]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/mmap.c
switch aio and shm to do_mmap_pgoff(), make do_mmap() static
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file) {
235                 fput(vma->vm_file);
236                 if (vma->vm_flags & VM_EXECUTABLE)
237                         removed_exe_file_vma(vma->vm_mm);
238         }
239         mpol_put(vma_policy(vma));
240         kmem_cache_free(vm_area_cachep, vma);
241         return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248         unsigned long rlim, retval;
249         unsigned long newbrk, oldbrk;
250         struct mm_struct *mm = current->mm;
251         unsigned long min_brk;
252
253         down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256         /*
257          * CONFIG_COMPAT_BRK can still be overridden by setting
258          * randomize_va_space to 2, which will still cause mm->start_brk
259          * to be arbitrarily shifted
260          */
261         if (current->brk_randomized)
262                 min_brk = mm->start_brk;
263         else
264                 min_brk = mm->end_data;
265 #else
266         min_brk = mm->start_brk;
267 #endif
268         if (brk < min_brk)
269                 goto out;
270
271         /*
272          * Check against rlimit here. If this check is done later after the test
273          * of oldbrk with newbrk then it can escape the test and let the data
274          * segment grow beyond its set limit the in case where the limit is
275          * not page aligned -Ram Gupta
276          */
277         rlim = rlimit(RLIMIT_DATA);
278         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279                         (mm->end_data - mm->start_data) > rlim)
280                 goto out;
281
282         newbrk = PAGE_ALIGN(brk);
283         oldbrk = PAGE_ALIGN(mm->brk);
284         if (oldbrk == newbrk)
285                 goto set_brk;
286
287         /* Always allow shrinking brk. */
288         if (brk <= mm->brk) {
289                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290                         goto set_brk;
291                 goto out;
292         }
293
294         /* Check against existing mmap mappings. */
295         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296                 goto out;
297
298         /* Ok, looks good - let it rip. */
299         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300                 goto out;
301 set_brk:
302         mm->brk = brk;
303 out:
304         retval = mm->brk;
305         up_write(&mm->mmap_sem);
306         return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312         int i = 0, j;
313         struct rb_node *nd, *pn = NULL;
314         unsigned long prev = 0, pend = 0;
315
316         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317                 struct vm_area_struct *vma;
318                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319                 if (vma->vm_start < prev)
320                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321                 if (vma->vm_start < pend)
322                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323                 if (vma->vm_start > vma->vm_end)
324                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325                 i++;
326                 pn = nd;
327                 prev = vma->vm_start;
328                 pend = vma->vm_end;
329         }
330         j = 0;
331         for (nd = pn; nd; nd = rb_prev(nd)) {
332                 j++;
333         }
334         if (i != j)
335                 printk("backwards %d, forwards %d\n", j, i), i = 0;
336         return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341         int bug = 0;
342         int i = 0;
343         struct vm_area_struct *tmp = mm->mmap;
344         while (tmp) {
345                 tmp = tmp->vm_next;
346                 i++;
347         }
348         if (i != mm->map_count)
349                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350         i = browse_rb(&mm->mm_rb);
351         if (i != mm->map_count)
352                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353         BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362                 struct rb_node ** rb_parent)
363 {
364         struct vm_area_struct * vma;
365         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367         __rb_link = &mm->mm_rb.rb_node;
368         rb_prev = __rb_parent = NULL;
369         vma = NULL;
370
371         while (*__rb_link) {
372                 struct vm_area_struct *vma_tmp;
373
374                 __rb_parent = *__rb_link;
375                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377                 if (vma_tmp->vm_end > addr) {
378                         vma = vma_tmp;
379                         if (vma_tmp->vm_start <= addr)
380                                 break;
381                         __rb_link = &__rb_parent->rb_left;
382                 } else {
383                         rb_prev = __rb_parent;
384                         __rb_link = &__rb_parent->rb_right;
385                 }
386         }
387
388         *pprev = NULL;
389         if (rb_prev)
390                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391         *rb_link = __rb_link;
392         *rb_parent = __rb_parent;
393         return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397                 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405         struct file *file;
406
407         file = vma->vm_file;
408         if (file) {
409                 struct address_space *mapping = file->f_mapping;
410
411                 if (vma->vm_flags & VM_DENYWRITE)
412                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413                 if (vma->vm_flags & VM_SHARED)
414                         mapping->i_mmap_writable++;
415
416                 flush_dcache_mmap_lock(mapping);
417                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419                 else
420                         vma_prio_tree_insert(vma, &mapping->i_mmap);
421                 flush_dcache_mmap_unlock(mapping);
422         }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427         struct vm_area_struct *prev, struct rb_node **rb_link,
428         struct rb_node *rb_parent)
429 {
430         __vma_link_list(mm, vma, prev, rb_parent);
431         __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435                         struct vm_area_struct *prev, struct rb_node **rb_link,
436                         struct rb_node *rb_parent)
437 {
438         struct address_space *mapping = NULL;
439
440         if (vma->vm_file)
441                 mapping = vma->vm_file->f_mapping;
442
443         if (mapping)
444                 mutex_lock(&mapping->i_mmap_mutex);
445
446         __vma_link(mm, vma, prev, rb_link, rb_parent);
447         __vma_link_file(vma);
448
449         if (mapping)
450                 mutex_unlock(&mapping->i_mmap_mutex);
451
452         mm->map_count++;
453         validate_mm(mm);
454 }
455
456 /*
457  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458  * mm's list and rbtree.  It has already been inserted into the prio_tree.
459  */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462         struct vm_area_struct *__vma, *prev;
463         struct rb_node **rb_link, *rb_parent;
464
465         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467         __vma_link(mm, vma, prev, rb_link, rb_parent);
468         mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473                 struct vm_area_struct *prev)
474 {
475         struct vm_area_struct *next = vma->vm_next;
476
477         prev->vm_next = next;
478         if (next)
479                 next->vm_prev = prev;
480         rb_erase(&vma->vm_rb, &mm->mm_rb);
481         if (mm->mmap_cache == vma)
482                 mm->mmap_cache = prev;
483 }
484
485 /*
486  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487  * is already present in an i_mmap tree without adjusting the tree.
488  * The following helper function should be used when such adjustments
489  * are necessary.  The "insert" vma (if any) is to be inserted
490  * before we drop the necessary locks.
491  */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495         struct mm_struct *mm = vma->vm_mm;
496         struct vm_area_struct *next = vma->vm_next;
497         struct vm_area_struct *importer = NULL;
498         struct address_space *mapping = NULL;
499         struct prio_tree_root *root = NULL;
500         struct anon_vma *anon_vma = NULL;
501         struct file *file = vma->vm_file;
502         long adjust_next = 0;
503         int remove_next = 0;
504
505         if (next && !insert) {
506                 struct vm_area_struct *exporter = NULL;
507
508                 if (end >= next->vm_end) {
509                         /*
510                          * vma expands, overlapping all the next, and
511                          * perhaps the one after too (mprotect case 6).
512                          */
513 again:                  remove_next = 1 + (end > next->vm_end);
514                         end = next->vm_end;
515                         exporter = next;
516                         importer = vma;
517                 } else if (end > next->vm_start) {
518                         /*
519                          * vma expands, overlapping part of the next:
520                          * mprotect case 5 shifting the boundary up.
521                          */
522                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523                         exporter = next;
524                         importer = vma;
525                 } else if (end < vma->vm_end) {
526                         /*
527                          * vma shrinks, and !insert tells it's not
528                          * split_vma inserting another: so it must be
529                          * mprotect case 4 shifting the boundary down.
530                          */
531                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532                         exporter = vma;
533                         importer = next;
534                 }
535
536                 /*
537                  * Easily overlooked: when mprotect shifts the boundary,
538                  * make sure the expanding vma has anon_vma set if the
539                  * shrinking vma had, to cover any anon pages imported.
540                  */
541                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542                         if (anon_vma_clone(importer, exporter))
543                                 return -ENOMEM;
544                         importer->anon_vma = exporter->anon_vma;
545                 }
546         }
547
548         if (file) {
549                 mapping = file->f_mapping;
550                 if (!(vma->vm_flags & VM_NONLINEAR)) {
551                         root = &mapping->i_mmap;
552                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553
554                         if (adjust_next)
555                                 uprobe_munmap(next, next->vm_start,
556                                                         next->vm_end);
557                 }
558
559                 mutex_lock(&mapping->i_mmap_mutex);
560                 if (insert) {
561                         /*
562                          * Put into prio_tree now, so instantiated pages
563                          * are visible to arm/parisc __flush_dcache_page
564                          * throughout; but we cannot insert into address
565                          * space until vma start or end is updated.
566                          */
567                         __vma_link_file(insert);
568                 }
569         }
570
571         vma_adjust_trans_huge(vma, start, end, adjust_next);
572
573         /*
574          * When changing only vma->vm_end, we don't really need anon_vma
575          * lock. This is a fairly rare case by itself, but the anon_vma
576          * lock may be shared between many sibling processes.  Skipping
577          * the lock for brk adjustments makes a difference sometimes.
578          */
579         if (vma->anon_vma && (importer || start != vma->vm_start)) {
580                 anon_vma = vma->anon_vma;
581                 anon_vma_lock(anon_vma);
582         }
583
584         if (root) {
585                 flush_dcache_mmap_lock(mapping);
586                 vma_prio_tree_remove(vma, root);
587                 if (adjust_next)
588                         vma_prio_tree_remove(next, root);
589         }
590
591         vma->vm_start = start;
592         vma->vm_end = end;
593         vma->vm_pgoff = pgoff;
594         if (adjust_next) {
595                 next->vm_start += adjust_next << PAGE_SHIFT;
596                 next->vm_pgoff += adjust_next;
597         }
598
599         if (root) {
600                 if (adjust_next)
601                         vma_prio_tree_insert(next, root);
602                 vma_prio_tree_insert(vma, root);
603                 flush_dcache_mmap_unlock(mapping);
604         }
605
606         if (remove_next) {
607                 /*
608                  * vma_merge has merged next into vma, and needs
609                  * us to remove next before dropping the locks.
610                  */
611                 __vma_unlink(mm, next, vma);
612                 if (file)
613                         __remove_shared_vm_struct(next, file, mapping);
614         } else if (insert) {
615                 /*
616                  * split_vma has split insert from vma, and needs
617                  * us to insert it before dropping the locks
618                  * (it may either follow vma or precede it).
619                  */
620                 __insert_vm_struct(mm, insert);
621         }
622
623         if (anon_vma)
624                 anon_vma_unlock(anon_vma);
625         if (mapping)
626                 mutex_unlock(&mapping->i_mmap_mutex);
627
628         if (root) {
629                 uprobe_mmap(vma);
630
631                 if (adjust_next)
632                         uprobe_mmap(next);
633         }
634
635         if (remove_next) {
636                 if (file) {
637                         uprobe_munmap(next, next->vm_start, next->vm_end);
638                         fput(file);
639                         if (next->vm_flags & VM_EXECUTABLE)
640                                 removed_exe_file_vma(mm);
641                 }
642                 if (next->anon_vma)
643                         anon_vma_merge(vma, next);
644                 mm->map_count--;
645                 mpol_put(vma_policy(next));
646                 kmem_cache_free(vm_area_cachep, next);
647                 /*
648                  * In mprotect's case 6 (see comments on vma_merge),
649                  * we must remove another next too. It would clutter
650                  * up the code too much to do both in one go.
651                  */
652                 if (remove_next == 2) {
653                         next = vma->vm_next;
654                         goto again;
655                 }
656         }
657         if (insert && file)
658                 uprobe_mmap(insert);
659
660         validate_mm(mm);
661
662         return 0;
663 }
664
665 /*
666  * If the vma has a ->close operation then the driver probably needs to release
667  * per-vma resources, so we don't attempt to merge those.
668  */
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670                         struct file *file, unsigned long vm_flags)
671 {
672         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
673         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
674                 return 0;
675         if (vma->vm_file != file)
676                 return 0;
677         if (vma->vm_ops && vma->vm_ops->close)
678                 return 0;
679         return 1;
680 }
681
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683                                         struct anon_vma *anon_vma2,
684                                         struct vm_area_struct *vma)
685 {
686         /*
687          * The list_is_singular() test is to avoid merging VMA cloned from
688          * parents. This can improve scalability caused by anon_vma lock.
689          */
690         if ((!anon_vma1 || !anon_vma2) && (!vma ||
691                 list_is_singular(&vma->anon_vma_chain)))
692                 return 1;
693         return anon_vma1 == anon_vma2;
694 }
695
696 /*
697  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698  * in front of (at a lower virtual address and file offset than) the vma.
699  *
700  * We cannot merge two vmas if they have differently assigned (non-NULL)
701  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702  *
703  * We don't check here for the merged mmap wrapping around the end of pagecache
704  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705  * wrap, nor mmaps which cover the final page at index -1UL.
706  */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711         if (is_mergeable_vma(vma, file, vm_flags) &&
712             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713                 if (vma->vm_pgoff == vm_pgoff)
714                         return 1;
715         }
716         return 0;
717 }
718
719 /*
720  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721  * beyond (at a higher virtual address and file offset than) the vma.
722  *
723  * We cannot merge two vmas if they have differently assigned (non-NULL)
724  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725  */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730         if (is_mergeable_vma(vma, file, vm_flags) &&
731             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
732                 pgoff_t vm_pglen;
733                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735                         return 1;
736         }
737         return 0;
738 }
739
740 /*
741  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742  * whether that can be merged with its predecessor or its successor.
743  * Or both (it neatly fills a hole).
744  *
745  * In most cases - when called for mmap, brk or mremap - [addr,end) is
746  * certain not to be mapped by the time vma_merge is called; but when
747  * called for mprotect, it is certain to be already mapped (either at
748  * an offset within prev, or at the start of next), and the flags of
749  * this area are about to be changed to vm_flags - and the no-change
750  * case has already been eliminated.
751  *
752  * The following mprotect cases have to be considered, where AAAA is
753  * the area passed down from mprotect_fixup, never extending beyond one
754  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755  *
756  *     AAAA             AAAA                AAAA          AAAA
757  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
758  *    cannot merge    might become    might become    might become
759  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
760  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
761  *    mremap move:                                    PPPPNNNNNNNN 8
762  *        AAAA
763  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
764  *    might become    case 1 below    case 2 below    case 3 below
765  *
766  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768  */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770                         struct vm_area_struct *prev, unsigned long addr,
771                         unsigned long end, unsigned long vm_flags,
772                         struct anon_vma *anon_vma, struct file *file,
773                         pgoff_t pgoff, struct mempolicy *policy)
774 {
775         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776         struct vm_area_struct *area, *next;
777         int err;
778
779         /*
780          * We later require that vma->vm_flags == vm_flags,
781          * so this tests vma->vm_flags & VM_SPECIAL, too.
782          */
783         if (vm_flags & VM_SPECIAL)
784                 return NULL;
785
786         if (prev)
787                 next = prev->vm_next;
788         else
789                 next = mm->mmap;
790         area = next;
791         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
792                 next = next->vm_next;
793
794         /*
795          * Can it merge with the predecessor?
796          */
797         if (prev && prev->vm_end == addr &&
798                         mpol_equal(vma_policy(prev), policy) &&
799                         can_vma_merge_after(prev, vm_flags,
800                                                 anon_vma, file, pgoff)) {
801                 /*
802                  * OK, it can.  Can we now merge in the successor as well?
803                  */
804                 if (next && end == next->vm_start &&
805                                 mpol_equal(policy, vma_policy(next)) &&
806                                 can_vma_merge_before(next, vm_flags,
807                                         anon_vma, file, pgoff+pglen) &&
808                                 is_mergeable_anon_vma(prev->anon_vma,
809                                                       next->anon_vma, NULL)) {
810                                                         /* cases 1, 6 */
811                         err = vma_adjust(prev, prev->vm_start,
812                                 next->vm_end, prev->vm_pgoff, NULL);
813                 } else                                  /* cases 2, 5, 7 */
814                         err = vma_adjust(prev, prev->vm_start,
815                                 end, prev->vm_pgoff, NULL);
816                 if (err)
817                         return NULL;
818                 khugepaged_enter_vma_merge(prev);
819                 return prev;
820         }
821
822         /*
823          * Can this new request be merged in front of next?
824          */
825         if (next && end == next->vm_start &&
826                         mpol_equal(policy, vma_policy(next)) &&
827                         can_vma_merge_before(next, vm_flags,
828                                         anon_vma, file, pgoff+pglen)) {
829                 if (prev && addr < prev->vm_end)        /* case 4 */
830                         err = vma_adjust(prev, prev->vm_start,
831                                 addr, prev->vm_pgoff, NULL);
832                 else                                    /* cases 3, 8 */
833                         err = vma_adjust(area, addr, next->vm_end,
834                                 next->vm_pgoff - pglen, NULL);
835                 if (err)
836                         return NULL;
837                 khugepaged_enter_vma_merge(area);
838                 return area;
839         }
840
841         return NULL;
842 }
843
844 /*
845  * Rough compatbility check to quickly see if it's even worth looking
846  * at sharing an anon_vma.
847  *
848  * They need to have the same vm_file, and the flags can only differ
849  * in things that mprotect may change.
850  *
851  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
852  * we can merge the two vma's. For example, we refuse to merge a vma if
853  * there is a vm_ops->close() function, because that indicates that the
854  * driver is doing some kind of reference counting. But that doesn't
855  * really matter for the anon_vma sharing case.
856  */
857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
858 {
859         return a->vm_end == b->vm_start &&
860                 mpol_equal(vma_policy(a), vma_policy(b)) &&
861                 a->vm_file == b->vm_file &&
862                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
863                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
864 }
865
866 /*
867  * Do some basic sanity checking to see if we can re-use the anon_vma
868  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
869  * the same as 'old', the other will be the new one that is trying
870  * to share the anon_vma.
871  *
872  * NOTE! This runs with mm_sem held for reading, so it is possible that
873  * the anon_vma of 'old' is concurrently in the process of being set up
874  * by another page fault trying to merge _that_. But that's ok: if it
875  * is being set up, that automatically means that it will be a singleton
876  * acceptable for merging, so we can do all of this optimistically. But
877  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
878  *
879  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
880  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
881  * is to return an anon_vma that is "complex" due to having gone through
882  * a fork).
883  *
884  * We also make sure that the two vma's are compatible (adjacent,
885  * and with the same memory policies). That's all stable, even with just
886  * a read lock on the mm_sem.
887  */
888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
889 {
890         if (anon_vma_compatible(a, b)) {
891                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
892
893                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
894                         return anon_vma;
895         }
896         return NULL;
897 }
898
899 /*
900  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
901  * neighbouring vmas for a suitable anon_vma, before it goes off
902  * to allocate a new anon_vma.  It checks because a repetitive
903  * sequence of mprotects and faults may otherwise lead to distinct
904  * anon_vmas being allocated, preventing vma merge in subsequent
905  * mprotect.
906  */
907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
908 {
909         struct anon_vma *anon_vma;
910         struct vm_area_struct *near;
911
912         near = vma->vm_next;
913         if (!near)
914                 goto try_prev;
915
916         anon_vma = reusable_anon_vma(near, vma, near);
917         if (anon_vma)
918                 return anon_vma;
919 try_prev:
920         near = vma->vm_prev;
921         if (!near)
922                 goto none;
923
924         anon_vma = reusable_anon_vma(near, near, vma);
925         if (anon_vma)
926                 return anon_vma;
927 none:
928         /*
929          * There's no absolute need to look only at touching neighbours:
930          * we could search further afield for "compatible" anon_vmas.
931          * But it would probably just be a waste of time searching,
932          * or lead to too many vmas hanging off the same anon_vma.
933          * We're trying to allow mprotect remerging later on,
934          * not trying to minimize memory used for anon_vmas.
935          */
936         return NULL;
937 }
938
939 #ifdef CONFIG_PROC_FS
940 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
941                                                 struct file *file, long pages)
942 {
943         const unsigned long stack_flags
944                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
945
946         if (file) {
947                 mm->shared_vm += pages;
948                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
949                         mm->exec_vm += pages;
950         } else if (flags & stack_flags)
951                 mm->stack_vm += pages;
952         if (flags & (VM_RESERVED|VM_IO))
953                 mm->reserved_vm += pages;
954 }
955 #endif /* CONFIG_PROC_FS */
956
957 /*
958  * If a hint addr is less than mmap_min_addr change hint to be as
959  * low as possible but still greater than mmap_min_addr
960  */
961 static inline unsigned long round_hint_to_min(unsigned long hint)
962 {
963         hint &= PAGE_MASK;
964         if (((void *)hint != NULL) &&
965             (hint < mmap_min_addr))
966                 return PAGE_ALIGN(mmap_min_addr);
967         return hint;
968 }
969
970 /*
971  * The caller must hold down_write(&current->mm->mmap_sem).
972  */
973
974 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
975                         unsigned long len, unsigned long prot,
976                         unsigned long flags, unsigned long pgoff)
977 {
978         struct mm_struct * mm = current->mm;
979         struct inode *inode;
980         vm_flags_t vm_flags;
981
982         /*
983          * Does the application expect PROT_READ to imply PROT_EXEC?
984          *
985          * (the exception is when the underlying filesystem is noexec
986          *  mounted, in which case we dont add PROT_EXEC.)
987          */
988         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
989                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
990                         prot |= PROT_EXEC;
991
992         if (!len)
993                 return -EINVAL;
994
995         if (!(flags & MAP_FIXED))
996                 addr = round_hint_to_min(addr);
997
998         /* Careful about overflows.. */
999         len = PAGE_ALIGN(len);
1000         if (!len)
1001                 return -ENOMEM;
1002
1003         /* offset overflow? */
1004         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1005                return -EOVERFLOW;
1006
1007         /* Too many mappings? */
1008         if (mm->map_count > sysctl_max_map_count)
1009                 return -ENOMEM;
1010
1011         /* Obtain the address to map to. we verify (or select) it and ensure
1012          * that it represents a valid section of the address space.
1013          */
1014         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1015         if (addr & ~PAGE_MASK)
1016                 return addr;
1017
1018         /* Do simple checking here so the lower-level routines won't have
1019          * to. we assume access permissions have been handled by the open
1020          * of the memory object, so we don't do any here.
1021          */
1022         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1023                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1024
1025         if (flags & MAP_LOCKED)
1026                 if (!can_do_mlock())
1027                         return -EPERM;
1028
1029         /* mlock MCL_FUTURE? */
1030         if (vm_flags & VM_LOCKED) {
1031                 unsigned long locked, lock_limit;
1032                 locked = len >> PAGE_SHIFT;
1033                 locked += mm->locked_vm;
1034                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1035                 lock_limit >>= PAGE_SHIFT;
1036                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1037                         return -EAGAIN;
1038         }
1039
1040         inode = file ? file->f_path.dentry->d_inode : NULL;
1041
1042         if (file) {
1043                 switch (flags & MAP_TYPE) {
1044                 case MAP_SHARED:
1045                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1046                                 return -EACCES;
1047
1048                         /*
1049                          * Make sure we don't allow writing to an append-only
1050                          * file..
1051                          */
1052                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1053                                 return -EACCES;
1054
1055                         /*
1056                          * Make sure there are no mandatory locks on the file.
1057                          */
1058                         if (locks_verify_locked(inode))
1059                                 return -EAGAIN;
1060
1061                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1062                         if (!(file->f_mode & FMODE_WRITE))
1063                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1064
1065                         /* fall through */
1066                 case MAP_PRIVATE:
1067                         if (!(file->f_mode & FMODE_READ))
1068                                 return -EACCES;
1069                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1070                                 if (vm_flags & VM_EXEC)
1071                                         return -EPERM;
1072                                 vm_flags &= ~VM_MAYEXEC;
1073                         }
1074
1075                         if (!file->f_op || !file->f_op->mmap)
1076                                 return -ENODEV;
1077                         break;
1078
1079                 default:
1080                         return -EINVAL;
1081                 }
1082         } else {
1083                 switch (flags & MAP_TYPE) {
1084                 case MAP_SHARED:
1085                         /*
1086                          * Ignore pgoff.
1087                          */
1088                         pgoff = 0;
1089                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1090                         break;
1091                 case MAP_PRIVATE:
1092                         /*
1093                          * Set pgoff according to addr for anon_vma.
1094                          */
1095                         pgoff = addr >> PAGE_SHIFT;
1096                         break;
1097                 default:
1098                         return -EINVAL;
1099                 }
1100         }
1101
1102         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1103 }
1104
1105 static unsigned long do_mmap(struct file *file, unsigned long addr,
1106         unsigned long len, unsigned long prot,
1107         unsigned long flag, unsigned long offset)
1108 {
1109         if (unlikely(offset + PAGE_ALIGN(len) < offset))
1110                 return -EINVAL;
1111         if (unlikely(offset & ~PAGE_MASK))
1112                 return -EINVAL;
1113         return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1114 }
1115
1116 unsigned long vm_mmap(struct file *file, unsigned long addr,
1117         unsigned long len, unsigned long prot,
1118         unsigned long flag, unsigned long offset)
1119 {
1120         unsigned long ret;
1121         struct mm_struct *mm = current->mm;
1122
1123         ret = security_mmap_file(file, prot, flag);
1124         if (!ret) {
1125                 down_write(&mm->mmap_sem);
1126                 ret = do_mmap(file, addr, len, prot, flag, offset);
1127                 up_write(&mm->mmap_sem);
1128         }
1129         return ret;
1130 }
1131 EXPORT_SYMBOL(vm_mmap);
1132
1133 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1134                 unsigned long, prot, unsigned long, flags,
1135                 unsigned long, fd, unsigned long, pgoff)
1136 {
1137         struct file *file = NULL;
1138         unsigned long retval = -EBADF;
1139
1140         if (!(flags & MAP_ANONYMOUS)) {
1141                 audit_mmap_fd(fd, flags);
1142                 if (unlikely(flags & MAP_HUGETLB))
1143                         return -EINVAL;
1144                 file = fget(fd);
1145                 if (!file)
1146                         goto out;
1147         } else if (flags & MAP_HUGETLB) {
1148                 struct user_struct *user = NULL;
1149                 /*
1150                  * VM_NORESERVE is used because the reservations will be
1151                  * taken when vm_ops->mmap() is called
1152                  * A dummy user value is used because we are not locking
1153                  * memory so no accounting is necessary
1154                  */
1155                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1156                                                 VM_NORESERVE, &user,
1157                                                 HUGETLB_ANONHUGE_INODE);
1158                 if (IS_ERR(file))
1159                         return PTR_ERR(file);
1160         }
1161
1162         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1163
1164         retval = security_mmap_file(file, prot, flags);
1165         if (!retval) {
1166                 down_write(&current->mm->mmap_sem);
1167                 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1168                 up_write(&current->mm->mmap_sem);
1169         }
1170
1171         if (file)
1172                 fput(file);
1173 out:
1174         return retval;
1175 }
1176
1177 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1178 struct mmap_arg_struct {
1179         unsigned long addr;
1180         unsigned long len;
1181         unsigned long prot;
1182         unsigned long flags;
1183         unsigned long fd;
1184         unsigned long offset;
1185 };
1186
1187 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1188 {
1189         struct mmap_arg_struct a;
1190
1191         if (copy_from_user(&a, arg, sizeof(a)))
1192                 return -EFAULT;
1193         if (a.offset & ~PAGE_MASK)
1194                 return -EINVAL;
1195
1196         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1197                               a.offset >> PAGE_SHIFT);
1198 }
1199 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1200
1201 /*
1202  * Some shared mappigns will want the pages marked read-only
1203  * to track write events. If so, we'll downgrade vm_page_prot
1204  * to the private version (using protection_map[] without the
1205  * VM_SHARED bit).
1206  */
1207 int vma_wants_writenotify(struct vm_area_struct *vma)
1208 {
1209         vm_flags_t vm_flags = vma->vm_flags;
1210
1211         /* If it was private or non-writable, the write bit is already clear */
1212         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1213                 return 0;
1214
1215         /* The backer wishes to know when pages are first written to? */
1216         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1217                 return 1;
1218
1219         /* The open routine did something to the protections already? */
1220         if (pgprot_val(vma->vm_page_prot) !=
1221             pgprot_val(vm_get_page_prot(vm_flags)))
1222                 return 0;
1223
1224         /* Specialty mapping? */
1225         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1226                 return 0;
1227
1228         /* Can the mapping track the dirty pages? */
1229         return vma->vm_file && vma->vm_file->f_mapping &&
1230                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1231 }
1232
1233 /*
1234  * We account for memory if it's a private writeable mapping,
1235  * not hugepages and VM_NORESERVE wasn't set.
1236  */
1237 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1238 {
1239         /*
1240          * hugetlb has its own accounting separate from the core VM
1241          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1242          */
1243         if (file && is_file_hugepages(file))
1244                 return 0;
1245
1246         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1247 }
1248
1249 unsigned long mmap_region(struct file *file, unsigned long addr,
1250                           unsigned long len, unsigned long flags,
1251                           vm_flags_t vm_flags, unsigned long pgoff)
1252 {
1253         struct mm_struct *mm = current->mm;
1254         struct vm_area_struct *vma, *prev;
1255         int correct_wcount = 0;
1256         int error;
1257         struct rb_node **rb_link, *rb_parent;
1258         unsigned long charged = 0;
1259         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1260
1261         /* Clear old maps */
1262         error = -ENOMEM;
1263 munmap_back:
1264         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1265         if (vma && vma->vm_start < addr + len) {
1266                 if (do_munmap(mm, addr, len))
1267                         return -ENOMEM;
1268                 goto munmap_back;
1269         }
1270
1271         /* Check against address space limit. */
1272         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1273                 return -ENOMEM;
1274
1275         /*
1276          * Set 'VM_NORESERVE' if we should not account for the
1277          * memory use of this mapping.
1278          */
1279         if ((flags & MAP_NORESERVE)) {
1280                 /* We honor MAP_NORESERVE if allowed to overcommit */
1281                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282                         vm_flags |= VM_NORESERVE;
1283
1284                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285                 if (file && is_file_hugepages(file))
1286                         vm_flags |= VM_NORESERVE;
1287         }
1288
1289         /*
1290          * Private writable mapping: check memory availability
1291          */
1292         if (accountable_mapping(file, vm_flags)) {
1293                 charged = len >> PAGE_SHIFT;
1294                 if (security_vm_enough_memory_mm(mm, charged))
1295                         return -ENOMEM;
1296                 vm_flags |= VM_ACCOUNT;
1297         }
1298
1299         /*
1300          * Can we just expand an old mapping?
1301          */
1302         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1303         if (vma)
1304                 goto out;
1305
1306         /*
1307          * Determine the object being mapped and call the appropriate
1308          * specific mapper. the address has already been validated, but
1309          * not unmapped, but the maps are removed from the list.
1310          */
1311         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1312         if (!vma) {
1313                 error = -ENOMEM;
1314                 goto unacct_error;
1315         }
1316
1317         vma->vm_mm = mm;
1318         vma->vm_start = addr;
1319         vma->vm_end = addr + len;
1320         vma->vm_flags = vm_flags;
1321         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1322         vma->vm_pgoff = pgoff;
1323         INIT_LIST_HEAD(&vma->anon_vma_chain);
1324
1325         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1326
1327         if (file) {
1328                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1329                         goto free_vma;
1330                 if (vm_flags & VM_DENYWRITE) {
1331                         error = deny_write_access(file);
1332                         if (error)
1333                                 goto free_vma;
1334                         correct_wcount = 1;
1335                 }
1336                 vma->vm_file = file;
1337                 get_file(file);
1338                 error = file->f_op->mmap(file, vma);
1339                 if (error)
1340                         goto unmap_and_free_vma;
1341                 if (vm_flags & VM_EXECUTABLE)
1342                         added_exe_file_vma(mm);
1343
1344                 /* Can addr have changed??
1345                  *
1346                  * Answer: Yes, several device drivers can do it in their
1347                  *         f_op->mmap method. -DaveM
1348                  */
1349                 addr = vma->vm_start;
1350                 pgoff = vma->vm_pgoff;
1351                 vm_flags = vma->vm_flags;
1352         } else if (vm_flags & VM_SHARED) {
1353                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1354                         goto free_vma;
1355                 error = shmem_zero_setup(vma);
1356                 if (error)
1357                         goto free_vma;
1358         }
1359
1360         if (vma_wants_writenotify(vma)) {
1361                 pgprot_t pprot = vma->vm_page_prot;
1362
1363                 /* Can vma->vm_page_prot have changed??
1364                  *
1365                  * Answer: Yes, drivers may have changed it in their
1366                  *         f_op->mmap method.
1367                  *
1368                  * Ensures that vmas marked as uncached stay that way.
1369                  */
1370                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1371                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1372                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1373         }
1374
1375         vma_link(mm, vma, prev, rb_link, rb_parent);
1376         file = vma->vm_file;
1377
1378         /* Once vma denies write, undo our temporary denial count */
1379         if (correct_wcount)
1380                 atomic_inc(&inode->i_writecount);
1381 out:
1382         perf_event_mmap(vma);
1383
1384         mm->total_vm += len >> PAGE_SHIFT;
1385         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1386         if (vm_flags & VM_LOCKED) {
1387                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1388                         mm->locked_vm += (len >> PAGE_SHIFT);
1389         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1390                 make_pages_present(addr, addr + len);
1391
1392         if (file && uprobe_mmap(vma))
1393                 /* matching probes but cannot insert */
1394                 goto unmap_and_free_vma;
1395
1396         return addr;
1397
1398 unmap_and_free_vma:
1399         if (correct_wcount)
1400                 atomic_inc(&inode->i_writecount);
1401         vma->vm_file = NULL;
1402         fput(file);
1403
1404         /* Undo any partial mapping done by a device driver. */
1405         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1406         charged = 0;
1407 free_vma:
1408         kmem_cache_free(vm_area_cachep, vma);
1409 unacct_error:
1410         if (charged)
1411                 vm_unacct_memory(charged);
1412         return error;
1413 }
1414
1415 /* Get an address range which is currently unmapped.
1416  * For shmat() with addr=0.
1417  *
1418  * Ugly calling convention alert:
1419  * Return value with the low bits set means error value,
1420  * ie
1421  *      if (ret & ~PAGE_MASK)
1422  *              error = ret;
1423  *
1424  * This function "knows" that -ENOMEM has the bits set.
1425  */
1426 #ifndef HAVE_ARCH_UNMAPPED_AREA
1427 unsigned long
1428 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1429                 unsigned long len, unsigned long pgoff, unsigned long flags)
1430 {
1431         struct mm_struct *mm = current->mm;
1432         struct vm_area_struct *vma;
1433         unsigned long start_addr;
1434
1435         if (len > TASK_SIZE)
1436                 return -ENOMEM;
1437
1438         if (flags & MAP_FIXED)
1439                 return addr;
1440
1441         if (addr) {
1442                 addr = PAGE_ALIGN(addr);
1443                 vma = find_vma(mm, addr);
1444                 if (TASK_SIZE - len >= addr &&
1445                     (!vma || addr + len <= vma->vm_start))
1446                         return addr;
1447         }
1448         if (len > mm->cached_hole_size) {
1449                 start_addr = addr = mm->free_area_cache;
1450         } else {
1451                 start_addr = addr = TASK_UNMAPPED_BASE;
1452                 mm->cached_hole_size = 0;
1453         }
1454
1455 full_search:
1456         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1457                 /* At this point:  (!vma || addr < vma->vm_end). */
1458                 if (TASK_SIZE - len < addr) {
1459                         /*
1460                          * Start a new search - just in case we missed
1461                          * some holes.
1462                          */
1463                         if (start_addr != TASK_UNMAPPED_BASE) {
1464                                 addr = TASK_UNMAPPED_BASE;
1465                                 start_addr = addr;
1466                                 mm->cached_hole_size = 0;
1467                                 goto full_search;
1468                         }
1469                         return -ENOMEM;
1470                 }
1471                 if (!vma || addr + len <= vma->vm_start) {
1472                         /*
1473                          * Remember the place where we stopped the search:
1474                          */
1475                         mm->free_area_cache = addr + len;
1476                         return addr;
1477                 }
1478                 if (addr + mm->cached_hole_size < vma->vm_start)
1479                         mm->cached_hole_size = vma->vm_start - addr;
1480                 addr = vma->vm_end;
1481         }
1482 }
1483 #endif  
1484
1485 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1486 {
1487         /*
1488          * Is this a new hole at the lowest possible address?
1489          */
1490         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1491                 mm->free_area_cache = addr;
1492 }
1493
1494 /*
1495  * This mmap-allocator allocates new areas top-down from below the
1496  * stack's low limit (the base):
1497  */
1498 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1499 unsigned long
1500 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1501                           const unsigned long len, const unsigned long pgoff,
1502                           const unsigned long flags)
1503 {
1504         struct vm_area_struct *vma;
1505         struct mm_struct *mm = current->mm;
1506         unsigned long addr = addr0, start_addr;
1507
1508         /* requested length too big for entire address space */
1509         if (len > TASK_SIZE)
1510                 return -ENOMEM;
1511
1512         if (flags & MAP_FIXED)
1513                 return addr;
1514
1515         /* requesting a specific address */
1516         if (addr) {
1517                 addr = PAGE_ALIGN(addr);
1518                 vma = find_vma(mm, addr);
1519                 if (TASK_SIZE - len >= addr &&
1520                                 (!vma || addr + len <= vma->vm_start))
1521                         return addr;
1522         }
1523
1524         /* check if free_area_cache is useful for us */
1525         if (len <= mm->cached_hole_size) {
1526                 mm->cached_hole_size = 0;
1527                 mm->free_area_cache = mm->mmap_base;
1528         }
1529
1530 try_again:
1531         /* either no address requested or can't fit in requested address hole */
1532         start_addr = addr = mm->free_area_cache;
1533
1534         if (addr < len)
1535                 goto fail;
1536
1537         addr -= len;
1538         do {
1539                 /*
1540                  * Lookup failure means no vma is above this address,
1541                  * else if new region fits below vma->vm_start,
1542                  * return with success:
1543                  */
1544                 vma = find_vma(mm, addr);
1545                 if (!vma || addr+len <= vma->vm_start)
1546                         /* remember the address as a hint for next time */
1547                         return (mm->free_area_cache = addr);
1548
1549                 /* remember the largest hole we saw so far */
1550                 if (addr + mm->cached_hole_size < vma->vm_start)
1551                         mm->cached_hole_size = vma->vm_start - addr;
1552
1553                 /* try just below the current vma->vm_start */
1554                 addr = vma->vm_start-len;
1555         } while (len < vma->vm_start);
1556
1557 fail:
1558         /*
1559          * if hint left us with no space for the requested
1560          * mapping then try again:
1561          *
1562          * Note: this is different with the case of bottomup
1563          * which does the fully line-search, but we use find_vma
1564          * here that causes some holes skipped.
1565          */
1566         if (start_addr != mm->mmap_base) {
1567                 mm->free_area_cache = mm->mmap_base;
1568                 mm->cached_hole_size = 0;
1569                 goto try_again;
1570         }
1571
1572         /*
1573          * A failed mmap() very likely causes application failure,
1574          * so fall back to the bottom-up function here. This scenario
1575          * can happen with large stack limits and large mmap()
1576          * allocations.
1577          */
1578         mm->cached_hole_size = ~0UL;
1579         mm->free_area_cache = TASK_UNMAPPED_BASE;
1580         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1581         /*
1582          * Restore the topdown base:
1583          */
1584         mm->free_area_cache = mm->mmap_base;
1585         mm->cached_hole_size = ~0UL;
1586
1587         return addr;
1588 }
1589 #endif
1590
1591 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1592 {
1593         /*
1594          * Is this a new hole at the highest possible address?
1595          */
1596         if (addr > mm->free_area_cache)
1597                 mm->free_area_cache = addr;
1598
1599         /* dont allow allocations above current base */
1600         if (mm->free_area_cache > mm->mmap_base)
1601                 mm->free_area_cache = mm->mmap_base;
1602 }
1603
1604 unsigned long
1605 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1606                 unsigned long pgoff, unsigned long flags)
1607 {
1608         unsigned long (*get_area)(struct file *, unsigned long,
1609                                   unsigned long, unsigned long, unsigned long);
1610
1611         unsigned long error = arch_mmap_check(addr, len, flags);
1612         if (error)
1613                 return error;
1614
1615         /* Careful about overflows.. */
1616         if (len > TASK_SIZE)
1617                 return -ENOMEM;
1618
1619         get_area = current->mm->get_unmapped_area;
1620         if (file && file->f_op && file->f_op->get_unmapped_area)
1621                 get_area = file->f_op->get_unmapped_area;
1622         addr = get_area(file, addr, len, pgoff, flags);
1623         if (IS_ERR_VALUE(addr))
1624                 return addr;
1625
1626         if (addr > TASK_SIZE - len)
1627                 return -ENOMEM;
1628         if (addr & ~PAGE_MASK)
1629                 return -EINVAL;
1630
1631         addr = arch_rebalance_pgtables(addr, len);
1632         error = security_mmap_addr(addr);
1633         return error ? error : addr;
1634 }
1635
1636 EXPORT_SYMBOL(get_unmapped_area);
1637
1638 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1639 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1640 {
1641         struct vm_area_struct *vma = NULL;
1642
1643         if (mm) {
1644                 /* Check the cache first. */
1645                 /* (Cache hit rate is typically around 35%.) */
1646                 vma = mm->mmap_cache;
1647                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1648                         struct rb_node * rb_node;
1649
1650                         rb_node = mm->mm_rb.rb_node;
1651                         vma = NULL;
1652
1653                         while (rb_node) {
1654                                 struct vm_area_struct * vma_tmp;
1655
1656                                 vma_tmp = rb_entry(rb_node,
1657                                                 struct vm_area_struct, vm_rb);
1658
1659                                 if (vma_tmp->vm_end > addr) {
1660                                         vma = vma_tmp;
1661                                         if (vma_tmp->vm_start <= addr)
1662                                                 break;
1663                                         rb_node = rb_node->rb_left;
1664                                 } else
1665                                         rb_node = rb_node->rb_right;
1666                         }
1667                         if (vma)
1668                                 mm->mmap_cache = vma;
1669                 }
1670         }
1671         return vma;
1672 }
1673
1674 EXPORT_SYMBOL(find_vma);
1675
1676 /*
1677  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1678  */
1679 struct vm_area_struct *
1680 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1681                         struct vm_area_struct **pprev)
1682 {
1683         struct vm_area_struct *vma;
1684
1685         vma = find_vma(mm, addr);
1686         if (vma) {
1687                 *pprev = vma->vm_prev;
1688         } else {
1689                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1690                 *pprev = NULL;
1691                 while (rb_node) {
1692                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1693                         rb_node = rb_node->rb_right;
1694                 }
1695         }
1696         return vma;
1697 }
1698
1699 /*
1700  * Verify that the stack growth is acceptable and
1701  * update accounting. This is shared with both the
1702  * grow-up and grow-down cases.
1703  */
1704 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1705 {
1706         struct mm_struct *mm = vma->vm_mm;
1707         struct rlimit *rlim = current->signal->rlim;
1708         unsigned long new_start;
1709
1710         /* address space limit tests */
1711         if (!may_expand_vm(mm, grow))
1712                 return -ENOMEM;
1713
1714         /* Stack limit test */
1715         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1716                 return -ENOMEM;
1717
1718         /* mlock limit tests */
1719         if (vma->vm_flags & VM_LOCKED) {
1720                 unsigned long locked;
1721                 unsigned long limit;
1722                 locked = mm->locked_vm + grow;
1723                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1724                 limit >>= PAGE_SHIFT;
1725                 if (locked > limit && !capable(CAP_IPC_LOCK))
1726                         return -ENOMEM;
1727         }
1728
1729         /* Check to ensure the stack will not grow into a hugetlb-only region */
1730         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1731                         vma->vm_end - size;
1732         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1733                 return -EFAULT;
1734
1735         /*
1736          * Overcommit..  This must be the final test, as it will
1737          * update security statistics.
1738          */
1739         if (security_vm_enough_memory_mm(mm, grow))
1740                 return -ENOMEM;
1741
1742         /* Ok, everything looks good - let it rip */
1743         mm->total_vm += grow;
1744         if (vma->vm_flags & VM_LOCKED)
1745                 mm->locked_vm += grow;
1746         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1747         return 0;
1748 }
1749
1750 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1751 /*
1752  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1753  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1754  */
1755 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1756 {
1757         int error;
1758
1759         if (!(vma->vm_flags & VM_GROWSUP))
1760                 return -EFAULT;
1761
1762         /*
1763          * We must make sure the anon_vma is allocated
1764          * so that the anon_vma locking is not a noop.
1765          */
1766         if (unlikely(anon_vma_prepare(vma)))
1767                 return -ENOMEM;
1768         vma_lock_anon_vma(vma);
1769
1770         /*
1771          * vma->vm_start/vm_end cannot change under us because the caller
1772          * is required to hold the mmap_sem in read mode.  We need the
1773          * anon_vma lock to serialize against concurrent expand_stacks.
1774          * Also guard against wrapping around to address 0.
1775          */
1776         if (address < PAGE_ALIGN(address+4))
1777                 address = PAGE_ALIGN(address+4);
1778         else {
1779                 vma_unlock_anon_vma(vma);
1780                 return -ENOMEM;
1781         }
1782         error = 0;
1783
1784         /* Somebody else might have raced and expanded it already */
1785         if (address > vma->vm_end) {
1786                 unsigned long size, grow;
1787
1788                 size = address - vma->vm_start;
1789                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1790
1791                 error = -ENOMEM;
1792                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1793                         error = acct_stack_growth(vma, size, grow);
1794                         if (!error) {
1795                                 vma->vm_end = address;
1796                                 perf_event_mmap(vma);
1797                         }
1798                 }
1799         }
1800         vma_unlock_anon_vma(vma);
1801         khugepaged_enter_vma_merge(vma);
1802         return error;
1803 }
1804 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1805
1806 /*
1807  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1808  */
1809 int expand_downwards(struct vm_area_struct *vma,
1810                                    unsigned long address)
1811 {
1812         int error;
1813
1814         /*
1815          * We must make sure the anon_vma is allocated
1816          * so that the anon_vma locking is not a noop.
1817          */
1818         if (unlikely(anon_vma_prepare(vma)))
1819                 return -ENOMEM;
1820
1821         address &= PAGE_MASK;
1822         error = security_mmap_addr(address);
1823         if (error)
1824                 return error;
1825
1826         vma_lock_anon_vma(vma);
1827
1828         /*
1829          * vma->vm_start/vm_end cannot change under us because the caller
1830          * is required to hold the mmap_sem in read mode.  We need the
1831          * anon_vma lock to serialize against concurrent expand_stacks.
1832          */
1833
1834         /* Somebody else might have raced and expanded it already */
1835         if (address < vma->vm_start) {
1836                 unsigned long size, grow;
1837
1838                 size = vma->vm_end - address;
1839                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1840
1841                 error = -ENOMEM;
1842                 if (grow <= vma->vm_pgoff) {
1843                         error = acct_stack_growth(vma, size, grow);
1844                         if (!error) {
1845                                 vma->vm_start = address;
1846                                 vma->vm_pgoff -= grow;
1847                                 perf_event_mmap(vma);
1848                         }
1849                 }
1850         }
1851         vma_unlock_anon_vma(vma);
1852         khugepaged_enter_vma_merge(vma);
1853         return error;
1854 }
1855
1856 #ifdef CONFIG_STACK_GROWSUP
1857 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1858 {
1859         return expand_upwards(vma, address);
1860 }
1861
1862 struct vm_area_struct *
1863 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1864 {
1865         struct vm_area_struct *vma, *prev;
1866
1867         addr &= PAGE_MASK;
1868         vma = find_vma_prev(mm, addr, &prev);
1869         if (vma && (vma->vm_start <= addr))
1870                 return vma;
1871         if (!prev || expand_stack(prev, addr))
1872                 return NULL;
1873         if (prev->vm_flags & VM_LOCKED) {
1874                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1875         }
1876         return prev;
1877 }
1878 #else
1879 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1880 {
1881         return expand_downwards(vma, address);
1882 }
1883
1884 struct vm_area_struct *
1885 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1886 {
1887         struct vm_area_struct * vma;
1888         unsigned long start;
1889
1890         addr &= PAGE_MASK;
1891         vma = find_vma(mm,addr);
1892         if (!vma)
1893                 return NULL;
1894         if (vma->vm_start <= addr)
1895                 return vma;
1896         if (!(vma->vm_flags & VM_GROWSDOWN))
1897                 return NULL;
1898         start = vma->vm_start;
1899         if (expand_stack(vma, addr))
1900                 return NULL;
1901         if (vma->vm_flags & VM_LOCKED) {
1902                 mlock_vma_pages_range(vma, addr, start);
1903         }
1904         return vma;
1905 }
1906 #endif
1907
1908 /*
1909  * Ok - we have the memory areas we should free on the vma list,
1910  * so release them, and do the vma updates.
1911  *
1912  * Called with the mm semaphore held.
1913  */
1914 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1915 {
1916         unsigned long nr_accounted = 0;
1917
1918         /* Update high watermark before we lower total_vm */
1919         update_hiwater_vm(mm);
1920         do {
1921                 long nrpages = vma_pages(vma);
1922
1923                 if (vma->vm_flags & VM_ACCOUNT)
1924                         nr_accounted += nrpages;
1925                 mm->total_vm -= nrpages;
1926                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1927                 vma = remove_vma(vma);
1928         } while (vma);
1929         vm_unacct_memory(nr_accounted);
1930         validate_mm(mm);
1931 }
1932
1933 /*
1934  * Get rid of page table information in the indicated region.
1935  *
1936  * Called with the mm semaphore held.
1937  */
1938 static void unmap_region(struct mm_struct *mm,
1939                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1940                 unsigned long start, unsigned long end)
1941 {
1942         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1943         struct mmu_gather tlb;
1944
1945         lru_add_drain();
1946         tlb_gather_mmu(&tlb, mm, 0);
1947         update_hiwater_rss(mm);
1948         unmap_vmas(&tlb, vma, start, end);
1949         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1950                                  next ? next->vm_start : 0);
1951         tlb_finish_mmu(&tlb, start, end);
1952 }
1953
1954 /*
1955  * Create a list of vma's touched by the unmap, removing them from the mm's
1956  * vma list as we go..
1957  */
1958 static void
1959 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1960         struct vm_area_struct *prev, unsigned long end)
1961 {
1962         struct vm_area_struct **insertion_point;
1963         struct vm_area_struct *tail_vma = NULL;
1964         unsigned long addr;
1965
1966         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1967         vma->vm_prev = NULL;
1968         do {
1969                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1970                 mm->map_count--;
1971                 tail_vma = vma;
1972                 vma = vma->vm_next;
1973         } while (vma && vma->vm_start < end);
1974         *insertion_point = vma;
1975         if (vma)
1976                 vma->vm_prev = prev;
1977         tail_vma->vm_next = NULL;
1978         if (mm->unmap_area == arch_unmap_area)
1979                 addr = prev ? prev->vm_end : mm->mmap_base;
1980         else
1981                 addr = vma ?  vma->vm_start : mm->mmap_base;
1982         mm->unmap_area(mm, addr);
1983         mm->mmap_cache = NULL;          /* Kill the cache. */
1984 }
1985
1986 /*
1987  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1988  * munmap path where it doesn't make sense to fail.
1989  */
1990 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1991               unsigned long addr, int new_below)
1992 {
1993         struct mempolicy *pol;
1994         struct vm_area_struct *new;
1995         int err = -ENOMEM;
1996
1997         if (is_vm_hugetlb_page(vma) && (addr &
1998                                         ~(huge_page_mask(hstate_vma(vma)))))
1999                 return -EINVAL;
2000
2001         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2002         if (!new)
2003                 goto out_err;
2004
2005         /* most fields are the same, copy all, and then fixup */
2006         *new = *vma;
2007
2008         INIT_LIST_HEAD(&new->anon_vma_chain);
2009
2010         if (new_below)
2011                 new->vm_end = addr;
2012         else {
2013                 new->vm_start = addr;
2014                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2015         }
2016
2017         pol = mpol_dup(vma_policy(vma));
2018         if (IS_ERR(pol)) {
2019                 err = PTR_ERR(pol);
2020                 goto out_free_vma;
2021         }
2022         vma_set_policy(new, pol);
2023
2024         if (anon_vma_clone(new, vma))
2025                 goto out_free_mpol;
2026
2027         if (new->vm_file) {
2028                 get_file(new->vm_file);
2029                 if (vma->vm_flags & VM_EXECUTABLE)
2030                         added_exe_file_vma(mm);
2031         }
2032
2033         if (new->vm_ops && new->vm_ops->open)
2034                 new->vm_ops->open(new);
2035
2036         if (new_below)
2037                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2038                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2039         else
2040                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2041
2042         /* Success. */
2043         if (!err)
2044                 return 0;
2045
2046         /* Clean everything up if vma_adjust failed. */
2047         if (new->vm_ops && new->vm_ops->close)
2048                 new->vm_ops->close(new);
2049         if (new->vm_file) {
2050                 if (vma->vm_flags & VM_EXECUTABLE)
2051                         removed_exe_file_vma(mm);
2052                 fput(new->vm_file);
2053         }
2054         unlink_anon_vmas(new);
2055  out_free_mpol:
2056         mpol_put(pol);
2057  out_free_vma:
2058         kmem_cache_free(vm_area_cachep, new);
2059  out_err:
2060         return err;
2061 }
2062
2063 /*
2064  * Split a vma into two pieces at address 'addr', a new vma is allocated
2065  * either for the first part or the tail.
2066  */
2067 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2068               unsigned long addr, int new_below)
2069 {
2070         if (mm->map_count >= sysctl_max_map_count)
2071                 return -ENOMEM;
2072
2073         return __split_vma(mm, vma, addr, new_below);
2074 }
2075
2076 /* Munmap is split into 2 main parts -- this part which finds
2077  * what needs doing, and the areas themselves, which do the
2078  * work.  This now handles partial unmappings.
2079  * Jeremy Fitzhardinge <jeremy@goop.org>
2080  */
2081 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2082 {
2083         unsigned long end;
2084         struct vm_area_struct *vma, *prev, *last;
2085
2086         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2087                 return -EINVAL;
2088
2089         if ((len = PAGE_ALIGN(len)) == 0)
2090                 return -EINVAL;
2091
2092         /* Find the first overlapping VMA */
2093         vma = find_vma(mm, start);
2094         if (!vma)
2095                 return 0;
2096         prev = vma->vm_prev;
2097         /* we have  start < vma->vm_end  */
2098
2099         /* if it doesn't overlap, we have nothing.. */
2100         end = start + len;
2101         if (vma->vm_start >= end)
2102                 return 0;
2103
2104         /*
2105          * If we need to split any vma, do it now to save pain later.
2106          *
2107          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2108          * unmapped vm_area_struct will remain in use: so lower split_vma
2109          * places tmp vma above, and higher split_vma places tmp vma below.
2110          */
2111         if (start > vma->vm_start) {
2112                 int error;
2113
2114                 /*
2115                  * Make sure that map_count on return from munmap() will
2116                  * not exceed its limit; but let map_count go just above
2117                  * its limit temporarily, to help free resources as expected.
2118                  */
2119                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2120                         return -ENOMEM;
2121
2122                 error = __split_vma(mm, vma, start, 0);
2123                 if (error)
2124                         return error;
2125                 prev = vma;
2126         }
2127
2128         /* Does it split the last one? */
2129         last = find_vma(mm, end);
2130         if (last && end > last->vm_start) {
2131                 int error = __split_vma(mm, last, end, 1);
2132                 if (error)
2133                         return error;
2134         }
2135         vma = prev? prev->vm_next: mm->mmap;
2136
2137         /*
2138          * unlock any mlock()ed ranges before detaching vmas
2139          */
2140         if (mm->locked_vm) {
2141                 struct vm_area_struct *tmp = vma;
2142                 while (tmp && tmp->vm_start < end) {
2143                         if (tmp->vm_flags & VM_LOCKED) {
2144                                 mm->locked_vm -= vma_pages(tmp);
2145                                 munlock_vma_pages_all(tmp);
2146                         }
2147                         tmp = tmp->vm_next;
2148                 }
2149         }
2150
2151         /*
2152          * Remove the vma's, and unmap the actual pages
2153          */
2154         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2155         unmap_region(mm, vma, prev, start, end);
2156
2157         /* Fix up all other VM information */
2158         remove_vma_list(mm, vma);
2159
2160         return 0;
2161 }
2162 EXPORT_SYMBOL(do_munmap);
2163
2164 int vm_munmap(unsigned long start, size_t len)
2165 {
2166         int ret;
2167         struct mm_struct *mm = current->mm;
2168
2169         down_write(&mm->mmap_sem);
2170         ret = do_munmap(mm, start, len);
2171         up_write(&mm->mmap_sem);
2172         return ret;
2173 }
2174 EXPORT_SYMBOL(vm_munmap);
2175
2176 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2177 {
2178         profile_munmap(addr);
2179         return vm_munmap(addr, len);
2180 }
2181
2182 static inline void verify_mm_writelocked(struct mm_struct *mm)
2183 {
2184 #ifdef CONFIG_DEBUG_VM
2185         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2186                 WARN_ON(1);
2187                 up_read(&mm->mmap_sem);
2188         }
2189 #endif
2190 }
2191
2192 /*
2193  *  this is really a simplified "do_mmap".  it only handles
2194  *  anonymous maps.  eventually we may be able to do some
2195  *  brk-specific accounting here.
2196  */
2197 static unsigned long do_brk(unsigned long addr, unsigned long len)
2198 {
2199         struct mm_struct * mm = current->mm;
2200         struct vm_area_struct * vma, * prev;
2201         unsigned long flags;
2202         struct rb_node ** rb_link, * rb_parent;
2203         pgoff_t pgoff = addr >> PAGE_SHIFT;
2204         int error;
2205
2206         len = PAGE_ALIGN(len);
2207         if (!len)
2208                 return addr;
2209
2210         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2211
2212         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2213         if (error & ~PAGE_MASK)
2214                 return error;
2215
2216         /*
2217          * mlock MCL_FUTURE?
2218          */
2219         if (mm->def_flags & VM_LOCKED) {
2220                 unsigned long locked, lock_limit;
2221                 locked = len >> PAGE_SHIFT;
2222                 locked += mm->locked_vm;
2223                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2224                 lock_limit >>= PAGE_SHIFT;
2225                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2226                         return -EAGAIN;
2227         }
2228
2229         /*
2230          * mm->mmap_sem is required to protect against another thread
2231          * changing the mappings in case we sleep.
2232          */
2233         verify_mm_writelocked(mm);
2234
2235         /*
2236          * Clear old maps.  this also does some error checking for us
2237          */
2238  munmap_back:
2239         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2240         if (vma && vma->vm_start < addr + len) {
2241                 if (do_munmap(mm, addr, len))
2242                         return -ENOMEM;
2243                 goto munmap_back;
2244         }
2245
2246         /* Check against address space limits *after* clearing old maps... */
2247         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2248                 return -ENOMEM;
2249
2250         if (mm->map_count > sysctl_max_map_count)
2251                 return -ENOMEM;
2252
2253         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2254                 return -ENOMEM;
2255
2256         /* Can we just expand an old private anonymous mapping? */
2257         vma = vma_merge(mm, prev, addr, addr + len, flags,
2258                                         NULL, NULL, pgoff, NULL);
2259         if (vma)
2260                 goto out;
2261
2262         /*
2263          * create a vma struct for an anonymous mapping
2264          */
2265         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2266         if (!vma) {
2267                 vm_unacct_memory(len >> PAGE_SHIFT);
2268                 return -ENOMEM;
2269         }
2270
2271         INIT_LIST_HEAD(&vma->anon_vma_chain);
2272         vma->vm_mm = mm;
2273         vma->vm_start = addr;
2274         vma->vm_end = addr + len;
2275         vma->vm_pgoff = pgoff;
2276         vma->vm_flags = flags;
2277         vma->vm_page_prot = vm_get_page_prot(flags);
2278         vma_link(mm, vma, prev, rb_link, rb_parent);
2279 out:
2280         perf_event_mmap(vma);
2281         mm->total_vm += len >> PAGE_SHIFT;
2282         if (flags & VM_LOCKED) {
2283                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2284                         mm->locked_vm += (len >> PAGE_SHIFT);
2285         }
2286         return addr;
2287 }
2288
2289 unsigned long vm_brk(unsigned long addr, unsigned long len)
2290 {
2291         struct mm_struct *mm = current->mm;
2292         unsigned long ret;
2293
2294         down_write(&mm->mmap_sem);
2295         ret = do_brk(addr, len);
2296         up_write(&mm->mmap_sem);
2297         return ret;
2298 }
2299 EXPORT_SYMBOL(vm_brk);
2300
2301 /* Release all mmaps. */
2302 void exit_mmap(struct mm_struct *mm)
2303 {
2304         struct mmu_gather tlb;
2305         struct vm_area_struct *vma;
2306         unsigned long nr_accounted = 0;
2307
2308         /* mm's last user has gone, and its about to be pulled down */
2309         mmu_notifier_release(mm);
2310
2311         if (mm->locked_vm) {
2312                 vma = mm->mmap;
2313                 while (vma) {
2314                         if (vma->vm_flags & VM_LOCKED)
2315                                 munlock_vma_pages_all(vma);
2316                         vma = vma->vm_next;
2317                 }
2318         }
2319
2320         arch_exit_mmap(mm);
2321
2322         vma = mm->mmap;
2323         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2324                 return;
2325
2326         lru_add_drain();
2327         flush_cache_mm(mm);
2328         tlb_gather_mmu(&tlb, mm, 1);
2329         /* update_hiwater_rss(mm) here? but nobody should be looking */
2330         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2331         unmap_vmas(&tlb, vma, 0, -1);
2332
2333         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2334         tlb_finish_mmu(&tlb, 0, -1);
2335
2336         /*
2337          * Walk the list again, actually closing and freeing it,
2338          * with preemption enabled, without holding any MM locks.
2339          */
2340         while (vma) {
2341                 if (vma->vm_flags & VM_ACCOUNT)
2342                         nr_accounted += vma_pages(vma);
2343                 vma = remove_vma(vma);
2344         }
2345         vm_unacct_memory(nr_accounted);
2346
2347         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2348 }
2349
2350 /* Insert vm structure into process list sorted by address
2351  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2352  * then i_mmap_mutex is taken here.
2353  */
2354 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2355 {
2356         struct vm_area_struct * __vma, * prev;
2357         struct rb_node ** rb_link, * rb_parent;
2358
2359         /*
2360          * The vm_pgoff of a purely anonymous vma should be irrelevant
2361          * until its first write fault, when page's anon_vma and index
2362          * are set.  But now set the vm_pgoff it will almost certainly
2363          * end up with (unless mremap moves it elsewhere before that
2364          * first wfault), so /proc/pid/maps tells a consistent story.
2365          *
2366          * By setting it to reflect the virtual start address of the
2367          * vma, merges and splits can happen in a seamless way, just
2368          * using the existing file pgoff checks and manipulations.
2369          * Similarly in do_mmap_pgoff and in do_brk.
2370          */
2371         if (!vma->vm_file) {
2372                 BUG_ON(vma->anon_vma);
2373                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2374         }
2375         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2376         if (__vma && __vma->vm_start < vma->vm_end)
2377                 return -ENOMEM;
2378         if ((vma->vm_flags & VM_ACCOUNT) &&
2379              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2380                 return -ENOMEM;
2381
2382         if (vma->vm_file && uprobe_mmap(vma))
2383                 return -EINVAL;
2384
2385         vma_link(mm, vma, prev, rb_link, rb_parent);
2386         return 0;
2387 }
2388
2389 /*
2390  * Copy the vma structure to a new location in the same mm,
2391  * prior to moving page table entries, to effect an mremap move.
2392  */
2393 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2394         unsigned long addr, unsigned long len, pgoff_t pgoff)
2395 {
2396         struct vm_area_struct *vma = *vmap;
2397         unsigned long vma_start = vma->vm_start;
2398         struct mm_struct *mm = vma->vm_mm;
2399         struct vm_area_struct *new_vma, *prev;
2400         struct rb_node **rb_link, *rb_parent;
2401         struct mempolicy *pol;
2402         bool faulted_in_anon_vma = true;
2403
2404         /*
2405          * If anonymous vma has not yet been faulted, update new pgoff
2406          * to match new location, to increase its chance of merging.
2407          */
2408         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2409                 pgoff = addr >> PAGE_SHIFT;
2410                 faulted_in_anon_vma = false;
2411         }
2412
2413         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2414         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2415                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2416         if (new_vma) {
2417                 /*
2418                  * Source vma may have been merged into new_vma
2419                  */
2420                 if (unlikely(vma_start >= new_vma->vm_start &&
2421                              vma_start < new_vma->vm_end)) {
2422                         /*
2423                          * The only way we can get a vma_merge with
2424                          * self during an mremap is if the vma hasn't
2425                          * been faulted in yet and we were allowed to
2426                          * reset the dst vma->vm_pgoff to the
2427                          * destination address of the mremap to allow
2428                          * the merge to happen. mremap must change the
2429                          * vm_pgoff linearity between src and dst vmas
2430                          * (in turn preventing a vma_merge) to be
2431                          * safe. It is only safe to keep the vm_pgoff
2432                          * linear if there are no pages mapped yet.
2433                          */
2434                         VM_BUG_ON(faulted_in_anon_vma);
2435                         *vmap = new_vma;
2436                 } else
2437                         anon_vma_moveto_tail(new_vma);
2438         } else {
2439                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2440                 if (new_vma) {
2441                         *new_vma = *vma;
2442                         pol = mpol_dup(vma_policy(vma));
2443                         if (IS_ERR(pol))
2444                                 goto out_free_vma;
2445                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2446                         if (anon_vma_clone(new_vma, vma))
2447                                 goto out_free_mempol;
2448                         vma_set_policy(new_vma, pol);
2449                         new_vma->vm_start = addr;
2450                         new_vma->vm_end = addr + len;
2451                         new_vma->vm_pgoff = pgoff;
2452                         if (new_vma->vm_file) {
2453                                 get_file(new_vma->vm_file);
2454
2455                                 if (uprobe_mmap(new_vma))
2456                                         goto out_free_mempol;
2457
2458                                 if (vma->vm_flags & VM_EXECUTABLE)
2459                                         added_exe_file_vma(mm);
2460                         }
2461                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2462                                 new_vma->vm_ops->open(new_vma);
2463                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2464                 }
2465         }
2466         return new_vma;
2467
2468  out_free_mempol:
2469         mpol_put(pol);
2470  out_free_vma:
2471         kmem_cache_free(vm_area_cachep, new_vma);
2472         return NULL;
2473 }
2474
2475 /*
2476  * Return true if the calling process may expand its vm space by the passed
2477  * number of pages
2478  */
2479 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2480 {
2481         unsigned long cur = mm->total_vm;       /* pages */
2482         unsigned long lim;
2483
2484         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2485
2486         if (cur + npages > lim)
2487                 return 0;
2488         return 1;
2489 }
2490
2491
2492 static int special_mapping_fault(struct vm_area_struct *vma,
2493                                 struct vm_fault *vmf)
2494 {
2495         pgoff_t pgoff;
2496         struct page **pages;
2497
2498         /*
2499          * special mappings have no vm_file, and in that case, the mm
2500          * uses vm_pgoff internally. So we have to subtract it from here.
2501          * We are allowed to do this because we are the mm; do not copy
2502          * this code into drivers!
2503          */
2504         pgoff = vmf->pgoff - vma->vm_pgoff;
2505
2506         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2507                 pgoff--;
2508
2509         if (*pages) {
2510                 struct page *page = *pages;
2511                 get_page(page);
2512                 vmf->page = page;
2513                 return 0;
2514         }
2515
2516         return VM_FAULT_SIGBUS;
2517 }
2518
2519 /*
2520  * Having a close hook prevents vma merging regardless of flags.
2521  */
2522 static void special_mapping_close(struct vm_area_struct *vma)
2523 {
2524 }
2525
2526 static const struct vm_operations_struct special_mapping_vmops = {
2527         .close = special_mapping_close,
2528         .fault = special_mapping_fault,
2529 };
2530
2531 /*
2532  * Called with mm->mmap_sem held for writing.
2533  * Insert a new vma covering the given region, with the given flags.
2534  * Its pages are supplied by the given array of struct page *.
2535  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2536  * The region past the last page supplied will always produce SIGBUS.
2537  * The array pointer and the pages it points to are assumed to stay alive
2538  * for as long as this mapping might exist.
2539  */
2540 int install_special_mapping(struct mm_struct *mm,
2541                             unsigned long addr, unsigned long len,
2542                             unsigned long vm_flags, struct page **pages)
2543 {
2544         int ret;
2545         struct vm_area_struct *vma;
2546
2547         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2548         if (unlikely(vma == NULL))
2549                 return -ENOMEM;
2550
2551         INIT_LIST_HEAD(&vma->anon_vma_chain);
2552         vma->vm_mm = mm;
2553         vma->vm_start = addr;
2554         vma->vm_end = addr + len;
2555
2556         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2557         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2558
2559         vma->vm_ops = &special_mapping_vmops;
2560         vma->vm_private_data = pages;
2561
2562         ret = insert_vm_struct(mm, vma);
2563         if (ret)
2564                 goto out;
2565
2566         mm->total_vm += len >> PAGE_SHIFT;
2567
2568         perf_event_mmap(vma);
2569
2570         return 0;
2571
2572 out:
2573         kmem_cache_free(vm_area_cachep, vma);
2574         return ret;
2575 }
2576
2577 static DEFINE_MUTEX(mm_all_locks_mutex);
2578
2579 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2580 {
2581         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2582                 /*
2583                  * The LSB of head.next can't change from under us
2584                  * because we hold the mm_all_locks_mutex.
2585                  */
2586                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2587                 /*
2588                  * We can safely modify head.next after taking the
2589                  * anon_vma->root->mutex. If some other vma in this mm shares
2590                  * the same anon_vma we won't take it again.
2591                  *
2592                  * No need of atomic instructions here, head.next
2593                  * can't change from under us thanks to the
2594                  * anon_vma->root->mutex.
2595                  */
2596                 if (__test_and_set_bit(0, (unsigned long *)
2597                                        &anon_vma->root->head.next))
2598                         BUG();
2599         }
2600 }
2601
2602 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2603 {
2604         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2605                 /*
2606                  * AS_MM_ALL_LOCKS can't change from under us because
2607                  * we hold the mm_all_locks_mutex.
2608                  *
2609                  * Operations on ->flags have to be atomic because
2610                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2611                  * mm_all_locks_mutex, there may be other cpus
2612                  * changing other bitflags in parallel to us.
2613                  */
2614                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2615                         BUG();
2616                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2617         }
2618 }
2619
2620 /*
2621  * This operation locks against the VM for all pte/vma/mm related
2622  * operations that could ever happen on a certain mm. This includes
2623  * vmtruncate, try_to_unmap, and all page faults.
2624  *
2625  * The caller must take the mmap_sem in write mode before calling
2626  * mm_take_all_locks(). The caller isn't allowed to release the
2627  * mmap_sem until mm_drop_all_locks() returns.
2628  *
2629  * mmap_sem in write mode is required in order to block all operations
2630  * that could modify pagetables and free pages without need of
2631  * altering the vma layout (for example populate_range() with
2632  * nonlinear vmas). It's also needed in write mode to avoid new
2633  * anon_vmas to be associated with existing vmas.
2634  *
2635  * A single task can't take more than one mm_take_all_locks() in a row
2636  * or it would deadlock.
2637  *
2638  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2639  * mapping->flags avoid to take the same lock twice, if more than one
2640  * vma in this mm is backed by the same anon_vma or address_space.
2641  *
2642  * We can take all the locks in random order because the VM code
2643  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2644  * takes more than one of them in a row. Secondly we're protected
2645  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2646  *
2647  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2648  * that may have to take thousand of locks.
2649  *
2650  * mm_take_all_locks() can fail if it's interrupted by signals.
2651  */
2652 int mm_take_all_locks(struct mm_struct *mm)
2653 {
2654         struct vm_area_struct *vma;
2655         struct anon_vma_chain *avc;
2656
2657         BUG_ON(down_read_trylock(&mm->mmap_sem));
2658
2659         mutex_lock(&mm_all_locks_mutex);
2660
2661         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2662                 if (signal_pending(current))
2663                         goto out_unlock;
2664                 if (vma->vm_file && vma->vm_file->f_mapping)
2665                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2666         }
2667
2668         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2669                 if (signal_pending(current))
2670                         goto out_unlock;
2671                 if (vma->anon_vma)
2672                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2673                                 vm_lock_anon_vma(mm, avc->anon_vma);
2674         }
2675
2676         return 0;
2677
2678 out_unlock:
2679         mm_drop_all_locks(mm);
2680         return -EINTR;
2681 }
2682
2683 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2684 {
2685         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2686                 /*
2687                  * The LSB of head.next can't change to 0 from under
2688                  * us because we hold the mm_all_locks_mutex.
2689                  *
2690                  * We must however clear the bitflag before unlocking
2691                  * the vma so the users using the anon_vma->head will
2692                  * never see our bitflag.
2693                  *
2694                  * No need of atomic instructions here, head.next
2695                  * can't change from under us until we release the
2696                  * anon_vma->root->mutex.
2697                  */
2698                 if (!__test_and_clear_bit(0, (unsigned long *)
2699                                           &anon_vma->root->head.next))
2700                         BUG();
2701                 anon_vma_unlock(anon_vma);
2702         }
2703 }
2704
2705 static void vm_unlock_mapping(struct address_space *mapping)
2706 {
2707         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2708                 /*
2709                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2710                  * because we hold the mm_all_locks_mutex.
2711                  */
2712                 mutex_unlock(&mapping->i_mmap_mutex);
2713                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2714                                         &mapping->flags))
2715                         BUG();
2716         }
2717 }
2718
2719 /*
2720  * The mmap_sem cannot be released by the caller until
2721  * mm_drop_all_locks() returns.
2722  */
2723 void mm_drop_all_locks(struct mm_struct *mm)
2724 {
2725         struct vm_area_struct *vma;
2726         struct anon_vma_chain *avc;
2727
2728         BUG_ON(down_read_trylock(&mm->mmap_sem));
2729         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2730
2731         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2732                 if (vma->anon_vma)
2733                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2734                                 vm_unlock_anon_vma(avc->anon_vma);
2735                 if (vma->vm_file && vma->vm_file->f_mapping)
2736                         vm_unlock_mapping(vma->vm_file->f_mapping);
2737         }
2738
2739         mutex_unlock(&mm_all_locks_mutex);
2740 }
2741
2742 /*
2743  * initialise the VMA slab
2744  */
2745 void __init mmap_init(void)
2746 {
2747         int ret;
2748
2749         ret = percpu_counter_init(&vm_committed_as, 0);
2750         VM_BUG_ON(ret);
2751 }