]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/page-writeback.c
mm,slub,x86: decouple size of struct page from CONFIG_CMPXCHG_LOCAL
[karo-tx-linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT    10
50
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56
57 /* The following parameters are exported via /proc/sys/vm */
58
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107
108 EXPORT_SYMBOL(laptop_mode);
109
110 /* End of sysctl-exported parameters */
111
112 unsigned long global_dirty_limit;
113
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131
132 /*
133  * Work out the current dirty-memory clamping and background writeout
134  * thresholds.
135  *
136  * The main aim here is to lower them aggressively if there is a lot of mapped
137  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
138  * pages.  It is better to clamp down on writers than to start swapping, and
139  * performing lots of scanning.
140  *
141  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
142  *
143  * We don't permit the clamping level to fall below 5% - that is getting rather
144  * excessive.
145  *
146  * We make sure that the background writeout level is below the adjusted
147  * clamping level.
148  */
149
150 /*
151  * In a memory zone, there is a certain amount of pages we consider
152  * available for the page cache, which is essentially the number of
153  * free and reclaimable pages, minus some zone reserves to protect
154  * lowmem and the ability to uphold the zone's watermarks without
155  * requiring writeback.
156  *
157  * This number of dirtyable pages is the base value of which the
158  * user-configurable dirty ratio is the effictive number of pages that
159  * are allowed to be actually dirtied.  Per individual zone, or
160  * globally by using the sum of dirtyable pages over all zones.
161  *
162  * Because the user is allowed to specify the dirty limit globally as
163  * absolute number of bytes, calculating the per-zone dirty limit can
164  * require translating the configured limit into a percentage of
165  * global dirtyable memory first.
166  */
167
168 static unsigned long highmem_dirtyable_memory(unsigned long total)
169 {
170 #ifdef CONFIG_HIGHMEM
171         int node;
172         unsigned long x = 0;
173
174         for_each_node_state(node, N_HIGH_MEMORY) {
175                 struct zone *z =
176                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
177
178                 x += zone_page_state(z, NR_FREE_PAGES) +
179                      zone_reclaimable_pages(z) - z->dirty_balance_reserve;
180         }
181         /*
182          * Make sure that the number of highmem pages is never larger
183          * than the number of the total dirtyable memory. This can only
184          * occur in very strange VM situations but we want to make sure
185          * that this does not occur.
186          */
187         return min(x, total);
188 #else
189         return 0;
190 #endif
191 }
192
193 /**
194  * global_dirtyable_memory - number of globally dirtyable pages
195  *
196  * Returns the global number of pages potentially available for dirty
197  * page cache.  This is the base value for the global dirty limits.
198  */
199 unsigned long global_dirtyable_memory(void)
200 {
201         unsigned long x;
202
203         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
204             dirty_balance_reserve;
205
206         if (!vm_highmem_is_dirtyable)
207                 x -= highmem_dirtyable_memory(x);
208
209         return x + 1;   /* Ensure that we never return 0 */
210 }
211
212 /*
213  * global_dirty_limits - background-writeback and dirty-throttling thresholds
214  *
215  * Calculate the dirty thresholds based on sysctl parameters
216  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
217  * - vm.dirty_ratio             or  vm.dirty_bytes
218  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
219  * real-time tasks.
220  */
221 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
222 {
223         unsigned long background;
224         unsigned long dirty;
225         unsigned long uninitialized_var(available_memory);
226         struct task_struct *tsk;
227
228         if (!vm_dirty_bytes || !dirty_background_bytes)
229                 available_memory = global_dirtyable_memory();
230
231         if (vm_dirty_bytes)
232                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
233         else
234                 dirty = (vm_dirty_ratio * available_memory) / 100;
235
236         if (dirty_background_bytes)
237                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
238         else
239                 background = (dirty_background_ratio * available_memory) / 100;
240
241         if (background >= dirty)
242                 background = dirty / 2;
243         tsk = current;
244         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
245                 background += background / 4;
246                 dirty += dirty / 4;
247         }
248         *pbackground = background;
249         *pdirty = dirty;
250         trace_global_dirty_state(background, dirty);
251 }
252
253 /**
254  * zone_dirtyable_memory - number of dirtyable pages in a zone
255  * @zone: the zone
256  *
257  * Returns the zone's number of pages potentially available for dirty
258  * page cache.  This is the base value for the per-zone dirty limits.
259  */
260 static unsigned long zone_dirtyable_memory(struct zone *zone)
261 {
262         /*
263          * The effective global number of dirtyable pages may exclude
264          * highmem as a big-picture measure to keep the ratio between
265          * dirty memory and lowmem reasonable.
266          *
267          * But this function is purely about the individual zone and a
268          * highmem zone can hold its share of dirty pages, so we don't
269          * care about vm_highmem_is_dirtyable here.
270          */
271         return zone_page_state(zone, NR_FREE_PAGES) +
272                zone_reclaimable_pages(zone) -
273                zone->dirty_balance_reserve;
274 }
275
276 /**
277  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
278  * @zone: the zone
279  *
280  * Returns the maximum number of dirty pages allowed in a zone, based
281  * on the zone's dirtyable memory.
282  */
283 static unsigned long zone_dirty_limit(struct zone *zone)
284 {
285         unsigned long zone_memory = zone_dirtyable_memory(zone);
286         struct task_struct *tsk = current;
287         unsigned long dirty;
288
289         if (vm_dirty_bytes)
290                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
291                         zone_memory / global_dirtyable_memory();
292         else
293                 dirty = vm_dirty_ratio * zone_memory / 100;
294
295         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
296                 dirty += dirty / 4;
297
298         return dirty;
299 }
300
301 /**
302  * zone_dirty_ok - tells whether a zone is within its dirty limits
303  * @zone: the zone to check
304  *
305  * Returns %true when the dirty pages in @zone are within the zone's
306  * dirty limit, %false if the limit is exceeded.
307  */
308 bool zone_dirty_ok(struct zone *zone)
309 {
310         unsigned long limit = zone_dirty_limit(zone);
311
312         return zone_page_state(zone, NR_FILE_DIRTY) +
313                zone_page_state(zone, NR_UNSTABLE_NFS) +
314                zone_page_state(zone, NR_WRITEBACK) <= limit;
315 }
316
317 /*
318  * couple the period to the dirty_ratio:
319  *
320  *   period/2 ~ roundup_pow_of_two(dirty limit)
321  */
322 static int calc_period_shift(void)
323 {
324         unsigned long dirty_total;
325
326         if (vm_dirty_bytes)
327                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
328         else
329                 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
330                                 100;
331         return 2 + ilog2(dirty_total - 1);
332 }
333
334 /*
335  * update the period when the dirty threshold changes.
336  */
337 static void update_completion_period(void)
338 {
339         int shift = calc_period_shift();
340         prop_change_shift(&vm_completions, shift);
341
342         writeback_set_ratelimit();
343 }
344
345 int dirty_background_ratio_handler(struct ctl_table *table, int write,
346                 void __user *buffer, size_t *lenp,
347                 loff_t *ppos)
348 {
349         int ret;
350
351         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
352         if (ret == 0 && write)
353                 dirty_background_bytes = 0;
354         return ret;
355 }
356
357 int dirty_background_bytes_handler(struct ctl_table *table, int write,
358                 void __user *buffer, size_t *lenp,
359                 loff_t *ppos)
360 {
361         int ret;
362
363         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
364         if (ret == 0 && write)
365                 dirty_background_ratio = 0;
366         return ret;
367 }
368
369 int dirty_ratio_handler(struct ctl_table *table, int write,
370                 void __user *buffer, size_t *lenp,
371                 loff_t *ppos)
372 {
373         int old_ratio = vm_dirty_ratio;
374         int ret;
375
376         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
377         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
378                 update_completion_period();
379                 vm_dirty_bytes = 0;
380         }
381         return ret;
382 }
383
384 int dirty_bytes_handler(struct ctl_table *table, int write,
385                 void __user *buffer, size_t *lenp,
386                 loff_t *ppos)
387 {
388         unsigned long old_bytes = vm_dirty_bytes;
389         int ret;
390
391         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
392         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
393                 update_completion_period();
394                 vm_dirty_ratio = 0;
395         }
396         return ret;
397 }
398
399 /*
400  * Increment the BDI's writeout completion count and the global writeout
401  * completion count. Called from test_clear_page_writeback().
402  */
403 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
404 {
405         __inc_bdi_stat(bdi, BDI_WRITTEN);
406         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
407                               bdi->max_prop_frac);
408 }
409
410 void bdi_writeout_inc(struct backing_dev_info *bdi)
411 {
412         unsigned long flags;
413
414         local_irq_save(flags);
415         __bdi_writeout_inc(bdi);
416         local_irq_restore(flags);
417 }
418 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
419
420 /*
421  * Obtain an accurate fraction of the BDI's portion.
422  */
423 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
424                 long *numerator, long *denominator)
425 {
426         prop_fraction_percpu(&vm_completions, &bdi->completions,
427                                 numerator, denominator);
428 }
429
430 /*
431  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
432  * registered backing devices, which, for obvious reasons, can not
433  * exceed 100%.
434  */
435 static unsigned int bdi_min_ratio;
436
437 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
438 {
439         int ret = 0;
440
441         spin_lock_bh(&bdi_lock);
442         if (min_ratio > bdi->max_ratio) {
443                 ret = -EINVAL;
444         } else {
445                 min_ratio -= bdi->min_ratio;
446                 if (bdi_min_ratio + min_ratio < 100) {
447                         bdi_min_ratio += min_ratio;
448                         bdi->min_ratio += min_ratio;
449                 } else {
450                         ret = -EINVAL;
451                 }
452         }
453         spin_unlock_bh(&bdi_lock);
454
455         return ret;
456 }
457
458 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
459 {
460         int ret = 0;
461
462         if (max_ratio > 100)
463                 return -EINVAL;
464
465         spin_lock_bh(&bdi_lock);
466         if (bdi->min_ratio > max_ratio) {
467                 ret = -EINVAL;
468         } else {
469                 bdi->max_ratio = max_ratio;
470                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
471         }
472         spin_unlock_bh(&bdi_lock);
473
474         return ret;
475 }
476 EXPORT_SYMBOL(bdi_set_max_ratio);
477
478 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
479                                            unsigned long bg_thresh)
480 {
481         return (thresh + bg_thresh) / 2;
482 }
483
484 static unsigned long hard_dirty_limit(unsigned long thresh)
485 {
486         return max(thresh, global_dirty_limit);
487 }
488
489 /**
490  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
491  * @bdi: the backing_dev_info to query
492  * @dirty: global dirty limit in pages
493  *
494  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
495  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
496  *
497  * Note that balance_dirty_pages() will only seriously take it as a hard limit
498  * when sleeping max_pause per page is not enough to keep the dirty pages under
499  * control. For example, when the device is completely stalled due to some error
500  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
501  * In the other normal situations, it acts more gently by throttling the tasks
502  * more (rather than completely block them) when the bdi dirty pages go high.
503  *
504  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
505  * - starving fast devices
506  * - piling up dirty pages (that will take long time to sync) on slow devices
507  *
508  * The bdi's share of dirty limit will be adapting to its throughput and
509  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
510  */
511 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
512 {
513         u64 bdi_dirty;
514         long numerator, denominator;
515
516         /*
517          * Calculate this BDI's share of the dirty ratio.
518          */
519         bdi_writeout_fraction(bdi, &numerator, &denominator);
520
521         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
522         bdi_dirty *= numerator;
523         do_div(bdi_dirty, denominator);
524
525         bdi_dirty += (dirty * bdi->min_ratio) / 100;
526         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
527                 bdi_dirty = dirty * bdi->max_ratio / 100;
528
529         return bdi_dirty;
530 }
531
532 /*
533  * Dirty position control.
534  *
535  * (o) global/bdi setpoints
536  *
537  * We want the dirty pages be balanced around the global/bdi setpoints.
538  * When the number of dirty pages is higher/lower than the setpoint, the
539  * dirty position control ratio (and hence task dirty ratelimit) will be
540  * decreased/increased to bring the dirty pages back to the setpoint.
541  *
542  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
543  *
544  *     if (dirty < setpoint) scale up   pos_ratio
545  *     if (dirty > setpoint) scale down pos_ratio
546  *
547  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
548  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
549  *
550  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
551  *
552  * (o) global control line
553  *
554  *     ^ pos_ratio
555  *     |
556  *     |            |<===== global dirty control scope ======>|
557  * 2.0 .............*
558  *     |            .*
559  *     |            . *
560  *     |            .   *
561  *     |            .     *
562  *     |            .        *
563  *     |            .            *
564  * 1.0 ................................*
565  *     |            .                  .     *
566  *     |            .                  .          *
567  *     |            .                  .              *
568  *     |            .                  .                 *
569  *     |            .                  .                    *
570  *   0 +------------.------------------.----------------------*------------->
571  *           freerun^          setpoint^                 limit^   dirty pages
572  *
573  * (o) bdi control line
574  *
575  *     ^ pos_ratio
576  *     |
577  *     |            *
578  *     |              *
579  *     |                *
580  *     |                  *
581  *     |                    * |<=========== span ============>|
582  * 1.0 .......................*
583  *     |                      . *
584  *     |                      .   *
585  *     |                      .     *
586  *     |                      .       *
587  *     |                      .         *
588  *     |                      .           *
589  *     |                      .             *
590  *     |                      .               *
591  *     |                      .                 *
592  *     |                      .                   *
593  *     |                      .                     *
594  * 1/4 ...............................................* * * * * * * * * * * *
595  *     |                      .                         .
596  *     |                      .                           .
597  *     |                      .                             .
598  *   0 +----------------------.-------------------------------.------------->
599  *                bdi_setpoint^                    x_intercept^
600  *
601  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
602  * be smoothly throttled down to normal if it starts high in situations like
603  * - start writing to a slow SD card and a fast disk at the same time. The SD
604  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
605  * - the bdi dirty thresh drops quickly due to change of JBOD workload
606  */
607 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
608                                         unsigned long thresh,
609                                         unsigned long bg_thresh,
610                                         unsigned long dirty,
611                                         unsigned long bdi_thresh,
612                                         unsigned long bdi_dirty)
613 {
614         unsigned long write_bw = bdi->avg_write_bandwidth;
615         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
616         unsigned long limit = hard_dirty_limit(thresh);
617         unsigned long x_intercept;
618         unsigned long setpoint;         /* dirty pages' target balance point */
619         unsigned long bdi_setpoint;
620         unsigned long span;
621         long long pos_ratio;            /* for scaling up/down the rate limit */
622         long x;
623
624         if (unlikely(dirty >= limit))
625                 return 0;
626
627         /*
628          * global setpoint
629          *
630          *                           setpoint - dirty 3
631          *        f(dirty) := 1.0 + (----------------)
632          *                           limit - setpoint
633          *
634          * it's a 3rd order polynomial that subjects to
635          *
636          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
637          * (2) f(setpoint) = 1.0 => the balance point
638          * (3) f(limit)    = 0   => the hard limit
639          * (4) df/dx      <= 0   => negative feedback control
640          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
641          *     => fast response on large errors; small oscillation near setpoint
642          */
643         setpoint = (freerun + limit) / 2;
644         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
645                     limit - setpoint + 1);
646         pos_ratio = x;
647         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
648         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
649         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
650
651         /*
652          * We have computed basic pos_ratio above based on global situation. If
653          * the bdi is over/under its share of dirty pages, we want to scale
654          * pos_ratio further down/up. That is done by the following mechanism.
655          */
656
657         /*
658          * bdi setpoint
659          *
660          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
661          *
662          *                        x_intercept - bdi_dirty
663          *                     := --------------------------
664          *                        x_intercept - bdi_setpoint
665          *
666          * The main bdi control line is a linear function that subjects to
667          *
668          * (1) f(bdi_setpoint) = 1.0
669          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
670          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
671          *
672          * For single bdi case, the dirty pages are observed to fluctuate
673          * regularly within range
674          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
675          * for various filesystems, where (2) can yield in a reasonable 12.5%
676          * fluctuation range for pos_ratio.
677          *
678          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
679          * own size, so move the slope over accordingly and choose a slope that
680          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
681          */
682         if (unlikely(bdi_thresh > thresh))
683                 bdi_thresh = thresh;
684         /*
685          * It's very possible that bdi_thresh is close to 0 not because the
686          * device is slow, but that it has remained inactive for long time.
687          * Honour such devices a reasonable good (hopefully IO efficient)
688          * threshold, so that the occasional writes won't be blocked and active
689          * writes can rampup the threshold quickly.
690          */
691         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
692         /*
693          * scale global setpoint to bdi's:
694          *      bdi_setpoint = setpoint * bdi_thresh / thresh
695          */
696         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
697         bdi_setpoint = setpoint * (u64)x >> 16;
698         /*
699          * Use span=(8*write_bw) in single bdi case as indicated by
700          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
701          *
702          *        bdi_thresh                    thresh - bdi_thresh
703          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
704          *          thresh                            thresh
705          */
706         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
707         x_intercept = bdi_setpoint + span;
708
709         if (bdi_dirty < x_intercept - span / 4) {
710                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
711                                     x_intercept - bdi_setpoint + 1);
712         } else
713                 pos_ratio /= 4;
714
715         /*
716          * bdi reserve area, safeguard against dirty pool underrun and disk idle
717          * It may push the desired control point of global dirty pages higher
718          * than setpoint.
719          */
720         x_intercept = bdi_thresh / 2;
721         if (bdi_dirty < x_intercept) {
722                 if (bdi_dirty > x_intercept / 8)
723                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
724                 else
725                         pos_ratio *= 8;
726         }
727
728         return pos_ratio;
729 }
730
731 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
732                                        unsigned long elapsed,
733                                        unsigned long written)
734 {
735         const unsigned long period = roundup_pow_of_two(3 * HZ);
736         unsigned long avg = bdi->avg_write_bandwidth;
737         unsigned long old = bdi->write_bandwidth;
738         u64 bw;
739
740         /*
741          * bw = written * HZ / elapsed
742          *
743          *                   bw * elapsed + write_bandwidth * (period - elapsed)
744          * write_bandwidth = ---------------------------------------------------
745          *                                          period
746          */
747         bw = written - bdi->written_stamp;
748         bw *= HZ;
749         if (unlikely(elapsed > period)) {
750                 do_div(bw, elapsed);
751                 avg = bw;
752                 goto out;
753         }
754         bw += (u64)bdi->write_bandwidth * (period - elapsed);
755         bw >>= ilog2(period);
756
757         /*
758          * one more level of smoothing, for filtering out sudden spikes
759          */
760         if (avg > old && old >= (unsigned long)bw)
761                 avg -= (avg - old) >> 3;
762
763         if (avg < old && old <= (unsigned long)bw)
764                 avg += (old - avg) >> 3;
765
766 out:
767         bdi->write_bandwidth = bw;
768         bdi->avg_write_bandwidth = avg;
769 }
770
771 /*
772  * The global dirtyable memory and dirty threshold could be suddenly knocked
773  * down by a large amount (eg. on the startup of KVM in a swapless system).
774  * This may throw the system into deep dirty exceeded state and throttle
775  * heavy/light dirtiers alike. To retain good responsiveness, maintain
776  * global_dirty_limit for tracking slowly down to the knocked down dirty
777  * threshold.
778  */
779 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
780 {
781         unsigned long limit = global_dirty_limit;
782
783         /*
784          * Follow up in one step.
785          */
786         if (limit < thresh) {
787                 limit = thresh;
788                 goto update;
789         }
790
791         /*
792          * Follow down slowly. Use the higher one as the target, because thresh
793          * may drop below dirty. This is exactly the reason to introduce
794          * global_dirty_limit which is guaranteed to lie above the dirty pages.
795          */
796         thresh = max(thresh, dirty);
797         if (limit > thresh) {
798                 limit -= (limit - thresh) >> 5;
799                 goto update;
800         }
801         return;
802 update:
803         global_dirty_limit = limit;
804 }
805
806 static void global_update_bandwidth(unsigned long thresh,
807                                     unsigned long dirty,
808                                     unsigned long now)
809 {
810         static DEFINE_SPINLOCK(dirty_lock);
811         static unsigned long update_time;
812
813         /*
814          * check locklessly first to optimize away locking for the most time
815          */
816         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
817                 return;
818
819         spin_lock(&dirty_lock);
820         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
821                 update_dirty_limit(thresh, dirty);
822                 update_time = now;
823         }
824         spin_unlock(&dirty_lock);
825 }
826
827 /*
828  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
829  *
830  * Normal bdi tasks will be curbed at or below it in long term.
831  * Obviously it should be around (write_bw / N) when there are N dd tasks.
832  */
833 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
834                                        unsigned long thresh,
835                                        unsigned long bg_thresh,
836                                        unsigned long dirty,
837                                        unsigned long bdi_thresh,
838                                        unsigned long bdi_dirty,
839                                        unsigned long dirtied,
840                                        unsigned long elapsed)
841 {
842         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
843         unsigned long limit = hard_dirty_limit(thresh);
844         unsigned long setpoint = (freerun + limit) / 2;
845         unsigned long write_bw = bdi->avg_write_bandwidth;
846         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
847         unsigned long dirty_rate;
848         unsigned long task_ratelimit;
849         unsigned long balanced_dirty_ratelimit;
850         unsigned long pos_ratio;
851         unsigned long step;
852         unsigned long x;
853
854         /*
855          * The dirty rate will match the writeout rate in long term, except
856          * when dirty pages are truncated by userspace or re-dirtied by FS.
857          */
858         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
859
860         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
861                                        bdi_thresh, bdi_dirty);
862         /*
863          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
864          */
865         task_ratelimit = (u64)dirty_ratelimit *
866                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
867         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
868
869         /*
870          * A linear estimation of the "balanced" throttle rate. The theory is,
871          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
872          * dirty_rate will be measured to be (N * task_ratelimit). So the below
873          * formula will yield the balanced rate limit (write_bw / N).
874          *
875          * Note that the expanded form is not a pure rate feedback:
876          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
877          * but also takes pos_ratio into account:
878          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
879          *
880          * (1) is not realistic because pos_ratio also takes part in balancing
881          * the dirty rate.  Consider the state
882          *      pos_ratio = 0.5                                              (3)
883          *      rate = 2 * (write_bw / N)                                    (4)
884          * If (1) is used, it will stuck in that state! Because each dd will
885          * be throttled at
886          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
887          * yielding
888          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
889          * put (6) into (1) we get
890          *      rate_(i+1) = rate_(i)                                        (7)
891          *
892          * So we end up using (2) to always keep
893          *      rate_(i+1) ~= (write_bw / N)                                 (8)
894          * regardless of the value of pos_ratio. As long as (8) is satisfied,
895          * pos_ratio is able to drive itself to 1.0, which is not only where
896          * the dirty count meet the setpoint, but also where the slope of
897          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
898          */
899         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
900                                            dirty_rate | 1);
901         /*
902          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
903          */
904         if (unlikely(balanced_dirty_ratelimit > write_bw))
905                 balanced_dirty_ratelimit = write_bw;
906
907         /*
908          * We could safely do this and return immediately:
909          *
910          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
911          *
912          * However to get a more stable dirty_ratelimit, the below elaborated
913          * code makes use of task_ratelimit to filter out sigular points and
914          * limit the step size.
915          *
916          * The below code essentially only uses the relative value of
917          *
918          *      task_ratelimit - dirty_ratelimit
919          *      = (pos_ratio - 1) * dirty_ratelimit
920          *
921          * which reflects the direction and size of dirty position error.
922          */
923
924         /*
925          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
926          * task_ratelimit is on the same side of dirty_ratelimit, too.
927          * For example, when
928          * - dirty_ratelimit > balanced_dirty_ratelimit
929          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
930          * lowering dirty_ratelimit will help meet both the position and rate
931          * control targets. Otherwise, don't update dirty_ratelimit if it will
932          * only help meet the rate target. After all, what the users ultimately
933          * feel and care are stable dirty rate and small position error.
934          *
935          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
936          * and filter out the sigular points of balanced_dirty_ratelimit. Which
937          * keeps jumping around randomly and can even leap far away at times
938          * due to the small 200ms estimation period of dirty_rate (we want to
939          * keep that period small to reduce time lags).
940          */
941         step = 0;
942         if (dirty < setpoint) {
943                 x = min(bdi->balanced_dirty_ratelimit,
944                          min(balanced_dirty_ratelimit, task_ratelimit));
945                 if (dirty_ratelimit < x)
946                         step = x - dirty_ratelimit;
947         } else {
948                 x = max(bdi->balanced_dirty_ratelimit,
949                          max(balanced_dirty_ratelimit, task_ratelimit));
950                 if (dirty_ratelimit > x)
951                         step = dirty_ratelimit - x;
952         }
953
954         /*
955          * Don't pursue 100% rate matching. It's impossible since the balanced
956          * rate itself is constantly fluctuating. So decrease the track speed
957          * when it gets close to the target. Helps eliminate pointless tremors.
958          */
959         step >>= dirty_ratelimit / (2 * step + 1);
960         /*
961          * Limit the tracking speed to avoid overshooting.
962          */
963         step = (step + 7) / 8;
964
965         if (dirty_ratelimit < balanced_dirty_ratelimit)
966                 dirty_ratelimit += step;
967         else
968                 dirty_ratelimit -= step;
969
970         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
971         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
972
973         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
974 }
975
976 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
977                             unsigned long thresh,
978                             unsigned long bg_thresh,
979                             unsigned long dirty,
980                             unsigned long bdi_thresh,
981                             unsigned long bdi_dirty,
982                             unsigned long start_time)
983 {
984         unsigned long now = jiffies;
985         unsigned long elapsed = now - bdi->bw_time_stamp;
986         unsigned long dirtied;
987         unsigned long written;
988
989         /*
990          * rate-limit, only update once every 200ms.
991          */
992         if (elapsed < BANDWIDTH_INTERVAL)
993                 return;
994
995         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
996         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
997
998         /*
999          * Skip quiet periods when disk bandwidth is under-utilized.
1000          * (at least 1s idle time between two flusher runs)
1001          */
1002         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1003                 goto snapshot;
1004
1005         if (thresh) {
1006                 global_update_bandwidth(thresh, dirty, now);
1007                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1008                                            bdi_thresh, bdi_dirty,
1009                                            dirtied, elapsed);
1010         }
1011         bdi_update_write_bandwidth(bdi, elapsed, written);
1012
1013 snapshot:
1014         bdi->dirtied_stamp = dirtied;
1015         bdi->written_stamp = written;
1016         bdi->bw_time_stamp = now;
1017 }
1018
1019 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1020                                  unsigned long thresh,
1021                                  unsigned long bg_thresh,
1022                                  unsigned long dirty,
1023                                  unsigned long bdi_thresh,
1024                                  unsigned long bdi_dirty,
1025                                  unsigned long start_time)
1026 {
1027         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1028                 return;
1029         spin_lock(&bdi->wb.list_lock);
1030         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1031                                bdi_thresh, bdi_dirty, start_time);
1032         spin_unlock(&bdi->wb.list_lock);
1033 }
1034
1035 /*
1036  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1037  * will look to see if it needs to start dirty throttling.
1038  *
1039  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1040  * global_page_state() too often. So scale it near-sqrt to the safety margin
1041  * (the number of pages we may dirty without exceeding the dirty limits).
1042  */
1043 static unsigned long dirty_poll_interval(unsigned long dirty,
1044                                          unsigned long thresh)
1045 {
1046         if (thresh > dirty)
1047                 return 1UL << (ilog2(thresh - dirty) >> 1);
1048
1049         return 1;
1050 }
1051
1052 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1053                                    unsigned long bdi_dirty)
1054 {
1055         unsigned long bw = bdi->avg_write_bandwidth;
1056         unsigned long hi = ilog2(bw);
1057         unsigned long lo = ilog2(bdi->dirty_ratelimit);
1058         unsigned long t;
1059
1060         /* target for 20ms max pause on 1-dd case */
1061         t = HZ / 50;
1062
1063         /*
1064          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1065          * overheads.
1066          *
1067          * (N * 20ms) on 2^N concurrent tasks.
1068          */
1069         if (hi > lo)
1070                 t += (hi - lo) * (20 * HZ) / 1024;
1071
1072         /*
1073          * Limit pause time for small memory systems. If sleeping for too long
1074          * time, a small pool of dirty/writeback pages may go empty and disk go
1075          * idle.
1076          *
1077          * 8 serves as the safety ratio.
1078          */
1079         t = min(t, bdi_dirty * HZ / (8 * bw + 1));
1080
1081         /*
1082          * The pause time will be settled within range (max_pause/4, max_pause).
1083          * Apply a minimal value of 4 to get a non-zero max_pause/4.
1084          */
1085         return clamp_val(t, 4, MAX_PAUSE);
1086 }
1087
1088 /*
1089  * balance_dirty_pages() must be called by processes which are generating dirty
1090  * data.  It looks at the number of dirty pages in the machine and will force
1091  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1092  * If we're over `background_thresh' then the writeback threads are woken to
1093  * perform some writeout.
1094  */
1095 static void balance_dirty_pages(struct address_space *mapping,
1096                                 unsigned long pages_dirtied)
1097 {
1098         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1099         unsigned long bdi_reclaimable;
1100         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1101         unsigned long bdi_dirty;
1102         unsigned long freerun;
1103         unsigned long background_thresh;
1104         unsigned long dirty_thresh;
1105         unsigned long bdi_thresh;
1106         long period;
1107         long pause = 0;
1108         long uninitialized_var(max_pause);
1109         bool dirty_exceeded = false;
1110         unsigned long task_ratelimit;
1111         unsigned long uninitialized_var(dirty_ratelimit);
1112         unsigned long pos_ratio;
1113         struct backing_dev_info *bdi = mapping->backing_dev_info;
1114         unsigned long start_time = jiffies;
1115
1116         for (;;) {
1117                 unsigned long now = jiffies;
1118
1119                 /*
1120                  * Unstable writes are a feature of certain networked
1121                  * filesystems (i.e. NFS) in which data may have been
1122                  * written to the server's write cache, but has not yet
1123                  * been flushed to permanent storage.
1124                  */
1125                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1126                                         global_page_state(NR_UNSTABLE_NFS);
1127                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1128
1129                 global_dirty_limits(&background_thresh, &dirty_thresh);
1130
1131                 /*
1132                  * Throttle it only when the background writeback cannot
1133                  * catch-up. This avoids (excessively) small writeouts
1134                  * when the bdi limits are ramping up.
1135                  */
1136                 freerun = dirty_freerun_ceiling(dirty_thresh,
1137                                                 background_thresh);
1138                 if (nr_dirty <= freerun) {
1139                         current->dirty_paused_when = now;
1140                         current->nr_dirtied = 0;
1141                         break;
1142                 }
1143
1144                 if (unlikely(!writeback_in_progress(bdi)))
1145                         bdi_start_background_writeback(bdi);
1146
1147                 /*
1148                  * bdi_thresh is not treated as some limiting factor as
1149                  * dirty_thresh, due to reasons
1150                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1151                  * - in a system with HDD and USB key, the USB key may somehow
1152                  *   go into state (bdi_dirty >> bdi_thresh) either because
1153                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1154                  *   In this case we don't want to hard throttle the USB key
1155                  *   dirtiers for 100 seconds until bdi_dirty drops under
1156                  *   bdi_thresh. Instead the auxiliary bdi control line in
1157                  *   bdi_position_ratio() will let the dirtier task progress
1158                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1159                  */
1160                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1161
1162                 /*
1163                  * In order to avoid the stacked BDI deadlock we need
1164                  * to ensure we accurately count the 'dirty' pages when
1165                  * the threshold is low.
1166                  *
1167                  * Otherwise it would be possible to get thresh+n pages
1168                  * reported dirty, even though there are thresh-m pages
1169                  * actually dirty; with m+n sitting in the percpu
1170                  * deltas.
1171                  */
1172                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1173                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1174                         bdi_dirty = bdi_reclaimable +
1175                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1176                 } else {
1177                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1178                         bdi_dirty = bdi_reclaimable +
1179                                     bdi_stat(bdi, BDI_WRITEBACK);
1180                 }
1181
1182                 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1183                                   (nr_dirty > dirty_thresh);
1184                 if (dirty_exceeded && !bdi->dirty_exceeded)
1185                         bdi->dirty_exceeded = 1;
1186
1187                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1188                                      nr_dirty, bdi_thresh, bdi_dirty,
1189                                      start_time);
1190
1191                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1192
1193                 dirty_ratelimit = bdi->dirty_ratelimit;
1194                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1195                                                background_thresh, nr_dirty,
1196                                                bdi_thresh, bdi_dirty);
1197                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1198                                                         RATELIMIT_CALC_SHIFT;
1199                 if (unlikely(task_ratelimit == 0)) {
1200                         period = max_pause;
1201                         pause = max_pause;
1202                         goto pause;
1203                 }
1204                 period = HZ * pages_dirtied / task_ratelimit;
1205                 pause = period;
1206                 if (current->dirty_paused_when)
1207                         pause -= now - current->dirty_paused_when;
1208                 /*
1209                  * For less than 1s think time (ext3/4 may block the dirtier
1210                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1211                  * however at much less frequency), try to compensate it in
1212                  * future periods by updating the virtual time; otherwise just
1213                  * do a reset, as it may be a light dirtier.
1214                  */
1215                 if (unlikely(pause <= 0)) {
1216                         trace_balance_dirty_pages(bdi,
1217                                                   dirty_thresh,
1218                                                   background_thresh,
1219                                                   nr_dirty,
1220                                                   bdi_thresh,
1221                                                   bdi_dirty,
1222                                                   dirty_ratelimit,
1223                                                   task_ratelimit,
1224                                                   pages_dirtied,
1225                                                   period,
1226                                                   pause,
1227                                                   start_time);
1228                         if (pause < -HZ) {
1229                                 current->dirty_paused_when = now;
1230                                 current->nr_dirtied = 0;
1231                         } else if (period) {
1232                                 current->dirty_paused_when += period;
1233                                 current->nr_dirtied = 0;
1234                         }
1235                         pause = 1; /* avoid resetting nr_dirtied_pause below */
1236                         break;
1237                 }
1238                 pause = min(pause, max_pause);
1239
1240 pause:
1241                 trace_balance_dirty_pages(bdi,
1242                                           dirty_thresh,
1243                                           background_thresh,
1244                                           nr_dirty,
1245                                           bdi_thresh,
1246                                           bdi_dirty,
1247                                           dirty_ratelimit,
1248                                           task_ratelimit,
1249                                           pages_dirtied,
1250                                           period,
1251                                           pause,
1252                                           start_time);
1253                 __set_current_state(TASK_KILLABLE);
1254                 io_schedule_timeout(pause);
1255
1256                 current->dirty_paused_when = now + pause;
1257                 current->nr_dirtied = 0;
1258
1259                 /*
1260                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1261                  * also keep "1000+ dd on a slow USB stick" under control.
1262                  */
1263                 if (task_ratelimit)
1264                         break;
1265
1266                 /*
1267                  * In the case of an unresponding NFS server and the NFS dirty
1268                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1269                  * to go through, so that tasks on them still remain responsive.
1270                  *
1271                  * In theory 1 page is enough to keep the comsumer-producer
1272                  * pipe going: the flusher cleans 1 page => the task dirties 1
1273                  * more page. However bdi_dirty has accounting errors.  So use
1274                  * the larger and more IO friendly bdi_stat_error.
1275                  */
1276                 if (bdi_dirty <= bdi_stat_error(bdi))
1277                         break;
1278
1279                 if (fatal_signal_pending(current))
1280                         break;
1281         }
1282
1283         if (!dirty_exceeded && bdi->dirty_exceeded)
1284                 bdi->dirty_exceeded = 0;
1285
1286         if (pause == 0) { /* in freerun area */
1287                 current->nr_dirtied_pause =
1288                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1289         } else if (period <= max_pause / 4 &&
1290                    pages_dirtied >= current->nr_dirtied_pause) {
1291                 current->nr_dirtied_pause = clamp_val(
1292                                         dirty_ratelimit * (max_pause / 2) / HZ,
1293                                         pages_dirtied + pages_dirtied / 8,
1294                                         pages_dirtied * 4);
1295         } else if (pause >= max_pause) {
1296                 current->nr_dirtied_pause = 1 | clamp_val(
1297                                         dirty_ratelimit * (max_pause / 2) / HZ,
1298                                         pages_dirtied / 4,
1299                                         pages_dirtied - pages_dirtied / 8);
1300         }
1301
1302         if (writeback_in_progress(bdi))
1303                 return;
1304
1305         /*
1306          * In laptop mode, we wait until hitting the higher threshold before
1307          * starting background writeout, and then write out all the way down
1308          * to the lower threshold.  So slow writers cause minimal disk activity.
1309          *
1310          * In normal mode, we start background writeout at the lower
1311          * background_thresh, to keep the amount of dirty memory low.
1312          */
1313         if (laptop_mode)
1314                 return;
1315
1316         if (nr_reclaimable > background_thresh)
1317                 bdi_start_background_writeback(bdi);
1318 }
1319
1320 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1321 {
1322         if (set_page_dirty(page) || page_mkwrite) {
1323                 struct address_space *mapping = page_mapping(page);
1324
1325                 if (mapping)
1326                         balance_dirty_pages_ratelimited(mapping);
1327         }
1328 }
1329
1330 static DEFINE_PER_CPU(int, bdp_ratelimits);
1331
1332 /*
1333  * Normal tasks are throttled by
1334  *      loop {
1335  *              dirty tsk->nr_dirtied_pause pages;
1336  *              take a snap in balance_dirty_pages();
1337  *      }
1338  * However there is a worst case. If every task exit immediately when dirtied
1339  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1340  * called to throttle the page dirties. The solution is to save the not yet
1341  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1342  * randomly into the running tasks. This works well for the above worst case,
1343  * as the new task will pick up and accumulate the old task's leaked dirty
1344  * count and eventually get throttled.
1345  */
1346 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1347
1348 /**
1349  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1350  * @mapping: address_space which was dirtied
1351  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1352  *
1353  * Processes which are dirtying memory should call in here once for each page
1354  * which was newly dirtied.  The function will periodically check the system's
1355  * dirty state and will initiate writeback if needed.
1356  *
1357  * On really big machines, get_writeback_state is expensive, so try to avoid
1358  * calling it too often (ratelimiting).  But once we're over the dirty memory
1359  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1360  * from overshooting the limit by (ratelimit_pages) each.
1361  */
1362 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1363                                         unsigned long nr_pages_dirtied)
1364 {
1365         struct backing_dev_info *bdi = mapping->backing_dev_info;
1366         int ratelimit;
1367         int *p;
1368
1369         if (!bdi_cap_account_dirty(bdi))
1370                 return;
1371
1372         ratelimit = current->nr_dirtied_pause;
1373         if (bdi->dirty_exceeded)
1374                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1375
1376         preempt_disable();
1377         /*
1378          * This prevents one CPU to accumulate too many dirtied pages without
1379          * calling into balance_dirty_pages(), which can happen when there are
1380          * 1000+ tasks, all of them start dirtying pages at exactly the same
1381          * time, hence all honoured too large initial task->nr_dirtied_pause.
1382          */
1383         p =  &__get_cpu_var(bdp_ratelimits);
1384         if (unlikely(current->nr_dirtied >= ratelimit))
1385                 *p = 0;
1386         else if (unlikely(*p >= ratelimit_pages)) {
1387                 *p = 0;
1388                 ratelimit = 0;
1389         }
1390         /*
1391          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1392          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1393          * the dirty throttling and livelock other long-run dirtiers.
1394          */
1395         p = &__get_cpu_var(dirty_throttle_leaks);
1396         if (*p > 0 && current->nr_dirtied < ratelimit) {
1397                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1398                 *p -= nr_pages_dirtied;
1399                 current->nr_dirtied += nr_pages_dirtied;
1400         }
1401         preempt_enable();
1402
1403         if (unlikely(current->nr_dirtied >= ratelimit))
1404                 balance_dirty_pages(mapping, current->nr_dirtied);
1405 }
1406 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1407
1408 void throttle_vm_writeout(gfp_t gfp_mask)
1409 {
1410         unsigned long background_thresh;
1411         unsigned long dirty_thresh;
1412
1413         for ( ; ; ) {
1414                 global_dirty_limits(&background_thresh, &dirty_thresh);
1415
1416                 /*
1417                  * Boost the allowable dirty threshold a bit for page
1418                  * allocators so they don't get DoS'ed by heavy writers
1419                  */
1420                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1421
1422                 if (global_page_state(NR_UNSTABLE_NFS) +
1423                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1424                                 break;
1425                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1426
1427                 /*
1428                  * The caller might hold locks which can prevent IO completion
1429                  * or progress in the filesystem.  So we cannot just sit here
1430                  * waiting for IO to complete.
1431                  */
1432                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1433                         break;
1434         }
1435 }
1436
1437 /*
1438  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1439  */
1440 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1441         void __user *buffer, size_t *length, loff_t *ppos)
1442 {
1443         proc_dointvec(table, write, buffer, length, ppos);
1444         bdi_arm_supers_timer();
1445         return 0;
1446 }
1447
1448 #ifdef CONFIG_BLOCK
1449 void laptop_mode_timer_fn(unsigned long data)
1450 {
1451         struct request_queue *q = (struct request_queue *)data;
1452         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1453                 global_page_state(NR_UNSTABLE_NFS);
1454
1455         /*
1456          * We want to write everything out, not just down to the dirty
1457          * threshold
1458          */
1459         if (bdi_has_dirty_io(&q->backing_dev_info))
1460                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1461                                         WB_REASON_LAPTOP_TIMER);
1462 }
1463
1464 /*
1465  * We've spun up the disk and we're in laptop mode: schedule writeback
1466  * of all dirty data a few seconds from now.  If the flush is already scheduled
1467  * then push it back - the user is still using the disk.
1468  */
1469 void laptop_io_completion(struct backing_dev_info *info)
1470 {
1471         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1472 }
1473
1474 /*
1475  * We're in laptop mode and we've just synced. The sync's writes will have
1476  * caused another writeback to be scheduled by laptop_io_completion.
1477  * Nothing needs to be written back anymore, so we unschedule the writeback.
1478  */
1479 void laptop_sync_completion(void)
1480 {
1481         struct backing_dev_info *bdi;
1482
1483         rcu_read_lock();
1484
1485         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1486                 del_timer(&bdi->laptop_mode_wb_timer);
1487
1488         rcu_read_unlock();
1489 }
1490 #endif
1491
1492 /*
1493  * If ratelimit_pages is too high then we can get into dirty-data overload
1494  * if a large number of processes all perform writes at the same time.
1495  * If it is too low then SMP machines will call the (expensive)
1496  * get_writeback_state too often.
1497  *
1498  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1499  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1500  * thresholds.
1501  */
1502
1503 void writeback_set_ratelimit(void)
1504 {
1505         unsigned long background_thresh;
1506         unsigned long dirty_thresh;
1507         global_dirty_limits(&background_thresh, &dirty_thresh);
1508         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1509         if (ratelimit_pages < 16)
1510                 ratelimit_pages = 16;
1511 }
1512
1513 static int __cpuinit
1514 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1515 {
1516         writeback_set_ratelimit();
1517         return NOTIFY_DONE;
1518 }
1519
1520 static struct notifier_block __cpuinitdata ratelimit_nb = {
1521         .notifier_call  = ratelimit_handler,
1522         .next           = NULL,
1523 };
1524
1525 /*
1526  * Called early on to tune the page writeback dirty limits.
1527  *
1528  * We used to scale dirty pages according to how total memory
1529  * related to pages that could be allocated for buffers (by
1530  * comparing nr_free_buffer_pages() to vm_total_pages.
1531  *
1532  * However, that was when we used "dirty_ratio" to scale with
1533  * all memory, and we don't do that any more. "dirty_ratio"
1534  * is now applied to total non-HIGHPAGE memory (by subtracting
1535  * totalhigh_pages from vm_total_pages), and as such we can't
1536  * get into the old insane situation any more where we had
1537  * large amounts of dirty pages compared to a small amount of
1538  * non-HIGHMEM memory.
1539  *
1540  * But we might still want to scale the dirty_ratio by how
1541  * much memory the box has..
1542  */
1543 void __init page_writeback_init(void)
1544 {
1545         int shift;
1546
1547         writeback_set_ratelimit();
1548         register_cpu_notifier(&ratelimit_nb);
1549
1550         shift = calc_period_shift();
1551         prop_descriptor_init(&vm_completions, shift);
1552 }
1553
1554 /**
1555  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1556  * @mapping: address space structure to write
1557  * @start: starting page index
1558  * @end: ending page index (inclusive)
1559  *
1560  * This function scans the page range from @start to @end (inclusive) and tags
1561  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1562  * that write_cache_pages (or whoever calls this function) will then use
1563  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1564  * used to avoid livelocking of writeback by a process steadily creating new
1565  * dirty pages in the file (thus it is important for this function to be quick
1566  * so that it can tag pages faster than a dirtying process can create them).
1567  */
1568 /*
1569  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1570  */
1571 void tag_pages_for_writeback(struct address_space *mapping,
1572                              pgoff_t start, pgoff_t end)
1573 {
1574 #define WRITEBACK_TAG_BATCH 4096
1575         unsigned long tagged;
1576
1577         do {
1578                 spin_lock_irq(&mapping->tree_lock);
1579                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1580                                 &start, end, WRITEBACK_TAG_BATCH,
1581                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1582                 spin_unlock_irq(&mapping->tree_lock);
1583                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1584                 cond_resched();
1585                 /* We check 'start' to handle wrapping when end == ~0UL */
1586         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1587 }
1588 EXPORT_SYMBOL(tag_pages_for_writeback);
1589
1590 /**
1591  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1592  * @mapping: address space structure to write
1593  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1594  * @writepage: function called for each page
1595  * @data: data passed to writepage function
1596  *
1597  * If a page is already under I/O, write_cache_pages() skips it, even
1598  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1599  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1600  * and msync() need to guarantee that all the data which was dirty at the time
1601  * the call was made get new I/O started against them.  If wbc->sync_mode is
1602  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1603  * existing IO to complete.
1604  *
1605  * To avoid livelocks (when other process dirties new pages), we first tag
1606  * pages which should be written back with TOWRITE tag and only then start
1607  * writing them. For data-integrity sync we have to be careful so that we do
1608  * not miss some pages (e.g., because some other process has cleared TOWRITE
1609  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1610  * by the process clearing the DIRTY tag (and submitting the page for IO).
1611  */
1612 int write_cache_pages(struct address_space *mapping,
1613                       struct writeback_control *wbc, writepage_t writepage,
1614                       void *data)
1615 {
1616         int ret = 0;
1617         int done = 0;
1618         struct pagevec pvec;
1619         int nr_pages;
1620         pgoff_t uninitialized_var(writeback_index);
1621         pgoff_t index;
1622         pgoff_t end;            /* Inclusive */
1623         pgoff_t done_index;
1624         int cycled;
1625         int range_whole = 0;
1626         int tag;
1627
1628         pagevec_init(&pvec, 0);
1629         if (wbc->range_cyclic) {
1630                 writeback_index = mapping->writeback_index; /* prev offset */
1631                 index = writeback_index;
1632                 if (index == 0)
1633                         cycled = 1;
1634                 else
1635                         cycled = 0;
1636                 end = -1;
1637         } else {
1638                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1639                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1640                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1641                         range_whole = 1;
1642                 cycled = 1; /* ignore range_cyclic tests */
1643         }
1644         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1645                 tag = PAGECACHE_TAG_TOWRITE;
1646         else
1647                 tag = PAGECACHE_TAG_DIRTY;
1648 retry:
1649         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1650                 tag_pages_for_writeback(mapping, index, end);
1651         done_index = index;
1652         while (!done && (index <= end)) {
1653                 int i;
1654
1655                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1656                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1657                 if (nr_pages == 0)
1658                         break;
1659
1660                 for (i = 0; i < nr_pages; i++) {
1661                         struct page *page = pvec.pages[i];
1662
1663                         /*
1664                          * At this point, the page may be truncated or
1665                          * invalidated (changing page->mapping to NULL), or
1666                          * even swizzled back from swapper_space to tmpfs file
1667                          * mapping. However, page->index will not change
1668                          * because we have a reference on the page.
1669                          */
1670                         if (page->index > end) {
1671                                 /*
1672                                  * can't be range_cyclic (1st pass) because
1673                                  * end == -1 in that case.
1674                                  */
1675                                 done = 1;
1676                                 break;
1677                         }
1678
1679                         done_index = page->index;
1680
1681                         lock_page(page);
1682
1683                         /*
1684                          * Page truncated or invalidated. We can freely skip it
1685                          * then, even for data integrity operations: the page
1686                          * has disappeared concurrently, so there could be no
1687                          * real expectation of this data interity operation
1688                          * even if there is now a new, dirty page at the same
1689                          * pagecache address.
1690                          */
1691                         if (unlikely(page->mapping != mapping)) {
1692 continue_unlock:
1693                                 unlock_page(page);
1694                                 continue;
1695                         }
1696
1697                         if (!PageDirty(page)) {
1698                                 /* someone wrote it for us */
1699                                 goto continue_unlock;
1700                         }
1701
1702                         if (PageWriteback(page)) {
1703                                 if (wbc->sync_mode != WB_SYNC_NONE)
1704                                         wait_on_page_writeback(page);
1705                                 else
1706                                         goto continue_unlock;
1707                         }
1708
1709                         BUG_ON(PageWriteback(page));
1710                         if (!clear_page_dirty_for_io(page))
1711                                 goto continue_unlock;
1712
1713                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1714                         ret = (*writepage)(page, wbc, data);
1715                         if (unlikely(ret)) {
1716                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1717                                         unlock_page(page);
1718                                         ret = 0;
1719                                 } else {
1720                                         /*
1721                                          * done_index is set past this page,
1722                                          * so media errors will not choke
1723                                          * background writeout for the entire
1724                                          * file. This has consequences for
1725                                          * range_cyclic semantics (ie. it may
1726                                          * not be suitable for data integrity
1727                                          * writeout).
1728                                          */
1729                                         done_index = page->index + 1;
1730                                         done = 1;
1731                                         break;
1732                                 }
1733                         }
1734
1735                         /*
1736                          * We stop writing back only if we are not doing
1737                          * integrity sync. In case of integrity sync we have to
1738                          * keep going until we have written all the pages
1739                          * we tagged for writeback prior to entering this loop.
1740                          */
1741                         if (--wbc->nr_to_write <= 0 &&
1742                             wbc->sync_mode == WB_SYNC_NONE) {
1743                                 done = 1;
1744                                 break;
1745                         }
1746                 }
1747                 pagevec_release(&pvec);
1748                 cond_resched();
1749         }
1750         if (!cycled && !done) {
1751                 /*
1752                  * range_cyclic:
1753                  * We hit the last page and there is more work to be done: wrap
1754                  * back to the start of the file
1755                  */
1756                 cycled = 1;
1757                 index = 0;
1758                 end = writeback_index - 1;
1759                 goto retry;
1760         }
1761         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1762                 mapping->writeback_index = done_index;
1763
1764         return ret;
1765 }
1766 EXPORT_SYMBOL(write_cache_pages);
1767
1768 /*
1769  * Function used by generic_writepages to call the real writepage
1770  * function and set the mapping flags on error
1771  */
1772 static int __writepage(struct page *page, struct writeback_control *wbc,
1773                        void *data)
1774 {
1775         struct address_space *mapping = data;
1776         int ret = mapping->a_ops->writepage(page, wbc);
1777         mapping_set_error(mapping, ret);
1778         return ret;
1779 }
1780
1781 /**
1782  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1783  * @mapping: address space structure to write
1784  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1785  *
1786  * This is a library function, which implements the writepages()
1787  * address_space_operation.
1788  */
1789 int generic_writepages(struct address_space *mapping,
1790                        struct writeback_control *wbc)
1791 {
1792         struct blk_plug plug;
1793         int ret;
1794
1795         /* deal with chardevs and other special file */
1796         if (!mapping->a_ops->writepage)
1797                 return 0;
1798
1799         blk_start_plug(&plug);
1800         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1801         blk_finish_plug(&plug);
1802         return ret;
1803 }
1804
1805 EXPORT_SYMBOL(generic_writepages);
1806
1807 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1808 {
1809         int ret;
1810
1811         if (wbc->nr_to_write <= 0)
1812                 return 0;
1813         if (mapping->a_ops->writepages)
1814                 ret = mapping->a_ops->writepages(mapping, wbc);
1815         else
1816                 ret = generic_writepages(mapping, wbc);
1817         return ret;
1818 }
1819
1820 /**
1821  * write_one_page - write out a single page and optionally wait on I/O
1822  * @page: the page to write
1823  * @wait: if true, wait on writeout
1824  *
1825  * The page must be locked by the caller and will be unlocked upon return.
1826  *
1827  * write_one_page() returns a negative error code if I/O failed.
1828  */
1829 int write_one_page(struct page *page, int wait)
1830 {
1831         struct address_space *mapping = page->mapping;
1832         int ret = 0;
1833         struct writeback_control wbc = {
1834                 .sync_mode = WB_SYNC_ALL,
1835                 .nr_to_write = 1,
1836         };
1837
1838         BUG_ON(!PageLocked(page));
1839
1840         if (wait)
1841                 wait_on_page_writeback(page);
1842
1843         if (clear_page_dirty_for_io(page)) {
1844                 page_cache_get(page);
1845                 ret = mapping->a_ops->writepage(page, &wbc);
1846                 if (ret == 0 && wait) {
1847                         wait_on_page_writeback(page);
1848                         if (PageError(page))
1849                                 ret = -EIO;
1850                 }
1851                 page_cache_release(page);
1852         } else {
1853                 unlock_page(page);
1854         }
1855         return ret;
1856 }
1857 EXPORT_SYMBOL(write_one_page);
1858
1859 /*
1860  * For address_spaces which do not use buffers nor write back.
1861  */
1862 int __set_page_dirty_no_writeback(struct page *page)
1863 {
1864         if (!PageDirty(page))
1865                 return !TestSetPageDirty(page);
1866         return 0;
1867 }
1868
1869 /*
1870  * Helper function for set_page_dirty family.
1871  * NOTE: This relies on being atomic wrt interrupts.
1872  */
1873 void account_page_dirtied(struct page *page, struct address_space *mapping)
1874 {
1875         if (mapping_cap_account_dirty(mapping)) {
1876                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1877                 __inc_zone_page_state(page, NR_DIRTIED);
1878                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1879                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1880                 task_io_account_write(PAGE_CACHE_SIZE);
1881                 current->nr_dirtied++;
1882                 this_cpu_inc(bdp_ratelimits);
1883         }
1884 }
1885 EXPORT_SYMBOL(account_page_dirtied);
1886
1887 /*
1888  * Helper function for set_page_writeback family.
1889  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1890  * wrt interrupts.
1891  */
1892 void account_page_writeback(struct page *page)
1893 {
1894         inc_zone_page_state(page, NR_WRITEBACK);
1895 }
1896 EXPORT_SYMBOL(account_page_writeback);
1897
1898 /*
1899  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1900  * its radix tree.
1901  *
1902  * This is also used when a single buffer is being dirtied: we want to set the
1903  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1904  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1905  *
1906  * Most callers have locked the page, which pins the address_space in memory.
1907  * But zap_pte_range() does not lock the page, however in that case the
1908  * mapping is pinned by the vma's ->vm_file reference.
1909  *
1910  * We take care to handle the case where the page was truncated from the
1911  * mapping by re-checking page_mapping() inside tree_lock.
1912  */
1913 int __set_page_dirty_nobuffers(struct page *page)
1914 {
1915         if (!TestSetPageDirty(page)) {
1916                 struct address_space *mapping = page_mapping(page);
1917                 struct address_space *mapping2;
1918
1919                 if (!mapping)
1920                         return 1;
1921
1922                 spin_lock_irq(&mapping->tree_lock);
1923                 mapping2 = page_mapping(page);
1924                 if (mapping2) { /* Race with truncate? */
1925                         BUG_ON(mapping2 != mapping);
1926                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1927                         account_page_dirtied(page, mapping);
1928                         radix_tree_tag_set(&mapping->page_tree,
1929                                 page_index(page), PAGECACHE_TAG_DIRTY);
1930                 }
1931                 spin_unlock_irq(&mapping->tree_lock);
1932                 if (mapping->host) {
1933                         /* !PageAnon && !swapper_space */
1934                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1935                 }
1936                 return 1;
1937         }
1938         return 0;
1939 }
1940 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1941
1942 /*
1943  * Call this whenever redirtying a page, to de-account the dirty counters
1944  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
1945  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
1946  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
1947  * control.
1948  */
1949 void account_page_redirty(struct page *page)
1950 {
1951         struct address_space *mapping = page->mapping;
1952         if (mapping && mapping_cap_account_dirty(mapping)) {
1953                 current->nr_dirtied--;
1954                 dec_zone_page_state(page, NR_DIRTIED);
1955                 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1956         }
1957 }
1958 EXPORT_SYMBOL(account_page_redirty);
1959
1960 /*
1961  * When a writepage implementation decides that it doesn't want to write this
1962  * page for some reason, it should redirty the locked page via
1963  * redirty_page_for_writepage() and it should then unlock the page and return 0
1964  */
1965 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1966 {
1967         wbc->pages_skipped++;
1968         account_page_redirty(page);
1969         return __set_page_dirty_nobuffers(page);
1970 }
1971 EXPORT_SYMBOL(redirty_page_for_writepage);
1972
1973 /*
1974  * Dirty a page.
1975  *
1976  * For pages with a mapping this should be done under the page lock
1977  * for the benefit of asynchronous memory errors who prefer a consistent
1978  * dirty state. This rule can be broken in some special cases,
1979  * but should be better not to.
1980  *
1981  * If the mapping doesn't provide a set_page_dirty a_op, then
1982  * just fall through and assume that it wants buffer_heads.
1983  */
1984 int set_page_dirty(struct page *page)
1985 {
1986         struct address_space *mapping = page_mapping(page);
1987
1988         if (likely(mapping)) {
1989                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1990                 /*
1991                  * readahead/lru_deactivate_page could remain
1992                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1993                  * About readahead, if the page is written, the flags would be
1994                  * reset. So no problem.
1995                  * About lru_deactivate_page, if the page is redirty, the flag
1996                  * will be reset. So no problem. but if the page is used by readahead
1997                  * it will confuse readahead and make it restart the size rampup
1998                  * process. But it's a trivial problem.
1999                  */
2000                 ClearPageReclaim(page);
2001 #ifdef CONFIG_BLOCK
2002                 if (!spd)
2003                         spd = __set_page_dirty_buffers;
2004 #endif
2005                 return (*spd)(page);
2006         }
2007         if (!PageDirty(page)) {
2008                 if (!TestSetPageDirty(page))
2009                         return 1;
2010         }
2011         return 0;
2012 }
2013 EXPORT_SYMBOL(set_page_dirty);
2014
2015 /*
2016  * set_page_dirty() is racy if the caller has no reference against
2017  * page->mapping->host, and if the page is unlocked.  This is because another
2018  * CPU could truncate the page off the mapping and then free the mapping.
2019  *
2020  * Usually, the page _is_ locked, or the caller is a user-space process which
2021  * holds a reference on the inode by having an open file.
2022  *
2023  * In other cases, the page should be locked before running set_page_dirty().
2024  */
2025 int set_page_dirty_lock(struct page *page)
2026 {
2027         int ret;
2028
2029         lock_page(page);
2030         ret = set_page_dirty(page);
2031         unlock_page(page);
2032         return ret;
2033 }
2034 EXPORT_SYMBOL(set_page_dirty_lock);
2035
2036 /*
2037  * Clear a page's dirty flag, while caring for dirty memory accounting.
2038  * Returns true if the page was previously dirty.
2039  *
2040  * This is for preparing to put the page under writeout.  We leave the page
2041  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2042  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2043  * implementation will run either set_page_writeback() or set_page_dirty(),
2044  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2045  * back into sync.
2046  *
2047  * This incoherency between the page's dirty flag and radix-tree tag is
2048  * unfortunate, but it only exists while the page is locked.
2049  */
2050 int clear_page_dirty_for_io(struct page *page)
2051 {
2052         struct address_space *mapping = page_mapping(page);
2053
2054         BUG_ON(!PageLocked(page));
2055
2056         if (mapping && mapping_cap_account_dirty(mapping)) {
2057                 /*
2058                  * Yes, Virginia, this is indeed insane.
2059                  *
2060                  * We use this sequence to make sure that
2061                  *  (a) we account for dirty stats properly
2062                  *  (b) we tell the low-level filesystem to
2063                  *      mark the whole page dirty if it was
2064                  *      dirty in a pagetable. Only to then
2065                  *  (c) clean the page again and return 1 to
2066                  *      cause the writeback.
2067                  *
2068                  * This way we avoid all nasty races with the
2069                  * dirty bit in multiple places and clearing
2070                  * them concurrently from different threads.
2071                  *
2072                  * Note! Normally the "set_page_dirty(page)"
2073                  * has no effect on the actual dirty bit - since
2074                  * that will already usually be set. But we
2075                  * need the side effects, and it can help us
2076                  * avoid races.
2077                  *
2078                  * We basically use the page "master dirty bit"
2079                  * as a serialization point for all the different
2080                  * threads doing their things.
2081                  */
2082                 if (page_mkclean(page))
2083                         set_page_dirty(page);
2084                 /*
2085                  * We carefully synchronise fault handlers against
2086                  * installing a dirty pte and marking the page dirty
2087                  * at this point. We do this by having them hold the
2088                  * page lock at some point after installing their
2089                  * pte, but before marking the page dirty.
2090                  * Pages are always locked coming in here, so we get
2091                  * the desired exclusion. See mm/memory.c:do_wp_page()
2092                  * for more comments.
2093                  */
2094                 if (TestClearPageDirty(page)) {
2095                         dec_zone_page_state(page, NR_FILE_DIRTY);
2096                         dec_bdi_stat(mapping->backing_dev_info,
2097                                         BDI_RECLAIMABLE);
2098                         return 1;
2099                 }
2100                 return 0;
2101         }
2102         return TestClearPageDirty(page);
2103 }
2104 EXPORT_SYMBOL(clear_page_dirty_for_io);
2105
2106 int test_clear_page_writeback(struct page *page)
2107 {
2108         struct address_space *mapping = page_mapping(page);
2109         int ret;
2110
2111         if (mapping) {
2112                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2113                 unsigned long flags;
2114
2115                 spin_lock_irqsave(&mapping->tree_lock, flags);
2116                 ret = TestClearPageWriteback(page);
2117                 if (ret) {
2118                         radix_tree_tag_clear(&mapping->page_tree,
2119                                                 page_index(page),
2120                                                 PAGECACHE_TAG_WRITEBACK);
2121                         if (bdi_cap_account_writeback(bdi)) {
2122                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2123                                 __bdi_writeout_inc(bdi);
2124                         }
2125                 }
2126                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2127         } else {
2128                 ret = TestClearPageWriteback(page);
2129         }
2130         if (ret) {
2131                 dec_zone_page_state(page, NR_WRITEBACK);
2132                 inc_zone_page_state(page, NR_WRITTEN);
2133         }
2134         return ret;
2135 }
2136
2137 int test_set_page_writeback(struct page *page)
2138 {
2139         struct address_space *mapping = page_mapping(page);
2140         int ret;
2141
2142         if (mapping) {
2143                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2144                 unsigned long flags;
2145
2146                 spin_lock_irqsave(&mapping->tree_lock, flags);
2147                 ret = TestSetPageWriteback(page);
2148                 if (!ret) {
2149                         radix_tree_tag_set(&mapping->page_tree,
2150                                                 page_index(page),
2151                                                 PAGECACHE_TAG_WRITEBACK);
2152                         if (bdi_cap_account_writeback(bdi))
2153                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2154                 }
2155                 if (!PageDirty(page))
2156                         radix_tree_tag_clear(&mapping->page_tree,
2157                                                 page_index(page),
2158                                                 PAGECACHE_TAG_DIRTY);
2159                 radix_tree_tag_clear(&mapping->page_tree,
2160                                      page_index(page),
2161                                      PAGECACHE_TAG_TOWRITE);
2162                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2163         } else {
2164                 ret = TestSetPageWriteback(page);
2165         }
2166         if (!ret)
2167                 account_page_writeback(page);
2168         return ret;
2169
2170 }
2171 EXPORT_SYMBOL(test_set_page_writeback);
2172
2173 /*
2174  * Return true if any of the pages in the mapping are marked with the
2175  * passed tag.
2176  */
2177 int mapping_tagged(struct address_space *mapping, int tag)
2178 {
2179         return radix_tree_tagged(&mapping->page_tree, tag);
2180 }
2181 EXPORT_SYMBOL(mapping_tagged);