]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/migrate.c
[PATCH] page migration: simplify migrate_pages()
[karo-tx-linux.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28
29 #include "internal.h"
30
31 /* The maximum number of pages to take off the LRU for migration */
32 #define MIGRATE_CHUNK_SIZE 256
33
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
35
36 /*
37  * Isolate one page from the LRU lists. If successful put it onto
38  * the indicated list with elevated page count.
39  *
40  * Result:
41  *  -EBUSY: page not on LRU list
42  *  0: page removed from LRU list and added to the specified list.
43  */
44 int isolate_lru_page(struct page *page, struct list_head *pagelist)
45 {
46         int ret = -EBUSY;
47
48         if (PageLRU(page)) {
49                 struct zone *zone = page_zone(page);
50
51                 spin_lock_irq(&zone->lru_lock);
52                 if (PageLRU(page)) {
53                         ret = 0;
54                         get_page(page);
55                         ClearPageLRU(page);
56                         if (PageActive(page))
57                                 del_page_from_active_list(zone, page);
58                         else
59                                 del_page_from_inactive_list(zone, page);
60                         list_add_tail(&page->lru, pagelist);
61                 }
62                 spin_unlock_irq(&zone->lru_lock);
63         }
64         return ret;
65 }
66
67 /*
68  * migrate_prep() needs to be called after we have compiled the list of pages
69  * to be migrated using isolate_lru_page() but before we begin a series of calls
70  * to migrate_pages().
71  */
72 int migrate_prep(void)
73 {
74         /*
75          * Clear the LRU lists so pages can be isolated.
76          * Note that pages may be moved off the LRU after we have
77          * drained them. Those pages will fail to migrate like other
78          * pages that may be busy.
79          */
80         lru_add_drain_all();
81
82         return 0;
83 }
84
85 static inline void move_to_lru(struct page *page)
86 {
87         if (PageActive(page)) {
88                 /*
89                  * lru_cache_add_active checks that
90                  * the PG_active bit is off.
91                  */
92                 ClearPageActive(page);
93                 lru_cache_add_active(page);
94         } else {
95                 lru_cache_add(page);
96         }
97         put_page(page);
98 }
99
100 /*
101  * Add isolated pages on the list back to the LRU.
102  *
103  * returns the number of pages put back.
104  */
105 int putback_lru_pages(struct list_head *l)
106 {
107         struct page *page;
108         struct page *page2;
109         int count = 0;
110
111         list_for_each_entry_safe(page, page2, l, lru) {
112                 list_del(&page->lru);
113                 move_to_lru(page);
114                 count++;
115         }
116         return count;
117 }
118
119 static inline int is_swap_pte(pte_t pte)
120 {
121         return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
122 }
123
124 /*
125  * Restore a potential migration pte to a working pte entry
126  */
127 static void remove_migration_pte(struct vm_area_struct *vma,
128                 struct page *old, struct page *new)
129 {
130         struct mm_struct *mm = vma->vm_mm;
131         swp_entry_t entry;
132         pgd_t *pgd;
133         pud_t *pud;
134         pmd_t *pmd;
135         pte_t *ptep, pte;
136         spinlock_t *ptl;
137         unsigned long addr = page_address_in_vma(new, vma);
138
139         if (addr == -EFAULT)
140                 return;
141
142         pgd = pgd_offset(mm, addr);
143         if (!pgd_present(*pgd))
144                 return;
145
146         pud = pud_offset(pgd, addr);
147         if (!pud_present(*pud))
148                 return;
149
150         pmd = pmd_offset(pud, addr);
151         if (!pmd_present(*pmd))
152                 return;
153
154         ptep = pte_offset_map(pmd, addr);
155
156         if (!is_swap_pte(*ptep)) {
157                 pte_unmap(ptep);
158                 return;
159         }
160
161         ptl = pte_lockptr(mm, pmd);
162         spin_lock(ptl);
163         pte = *ptep;
164         if (!is_swap_pte(pte))
165                 goto out;
166
167         entry = pte_to_swp_entry(pte);
168
169         if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
170                 goto out;
171
172         get_page(new);
173         pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
174         if (is_write_migration_entry(entry))
175                 pte = pte_mkwrite(pte);
176         set_pte_at(mm, addr, ptep, pte);
177
178         if (PageAnon(new))
179                 page_add_anon_rmap(new, vma, addr);
180         else
181                 page_add_file_rmap(new);
182
183         /* No need to invalidate - it was non-present before */
184         update_mmu_cache(vma, addr, pte);
185         lazy_mmu_prot_update(pte);
186
187 out:
188         pte_unmap_unlock(ptep, ptl);
189 }
190
191 /*
192  * Note that remove_file_migration_ptes will only work on regular mappings,
193  * Nonlinear mappings do not use migration entries.
194  */
195 static void remove_file_migration_ptes(struct page *old, struct page *new)
196 {
197         struct vm_area_struct *vma;
198         struct address_space *mapping = page_mapping(new);
199         struct prio_tree_iter iter;
200         pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
201
202         if (!mapping)
203                 return;
204
205         spin_lock(&mapping->i_mmap_lock);
206
207         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
208                 remove_migration_pte(vma, old, new);
209
210         spin_unlock(&mapping->i_mmap_lock);
211 }
212
213 /*
214  * Must hold mmap_sem lock on at least one of the vmas containing
215  * the page so that the anon_vma cannot vanish.
216  */
217 static void remove_anon_migration_ptes(struct page *old, struct page *new)
218 {
219         struct anon_vma *anon_vma;
220         struct vm_area_struct *vma;
221         unsigned long mapping;
222
223         mapping = (unsigned long)new->mapping;
224
225         if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
226                 return;
227
228         /*
229          * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230          */
231         anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
232         spin_lock(&anon_vma->lock);
233
234         list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
235                 remove_migration_pte(vma, old, new);
236
237         spin_unlock(&anon_vma->lock);
238 }
239
240 /*
241  * Get rid of all migration entries and replace them by
242  * references to the indicated page.
243  */
244 static void remove_migration_ptes(struct page *old, struct page *new)
245 {
246         if (PageAnon(new))
247                 remove_anon_migration_ptes(old, new);
248         else
249                 remove_file_migration_ptes(old, new);
250 }
251
252 /*
253  * Something used the pte of a page under migration. We need to
254  * get to the page and wait until migration is finished.
255  * When we return from this function the fault will be retried.
256  *
257  * This function is called from do_swap_page().
258  */
259 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
260                                 unsigned long address)
261 {
262         pte_t *ptep, pte;
263         spinlock_t *ptl;
264         swp_entry_t entry;
265         struct page *page;
266
267         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
268         pte = *ptep;
269         if (!is_swap_pte(pte))
270                 goto out;
271
272         entry = pte_to_swp_entry(pte);
273         if (!is_migration_entry(entry))
274                 goto out;
275
276         page = migration_entry_to_page(entry);
277
278         get_page(page);
279         pte_unmap_unlock(ptep, ptl);
280         wait_on_page_locked(page);
281         put_page(page);
282         return;
283 out:
284         pte_unmap_unlock(ptep, ptl);
285 }
286
287 /*
288  * Replace the page in the mapping.
289  *
290  * The number of remaining references must be:
291  * 1 for anonymous pages without a mapping
292  * 2 for pages with a mapping
293  * 3 for pages with a mapping and PagePrivate set.
294  */
295 static int migrate_page_move_mapping(struct address_space *mapping,
296                 struct page *newpage, struct page *page)
297 {
298         struct page **radix_pointer;
299
300         if (!mapping) {
301                 /* Anonymous page */
302                 if (page_count(page) != 1)
303                         return -EAGAIN;
304                 return 0;
305         }
306
307         write_lock_irq(&mapping->tree_lock);
308
309         radix_pointer = (struct page **)radix_tree_lookup_slot(
310                                                 &mapping->page_tree,
311                                                 page_index(page));
312
313         if (page_count(page) != 2 + !!PagePrivate(page) ||
314                         *radix_pointer != page) {
315                 write_unlock_irq(&mapping->tree_lock);
316                 return -EAGAIN;
317         }
318
319         /*
320          * Now we know that no one else is looking at the page.
321          */
322         get_page(newpage);
323 #ifdef CONFIG_SWAP
324         if (PageSwapCache(page)) {
325                 SetPageSwapCache(newpage);
326                 set_page_private(newpage, page_private(page));
327         }
328 #endif
329
330         *radix_pointer = newpage;
331         __put_page(page);
332         write_unlock_irq(&mapping->tree_lock);
333
334         return 0;
335 }
336
337 /*
338  * Copy the page to its new location
339  */
340 static void migrate_page_copy(struct page *newpage, struct page *page)
341 {
342         copy_highpage(newpage, page);
343
344         if (PageError(page))
345                 SetPageError(newpage);
346         if (PageReferenced(page))
347                 SetPageReferenced(newpage);
348         if (PageUptodate(page))
349                 SetPageUptodate(newpage);
350         if (PageActive(page))
351                 SetPageActive(newpage);
352         if (PageChecked(page))
353                 SetPageChecked(newpage);
354         if (PageMappedToDisk(page))
355                 SetPageMappedToDisk(newpage);
356
357         if (PageDirty(page)) {
358                 clear_page_dirty_for_io(page);
359                 set_page_dirty(newpage);
360         }
361
362 #ifdef CONFIG_SWAP
363         ClearPageSwapCache(page);
364 #endif
365         ClearPageActive(page);
366         ClearPagePrivate(page);
367         set_page_private(page, 0);
368         page->mapping = NULL;
369
370         /*
371          * If any waiters have accumulated on the new page then
372          * wake them up.
373          */
374         if (PageWriteback(newpage))
375                 end_page_writeback(newpage);
376 }
377
378 /************************************************************
379  *                    Migration functions
380  ***********************************************************/
381
382 /* Always fail migration. Used for mappings that are not movable */
383 int fail_migrate_page(struct address_space *mapping,
384                         struct page *newpage, struct page *page)
385 {
386         return -EIO;
387 }
388 EXPORT_SYMBOL(fail_migrate_page);
389
390 /*
391  * Common logic to directly migrate a single page suitable for
392  * pages that do not use PagePrivate.
393  *
394  * Pages are locked upon entry and exit.
395  */
396 int migrate_page(struct address_space *mapping,
397                 struct page *newpage, struct page *page)
398 {
399         int rc;
400
401         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
402
403         rc = migrate_page_move_mapping(mapping, newpage, page);
404
405         if (rc)
406                 return rc;
407
408         migrate_page_copy(newpage, page);
409         return 0;
410 }
411 EXPORT_SYMBOL(migrate_page);
412
413 /*
414  * Migration function for pages with buffers. This function can only be used
415  * if the underlying filesystem guarantees that no other references to "page"
416  * exist.
417  */
418 int buffer_migrate_page(struct address_space *mapping,
419                 struct page *newpage, struct page *page)
420 {
421         struct buffer_head *bh, *head;
422         int rc;
423
424         if (!page_has_buffers(page))
425                 return migrate_page(mapping, newpage, page);
426
427         head = page_buffers(page);
428
429         rc = migrate_page_move_mapping(mapping, newpage, page);
430
431         if (rc)
432                 return rc;
433
434         bh = head;
435         do {
436                 get_bh(bh);
437                 lock_buffer(bh);
438                 bh = bh->b_this_page;
439
440         } while (bh != head);
441
442         ClearPagePrivate(page);
443         set_page_private(newpage, page_private(page));
444         set_page_private(page, 0);
445         put_page(page);
446         get_page(newpage);
447
448         bh = head;
449         do {
450                 set_bh_page(bh, newpage, bh_offset(bh));
451                 bh = bh->b_this_page;
452
453         } while (bh != head);
454
455         SetPagePrivate(newpage);
456
457         migrate_page_copy(newpage, page);
458
459         bh = head;
460         do {
461                 unlock_buffer(bh);
462                 put_bh(bh);
463                 bh = bh->b_this_page;
464
465         } while (bh != head);
466
467         return 0;
468 }
469 EXPORT_SYMBOL(buffer_migrate_page);
470
471 /*
472  * Writeback a page to clean the dirty state
473  */
474 static int writeout(struct address_space *mapping, struct page *page)
475 {
476         struct writeback_control wbc = {
477                 .sync_mode = WB_SYNC_NONE,
478                 .nr_to_write = 1,
479                 .range_start = 0,
480                 .range_end = LLONG_MAX,
481                 .nonblocking = 1,
482                 .for_reclaim = 1
483         };
484         int rc;
485
486         if (!mapping->a_ops->writepage)
487                 /* No write method for the address space */
488                 return -EINVAL;
489
490         if (!clear_page_dirty_for_io(page))
491                 /* Someone else already triggered a write */
492                 return -EAGAIN;
493
494         /*
495          * A dirty page may imply that the underlying filesystem has
496          * the page on some queue. So the page must be clean for
497          * migration. Writeout may mean we loose the lock and the
498          * page state is no longer what we checked for earlier.
499          * At this point we know that the migration attempt cannot
500          * be successful.
501          */
502         remove_migration_ptes(page, page);
503
504         rc = mapping->a_ops->writepage(page, &wbc);
505         if (rc < 0)
506                 /* I/O Error writing */
507                 return -EIO;
508
509         if (rc != AOP_WRITEPAGE_ACTIVATE)
510                 /* unlocked. Relock */
511                 lock_page(page);
512
513         return -EAGAIN;
514 }
515
516 /*
517  * Default handling if a filesystem does not provide a migration function.
518  */
519 static int fallback_migrate_page(struct address_space *mapping,
520         struct page *newpage, struct page *page)
521 {
522         if (PageDirty(page))
523                 return writeout(mapping, page);
524
525         /*
526          * Buffers may be managed in a filesystem specific way.
527          * We must have no buffers or drop them.
528          */
529         if (page_has_buffers(page) &&
530             !try_to_release_page(page, GFP_KERNEL))
531                 return -EAGAIN;
532
533         return migrate_page(mapping, newpage, page);
534 }
535
536 /*
537  * Move a page to a newly allocated page
538  * The page is locked and all ptes have been successfully removed.
539  *
540  * The new page will have replaced the old page if this function
541  * is successful.
542  */
543 static int move_to_new_page(struct page *newpage, struct page *page)
544 {
545         struct address_space *mapping;
546         int rc;
547
548         /*
549          * Block others from accessing the page when we get around to
550          * establishing additional references. We are the only one
551          * holding a reference to the new page at this point.
552          */
553         if (TestSetPageLocked(newpage))
554                 BUG();
555
556         /* Prepare mapping for the new page.*/
557         newpage->index = page->index;
558         newpage->mapping = page->mapping;
559
560         mapping = page_mapping(page);
561         if (!mapping)
562                 rc = migrate_page(mapping, newpage, page);
563         else if (mapping->a_ops->migratepage)
564                 /*
565                  * Most pages have a mapping and most filesystems
566                  * should provide a migration function. Anonymous
567                  * pages are part of swap space which also has its
568                  * own migration function. This is the most common
569                  * path for page migration.
570                  */
571                 rc = mapping->a_ops->migratepage(mapping,
572                                                 newpage, page);
573         else
574                 rc = fallback_migrate_page(mapping, newpage, page);
575
576         if (!rc)
577                 remove_migration_ptes(page, newpage);
578         else
579                 newpage->mapping = NULL;
580
581         unlock_page(newpage);
582
583         return rc;
584 }
585
586 /*
587  * Obtain the lock on page, remove all ptes and migrate the page
588  * to the newly allocated page in newpage.
589  */
590 static int unmap_and_move(struct page *newpage, struct page *page, int force)
591 {
592         int rc = 0;
593
594         if (page_count(page) == 1)
595                 /* page was freed from under us. So we are done. */
596                 goto ret;
597
598         rc = -EAGAIN;
599         if (TestSetPageLocked(page)) {
600                 if (!force)
601                         goto ret;
602                 lock_page(page);
603         }
604
605         if (PageWriteback(page)) {
606                 if (!force)
607                         goto unlock;
608                 wait_on_page_writeback(page);
609         }
610
611         /*
612          * Establish migration ptes or remove ptes
613          */
614         if (try_to_unmap(page, 1) != SWAP_FAIL) {
615                 if (!page_mapped(page))
616                         rc = move_to_new_page(newpage, page);
617         } else
618                 /* A vma has VM_LOCKED set -> permanent failure */
619                 rc = -EPERM;
620
621         if (rc)
622                 remove_migration_ptes(page, page);
623 unlock:
624         unlock_page(page);
625 ret:
626         if (rc != -EAGAIN) {
627                 list_del(&newpage->lru);
628                 move_to_lru(newpage);
629         }
630         return rc;
631 }
632
633 /*
634  * migrate_pages
635  *
636  * Two lists are passed to this function. The first list
637  * contains the pages isolated from the LRU to be migrated.
638  * The second list contains new pages that the isolated pages
639  * can be moved to.
640  *
641  * The function returns after 10 attempts or if no pages
642  * are movable anymore because to has become empty
643  * or no retryable pages exist anymore.
644  *
645  * Return: Number of pages not migrated when "to" ran empty.
646  */
647 int migrate_pages(struct list_head *from, struct list_head *to,
648                   struct list_head *moved, struct list_head *failed)
649 {
650         int retry = 1;
651         int nr_failed = 0;
652         int pass = 0;
653         struct page *page;
654         struct page *page2;
655         int swapwrite = current->flags & PF_SWAPWRITE;
656         int rc;
657
658         if (!swapwrite)
659                 current->flags |= PF_SWAPWRITE;
660
661         for(pass = 0; pass < 10 && retry; pass++) {
662                 retry = 0;
663
664                 list_for_each_entry_safe(page, page2, from, lru) {
665
666                         if (list_empty(to))
667                                 break;
668
669                         cond_resched();
670
671                         rc = unmap_and_move(lru_to_page(to), page, pass > 2);
672
673                         switch(rc) {
674                         case -EAGAIN:
675                                 retry++;
676                                 break;
677                         case 0:
678                                 list_move(&page->lru, moved);
679                                 break;
680                         default:
681                                 /* Permanent failure */
682                                 list_move(&page->lru, failed);
683                                 nr_failed++;
684                                 break;
685                         }
686                 }
687         }
688
689         if (!swapwrite)
690                 current->flags &= ~PF_SWAPWRITE;
691
692         return nr_failed + retry;
693 }
694
695 /*
696  * Migrate the list 'pagelist' of pages to a certain destination.
697  *
698  * Specify destination with either non-NULL vma or dest_node >= 0
699  * Return the number of pages not migrated or error code
700  */
701 int migrate_pages_to(struct list_head *pagelist,
702                         struct vm_area_struct *vma, int dest)
703 {
704         LIST_HEAD(newlist);
705         LIST_HEAD(moved);
706         LIST_HEAD(failed);
707         int err = 0;
708         unsigned long offset = 0;
709         int nr_pages;
710         struct page *page;
711         struct list_head *p;
712
713 redo:
714         nr_pages = 0;
715         list_for_each(p, pagelist) {
716                 if (vma) {
717                         /*
718                          * The address passed to alloc_page_vma is used to
719                          * generate the proper interleave behavior. We fake
720                          * the address here by an increasing offset in order
721                          * to get the proper distribution of pages.
722                          *
723                          * No decision has been made as to which page
724                          * a certain old page is moved to so we cannot
725                          * specify the correct address.
726                          */
727                         page = alloc_page_vma(GFP_HIGHUSER, vma,
728                                         offset + vma->vm_start);
729                         offset += PAGE_SIZE;
730                 }
731                 else
732                         page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
733
734                 if (!page) {
735                         err = -ENOMEM;
736                         goto out;
737                 }
738                 list_add_tail(&page->lru, &newlist);
739                 nr_pages++;
740                 if (nr_pages > MIGRATE_CHUNK_SIZE)
741                         break;
742         }
743         err = migrate_pages(pagelist, &newlist, &moved, &failed);
744
745         putback_lru_pages(&moved);      /* Call release pages instead ?? */
746
747         if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
748                 goto redo;
749 out:
750         /* Return leftover allocated pages */
751         while (!list_empty(&newlist)) {
752                 page = list_entry(newlist.next, struct page, lru);
753                 list_del(&page->lru);
754                 __free_page(page);
755         }
756         list_splice(&failed, pagelist);
757         if (err < 0)
758                 return err;
759
760         /* Calculate number of leftover pages */
761         nr_pages = 0;
762         list_for_each(p, pagelist)
763                 nr_pages++;
764         return nr_pages;
765 }