEM;
627
628         smp_wmb(); /* See comment in __pte_alloc */
629
630         spin_lock(&init_mm.page_table_lock);
631         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
632                 pmd_populate_kernel(&init_mm, pmd, new);
633                 new = NULL;
634         } else
635                 VM_BUG_ON(pmd_trans_splitting(*pmd));
636         spin_unlock(&init_mm.page_table_lock);
637         if (new)
638                 pte_free_kernel(&init_mm, new);
639         return 0;
640 }
641
642 static inline void init_rss_vec(int *rss)
643 {
644         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
645 }
646
647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
648 {
649         int i;
650
651         if (current->mm == mm)
652                 sync_mm_rss(mm);
653         for (i = 0; i < NR_MM_COUNTERS; i++)
654                 if (rss[i])
655                         add_mm_counter(mm, i, rss[i]);
656 }
657
658 /*
659  * This function is called to print an error when a bad pte
660  * is found. For example, we might have a PFN-mapped pte in
661  * a region that doesn't allow it.
662  *
663  * The calling function must still handle the error.
664  */
665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666                           pte_t pte, struct page *page)
667 {
668         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669         pud_t *pud = pud_offset(pgd, addr);
670         pmd_t *pmd = pmd_offset(pud, addr);
671         struct address_space *mapping;
672         pgoff_t index;
673         static unsigned long resume;
674         static unsigned long nr_shown;
675         static unsigned long nr_unshown;
676
677         /*
678          * Allow a burst of 60 reports, then keep quiet for that minute;
679          * or allow a steady drip of one report per second.
680          */
681         if (nr_shown == 60) {
682                 if (time_before(jiffies, resume)) {
683                         nr_unshown++;
684                         return;
685                 }
686                 if (nr_unshown) {
687                         printk(KERN_ALERT
688                                 "BUG: Bad page map: %lu messages suppressed\n",
689                                 nr_unshown);
690                         nr_unshown = 0;
691                 }
692                 nr_shown = 0;
693         }
694         if (nr_shown++ == 0)
695                 resume = jiffies + 60 * HZ;
696
697         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698         index = linear_page_index(vma, addr);
699
700         printk(KERN_ALERT
701                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
702                 current->comm,
703                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
704         if (page)
705                 dump_page(page);
706         printk(KERN_ALERT
707                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
709         /*
710          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
711          */
712         if (vma->vm_ops)
713                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
714                                 (unsigned long)vma->vm_ops->fault);
715         if (vma->vm_file && vma->vm_file->f_op)
716                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
717                                 (unsigned long)vma->vm_file->f_op->mmap);
718         dump_stack();
719         add_taint(TAINT_BAD_PAGE);
720 }
721
722 static inline bool is_cow_mapping(vm_flags_t flags)
723 {
724         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
725 }
726
727 #ifndef is_zero_pfn
728 static inline int is_zero_pfn(unsigned long pfn)
729 {
730         return pfn == zero_pfn;
731 }
732 #endif
733
734 #ifndef my_zero_pfn
735 static inline unsigned long my_zero_pfn(unsigned long addr)
736 {
737         return zero_pfn;
738 }
739 #endif
740
741 /*
742  * vm_normal_page -- This function gets the "struct page" associated with a pte.
743  *
744  * "Special" mappings do not wish to be associated with a "struct page" (either
745  * it doesn't exist, or it exists but they don't want to touch it). In this
746  * case, NULL is returned here. "Normal" mappings do have a struct page.
747  *
748  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
749  * pte bit, in which case this function is trivial. Secondly, an architecture
750  * may not have a spare pte bit, which requires a more complicated scheme,
751  * described below.
752  *
753  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
754  * special mapping (even if there are underlying and valid "struct pages").
755  * COWed pages of a VM_PFNMAP are always normal.
756  *
757  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
758  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
759  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
760  * mapping will always honor the rule
761  *
762  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
763  *
764  * And for normal mappings this is false.
765  *
766  * This restricts such mappings to be a linear translation from virtual address
767  * to pfn. To get around this restriction, we allow arbitrary mappings so long
768  * as the vma is not a COW mapping; in that case, we know that all ptes are
769  * special (because none can have been COWed).
770  *
771  *
772  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
773  *
774  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
775  * page" backing, however the difference is that _all_ pages with a struct
776  * page (that is, those where pfn_valid is true) are refcounted and considered
777  * normal pages by the VM. The disadvantage is that pages are refcounted
778  * (which can be slower and simply not an option for some PFNMAP users). The
779  * advantage is that we don't have to follow the strict linearity rule of
780  * PFNMAP mappings in order to support COWable mappings.
781  *
782  */
783 #ifdef __HAVE_ARCH_PTE_SPECIAL
784 # define HAVE_PTE_SPECIAL 1
785 #else
786 # define HAVE_PTE_SPECIAL 0
787 #endif
788 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
789                                 pte_t pte)
790 {
791         unsigned long pfn = pte_pfn(pte);
792
793         if (HAVE_PTE_SPECIAL) {
794                 if (likely(!pte_special(pte)))
795                         goto check_pfn;
796                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
797                         return NULL;
798                 if (!is_zero_pfn(pfn))
799                         print_bad_pte(vma, addr, pte, NULL);
800                 return NULL;
801         }
802
803         /* !HAVE_PTE_SPECIAL case follows: */
804
805         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
806                 if (vma->vm_flags & VM_MIXEDMAP) {
807                         if (!pfn_valid(pfn))
808                                 return NULL;
809                         goto out;
810                 } else {
811                         unsigned long off;
812                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
813                         if (pfn == vma->vm_pgoff + off)
814                                 return NULL;
815                         if (!is_cow_mapping(vma->vm_flags))
816                                 return NULL;
817                 }
818         }
819
820         if (is_zero_pfn(pfn))
821                 return NULL;
822 check_pfn:
823         if (unlikely(pfn > highest_memmap_pfn)) {
824                 print_bad_pte(vma, addr, pte, NULL);
825                 return NULL;
826         }
827
828         /*
829          * NOTE! We still have PageReserved() pages in the page tables.
830          * eg. VDSO mappings can cause them to exist.
831          */
832 out:
833         return pfn_to_page(pfn);
834 }
835
836 /*
837  * copy one vm_area from one task to the other. Assumes the page tables
838  * already present in the new task to be cleared in the whole range
839  * covered by this vma.
840  */
841
842 static inline unsigned long
843 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
844                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
845                 unsigned long addr, int *rss)
846 {
847         unsigned long vm_flags = vma->vm_flags;
848         pte_t pte = *src_pte;
849         struct page *page;
850
851         /* pte contains position in swap or file, so copy. */
852         if (unlikely(!pte_present(pte))) {
853                 if (!pte_file(pte)) {
854                         swp_entry_t entry = pte_to_swp_entry(pte);
855
856                         if (swap_duplicate(entry) < 0)
857                                 return entry.val;
858
859                         /* make sure dst_mm is on swapoff's mmlist. */
860                         if (unlikely(list_empty(&dst_mm->mmlist))) {
861                                 spin_lock(&mmlist_lock);
862                                 if (list_empty(&dst_mm->mmlist))
863                                         list_add(&dst_mm->mmlist,
864                                                  &src_mm->mmlist);
865                                 spin_unlock(&mmlist_lock);
866                         }
867                         if (likely(!non_swap_entry(entry)))
868                                 rss[MM_SWAPENTS]++;
869                         else if (is_migration_entry(entry)) {
870                                 page = migration_entry_to_page(entry);
871
872                                 if (PageAnon(page))
873                                         rss[MM_ANONPAGES]++;
874                                 else
875                                         rss[MM_FILEPAGES]++;
876
877                                 if (is_write_migration_entry(entry) &&
878                                     is_cow_mapping(vm_flags)) {
879                                         /*
880                                          * COW mappings require pages in both
881                                          * parent and child to be set to read.
882                                          */
883                                         make_migration_entry_read(&entry);
884                                         pte = swp_entry_to_pte(entry);
885                                         set_pte_at(src_mm, addr, src_pte, pte);
886                                 }
887                         }
888                 }
889                 goto out_set_pte;
890         }
891
892         /*
893          * If it's a COW mapping, write protect it both
894          * in the parent and the child
895          */
896         if (is_cow_mapping(vm_flags)) {
897                 ptep_set_wrprotect(src_mm, addr, src_pte);
898                 pte = pte_wrprotect(pte);
899         }
900
901         /*
902          * If it's a shared mapping, mark it clean in
903          * the child
904          */
905         if (vm_flags & VM_SHARED)
906                 pte = pte_mkclean(pte);
907         pte = pte_mkold(pte);
908
909         page = vm_normal_page(vma, addr, pte);
910         if (page) {
911                 get_page(page);
912                 page_dup_rmap(page);
913                 if (PageAnon(page))
914                         rss[MM_ANONPAGES]++;
915                 else
916                         rss[MM_FILEPAGES]++;
917         }
918
919 out_set_pte:
920         set_pte_at(dst_mm, addr, dst_pte, pte);
921         return 0;
922 }
923
924 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
926                    unsigned long addr, unsigned long end)
927 {
928         pte_t *orig_src_pte, *orig_dst_pte;
929         pte_t *src_pte, *dst_pte;
930         spinlock_t *src_ptl, *dst_ptl;
931         int progress = 0;
932         int rss[NR_MM_COUNTERS];
933         swp_entry_t entry = (swp_entry_t){0};
934
935 again:
936         init_rss_vec(rss);
937
938         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
939         if (!dst_pte)
940                 return -ENOMEM;
941         src_pte = pte_offset_map(src_pmd, addr);
942         src_ptl = pte_lockptr(src_mm, src_pmd);
943         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
944         orig_src_pte = src_pte;
945         orig_dst_pte = dst_pte;
946         arch_enter_lazy_mmu_mode();
947
948         do {
949                 /*
950                  * We are holding two locks at this point - either of them
951                  * could generate latencies in another task on another CPU.
952                  */
953                 if (progress >= 32) {
954                         progress = 0;
955                         if (need_resched() ||
956                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
957                                 break;
958                 }
959                 if (pte_none(*src_pte)) {
960                         progress++;
961                         continue;
962                 }
963                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
964                                                         vma, addr, rss);
965                 if (entry.val)
966                         break;
967                 progress += 8;
968         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
969
970         arch_leave_lazy_mmu_mode();
971         spin_unlock(src_ptl);
972         pte_unmap(orig_src_pte);
973         add_mm_rss_vec(dst_mm, rss);
974         pte_unmap_unlock(orig_dst_pte, dst_ptl);
975         cond_resched();
976
977         if (entry.val) {
978                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
979                         return -ENOMEM;
980                 progress = 0;
981         }
982         if (addr != end)
983                 goto again;
984         return 0;
985 }
986
987 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
988                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
989                 unsigned long addr, unsigned long end)
990 {
991         pmd_t *src_pmd, *dst_pmd;
992         unsigned long next;
993
994         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
995         if (!dst_pmd)
996                 return -ENOMEM;
997         src_pmd = pmd_offset(src_pud, addr);
998         do {
999                 next = pmd_addr_end(addr, end);
1000                 if (pmd_trans_huge(*src_pmd)) {
1001                         int err;
1002                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1003                         err = copy_huge_pmd(dst_mm, src_mm,
1004                                             dst_pmd, src_pmd, addr, vma);
1005                         if (err == -ENOMEM)
1006                                 return -ENOMEM;
1007                         if (!err)
1008                                 continue;
1009                         /* fall through */
1010                 }
1011                 if (pmd_none_or_clear_bad(src_pmd))
1012                         continue;
1013                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1014                                                 vma, addr, next))
1015                         return -ENOMEM;
1016         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1017         return 0;
1018 }
1019
1020 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1022                 unsigned long addr, unsigned long end)
1023 {
1024         pud_t *src_pud, *dst_pud;
1025         unsigned long next;
1026
1027         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1028         if (!dst_pud)
1029                 return -ENOMEM;
1030         src_pud = pud_offset(src_pgd, addr);
1031         do {
1032                 next = pud_addr_end(addr, end);
1033                 if (pud_none_or_clear_bad(src_pud))
1034                         continue;
1035                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1036                                                 vma, addr, next))
1037                         return -ENOMEM;
1038         } while (dst_pud++, src_pud++, addr = next, addr != end);
1039         return 0;
1040 }
1041
1042 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1043                 struct vm_area_struct *vma)
1044 {
1045         pgd_t *src_pgd, *dst_pgd;
1046         unsigned long next;
1047         unsigned long addr = vma->vm_start;
1048         unsigned long end = vma->vm_end;
1049         unsigned long mmun_start;       /* For mmu_notifiers */
1050         unsigned long mmun_end;         /* For mmu_notifiers */
1051         bool is_cow;
1052         int ret;
1053
1054         /*
1055          * Don't copy ptes where a page fault will fill them correctly.
1056          * Fork becomes much lighter when there are big shared or private
1057          * readonly mappings. The tradeoff is that copy_page_range is more
1058          * efficient than faulting.
1059          */
1060         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1061                                VM_PFNMAP | VM_MIXEDMAP))) {
1062                 if (!vma->anon_vma)
1063                         return 0;
1064         }
1065
1066         if (is_vm_hugetlb_page(vma))
1067                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
1069         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1070                 /*
1071                  * We do not free on error cases below as remove_vma
1072                  * gets called on error from higher level routine
1073                  */
1074                 ret = track_pfn_copy(vma);
1075                 if (ret)
1076                         return ret;
1077         }
1078
1079         /*
1080          * We need to invalidate the secondary MMU mappings only when
1081          * there could be a permission downgrade on the ptes of the
1082          * parent mm. And a permission downgrade will only happen if
1083          * is_cow_mapping() returns true.
1084          */
1085         is_cow = is_cow_mapping(vma->vm_flags);
1086         mmun_start = addr;
1087         mmun_end   = end;
1088         if (is_cow)
1089                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090                                                     mmun_end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow)
1107                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1108         return ret;
1109 }
1110
1111 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1112                                 struct vm_area_struct *vma, pmd_t *pmd,
1113                                 unsigned long addr, unsigned long end,
1114                                 struct zap_details *details)
1115 {
1116         struct mm_struct *mm = tlb->mm;
1117         int force_flush = 0;
1118         int rss[NR_MM_COUNTERS];
1119         spinlock_t *ptl;
1120         pte_t *start_pte;
1121         pte_t *pte;
1122
1123 again:
1124         init_rss_vec(rss);
1125         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1126         pte = start_pte;
1127         arch_enter_lazy_mmu_mode();
1128         do {
1129                 pte_t ptent = *pte;
1130                 if (pte_none(ptent)) {
1131                         continue;
1132                 }
1133
1134                 if (pte_present(ptent)) {
1135                         struct page *page;
1136
1137                         page = vm_normal_page(vma, addr, ptent);
1138                         if (unlikely(details) && page) {
1139                                 /*
1140                                  * unmap_shared_mapping_pages() wants to
1141                                  * invalidate cache without truncating:
1142                                  * unmap shared but keep private pages.
1143                                  */
1144                                 if (details->check_mapping &&
1145                                     details->check_mapping != page->mapping)
1146                                         continue;
1147                                 /*
1148                                  * Each page->index must be checked when
1149                                  * invalidating or truncating nonlinear.
1150                                  */
1151                                 if (details->nonlinear_vma &&
1152                                     (page->index < details->first_index ||
1153                                      page->index > details->last_index))
1154                                         continue;
1155                         }
1156                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1157                                                         tlb->fullmm);
1158                         tlb_remove_tlb_entry(tlb, pte, addr);
1159                         if (unlikely(!page))
1160                                 continue;
1161                         if (unlikely(details) && details->nonlinear_vma
1162                             && linear_page_index(details->nonlinear_vma,
1163                                                 addr) != page->index)
1164                                 set_pte_at(mm, addr, pte,
1165                                            pgoff_to_pte(page->index));
1166                         if (PageAnon(page))
1167                                 rss[MM_ANONPAGES]--;
1168                         else {
1169                                 if (pte_dirty(ptent))
1170                                         set_page_dirty(page);
1171                                 if (pte_young(ptent) &&
1172                                     likely(!VM_SequentialReadHint(vma)))
1173                                         mark_page_accessed(page);
1174                                 rss[MM_FILEPAGES]--;
1175                         }
1176                         page_remove_rmap(page);
1177                         if (unlikely(page_mapcount(page) < 0))
1178                                 print_bad_pte(vma, addr, ptent, page);
1179                         force_flush = !__tlb_remove_page(tlb, page);
1180                         if (force_flush)
1181                                 break;
1182                         continue;
1183                 }
1184                 /*
1185                  * If details->check_mapping, we leave swap entries;
1186                  * if details->nonlinear_vma, we leave file entries.
1187                  */
1188                 if (unlikely(details))
1189                         continue;
1190                 if (pte_file(ptent)) {
1191                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1192                                 print_bad_pte(vma, addr, ptent, NULL);
1193                 } else {
1194                         swp_entry_t entry = pte_to_swp_entry(ptent);
1195
1196                         if (!non_swap_entry(entry))
1197                                 rss[MM_SWAPENTS]--;
1198                         else if (is_migration_entry(entry)) {
1199                                 struct page *page;
1200
1201                                 page = migration_entry_to_page(entry);
1202
1203                                 if (PageAnon(page))
1204                                         rss[MM_ANONPAGES]--;
1205                                 else
1206                                         rss[MM_FILEPAGES]--;
1207                         }
1208                         if (unlikely(!free_swap_and_cache(entry)))
1209                                 print_bad_pte(vma, addr, ptent, NULL);
1210                 }
1211                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1212         } while (pte++, addr += PAGE_SIZE, addr != end);
1213
1214         add_mm_rss_vec(mm, rss);
1215         arch_leave_lazy_mmu_mode();
1216         pte_unmap_unlock(start_pte, ptl);
1217
1218         /*
1219          * mmu_gather ran out of room to batch pages, we break out of
1220          * the PTE lock to avoid doing the potential expensive TLB invalidate
1221          * and page-free while holding it.
1222          */
1223         if (force_flush) {
1224                 force_flush = 0;
1225
1226 #ifdef HAVE_GENERIC_MMU_GATHER
1227                 tlb->start = addr;
1228                 tlb->end = end;
1229 #endif
1230                 tlb_flush_mmu(tlb);
1231                 if (addr != end)
1232                         goto again;
1233         }
1234
1235         return addr;
1236 }
1237
1238 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1239                                 struct vm_area_struct *vma, pud_t *pud,
1240                                 unsigned long addr, unsigned long end,
1241                                 struct zap_details *details)
1242 {
1243         pmd_t *pmd;
1244         unsigned long next;
1245
1246         pmd = pmd_offset(pud, addr);
1247         do {
1248                 next = pmd_addr_end(addr, end);
1249                 if (pmd_trans_huge(*pmd)) {
1250                         if (next - addr != HPAGE_PMD_SIZE) {
1251 #ifdef CONFIG_DEBUG_VM
1252                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1253                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1254                                                 __func__, addr, end,
1255                                                 vma->vm_start,
1256                                                 vma->vm_end);
1257                                         BUG();
1258                                 }
1259 #endif
1260                                 split_huge_page_pmd(vma->vm_mm, pmd);
1261                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1262                                 goto next;
1263                         /* fall through */
1264                 }
1265                 /*
1266                  * Here there can be other concurrent MADV_DONTNEED or
1267                  * trans huge page faults running, and if the pmd is
1268                  * none or trans huge it can change under us. This is
1269                  * because MADV_DONTNEED holds the mmap_sem in read
1270                  * mode.
1271                  */
1272                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1273                         goto next;
1274                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1275 next:
1276                 cond_resched();
1277         } while (pmd++, addr = next, addr != end);
1278
1279         return addr;
1280 }
1281
1282 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1283                                 struct vm_area_struct *vma, pgd_t *pgd,
1284                                 unsigned long addr, unsigned long end,
1285                                 struct zap_details *details)
1286 {
1287         pud_t *pud;
1288         unsigned long next;
1289
1290         pud = pud_offset(pgd, addr);
1291         do {
1292                 next = pud_addr_end(addr, end);
1293                 if (pud_none_or_clear_bad(pud))
1294                         continue;
1295                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1296         } while (pud++, addr = next, addr != end);
1297
1298         return addr;
1299 }
1300
1301 static void unmap_page_range(struct mmu_gather *tlb,
1302                              struct vm_area_struct *vma,
1303                              unsigned long addr, unsigned long end,
1304                              struct zap_details *details)
1305 {
1306         pgd_t *pgd;
1307         unsigned long next;
1308
1309         if (details && !details->check_mapping && !details->nonlinear_vma)
1310                 details = NULL;
1311
1312         BUG_ON(addr >= end);
1313         mem_cgroup_uncharge_start();
1314         tlb_start_vma(tlb, vma);
1315         pgd = pgd_offset(vma->vm_mm, addr);
1316         do {
1317                 next = pgd_addr_end(addr, end);
1318                 if (pgd_none_or_clear_bad(pgd))
1319                         continue;
1320                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1321         } while (pgd++, addr = next, addr != end);
1322         tlb_end_vma(tlb, vma);
1323         mem_cgroup_uncharge_end();
1324 }
1325
1326
1327 static void unmap_single_vma(struct mmu_gather *tlb,
1328                 struct vm_area_struct *vma, unsigned long start_addr,
1329                 unsigned long end_addr,
1330                 struct zap_details *details)
1331 {
1332         unsigned long start = max(vma->vm_start, start_addr);
1333         unsigned long end;
1334
1335         if (start >= vma->vm_end)
1336                 return;
1337         end = min(vma->vm_end, end_addr);
1338         if (end <= vma->vm_start)
1339                 return;
1340
1341         if (vma->vm_file)
1342                 uprobe_munmap(vma, start, end);
1343
1344         if (unlikely(vma->vm_flags & VM_PFNMAP))
1345                 untrack_pfn(vma, 0, 0);
1346
1347         if (start != end) {
1348                 if (unlikely(is_vm_hugetlb_page(vma))) {
1349                         /*
1350                          * It is undesirable to test vma->vm_file as it
1351                          * should be non-null for valid hugetlb area.
1352                          * However, vm_file will be NULL in the error
1353                          * cleanup path of do_mmap_pgoff. When
1354                          * hugetlbfs ->mmap method fails,
1355                          * do_mmap_pgoff() nullifies vma->vm_file
1356                          * before calling this function to clean up.
1357                          * Since no pte has actually been setup, it is
1358                          * safe to do nothing in this case.
1359                          */
1360                         if (vma->vm_file) {
1361                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1362                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1363                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1364                         }
1365                 } else
1366                         unmap_page_range(tlb, vma, start, end, details);
1367         }
1368 }
1369
1370 /**
1371  * unmap_vmas - unmap a range of memory covered by a list of vma's
1372  * @tlb: address of the caller's struct mmu_gather
1373  * @vma: the starting vma
1374  * @start_addr: virtual address at which to start unmapping
1375  * @end_addr: virtual address at which to end unmapping
1376  *
1377  * Unmap all pages in the vma list.
1378  *
1379  * Only addresses between `start' and `end' will be unmapped.
1380  *
1381  * The VMA list must be sorted in ascending virtual address order.
1382  *
1383  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1384  * range after unmap_vmas() returns.  So the only responsibility here is to
1385  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1386  * drops the lock and schedules.
1387  */
1388 void unmap_vmas(struct mmu_gather *tlb,
1389                 struct vm_area_struct *vma, unsigned long start_addr,
1390                 unsigned long end_addr)
1391 {
1392         struct mm_struct *mm = vma->vm_mm;
1393
1394         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1395         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1396                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1397         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1398 }
1399
1400 /**
1401  * zap_page_range - remove user pages in a given range
1402  * @vma: vm_area_struct holding the applicable pages
1403  * @start: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  * @details: details of nonlinear truncation or shared cache invalidation
1406  *
1407  * Caller must protect the VMA list
1408  */
1409 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1410                 unsigned long size, struct zap_details *details)
1411 {
1412         struct mm_struct *mm = vma->vm_mm;
1413         struct mmu_gather tlb;
1414         unsigned long end = start + size;
1415
1416         lru_add_drain();
1417         tlb_gather_mmu(&tlb, mm, 0);
1418         update_hiwater_rss(mm);
1419         mmu_notifier_invalidate_range_start(mm, start, end);
1420         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1421                 unmap_single_vma(&tlb, vma, start, end, details);
1422         mmu_notifier_invalidate_range_end(mm, start, end);
1423         tlb_finish_mmu(&tlb, start, end);
1424 }
1425
1426 /**
1427  * zap_page_range_single - remove user pages in a given range
1428  * @vma: vm_area_struct holding the applicable pages
1429  * @address: starting address of pages to zap
1430  * @size: number of bytes to zap
1431  * @details: details of nonlinear truncation or shared cache invalidation
1432  *
1433  * The range must fit into one VMA.
1434  */
1435 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1436                 unsigned long size, struct zap_details *details)
1437 {
1438         struct mm_struct *mm = vma->vm_mm;
1439         struct mmu_gather tlb;
1440         unsigned long end = address + size;
1441
1442         lru_add_drain();
1443         tlb_gather_mmu(&tlb, mm, 0);
1444         update_hiwater_rss(mm);
1445         mmu_notifier_invalidate_range_start(mm, address, end);
1446         unmap_single_vma(&tlb, vma, address, end, details);
1447         mmu_notifier_invalidate_range_end(mm, address, end);
1448         tlb_finish_mmu(&tlb, address, end);
1449 }
1450
1451 /**
1452  * zap_vma_ptes - remove ptes mapping the vma
1453  * @vma: vm_area_struct holding ptes to be zapped
1454  * @address: starting address of pages to zap
1455  * @size: number of bytes to zap
1456  *
1457  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1458  *
1459  * The entire address range must be fully contained within the vma.
1460  *
1461  * Returns 0 if successful.
1462  */
1463 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1464                 unsigned long size)
1465 {
1466         if (address < vma->vm_start || address + size > vma->vm_end ||
1467                         !(vma->vm_flags & VM_PFNMAP))
1468                 return -1;
1469         zap_page_range_single(vma, address, size, NULL);
1470         return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1473
1474 static bool pte_numa(struct vm_area_struct *vma, pte_t pte)
1475 {
1476         /*
1477          * For NUMA page faults, we use PROT_NONE ptes in VMAs with
1478          * "normal" vma->vm_page_prot protections.  Genuine PROT_NONE
1479          * VMAs should never get here, because the fault handling code
1480          * will notice that the VMA has no read or write permissions.
1481          *
1482          * This means we cannot get 'special' PROT_NONE faults from genuine
1483          * PROT_NONE maps, nor from PROT_WRITE file maps that do dirty
1484          * tracking.
1485          *
1486          * Neither case is really interesting for our current use though so we
1487          * don't care.
1488          */
1489         if (pte_same(pte, pte_modify(pte, vma->vm_page_prot)))
1490                 return false;
1491
1492         return pte_same(pte, pte_modify(pte, vma_prot_none(vma)));
1493 }
1494
1495 /**
1496  * follow_page - look up a page descriptor from a user-virtual address
1497  * @vma: vm_area_struct mapping @address
1498  * @address: virtual address to look up
1499  * @flags: flags modifying lookup behaviour
1500  *
1501  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1502  *
1503  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1504  * an error pointer if there is a mapping to something not represented
1505  * by a page descriptor (see also vm_normal_page()).
1506  */
1507 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1508                         unsigned int flags)
1509 {
1510         pgd_t *pgd;
1511         pud_t *pud;
1512         pmd_t *pmd;
1513         pte_t *ptep, pte;
1514         spinlock_t *ptl;
1515         struct page *page;
1516         struct mm_struct *mm = vma->vm_mm;
1517
1518         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1519         if (!IS_ERR(page)) {
1520                 BUG_ON(flags & FOLL_GET);
1521                 goto out;
1522         }
1523
1524         page = NULL;
1525         pgd = pgd_offset(mm, address);
1526         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1527                 goto no_page_table;
1528
1529         pud = pud_offset(pgd, address);
1530         if (pud_none(*pud))
1531                 goto no_page_table;
1532         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1533                 BUG_ON(flags & FOLL_GET);
1534                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1535                 goto out;
1536         }
1537         if (unlikely(pud_bad(*pud)))
1538                 goto no_page_table;
1539
1540         pmd = pmd_offset(pud, address);
1541         if (pmd_none(*pmd))
1542                 goto no_page_table;
1543         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1544                 BUG_ON(flags & FOLL_GET);
1545                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1546                 goto out;
1547         }
1548         if ((flags & FOLL_NUMA) && pmd_numa(vma, *pmd))
1549                 goto no_page_table;
1550         if (pmd_trans_huge(*pmd)) {
1551                 if (flags & FOLL_SPLIT) {
1552                         split_huge_page_pmd(mm, pmd);
1553                         goto split_fallthrough;
1554                 }
1555                 spin_lock(&mm->page_table_lock);
1556                 if (likely(pmd_trans_huge(*pmd))) {
1557                         if (unlikely(pmd_trans_splitting(*pmd))) {
1558                                 spin_unlock(&mm->page_table_lock);
1559                                 wait_split_huge_page(vma->anon_vma, pmd);
1560                         } else {
1561                                 page = follow_trans_huge_pmd(vma, address,
1562                                                              pmd, flags);
1563                                 spin_unlock(&mm->page_table_lock);
1564                                 goto out;
1565                         }
1566                 } else
1567                         spin_unlock(&mm->page_table_lock);
1568                 /* fall through */
1569         }
1570 split_fallthrough:
1571         if (unlikely(pmd_bad(*pmd)))
1572                 goto no_page_table;
1573
1574         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1575
1576         pte = *ptep;
1577         if (!pte_present(pte))
1578                 goto no_page;
1579         if ((flags & FOLL_NUMA) && pte_numa(vma, pte))
1580                 goto no_page;
1581         if ((flags & FOLL_WRITE) && !pte_write(pte))
1582                 goto unlock;
1583
1584         page = vm_normal_page(vma, address, pte);
1585         if (unlikely(!page)) {
1586                 if ((flags & FOLL_DUMP) ||
1587                     !is_zero_pfn(pte_pfn(pte)))
1588                         goto bad_page;
1589                 page = pte_page(pte);
1590         }
1591
1592         if (flags & FOLL_GET)
1593                 get_page_foll(page);
1594         if (flags & FOLL_TOUCH) {
1595                 if ((flags & FOLL_WRITE) &&
1596                     !pte_dirty(pte) && !PageDirty(page))
1597                         set_page_dirty(page);
1598                 /*
1599                  * pte_mkyoung() would be more correct here, but atomic care
1600                  * is needed to avoid losing the dirty bit: it is easier to use
1601                  * mark_page_accessed().
1602                  */
1603                 mark_page_accessed(page);
1604         }
1605         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1606                 /*
1607                  * The preliminary mapping check is mainly to avoid the
1608                  * pointless overhead of lock_page on the ZERO_PAGE
1609                  * which might bounce very badly if there is contention.
1610                  *
1611                  * If the page is already locked, we don't need to
1612                  * handle it now - vmscan will handle it later if and
1613                  * when it attempts to reclaim the page.
1614                  */
1615                 if (page->mapping && trylock_page(page)) {
1616                         lru_add_drain();  /* push cached pages to LRU */
1617                         /*
1618                          * Because we lock page here, and migration is
1619                          * blocked by the pte's page reference, and we
1620                          * know the page is still mapped, we don't even
1621                          * need to check for file-cache page truncation.
1622                          */
1623                         mlock_vma_page(page);
1624                         unlock_page(page);
1625                 }
1626         }
1627 unlock:
1628         pte_unmap_unlock(ptep, ptl);
1629 out:
1630         return page;
1631
1632 bad_page:
1633         pte_unmap_unlock(ptep, ptl);
1634         return ERR_PTR(-EFAULT);
1635
1636 no_page:
1637         pte_unmap_unlock(ptep, ptl);
1638         if (!pte_none(pte))
1639                 return page;
1640
1641 no_page_table:
1642         /*
1643          * When core dumping an enormous anonymous area that nobody
1644          * has touched so far, we don't want to allocate unnecessary pages or
1645          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1646          * then get_dump_page() will return NULL to leave a hole in the dump.
1647          * But we can only make this optimization where a hole would surely
1648          * be zero-filled if handle_mm_fault() actually did handle it.
1649          */
1650         if ((flags & FOLL_DUMP) &&
1651             (!vma->vm_ops || !vma->vm_ops->fault))
1652                 return ERR_PTR(-EFAULT);
1653         return page;
1654 }
1655
1656 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1657 {
1658         return stack_guard_page_start(vma, addr) ||
1659                stack_guard_page_end(vma, addr+PAGE_SIZE);
1660 }
1661
1662 /**
1663  * __get_user_pages() - pin user pages in memory
1664  * @tsk:        task_struct of target task
1665  * @mm:         mm_struct of target mm
1666  * @start:      starting user address
1667  * @nr_pages:   number of pages from start to pin
1668  * @gup_flags:  flags modifying pin behaviour
1669  * @pages:      array that receives pointers to the pages pinned.
1670  *              Should be at least nr_pages long. Or NULL, if caller
1671  *              only intends to ensure the pages are faulted in.
1672  * @vmas:       array of pointers to vmas corresponding to each page.
1673  *              Or NULL if the caller does not require them.
1674  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1675  *
1676  * Returns number of pages pinned. This may be fewer than the number
1677  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1678  * were pinned, returns -errno. Each page returned must be released
1679  * with a put_page() call when it is finished with. vmas will only
1680  * remain valid while mmap_sem is held.
1681  *
1682  * Must be called with mmap_sem held for read or write.
1683  *
1684  * __get_user_pages walks a process's page tables and takes a reference to
1685  * each struct page that each user address corresponds to at a given
1686  * instant. That is, it takes the page that would be accessed if a user
1687  * thread accesses the given user virtual address at that instant.
1688  *
1689  * This does not guarantee that the page exists in the user mappings when
1690  * __get_user_pages returns, and there may even be a completely different
1691  * page there in some cases (eg. if mmapped pagecache has been invalidated
1692  * and subsequently re faulted). However it does guarantee that the page
1693  * won't be freed completely. And mostly callers simply care that the page
1694  * contains data that was valid *at some point in time*. Typically, an IO
1695  * or similar operation cannot guarantee anything stronger anyway because
1696  * locks can't be held over the syscall boundary.
1697  *
1698  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1699  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1700  * appropriate) must be called after the page is finished with, and
1701  * before put_page is called.
1702  *
1703  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1704  * or mmap_sem contention, and if waiting is needed to pin all pages,
1705  * *@nonblocking will be set to 0.
1706  *
1707  * In most cases, get_user_pages or get_user_pages_fast should be used
1708  * instead of __get_user_pages. __get_user_pages should be used only if
1709  * you need some special @gup_flags.
1710  */
1711 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1712                      unsigned long start, int nr_pages, unsigned int gup_flags,
1713                      struct page **pages, struct vm_area_struct **vmas,
1714                      int *nonblocking)
1715 {
1716         int i;
1717         unsigned long vm_flags;
1718
1719         if (nr_pages <= 0)
1720                 return 0;
1721
1722         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1723
1724         /* 
1725          * Require read or write permissions.
1726          * If FOLL_FORCE is set, we only require the "MAY" flags.
1727          */
1728         vm_flags  = (gup_flags & FOLL_WRITE) ?
1729                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1730         vm_flags &= (gup_flags & FOLL_FORCE) ?
1731                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1732
1733         /*
1734          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1735          * would be called on PROT_NONE ranges. We must never invoke
1736          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1737          * page faults would unprotect the PROT_NONE ranges if
1738          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1739          * bitflag. So to avoid that, don't set FOLL_NUMA if
1740          * FOLL_FORCE is set.
1741          */
1742         if (!(gup_flags & FOLL_FORCE))
1743                 gup_flags |= FOLL_NUMA;
1744
1745         i = 0;
1746
1747         do {
1748                 struct vm_area_struct *vma;
1749
1750                 vma = find_extend_vma(mm, start);
1751                 if (!vma && in_gate_area(mm, start)) {
1752                         unsigned long pg = start & PAGE_MASK;
1753                         pgd_t *pgd;
1754                         pud_t *pud;
1755                         pmd_t *pmd;
1756                         pte_t *pte;
1757
1758                         /* user gate pages are read-only */
1759                         if (gup_flags & FOLL_WRITE)
1760                                 return i ? : -EFAULT;
1761                         if (pg > TASK_SIZE)
1762                                 pgd = pgd_offset_k(pg);
1763                         else
1764                                 pgd = pgd_offset_gate(mm, pg);
1765                         BUG_ON(pgd_none(*pgd));
1766                         pud = pud_offset(pgd, pg);
1767                         BUG_ON(pud_none(*pud));
1768                         pmd = pmd_offset(pud, pg);
1769                         if (pmd_none(*pmd))
1770                                 return i ? : -EFAULT;
1771                         VM_BUG_ON(pmd_trans_huge(*pmd));
1772                         pte = pte_offset_map(pmd, pg);
1773                         if (pte_none(*pte)) {
1774                                 pte_unmap(pte);
1775                                 return i ? : -EFAULT;
1776                         }
1777                         vma = get_gate_vma(mm);
1778                         if (pages) {
1779                                 struct page *page;
1780
1781                                 page = vm_normal_page(vma, start, *pte);
1782                                 if (!page) {
1783                                         if (!(gup_flags & FOLL_DUMP) &&
1784                                              is_zero_pfn(pte_pfn(*pte)))
1785                                                 page = pte_page(*pte);
1786                                         else {
1787                                                 pte_unmap(pte);
1788                                                 return i ? : -EFAULT;
1789                                         }
1790                                 }
1791                                 pages[i] = page;
1792                                 get_page(page);
1793                         }
1794                         pte_unmap(pte);
1795                         goto next_page;
1796                 }
1797
1798                 if (!vma ||
1799                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1800                     !(vm_flags & vma->vm_flags))
1801                         return i ? : -EFAULT;
1802
1803                 if (is_vm_hugetlb_page(vma)) {
1804                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1805                                         &start, &nr_pages, i, gup_flags);
1806                         continue;
1807                 }
1808
1809                 do {
1810                         struct page *page;
1811                         unsigned int foll_flags = gup_flags;
1812
1813                         /*
1814                          * If we have a pending SIGKILL, don't keep faulting
1815                          * pages and potentially allocating memory.
1816                          */
1817                         if (unlikely(fatal_signal_pending(current)))
1818                                 return i ? i : -ERESTARTSYS;
1819
1820                         cond_resched();
1821                         while (!(page = follow_page(vma, start, foll_flags))) {
1822                                 int ret;
1823                                 unsigned int fault_flags = 0;
1824
1825                                 /* For mlock, just skip the stack guard page. */
1826                                 if (foll_flags & FOLL_MLOCK) {
1827                                         if (stack_guard_page(vma, start))
1828                                                 goto next_page;
1829                                 }
1830                                 if (foll_flags & FOLL_WRITE)
1831                                         fault_flags |= FAULT_FLAG_WRITE;
1832                                 if (nonblocking)
1833                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1834                                 if (foll_flags & FOLL_NOWAIT)
1835                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1836
1837                                 ret = handle_mm_fault(mm, vma, start,
1838                                                         fault_flags);
1839
1840                                 if (ret & VM_FAULT_ERROR) {
1841                                         if (ret & VM_FAULT_OOM)
1842                                                 return i ? i : -ENOMEM;
1843                                         if (ret & (VM_FAULT_HWPOISON |
1844                                                    VM_FAULT_HWPOISON_LARGE)) {
1845                                                 if (i)
1846                                                         return i;
1847                                                 else if (gup_flags & FOLL_HWPOISON)
1848                                                         return -EHWPOISON;
1849                                                 else
1850                                                         return -EFAULT;
1851                                         }
1852                                         if (ret & VM_FAULT_SIGBUS)
1853                                                 return i ? i : -EFAULT;
1854                                         BUG();
1855                                 }
1856
1857                                 if (tsk) {
1858                                         if (ret & VM_FAULT_MAJOR)
1859                                                 tsk->maj_flt++;
1860                                         else
1861                                                 tsk->min_flt++;
1862                                 }
1863
1864                                 if (ret & VM_FAULT_RETRY) {
1865                                         if (nonblocking)
1866                                                 *nonblocking = 0;
1867                                         return i;
1868                                 }
1869
1870                                 /*
1871                                  * The VM_FAULT_WRITE bit tells us that
1872                                  * do_wp_page has broken COW when necessary,
1873                                  * even if maybe_mkwrite decided not to set
1874                                  * pte_write. We can thus safely do subsequent
1875                                  * page lookups as if they were reads. But only
1876                                  * do so when looping for pte_write is futile:
1877                                  * in some cases userspace may also be wanting
1878                                  * to write to the gotten user page, which a
1879                                  * read fault here might prevent (a readonly
1880                                  * page might get reCOWed by userspace write).
1881                                  */
1882                                 if ((ret & VM_FAULT_WRITE) &&
1883                                     !(vma->vm_flags & VM_WRITE))
1884                                         foll_flags &= ~FOLL_WRITE;
1885
1886                                 cond_resched();
1887                         }
1888                         if (IS_ERR(page))
1889                                 return i ? i : PTR_ERR(page);
1890                         if (pages) {
1891                                 pages[i] = page;
1892
1893                                 flush_anon_page(vma, page, start);
1894                                 flush_dcache_page(page);
1895                         }
1896 next_page:
1897                         if (vmas)
1898                                 vmas[i] = vma;
1899                         i++;
1900                         start += PAGE_SIZE;
1901                         nr_pages--;
1902                 } while (nr_pages && start < vma->vm_end);
1903         } while (nr_pages);
1904         return i;
1905 }
1906 EXPORT_SYMBOL(__get_user_pages);
1907
1908 /*
1909  * fixup_user_fault() - manually resolve a user page fault
1910  * @tsk:        the task_struct to use for page fault accounting, or
1911  *              NULL if faults are not to be recorded.
1912  * @mm:         mm_struct of target mm
1913  * @address:    user address
1914  * @fault_flags:flags to pass down to handle_mm_fault()
1915  *
1916  * This is meant to be called in the specific scenario where for locking reasons
1917  * we try to access user memory in atomic context (within a pagefault_disable()
1918  * section), this returns -EFAULT, and we want to resolve the user fault before
1919  * trying again.
1920  *
1921  * Typically this is meant to be used by the futex code.
1922  *
1923  * The main difference with get_user_pages() is that this function will
1924  * unconditionally call handle_mm_fault() which will in turn perform all the
1925  * necessary SW fixup of the dirty and young bits in the PTE, while
1926  * handle_mm_fault() only guarantees to update these in the struct page.
1927  *
1928  * This is important for some architectures where those bits also gate the
1929  * access permission to the page because they are maintained in software.  On
1930  * such architectures, gup() will not be enough to make a subsequent access
1931  * succeed.
1932  *
1933  * This should be called with the mm_sem held for read.
1934  */
1935 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1936                      unsigned long address, unsigned int fault_flags)
1937 {
1938         struct vm_area_struct *vma;
1939         int ret;
1940
1941         vma = find_extend_vma(mm, address);
1942         if (!vma || address < vma->vm_start)
1943                 return -EFAULT;
1944
1945         ret = handle_mm_fault(mm, vma, address, fault_flags);
1946         if (ret & VM_FAULT_ERROR) {
1947                 if (ret & VM_FAULT_OOM)
1948                         return -ENOMEM;
1949                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1950                         return -EHWPOISON;
1951                 if (ret & VM_FAULT_SIGBUS)
1952                         return -EFAULT;
1953                 BUG();
1954         }
1955         if (tsk) {
1956                 if (ret & VM_FAULT_MAJOR)
1957                         tsk->maj_flt++;
1958                 else
1959                         tsk->min_flt++;
1960         }
1961         return 0;
1962 }
1963
1964 /*
1965  * get_user_pages() - pin user pages in memory
1966  * @tsk:        the task_struct to use for page fault accounting, or
1967  *              NULL if faults are not to be recorded.
1968  * @mm:         mm_struct of target mm
1969  * @start:      starting user address
1970  * @nr_pages:   number of pages from start to pin
1971  * @write:      whether pages will be written to by the caller
1972  * @force:      whether to force write access even if user mapping is
1973  *              readonly. This will result in the page being COWed even
1974  *              in MAP_SHARED mappings. You do not want this.
1975  * @pages:      array that receives pointers to the pages pinned.
1976  *              Should be at least nr_pages long. Or NULL, if caller
1977  *              only intends to ensure the pages are faulted in.
1978  * @vmas:       array of pointers to vmas corresponding to each page.
1979  *              Or NULL if the caller does not require them.
1980  *
1981  * Returns number of pages pinned. This may be fewer than the number
1982  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1983  * were pinned, returns -errno. Each page returned must be released
1984  * with a put_page() call when it is finished with. vmas will only
1985  * remain valid while mmap_sem is held.
1986  *
1987  * Must be called with mmap_sem held for read or write.
1988  *
1989  * get_user_pages walks a process's page tables and takes a reference to
1990  * each struct page that each user address corresponds to at a given
1991  * instant. That is, it takes the page that would be accessed if a user
1992  * thread accesses the given user virtual address at that instant.
1993  *
1994  * This does not guarantee that the page exists in the user mappings when
1995  * get_user_pages returns, and there may even be a completely different
1996  * page there in some cases (eg. if mmapped pagecache has been invalidated
1997  * and subsequently re faulted). However it does guarantee that the page
1998  * won't be freed completely. And mostly callers simply care that the page
1999  * contains data that was valid *at some point in time*. Typically, an IO
2000  * or similar operation cannot guarantee anything stronger anyway because
2001  * locks can't be held over the syscall boundary.
2002  *
2003  * If write=0, the page must not be written to. If the page is written to,
2004  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2005  * after the page is finished with, and before put_page is called.
2006  *
2007  * get_user_pages is typically used for fewer-copy IO operations, to get a
2008  * handle on the memory by some means other than accesses via the user virtual
2009  * addresses. The pages may be submitted for DMA to devices or accessed via
2010  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2011  * use the correct cache flushing APIs.
2012  *
2013  * See also get_user_pages_fast, for performance critical applications.
2014  */
2015 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2016                 unsigned long start, int nr_pages, int write, int force,
2017                 struct page **pages, struct vm_area_struct **vmas)
2018 {
2019         int flags = FOLL_TOUCH;
2020
2021         if (pages)
2022                 flags |= FOLL_GET;
2023         if (write)
2024                 flags |= FOLL_WRITE;
2025         if (force)
2026                 flags |= FOLL_FORCE;
2027
2028         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2029                                 NULL);
2030 }
2031 EXPORT_SYMBOL(get_user_pages);
2032
2033 /**
2034  * get_dump_page() - pin user page in memory while writing it to core dump
2035  * @addr: user address
2036  *
2037  * Returns struct page pointer of user page pinned for dump,
2038  * to be freed afterwards by page_cache_release() or put_page().
2039  *
2040  * Returns NULL on any kind of failure - a hole must then be inserted into
2041  * the corefile, to preserve alignment with its headers; and also returns
2042  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2043  * allowing a hole to be left in the corefile to save diskspace.
2044  *
2045  * Called without mmap_sem, but after all other threads have been killed.
2046  */
2047 #ifdef CONFIG_ELF_CORE
2048 struct page *get_dump_page(unsigned long addr)
2049 {
2050         struct vm_area_struct *vma;
2051         struct page *page;
2052
2053         if (__get_user_pages(current, current->mm, addr, 1,
2054                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2055                              NULL) < 1)
2056                 return NULL;
2057         flush_cache_page(vma, addr, page_to_pfn(page));
2058         return page;
2059 }
2060 #endif /* CONFIG_ELF_CORE */
2061
2062 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2063                         spinlock_t **ptl)
2064 {
2065         pgd_t * pgd = pgd_offset(mm, addr);
2066         pud_t * pud = pud_alloc(mm, pgd, addr);
2067         if (pud) {
2068                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2069                 if (pmd) {
2070                         VM_BUG_ON(pmd_trans_huge(*pmd));
2071                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2072                 }
2073         }
2074         return NULL;
2075 }
2076
2077 /*
2078  * This is the old fallback for page remapping.
2079  *
2080  * For historical reasons, it only allows reserved pages. Only
2081  * old drivers should use this, and they needed to mark their
2082  * pages reserved for the old functions anyway.
2083  */
2084 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2085                         struct page *page, pgprot_t prot)
2086 {
2087         struct mm_struct *mm = vma->vm_mm;
2088         int retval;
2089         pte_t *pte;
2090         spinlock_t *ptl;
2091
2092         retval = -EINVAL;
2093         if (PageAnon(page))
2094                 goto out;
2095         retval = -ENOMEM;
2096         flush_dcache_page(page);
2097         pte = get_locked_pte(mm, addr, &ptl);
2098         if (!pte)
2099                 goto out;
2100         retval = -EBUSY;
2101         if (!pte_none(*pte))
2102                 goto out_unlock;
2103
2104         /* Ok, finally just insert the thing.. */
2105         get_page(page);
2106         inc_mm_counter_fast(mm, MM_FILEPAGES);
2107         page_add_file_rmap(page);
2108         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2109
2110         retval = 0;
2111         pte_unmap_unlock(pte, ptl);
2112         return retval;
2113 out_unlock:
2114         pte_unmap_unlock(pte, ptl);
2115 out:
2116         return retval;
2117 }
2118
2119 /**
2120  * vm_insert_page - insert single page into user vma
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @page: source kernel page
2124  *
2125  * This allows drivers to insert individual pages they've allocated
2126  * into a user vma.
2127  *
2128  * The page has to be a nice clean _individual_ kernel allocation.
2129  * If you allocate a compound page, you need to have marked it as
2130  * such (__GFP_COMP), or manually just split the page up yourself
2131  * (see split_page()).
2132  *
2133  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2134  * took an arbitrary page protection parameter. This doesn't allow
2135  * that. Your vma protection will have to be set up correctly, which
2136  * means that if you want a shared writable mapping, you'd better
2137  * ask for a shared writable mapping!
2138  *
2139  * The page does not need to be reserved.
2140  *
2141  * Usually this function is called from f_op->mmap() handler
2142  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2143  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2144  * function from other places, for example from page-fault handler.
2145  */
2146 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2147                         struct page *page)
2148 {
2149         if (addr < vma->vm_start || addr >= vma->vm_end)
2150                 return -EFAULT;
2151         if (!page_count(page))
2152                 return -EINVAL;
2153         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2154                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2155                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2156                 vma->vm_flags |= VM_MIXEDMAP;
2157         }
2158         return insert_page(vma, addr, page, vma->vm_page_prot);
2159 }
2160 EXPORT_SYMBOL(vm_insert_page);
2161
2162 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163                         unsigned long pfn, pgprot_t prot)
2164 {
2165         struct mm_struct *mm = vma->vm_mm;
2166         int retval;
2167         pte_t *pte, entry;
2168         spinlock_t *ptl;
2169
2170         retval = -ENOMEM;
2171         pte = get_locked_pte(mm, addr, &ptl);
2172         if (!pte)
2173                 goto out;
2174         retval = -EBUSY;
2175         if (!pte_none(*pte))
2176                 goto out_unlock;
2177
2178         /* Ok, finally just insert the thing.. */
2179         entry = pte_mkspecial(pfn_pte(pfn, prot));
2180         set_pte_at(mm, addr, pte, entry);
2181         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2182
2183         retval = 0;
2184 out_unlock:
2185         pte_unmap_unlock(pte, ptl);
2186 out:
2187         return retval;
2188 }
2189
2190 /**
2191  * vm_insert_pfn - insert single pfn into user vma
2192  * @vma: user vma to map to
2193  * @addr: target user address of this page
2194  * @pfn: source kernel pfn
2195  *
2196  * Similar to vm_insert_page, this allows drivers to insert individual pages
2197  * they've allocated into a user vma. Same comments apply.
2198  *
2199  * This function should only be called from a vm_ops->fault handler, and
2200  * in that case the handler should return NULL.
2201  *
2202  * vma cannot be a COW mapping.
2203  *
2204  * As this is called only for pages that do not currently exist, we
2205  * do not need to flush old virtual caches or the TLB.
2206  */
2207 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2208                         unsigned long pfn)
2209 {
2210         int ret;
2211         pgprot_t pgprot = vma->vm_page_prot;
2212         /*
2213          * Technically, architectures with pte_special can avoid all these
2214          * restrictions (same for remap_pfn_range).  However we would like
2215          * consistency in testing and feature parity among all, so we should
2216          * try to keep these invariants in place for everybody.
2217          */
2218         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2219         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2220                                                 (VM_PFNMAP|VM_MIXEDMAP));
2221         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2222         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2223
2224         if (addr < vma->vm_start || addr >= vma->vm_end)
2225                 return -EFAULT;
2226         if (track_pfn_insert(vma, &pgprot, pfn))
2227                 return -EINVAL;
2228
2229         ret = insert_pfn(vma, addr, pfn, pgprot);
2230
2231         return ret;
2232 }
2233 EXPORT_SYMBOL(vm_insert_pfn);
2234
2235 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2236                         unsigned long pfn)
2237 {
2238         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2239
2240         if (addr < vma->vm_start || addr >= vma->vm_end)
2241                 return -EFAULT;
2242
2243         /*
2244          * If we don't have pte special, then we have to use the pfn_valid()
2245          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2246          * refcount the page if pfn_valid is true (hence insert_page rather
2247          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2248          * without pte special, it would there be refcounted as a normal page.
2249          */
2250         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2251                 struct page *page;
2252
2253                 page = pfn_to_page(pfn);
2254                 return insert_page(vma, addr, page, vma->vm_page_prot);
2255         }
2256         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2257 }
2258 EXPORT_SYMBOL(vm_insert_mixed);
2259
2260 /*
2261  * maps a range of physical memory into the requested pages. the old
2262  * mappings are removed. any references to nonexistent pages results
2263  * in null mappings (currently treated as "copy-on-access")
2264  */
2265 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2266                         unsigned long addr, unsigned long end,
2267                         unsigned long pfn, pgprot_t prot)
2268 {
2269         pte_t *pte;
2270         spinlock_t *ptl;
2271
2272         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2273         if (!pte)
2274                 return -ENOMEM;
2275         arch_enter_lazy_mmu_mode();
2276         do {
2277                 BUG_ON(!pte_none(*pte));
2278                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2279                 pfn++;
2280         } while (pte++, addr += PAGE_SIZE, addr != end);
2281         arch_leave_lazy_mmu_mode();
2282         pte_unmap_unlock(pte - 1, ptl);
2283         return 0;
2284 }
2285
2286 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2287                         unsigned long addr, unsigned long end,
2288                         unsigned long pfn, pgprot_t prot)
2289 {
2290         pmd_t *pmd;
2291         unsigned long next;
2292
2293         pfn -= addr >> PAGE_SHIFT;
2294         pmd = pmd_alloc(mm, pud, addr);
2295         if (!pmd)
2296                 return -ENOMEM;
2297         VM_BUG_ON(pmd_trans_huge(*pmd));
2298         do {
2299                 next = pmd_addr_end(addr, end);
2300                 if (remap_pte_range(mm, pmd, addr, next,
2301                                 pfn + (addr >> PAGE_SHIFT), prot))
2302                         return -ENOMEM;
2303         } while (pmd++, addr = next, addr != end);
2304         return 0;
2305 }
2306
2307 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2308                         unsigned long addr, unsigned long end,
2309                         unsigned long pfn, pgprot_t prot)
2310 {
2311         pud_t *pud;
2312         unsigned long next;
2313
2314         pfn -= addr >> PAGE_SHIFT;
2315         pud = pud_alloc(mm, pgd, addr);
2316         if (!pud)
2317                 return -ENOMEM;
2318         do {
2319                 next = pud_addr_end(addr, end);
2320                 if (remap_pmd_range(mm, pud, addr, next,
2321                                 pfn + (addr >> PAGE_SHIFT), prot))
2322                         return -ENOMEM;
2323         } while (pud++, addr = next, addr != end);
2324         return 0;
2325 }
2326
2327 /**
2328  * remap_pfn_range - remap kernel memory to userspace
2329  * @vma: user vma to map to
2330  * @addr: target user address to start at
2331  * @pfn: physical address of kernel memory
2332  * @size: size of map area
2333  * @prot: page protection flags for this mapping
2334  *
2335  *  Note: this is only safe if the mm semaphore is held when called.
2336  */
2337 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2338                     unsigned long pfn, unsigned long size, pgprot_t prot)
2339 {
2340         pgd_t *pgd;
2341         unsigned long next;
2342         unsigned long end = addr + PAGE_ALIGN(size);
2343         struct mm_struct *mm = vma->vm_mm;
2344         int err;
2345
2346         /*
2347          * Physically remapped pages are special. Tell the
2348          * rest of the world about it:
2349          *   VM_IO tells people not to look at these pages
2350          *      (accesses can have side effects).
2351          *   VM_PFNMAP tells the core MM that the base pages are just
2352          *      raw PFN mappings, and do not have a "struct page" associated
2353          *      with them.
2354          *   VM_DONTEXPAND
2355          *      Disable vma merging and expanding with mremap().
2356          *   VM_DONTDUMP
2357          *      Omit vma from core dump, even when VM_IO turned off.
2358          *
2359          * There's a horrible special case to handle copy-on-write
2360          * behaviour that some programs depend on. We mark the "original"
2361          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2362          * See vm_normal_page() for details.
2363          */
2364         if (is_cow_mapping(vma->vm_flags)) {
2365                 if (addr != vma->vm_start || end != vma->vm_end)
2366                         return -EINVAL;
2367                 vma->vm_pgoff = pfn;
2368         }
2369
2370         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2371         if (err)
2372                 return -EINVAL;
2373
2374         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2375
2376         BUG_ON(addr >= end);
2377         pfn -= addr >> PAGE_SHIFT;
2378         pgd = pgd_offset(mm, addr);
2379         flush_cache_range(vma, addr, end);
2380         do {
2381                 next = pgd_addr_end(addr, end);
2382                 err = remap_pud_range(mm, pgd, addr, next,
2383                                 pfn + (addr >> PAGE_SHIFT), prot);
2384                 if (err)
2385                         break;
2386         } while (pgd++, addr = next, addr != end);
2387
2388         if (err)
2389                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2390
2391         return err;
2392 }
2393 EXPORT_SYMBOL(remap_pfn_range);
2394
2395 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2396                                      unsigned long addr, unsigned long end,
2397                                      pte_fn_t fn, void *data)
2398 {
2399         pte_t *pte;
2400         int err;
2401         pgtable_t token;
2402         spinlock_t *uninitialized_var(ptl);
2403
2404         pte = (mm == &init_mm) ?
2405                 pte_alloc_kernel(pmd, addr) :
2406                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2407         if (!pte)
2408                 return -ENOMEM;
2409
2410         BUG_ON(pmd_huge(*pmd));
2411
2412         arch_enter_lazy_mmu_mode();
2413
2414         token = pmd_pgtable(*pmd);
2415
2416         do {
2417                 err = fn(pte++, token, addr, data);
2418                 if (err)
2419                         break;
2420         } while (addr += PAGE_SIZE, addr != end);
2421
2422         arch_leave_lazy_mmu_mode();
2423
2424         if (mm != &init_mm)
2425                 pte_unmap_unlock(pte-1, ptl);
2426         return err;
2427 }
2428
2429 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2430                                      unsigned long addr, unsigned long end,
2431                                      pte_fn_t fn, void *data)
2432 {
2433         pmd_t *pmd;
2434         unsigned long next;
2435         int err;
2436
2437         BUG_ON(pud_huge(*pud));
2438
2439         pmd = pmd_alloc(mm, pud, addr);
2440         if (!pmd)
2441                 return -ENOMEM;
2442         do {
2443                 next = pmd_addr_end(addr, end);
2444                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2445                 if (err)
2446                         break;
2447         } while (pmd++, addr = next, addr != end);
2448         return err;
2449 }
2450
2451 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2452                                      unsigned long addr, unsigned long end,
2453                                      pte_fn_t fn, void *data)
2454 {
2455         pud_t *pud;
2456         unsigned long next;
2457         int err;
2458
2459         pud = pud_alloc(mm, pgd, addr);
2460         if (!pud)
2461                 return -ENOMEM;
2462         do {
2463                 next = pud_addr_end(addr, end);
2464                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2465                 if (err)
2466                         break;
2467         } while (pud++, addr = next, addr != end);
2468         return err;
2469 }
2470
2471 /*
2472  * Scan a region of virtual memory, filling in page tables as necessary
2473  * and calling a provided function on each leaf page table.
2474  */
2475 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2476                         unsigned long size, pte_fn_t fn, void *data)
2477 {
2478         pgd_t *pgd;
2479         unsigned long next;
2480         unsigned long end = addr + size;
2481         int err;
2482
2483         BUG_ON(addr >= end);
2484         pgd = pgd_offset(mm, addr);
2485         do {
2486                 next = pgd_addr_end(addr, end);
2487                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2488                 if (err)
2489                         break;
2490         } while (pgd++, addr = next, addr != end);
2491
2492         return err;
2493 }
2494 EXPORT_SYMBOL_GPL(apply_to_page_range);
2495
2496 /*
2497  * handle_pte_fault chooses page fault handler according to an entry
2498  * which was read non-atomically.  Before making any commitment, on
2499  * those architectures or configurations (e.g. i386 with PAE) which
2500  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2501  * must check under lock before unmapping the pte and proceeding
2502  * (but do_wp_page is only called after already making such a check;
2503  * and do_anonymous_page can safely check later on).
2504  */
2505 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2506                                 pte_t *page_table, pte_t orig_pte)
2507 {
2508         int same = 1;
2509 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2510         if (sizeof(pte_t) > sizeof(unsigned long)) {
2511                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2512                 spin_lock(ptl);
2513                 same = pte_same(*page_table, orig_pte);
2514                 spin_unlock(ptl);
2515         }
2516 #endif
2517         pte_unmap(page_table);
2518         return same;
2519 }
2520
2521 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2522 {
2523         /*
2524          * If the source page was a PFN mapping, we don't have
2525          * a "struct page" for it. We do a best-effort copy by
2526          * just copying from the original user address. If that
2527          * fails, we just zero-fill it. Live with it.
2528          */
2529         if (unlikely(!src)) {
2530                 void *kaddr = kmap_atomic(dst);
2531                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2532
2533                 /*
2534                  * This really shouldn't fail, because the page is there
2535                  * in the page tables. But it might just be unreadable,
2536                  * in which case we just give up and fill the result with
2537                  * zeroes.
2538                  */
2539                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2540                         clear_page(kaddr);
2541                 kunmap_atomic(kaddr);
2542                 flush_dcache_page(dst);
2543         } else
2544                 copy_user_highpage(dst, src, va, vma);
2545 }
2546
2547 /*
2548  * This routine handles present pages, when users try to write
2549  * to a shared page. It is done by copying the page to a new address
2550  * and decrementing the shared-page counter for the old page.
2551  *
2552  * Note that this routine assumes that the protection checks have been
2553  * done by the caller (the low-level page fault routine in most cases).
2554  * Thus we can safely just mark it writable once we've done any necessary
2555  * COW.
2556  *
2557  * We also mark the page dirty at this point even though the page will
2558  * change only once the write actually happens. This avoids a few races,
2559  * and potentially makes it more efficient.
2560  *
2561  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2562  * but allow concurrent faults), with pte both mapped and locked.
2563  * We return with mmap_sem still held, but pte unmapped and unlocked.
2564  */
2565 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2566                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2567                 spinlock_t *ptl, pte_t orig_pte)
2568         __releases(ptl)
2569 {
2570         struct page *old_page, *new_page = NULL;
2571         pte_t entry;
2572         int ret = 0;
2573         int page_mkwrite = 0;
2574         struct page *dirty_page = NULL;
2575         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2576         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2577
2578         old_page = vm_normal_page(vma, address, orig_pte);
2579         if (!old_page) {
2580                 /*
2581                  * VM_MIXEDMAP !pfn_valid() case
2582                  *
2583                  * We should not cow pages in a shared writeable mapping.
2584                  * Just mark the pages writable as we can't do any dirty
2585                  * accounting on raw pfn maps.
2586                  */
2587                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2588                                      (VM_WRITE|VM_SHARED))
2589                         goto reuse;
2590                 goto gotten;
2591         }
2592
2593         /*
2594          * Take out anonymous pages first, anonymous shared vmas are
2595          * not dirty accountable.
2596          */
2597         if (PageAnon(old_page) && !PageKsm(old_page)) {
2598                 if (!trylock_page(old_page)) {
2599                         page_cache_get(old_page);
2600                         pte_unmap_unlock(page_table, ptl);
2601                         lock_page(old_page);
2602                         page_table = pte_offset_map_lock(mm, pmd, address,
2603                                                          &ptl);
2604                         if (!pte_same(*page_table, orig_pte)) {
2605                                 unlock_page(old_page);
2606                                 goto unlock;
2607                         }
2608                         page_cache_release(old_page);
2609                 }
2610                 if (reuse_swap_page(old_page)) {
2611                         /*
2612                          * The page is all ours.  Move it to our anon_vma so
2613                          * the rmap code will not search our parent or siblings.
2614                          * Protected against the rmap code by the page lock.
2615                          */
2616                         page_move_anon_rmap(old_page, vma, address);
2617                         unlock_page(old_page);
2618                         goto reuse;
2619                 }
2620                 unlock_page(old_page);
2621         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2622                                         (VM_WRITE|VM_SHARED))) {
2623                 /*
2624                  * Only catch write-faults on shared writable pages,
2625                  * read-only shared pages can get COWed by
2626                  * get_user_pages(.write=1, .force=1).
2627                  */
2628                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2629                         struct vm_fault vmf;
2630                         int tmp;
2631
2632                         vmf.virtual_address = (void __user *)(address &
2633                                                                 PAGE_MASK);
2634                         vmf.pgoff = old_page->index;
2635                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2636                         vmf.page = old_page;
2637
2638                         /*
2639                          * Notify the address space that the page is about to
2640                          * become writable so that it can prohibit this or wait
2641                          * for the page to get into an appropriate state.
2642                          *
2643                          * We do this without the lock held, so that it can
2644                          * sleep if it needs to.
2645                          */
2646                         page_cache_get(old_page);
2647                         pte_unmap_unlock(page_table, ptl);
2648
2649                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2650                         if (unlikely(tmp &
2651                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2652                                 ret = tmp;
2653                                 goto unwritable_page;
2654                         }
2655                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2656                                 lock_page(old_page);
2657                                 if (!old_page->mapping) {
2658                                         ret = 0; /* retry the fault */
2659                                         unlock_page(old_page);
2660                                         goto unwritable_page;
2661                                 }
2662                         } else
2663                                 VM_BUG_ON(!PageLocked(old_page));
2664
2665                         /*
2666                          * Since we dropped the lock we need to revalidate
2667                          * the PTE as someone else may have changed it.  If
2668                          * they did, we just return, as we can count on the
2669                          * MMU to tell us if they didn't also make it writable.
2670                          */
2671                         page_table = pte_offset_map_lock(mm, pmd, address,
2672                                                          &ptl);
2673                         if (!pte_same(*page_table, orig_pte)) {
2674                                 unlock_page(old_page);
2675                                 goto unlock;
2676                         }
2677
2678                         page_mkwrite = 1;
2679                 }
2680                 dirty_page = old_page;
2681                 get_page(dirty_page);
2682
2683 reuse:
2684                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2685                 entry = pte_mkyoung(orig_pte);
2686                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2687                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2688                         update_mmu_cache(vma, address, page_table);
2689                 pte_unmap_unlock(page_table, ptl);
2690                 ret |= VM_FAULT_WRITE;
2691
2692                 if (!dirty_page)
2693                         return ret;
2694
2695                 /*
2696                  * Yes, Virginia, this is actually required to prevent a race
2697                  * with clear_page_dirty_for_io() from clearing the page dirty
2698                  * bit after it clear all dirty ptes, but before a racing
2699                  * do_wp_page installs a dirty pte.
2700                  *
2701                  * __do_fault is protected similarly.
2702                  */
2703                 if (!page_mkwrite) {
2704                         wait_on_page_locked(dirty_page);
2705                         set_page_dirty_balance(dirty_page, page_mkwrite);
2706                         /* file_update_time outside page_lock */
2707                         if (vma->vm_file)
2708                                 file_update_time(vma->vm_file);
2709                 }
2710                 put_page(dirty_page);
2711                 if (page_mkwrite) {
2712                         struct address_space *mapping = dirty_page->mapping;
2713
2714                         set_page_dirty(dirty_page);
2715                         unlock_page(dirty_page);
2716                         page_cache_release(dirty_page);
2717                         if (mapping)    {
2718                                 /*
2719                                  * Some device drivers do not set page.mapping
2720                                  * but still dirty their pages
2721                                  */
2722                                 balance_dirty_pages_ratelimited(mapping);
2723                         }
2724                 }
2725
2726                 return ret;
2727         }
2728
2729         /*
2730          * Ok, we need to copy. Oh, well..
2731          */
2732         page_cache_get(old_page);
2733 gotten:
2734         pte_unmap_unlock(page_table, ptl);
2735
2736         if (unlikely(anon_vma_prepare(vma)))
2737                 goto oom;
2738
2739         if (is_zero_pfn(pte_pfn(orig_pte))) {
2740                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2741                 if (!new_page)
2742                         goto oom;
2743         } else {
2744                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2745                 if (!new_page)
2746                         goto oom;
2747                 cow_user_page(new_page, old_page, address, vma);
2748         }
2749         __SetPageUptodate(new_page);
2750
2751         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2752                 goto oom_free_new;
2753
2754         mmun_start  = address & PAGE_MASK;
2755         mmun_end    = mmun_start + PAGE_SIZE;
2756         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2757
2758         /*
2759          * Re-check the pte - we dropped the lock
2760          */
2761         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2762         if (likely(pte_same(*page_table, orig_pte))) {
2763                 if (old_page) {
2764                         if (!PageAnon(old_page)) {
2765                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2766                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2767                         }
2768                 } else
2769                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2770                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2771                 entry = mk_pte(new_page, vma->vm_page_prot);
2772                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2773                 /*
2774                  * Clear the pte entry and flush it first, before updating the
2775                  * pte with the new entry. This will avoid a race condition
2776                  * seen in the presence of one thread doing SMC and another
2777                  * thread doing COW.
2778                  */
2779                 ptep_clear_flush(vma, address, page_table);
2780                 page_add_new_anon_rmap(new_page, vma, address);
2781                 /*
2782                  * We call the notify macro here because, when using secondary
2783                  * mmu page tables (such as kvm shadow page tables), we want the
2784                  * new page to be mapped directly into the secondary page table.
2785                  */
2786                 set_pte_at_notify(mm, address, page_table, entry);
2787                 update_mmu_cache(vma, address, page_table);
2788                 if (old_page) {
2789                         /*
2790                          * Only after switching the pte to the new page may
2791                          * we remove the mapcount here. Otherwise another
2792                          * process may come and find the rmap count decremented
2793                          * before the pte is switched to the new page, and
2794                          * "reuse" the old page writing into it while our pte
2795                          * here still points into it and can be read by other
2796                          * threads.
2797                          *
2798                          * The critical issue is to order this
2799                          * page_remove_rmap with the ptp_clear_flush above.
2800                          * Those stores are ordered by (if nothing else,)
2801                          * the barrier present in the atomic_add_negative
2802                          * in page_remove_rmap.
2803                          *
2804                          * Then the TLB flush in ptep_clear_flush ensures that
2805                          * no process can access the old page before the
2806                          * decremented mapcount is visible. And the old page
2807                          * cannot be reused until after the decremented
2808                          * mapcount is visible. So transitively, TLBs to
2809                          * old page will be flushed before it can be reused.
2810                          */
2811                         page_remove_rmap(old_page);
2812                 }
2813
2814                 /* Free the old page.. */
2815                 new_page = old_page;
2816                 ret |= VM_FAULT_WRITE;
2817         } else
2818                 mem_cgroup_uncharge_page(new_page);
2819
2820         if (new_page)
2821                 page_cache_release(new_page);
2822 unlock:
2823         pte_unmap_unlock(page_table, ptl);
2824         if (mmun_end > mmun_start)
2825                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2826         if (old_page) {
2827                 /*
2828                  * Don't let another task, with possibly unlocked vma,
2829                  * keep the mlocked page.
2830                  */
2831                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2832                         lock_page(old_page);    /* LRU manipulation */
2833                         munlock_vma_page(old_page);
2834                         unlock_page(old_page);
2835                 }
2836                 page_cache_release(old_page);
2837         }
2838         return ret;
2839 oom_free_new:
2840         page_cache_release(new_page);
2841 oom:
2842         if (old_page) {
2843                 if (page_mkwrite) {
2844                         unlock_page(old_page);
2845                         page_cache_release(old_page);
2846                 }
2847                 page_cache_release(old_page);
2848         }
2849         return VM_FAULT_OOM;
2850
2851 unwritable_page:
2852         page_cache_release(old_page);
2853         return ret;
2854 }
2855
2856 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2857                 unsigned long start_addr, unsigned long end_addr,
2858                 struct zap_details *details)
2859 {
2860         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2861 }
2862
2863 static inline void unmap_mapping_range_tree(struct rb_root *root,
2864                                             struct zap_details *details)
2865 {
2866         struct vm_area_struct *vma;
2867         pgoff_t vba, vea, zba, zea;
2868
2869         vma_interval_tree_foreach(vma, root,
2870                         details->first_index, details->last_index) {
2871
2872                 vba = vma->vm_pgoff;
2873                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2874                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2875                 zba = details->first_index;
2876                 if (zba < vba)
2877                         zba = vba;
2878                 zea = details->last_index;
2879                 if (zea > vea)
2880                         zea = vea;
2881
2882                 unmap_mapping_range_vma(vma,
2883                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2884                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2885                                 details);
2886         }
2887 }
2888
2889 static inline void unmap_mapping_range_list(struct list_head *head,
2890                                             struct zap_details *details)
2891 {
2892         struct vm_area_struct *vma;
2893
2894         /*
2895          * In nonlinear VMAs there is no correspondence between virtual address
2896          * offset and file offset.  So we must perform an exhaustive search
2897          * across *all* the pages in each nonlinear VMA, not just the pages
2898          * whose virtual address lies outside the file truncation point.
2899          */
2900         list_for_each_entry(vma, head, shared.nonlinear) {
2901                 details->nonlinear_vma = vma;
2902                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2903         }
2904 }
2905
2906 /**
2907  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2908  * @mapping: the address space containing mmaps to be unmapped.
2909  * @holebegin: byte in first page to unmap, relative to the start of
2910  * the underlying file.  This will be rounded down to a PAGE_SIZE
2911  * boundary.  Note that this is different from truncate_pagecache(), which
2912  * must keep the partial page.  In contrast, we must get rid of
2913  * partial pages.
2914  * @holelen: size of prospective hole in bytes.  This will be rounded
2915  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2916  * end of the file.
2917  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2918  * but 0 when invalidating pagecache, don't throw away private data.
2919  */
2920 void unmap_mapping_range(struct address_space *mapping,
2921                 loff_t const holebegin, loff_t const holelen, int even_cows)
2922 {
2923         struct zap_details details;
2924         pgoff_t hba = holebegin >> PAGE_SHIFT;
2925         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2926
2927         /* Check for overflow. */
2928         if (sizeof(holelen) > sizeof(hlen)) {
2929                 long long holeend =
2930                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2931                 if (holeend & ~(long long)ULONG_MAX)
2932                         hlen = ULONG_MAX - hba + 1;
2933         }
2934
2935         details.check_mapping = even_cows? NULL: mapping;
2936         details.nonlinear_vma = NULL;
2937         details.first_index = hba;
2938         details.last_index = hba + hlen - 1;
2939         if (details.last_index < details.first_index)
2940                 details.last_index = ULONG_MAX;
2941
2942
2943         mutex_lock(&mapping->i_mmap_mutex);
2944         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2945                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2946         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2947                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2948         mutex_unlock(&mapping->i_mmap_mutex);
2949 }
2950 EXPORT_SYMBOL(unmap_mapping_range);
2951
2952 /*
2953  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2954  * but allow concurrent faults), and pte mapped but not yet locked.
2955  * We return with mmap_sem still held, but pte unmapped and unlocked.
2956  */
2957 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2958                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2959                 unsigned int flags, pte_t orig_pte)
2960 {
2961         spinlock_t *ptl;
2962         struct page *page, *swapcache = NULL;
2963         swp_entry_t entry;
2964         pte_t pte;
2965         int locked;
2966         struct mem_cgroup *ptr;
2967         int exclusive = 0;
2968         int ret = 0;
2969
2970         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2971                 goto out;
2972
2973         entry = pte_to_swp_entry(orig_pte);
2974         if (unlikely(non_swap_entry(entry))) {
2975                 if (is_migration_entry(entry)) {
2976                         migration_entry_wait(mm, pmd, address);
2977                 } else if (is_hwpoison_entry(entry)) {
2978                         ret = VM_FAULT_HWPOISON;
2979                 } else {
2980                         print_bad_pte(vma, address, orig_pte, NULL);
2981                         ret = VM_FAULT_SIGBUS;
2982                 }
2983                 goto out;
2984         }
2985         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2986         page = lookup_swap_cache(entry);
2987         if (!page) {
2988                 page = swapin_readahead(entry,
2989                                         GFP_HIGHUSER_MOVABLE, vma, address);
2990                 if (!page) {
2991                         /*
2992                          * Back out if somebody else faulted in this pte
2993                          * while we released the pte lock.
2994                          */
2995                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2996                         if (likely(pte_same(*page_table, orig_pte)))
2997                                 ret = VM_FAULT_OOM;
2998                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2999                         goto unlock;
3000                 }
3001
3002                 /* Had to read the page from swap area: Major fault */
3003                 ret = VM_FAULT_MAJOR;
3004                 count_vm_event(PGMAJFAULT);
3005                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3006         } else if (PageHWPoison(page)) {
3007                 /*
3008                  * hwpoisoned dirty swapcache pages are kept for killing
3009                  * owner processes (which may be unknown at hwpoison time)
3010                  */
3011                 ret = VM_FAULT_HWPOISON;
3012                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3013                 goto out_release;
3014         } else if (!(flags & FAULT_FLAG_TRIED))
3015                 swap_cache_hit(vma);
3016
3017         locked = lock_page_or_retry(page, mm, flags);
3018
3019         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3020         if (!locked) {
3021                 ret |= VM_FAULT_RETRY;
3022                 goto out_release;
3023         }
3024
3025         /*
3026          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3027          * release the swapcache from under us.  The page pin, and pte_same
3028          * test below, are not enough to exclude that.  Even if it is still
3029          * swapcache, we need to check that the page's swap has not changed.
3030          */
3031         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3032                 goto out_page;
3033
3034         if (ksm_might_need_to_copy(page, vma, address)) {
3035                 swapcache = page;
3036                 page = ksm_does_need_to_copy(page, vma, address);
3037
3038                 if (unlikely(!page)) {
3039                         ret = VM_FAULT_OOM;
3040                         page = swapcache;
3041                         swapcache = NULL;
3042                         goto out_page;
3043                 }
3044         }
3045
3046         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3047                 ret = VM_FAULT_OOM;
3048                 goto out_page;
3049         }
3050
3051         /*
3052          * Back out if somebody else already faulted in this pte.
3053          */
3054         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3055         if (unlikely(!pte_same(*page_table, orig_pte)))
3056                 goto out_nomap;
3057
3058         if (unlikely(!PageUptodate(page))) {
3059                 ret = VM_FAULT_SIGBUS;
3060                 goto out_nomap;
3061         }
3062
3063         /*
3064          * The page isn't present yet, go ahead with the fault.
3065          *
3066          * Be careful about the sequence of operations here.
3067          * To get its accounting right, reuse_swap_page() must be called
3068          * while the page is counted on swap but not yet in mapcount i.e.
3069          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3070          * must be called after the swap_free(), or it will never succeed.
3071          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3072          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3073          * in page->private. In this case, a record in swap_cgroup  is silently
3074          * discarded at swap_free().
3075          */
3076
3077         inc_mm_counter_fast(mm, MM_ANONPAGES);
3078         dec_mm_counter_fast(mm, MM_SWAPENTS);
3079         pte = mk_pte(page, vma->vm_page_prot);
3080         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3081                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3082                 flags &= ~FAULT_FLAG_WRITE;
3083                 ret |= VM_FAULT_WRITE;
3084                 exclusive = 1;
3085         }
3086         flush_icache_page(vma, page);
3087         set_pte_at(mm, address, page_table, pte);
3088         do_page_add_anon_rmap(page, vma, address, exclusive);
3089         /* It's better to call commit-charge after rmap is established */
3090         mem_cgroup_commit_charge_swapin(page, ptr);
3091
3092         swap_free(entry);
3093         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3094                 try_to_free_swap(page);
3095         unlock_page(page);
3096         if (swapcache) {
3097                 /*
3098                  * Hold the lock to avoid the swap entry to be reused
3099                  * until we take the PT lock for the pte_same() check
3100                  * (to avoid false positives from pte_same). For
3101                  * further safety release the lock after the swap_free
3102                  * so that the swap count won't change under a
3103                  * parallel locked swapcache.
3104                  */
3105                 unlock_page(swapcache);
3106                 page_cache_release(swapcache);
3107         }
3108
3109         if (flags & FAULT_FLAG_WRITE) {
3110                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3111                 if (ret & VM_FAULT_ERROR)
3112                         ret &= VM_FAULT_ERROR;
3113                 goto out;
3114         }
3115
3116         /* No need to invalidate - it was non-present before */
3117         update_mmu_cache(vma, address, page_table);
3118 unlock:
3119         pte_unmap_unlock(page_table, ptl);
3120 out:
3121         return ret;
3122 out_nomap:
3123         mem_cgroup_cancel_charge_swapin(ptr);
3124         pte_unmap_unlock(page_table, ptl);
3125 out_page:
3126         unlock_page(page);
3127 out_release:
3128         page_cache_release(page);
3129         if (swapcache) {
3130                 unlock_page(swapcache);
3131                 page_cache_release(swapcache);
3132         }
3133         return ret;
3134 }
3135
3136 /*
3137  * This is like a special single-page "expand_{down|up}wards()",
3138  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3139  * doesn't hit another vma.
3140  */
3141 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3142 {
3143         address &= PAGE_MASK;
3144         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3145                 struct vm_area_struct *prev = vma->vm_prev;
3146
3147                 /*
3148                  * Is there a mapping abutting this one below?
3149                  *
3150                  * That's only ok if it's the same stack mapping
3151                  * that has gotten split..
3152                  */
3153                 if (prev && prev->vm_end == address)
3154                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3155
3156                 expand_downwards(vma, address - PAGE_SIZE);
3157         }
3158         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3159                 struct vm_area_struct *next = vma->vm_next;
3160
3161                 /* As VM_GROWSDOWN but s/below/above/ */
3162                 if (next && next->vm_start == address + PAGE_SIZE)
3163                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3164
3165                 expand_upwards(vma, address + PAGE_SIZE);
3166         }
3167         return 0;
3168 }
3169
3170 /*
3171  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3172  * but allow concurrent faults), and pte mapped but not yet locked.
3173  * We return with mmap_sem still held, but pte unmapped and unlocked.
3174  */
3175 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3176                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3177                 unsigned int flags)
3178 {
3179         struct page *page;
3180         spinlock_t *ptl;
3181         pte_t entry;
3182
3183         pte_unmap(page_table);
3184
3185         /* Check if we need to add a guard page to the stack */
3186         if (check_stack_guard_page(vma, address) < 0)
3187                 return VM_FAULT_SIGBUS;
3188
3189         /* Use the zero-page for reads */
3190         if (!(flags & FAULT_FLAG_WRITE)) {
3191                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3192                                                 vma->vm_page_prot));
3193                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3194                 if (!pte_none(*page_table))
3195                         goto unlock;
3196                 goto setpte;
3197         }
3198
3199         /* Allocate our own private page. */
3200         if (unlikely(anon_vma_prepare(vma)))
3201                 goto oom;
3202         page = alloc_zeroed_user_highpage_movable(vma, address);
3203         if (!page)
3204                 goto oom;
3205         __SetPageUptodate(page);
3206
3207         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3208                 goto oom_free_page;
3209
3210         entry = mk_pte(page, vma->vm_page_prot);
3211         if (vma->vm_flags & VM_WRITE)
3212                 entry = pte_mkwrite(pte_mkdirty(entry));
3213
3214         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3215         if (!pte_none(*page_table))
3216                 goto release;
3217
3218         inc_mm_counter_fast(mm, MM_ANONPAGES);
3219         page_add_new_anon_rmap(page, vma, address);
3220 setpte:
3221         set_pte_at(mm, address, page_table, entry);
3222
3223         /* No need to invalidate - it was non-present before */
3224         update_mmu_cache(vma, address, page_table);
3225 unlock:
3226         pte_unmap_unlock(page_table, ptl);
3227         return 0;
3228 release:
3229         mem_cgroup_uncharge_page(page);
3230         page_cache_release(page);
3231         goto unlock;
3232 oom_free_page:
3233         page_cache_release(page);
3234 oom:
3235         return VM_FAULT_OOM;
3236 }
3237
3238 /*
3239  * __do_fault() tries to create a new page mapping. It aggressively
3240  * tries to share with existing pages, but makes a separate copy if
3241  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3242  * the next page fault.
3243  *
3244  * As this is called only for pages that do not currently exist, we
3245  * do not need to flush old virtual caches or the TLB.
3246  *
3247  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3248  * but allow concurrent faults), and pte neither mapped nor locked.
3249  * We return with mmap_sem still held, but pte unmapped and unlocked.
3250  */
3251 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3252                 unsigned long address, pmd_t *pmd,
3253                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3254 {
3255         pte_t *page_table;
3256         spinlock_t *ptl;
3257         struct page *page;
3258         struct page *cow_page;
3259         pte_t entry;
3260         int anon = 0;
3261         struct page *dirty_page = NULL;
3262         struct vm_fault vmf;
3263         int ret;
3264         int page_mkwrite = 0;
3265
3266         /*
3267          * If we do COW later, allocate page befor taking lock_page()
3268          * on the file cache page. This will reduce lock holding time.
3269          */
3270         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3271
3272                 if (unlikely(anon_vma_prepare(vma)))
3273                         return VM_FAULT_OOM;
3274
3275                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3276                 if (!cow_page)
3277                         return VM_FAULT_OOM;
3278
3279                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3280                         page_cache_release(cow_page);
3281                         return VM_FAULT_OOM;
3282                 }
3283         } else
3284                 cow_page = NULL;
3285
3286         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3287         vmf.pgoff = pgoff;
3288         vmf.flags = flags;
3289         vmf.page = NULL;
3290
3291         ret = vma->vm_ops->fault(vma, &vmf);
3292         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3293                             VM_FAULT_RETRY)))
3294                 goto uncharge_out;
3295
3296         if (unlikely(PageHWPoison(vmf.page))) {
3297                 if (ret & VM_FAULT_LOCKED)
3298                         unlock_page(vmf.page);
3299                 ret = VM_FAULT_HWPOISON;
3300                 goto uncharge_out;
3301         }
3302
3303         /*
3304          * For consistency in subsequent calls, make the faulted page always
3305          * locked.
3306          */
3307         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3308                 lock_page(vmf.page);
3309         else
3310                 VM_BUG_ON(!PageLocked(vmf.page));
3311
3312         /*
3313          * Should we do an early C-O-W break?
3314          */
3315         page = vmf.page;
3316         if (flags & FAULT_FLAG_WRITE) {
3317                 if (!(vma->vm_flags & VM_SHARED)) {
3318                         page = cow_page;
3319                         anon = 1;
3320                         copy_user_highpage(page, vmf.page, address, vma);
3321                         __SetPageUptodate(page);
3322                 } else {
3323                         /*
3324                          * If the page will be shareable, see if the backing
3325                          * address space wants to know that the page is about
3326                          * to become writable
3327                          */
3328                         if (vma->vm_ops->page_mkwrite) {
3329                                 int tmp;
3330
3331                                 unlock_page(page);
3332                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3333                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3334                                 if (unlikely(tmp &
3335                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3336                                         ret = tmp;
3337                                         goto unwritable_page;
3338                                 }
3339                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3340                                         lock_page(page);
3341                                         if (!page->mapping) {
3342                                                 ret = 0; /* retry the fault */
3343                                                 unlock_page(page);
3344                                                 goto unwritable_page;
3345                                         }
3346                                 } else
3347                                         VM_BUG_ON(!PageLocked(page));
3348                                 page_mkwrite = 1;
3349                         }
3350                 }
3351
3352         }
3353
3354         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3355
3356         /*
3357          * This silly early PAGE_DIRTY setting removes a race
3358          * due to the bad i386 page protection. But it's valid
3359          * for other architectures too.
3360          *
3361          * Note that if FAULT_FLAG_WRITE is set, we either now have
3362          * an exclusive copy of the page, or this is a shared mapping,
3363          * so we can make it writable and dirty to avoid having to
3364          * handle that later.
3365          */
3366         /* Only go through if we didn't race with anybody else... */
3367         if (likely(pte_same(*page_table, orig_pte))) {
3368                 flush_icache_page(vma, page);
3369                 entry = mk_pte(page, vma->vm_page_prot);
3370                 if (flags & FAULT_FLAG_WRITE)
3371                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3372                 if (anon) {
3373                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3374                         page_add_new_anon_rmap(page, vma, address);
3375                 } else {
3376                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3377                         page_add_file_rmap(page);
3378                         if (flags & FAULT_FLAG_WRITE) {
3379                                 dirty_page = page;
3380                                 get_page(dirty_page);
3381                         }
3382                 }
3383                 set_pte_at(mm, address, page_table, entry);
3384
3385                 /* no need to invalidate: a not-present page won't be cached */
3386                 update_mmu_cache(vma, address, page_table);
3387         } else {
3388                 if (cow_page)
3389                         mem_cgroup_uncharge_page(cow_page);
3390                 if (anon)
3391                         page_cache_release(page);
3392                 else
3393                         anon = 1; /* no anon but release faulted_page */
3394         }
3395
3396         pte_unmap_unlock(page_table, ptl);
3397
3398         if (dirty_page) {
3399                 struct address_space *mapping = page->mapping;
3400                 int dirtied = 0;
3401
3402                 if (set_page_dirty(dirty_page))
3403                         dirtied = 1;
3404                 unlock_page(dirty_page);
3405                 put_page(dirty_page);
3406                 if ((dirtied || page_mkwrite) && mapping) {
3407                         /*
3408                          * Some device drivers do not set page.mapping but still
3409                          * dirty their pages
3410                          */
3411                         balance_dirty_pages_ratelimited(mapping);
3412                 }
3413
3414                 /* file_update_time outside page_lock */
3415                 if (vma->vm_file && !page_mkwrite)
3416                         file_update_time(vma->vm_file);
3417         } else {
3418                 unlock_page(vmf.page);
3419                 if (anon)
3420                         page_cache_release(vmf.page);
3421         }
3422
3423         return ret;
3424
3425 unwritable_page:
3426         page_cache_release(page);
3427         return ret;
3428 uncharge_out:
3429         /* fs's fault handler get error */
3430         if (cow_page) {
3431                 mem_cgroup_uncharge_page(cow_page);
3432                 page_cache_release(cow_page);
3433         }
3434         return ret;
3435 }
3436
3437 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3438                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3439                 unsigned int flags, pte_t orig_pte)
3440 {
3441         pgoff_t pgoff = (((address & PAGE_MASK)
3442                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3443
3444         pte_unmap(page_table);
3445         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3446 }
3447
3448 /*
3449  * Fault of a previously existing named mapping. Repopulate the pte
3450  * from the encoded file_pte if possible. This enables swappable
3451  * nonlinear vmas.
3452  *
3453  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3454  * but allow concurrent faults), and pte mapped but not yet locked.
3455  * We return with mmap_sem still held, but pte unmapped and unlocked.
3456  */
3457 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3458                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3459                 unsigned int flags, pte_t orig_pte)
3460 {
3461         pgoff_t pgoff;
3462
3463         flags |= FAULT_FLAG_NONLINEAR;
3464
3465         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3466                 return 0;
3467
3468         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3469                 /*
3470                  * Page table corrupted: show pte and kill process.
3471                  */
3472                 print_bad_pte(vma, address, orig_pte, NULL);
3473                 return VM_FAULT_SIGBUS;
3474         }
3475
3476         pgoff = pte_to_pgoff(orig_pte);
3477         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3478 }
3479
3480 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3481                         unsigned long address, pte_t *ptep, pmd_t *pmd,
3482                         unsigned int flags, pte_t entry)
3483 {
3484         struct page *page = NULL;
3485         int node, page_nid = -1;
3486         spinlock_t *ptl;
3487
3488         ptl = pte_lockptr(mm, pmd);
3489         spin_lock(ptl);
3490         if (unlikely(!pte_same(*ptep, entry)))
3491                 goto out_unlock;
3492
3493         page = vm_normal_page(vma, address, entry);
3494         if (page) {
3495                 get_page(page);
3496                 page_nid = page_to_nid(page);
3497                 node = mpol_misplaced(page, vma, address);
3498                 if (node != -1)
3499                         goto migrate;
3500         }
3501
3502 out_pte_upgrade_unlock:
3503         flush_cache_page(vma, address, pte_pfn(entry));
3504
3505         ptep_modify_prot_start(mm, address, ptep);
3506         entry = pte_modify(entry, vma->vm_page_prot);
3507         ptep_modify_prot_commit(mm, address, ptep, entry);
3508
3509         /* No TLB flush needed because we upgraded the PTE */
3510
3511         update_mmu_cache(vma, address, ptep);
3512
3513 out_unlock:
3514         pte_unmap_unlock(ptep, ptl);
3515 out:
3516         if (page) {
3517                 task_numa_fault(page_nid, 1);
3518                 put_page(page);
3519         }
3520
3521         return 0;
3522
3523 migrate:
3524         pte_unmap_unlock(ptep, ptl);
3525
3526         if (!migrate_misplaced_page(page, node)) {
3527                 page_nid = node;
3528                 goto out;
3529         }
3530
3531         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3532         if (!pte_same(*ptep, entry)) {
3533                 put_page(page);
3534                 page = NULL;
3535                 goto out_unlock;
3536         }
3537
3538         goto out_pte_upgrade_unlock;
3539 }
3540
3541 /*
3542  * These routines also need to handle stuff like marking pages dirty
3543  * and/or accessed for architectures that don't do it in hardware (most
3544  * RISC architectures).  The early dirtying is also good on the i386.
3545  *
3546  * There is also a hook called "update_mmu_cache()" that architectures
3547  * with external mmu caches can use to update those (ie the Sparc or
3548  * PowerPC hashed page tables that act as extended TLBs).
3549  *
3550  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3551  * but allow concurrent faults), and pte mapped but not yet locked.
3552  * We return with mmap_sem still held, but pte unmapped and unlocked.
3553  */
3554 int handle_pte_fault(struct mm_struct *mm,
3555                      struct vm_area_struct *vma, unsigned long address,
3556                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3557 {
3558         pte_t entry;
3559         spinlock_t *ptl;
3560
3561         entry = ACCESS_ONCE(*pte);
3562         if (!pte_present(entry)) {
3563                 if (pte_none(entry)) {
3564                         if (vma->vm_ops) {
3565                                 if (likely(vma->vm_ops->fault))
3566                                         return do_linear_fault(mm, vma, address,
3567                                                 pte, pmd, flags, entry);
3568                         }
3569                         return do_anonymous_page(mm, vma, address,
3570                                                  pte, pmd, flags);
3571                 }
3572                 if (pte_file(entry))
3573                         return do_nonlinear_fault(mm, vma, address,
3574                                         pte, pmd, flags, entry);
3575                 return do_swap_page(mm, vma, address,
3576                                         pte, pmd, flags, entry);
3577         }
3578
3579         if (pte_numa(vma, entry))
3580                 return do_numa_page(mm, vma, address, pte, pmd, flags, entry);
3581
3582         ptl = pte_lockptr(mm, pmd);
3583         spin_lock(ptl);
3584         if (unlikely(!pte_same(*pte, entry)))
3585                 goto unlock;
3586         if (flags & FAULT_FLAG_WRITE) {
3587                 if (!pte_write(entry))
3588                         return do_wp_page(mm, vma, address,
3589                                         pte, pmd, ptl, entry);
3590                 entry = pte_mkdirty(entry);
3591         }
3592         entry = pte_mkyoung(entry);
3593         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3594                 update_mmu_cache(vma, address, pte);
3595         } else {
3596                 /*
3597                  * This is needed only for protection faults but the arch code
3598                  * is not yet telling us if this is a protection fault or not.
3599                  * This still avoids useless tlb flushes for .text page faults
3600                  * with threads.
3601                  */
3602                 if (flags & FAULT_FLAG_WRITE)
3603                         flush_tlb_fix_spurious_fault(vma, address);
3604         }
3605 unlock:
3606         pte_unmap_unlock(pte, ptl);
3607         return 0;
3608 }
3609
3610 /*
3611  * By the time we get here, we already hold the mm semaphore
3612  */
3613 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3614                 unsigned long address, unsigned int flags)
3615 {
3616         pgd_t *pgd;
3617         pud_t *pud;
3618         pmd_t *pmd;
3619         pte_t *pte;
3620
3621         __set_current_state(TASK_RUNNING);
3622
3623         count_vm_event(PGFAULT);
3624         mem_cgroup_count_vm_event(mm, PGFAULT);
3625
3626         /* do counter updates before entering really critical section. */
3627         check_sync_rss_stat(current);
3628
3629         if (unlikely(is_vm_hugetlb_page(vma)))
3630                 return hugetlb_fault(mm, vma, address, flags);
3631
3632 retry:
3633         pgd = pgd_offset(mm, address);
3634         pud = pud_alloc(mm, pgd, address);
3635         if (!pud)
3636                 return VM_FAULT_OOM;
3637         pmd = pmd_alloc(mm, pud, address);
3638         if (!pmd)
3639                 return VM_FAULT_OOM;
3640         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3641                 if (!vma->vm_ops)
3642                         return do_huge_pmd_anonymous_page(mm, vma, address,
3643                                                           pmd, flags);
3644         } else {
3645                 pmd_t orig_pmd = *pmd;
3646                 int ret = 0;
3647
3648                 barrier();
3649                 if (pmd_trans_huge(orig_pmd) && !pmd_trans_splitting(orig_pmd)) {
3650                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3651
3652                         if (pmd_numa(vma, orig_pmd)) {
3653                                 do_huge_pmd_numa_page(mm, vma, address, pmd,
3654                                                       flags, orig_pmd);
3655                         }
3656
3657                         if (dirty && !pmd_write(orig_pmd)) {
3658                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3659                                                           orig_pmd);
3660                                 /*
3661                                  * If COW results in an oom, the huge pmd will
3662                                  * have been split, so retry the fault on the
3663                                  * pte for a smaller charge.
3664                                  */
3665                                 if (unlikely(ret & VM_FAULT_OOM))
3666                                         goto retry;
3667                         } else {
3668                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3669                                                       orig_pmd, dirty);
3670                         }
3671
3672                         return ret;
3673                 }
3674         }
3675
3676
3677         /*
3678          * Use __pte_alloc instead of pte_alloc_map, because we can't
3679          * run pte_offset_map on the pmd, if an huge pmd could
3680          * materialize from under us from a different thread.
3681          */
3682         if (unlikely(pmd_none(*pmd)) &&
3683             unlikely(__pte_alloc(mm, vma, pmd, address)))
3684                 return VM_FAULT_OOM;
3685         /* if an huge pmd materialized from under us just retry later */
3686         if (unlikely(pmd_trans_huge(*pmd)))
3687                 return 0;
3688         /*
3689          * A regular pmd is established and it can't morph into a huge pmd
3690          * from under us anymore at this point because we hold the mmap_sem
3691          * read mode and khugepaged takes it in write mode. So now it's
3692          * safe to run pte_offset_map().
3693          */
3694         pte = pte_offset_map(pmd, address);
3695
3696         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3697 }
3698
3699 #ifndef __PAGETABLE_PUD_FOLDED
3700 /*
3701  * Allocate page upper directory.
3702  * We've already handled the fast-path in-line.
3703  */
3704 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3705 {
3706         pud_t *new = pud_alloc_one(mm, address);
3707         if (!new)
3708                 return -ENOMEM;
3709
3710         smp_wmb(); /* See comment in __pte_alloc */
3711
3712         spin_lock(&mm->page_table_lock);
3713         if (pgd_present(*pgd))          /* Another has populated it */
3714                 pud_free(mm, new);
3715         else
3716                 pgd_populate(mm, pgd, new);
3717         spin_unlock(&mm->page_table_lock);
3718         return 0;
3719 }
3720 #endif /* __PAGETABLE_PUD_FOLDED */
3721
3722 #ifndef __PAGETABLE_PMD_FOLDED
3723 /*
3724  * Allocate page middle directory.
3725  * We've already handled the fast-path in-line.
3726  */
3727 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3728 {
3729         pmd_t *new = pmd_alloc_one(mm, address);
3730         if (!new)
3731                 return -ENOMEM;
3732
3733         smp_wmb(); /* See comment in __pte_alloc */
3734
3735         spin_lock(&mm->page_table_lock);
3736 #ifndef __ARCH_HAS_4LEVEL_HACK
3737         if (pud_present(*pud))          /* Another has populated it */
3738                 pmd_free(mm, new);
3739         else
3740                 pud_populate(mm, pud, new);
3741 #else
3742         if (pgd_present(*pud))          /* Another has populated it */
3743                 pmd_free(mm, new);
3744         else
3745                 pgd_populate(mm, pud, new);
3746 #endif /* __ARCH_HAS_4LEVEL_HACK */
3747         spin_unlock(&mm->page_table_lock);
3748         return 0;
3749 }
3750 #endif /* __PAGETABLE_PMD_FOLDED */
3751
3752 int make_pages_present(unsigned long addr, unsigned long end)
3753 {
3754         int ret, len, write;
3755         struct vm_area_struct * vma;
3756
3757         vma = find_vma(current->mm, addr);
3758         if (!vma)
3759                 return -ENOMEM;
3760         /*
3761          * We want to touch writable mappings with a write fault in order
3762          * to break COW, except for shared mappings because these don't COW
3763          * and we would not want to dirty them for nothing.
3764          */
3765         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3766         BUG_ON(addr >= end);
3767         BUG_ON(end > vma->vm_end);
3768         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3769         ret = get_user_pages(current, current->mm, addr,
3770                         len, write, 0, NULL, NULL);
3771         if (ret < 0)
3772                 return ret;
3773         return ret == len ? 0 : -EFAULT;
3774 }
3775
3776 #if !defined(__HAVE_ARCH_GATE_AREA)
3777
3778 #if defined(AT_SYSINFO_EHDR)
3779 static struct vm_area_struct gate_vma;
3780
3781 static int __init gate_vma_init(void)
3782 {
3783         gate_vma.vm_mm = NULL;
3784         gate_vma.vm_start = FIXADDR_USER_START;
3785         gate_vma.vm_end = FIXADDR_USER_END;
3786         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3787         gate_vma.vm_page_prot = __P101;
3788
3789         return 0;
3790 }
3791 __initcall(gate_vma_init);
3792 #endif
3793
3794 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3795 {
3796 #ifdef AT_SYSINFO_EHDR
3797         return &gate_vma;
3798 #else
3799         return NULL;
3800 #endif
3801 }
3802
3803 int in_gate_area_no_mm(unsigned long addr)
3804 {
3805 #ifdef AT_SYSINFO_EHDR
3806         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3807                 return 1;
3808 #endif
3809         return 0;
3810 }
3811
3812 #endif  /* __HAVE_ARCH_GATE_AREA */
3813
3814 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3815                 pte_t **ptepp, spinlock_t **ptlp)
3816 {
3817         pgd_t *pgd;
3818         pud_t *pud;
3819         pmd_t *pmd;
3820         pte_t *ptep;
3821
3822         pgd = pgd_offset(mm, address);
3823         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3824                 goto out;
3825
3826         pud = pud_offset(pgd, address);
3827         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3828                 goto out;
3829
3830         pmd = pmd_offset(pud, address);
3831         VM_BUG_ON(pmd_trans_huge(*pmd));
3832         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3833                 goto out;
3834
3835         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3836         if (pmd_huge(*pmd))
3837                 goto out;
3838
3839         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3840         if (!ptep)
3841                 goto out;
3842         if (!pte_present(*ptep))
3843                 goto unlock;
3844         *ptepp = ptep;
3845         return 0;
3846 unlock:
3847         pte_unmap_unlock(ptep, *ptlp);
3848 out:
3849         return -EINVAL;
3850 }
3851
3852 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3853                              pte_t **ptepp, spinlock_t **ptlp)
3854 {
3855         int res;
3856
3857         /* (void) is needed to make gcc happy */
3858         (void) __cond_lock(*ptlp,
3859                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3860         return res;
3861 }
3862
3863 /**
3864  * follow_pfn - look up PFN at a user virtual address
3865  * @vma: memory mapping
3866  * @address: user virtual address
3867  * @pfn: location to store found PFN
3868  *
3869  * Only IO mappings and raw PFN mappings are allowed.
3870  *
3871  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3872  */
3873 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3874         unsigned long *pfn)
3875 {
3876         int ret = -EINVAL;
3877         spinlock_t *ptl;
3878         pte_t *ptep;
3879
3880         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3881                 return ret;
3882
3883         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3884         if (ret)
3885                 return ret;
3886         *pfn = pte_pfn(*ptep);
3887         pte_unmap_unlock(ptep, ptl);
3888         return 0;
3889 }
3890 EXPORT_SYMBOL(follow_pfn);
3891
3892 #ifdef CONFIG_HAVE_IOREMAP_PROT
3893 int follow_phys(struct vm_area_struct *vma,
3894                 unsigned long address, unsigned int flags,
3895                 unsigned long *prot, resource_size_t *phys)
3896 {
3897         int ret = -EINVAL;
3898         pte_t *ptep, pte;
3899         spinlock_t *ptl;
3900
3901         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3902                 goto out;
3903
3904         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3905                 goto out;
3906         pte = *ptep;
3907
3908         if ((flags & FOLL_WRITE) && !pte_write(pte))
3909                 goto unlock;
3910
3911         *prot = pgprot_val(pte_pgprot(pte));
3912         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3913
3914         ret = 0;
3915 unlock:
3916         pte_unmap_unlock(ptep, ptl);
3917 out:
3918         return ret;
3919 }
3920
3921 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3922                         void *buf, int len, int write)
3923 {
3924         resource_size_t phys_addr;
3925         unsigned long prot = 0;
3926         void __iomem *maddr;
3927         int offset = addr & (PAGE_SIZE-1);
3928
3929         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3930                 return -EINVAL;
3931
3932         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3933         if (write)
3934                 memcpy_toio(maddr + offset, buf, len);
3935         else
3936                 memcpy_fromio(buf, maddr + offset, len);
3937         iounmap(maddr);
3938
3939         return len;
3940 }
3941 #endif
3942
3943 /*
3944  * Access another process' address space as given in mm.  If non-NULL, use the
3945  * given task for page fault accounting.
3946  */
3947 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3948                 unsigned long addr, void *buf, int len, int write)
3949 {
3950         struct vm_area_struct *vma;
3951         void *old_buf = buf;
3952
3953         down_read(&mm->mmap_sem);
3954         /* ignore errors, just check how much was successfully transferred */
3955         while (len) {
3956                 int bytes, ret, offset;
3957                 void *maddr;
3958                 struct page *page = NULL;
3959
3960                 ret = get_user_pages(tsk, mm, addr, 1,
3961                                 write, 1, &page, &vma);
3962                 if (ret <= 0) {
3963                         /*
3964                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3965                          * we can access using slightly different code.
3966                          */
3967 #ifdef CONFIG_HAVE_IOREMAP_PROT
3968                         vma = find_vma(mm, addr);
3969                         if (!vma || vma->vm_start > addr)
3970                                 break;
3971                         if (vma->vm_ops && vma->vm_ops->access)
3972                                 ret = vma->vm_ops->access(vma, addr, buf,
3973                                                           len, write);
3974                         if (ret <= 0)
3975 #endif
3976                                 break;
3977                         bytes = ret;
3978                 } else {
3979                         bytes = len;
3980                         offset = addr & (PAGE_SIZE-1);
3981                         if (bytes > PAGE_SIZE-offset)
3982                                 bytes = PAGE_SIZE-offset;
3983
3984                         maddr = kmap(page);
3985                         if (write) {
3986                                 copy_to_user_page(vma, page, addr,
3987                                                   maddr + offset, buf, bytes);
3988                                 set_page_dirty_lock(page);
3989                         } else {
3990                                 copy_from_user_page(vma, page, addr,
3991                                                     buf, maddr + offset, bytes);
3992                         }
3993                         kunmap(page);
3994                         page_cache_release(page);
3995                 }
3996                 len -= bytes;
3997                 buf += bytes;
3998                 addr += bytes;
3999         }
4000         up_read(&mm->mmap_sem);
4001
4002         return buf - old_buf;
4003 }
4004
4005 /**
4006  * access_remote_vm - access another process' address space
4007  * @mm:         the mm_struct of the target address space
4008  * @addr:       start address to access
4009  * @buf:        source or destination buffer
4010  * @len:        number of bytes to transfer
4011  * @write:      whether the access is a write
4012  *
4013  * The caller must hold a reference on @mm.
4014  */
4015 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4016                 void *buf, int len, int write)
4017 {
4018         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4019 }
4020
4021 /*
4022  * Access another process' address space.
4023  * Source/target buffer must be kernel space,
4024  * Do not walk the page table directly, use get_user_pages
4025  */
4026 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4027                 void *buf, int len, int write)
4028 {
4029         struct mm_struct *mm;
4030         int ret;
4031
4032         mm = get_task_mm(tsk);
4033         if (!mm)
4034                 return 0;
4035
4036         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4037         mmput(mm);
4038
4039         return ret;
4040 }
4041
4042 /*
4043  * Print the name of a VMA.
4044  */
4045 void print_vma_addr(char *prefix, unsigned long ip)
4046 {
4047         struct mm_struct *mm = current->mm;
4048         struct vm_area_struct *vma;
4049
4050         /*
4051          * Do not print if we are in atomic
4052          * contexts (in exception stacks, etc.):
4053          */
4054         if (preempt_count())
4055                 return;
4056
4057         down_read(&mm->mmap_sem);
4058         vma = find_vma(mm, ip);
4059         if (vma && vma->vm_file) {
4060                 struct file *f = vma->vm_file;
4061                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4062                 if (buf) {
4063                         char *p, *s;
4064
4065                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4066                         if (IS_ERR(p))
4067                                 p = "?";
4068                         s = strrchr(p, '/');
4069                         if (s)
4070                                 p = s+1;
4071                         printk("%s%s[%lx+%lx]", prefix, p,
4072                                         vma->vm_start,
4073                                         vma->vm_end - vma->vm_start);
4074                         free_page((unsigned long)buf);
4075                 }
4076         }
4077         up_read(&mm->mmap_sem);
4078 }
4079
4080 #ifdef CONFIG_PROVE_LOCKING
4081 void might_fault(void)
4082 {
4083         /*
4084          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4085          * holding the mmap_sem, this is safe because kernel memory doesn't
4086          * get paged out, therefore we'll never actually fault, and the
4087          * below annotations will generate false positives.
4088          */
4089         if (segment_eq(get_fs(), KERNEL_DS))
4090                 return;
4091
4092         might_sleep();
4093         /*
4094          * it would be nicer only to annotate paths which are not under
4095          * pagefault_disable, however that requires a larger audit and
4096          * providing helpers like get_user_atomic.
4097          */
4098         if (!in_atomic() && current->mm)
4099                 might_lock_read(&current->mm->mmap_sem);
4100 }
4101 EXPORT_SYMBOL(might_fault);
4102 #endif
4103
4104 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4105 static void clear_gigantic_page(struct page *page,
4106                                 unsigned long addr,
4107                                 unsigned int pages_per_huge_page)
4108 {
4109         int i;
4110         struct page *p = page;
4111
4112         might_sleep();
4113         for (i = 0; i < pages_per_huge_page;
4114              i++, p = mem_map_next(p, page, i)) {
4115                 cond_resched();
4116                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4117         }
4118 }
4119 void clear_huge_page(struct page *page,
4120                      unsigned long addr, unsigned int pages_per_huge_page)
4121 {
4122         int i;
4123
4124         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4125                 clear_gigantic_page(page, addr, pages_per_huge_page);
4126                 return;
4127         }
4128
4129         might_sleep();
4130         for (i = 0; i < pages_per_huge_page; i++) {
4131                 cond_resched();
4132                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4133         }
4134 }
4135
4136 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4137                                     unsigned long addr,
4138                                     struct vm_area_struct *vma,
4139                                     unsigned int pages_per_huge_page)
4140 {
4141         int i;
4142         struct page *dst_base = dst;
4143         struct page *src_base = src;
4144
4145         for (i = 0; i < pages_per_huge_page; ) {
4146                 cond_resched();
4147                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4148
4149                 i++;
4150                 dst = mem_map_next(dst, dst_base, i);
4151                 src = mem_map_next(src, src_base, i);
4152         }
4153 }
4154
4155 void copy_user_huge_page(struct page *dst, struct page *src,
4156                          unsigned long addr, struct vm_area_struct *vma,
4157                          unsigned int pages_per_huge_page)
4158 {
4159         int i;
4160
4161         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4162                 copy_user_gigantic_page(dst, src, addr, vma,
4163                                         pages_per_huge_page);
4164                 return;
4165         }
4166
4167         might_sleep();
4168         for (i = 0; i < pages_per_huge_page; i++) {
4169                 cond_resched();
4170                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4171         }
4172 }
4173 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */