]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/shmem.c
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         int     mode;           /* FALLOC_FL mode currently operating */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item;
247
248         VM_BUG_ON(!expected);
249         VM_BUG_ON(!replacement);
250         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251         if (!pslot)
252                 return -ENOENT;
253         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254         if (item != expected)
255                 return -ENOENT;
256         radix_tree_replace_slot(pslot, replacement);
257         return 0;
258 }
259
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268                                pgoff_t index, swp_entry_t swap)
269 {
270         void *item;
271
272         rcu_read_lock();
273         item = radix_tree_lookup(&mapping->page_tree, index);
274         rcu_read_unlock();
275         return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282                                    struct address_space *mapping,
283                                    pgoff_t index, gfp_t gfp, void *expected)
284 {
285         int error;
286
287         VM_BUG_ON_PAGE(!PageLocked(page), page);
288         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290         page_cache_get(page);
291         page->mapping = mapping;
292         page->index = index;
293
294         spin_lock_irq(&mapping->tree_lock);
295         if (!expected)
296                 error = radix_tree_insert(&mapping->page_tree, index, page);
297         else
298                 error = shmem_radix_tree_replace(mapping, index, expected,
299                                                                  page);
300         if (!error) {
301                 mapping->nrpages++;
302                 __inc_zone_page_state(page, NR_FILE_PAGES);
303                 __inc_zone_page_state(page, NR_SHMEM);
304                 spin_unlock_irq(&mapping->tree_lock);
305         } else {
306                 page->mapping = NULL;
307                 spin_unlock_irq(&mapping->tree_lock);
308                 page_cache_release(page);
309         }
310         return error;
311 }
312
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318         struct address_space *mapping = page->mapping;
319         int error;
320
321         spin_lock_irq(&mapping->tree_lock);
322         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323         page->mapping = NULL;
324         mapping->nrpages--;
325         __dec_zone_page_state(page, NR_FILE_PAGES);
326         __dec_zone_page_state(page, NR_SHMEM);
327         spin_unlock_irq(&mapping->tree_lock);
328         page_cache_release(page);
329         BUG_ON(error);
330 }
331
332 /*
333  * Remove swap entry from radix tree, free the swap and its page cache.
334  */
335 static int shmem_free_swap(struct address_space *mapping,
336                            pgoff_t index, void *radswap)
337 {
338         void *old;
339
340         spin_lock_irq(&mapping->tree_lock);
341         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342         spin_unlock_irq(&mapping->tree_lock);
343         if (old != radswap)
344                 return -ENOENT;
345         free_swap_and_cache(radix_to_swp_entry(radswap));
346         return 0;
347 }
348
349 /*
350  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351  */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354         struct pagevec pvec;
355         pgoff_t indices[PAGEVEC_SIZE];
356         pgoff_t index = 0;
357
358         pagevec_init(&pvec, 0);
359         /*
360          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361          */
362         while (!mapping_unevictable(mapping)) {
363                 /*
364                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366                  */
367                 pvec.nr = find_get_entries(mapping, index,
368                                            PAGEVEC_SIZE, pvec.pages, indices);
369                 if (!pvec.nr)
370                         break;
371                 index = indices[pvec.nr - 1] + 1;
372                 pagevec_remove_exceptionals(&pvec);
373                 check_move_unevictable_pages(pvec.pages, pvec.nr);
374                 pagevec_release(&pvec);
375                 cond_resched();
376         }
377 }
378
379 /*
380  * Remove range of pages and swap entries from radix tree, and free them.
381  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382  */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384                                                                  bool unfalloc)
385 {
386         struct address_space *mapping = inode->i_mapping;
387         struct shmem_inode_info *info = SHMEM_I(inode);
388         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392         struct pagevec pvec;
393         pgoff_t indices[PAGEVEC_SIZE];
394         long nr_swaps_freed = 0;
395         pgoff_t index;
396         int i;
397
398         if (lend == -1)
399                 end = -1;       /* unsigned, so actually very big */
400
401         pagevec_init(&pvec, 0);
402         index = start;
403         while (index < end) {
404                 pvec.nr = find_get_entries(mapping, index,
405                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
406                         pvec.pages, indices);
407                 if (!pvec.nr)
408                         break;
409                 mem_cgroup_uncharge_start();
410                 for (i = 0; i < pagevec_count(&pvec); i++) {
411                         struct page *page = pvec.pages[i];
412
413                         index = indices[i];
414                         if (index >= end)
415                                 break;
416
417                         if (radix_tree_exceptional_entry(page)) {
418                                 if (unfalloc)
419                                         continue;
420                                 nr_swaps_freed += !shmem_free_swap(mapping,
421                                                                 index, page);
422                                 continue;
423                         }
424
425                         if (!trylock_page(page))
426                                 continue;
427                         if (!unfalloc || !PageUptodate(page)) {
428                                 if (page->mapping == mapping) {
429                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
430                                         truncate_inode_page(mapping, page);
431                                 }
432                         }
433                         unlock_page(page);
434                 }
435                 pagevec_remove_exceptionals(&pvec);
436                 pagevec_release(&pvec);
437                 mem_cgroup_uncharge_end();
438                 cond_resched();
439                 index++;
440         }
441
442         if (partial_start) {
443                 struct page *page = NULL;
444                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445                 if (page) {
446                         unsigned int top = PAGE_CACHE_SIZE;
447                         if (start > end) {
448                                 top = partial_end;
449                                 partial_end = 0;
450                         }
451                         zero_user_segment(page, partial_start, top);
452                         set_page_dirty(page);
453                         unlock_page(page);
454                         page_cache_release(page);
455                 }
456         }
457         if (partial_end) {
458                 struct page *page = NULL;
459                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460                 if (page) {
461                         zero_user_segment(page, 0, partial_end);
462                         set_page_dirty(page);
463                         unlock_page(page);
464                         page_cache_release(page);
465                 }
466         }
467         if (start >= end)
468                 return;
469
470         index = start;
471         for ( ; ; ) {
472                 cond_resched();
473
474                 pvec.nr = find_get_entries(mapping, index,
475                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476                                 pvec.pages, indices);
477                 if (!pvec.nr) {
478                         if (index == start || unfalloc)
479                                 break;
480                         index = start;
481                         continue;
482                 }
483                 if ((index == start || unfalloc) && indices[0] >= end) {
484                         pagevec_remove_exceptionals(&pvec);
485                         pagevec_release(&pvec);
486                         break;
487                 }
488                 mem_cgroup_uncharge_start();
489                 for (i = 0; i < pagevec_count(&pvec); i++) {
490                         struct page *page = pvec.pages[i];
491
492                         index = indices[i];
493                         if (index >= end)
494                                 break;
495
496                         if (radix_tree_exceptional_entry(page)) {
497                                 if (unfalloc)
498                                         continue;
499                                 nr_swaps_freed += !shmem_free_swap(mapping,
500                                                                 index, page);
501                                 continue;
502                         }
503
504                         lock_page(page);
505                         if (!unfalloc || !PageUptodate(page)) {
506                                 if (page->mapping == mapping) {
507                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
508                                         truncate_inode_page(mapping, page);
509                                 }
510                         }
511                         unlock_page(page);
512                 }
513                 pagevec_remove_exceptionals(&pvec);
514                 pagevec_release(&pvec);
515                 mem_cgroup_uncharge_end();
516                 index++;
517         }
518
519         spin_lock(&info->lock);
520         info->swapped -= nr_swaps_freed;
521         shmem_recalc_inode(inode);
522         spin_unlock(&info->lock);
523 }
524
525 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526 {
527         shmem_undo_range(inode, lstart, lend, false);
528         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529 }
530 EXPORT_SYMBOL_GPL(shmem_truncate_range);
531
532 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534         struct inode *inode = dentry->d_inode;
535         int error;
536
537         error = inode_change_ok(inode, attr);
538         if (error)
539                 return error;
540
541         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542                 loff_t oldsize = inode->i_size;
543                 loff_t newsize = attr->ia_size;
544
545                 if (newsize != oldsize) {
546                         i_size_write(inode, newsize);
547                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548                 }
549                 if (newsize < oldsize) {
550                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
551                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552                         shmem_truncate_range(inode, newsize, (loff_t)-1);
553                         /* unmap again to remove racily COWed private pages */
554                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555                 }
556         }
557
558         setattr_copy(inode, attr);
559         if (attr->ia_valid & ATTR_MODE)
560                 error = posix_acl_chmod(inode, inode->i_mode);
561         return error;
562 }
563
564 static void shmem_evict_inode(struct inode *inode)
565 {
566         struct shmem_inode_info *info = SHMEM_I(inode);
567
568         if (inode->i_mapping->a_ops == &shmem_aops) {
569                 shmem_unacct_size(info->flags, inode->i_size);
570                 inode->i_size = 0;
571                 shmem_truncate_range(inode, 0, (loff_t)-1);
572                 if (!list_empty(&info->swaplist)) {
573                         mutex_lock(&shmem_swaplist_mutex);
574                         list_del_init(&info->swaplist);
575                         mutex_unlock(&shmem_swaplist_mutex);
576                 }
577         } else
578                 kfree(info->symlink);
579
580         simple_xattrs_free(&info->xattrs);
581         WARN_ON(inode->i_blocks);
582         shmem_free_inode(inode->i_sb);
583         clear_inode(inode);
584 }
585
586 /*
587  * If swap found in inode, free it and move page from swapcache to filecache.
588  */
589 static int shmem_unuse_inode(struct shmem_inode_info *info,
590                              swp_entry_t swap, struct page **pagep)
591 {
592         struct address_space *mapping = info->vfs_inode.i_mapping;
593         void *radswap;
594         pgoff_t index;
595         gfp_t gfp;
596         int error = 0;
597
598         radswap = swp_to_radix_entry(swap);
599         index = radix_tree_locate_item(&mapping->page_tree, radswap);
600         if (index == -1)
601                 return 0;
602
603         /*
604          * Move _head_ to start search for next from here.
605          * But be careful: shmem_evict_inode checks list_empty without taking
606          * mutex, and there's an instant in list_move_tail when info->swaplist
607          * would appear empty, if it were the only one on shmem_swaplist.
608          */
609         if (shmem_swaplist.next != &info->swaplist)
610                 list_move_tail(&shmem_swaplist, &info->swaplist);
611
612         gfp = mapping_gfp_mask(mapping);
613         if (shmem_should_replace_page(*pagep, gfp)) {
614                 mutex_unlock(&shmem_swaplist_mutex);
615                 error = shmem_replace_page(pagep, gfp, info, index);
616                 mutex_lock(&shmem_swaplist_mutex);
617                 /*
618                  * We needed to drop mutex to make that restrictive page
619                  * allocation, but the inode might have been freed while we
620                  * dropped it: although a racing shmem_evict_inode() cannot
621                  * complete without emptying the radix_tree, our page lock
622                  * on this swapcache page is not enough to prevent that -
623                  * free_swap_and_cache() of our swap entry will only
624                  * trylock_page(), removing swap from radix_tree whatever.
625                  *
626                  * We must not proceed to shmem_add_to_page_cache() if the
627                  * inode has been freed, but of course we cannot rely on
628                  * inode or mapping or info to check that.  However, we can
629                  * safely check if our swap entry is still in use (and here
630                  * it can't have got reused for another page): if it's still
631                  * in use, then the inode cannot have been freed yet, and we
632                  * can safely proceed (if it's no longer in use, that tells
633                  * nothing about the inode, but we don't need to unuse swap).
634                  */
635                 if (!page_swapcount(*pagep))
636                         error = -ENOENT;
637         }
638
639         /*
640          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641          * but also to hold up shmem_evict_inode(): so inode cannot be freed
642          * beneath us (pagelock doesn't help until the page is in pagecache).
643          */
644         if (!error)
645                 error = shmem_add_to_page_cache(*pagep, mapping, index,
646                                                 GFP_NOWAIT, radswap);
647         if (error != -ENOMEM) {
648                 /*
649                  * Truncation and eviction use free_swap_and_cache(), which
650                  * only does trylock page: if we raced, best clean up here.
651                  */
652                 delete_from_swap_cache(*pagep);
653                 set_page_dirty(*pagep);
654                 if (!error) {
655                         spin_lock(&info->lock);
656                         info->swapped--;
657                         spin_unlock(&info->lock);
658                         swap_free(swap);
659                 }
660                 error = 1;      /* not an error, but entry was found */
661         }
662         return error;
663 }
664
665 /*
666  * Search through swapped inodes to find and replace swap by page.
667  */
668 int shmem_unuse(swp_entry_t swap, struct page *page)
669 {
670         struct list_head *this, *next;
671         struct shmem_inode_info *info;
672         int found = 0;
673         int error = 0;
674
675         /*
676          * There's a faint possibility that swap page was replaced before
677          * caller locked it: caller will come back later with the right page.
678          */
679         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680                 goto out;
681
682         /*
683          * Charge page using GFP_KERNEL while we can wait, before taking
684          * the shmem_swaplist_mutex which might hold up shmem_writepage().
685          * Charged back to the user (not to caller) when swap account is used.
686          */
687         error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688         if (error)
689                 goto out;
690         /* No radix_tree_preload: swap entry keeps a place for page in tree */
691
692         mutex_lock(&shmem_swaplist_mutex);
693         list_for_each_safe(this, next, &shmem_swaplist) {
694                 info = list_entry(this, struct shmem_inode_info, swaplist);
695                 if (info->swapped)
696                         found = shmem_unuse_inode(info, swap, &page);
697                 else
698                         list_del_init(&info->swaplist);
699                 cond_resched();
700                 if (found)
701                         break;
702         }
703         mutex_unlock(&shmem_swaplist_mutex);
704
705         if (found < 0)
706                 error = found;
707 out:
708         unlock_page(page);
709         page_cache_release(page);
710         return error;
711 }
712
713 /*
714  * Move the page from the page cache to the swap cache.
715  */
716 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717 {
718         struct shmem_inode_info *info;
719         struct address_space *mapping;
720         struct inode *inode;
721         swp_entry_t swap;
722         pgoff_t index;
723
724         BUG_ON(!PageLocked(page));
725         mapping = page->mapping;
726         index = page->index;
727         inode = mapping->host;
728         info = SHMEM_I(inode);
729         if (info->flags & VM_LOCKED)
730                 goto redirty;
731         if (!total_swap_pages)
732                 goto redirty;
733
734         /*
735          * shmem_backing_dev_info's capabilities prevent regular writeback or
736          * sync from ever calling shmem_writepage; but a stacking filesystem
737          * might use ->writepage of its underlying filesystem, in which case
738          * tmpfs should write out to swap only in response to memory pressure,
739          * and not for the writeback threads or sync.
740          */
741         if (!wbc->for_reclaim) {
742                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
743                 goto redirty;
744         }
745
746         /*
747          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748          * value into swapfile.c, the only way we can correctly account for a
749          * fallocated page arriving here is now to initialize it and write it.
750          *
751          * That's okay for a page already fallocated earlier, but if we have
752          * not yet completed the fallocation, then (a) we want to keep track
753          * of this page in case we have to undo it, and (b) it may not be a
754          * good idea to continue anyway, once we're pushing into swap.  So
755          * reactivate the page, and let shmem_fallocate() quit when too many.
756          */
757         if (!PageUptodate(page)) {
758                 if (inode->i_private) {
759                         struct shmem_falloc *shmem_falloc;
760                         spin_lock(&inode->i_lock);
761                         shmem_falloc = inode->i_private;
762                         if (shmem_falloc &&
763                             !shmem_falloc->mode &&
764                             index >= shmem_falloc->start &&
765                             index < shmem_falloc->next)
766                                 shmem_falloc->nr_unswapped++;
767                         else
768                                 shmem_falloc = NULL;
769                         spin_unlock(&inode->i_lock);
770                         if (shmem_falloc)
771                                 goto redirty;
772                 }
773                 clear_highpage(page);
774                 flush_dcache_page(page);
775                 SetPageUptodate(page);
776         }
777
778         swap = get_swap_page();
779         if (!swap.val)
780                 goto redirty;
781
782         /*
783          * Add inode to shmem_unuse()'s list of swapped-out inodes,
784          * if it's not already there.  Do it now before the page is
785          * moved to swap cache, when its pagelock no longer protects
786          * the inode from eviction.  But don't unlock the mutex until
787          * we've incremented swapped, because shmem_unuse_inode() will
788          * prune a !swapped inode from the swaplist under this mutex.
789          */
790         mutex_lock(&shmem_swaplist_mutex);
791         if (list_empty(&info->swaplist))
792                 list_add_tail(&info->swaplist, &shmem_swaplist);
793
794         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795                 swap_shmem_alloc(swap);
796                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798                 spin_lock(&info->lock);
799                 info->swapped++;
800                 shmem_recalc_inode(inode);
801                 spin_unlock(&info->lock);
802
803                 mutex_unlock(&shmem_swaplist_mutex);
804                 BUG_ON(page_mapped(page));
805                 swap_writepage(page, wbc);
806                 return 0;
807         }
808
809         mutex_unlock(&shmem_swaplist_mutex);
810         swapcache_free(swap, NULL);
811 redirty:
812         set_page_dirty(page);
813         if (wbc->for_reclaim)
814                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
815         unlock_page(page);
816         return 0;
817 }
818
819 #ifdef CONFIG_NUMA
820 #ifdef CONFIG_TMPFS
821 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822 {
823         char buffer[64];
824
825         if (!mpol || mpol->mode == MPOL_DEFAULT)
826                 return;         /* show nothing */
827
828         mpol_to_str(buffer, sizeof(buffer), mpol);
829
830         seq_printf(seq, ",mpol=%s", buffer);
831 }
832
833 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834 {
835         struct mempolicy *mpol = NULL;
836         if (sbinfo->mpol) {
837                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
838                 mpol = sbinfo->mpol;
839                 mpol_get(mpol);
840                 spin_unlock(&sbinfo->stat_lock);
841         }
842         return mpol;
843 }
844 #endif /* CONFIG_TMPFS */
845
846 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847                         struct shmem_inode_info *info, pgoff_t index)
848 {
849         struct vm_area_struct pvma;
850         struct page *page;
851
852         /* Create a pseudo vma that just contains the policy */
853         pvma.vm_start = 0;
854         /* Bias interleave by inode number to distribute better across nodes */
855         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856         pvma.vm_ops = NULL;
857         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859         page = swapin_readahead(swap, gfp, &pvma, 0);
860
861         /* Drop reference taken by mpol_shared_policy_lookup() */
862         mpol_cond_put(pvma.vm_policy);
863
864         return page;
865 }
866
867 static struct page *shmem_alloc_page(gfp_t gfp,
868                         struct shmem_inode_info *info, pgoff_t index)
869 {
870         struct vm_area_struct pvma;
871         struct page *page;
872
873         /* Create a pseudo vma that just contains the policy */
874         pvma.vm_start = 0;
875         /* Bias interleave by inode number to distribute better across nodes */
876         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877         pvma.vm_ops = NULL;
878         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879
880         page = alloc_page_vma(gfp, &pvma, 0);
881
882         /* Drop reference taken by mpol_shared_policy_lookup() */
883         mpol_cond_put(pvma.vm_policy);
884
885         return page;
886 }
887 #else /* !CONFIG_NUMA */
888 #ifdef CONFIG_TMPFS
889 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890 {
891 }
892 #endif /* CONFIG_TMPFS */
893
894 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895                         struct shmem_inode_info *info, pgoff_t index)
896 {
897         return swapin_readahead(swap, gfp, NULL, 0);
898 }
899
900 static inline struct page *shmem_alloc_page(gfp_t gfp,
901                         struct shmem_inode_info *info, pgoff_t index)
902 {
903         return alloc_page(gfp);
904 }
905 #endif /* CONFIG_NUMA */
906
907 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909 {
910         return NULL;
911 }
912 #endif
913
914 /*
915  * When a page is moved from swapcache to shmem filecache (either by the
916  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917  * shmem_unuse_inode()), it may have been read in earlier from swap, in
918  * ignorance of the mapping it belongs to.  If that mapping has special
919  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920  * we may need to copy to a suitable page before moving to filecache.
921  *
922  * In a future release, this may well be extended to respect cpuset and
923  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924  * but for now it is a simple matter of zone.
925  */
926 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927 {
928         return page_zonenum(page) > gfp_zone(gfp);
929 }
930
931 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932                                 struct shmem_inode_info *info, pgoff_t index)
933 {
934         struct page *oldpage, *newpage;
935         struct address_space *swap_mapping;
936         pgoff_t swap_index;
937         int error;
938
939         oldpage = *pagep;
940         swap_index = page_private(oldpage);
941         swap_mapping = page_mapping(oldpage);
942
943         /*
944          * We have arrived here because our zones are constrained, so don't
945          * limit chance of success by further cpuset and node constraints.
946          */
947         gfp &= ~GFP_CONSTRAINT_MASK;
948         newpage = shmem_alloc_page(gfp, info, index);
949         if (!newpage)
950                 return -ENOMEM;
951
952         page_cache_get(newpage);
953         copy_highpage(newpage, oldpage);
954         flush_dcache_page(newpage);
955
956         __set_page_locked(newpage);
957         SetPageUptodate(newpage);
958         SetPageSwapBacked(newpage);
959         set_page_private(newpage, swap_index);
960         SetPageSwapCache(newpage);
961
962         /*
963          * Our caller will very soon move newpage out of swapcache, but it's
964          * a nice clean interface for us to replace oldpage by newpage there.
965          */
966         spin_lock_irq(&swap_mapping->tree_lock);
967         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968                                                                    newpage);
969         if (!error) {
970                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
971                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
972         }
973         spin_unlock_irq(&swap_mapping->tree_lock);
974
975         if (unlikely(error)) {
976                 /*
977                  * Is this possible?  I think not, now that our callers check
978                  * both PageSwapCache and page_private after getting page lock;
979                  * but be defensive.  Reverse old to newpage for clear and free.
980                  */
981                 oldpage = newpage;
982         } else {
983                 mem_cgroup_replace_page_cache(oldpage, newpage);
984                 lru_cache_add_anon(newpage);
985                 *pagep = newpage;
986         }
987
988         ClearPageSwapCache(oldpage);
989         set_page_private(oldpage, 0);
990
991         unlock_page(oldpage);
992         page_cache_release(oldpage);
993         page_cache_release(oldpage);
994         return error;
995 }
996
997 /*
998  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999  *
1000  * If we allocate a new one we do not mark it dirty. That's up to the
1001  * vm. If we swap it in we mark it dirty since we also free the swap
1002  * entry since a page cannot live in both the swap and page cache
1003  */
1004 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006 {
1007         struct address_space *mapping = inode->i_mapping;
1008         struct shmem_inode_info *info;
1009         struct shmem_sb_info *sbinfo;
1010         struct page *page;
1011         swp_entry_t swap;
1012         int error;
1013         int once = 0;
1014         int alloced = 0;
1015
1016         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017                 return -EFBIG;
1018 repeat:
1019         swap.val = 0;
1020         page = find_lock_entry(mapping, index);
1021         if (radix_tree_exceptional_entry(page)) {
1022                 swap = radix_to_swp_entry(page);
1023                 page = NULL;
1024         }
1025
1026         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028                 error = -EINVAL;
1029                 goto failed;
1030         }
1031
1032         /* fallocated page? */
1033         if (page && !PageUptodate(page)) {
1034                 if (sgp != SGP_READ)
1035                         goto clear;
1036                 unlock_page(page);
1037                 page_cache_release(page);
1038                 page = NULL;
1039         }
1040         if (page || (sgp == SGP_READ && !swap.val)) {
1041                 *pagep = page;
1042                 return 0;
1043         }
1044
1045         /*
1046          * Fast cache lookup did not find it:
1047          * bring it back from swap or allocate.
1048          */
1049         info = SHMEM_I(inode);
1050         sbinfo = SHMEM_SB(inode->i_sb);
1051
1052         if (swap.val) {
1053                 /* Look it up and read it in.. */
1054                 page = lookup_swap_cache(swap);
1055                 if (!page) {
1056                         /* here we actually do the io */
1057                         if (fault_type)
1058                                 *fault_type |= VM_FAULT_MAJOR;
1059                         page = shmem_swapin(swap, gfp, info, index);
1060                         if (!page) {
1061                                 error = -ENOMEM;
1062                                 goto failed;
1063                         }
1064                 }
1065
1066                 /* We have to do this with page locked to prevent races */
1067                 lock_page(page);
1068                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1069                     !shmem_confirm_swap(mapping, index, swap)) {
1070                         error = -EEXIST;        /* try again */
1071                         goto unlock;
1072                 }
1073                 if (!PageUptodate(page)) {
1074                         error = -EIO;
1075                         goto failed;
1076                 }
1077                 wait_on_page_writeback(page);
1078
1079                 if (shmem_should_replace_page(page, gfp)) {
1080                         error = shmem_replace_page(&page, gfp, info, index);
1081                         if (error)
1082                                 goto failed;
1083                 }
1084
1085                 error = mem_cgroup_charge_file(page, current->mm,
1086                                                 gfp & GFP_RECLAIM_MASK);
1087                 if (!error) {
1088                         error = shmem_add_to_page_cache(page, mapping, index,
1089                                                 gfp, swp_to_radix_entry(swap));
1090                         /*
1091                          * We already confirmed swap under page lock, and make
1092                          * no memory allocation here, so usually no possibility
1093                          * of error; but free_swap_and_cache() only trylocks a
1094                          * page, so it is just possible that the entry has been
1095                          * truncated or holepunched since swap was confirmed.
1096                          * shmem_undo_range() will have done some of the
1097                          * unaccounting, now delete_from_swap_cache() will do
1098                          * the rest (including mem_cgroup_uncharge_swapcache).
1099                          * Reset swap.val? No, leave it so "failed" goes back to
1100                          * "repeat": reading a hole and writing should succeed.
1101                          */
1102                         if (error)
1103                                 delete_from_swap_cache(page);
1104                 }
1105                 if (error)
1106                         goto failed;
1107
1108                 spin_lock(&info->lock);
1109                 info->swapped--;
1110                 shmem_recalc_inode(inode);
1111                 spin_unlock(&info->lock);
1112
1113                 delete_from_swap_cache(page);
1114                 set_page_dirty(page);
1115                 swap_free(swap);
1116
1117         } else {
1118                 if (shmem_acct_block(info->flags)) {
1119                         error = -ENOSPC;
1120                         goto failed;
1121                 }
1122                 if (sbinfo->max_blocks) {
1123                         if (percpu_counter_compare(&sbinfo->used_blocks,
1124                                                 sbinfo->max_blocks) >= 0) {
1125                                 error = -ENOSPC;
1126                                 goto unacct;
1127                         }
1128                         percpu_counter_inc(&sbinfo->used_blocks);
1129                 }
1130
1131                 page = shmem_alloc_page(gfp, info, index);
1132                 if (!page) {
1133                         error = -ENOMEM;
1134                         goto decused;
1135                 }
1136
1137                 __SetPageSwapBacked(page);
1138                 __set_page_locked(page);
1139                 error = mem_cgroup_charge_file(page, current->mm,
1140                                                 gfp & GFP_RECLAIM_MASK);
1141                 if (error)
1142                         goto decused;
1143                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1144                 if (!error) {
1145                         error = shmem_add_to_page_cache(page, mapping, index,
1146                                                         gfp, NULL);
1147                         radix_tree_preload_end();
1148                 }
1149                 if (error) {
1150                         mem_cgroup_uncharge_cache_page(page);
1151                         goto decused;
1152                 }
1153                 lru_cache_add_anon(page);
1154
1155                 spin_lock(&info->lock);
1156                 info->alloced++;
1157                 inode->i_blocks += BLOCKS_PER_PAGE;
1158                 shmem_recalc_inode(inode);
1159                 spin_unlock(&info->lock);
1160                 alloced = true;
1161
1162                 /*
1163                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1164                  */
1165                 if (sgp == SGP_FALLOC)
1166                         sgp = SGP_WRITE;
1167 clear:
1168                 /*
1169                  * Let SGP_WRITE caller clear ends if write does not fill page;
1170                  * but SGP_FALLOC on a page fallocated earlier must initialize
1171                  * it now, lest undo on failure cancel our earlier guarantee.
1172                  */
1173                 if (sgp != SGP_WRITE) {
1174                         clear_highpage(page);
1175                         flush_dcache_page(page);
1176                         SetPageUptodate(page);
1177                 }
1178                 if (sgp == SGP_DIRTY)
1179                         set_page_dirty(page);
1180         }
1181
1182         /* Perhaps the file has been truncated since we checked */
1183         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1184             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1185                 error = -EINVAL;
1186                 if (alloced)
1187                         goto trunc;
1188                 else
1189                         goto failed;
1190         }
1191         *pagep = page;
1192         return 0;
1193
1194         /*
1195          * Error recovery.
1196          */
1197 trunc:
1198         info = SHMEM_I(inode);
1199         ClearPageDirty(page);
1200         delete_from_page_cache(page);
1201         spin_lock(&info->lock);
1202         info->alloced--;
1203         inode->i_blocks -= BLOCKS_PER_PAGE;
1204         spin_unlock(&info->lock);
1205 decused:
1206         sbinfo = SHMEM_SB(inode->i_sb);
1207         if (sbinfo->max_blocks)
1208                 percpu_counter_add(&sbinfo->used_blocks, -1);
1209 unacct:
1210         shmem_unacct_blocks(info->flags, 1);
1211 failed:
1212         if (swap.val && error != -EINVAL &&
1213             !shmem_confirm_swap(mapping, index, swap))
1214                 error = -EEXIST;
1215 unlock:
1216         if (page) {
1217                 unlock_page(page);
1218                 page_cache_release(page);
1219         }
1220         if (error == -ENOSPC && !once++) {
1221                 info = SHMEM_I(inode);
1222                 spin_lock(&info->lock);
1223                 shmem_recalc_inode(inode);
1224                 spin_unlock(&info->lock);
1225                 goto repeat;
1226         }
1227         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1228                 goto repeat;
1229         return error;
1230 }
1231
1232 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1233 {
1234         struct inode *inode = file_inode(vma->vm_file);
1235         int error;
1236         int ret = VM_FAULT_LOCKED;
1237
1238         /*
1239          * Trinity finds that probing a hole which tmpfs is punching can
1240          * prevent the hole-punch from ever completing: which in turn
1241          * locks writers out with its hold on i_mutex.  So refrain from
1242          * faulting pages into the hole while it's being punched, and
1243          * wait on i_mutex to be released if vmf->flags permits.
1244          */
1245         if (unlikely(inode->i_private)) {
1246                 struct shmem_falloc *shmem_falloc;
1247
1248                 spin_lock(&inode->i_lock);
1249                 shmem_falloc = inode->i_private;
1250                 if (!shmem_falloc ||
1251                     shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1252                     vmf->pgoff < shmem_falloc->start ||
1253                     vmf->pgoff >= shmem_falloc->next)
1254                         shmem_falloc = NULL;
1255                 spin_unlock(&inode->i_lock);
1256                 /*
1257                  * i_lock has protected us from taking shmem_falloc seriously
1258                  * once return from shmem_fallocate() went back up that stack.
1259                  * i_lock does not serialize with i_mutex at all, but it does
1260                  * not matter if sometimes we wait unnecessarily, or sometimes
1261                  * miss out on waiting: we just need to make those cases rare.
1262                  */
1263                 if (shmem_falloc) {
1264                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1265                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1266                                 up_read(&vma->vm_mm->mmap_sem);
1267                                 mutex_lock(&inode->i_mutex);
1268                                 mutex_unlock(&inode->i_mutex);
1269                                 return VM_FAULT_RETRY;
1270                         }
1271                         /* cond_resched? Leave that to GUP or return to user */
1272                         return VM_FAULT_NOPAGE;
1273                 }
1274         }
1275
1276         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1277         if (error)
1278                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1279
1280         if (ret & VM_FAULT_MAJOR) {
1281                 count_vm_event(PGMAJFAULT);
1282                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1283         }
1284         return ret;
1285 }
1286
1287 #ifdef CONFIG_NUMA
1288 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1289 {
1290         struct inode *inode = file_inode(vma->vm_file);
1291         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1292 }
1293
1294 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1295                                           unsigned long addr)
1296 {
1297         struct inode *inode = file_inode(vma->vm_file);
1298         pgoff_t index;
1299
1300         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1301         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1302 }
1303 #endif
1304
1305 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1306 {
1307         struct inode *inode = file_inode(file);
1308         struct shmem_inode_info *info = SHMEM_I(inode);
1309         int retval = -ENOMEM;
1310
1311         spin_lock(&info->lock);
1312         if (lock && !(info->flags & VM_LOCKED)) {
1313                 if (!user_shm_lock(inode->i_size, user))
1314                         goto out_nomem;
1315                 info->flags |= VM_LOCKED;
1316                 mapping_set_unevictable(file->f_mapping);
1317         }
1318         if (!lock && (info->flags & VM_LOCKED) && user) {
1319                 user_shm_unlock(inode->i_size, user);
1320                 info->flags &= ~VM_LOCKED;
1321                 mapping_clear_unevictable(file->f_mapping);
1322         }
1323         retval = 0;
1324
1325 out_nomem:
1326         spin_unlock(&info->lock);
1327         return retval;
1328 }
1329
1330 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1331 {
1332         file_accessed(file);
1333         vma->vm_ops = &shmem_vm_ops;
1334         return 0;
1335 }
1336
1337 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1338                                      umode_t mode, dev_t dev, unsigned long flags)
1339 {
1340         struct inode *inode;
1341         struct shmem_inode_info *info;
1342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1343
1344         if (shmem_reserve_inode(sb))
1345                 return NULL;
1346
1347         inode = new_inode(sb);
1348         if (inode) {
1349                 inode->i_ino = get_next_ino();
1350                 inode_init_owner(inode, dir, mode);
1351                 inode->i_blocks = 0;
1352                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1353                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1354                 inode->i_generation = get_seconds();
1355                 info = SHMEM_I(inode);
1356                 memset(info, 0, (char *)inode - (char *)info);
1357                 spin_lock_init(&info->lock);
1358                 info->flags = flags & VM_NORESERVE;
1359                 INIT_LIST_HEAD(&info->swaplist);
1360                 simple_xattrs_init(&info->xattrs);
1361                 cache_no_acl(inode);
1362
1363                 switch (mode & S_IFMT) {
1364                 default:
1365                         inode->i_op = &shmem_special_inode_operations;
1366                         init_special_inode(inode, mode, dev);
1367                         break;
1368                 case S_IFREG:
1369                         inode->i_mapping->a_ops = &shmem_aops;
1370                         inode->i_op = &shmem_inode_operations;
1371                         inode->i_fop = &shmem_file_operations;
1372                         mpol_shared_policy_init(&info->policy,
1373                                                  shmem_get_sbmpol(sbinfo));
1374                         break;
1375                 case S_IFDIR:
1376                         inc_nlink(inode);
1377                         /* Some things misbehave if size == 0 on a directory */
1378                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1379                         inode->i_op = &shmem_dir_inode_operations;
1380                         inode->i_fop = &simple_dir_operations;
1381                         break;
1382                 case S_IFLNK:
1383                         /*
1384                          * Must not load anything in the rbtree,
1385                          * mpol_free_shared_policy will not be called.
1386                          */
1387                         mpol_shared_policy_init(&info->policy, NULL);
1388                         break;
1389                 }
1390         } else
1391                 shmem_free_inode(sb);
1392         return inode;
1393 }
1394
1395 bool shmem_mapping(struct address_space *mapping)
1396 {
1397         return mapping->backing_dev_info == &shmem_backing_dev_info;
1398 }
1399
1400 #ifdef CONFIG_TMPFS
1401 static const struct inode_operations shmem_symlink_inode_operations;
1402 static const struct inode_operations shmem_short_symlink_operations;
1403
1404 #ifdef CONFIG_TMPFS_XATTR
1405 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1406 #else
1407 #define shmem_initxattrs NULL
1408 #endif
1409
1410 static int
1411 shmem_write_begin(struct file *file, struct address_space *mapping,
1412                         loff_t pos, unsigned len, unsigned flags,
1413                         struct page **pagep, void **fsdata)
1414 {
1415         int ret;
1416         struct inode *inode = mapping->host;
1417         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1418         ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1419         if (ret == 0 && *pagep)
1420                 init_page_accessed(*pagep);
1421         return ret;
1422 }
1423
1424 static int
1425 shmem_write_end(struct file *file, struct address_space *mapping,
1426                         loff_t pos, unsigned len, unsigned copied,
1427                         struct page *page, void *fsdata)
1428 {
1429         struct inode *inode = mapping->host;
1430
1431         if (pos + copied > inode->i_size)
1432                 i_size_write(inode, pos + copied);
1433
1434         if (!PageUptodate(page)) {
1435                 if (copied < PAGE_CACHE_SIZE) {
1436                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1437                         zero_user_segments(page, 0, from,
1438                                         from + copied, PAGE_CACHE_SIZE);
1439                 }
1440                 SetPageUptodate(page);
1441         }
1442         set_page_dirty(page);
1443         unlock_page(page);
1444         page_cache_release(page);
1445
1446         return copied;
1447 }
1448
1449 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1450 {
1451         struct file *file = iocb->ki_filp;
1452         struct inode *inode = file_inode(file);
1453         struct address_space *mapping = inode->i_mapping;
1454         pgoff_t index;
1455         unsigned long offset;
1456         enum sgp_type sgp = SGP_READ;
1457         int error = 0;
1458         ssize_t retval = 0;
1459         loff_t *ppos = &iocb->ki_pos;
1460
1461         /*
1462          * Might this read be for a stacking filesystem?  Then when reading
1463          * holes of a sparse file, we actually need to allocate those pages,
1464          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1465          */
1466         if (segment_eq(get_fs(), KERNEL_DS))
1467                 sgp = SGP_DIRTY;
1468
1469         index = *ppos >> PAGE_CACHE_SHIFT;
1470         offset = *ppos & ~PAGE_CACHE_MASK;
1471
1472         for (;;) {
1473                 struct page *page = NULL;
1474                 pgoff_t end_index;
1475                 unsigned long nr, ret;
1476                 loff_t i_size = i_size_read(inode);
1477
1478                 end_index = i_size >> PAGE_CACHE_SHIFT;
1479                 if (index > end_index)
1480                         break;
1481                 if (index == end_index) {
1482                         nr = i_size & ~PAGE_CACHE_MASK;
1483                         if (nr <= offset)
1484                                 break;
1485                 }
1486
1487                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1488                 if (error) {
1489                         if (error == -EINVAL)
1490                                 error = 0;
1491                         break;
1492                 }
1493                 if (page)
1494                         unlock_page(page);
1495
1496                 /*
1497                  * We must evaluate after, since reads (unlike writes)
1498                  * are called without i_mutex protection against truncate
1499                  */
1500                 nr = PAGE_CACHE_SIZE;
1501                 i_size = i_size_read(inode);
1502                 end_index = i_size >> PAGE_CACHE_SHIFT;
1503                 if (index == end_index) {
1504                         nr = i_size & ~PAGE_CACHE_MASK;
1505                         if (nr <= offset) {
1506                                 if (page)
1507                                         page_cache_release(page);
1508                                 break;
1509                         }
1510                 }
1511                 nr -= offset;
1512
1513                 if (page) {
1514                         /*
1515                          * If users can be writing to this page using arbitrary
1516                          * virtual addresses, take care about potential aliasing
1517                          * before reading the page on the kernel side.
1518                          */
1519                         if (mapping_writably_mapped(mapping))
1520                                 flush_dcache_page(page);
1521                         /*
1522                          * Mark the page accessed if we read the beginning.
1523                          */
1524                         if (!offset)
1525                                 mark_page_accessed(page);
1526                 } else {
1527                         page = ZERO_PAGE(0);
1528                         page_cache_get(page);
1529                 }
1530
1531                 /*
1532                  * Ok, we have the page, and it's up-to-date, so
1533                  * now we can copy it to user space...
1534                  */
1535                 ret = copy_page_to_iter(page, offset, nr, to);
1536                 retval += ret;
1537                 offset += ret;
1538                 index += offset >> PAGE_CACHE_SHIFT;
1539                 offset &= ~PAGE_CACHE_MASK;
1540
1541                 page_cache_release(page);
1542                 if (!iov_iter_count(to))
1543                         break;
1544                 if (ret < nr) {
1545                         error = -EFAULT;
1546                         break;
1547                 }
1548                 cond_resched();
1549         }
1550
1551         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1552         file_accessed(file);
1553         return retval ? retval : error;
1554 }
1555
1556 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1557                                 struct pipe_inode_info *pipe, size_t len,
1558                                 unsigned int flags)
1559 {
1560         struct address_space *mapping = in->f_mapping;
1561         struct inode *inode = mapping->host;
1562         unsigned int loff, nr_pages, req_pages;
1563         struct page *pages[PIPE_DEF_BUFFERS];
1564         struct partial_page partial[PIPE_DEF_BUFFERS];
1565         struct page *page;
1566         pgoff_t index, end_index;
1567         loff_t isize, left;
1568         int error, page_nr;
1569         struct splice_pipe_desc spd = {
1570                 .pages = pages,
1571                 .partial = partial,
1572                 .nr_pages_max = PIPE_DEF_BUFFERS,
1573                 .flags = flags,
1574                 .ops = &page_cache_pipe_buf_ops,
1575                 .spd_release = spd_release_page,
1576         };
1577
1578         isize = i_size_read(inode);
1579         if (unlikely(*ppos >= isize))
1580                 return 0;
1581
1582         left = isize - *ppos;
1583         if (unlikely(left < len))
1584                 len = left;
1585
1586         if (splice_grow_spd(pipe, &spd))
1587                 return -ENOMEM;
1588
1589         index = *ppos >> PAGE_CACHE_SHIFT;
1590         loff = *ppos & ~PAGE_CACHE_MASK;
1591         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1592         nr_pages = min(req_pages, spd.nr_pages_max);
1593
1594         spd.nr_pages = find_get_pages_contig(mapping, index,
1595                                                 nr_pages, spd.pages);
1596         index += spd.nr_pages;
1597         error = 0;
1598
1599         while (spd.nr_pages < nr_pages) {
1600                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1601                 if (error)
1602                         break;
1603                 unlock_page(page);
1604                 spd.pages[spd.nr_pages++] = page;
1605                 index++;
1606         }
1607
1608         index = *ppos >> PAGE_CACHE_SHIFT;
1609         nr_pages = spd.nr_pages;
1610         spd.nr_pages = 0;
1611
1612         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1613                 unsigned int this_len;
1614
1615                 if (!len)
1616                         break;
1617
1618                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1619                 page = spd.pages[page_nr];
1620
1621                 if (!PageUptodate(page) || page->mapping != mapping) {
1622                         error = shmem_getpage(inode, index, &page,
1623                                                         SGP_CACHE, NULL);
1624                         if (error)
1625                                 break;
1626                         unlock_page(page);
1627                         page_cache_release(spd.pages[page_nr]);
1628                         spd.pages[page_nr] = page;
1629                 }
1630
1631                 isize = i_size_read(inode);
1632                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1633                 if (unlikely(!isize || index > end_index))
1634                         break;
1635
1636                 if (end_index == index) {
1637                         unsigned int plen;
1638
1639                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1640                         if (plen <= loff)
1641                                 break;
1642
1643                         this_len = min(this_len, plen - loff);
1644                         len = this_len;
1645                 }
1646
1647                 spd.partial[page_nr].offset = loff;
1648                 spd.partial[page_nr].len = this_len;
1649                 len -= this_len;
1650                 loff = 0;
1651                 spd.nr_pages++;
1652                 index++;
1653         }
1654
1655         while (page_nr < nr_pages)
1656                 page_cache_release(spd.pages[page_nr++]);
1657
1658         if (spd.nr_pages)
1659                 error = splice_to_pipe(pipe, &spd);
1660
1661         splice_shrink_spd(&spd);
1662
1663         if (error > 0) {
1664                 *ppos += error;
1665                 file_accessed(in);
1666         }
1667         return error;
1668 }
1669
1670 /*
1671  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1672  */
1673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1674                                     pgoff_t index, pgoff_t end, int whence)
1675 {
1676         struct page *page;
1677         struct pagevec pvec;
1678         pgoff_t indices[PAGEVEC_SIZE];
1679         bool done = false;
1680         int i;
1681
1682         pagevec_init(&pvec, 0);
1683         pvec.nr = 1;            /* start small: we may be there already */
1684         while (!done) {
1685                 pvec.nr = find_get_entries(mapping, index,
1686                                         pvec.nr, pvec.pages, indices);
1687                 if (!pvec.nr) {
1688                         if (whence == SEEK_DATA)
1689                                 index = end;
1690                         break;
1691                 }
1692                 for (i = 0; i < pvec.nr; i++, index++) {
1693                         if (index < indices[i]) {
1694                                 if (whence == SEEK_HOLE) {
1695                                         done = true;
1696                                         break;
1697                                 }
1698                                 index = indices[i];
1699                         }
1700                         page = pvec.pages[i];
1701                         if (page && !radix_tree_exceptional_entry(page)) {
1702                                 if (!PageUptodate(page))
1703                                         page = NULL;
1704                         }
1705                         if (index >= end ||
1706                             (page && whence == SEEK_DATA) ||
1707                             (!page && whence == SEEK_HOLE)) {
1708                                 done = true;
1709                                 break;
1710                         }
1711                 }
1712                 pagevec_remove_exceptionals(&pvec);
1713                 pagevec_release(&pvec);
1714                 pvec.nr = PAGEVEC_SIZE;
1715                 cond_resched();
1716         }
1717         return index;
1718 }
1719
1720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1721 {
1722         struct address_space *mapping = file->f_mapping;
1723         struct inode *inode = mapping->host;
1724         pgoff_t start, end;
1725         loff_t new_offset;
1726
1727         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1728                 return generic_file_llseek_size(file, offset, whence,
1729                                         MAX_LFS_FILESIZE, i_size_read(inode));
1730         mutex_lock(&inode->i_mutex);
1731         /* We're holding i_mutex so we can access i_size directly */
1732
1733         if (offset < 0)
1734                 offset = -EINVAL;
1735         else if (offset >= inode->i_size)
1736                 offset = -ENXIO;
1737         else {
1738                 start = offset >> PAGE_CACHE_SHIFT;
1739                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1740                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1741                 new_offset <<= PAGE_CACHE_SHIFT;
1742                 if (new_offset > offset) {
1743                         if (new_offset < inode->i_size)
1744                                 offset = new_offset;
1745                         else if (whence == SEEK_DATA)
1746                                 offset = -ENXIO;
1747                         else
1748                                 offset = inode->i_size;
1749                 }
1750         }
1751
1752         if (offset >= 0)
1753                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1754         mutex_unlock(&inode->i_mutex);
1755         return offset;
1756 }
1757
1758 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1759                                                          loff_t len)
1760 {
1761         struct inode *inode = file_inode(file);
1762         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1763         struct shmem_falloc shmem_falloc;
1764         pgoff_t start, index, end;
1765         int error;
1766
1767         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1768                 return -EOPNOTSUPP;
1769
1770         mutex_lock(&inode->i_mutex);
1771
1772         shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1773
1774         if (mode & FALLOC_FL_PUNCH_HOLE) {
1775                 struct address_space *mapping = file->f_mapping;
1776                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1777                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1778
1779                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1780                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1781                 spin_lock(&inode->i_lock);
1782                 inode->i_private = &shmem_falloc;
1783                 spin_unlock(&inode->i_lock);
1784
1785                 if ((u64)unmap_end > (u64)unmap_start)
1786                         unmap_mapping_range(mapping, unmap_start,
1787                                             1 + unmap_end - unmap_start, 0);
1788                 shmem_truncate_range(inode, offset, offset + len - 1);
1789                 /* No need to unmap again: hole-punching leaves COWed pages */
1790                 error = 0;
1791                 goto undone;
1792         }
1793
1794         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795         error = inode_newsize_ok(inode, offset + len);
1796         if (error)
1797                 goto out;
1798
1799         start = offset >> PAGE_CACHE_SHIFT;
1800         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801         /* Try to avoid a swapstorm if len is impossible to satisfy */
1802         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1803                 error = -ENOSPC;
1804                 goto out;
1805         }
1806
1807         shmem_falloc.start = start;
1808         shmem_falloc.next  = start;
1809         shmem_falloc.nr_falloced = 0;
1810         shmem_falloc.nr_unswapped = 0;
1811         spin_lock(&inode->i_lock);
1812         inode->i_private = &shmem_falloc;
1813         spin_unlock(&inode->i_lock);
1814
1815         for (index = start; index < end; index++) {
1816                 struct page *page;
1817
1818                 /*
1819                  * Good, the fallocate(2) manpage permits EINTR: we may have
1820                  * been interrupted because we are using up too much memory.
1821                  */
1822                 if (signal_pending(current))
1823                         error = -EINTR;
1824                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1825                         error = -ENOMEM;
1826                 else
1827                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1828                                                                         NULL);
1829                 if (error) {
1830                         /* Remove the !PageUptodate pages we added */
1831                         shmem_undo_range(inode,
1832                                 (loff_t)start << PAGE_CACHE_SHIFT,
1833                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1834                         goto undone;
1835                 }
1836
1837                 /*
1838                  * Inform shmem_writepage() how far we have reached.
1839                  * No need for lock or barrier: we have the page lock.
1840                  */
1841                 shmem_falloc.next++;
1842                 if (!PageUptodate(page))
1843                         shmem_falloc.nr_falloced++;
1844
1845                 /*
1846                  * If !PageUptodate, leave it that way so that freeable pages
1847                  * can be recognized if we need to rollback on error later.
1848                  * But set_page_dirty so that memory pressure will swap rather
1849                  * than free the pages we are allocating (and SGP_CACHE pages
1850                  * might still be clean: we now need to mark those dirty too).
1851                  */
1852                 set_page_dirty(page);
1853                 unlock_page(page);
1854                 page_cache_release(page);
1855                 cond_resched();
1856         }
1857
1858         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859                 i_size_write(inode, offset + len);
1860         inode->i_ctime = CURRENT_TIME;
1861 undone:
1862         spin_lock(&inode->i_lock);
1863         inode->i_private = NULL;
1864         spin_unlock(&inode->i_lock);
1865 out:
1866         mutex_unlock(&inode->i_mutex);
1867         return error;
1868 }
1869
1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1871 {
1872         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1873
1874         buf->f_type = TMPFS_MAGIC;
1875         buf->f_bsize = PAGE_CACHE_SIZE;
1876         buf->f_namelen = NAME_MAX;
1877         if (sbinfo->max_blocks) {
1878                 buf->f_blocks = sbinfo->max_blocks;
1879                 buf->f_bavail =
1880                 buf->f_bfree  = sbinfo->max_blocks -
1881                                 percpu_counter_sum(&sbinfo->used_blocks);
1882         }
1883         if (sbinfo->max_inodes) {
1884                 buf->f_files = sbinfo->max_inodes;
1885                 buf->f_ffree = sbinfo->free_inodes;
1886         }
1887         /* else leave those fields 0 like simple_statfs */
1888         return 0;
1889 }
1890
1891 /*
1892  * File creation. Allocate an inode, and we're done..
1893  */
1894 static int
1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1896 {
1897         struct inode *inode;
1898         int error = -ENOSPC;
1899
1900         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1901         if (inode) {
1902                 error = simple_acl_create(dir, inode);
1903                 if (error)
1904                         goto out_iput;
1905                 error = security_inode_init_security(inode, dir,
1906                                                      &dentry->d_name,
1907                                                      shmem_initxattrs, NULL);
1908                 if (error && error != -EOPNOTSUPP)
1909                         goto out_iput;
1910
1911                 error = 0;
1912                 dir->i_size += BOGO_DIRENT_SIZE;
1913                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1914                 d_instantiate(dentry, inode);
1915                 dget(dentry); /* Extra count - pin the dentry in core */
1916         }
1917         return error;
1918 out_iput:
1919         iput(inode);
1920         return error;
1921 }
1922
1923 static int
1924 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1925 {
1926         struct inode *inode;
1927         int error = -ENOSPC;
1928
1929         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1930         if (inode) {
1931                 error = security_inode_init_security(inode, dir,
1932                                                      NULL,
1933                                                      shmem_initxattrs, NULL);
1934                 if (error && error != -EOPNOTSUPP)
1935                         goto out_iput;
1936                 error = simple_acl_create(dir, inode);
1937                 if (error)
1938                         goto out_iput;
1939                 d_tmpfile(dentry, inode);
1940         }
1941         return error;
1942 out_iput:
1943         iput(inode);
1944         return error;
1945 }
1946
1947 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1948 {
1949         int error;
1950
1951         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1952                 return error;
1953         inc_nlink(dir);
1954         return 0;
1955 }
1956
1957 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1958                 bool excl)
1959 {
1960         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1961 }
1962
1963 /*
1964  * Link a file..
1965  */
1966 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1967 {
1968         struct inode *inode = old_dentry->d_inode;
1969         int ret;
1970
1971         /*
1972          * No ordinary (disk based) filesystem counts links as inodes;
1973          * but each new link needs a new dentry, pinning lowmem, and
1974          * tmpfs dentries cannot be pruned until they are unlinked.
1975          */
1976         ret = shmem_reserve_inode(inode->i_sb);
1977         if (ret)
1978                 goto out;
1979
1980         dir->i_size += BOGO_DIRENT_SIZE;
1981         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1982         inc_nlink(inode);
1983         ihold(inode);   /* New dentry reference */
1984         dget(dentry);           /* Extra pinning count for the created dentry */
1985         d_instantiate(dentry, inode);
1986 out:
1987         return ret;
1988 }
1989
1990 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1991 {
1992         struct inode *inode = dentry->d_inode;
1993
1994         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1995                 shmem_free_inode(inode->i_sb);
1996
1997         dir->i_size -= BOGO_DIRENT_SIZE;
1998         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1999         drop_nlink(inode);
2000         dput(dentry);   /* Undo the count from "create" - this does all the work */
2001         return 0;
2002 }
2003
2004 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2005 {
2006         if (!simple_empty(dentry))
2007                 return -ENOTEMPTY;
2008
2009         drop_nlink(dentry->d_inode);
2010         drop_nlink(dir);
2011         return shmem_unlink(dir, dentry);
2012 }
2013
2014 /*
2015  * The VFS layer already does all the dentry stuff for rename,
2016  * we just have to decrement the usage count for the target if
2017  * it exists so that the VFS layer correctly free's it when it
2018  * gets overwritten.
2019  */
2020 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2021 {
2022         struct inode *inode = old_dentry->d_inode;
2023         int they_are_dirs = S_ISDIR(inode->i_mode);
2024
2025         if (!simple_empty(new_dentry))
2026                 return -ENOTEMPTY;
2027
2028         if (new_dentry->d_inode) {
2029                 (void) shmem_unlink(new_dir, new_dentry);
2030                 if (they_are_dirs)
2031                         drop_nlink(old_dir);
2032         } else if (they_are_dirs) {
2033                 drop_nlink(old_dir);
2034                 inc_nlink(new_dir);
2035         }
2036
2037         old_dir->i_size -= BOGO_DIRENT_SIZE;
2038         new_dir->i_size += BOGO_DIRENT_SIZE;
2039         old_dir->i_ctime = old_dir->i_mtime =
2040         new_dir->i_ctime = new_dir->i_mtime =
2041         inode->i_ctime = CURRENT_TIME;
2042         return 0;
2043 }
2044
2045 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2046 {
2047         int error;
2048         int len;
2049         struct inode *inode;
2050         struct page *page;
2051         char *kaddr;
2052         struct shmem_inode_info *info;
2053
2054         len = strlen(symname) + 1;
2055         if (len > PAGE_CACHE_SIZE)
2056                 return -ENAMETOOLONG;
2057
2058         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2059         if (!inode)
2060                 return -ENOSPC;
2061
2062         error = security_inode_init_security(inode, dir, &dentry->d_name,
2063                                              shmem_initxattrs, NULL);
2064         if (error) {
2065                 if (error != -EOPNOTSUPP) {
2066                         iput(inode);
2067                         return error;
2068                 }
2069                 error = 0;
2070         }
2071
2072         info = SHMEM_I(inode);
2073         inode->i_size = len-1;
2074         if (len <= SHORT_SYMLINK_LEN) {
2075                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2076                 if (!info->symlink) {
2077                         iput(inode);
2078                         return -ENOMEM;
2079                 }
2080                 inode->i_op = &shmem_short_symlink_operations;
2081         } else {
2082                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2083                 if (error) {
2084                         iput(inode);
2085                         return error;
2086                 }
2087                 inode->i_mapping->a_ops = &shmem_aops;
2088                 inode->i_op = &shmem_symlink_inode_operations;
2089                 kaddr = kmap_atomic(page);
2090                 memcpy(kaddr, symname, len);
2091                 kunmap_atomic(kaddr);
2092                 SetPageUptodate(page);
2093                 set_page_dirty(page);
2094                 unlock_page(page);
2095                 page_cache_release(page);
2096         }
2097         dir->i_size += BOGO_DIRENT_SIZE;
2098         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2099         d_instantiate(dentry, inode);
2100         dget(dentry);
2101         return 0;
2102 }
2103
2104 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2105 {
2106         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2107         return NULL;
2108 }
2109
2110 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2111 {
2112         struct page *page = NULL;
2113         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2114         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2115         if (page)
2116                 unlock_page(page);
2117         return page;
2118 }
2119
2120 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2121 {
2122         if (!IS_ERR(nd_get_link(nd))) {
2123                 struct page *page = cookie;
2124                 kunmap(page);
2125                 mark_page_accessed(page);
2126                 page_cache_release(page);
2127         }
2128 }
2129
2130 #ifdef CONFIG_TMPFS_XATTR
2131 /*
2132  * Superblocks without xattr inode operations may get some security.* xattr
2133  * support from the LSM "for free". As soon as we have any other xattrs
2134  * like ACLs, we also need to implement the security.* handlers at
2135  * filesystem level, though.
2136  */
2137
2138 /*
2139  * Callback for security_inode_init_security() for acquiring xattrs.
2140  */
2141 static int shmem_initxattrs(struct inode *inode,
2142                             const struct xattr *xattr_array,
2143                             void *fs_info)
2144 {
2145         struct shmem_inode_info *info = SHMEM_I(inode);
2146         const struct xattr *xattr;
2147         struct simple_xattr *new_xattr;
2148         size_t len;
2149
2150         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2151                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2152                 if (!new_xattr)
2153                         return -ENOMEM;
2154
2155                 len = strlen(xattr->name) + 1;
2156                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2157                                           GFP_KERNEL);
2158                 if (!new_xattr->name) {
2159                         kfree(new_xattr);
2160                         return -ENOMEM;
2161                 }
2162
2163                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2164                        XATTR_SECURITY_PREFIX_LEN);
2165                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2166                        xattr->name, len);
2167
2168                 simple_xattr_list_add(&info->xattrs, new_xattr);
2169         }
2170
2171         return 0;
2172 }
2173
2174 static const struct xattr_handler *shmem_xattr_handlers[] = {
2175 #ifdef CONFIG_TMPFS_POSIX_ACL
2176         &posix_acl_access_xattr_handler,
2177         &posix_acl_default_xattr_handler,
2178 #endif
2179         NULL
2180 };
2181
2182 static int shmem_xattr_validate(const char *name)
2183 {
2184         struct { const char *prefix; size_t len; } arr[] = {
2185                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2186                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2187         };
2188         int i;
2189
2190         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2191                 size_t preflen = arr[i].len;
2192                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2193                         if (!name[preflen])
2194                                 return -EINVAL;
2195                         return 0;
2196                 }
2197         }
2198         return -EOPNOTSUPP;
2199 }
2200
2201 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2202                               void *buffer, size_t size)
2203 {
2204         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2205         int err;
2206
2207         /*
2208          * If this is a request for a synthetic attribute in the system.*
2209          * namespace use the generic infrastructure to resolve a handler
2210          * for it via sb->s_xattr.
2211          */
2212         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2213                 return generic_getxattr(dentry, name, buffer, size);
2214
2215         err = shmem_xattr_validate(name);
2216         if (err)
2217                 return err;
2218
2219         return simple_xattr_get(&info->xattrs, name, buffer, size);
2220 }
2221
2222 static int shmem_setxattr(struct dentry *dentry, const char *name,
2223                           const void *value, size_t size, int flags)
2224 {
2225         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2226         int err;
2227
2228         /*
2229          * If this is a request for a synthetic attribute in the system.*
2230          * namespace use the generic infrastructure to resolve a handler
2231          * for it via sb->s_xattr.
2232          */
2233         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2234                 return generic_setxattr(dentry, name, value, size, flags);
2235
2236         err = shmem_xattr_validate(name);
2237         if (err)
2238                 return err;
2239
2240         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2241 }
2242
2243 static int shmem_removexattr(struct dentry *dentry, const char *name)
2244 {
2245         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2246         int err;
2247
2248         /*
2249          * If this is a request for a synthetic attribute in the system.*
2250          * namespace use the generic infrastructure to resolve a handler
2251          * for it via sb->s_xattr.
2252          */
2253         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254                 return generic_removexattr(dentry, name);
2255
2256         err = shmem_xattr_validate(name);
2257         if (err)
2258                 return err;
2259
2260         return simple_xattr_remove(&info->xattrs, name);
2261 }
2262
2263 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2264 {
2265         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266         return simple_xattr_list(&info->xattrs, buffer, size);
2267 }
2268 #endif /* CONFIG_TMPFS_XATTR */
2269
2270 static const struct inode_operations shmem_short_symlink_operations = {
2271         .readlink       = generic_readlink,
2272         .follow_link    = shmem_follow_short_symlink,
2273 #ifdef CONFIG_TMPFS_XATTR
2274         .setxattr       = shmem_setxattr,
2275         .getxattr       = shmem_getxattr,
2276         .listxattr      = shmem_listxattr,
2277         .removexattr    = shmem_removexattr,
2278 #endif
2279 };
2280
2281 static const struct inode_operations shmem_symlink_inode_operations = {
2282         .readlink       = generic_readlink,
2283         .follow_link    = shmem_follow_link,
2284         .put_link       = shmem_put_link,
2285 #ifdef CONFIG_TMPFS_XATTR
2286         .setxattr       = shmem_setxattr,
2287         .getxattr       = shmem_getxattr,
2288         .listxattr      = shmem_listxattr,
2289         .removexattr    = shmem_removexattr,
2290 #endif
2291 };
2292
2293 static struct dentry *shmem_get_parent(struct dentry *child)
2294 {
2295         return ERR_PTR(-ESTALE);
2296 }
2297
2298 static int shmem_match(struct inode *ino, void *vfh)
2299 {
2300         __u32 *fh = vfh;
2301         __u64 inum = fh[2];
2302         inum = (inum << 32) | fh[1];
2303         return ino->i_ino == inum && fh[0] == ino->i_generation;
2304 }
2305
2306 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2307                 struct fid *fid, int fh_len, int fh_type)
2308 {
2309         struct inode *inode;
2310         struct dentry *dentry = NULL;
2311         u64 inum;
2312
2313         if (fh_len < 3)
2314                 return NULL;
2315
2316         inum = fid->raw[2];
2317         inum = (inum << 32) | fid->raw[1];
2318
2319         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2320                         shmem_match, fid->raw);
2321         if (inode) {
2322                 dentry = d_find_alias(inode);
2323                 iput(inode);
2324         }
2325
2326         return dentry;
2327 }
2328
2329 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2330                                 struct inode *parent)
2331 {
2332         if (*len < 3) {
2333                 *len = 3;
2334                 return FILEID_INVALID;
2335         }
2336
2337         if (inode_unhashed(inode)) {
2338                 /* Unfortunately insert_inode_hash is not idempotent,
2339                  * so as we hash inodes here rather than at creation
2340                  * time, we need a lock to ensure we only try
2341                  * to do it once
2342                  */
2343                 static DEFINE_SPINLOCK(lock);
2344                 spin_lock(&lock);
2345                 if (inode_unhashed(inode))
2346                         __insert_inode_hash(inode,
2347                                             inode->i_ino + inode->i_generation);
2348                 spin_unlock(&lock);
2349         }
2350
2351         fh[0] = inode->i_generation;
2352         fh[1] = inode->i_ino;
2353         fh[2] = ((__u64)inode->i_ino) >> 32;
2354
2355         *len = 3;
2356         return 1;
2357 }
2358
2359 static const struct export_operations shmem_export_ops = {
2360         .get_parent     = shmem_get_parent,
2361         .encode_fh      = shmem_encode_fh,
2362         .fh_to_dentry   = shmem_fh_to_dentry,
2363 };
2364
2365 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2366                                bool remount)
2367 {
2368         char *this_char, *value, *rest;
2369         struct mempolicy *mpol = NULL;
2370         uid_t uid;
2371         gid_t gid;
2372
2373         while (options != NULL) {
2374                 this_char = options;
2375                 for (;;) {
2376                         /*
2377                          * NUL-terminate this option: unfortunately,
2378                          * mount options form a comma-separated list,
2379                          * but mpol's nodelist may also contain commas.
2380                          */
2381                         options = strchr(options, ',');
2382                         if (options == NULL)
2383                                 break;
2384                         options++;
2385                         if (!isdigit(*options)) {
2386                                 options[-1] = '\0';
2387                                 break;
2388                         }
2389                 }
2390                 if (!*this_char)
2391                         continue;
2392                 if ((value = strchr(this_char,'=')) != NULL) {
2393                         *value++ = 0;
2394                 } else {
2395                         printk(KERN_ERR
2396                             "tmpfs: No value for mount option '%s'\n",
2397                             this_char);
2398                         goto error;
2399                 }
2400
2401                 if (!strcmp(this_char,"size")) {
2402                         unsigned long long size;
2403                         size = memparse(value,&rest);
2404                         if (*rest == '%') {
2405                                 size <<= PAGE_SHIFT;
2406                                 size *= totalram_pages;
2407                                 do_div(size, 100);
2408                                 rest++;
2409                         }
2410                         if (*rest)
2411                                 goto bad_val;
2412                         sbinfo->max_blocks =
2413                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2414                 } else if (!strcmp(this_char,"nr_blocks")) {
2415                         sbinfo->max_blocks = memparse(value, &rest);
2416                         if (*rest)
2417                                 goto bad_val;
2418                 } else if (!strcmp(this_char,"nr_inodes")) {
2419                         sbinfo->max_inodes = memparse(value, &rest);
2420                         if (*rest)
2421                                 goto bad_val;
2422                 } else if (!strcmp(this_char,"mode")) {
2423                         if (remount)
2424                                 continue;
2425                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2426                         if (*rest)
2427                                 goto bad_val;
2428                 } else if (!strcmp(this_char,"uid")) {
2429                         if (remount)
2430                                 continue;
2431                         uid = simple_strtoul(value, &rest, 0);
2432                         if (*rest)
2433                                 goto bad_val;
2434                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2435                         if (!uid_valid(sbinfo->uid))
2436                                 goto bad_val;
2437                 } else if (!strcmp(this_char,"gid")) {
2438                         if (remount)
2439                                 continue;
2440                         gid = simple_strtoul(value, &rest, 0);
2441                         if (*rest)
2442                                 goto bad_val;
2443                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2444                         if (!gid_valid(sbinfo->gid))
2445                                 goto bad_val;
2446                 } else if (!strcmp(this_char,"mpol")) {
2447                         mpol_put(mpol);
2448                         mpol = NULL;
2449                         if (mpol_parse_str(value, &mpol))
2450                                 goto bad_val;
2451                 } else {
2452                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2453                                this_char);
2454                         goto error;
2455                 }
2456         }
2457         sbinfo->mpol = mpol;
2458         return 0;
2459
2460 bad_val:
2461         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2462                value, this_char);
2463 error:
2464         mpol_put(mpol);
2465         return 1;
2466
2467 }
2468
2469 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2470 {
2471         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2472         struct shmem_sb_info config = *sbinfo;
2473         unsigned long inodes;
2474         int error = -EINVAL;
2475
2476         config.mpol = NULL;
2477         if (shmem_parse_options(data, &config, true))
2478                 return error;
2479
2480         spin_lock(&sbinfo->stat_lock);
2481         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2482         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2483                 goto out;
2484         if (config.max_inodes < inodes)
2485                 goto out;
2486         /*
2487          * Those tests disallow limited->unlimited while any are in use;
2488          * but we must separately disallow unlimited->limited, because
2489          * in that case we have no record of how much is already in use.
2490          */
2491         if (config.max_blocks && !sbinfo->max_blocks)
2492                 goto out;
2493         if (config.max_inodes && !sbinfo->max_inodes)
2494                 goto out;
2495
2496         error = 0;
2497         sbinfo->max_blocks  = config.max_blocks;
2498         sbinfo->max_inodes  = config.max_inodes;
2499         sbinfo->free_inodes = config.max_inodes - inodes;
2500
2501         /*
2502          * Preserve previous mempolicy unless mpol remount option was specified.
2503          */
2504         if (config.mpol) {
2505                 mpol_put(sbinfo->mpol);
2506                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2507         }
2508 out:
2509         spin_unlock(&sbinfo->stat_lock);
2510         return error;
2511 }
2512
2513 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2514 {
2515         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2516
2517         if (sbinfo->max_blocks != shmem_default_max_blocks())
2518                 seq_printf(seq, ",size=%luk",
2519                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2520         if (sbinfo->max_inodes != shmem_default_max_inodes())
2521                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2522         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2523                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2524         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2525                 seq_printf(seq, ",uid=%u",
2526                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2527         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2528                 seq_printf(seq, ",gid=%u",
2529                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2530         shmem_show_mpol(seq, sbinfo->mpol);
2531         return 0;
2532 }
2533 #endif /* CONFIG_TMPFS */
2534
2535 static void shmem_put_super(struct super_block *sb)
2536 {
2537         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2538
2539         percpu_counter_destroy(&sbinfo->used_blocks);
2540         mpol_put(sbinfo->mpol);
2541         kfree(sbinfo);
2542         sb->s_fs_info = NULL;
2543 }
2544
2545 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2546 {
2547         struct inode *inode;
2548         struct shmem_sb_info *sbinfo;
2549         int err = -ENOMEM;
2550
2551         /* Round up to L1_CACHE_BYTES to resist false sharing */
2552         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2553                                 L1_CACHE_BYTES), GFP_KERNEL);
2554         if (!sbinfo)
2555                 return -ENOMEM;
2556
2557         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2558         sbinfo->uid = current_fsuid();
2559         sbinfo->gid = current_fsgid();
2560         sb->s_fs_info = sbinfo;
2561
2562 #ifdef CONFIG_TMPFS
2563         /*
2564          * Per default we only allow half of the physical ram per
2565          * tmpfs instance, limiting inodes to one per page of lowmem;
2566          * but the internal instance is left unlimited.
2567          */
2568         if (!(sb->s_flags & MS_KERNMOUNT)) {
2569                 sbinfo->max_blocks = shmem_default_max_blocks();
2570                 sbinfo->max_inodes = shmem_default_max_inodes();
2571                 if (shmem_parse_options(data, sbinfo, false)) {
2572                         err = -EINVAL;
2573                         goto failed;
2574                 }
2575         } else {
2576                 sb->s_flags |= MS_NOUSER;
2577         }
2578         sb->s_export_op = &shmem_export_ops;
2579         sb->s_flags |= MS_NOSEC;
2580 #else
2581         sb->s_flags |= MS_NOUSER;
2582 #endif
2583
2584         spin_lock_init(&sbinfo->stat_lock);
2585         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2586                 goto failed;
2587         sbinfo->free_inodes = sbinfo->max_inodes;
2588
2589         sb->s_maxbytes = MAX_LFS_FILESIZE;
2590         sb->s_blocksize = PAGE_CACHE_SIZE;
2591         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2592         sb->s_magic = TMPFS_MAGIC;
2593         sb->s_op = &shmem_ops;
2594         sb->s_time_gran = 1;
2595 #ifdef CONFIG_TMPFS_XATTR
2596         sb->s_xattr = shmem_xattr_handlers;
2597 #endif
2598 #ifdef CONFIG_TMPFS_POSIX_ACL
2599         sb->s_flags |= MS_POSIXACL;
2600 #endif
2601
2602         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2603         if (!inode)
2604                 goto failed;
2605         inode->i_uid = sbinfo->uid;
2606         inode->i_gid = sbinfo->gid;
2607         sb->s_root = d_make_root(inode);
2608         if (!sb->s_root)
2609                 goto failed;
2610         return 0;
2611
2612 failed:
2613         shmem_put_super(sb);
2614         return err;
2615 }
2616
2617 static struct kmem_cache *shmem_inode_cachep;
2618
2619 static struct inode *shmem_alloc_inode(struct super_block *sb)
2620 {
2621         struct shmem_inode_info *info;
2622         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2623         if (!info)
2624                 return NULL;
2625         return &info->vfs_inode;
2626 }
2627
2628 static void shmem_destroy_callback(struct rcu_head *head)
2629 {
2630         struct inode *inode = container_of(head, struct inode, i_rcu);
2631         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2632 }
2633
2634 static void shmem_destroy_inode(struct inode *inode)
2635 {
2636         if (S_ISREG(inode->i_mode))
2637                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2638         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2639 }
2640
2641 static void shmem_init_inode(void *foo)
2642 {
2643         struct shmem_inode_info *info = foo;
2644         inode_init_once(&info->vfs_inode);
2645 }
2646
2647 static int shmem_init_inodecache(void)
2648 {
2649         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2650                                 sizeof(struct shmem_inode_info),
2651                                 0, SLAB_PANIC, shmem_init_inode);
2652         return 0;
2653 }
2654
2655 static void shmem_destroy_inodecache(void)
2656 {
2657         kmem_cache_destroy(shmem_inode_cachep);
2658 }
2659
2660 static const struct address_space_operations shmem_aops = {
2661         .writepage      = shmem_writepage,
2662         .set_page_dirty = __set_page_dirty_no_writeback,
2663 #ifdef CONFIG_TMPFS
2664         .write_begin    = shmem_write_begin,
2665         .write_end      = shmem_write_end,
2666 #endif
2667         .migratepage    = migrate_page,
2668         .error_remove_page = generic_error_remove_page,
2669 };
2670
2671 static const struct file_operations shmem_file_operations = {
2672         .mmap           = shmem_mmap,
2673 #ifdef CONFIG_TMPFS
2674         .llseek         = shmem_file_llseek,
2675         .read           = new_sync_read,
2676         .write          = new_sync_write,
2677         .read_iter      = shmem_file_read_iter,
2678         .write_iter     = generic_file_write_iter,
2679         .fsync          = noop_fsync,
2680         .splice_read    = shmem_file_splice_read,
2681         .splice_write   = iter_file_splice_write,
2682         .fallocate      = shmem_fallocate,
2683 #endif
2684 };
2685
2686 static const struct inode_operations shmem_inode_operations = {
2687         .setattr        = shmem_setattr,
2688 #ifdef CONFIG_TMPFS_XATTR
2689         .setxattr       = shmem_setxattr,
2690         .getxattr       = shmem_getxattr,
2691         .listxattr      = shmem_listxattr,
2692         .removexattr    = shmem_removexattr,
2693         .set_acl        = simple_set_acl,
2694 #endif
2695 };
2696
2697 static const struct inode_operations shmem_dir_inode_operations = {
2698 #ifdef CONFIG_TMPFS
2699         .create         = shmem_create,
2700         .lookup         = simple_lookup,
2701         .link           = shmem_link,
2702         .unlink         = shmem_unlink,
2703         .symlink        = shmem_symlink,
2704         .mkdir          = shmem_mkdir,
2705         .rmdir          = shmem_rmdir,
2706         .mknod          = shmem_mknod,
2707         .rename         = shmem_rename,
2708         .tmpfile        = shmem_tmpfile,
2709 #endif
2710 #ifdef CONFIG_TMPFS_XATTR
2711         .setxattr       = shmem_setxattr,
2712         .getxattr       = shmem_getxattr,
2713         .listxattr      = shmem_listxattr,
2714         .removexattr    = shmem_removexattr,
2715 #endif
2716 #ifdef CONFIG_TMPFS_POSIX_ACL
2717         .setattr        = shmem_setattr,
2718         .set_acl        = simple_set_acl,
2719 #endif
2720 };
2721
2722 static const struct inode_operations shmem_special_inode_operations = {
2723 #ifdef CONFIG_TMPFS_XATTR
2724         .setxattr       = shmem_setxattr,
2725         .getxattr       = shmem_getxattr,
2726         .listxattr      = shmem_listxattr,
2727         .removexattr    = shmem_removexattr,
2728 #endif
2729 #ifdef CONFIG_TMPFS_POSIX_ACL
2730         .setattr        = shmem_setattr,
2731         .set_acl        = simple_set_acl,
2732 #endif
2733 };
2734
2735 static const struct super_operations shmem_ops = {
2736         .alloc_inode    = shmem_alloc_inode,
2737         .destroy_inode  = shmem_destroy_inode,
2738 #ifdef CONFIG_TMPFS
2739         .statfs         = shmem_statfs,
2740         .remount_fs     = shmem_remount_fs,
2741         .show_options   = shmem_show_options,
2742 #endif
2743         .evict_inode    = shmem_evict_inode,
2744         .drop_inode     = generic_delete_inode,
2745         .put_super      = shmem_put_super,
2746 };
2747
2748 static const struct vm_operations_struct shmem_vm_ops = {
2749         .fault          = shmem_fault,
2750         .map_pages      = filemap_map_pages,
2751 #ifdef CONFIG_NUMA
2752         .set_policy     = shmem_set_policy,
2753         .get_policy     = shmem_get_policy,
2754 #endif
2755         .remap_pages    = generic_file_remap_pages,
2756 };
2757
2758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759         int flags, const char *dev_name, void *data)
2760 {
2761         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2762 }
2763
2764 static struct file_system_type shmem_fs_type = {
2765         .owner          = THIS_MODULE,
2766         .name           = "tmpfs",
2767         .mount          = shmem_mount,
2768         .kill_sb        = kill_litter_super,
2769         .fs_flags       = FS_USERNS_MOUNT,
2770 };
2771
2772 int __init shmem_init(void)
2773 {
2774         int error;
2775
2776         /* If rootfs called this, don't re-init */
2777         if (shmem_inode_cachep)
2778                 return 0;
2779
2780         error = bdi_init(&shmem_backing_dev_info);
2781         if (error)
2782                 goto out4;
2783
2784         error = shmem_init_inodecache();
2785         if (error)
2786                 goto out3;
2787
2788         error = register_filesystem(&shmem_fs_type);
2789         if (error) {
2790                 printk(KERN_ERR "Could not register tmpfs\n");
2791                 goto out2;
2792         }
2793
2794         shm_mnt = kern_mount(&shmem_fs_type);
2795         if (IS_ERR(shm_mnt)) {
2796                 error = PTR_ERR(shm_mnt);
2797                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2798                 goto out1;
2799         }
2800         return 0;
2801
2802 out1:
2803         unregister_filesystem(&shmem_fs_type);
2804 out2:
2805         shmem_destroy_inodecache();
2806 out3:
2807         bdi_destroy(&shmem_backing_dev_info);
2808 out4:
2809         shm_mnt = ERR_PTR(error);
2810         return error;
2811 }
2812
2813 #else /* !CONFIG_SHMEM */
2814
2815 /*
2816  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2817  *
2818  * This is intended for small system where the benefits of the full
2819  * shmem code (swap-backed and resource-limited) are outweighed by
2820  * their complexity. On systems without swap this code should be
2821  * effectively equivalent, but much lighter weight.
2822  */
2823
2824 static struct file_system_type shmem_fs_type = {
2825         .name           = "tmpfs",
2826         .mount          = ramfs_mount,
2827         .kill_sb        = kill_litter_super,
2828         .fs_flags       = FS_USERNS_MOUNT,
2829 };
2830
2831 int __init shmem_init(void)
2832 {
2833         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2834
2835         shm_mnt = kern_mount(&shmem_fs_type);
2836         BUG_ON(IS_ERR(shm_mnt));
2837
2838         return 0;
2839 }
2840
2841 int shmem_unuse(swp_entry_t swap, struct page *page)
2842 {
2843         return 0;
2844 }
2845
2846 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2847 {
2848         return 0;
2849 }
2850
2851 void shmem_unlock_mapping(struct address_space *mapping)
2852 {
2853 }
2854
2855 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2856 {
2857         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2858 }
2859 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2860
2861 #define shmem_vm_ops                            generic_file_vm_ops
2862 #define shmem_file_operations                   ramfs_file_operations
2863 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2864 #define shmem_acct_size(flags, size)            0
2865 #define shmem_unacct_size(flags, size)          do {} while (0)
2866
2867 #endif /* CONFIG_SHMEM */
2868
2869 /* common code */
2870
2871 static struct dentry_operations anon_ops = {
2872         .d_dname = simple_dname
2873 };
2874
2875 static struct file *__shmem_file_setup(const char *name, loff_t size,
2876                                        unsigned long flags, unsigned int i_flags)
2877 {
2878         struct file *res;
2879         struct inode *inode;
2880         struct path path;
2881         struct super_block *sb;
2882         struct qstr this;
2883
2884         if (IS_ERR(shm_mnt))
2885                 return ERR_CAST(shm_mnt);
2886
2887         if (size < 0 || size > MAX_LFS_FILESIZE)
2888                 return ERR_PTR(-EINVAL);
2889
2890         if (shmem_acct_size(flags, size))
2891                 return ERR_PTR(-ENOMEM);
2892
2893         res = ERR_PTR(-ENOMEM);
2894         this.name = name;
2895         this.len = strlen(name);
2896         this.hash = 0; /* will go */
2897         sb = shm_mnt->mnt_sb;
2898         path.dentry = d_alloc_pseudo(sb, &this);
2899         if (!path.dentry)
2900                 goto put_memory;
2901         d_set_d_op(path.dentry, &anon_ops);
2902         path.mnt = mntget(shm_mnt);
2903
2904         res = ERR_PTR(-ENOSPC);
2905         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2906         if (!inode)
2907                 goto put_dentry;
2908
2909         inode->i_flags |= i_flags;
2910         d_instantiate(path.dentry, inode);
2911         inode->i_size = size;
2912         clear_nlink(inode);     /* It is unlinked */
2913         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2914         if (IS_ERR(res))
2915                 goto put_dentry;
2916
2917         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2918                   &shmem_file_operations);
2919         if (IS_ERR(res))
2920                 goto put_dentry;
2921
2922         return res;
2923
2924 put_dentry:
2925         path_put(&path);
2926 put_memory:
2927         shmem_unacct_size(flags, size);
2928         return res;
2929 }
2930
2931 /**
2932  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2933  *      kernel internal.  There will be NO LSM permission checks against the
2934  *      underlying inode.  So users of this interface must do LSM checks at a
2935  *      higher layer.  The one user is the big_key implementation.  LSM checks
2936  *      are provided at the key level rather than the inode level.
2937  * @name: name for dentry (to be seen in /proc/<pid>/maps
2938  * @size: size to be set for the file
2939  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2940  */
2941 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2942 {
2943         return __shmem_file_setup(name, size, flags, S_PRIVATE);
2944 }
2945
2946 /**
2947  * shmem_file_setup - get an unlinked file living in tmpfs
2948  * @name: name for dentry (to be seen in /proc/<pid>/maps
2949  * @size: size to be set for the file
2950  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2951  */
2952 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2953 {
2954         return __shmem_file_setup(name, size, flags, 0);
2955 }
2956 EXPORT_SYMBOL_GPL(shmem_file_setup);
2957
2958 /**
2959  * shmem_zero_setup - setup a shared anonymous mapping
2960  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2961  */
2962 int shmem_zero_setup(struct vm_area_struct *vma)
2963 {
2964         struct file *file;
2965         loff_t size = vma->vm_end - vma->vm_start;
2966
2967         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2968         if (IS_ERR(file))
2969                 return PTR_ERR(file);
2970
2971         if (vma->vm_file)
2972                 fput(vma->vm_file);
2973         vma->vm_file = file;
2974         vma->vm_ops = &shmem_vm_ops;
2975         return 0;
2976 }
2977
2978 /**
2979  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2980  * @mapping:    the page's address_space
2981  * @index:      the page index
2982  * @gfp:        the page allocator flags to use if allocating
2983  *
2984  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2985  * with any new page allocations done using the specified allocation flags.
2986  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2987  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2988  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2989  *
2990  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2991  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2992  */
2993 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2994                                          pgoff_t index, gfp_t gfp)
2995 {
2996 #ifdef CONFIG_SHMEM
2997         struct inode *inode = mapping->host;
2998         struct page *page;
2999         int error;
3000
3001         BUG_ON(mapping->a_ops != &shmem_aops);
3002         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3003         if (error)
3004                 page = ERR_PTR(error);
3005         else
3006                 unlock_page(page);
3007         return page;
3008 #else
3009         /*
3010          * The tiny !SHMEM case uses ramfs without swap
3011          */
3012         return read_cache_page_gfp(mapping, index, gfp);
3013 #endif
3014 }
3015 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);