]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swap.c
mm-fix-nonuniform-page-status-when-writing-new-file-with-small-buffer-fix
[karo-tx-linux.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33
34 #include "internal.h"
35
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49         if (PageLRU(page)) {
50                 struct zone *zone = page_zone(page);
51                 struct lruvec *lruvec;
52                 unsigned long flags;
53
54                 spin_lock_irqsave(&zone->lru_lock, flags);
55                 lruvec = mem_cgroup_page_lruvec(page, zone);
56                 VM_BUG_ON(!PageLRU(page));
57                 __ClearPageLRU(page);
58                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
59                 spin_unlock_irqrestore(&zone->lru_lock, flags);
60         }
61 }
62
63 static void __put_single_page(struct page *page)
64 {
65         __page_cache_release(page);
66         free_hot_cold_page(page, 0);
67 }
68
69 static void __put_compound_page(struct page *page)
70 {
71         compound_page_dtor *dtor;
72
73         __page_cache_release(page);
74         dtor = get_compound_page_dtor(page);
75         (*dtor)(page);
76 }
77
78 static void put_compound_page(struct page *page)
79 {
80         if (unlikely(PageTail(page))) {
81                 /* __split_huge_page_refcount can run under us */
82                 struct page *page_head = compound_trans_head(page);
83
84                 if (likely(page != page_head &&
85                            get_page_unless_zero(page_head))) {
86                         unsigned long flags;
87
88                         /*
89                          * THP can not break up slab pages so avoid taking
90                          * compound_lock().  Slab performs non-atomic bit ops
91                          * on page->flags for better performance.  In particular
92                          * slab_unlock() in slub used to be a hot path.  It is
93                          * still hot on arches that do not support
94                          * this_cpu_cmpxchg_double().
95                          */
96                         if (PageSlab(page_head)) {
97                                 if (PageTail(page)) {
98                                         if (put_page_testzero(page_head))
99                                                 VM_BUG_ON(1);
100
101                                         atomic_dec(&page->_mapcount);
102                                         goto skip_lock_tail;
103                                 } else
104                                         goto skip_lock;
105                         }
106                         /*
107                          * page_head wasn't a dangling pointer but it
108                          * may not be a head page anymore by the time
109                          * we obtain the lock. That is ok as long as it
110                          * can't be freed from under us.
111                          */
112                         flags = compound_lock_irqsave(page_head);
113                         if (unlikely(!PageTail(page))) {
114                                 /* __split_huge_page_refcount run before us */
115                                 compound_unlock_irqrestore(page_head, flags);
116 skip_lock:
117                                 if (put_page_testzero(page_head))
118                                         __put_single_page(page_head);
119 out_put_single:
120                                 if (put_page_testzero(page))
121                                         __put_single_page(page);
122                                 return;
123                         }
124                         VM_BUG_ON(page_head != page->first_page);
125                         /*
126                          * We can release the refcount taken by
127                          * get_page_unless_zero() now that
128                          * __split_huge_page_refcount() is blocked on
129                          * the compound_lock.
130                          */
131                         if (put_page_testzero(page_head))
132                                 VM_BUG_ON(1);
133                         /* __split_huge_page_refcount will wait now */
134                         VM_BUG_ON(page_mapcount(page) <= 0);
135                         atomic_dec(&page->_mapcount);
136                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137                         VM_BUG_ON(atomic_read(&page->_count) != 0);
138                         compound_unlock_irqrestore(page_head, flags);
139
140 skip_lock_tail:
141                         if (put_page_testzero(page_head)) {
142                                 if (PageHead(page_head))
143                                         __put_compound_page(page_head);
144                                 else
145                                         __put_single_page(page_head);
146                         }
147                 } else {
148                         /* page_head is a dangling pointer */
149                         VM_BUG_ON(PageTail(page));
150                         goto out_put_single;
151                 }
152         } else if (put_page_testzero(page)) {
153                 if (PageHead(page))
154                         __put_compound_page(page);
155                 else
156                         __put_single_page(page);
157         }
158 }
159
160 void put_page(struct page *page)
161 {
162         if (unlikely(PageCompound(page)))
163                 put_compound_page(page);
164         else if (put_page_testzero(page))
165                 __put_single_page(page);
166 }
167 EXPORT_SYMBOL(put_page);
168
169 /*
170  * This function is exported but must not be called by anything other
171  * than get_page(). It implements the slow path of get_page().
172  */
173 bool __get_page_tail(struct page *page)
174 {
175         /*
176          * This takes care of get_page() if run on a tail page
177          * returned by one of the get_user_pages/follow_page variants.
178          * get_user_pages/follow_page itself doesn't need the compound
179          * lock because it runs __get_page_tail_foll() under the
180          * proper PT lock that already serializes against
181          * split_huge_page().
182          */
183         unsigned long flags;
184         bool got = false;
185         struct page *page_head = compound_trans_head(page);
186
187         if (likely(page != page_head && get_page_unless_zero(page_head))) {
188
189                 /* Ref to put_compound_page() comment. */
190                 if (PageSlab(page_head)) {
191                         if (likely(PageTail(page))) {
192                                 __get_page_tail_foll(page, false);
193                                 return true;
194                         } else {
195                                 put_page(page_head);
196                                 return false;
197                         }
198                 }
199
200                 /*
201                  * page_head wasn't a dangling pointer but it
202                  * may not be a head page anymore by the time
203                  * we obtain the lock. That is ok as long as it
204                  * can't be freed from under us.
205                  */
206                 flags = compound_lock_irqsave(page_head);
207                 /* here __split_huge_page_refcount won't run anymore */
208                 if (likely(PageTail(page))) {
209                         __get_page_tail_foll(page, false);
210                         got = true;
211                 }
212                 compound_unlock_irqrestore(page_head, flags);
213                 if (unlikely(!got))
214                         put_page(page_head);
215         }
216         return got;
217 }
218 EXPORT_SYMBOL(__get_page_tail);
219
220 /**
221  * put_pages_list() - release a list of pages
222  * @pages: list of pages threaded on page->lru
223  *
224  * Release a list of pages which are strung together on page.lru.  Currently
225  * used by read_cache_pages() and related error recovery code.
226  */
227 void put_pages_list(struct list_head *pages)
228 {
229         while (!list_empty(pages)) {
230                 struct page *victim;
231
232                 victim = list_entry(pages->prev, struct page, lru);
233                 list_del(&victim->lru);
234                 page_cache_release(victim);
235         }
236 }
237 EXPORT_SYMBOL(put_pages_list);
238
239 /*
240  * get_kernel_pages() - pin kernel pages in memory
241  * @kiov:       An array of struct kvec structures
242  * @nr_segs:    number of segments to pin
243  * @write:      pinning for read/write, currently ignored
244  * @pages:      array that receives pointers to the pages pinned.
245  *              Should be at least nr_segs long.
246  *
247  * Returns number of pages pinned. This may be fewer than the number
248  * requested. If nr_pages is 0 or negative, returns 0. If no pages
249  * were pinned, returns -errno. Each page returned must be released
250  * with a put_page() call when it is finished with.
251  */
252 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
253                 struct page **pages)
254 {
255         int seg;
256
257         for (seg = 0; seg < nr_segs; seg++) {
258                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
259                         return seg;
260
261                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
262                 page_cache_get(pages[seg]);
263         }
264
265         return seg;
266 }
267 EXPORT_SYMBOL_GPL(get_kernel_pages);
268
269 /*
270  * get_kernel_page() - pin a kernel page in memory
271  * @start:      starting kernel address
272  * @write:      pinning for read/write, currently ignored
273  * @pages:      array that receives pointer to the page pinned.
274  *              Must be at least nr_segs long.
275  *
276  * Returns 1 if page is pinned. If the page was not pinned, returns
277  * -errno. The page returned must be released with a put_page() call
278  * when it is finished with.
279  */
280 int get_kernel_page(unsigned long start, int write, struct page **pages)
281 {
282         const struct kvec kiov = {
283                 .iov_base = (void *)start,
284                 .iov_len = PAGE_SIZE
285         };
286
287         return get_kernel_pages(&kiov, 1, write, pages);
288 }
289 EXPORT_SYMBOL_GPL(get_kernel_page);
290
291 static void pagevec_lru_move_fn(struct pagevec *pvec,
292         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
293         void *arg)
294 {
295         int i;
296         struct zone *zone = NULL;
297         struct lruvec *lruvec;
298         unsigned long flags = 0;
299
300         for (i = 0; i < pagevec_count(pvec); i++) {
301                 struct page *page = pvec->pages[i];
302                 struct zone *pagezone = page_zone(page);
303
304                 if (pagezone != zone) {
305                         if (zone)
306                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
307                         zone = pagezone;
308                         spin_lock_irqsave(&zone->lru_lock, flags);
309                 }
310
311                 lruvec = mem_cgroup_page_lruvec(page, zone);
312                 (*move_fn)(page, lruvec, arg);
313         }
314         if (zone)
315                 spin_unlock_irqrestore(&zone->lru_lock, flags);
316         release_pages(pvec->pages, pvec->nr, pvec->cold);
317         pagevec_reinit(pvec);
318 }
319
320 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
321                                  void *arg)
322 {
323         int *pgmoved = arg;
324
325         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
326                 enum lru_list lru = page_lru_base_type(page);
327                 list_move_tail(&page->lru, &lruvec->lists[lru]);
328                 (*pgmoved)++;
329         }
330 }
331
332 /*
333  * pagevec_move_tail() must be called with IRQ disabled.
334  * Otherwise this may cause nasty races.
335  */
336 static void pagevec_move_tail(struct pagevec *pvec)
337 {
338         int pgmoved = 0;
339
340         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
341         __count_vm_events(PGROTATED, pgmoved);
342 }
343
344 /*
345  * Writeback is about to end against a page which has been marked for immediate
346  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
347  * inactive list.
348  */
349 void rotate_reclaimable_page(struct page *page)
350 {
351         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
352             !PageUnevictable(page) && PageLRU(page)) {
353                 struct pagevec *pvec;
354                 unsigned long flags;
355
356                 page_cache_get(page);
357                 local_irq_save(flags);
358                 pvec = &__get_cpu_var(lru_rotate_pvecs);
359                 if (!pagevec_add(pvec, page))
360                         pagevec_move_tail(pvec);
361                 local_irq_restore(flags);
362         }
363 }
364
365 static void update_page_reclaim_stat(struct lruvec *lruvec,
366                                      int file, int rotated)
367 {
368         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
369
370         reclaim_stat->recent_scanned[file]++;
371         if (rotated)
372                 reclaim_stat->recent_rotated[file]++;
373 }
374
375 static void __activate_page(struct page *page, struct lruvec *lruvec,
376                             void *arg)
377 {
378         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
379                 int file = page_is_file_cache(page);
380                 int lru = page_lru_base_type(page);
381
382                 del_page_from_lru_list(page, lruvec, lru);
383                 SetPageActive(page);
384                 lru += LRU_ACTIVE;
385                 add_page_to_lru_list(page, lruvec, lru);
386
387                 __count_vm_event(PGACTIVATE);
388                 update_page_reclaim_stat(lruvec, file, 1);
389         }
390 }
391
392 #ifdef CONFIG_SMP
393 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
394
395 static void activate_page_drain(int cpu)
396 {
397         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
398
399         if (pagevec_count(pvec))
400                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
401 }
402
403 void activate_page(struct page *page)
404 {
405         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
406                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
407
408                 page_cache_get(page);
409                 if (!pagevec_add(pvec, page))
410                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
411                 put_cpu_var(activate_page_pvecs);
412         }
413 }
414
415 #else
416 static inline void activate_page_drain(int cpu)
417 {
418 }
419
420 void activate_page(struct page *page)
421 {
422         struct zone *zone = page_zone(page);
423
424         spin_lock_irq(&zone->lru_lock);
425         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
426         spin_unlock_irq(&zone->lru_lock);
427 }
428 #endif
429
430 /*
431  * Mark a page as having seen activity.
432  *
433  * inactive,unreferenced        ->      inactive,referenced
434  * inactive,referenced          ->      active,unreferenced
435  * active,unreferenced          ->      active,referenced
436  */
437 void mark_page_accessed(struct page *page)
438 {
439         if (!PageActive(page) && !PageUnevictable(page) &&
440                         PageReferenced(page) && PageLRU(page)) {
441                 activate_page(page);
442                 ClearPageReferenced(page);
443         } else if (!PageReferenced(page)) {
444                 SetPageReferenced(page);
445         }
446 }
447 EXPORT_SYMBOL(mark_page_accessed);
448
449 /*
450  * Check the pagevec space before adding a new page into it, to prevent
451  * nonuniform page status in mark_page_accessed() after __lru_cache_add().
452  */
453 void __lru_cache_add(struct page *page, enum lru_list lru)
454 {
455         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
456
457         page_cache_get(page);
458         if (!pagevec_space(pvec))
459                 __pagevec_lru_add(pvec, lru);
460         pagevec_add(pvec, page);
461         put_cpu_var(lru_add_pvecs);
462 }
463 EXPORT_SYMBOL(__lru_cache_add);
464
465 /**
466  * lru_cache_add_lru - add a page to a page list
467  * @page: the page to be added to the LRU.
468  * @lru: the LRU list to which the page is added.
469  */
470 void lru_cache_add_lru(struct page *page, enum lru_list lru)
471 {
472         if (PageActive(page)) {
473                 VM_BUG_ON(PageUnevictable(page));
474                 ClearPageActive(page);
475         } else if (PageUnevictable(page)) {
476                 VM_BUG_ON(PageActive(page));
477                 ClearPageUnevictable(page);
478         }
479
480         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
481         __lru_cache_add(page, lru);
482 }
483
484 /**
485  * add_page_to_unevictable_list - add a page to the unevictable list
486  * @page:  the page to be added to the unevictable list
487  *
488  * Add page directly to its zone's unevictable list.  To avoid races with
489  * tasks that might be making the page evictable, through eg. munlock,
490  * munmap or exit, while it's not on the lru, we want to add the page
491  * while it's locked or otherwise "invisible" to other tasks.  This is
492  * difficult to do when using the pagevec cache, so bypass that.
493  */
494 void add_page_to_unevictable_list(struct page *page)
495 {
496         struct zone *zone = page_zone(page);
497         struct lruvec *lruvec;
498
499         spin_lock_irq(&zone->lru_lock);
500         lruvec = mem_cgroup_page_lruvec(page, zone);
501         SetPageUnevictable(page);
502         SetPageLRU(page);
503         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
504         spin_unlock_irq(&zone->lru_lock);
505 }
506
507 /*
508  * If the page can not be invalidated, it is moved to the
509  * inactive list to speed up its reclaim.  It is moved to the
510  * head of the list, rather than the tail, to give the flusher
511  * threads some time to write it out, as this is much more
512  * effective than the single-page writeout from reclaim.
513  *
514  * If the page isn't page_mapped and dirty/writeback, the page
515  * could reclaim asap using PG_reclaim.
516  *
517  * 1. active, mapped page -> none
518  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
519  * 3. inactive, mapped page -> none
520  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
521  * 5. inactive, clean -> inactive, tail
522  * 6. Others -> none
523  *
524  * In 4, why it moves inactive's head, the VM expects the page would
525  * be write it out by flusher threads as this is much more effective
526  * than the single-page writeout from reclaim.
527  */
528 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
529                               void *arg)
530 {
531         int lru, file;
532         bool active;
533
534         if (!PageLRU(page))
535                 return;
536
537         if (PageUnevictable(page))
538                 return;
539
540         /* Some processes are using the page */
541         if (page_mapped(page))
542                 return;
543
544         active = PageActive(page);
545         file = page_is_file_cache(page);
546         lru = page_lru_base_type(page);
547
548         del_page_from_lru_list(page, lruvec, lru + active);
549         ClearPageActive(page);
550         ClearPageReferenced(page);
551         add_page_to_lru_list(page, lruvec, lru);
552
553         if (PageWriteback(page) || PageDirty(page)) {
554                 /*
555                  * PG_reclaim could be raced with end_page_writeback
556                  * It can make readahead confusing.  But race window
557                  * is _really_ small and  it's non-critical problem.
558                  */
559                 SetPageReclaim(page);
560         } else {
561                 /*
562                  * The page's writeback ends up during pagevec
563                  * We moves tha page into tail of inactive.
564                  */
565                 list_move_tail(&page->lru, &lruvec->lists[lru]);
566                 __count_vm_event(PGROTATED);
567         }
568
569         if (active)
570                 __count_vm_event(PGDEACTIVATE);
571         update_page_reclaim_stat(lruvec, file, 0);
572 }
573
574 /*
575  * Drain pages out of the cpu's pagevecs.
576  * Either "cpu" is the current CPU, and preemption has already been
577  * disabled; or "cpu" is being hot-unplugged, and is already dead.
578  */
579 void lru_add_drain_cpu(int cpu)
580 {
581         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
582         struct pagevec *pvec;
583         int lru;
584
585         for_each_lru(lru) {
586                 pvec = &pvecs[lru - LRU_BASE];
587                 if (pagevec_count(pvec))
588                         __pagevec_lru_add(pvec, lru);
589         }
590
591         pvec = &per_cpu(lru_rotate_pvecs, cpu);
592         if (pagevec_count(pvec)) {
593                 unsigned long flags;
594
595                 /* No harm done if a racing interrupt already did this */
596                 local_irq_save(flags);
597                 pagevec_move_tail(pvec);
598                 local_irq_restore(flags);
599         }
600
601         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
602         if (pagevec_count(pvec))
603                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
604
605         activate_page_drain(cpu);
606 }
607
608 /**
609  * deactivate_page - forcefully deactivate a page
610  * @page: page to deactivate
611  *
612  * This function hints the VM that @page is a good reclaim candidate,
613  * for example if its invalidation fails due to the page being dirty
614  * or under writeback.
615  */
616 void deactivate_page(struct page *page)
617 {
618         /*
619          * In a workload with many unevictable page such as mprotect, unevictable
620          * page deactivation for accelerating reclaim is pointless.
621          */
622         if (PageUnevictable(page))
623                 return;
624
625         if (likely(get_page_unless_zero(page))) {
626                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
627
628                 if (!pagevec_add(pvec, page))
629                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
630                 put_cpu_var(lru_deactivate_pvecs);
631         }
632 }
633
634 void lru_add_drain(void)
635 {
636         lru_add_drain_cpu(get_cpu());
637         put_cpu();
638 }
639
640 static void lru_add_drain_per_cpu(struct work_struct *dummy)
641 {
642         lru_add_drain();
643 }
644
645 /*
646  * Returns 0 for success
647  */
648 int lru_add_drain_all(void)
649 {
650         return schedule_on_each_cpu(lru_add_drain_per_cpu);
651 }
652
653 /*
654  * Batched page_cache_release().  Decrement the reference count on all the
655  * passed pages.  If it fell to zero then remove the page from the LRU and
656  * free it.
657  *
658  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
659  * for the remainder of the operation.
660  *
661  * The locking in this function is against shrink_inactive_list(): we recheck
662  * the page count inside the lock to see whether shrink_inactive_list()
663  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
664  * will free it.
665  */
666 void release_pages(struct page **pages, int nr, int cold)
667 {
668         int i;
669         LIST_HEAD(pages_to_free);
670         struct zone *zone = NULL;
671         struct lruvec *lruvec;
672         unsigned long uninitialized_var(flags);
673
674         for (i = 0; i < nr; i++) {
675                 struct page *page = pages[i];
676
677                 if (unlikely(PageCompound(page))) {
678                         if (zone) {
679                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
680                                 zone = NULL;
681                         }
682                         put_compound_page(page);
683                         continue;
684                 }
685
686                 if (!put_page_testzero(page))
687                         continue;
688
689                 if (PageLRU(page)) {
690                         struct zone *pagezone = page_zone(page);
691
692                         if (pagezone != zone) {
693                                 if (zone)
694                                         spin_unlock_irqrestore(&zone->lru_lock,
695                                                                         flags);
696                                 zone = pagezone;
697                                 spin_lock_irqsave(&zone->lru_lock, flags);
698                         }
699
700                         lruvec = mem_cgroup_page_lruvec(page, zone);
701                         VM_BUG_ON(!PageLRU(page));
702                         __ClearPageLRU(page);
703                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
704                 }
705
706                 list_add(&page->lru, &pages_to_free);
707         }
708         if (zone)
709                 spin_unlock_irqrestore(&zone->lru_lock, flags);
710
711         free_hot_cold_page_list(&pages_to_free, cold);
712 }
713 EXPORT_SYMBOL(release_pages);
714
715 /*
716  * The pages which we're about to release may be in the deferred lru-addition
717  * queues.  That would prevent them from really being freed right now.  That's
718  * OK from a correctness point of view but is inefficient - those pages may be
719  * cache-warm and we want to give them back to the page allocator ASAP.
720  *
721  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
722  * and __pagevec_lru_add_active() call release_pages() directly to avoid
723  * mutual recursion.
724  */
725 void __pagevec_release(struct pagevec *pvec)
726 {
727         lru_add_drain();
728         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
729         pagevec_reinit(pvec);
730 }
731 EXPORT_SYMBOL(__pagevec_release);
732
733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
734 /* used by __split_huge_page_refcount() */
735 void lru_add_page_tail(struct page *page, struct page *page_tail,
736                        struct lruvec *lruvec)
737 {
738         int uninitialized_var(active);
739         enum lru_list lru;
740         const int file = 0;
741
742         VM_BUG_ON(!PageHead(page));
743         VM_BUG_ON(PageCompound(page_tail));
744         VM_BUG_ON(PageLRU(page_tail));
745         VM_BUG_ON(NR_CPUS != 1 &&
746                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
747
748         SetPageLRU(page_tail);
749
750         if (page_evictable(page_tail, NULL)) {
751                 if (PageActive(page)) {
752                         SetPageActive(page_tail);
753                         active = 1;
754                         lru = LRU_ACTIVE_ANON;
755                 } else {
756                         active = 0;
757                         lru = LRU_INACTIVE_ANON;
758                 }
759         } else {
760                 SetPageUnevictable(page_tail);
761                 lru = LRU_UNEVICTABLE;
762         }
763
764         if (likely(PageLRU(page)))
765                 list_add_tail(&page_tail->lru, &page->lru);
766         else {
767                 struct list_head *list_head;
768                 /*
769                  * Head page has not yet been counted, as an hpage,
770                  * so we must account for each subpage individually.
771                  *
772                  * Use the standard add function to put page_tail on the list,
773                  * but then correct its position so they all end up in order.
774                  */
775                 add_page_to_lru_list(page_tail, lruvec, lru);
776                 list_head = page_tail->lru.prev;
777                 list_move_tail(&page_tail->lru, list_head);
778         }
779
780         if (!PageUnevictable(page))
781                 update_page_reclaim_stat(lruvec, file, active);
782 }
783 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
784
785 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
786                                  void *arg)
787 {
788         enum lru_list lru = (enum lru_list)arg;
789         int file = is_file_lru(lru);
790         int active = is_active_lru(lru);
791
792         VM_BUG_ON(PageActive(page));
793         VM_BUG_ON(PageUnevictable(page));
794         VM_BUG_ON(PageLRU(page));
795
796         SetPageLRU(page);
797         if (active)
798                 SetPageActive(page);
799         add_page_to_lru_list(page, lruvec, lru);
800         update_page_reclaim_stat(lruvec, file, active);
801 }
802
803 /*
804  * Add the passed pages to the LRU, then drop the caller's refcount
805  * on them.  Reinitialises the caller's pagevec.
806  */
807 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
808 {
809         VM_BUG_ON(is_unevictable_lru(lru));
810
811         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
812 }
813 EXPORT_SYMBOL(__pagevec_lru_add);
814
815 /**
816  * pagevec_lookup - gang pagecache lookup
817  * @pvec:       Where the resulting pages are placed
818  * @mapping:    The address_space to search
819  * @start:      The starting page index
820  * @nr_pages:   The maximum number of pages
821  *
822  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
823  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
824  * reference against the pages in @pvec.
825  *
826  * The search returns a group of mapping-contiguous pages with ascending
827  * indexes.  There may be holes in the indices due to not-present pages.
828  *
829  * pagevec_lookup() returns the number of pages which were found.
830  */
831 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
832                 pgoff_t start, unsigned nr_pages)
833 {
834         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
835         return pagevec_count(pvec);
836 }
837 EXPORT_SYMBOL(pagevec_lookup);
838
839 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
840                 pgoff_t *index, int tag, unsigned nr_pages)
841 {
842         pvec->nr = find_get_pages_tag(mapping, index, tag,
843                                         nr_pages, pvec->pages);
844         return pagevec_count(pvec);
845 }
846 EXPORT_SYMBOL(pagevec_lookup_tag);
847
848 /*
849  * Perform any setup for the swap system
850  */
851 void __init swap_setup(void)
852 {
853         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
854
855 #ifdef CONFIG_SWAP
856         bdi_init(swapper_space.backing_dev_info);
857 #endif
858
859         /* Use a smaller cluster for small-memory machines */
860         if (megs < 16)
861                 page_cluster = 2;
862         else
863                 page_cluster = 3;
864         /*
865          * Right now other parts of the system means that we
866          * _really_ don't want to cluster much more
867          */
868 }