]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
memory hotplug: fix next block calculation in is_removable
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
44
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
49
50 static struct swap_list_t swap_list = {-1, -1};
51
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53
54 static DEFINE_MUTEX(swapon_mutex);
55
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59         SWAP_MAP = 0,   /* ops for reference from swap users */
60         SWAP_CACHE,     /* ops for reference from swap cache */
61 };
62
63 static inline int swap_count(unsigned short ent)
64 {
65         return ent & SWAP_COUNT_MASK;
66 }
67
68 static inline bool swap_has_cache(unsigned short ent)
69 {
70         return !!(ent & SWAP_HAS_CACHE);
71 }
72
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
74 {
75         unsigned short ret = count;
76
77         if (has_cache)
78                 return SWAP_HAS_CACHE | ret;
79         return ret;
80 }
81
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85 {
86         int type = si - swap_info;
87         swp_entry_t entry = swp_entry(type, offset);
88         struct page *page;
89         int ret = 0;
90
91         page = find_get_page(&swapper_space, entry.val);
92         if (!page)
93                 return 0;
94         /*
95          * This function is called from scan_swap_map() and it's called
96          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97          * We have to use trylock for avoiding deadlock. This is a special
98          * case and you should use try_to_free_swap() with explicit lock_page()
99          * in usual operations.
100          */
101         if (trylock_page(page)) {
102                 ret = try_to_free_swap(page);
103                 unlock_page(page);
104         }
105         page_cache_release(page);
106         return ret;
107 }
108
109 /*
110  * We need this because the bdev->unplug_fn can sleep and we cannot
111  * hold swap_lock while calling the unplug_fn. And swap_lock
112  * cannot be turned into a mutex.
113  */
114 static DECLARE_RWSEM(swap_unplug_sem);
115
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117 {
118         swp_entry_t entry;
119
120         down_read(&swap_unplug_sem);
121         entry.val = page_private(page);
122         if (PageSwapCache(page)) {
123                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124                 struct backing_dev_info *bdi;
125
126                 /*
127                  * If the page is removed from swapcache from under us (with a
128                  * racy try_to_unuse/swapoff) we need an additional reference
129                  * count to avoid reading garbage from page_private(page) above.
130                  * If the WARN_ON triggers during a swapoff it maybe the race
131                  * condition and it's harmless. However if it triggers without
132                  * swapoff it signals a problem.
133                  */
134                 WARN_ON(page_count(page) <= 1);
135
136                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137                 blk_run_backing_dev(bdi, page);
138         }
139         up_read(&swap_unplug_sem);
140 }
141
142 /*
143  * swapon tell device that all the old swap contents can be discarded,
144  * to allow the swap device to optimize its wear-levelling.
145  */
146 static int discard_swap(struct swap_info_struct *si)
147 {
148         struct swap_extent *se;
149         int err = 0;
150
151         list_for_each_entry(se, &si->extent_list, list) {
152                 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153                 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154
155                 if (se->start_page == 0) {
156                         /* Do not discard the swap header page! */
157                         start_block += 1 << (PAGE_SHIFT - 9);
158                         nr_blocks -= 1 << (PAGE_SHIFT - 9);
159                         if (!nr_blocks)
160                                 continue;
161                 }
162
163                 err = blkdev_issue_discard(si->bdev, start_block,
164                                                 nr_blocks, GFP_KERNEL,
165                                                 DISCARD_FL_BARRIER);
166                 if (err)
167                         break;
168
169                 cond_resched();
170         }
171         return err;             /* That will often be -EOPNOTSUPP */
172 }
173
174 /*
175  * swap allocation tell device that a cluster of swap can now be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static void discard_swap_cluster(struct swap_info_struct *si,
179                                  pgoff_t start_page, pgoff_t nr_pages)
180 {
181         struct swap_extent *se = si->curr_swap_extent;
182         int found_extent = 0;
183
184         while (nr_pages) {
185                 struct list_head *lh;
186
187                 if (se->start_page <= start_page &&
188                     start_page < se->start_page + se->nr_pages) {
189                         pgoff_t offset = start_page - se->start_page;
190                         sector_t start_block = se->start_block + offset;
191                         sector_t nr_blocks = se->nr_pages - offset;
192
193                         if (nr_blocks > nr_pages)
194                                 nr_blocks = nr_pages;
195                         start_page += nr_blocks;
196                         nr_pages -= nr_blocks;
197
198                         if (!found_extent++)
199                                 si->curr_swap_extent = se;
200
201                         start_block <<= PAGE_SHIFT - 9;
202                         nr_blocks <<= PAGE_SHIFT - 9;
203                         if (blkdev_issue_discard(si->bdev, start_block,
204                                                         nr_blocks, GFP_NOIO,
205                                                         DISCARD_FL_BARRIER))
206                                 break;
207                 }
208
209                 lh = se->list.next;
210                 if (lh == &si->extent_list)
211                         lh = lh->next;
212                 se = list_entry(lh, struct swap_extent, list);
213         }
214 }
215
216 static int wait_for_discard(void *word)
217 {
218         schedule();
219         return 0;
220 }
221
222 #define SWAPFILE_CLUSTER        256
223 #define LATENCY_LIMIT           256
224
225 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
226                                           int cache)
227 {
228         unsigned long offset;
229         unsigned long scan_base;
230         unsigned long last_in_cluster = 0;
231         int latency_ration = LATENCY_LIMIT;
232         int found_free_cluster = 0;
233
234         /*
235          * We try to cluster swap pages by allocating them sequentially
236          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
237          * way, however, we resort to first-free allocation, starting
238          * a new cluster.  This prevents us from scattering swap pages
239          * all over the entire swap partition, so that we reduce
240          * overall disk seek times between swap pages.  -- sct
241          * But we do now try to find an empty cluster.  -Andrea
242          * And we let swap pages go all over an SSD partition.  Hugh
243          */
244
245         si->flags += SWP_SCANNING;
246         scan_base = offset = si->cluster_next;
247
248         if (unlikely(!si->cluster_nr--)) {
249                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
250                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
251                         goto checks;
252                 }
253                 if (si->flags & SWP_DISCARDABLE) {
254                         /*
255                          * Start range check on racing allocations, in case
256                          * they overlap the cluster we eventually decide on
257                          * (we scan without swap_lock to allow preemption).
258                          * It's hardly conceivable that cluster_nr could be
259                          * wrapped during our scan, but don't depend on it.
260                          */
261                         if (si->lowest_alloc)
262                                 goto checks;
263                         si->lowest_alloc = si->max;
264                         si->highest_alloc = 0;
265                 }
266                 spin_unlock(&swap_lock);
267
268                 /*
269                  * If seek is expensive, start searching for new cluster from
270                  * start of partition, to minimize the span of allocated swap.
271                  * But if seek is cheap, search from our current position, so
272                  * that swap is allocated from all over the partition: if the
273                  * Flash Translation Layer only remaps within limited zones,
274                  * we don't want to wear out the first zone too quickly.
275                  */
276                 if (!(si->flags & SWP_SOLIDSTATE))
277                         scan_base = offset = si->lowest_bit;
278                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
279
280                 /* Locate the first empty (unaligned) cluster */
281                 for (; last_in_cluster <= si->highest_bit; offset++) {
282                         if (si->swap_map[offset])
283                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
284                         else if (offset == last_in_cluster) {
285                                 spin_lock(&swap_lock);
286                                 offset -= SWAPFILE_CLUSTER - 1;
287                                 si->cluster_next = offset;
288                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
289                                 found_free_cluster = 1;
290                                 goto checks;
291                         }
292                         if (unlikely(--latency_ration < 0)) {
293                                 cond_resched();
294                                 latency_ration = LATENCY_LIMIT;
295                         }
296                 }
297
298                 offset = si->lowest_bit;
299                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
300
301                 /* Locate the first empty (unaligned) cluster */
302                 for (; last_in_cluster < scan_base; offset++) {
303                         if (si->swap_map[offset])
304                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
305                         else if (offset == last_in_cluster) {
306                                 spin_lock(&swap_lock);
307                                 offset -= SWAPFILE_CLUSTER - 1;
308                                 si->cluster_next = offset;
309                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
310                                 found_free_cluster = 1;
311                                 goto checks;
312                         }
313                         if (unlikely(--latency_ration < 0)) {
314                                 cond_resched();
315                                 latency_ration = LATENCY_LIMIT;
316                         }
317                 }
318
319                 offset = scan_base;
320                 spin_lock(&swap_lock);
321                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
322                 si->lowest_alloc = 0;
323         }
324
325 checks:
326         if (!(si->flags & SWP_WRITEOK))
327                 goto no_page;
328         if (!si->highest_bit)
329                 goto no_page;
330         if (offset > si->highest_bit)
331                 scan_base = offset = si->lowest_bit;
332
333         /* reuse swap entry of cache-only swap if not hibernation. */
334         if (vm_swap_full()
335                 && cache == SWAP_CACHE
336                 && si->swap_map[offset] == SWAP_HAS_CACHE) {
337                 int swap_was_freed;
338                 spin_unlock(&swap_lock);
339                 swap_was_freed = __try_to_reclaim_swap(si, offset);
340                 spin_lock(&swap_lock);
341                 /* entry was freed successfully, try to use this again */
342                 if (swap_was_freed)
343                         goto checks;
344                 goto scan; /* check next one */
345         }
346
347         if (si->swap_map[offset])
348                 goto scan;
349
350         if (offset == si->lowest_bit)
351                 si->lowest_bit++;
352         if (offset == si->highest_bit)
353                 si->highest_bit--;
354         si->inuse_pages++;
355         if (si->inuse_pages == si->pages) {
356                 si->lowest_bit = si->max;
357                 si->highest_bit = 0;
358         }
359         if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
360                 si->swap_map[offset] = encode_swapmap(0, true);
361         else /* at suspend */
362                 si->swap_map[offset] = encode_swapmap(1, false);
363         si->cluster_next = offset + 1;
364         si->flags -= SWP_SCANNING;
365
366         if (si->lowest_alloc) {
367                 /*
368                  * Only set when SWP_DISCARDABLE, and there's a scan
369                  * for a free cluster in progress or just completed.
370                  */
371                 if (found_free_cluster) {
372                         /*
373                          * To optimize wear-levelling, discard the
374                          * old data of the cluster, taking care not to
375                          * discard any of its pages that have already
376                          * been allocated by racing tasks (offset has
377                          * already stepped over any at the beginning).
378                          */
379                         if (offset < si->highest_alloc &&
380                             si->lowest_alloc <= last_in_cluster)
381                                 last_in_cluster = si->lowest_alloc - 1;
382                         si->flags |= SWP_DISCARDING;
383                         spin_unlock(&swap_lock);
384
385                         if (offset < last_in_cluster)
386                                 discard_swap_cluster(si, offset,
387                                         last_in_cluster - offset + 1);
388
389                         spin_lock(&swap_lock);
390                         si->lowest_alloc = 0;
391                         si->flags &= ~SWP_DISCARDING;
392
393                         smp_mb();       /* wake_up_bit advises this */
394                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
395
396                 } else if (si->flags & SWP_DISCARDING) {
397                         /*
398                          * Delay using pages allocated by racing tasks
399                          * until the whole discard has been issued. We
400                          * could defer that delay until swap_writepage,
401                          * but it's easier to keep this self-contained.
402                          */
403                         spin_unlock(&swap_lock);
404                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
405                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
406                         spin_lock(&swap_lock);
407                 } else {
408                         /*
409                          * Note pages allocated by racing tasks while
410                          * scan for a free cluster is in progress, so
411                          * that its final discard can exclude them.
412                          */
413                         if (offset < si->lowest_alloc)
414                                 si->lowest_alloc = offset;
415                         if (offset > si->highest_alloc)
416                                 si->highest_alloc = offset;
417                 }
418         }
419         return offset;
420
421 scan:
422         spin_unlock(&swap_lock);
423         while (++offset <= si->highest_bit) {
424                 if (!si->swap_map[offset]) {
425                         spin_lock(&swap_lock);
426                         goto checks;
427                 }
428                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429                         spin_lock(&swap_lock);
430                         goto checks;
431                 }
432                 if (unlikely(--latency_ration < 0)) {
433                         cond_resched();
434                         latency_ration = LATENCY_LIMIT;
435                 }
436         }
437         offset = si->lowest_bit;
438         while (++offset < scan_base) {
439                 if (!si->swap_map[offset]) {
440                         spin_lock(&swap_lock);
441                         goto checks;
442                 }
443                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
444                         spin_lock(&swap_lock);
445                         goto checks;
446                 }
447                 if (unlikely(--latency_ration < 0)) {
448                         cond_resched();
449                         latency_ration = LATENCY_LIMIT;
450                 }
451         }
452         spin_lock(&swap_lock);
453
454 no_page:
455         si->flags -= SWP_SCANNING;
456         return 0;
457 }
458
459 swp_entry_t get_swap_page(void)
460 {
461         struct swap_info_struct *si;
462         pgoff_t offset;
463         int type, next;
464         int wrapped = 0;
465
466         spin_lock(&swap_lock);
467         if (nr_swap_pages <= 0)
468                 goto noswap;
469         nr_swap_pages--;
470
471         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
472                 si = swap_info + type;
473                 next = si->next;
474                 if (next < 0 ||
475                     (!wrapped && si->prio != swap_info[next].prio)) {
476                         next = swap_list.head;
477                         wrapped++;
478                 }
479
480                 if (!si->highest_bit)
481                         continue;
482                 if (!(si->flags & SWP_WRITEOK))
483                         continue;
484
485                 swap_list.next = next;
486                 /* This is called for allocating swap entry for cache */
487                 offset = scan_swap_map(si, SWAP_CACHE);
488                 if (offset) {
489                         spin_unlock(&swap_lock);
490                         return swp_entry(type, offset);
491                 }
492                 next = swap_list.next;
493         }
494
495         nr_swap_pages++;
496 noswap:
497         spin_unlock(&swap_lock);
498         return (swp_entry_t) {0};
499 }
500
501 /* The only caller of this function is now susupend routine */
502 swp_entry_t get_swap_page_of_type(int type)
503 {
504         struct swap_info_struct *si;
505         pgoff_t offset;
506
507         spin_lock(&swap_lock);
508         si = swap_info + type;
509         if (si->flags & SWP_WRITEOK) {
510                 nr_swap_pages--;
511                 /* This is called for allocating swap entry, not cache */
512                 offset = scan_swap_map(si, SWAP_MAP);
513                 if (offset) {
514                         spin_unlock(&swap_lock);
515                         return swp_entry(type, offset);
516                 }
517                 nr_swap_pages++;
518         }
519         spin_unlock(&swap_lock);
520         return (swp_entry_t) {0};
521 }
522
523 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
524 {
525         struct swap_info_struct * p;
526         unsigned long offset, type;
527
528         if (!entry.val)
529                 goto out;
530         type = swp_type(entry);
531         if (type >= nr_swapfiles)
532                 goto bad_nofile;
533         p = & swap_info[type];
534         if (!(p->flags & SWP_USED))
535                 goto bad_device;
536         offset = swp_offset(entry);
537         if (offset >= p->max)
538                 goto bad_offset;
539         if (!p->swap_map[offset])
540                 goto bad_free;
541         spin_lock(&swap_lock);
542         return p;
543
544 bad_free:
545         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
546         goto out;
547 bad_offset:
548         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
549         goto out;
550 bad_device:
551         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
552         goto out;
553 bad_nofile:
554         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
555 out:
556         return NULL;
557 }
558
559 static int swap_entry_free(struct swap_info_struct *p,
560                            swp_entry_t ent, int cache)
561 {
562         unsigned long offset = swp_offset(ent);
563         int count = swap_count(p->swap_map[offset]);
564         bool has_cache;
565
566         has_cache = swap_has_cache(p->swap_map[offset]);
567
568         if (cache == SWAP_MAP) { /* dropping usage count of swap */
569                 if (count < SWAP_MAP_MAX) {
570                         count--;
571                         p->swap_map[offset] = encode_swapmap(count, has_cache);
572                 }
573         } else { /* dropping swap cache flag */
574                 VM_BUG_ON(!has_cache);
575                 p->swap_map[offset] = encode_swapmap(count, false);
576
577         }
578         /* return code. */
579         count = p->swap_map[offset];
580         /* free if no reference */
581         if (!count) {
582                 if (offset < p->lowest_bit)
583                         p->lowest_bit = offset;
584                 if (offset > p->highest_bit)
585                         p->highest_bit = offset;
586                 if (p->prio > swap_info[swap_list.next].prio)
587                         swap_list.next = p - swap_info;
588                 nr_swap_pages++;
589                 p->inuse_pages--;
590         }
591         if (!swap_count(count))
592                 mem_cgroup_uncharge_swap(ent);
593         return count;
594 }
595
596 /*
597  * Caller has made sure that the swapdevice corresponding to entry
598  * is still around or has not been recycled.
599  */
600 void swap_free(swp_entry_t entry)
601 {
602         struct swap_info_struct * p;
603
604         p = swap_info_get(entry);
605         if (p) {
606                 swap_entry_free(p, entry, SWAP_MAP);
607                 spin_unlock(&swap_lock);
608         }
609 }
610
611 /*
612  * Called after dropping swapcache to decrease refcnt to swap entries.
613  */
614 void swapcache_free(swp_entry_t entry, struct page *page)
615 {
616         struct swap_info_struct *p;
617         int ret;
618
619         p = swap_info_get(entry);
620         if (p) {
621                 ret = swap_entry_free(p, entry, SWAP_CACHE);
622                 if (page) {
623                         bool swapout;
624                         if (ret)
625                                 swapout = true; /* the end of swap out */
626                         else
627                                 swapout = false; /* no more swap users! */
628                         mem_cgroup_uncharge_swapcache(page, entry, swapout);
629                 }
630                 spin_unlock(&swap_lock);
631         }
632         return;
633 }
634
635 /*
636  * How many references to page are currently swapped out?
637  */
638 static inline int page_swapcount(struct page *page)
639 {
640         int count = 0;
641         struct swap_info_struct *p;
642         swp_entry_t entry;
643
644         entry.val = page_private(page);
645         p = swap_info_get(entry);
646         if (p) {
647                 count = swap_count(p->swap_map[swp_offset(entry)]);
648                 spin_unlock(&swap_lock);
649         }
650         return count;
651 }
652
653 /*
654  * We can write to an anon page without COW if there are no other references
655  * to it.  And as a side-effect, free up its swap: because the old content
656  * on disk will never be read, and seeking back there to write new content
657  * later would only waste time away from clustering.
658  */
659 int reuse_swap_page(struct page *page)
660 {
661         int count;
662
663         VM_BUG_ON(!PageLocked(page));
664         count = page_mapcount(page);
665         if (count <= 1 && PageSwapCache(page)) {
666                 count += page_swapcount(page);
667                 if (count == 1 && !PageWriteback(page)) {
668                         delete_from_swap_cache(page);
669                         SetPageDirty(page);
670                 }
671         }
672         return count == 1;
673 }
674
675 /*
676  * If swap is getting full, or if there are no more mappings of this page,
677  * then try_to_free_swap is called to free its swap space.
678  */
679 int try_to_free_swap(struct page *page)
680 {
681         VM_BUG_ON(!PageLocked(page));
682
683         if (!PageSwapCache(page))
684                 return 0;
685         if (PageWriteback(page))
686                 return 0;
687         if (page_swapcount(page))
688                 return 0;
689
690         delete_from_swap_cache(page);
691         SetPageDirty(page);
692         return 1;
693 }
694
695 /*
696  * Free the swap entry like above, but also try to
697  * free the page cache entry if it is the last user.
698  */
699 int free_swap_and_cache(swp_entry_t entry)
700 {
701         struct swap_info_struct *p;
702         struct page *page = NULL;
703
704         if (non_swap_entry(entry))
705                 return 1;
706
707         p = swap_info_get(entry);
708         if (p) {
709                 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
710                         page = find_get_page(&swapper_space, entry.val);
711                         if (page && !trylock_page(page)) {
712                                 page_cache_release(page);
713                                 page = NULL;
714                         }
715                 }
716                 spin_unlock(&swap_lock);
717         }
718         if (page) {
719                 /*
720                  * Not mapped elsewhere, or swap space full? Free it!
721                  * Also recheck PageSwapCache now page is locked (above).
722                  */
723                 if (PageSwapCache(page) && !PageWriteback(page) &&
724                                 (!page_mapped(page) || vm_swap_full())) {
725                         delete_from_swap_cache(page);
726                         SetPageDirty(page);
727                 }
728                 unlock_page(page);
729                 page_cache_release(page);
730         }
731         return p != NULL;
732 }
733
734 #ifdef CONFIG_HIBERNATION
735 /*
736  * Find the swap type that corresponds to given device (if any).
737  *
738  * @offset - number of the PAGE_SIZE-sized block of the device, starting
739  * from 0, in which the swap header is expected to be located.
740  *
741  * This is needed for the suspend to disk (aka swsusp).
742  */
743 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
744 {
745         struct block_device *bdev = NULL;
746         int i;
747
748         if (device)
749                 bdev = bdget(device);
750
751         spin_lock(&swap_lock);
752         for (i = 0; i < nr_swapfiles; i++) {
753                 struct swap_info_struct *sis = swap_info + i;
754
755                 if (!(sis->flags & SWP_WRITEOK))
756                         continue;
757
758                 if (!bdev) {
759                         if (bdev_p)
760                                 *bdev_p = bdgrab(sis->bdev);
761
762                         spin_unlock(&swap_lock);
763                         return i;
764                 }
765                 if (bdev == sis->bdev) {
766                         struct swap_extent *se;
767
768                         se = list_entry(sis->extent_list.next,
769                                         struct swap_extent, list);
770                         if (se->start_block == offset) {
771                                 if (bdev_p)
772                                         *bdev_p = bdgrab(sis->bdev);
773
774                                 spin_unlock(&swap_lock);
775                                 bdput(bdev);
776                                 return i;
777                         }
778                 }
779         }
780         spin_unlock(&swap_lock);
781         if (bdev)
782                 bdput(bdev);
783
784         return -ENODEV;
785 }
786
787 /*
788  * Return either the total number of swap pages of given type, or the number
789  * of free pages of that type (depending on @free)
790  *
791  * This is needed for software suspend
792  */
793 unsigned int count_swap_pages(int type, int free)
794 {
795         unsigned int n = 0;
796
797         if (type < nr_swapfiles) {
798                 spin_lock(&swap_lock);
799                 if (swap_info[type].flags & SWP_WRITEOK) {
800                         n = swap_info[type].pages;
801                         if (free)
802                                 n -= swap_info[type].inuse_pages;
803                 }
804                 spin_unlock(&swap_lock);
805         }
806         return n;
807 }
808 #endif
809
810 /*
811  * No need to decide whether this PTE shares the swap entry with others,
812  * just let do_wp_page work it out if a write is requested later - to
813  * force COW, vm_page_prot omits write permission from any private vma.
814  */
815 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
816                 unsigned long addr, swp_entry_t entry, struct page *page)
817 {
818         struct mem_cgroup *ptr = NULL;
819         spinlock_t *ptl;
820         pte_t *pte;
821         int ret = 1;
822
823         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
824                 ret = -ENOMEM;
825                 goto out_nolock;
826         }
827
828         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
829         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
830                 if (ret > 0)
831                         mem_cgroup_cancel_charge_swapin(ptr);
832                 ret = 0;
833                 goto out;
834         }
835
836         inc_mm_counter(vma->vm_mm, anon_rss);
837         get_page(page);
838         set_pte_at(vma->vm_mm, addr, pte,
839                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
840         page_add_anon_rmap(page, vma, addr);
841         mem_cgroup_commit_charge_swapin(page, ptr);
842         swap_free(entry);
843         /*
844          * Move the page to the active list so it is not
845          * immediately swapped out again after swapon.
846          */
847         activate_page(page);
848 out:
849         pte_unmap_unlock(pte, ptl);
850 out_nolock:
851         return ret;
852 }
853
854 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
855                                 unsigned long addr, unsigned long end,
856                                 swp_entry_t entry, struct page *page)
857 {
858         pte_t swp_pte = swp_entry_to_pte(entry);
859         pte_t *pte;
860         int ret = 0;
861
862         /*
863          * We don't actually need pte lock while scanning for swp_pte: since
864          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
865          * page table while we're scanning; though it could get zapped, and on
866          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
867          * of unmatched parts which look like swp_pte, so unuse_pte must
868          * recheck under pte lock.  Scanning without pte lock lets it be
869          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
870          */
871         pte = pte_offset_map(pmd, addr);
872         do {
873                 /*
874                  * swapoff spends a _lot_ of time in this loop!
875                  * Test inline before going to call unuse_pte.
876                  */
877                 if (unlikely(pte_same(*pte, swp_pte))) {
878                         pte_unmap(pte);
879                         ret = unuse_pte(vma, pmd, addr, entry, page);
880                         if (ret)
881                                 goto out;
882                         pte = pte_offset_map(pmd, addr);
883                 }
884         } while (pte++, addr += PAGE_SIZE, addr != end);
885         pte_unmap(pte - 1);
886 out:
887         return ret;
888 }
889
890 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
891                                 unsigned long addr, unsigned long end,
892                                 swp_entry_t entry, struct page *page)
893 {
894         pmd_t *pmd;
895         unsigned long next;
896         int ret;
897
898         pmd = pmd_offset(pud, addr);
899         do {
900                 next = pmd_addr_end(addr, end);
901                 if (pmd_none_or_clear_bad(pmd))
902                         continue;
903                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
904                 if (ret)
905                         return ret;
906         } while (pmd++, addr = next, addr != end);
907         return 0;
908 }
909
910 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
911                                 unsigned long addr, unsigned long end,
912                                 swp_entry_t entry, struct page *page)
913 {
914         pud_t *pud;
915         unsigned long next;
916         int ret;
917
918         pud = pud_offset(pgd, addr);
919         do {
920                 next = pud_addr_end(addr, end);
921                 if (pud_none_or_clear_bad(pud))
922                         continue;
923                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
924                 if (ret)
925                         return ret;
926         } while (pud++, addr = next, addr != end);
927         return 0;
928 }
929
930 static int unuse_vma(struct vm_area_struct *vma,
931                                 swp_entry_t entry, struct page *page)
932 {
933         pgd_t *pgd;
934         unsigned long addr, end, next;
935         int ret;
936
937         if (page->mapping) {
938                 addr = page_address_in_vma(page, vma);
939                 if (addr == -EFAULT)
940                         return 0;
941                 else
942                         end = addr + PAGE_SIZE;
943         } else {
944                 addr = vma->vm_start;
945                 end = vma->vm_end;
946         }
947
948         pgd = pgd_offset(vma->vm_mm, addr);
949         do {
950                 next = pgd_addr_end(addr, end);
951                 if (pgd_none_or_clear_bad(pgd))
952                         continue;
953                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
954                 if (ret)
955                         return ret;
956         } while (pgd++, addr = next, addr != end);
957         return 0;
958 }
959
960 static int unuse_mm(struct mm_struct *mm,
961                                 swp_entry_t entry, struct page *page)
962 {
963         struct vm_area_struct *vma;
964         int ret = 0;
965
966         if (!down_read_trylock(&mm->mmap_sem)) {
967                 /*
968                  * Activate page so shrink_inactive_list is unlikely to unmap
969                  * its ptes while lock is dropped, so swapoff can make progress.
970                  */
971                 activate_page(page);
972                 unlock_page(page);
973                 down_read(&mm->mmap_sem);
974                 lock_page(page);
975         }
976         for (vma = mm->mmap; vma; vma = vma->vm_next) {
977                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
978                         break;
979         }
980         up_read(&mm->mmap_sem);
981         return (ret < 0)? ret: 0;
982 }
983
984 /*
985  * Scan swap_map from current position to next entry still in use.
986  * Recycle to start on reaching the end, returning 0 when empty.
987  */
988 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
989                                         unsigned int prev)
990 {
991         unsigned int max = si->max;
992         unsigned int i = prev;
993         int count;
994
995         /*
996          * No need for swap_lock here: we're just looking
997          * for whether an entry is in use, not modifying it; false
998          * hits are okay, and sys_swapoff() has already prevented new
999          * allocations from this area (while holding swap_lock).
1000          */
1001         for (;;) {
1002                 if (++i >= max) {
1003                         if (!prev) {
1004                                 i = 0;
1005                                 break;
1006                         }
1007                         /*
1008                          * No entries in use at top of swap_map,
1009                          * loop back to start and recheck there.
1010                          */
1011                         max = prev + 1;
1012                         prev = 0;
1013                         i = 1;
1014                 }
1015                 count = si->swap_map[i];
1016                 if (count && swap_count(count) != SWAP_MAP_BAD)
1017                         break;
1018         }
1019         return i;
1020 }
1021
1022 /*
1023  * We completely avoid races by reading each swap page in advance,
1024  * and then search for the process using it.  All the necessary
1025  * page table adjustments can then be made atomically.
1026  */
1027 static int try_to_unuse(unsigned int type)
1028 {
1029         struct swap_info_struct * si = &swap_info[type];
1030         struct mm_struct *start_mm;
1031         unsigned short *swap_map;
1032         unsigned short swcount;
1033         struct page *page;
1034         swp_entry_t entry;
1035         unsigned int i = 0;
1036         int retval = 0;
1037         int reset_overflow = 0;
1038         int shmem;
1039
1040         /*
1041          * When searching mms for an entry, a good strategy is to
1042          * start at the first mm we freed the previous entry from
1043          * (though actually we don't notice whether we or coincidence
1044          * freed the entry).  Initialize this start_mm with a hold.
1045          *
1046          * A simpler strategy would be to start at the last mm we
1047          * freed the previous entry from; but that would take less
1048          * advantage of mmlist ordering, which clusters forked mms
1049          * together, child after parent.  If we race with dup_mmap(), we
1050          * prefer to resolve parent before child, lest we miss entries
1051          * duplicated after we scanned child: using last mm would invert
1052          * that.  Though it's only a serious concern when an overflowed
1053          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1054          */
1055         start_mm = &init_mm;
1056         atomic_inc(&init_mm.mm_users);
1057
1058         /*
1059          * Keep on scanning until all entries have gone.  Usually,
1060          * one pass through swap_map is enough, but not necessarily:
1061          * there are races when an instance of an entry might be missed.
1062          */
1063         while ((i = find_next_to_unuse(si, i)) != 0) {
1064                 if (signal_pending(current)) {
1065                         retval = -EINTR;
1066                         break;
1067                 }
1068
1069                 /*
1070                  * Get a page for the entry, using the existing swap
1071                  * cache page if there is one.  Otherwise, get a clean
1072                  * page and read the swap into it.
1073                  */
1074                 swap_map = &si->swap_map[i];
1075                 entry = swp_entry(type, i);
1076                 page = read_swap_cache_async(entry,
1077                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1078                 if (!page) {
1079                         /*
1080                          * Either swap_duplicate() failed because entry
1081                          * has been freed independently, and will not be
1082                          * reused since sys_swapoff() already disabled
1083                          * allocation from here, or alloc_page() failed.
1084                          */
1085                         if (!*swap_map)
1086                                 continue;
1087                         retval = -ENOMEM;
1088                         break;
1089                 }
1090
1091                 /*
1092                  * Don't hold on to start_mm if it looks like exiting.
1093                  */
1094                 if (atomic_read(&start_mm->mm_users) == 1) {
1095                         mmput(start_mm);
1096                         start_mm = &init_mm;
1097                         atomic_inc(&init_mm.mm_users);
1098                 }
1099
1100                 /*
1101                  * Wait for and lock page.  When do_swap_page races with
1102                  * try_to_unuse, do_swap_page can handle the fault much
1103                  * faster than try_to_unuse can locate the entry.  This
1104                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105                  * defer to do_swap_page in such a case - in some tests,
1106                  * do_swap_page and try_to_unuse repeatedly compete.
1107                  */
1108                 wait_on_page_locked(page);
1109                 wait_on_page_writeback(page);
1110                 lock_page(page);
1111                 wait_on_page_writeback(page);
1112
1113                 /*
1114                  * Remove all references to entry.
1115                  * Whenever we reach init_mm, there's no address space
1116                  * to search, but use it as a reminder to search shmem.
1117                  */
1118                 shmem = 0;
1119                 swcount = *swap_map;
1120                 if (swap_count(swcount)) {
1121                         if (start_mm == &init_mm)
1122                                 shmem = shmem_unuse(entry, page);
1123                         else
1124                                 retval = unuse_mm(start_mm, entry, page);
1125                 }
1126                 if (swap_count(*swap_map)) {
1127                         int set_start_mm = (*swap_map >= swcount);
1128                         struct list_head *p = &start_mm->mmlist;
1129                         struct mm_struct *new_start_mm = start_mm;
1130                         struct mm_struct *prev_mm = start_mm;
1131                         struct mm_struct *mm;
1132
1133                         atomic_inc(&new_start_mm->mm_users);
1134                         atomic_inc(&prev_mm->mm_users);
1135                         spin_lock(&mmlist_lock);
1136                         while (swap_count(*swap_map) && !retval && !shmem &&
1137                                         (p = p->next) != &start_mm->mmlist) {
1138                                 mm = list_entry(p, struct mm_struct, mmlist);
1139                                 if (!atomic_inc_not_zero(&mm->mm_users))
1140                                         continue;
1141                                 spin_unlock(&mmlist_lock);
1142                                 mmput(prev_mm);
1143                                 prev_mm = mm;
1144
1145                                 cond_resched();
1146
1147                                 swcount = *swap_map;
1148                                 if (!swap_count(swcount)) /* any usage ? */
1149                                         ;
1150                                 else if (mm == &init_mm) {
1151                                         set_start_mm = 1;
1152                                         shmem = shmem_unuse(entry, page);
1153                                 } else
1154                                         retval = unuse_mm(mm, entry, page);
1155
1156                                 if (set_start_mm && *swap_map < swcount) {
1157                                         mmput(new_start_mm);
1158                                         atomic_inc(&mm->mm_users);
1159                                         new_start_mm = mm;
1160                                         set_start_mm = 0;
1161                                 }
1162                                 spin_lock(&mmlist_lock);
1163                         }
1164                         spin_unlock(&mmlist_lock);
1165                         mmput(prev_mm);
1166                         mmput(start_mm);
1167                         start_mm = new_start_mm;
1168                 }
1169                 if (shmem) {
1170                         /* page has already been unlocked and released */
1171                         if (shmem > 0)
1172                                 continue;
1173                         retval = shmem;
1174                         break;
1175                 }
1176                 if (retval) {
1177                         unlock_page(page);
1178                         page_cache_release(page);
1179                         break;
1180                 }
1181
1182                 /*
1183                  * How could swap count reach 0x7ffe ?
1184                  * There's no way to repeat a swap page within an mm
1185                  * (except in shmem, where it's the shared object which takes
1186                  * the reference count)?
1187                  * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1188                  * short is too small....)
1189                  * If that's wrong, then we should worry more about
1190                  * exit_mmap() and do_munmap() cases described above:
1191                  * we might be resetting SWAP_MAP_MAX too early here.
1192                  * We know "Undead"s can happen, they're okay, so don't
1193                  * report them; but do report if we reset SWAP_MAP_MAX.
1194                  */
1195                 /* We might release the lock_page() in unuse_mm(). */
1196                 if (!PageSwapCache(page) || page_private(page) != entry.val)
1197                         goto retry;
1198
1199                 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1200                         spin_lock(&swap_lock);
1201                         *swap_map = encode_swapmap(0, true);
1202                         spin_unlock(&swap_lock);
1203                         reset_overflow = 1;
1204                 }
1205
1206                 /*
1207                  * If a reference remains (rare), we would like to leave
1208                  * the page in the swap cache; but try_to_unmap could
1209                  * then re-duplicate the entry once we drop page lock,
1210                  * so we might loop indefinitely; also, that page could
1211                  * not be swapped out to other storage meanwhile.  So:
1212                  * delete from cache even if there's another reference,
1213                  * after ensuring that the data has been saved to disk -
1214                  * since if the reference remains (rarer), it will be
1215                  * read from disk into another page.  Splitting into two
1216                  * pages would be incorrect if swap supported "shared
1217                  * private" pages, but they are handled by tmpfs files.
1218                  */
1219                 if (swap_count(*swap_map) &&
1220                      PageDirty(page) && PageSwapCache(page)) {
1221                         struct writeback_control wbc = {
1222                                 .sync_mode = WB_SYNC_NONE,
1223                         };
1224
1225                         swap_writepage(page, &wbc);
1226                         lock_page(page);
1227                         wait_on_page_writeback(page);
1228                 }
1229
1230                 /*
1231                  * It is conceivable that a racing task removed this page from
1232                  * swap cache just before we acquired the page lock at the top,
1233                  * or while we dropped it in unuse_mm().  The page might even
1234                  * be back in swap cache on another swap area: that we must not
1235                  * delete, since it may not have been written out to swap yet.
1236                  */
1237                 if (PageSwapCache(page) &&
1238                     likely(page_private(page) == entry.val))
1239                         delete_from_swap_cache(page);
1240
1241                 /*
1242                  * So we could skip searching mms once swap count went
1243                  * to 1, we did not mark any present ptes as dirty: must
1244                  * mark page dirty so shrink_page_list will preserve it.
1245                  */
1246                 SetPageDirty(page);
1247 retry:
1248                 unlock_page(page);
1249                 page_cache_release(page);
1250
1251                 /*
1252                  * Make sure that we aren't completely killing
1253                  * interactive performance.
1254                  */
1255                 cond_resched();
1256         }
1257
1258         mmput(start_mm);
1259         if (reset_overflow) {
1260                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1261                 swap_overflow = 0;
1262         }
1263         return retval;
1264 }
1265
1266 /*
1267  * After a successful try_to_unuse, if no swap is now in use, we know
1268  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1269  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1270  * added to the mmlist just after page_duplicate - before would be racy.
1271  */
1272 static void drain_mmlist(void)
1273 {
1274         struct list_head *p, *next;
1275         unsigned int i;
1276
1277         for (i = 0; i < nr_swapfiles; i++)
1278                 if (swap_info[i].inuse_pages)
1279                         return;
1280         spin_lock(&mmlist_lock);
1281         list_for_each_safe(p, next, &init_mm.mmlist)
1282                 list_del_init(p);
1283         spin_unlock(&mmlist_lock);
1284 }
1285
1286 /*
1287  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1288  * corresponds to page offset `offset'.
1289  */
1290 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1291 {
1292         struct swap_extent *se = sis->curr_swap_extent;
1293         struct swap_extent *start_se = se;
1294
1295         for ( ; ; ) {
1296                 struct list_head *lh;
1297
1298                 if (se->start_page <= offset &&
1299                                 offset < (se->start_page + se->nr_pages)) {
1300                         return se->start_block + (offset - se->start_page);
1301                 }
1302                 lh = se->list.next;
1303                 if (lh == &sis->extent_list)
1304                         lh = lh->next;
1305                 se = list_entry(lh, struct swap_extent, list);
1306                 sis->curr_swap_extent = se;
1307                 BUG_ON(se == start_se);         /* It *must* be present */
1308         }
1309 }
1310
1311 #ifdef CONFIG_HIBERNATION
1312 /*
1313  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1314  * corresponding to given index in swap_info (swap type).
1315  */
1316 sector_t swapdev_block(int swap_type, pgoff_t offset)
1317 {
1318         struct swap_info_struct *sis;
1319
1320         if (swap_type >= nr_swapfiles)
1321                 return 0;
1322
1323         sis = swap_info + swap_type;
1324         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1325 }
1326 #endif /* CONFIG_HIBERNATION */
1327
1328 /*
1329  * Free all of a swapdev's extent information
1330  */
1331 static void destroy_swap_extents(struct swap_info_struct *sis)
1332 {
1333         while (!list_empty(&sis->extent_list)) {
1334                 struct swap_extent *se;
1335
1336                 se = list_entry(sis->extent_list.next,
1337                                 struct swap_extent, list);
1338                 list_del(&se->list);
1339                 kfree(se);
1340         }
1341 }
1342
1343 /*
1344  * Add a block range (and the corresponding page range) into this swapdev's
1345  * extent list.  The extent list is kept sorted in page order.
1346  *
1347  * This function rather assumes that it is called in ascending page order.
1348  */
1349 static int
1350 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1351                 unsigned long nr_pages, sector_t start_block)
1352 {
1353         struct swap_extent *se;
1354         struct swap_extent *new_se;
1355         struct list_head *lh;
1356
1357         lh = sis->extent_list.prev;     /* The highest page extent */
1358         if (lh != &sis->extent_list) {
1359                 se = list_entry(lh, struct swap_extent, list);
1360                 BUG_ON(se->start_page + se->nr_pages != start_page);
1361                 if (se->start_block + se->nr_pages == start_block) {
1362                         /* Merge it */
1363                         se->nr_pages += nr_pages;
1364                         return 0;
1365                 }
1366         }
1367
1368         /*
1369          * No merge.  Insert a new extent, preserving ordering.
1370          */
1371         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1372         if (new_se == NULL)
1373                 return -ENOMEM;
1374         new_se->start_page = start_page;
1375         new_se->nr_pages = nr_pages;
1376         new_se->start_block = start_block;
1377
1378         list_add_tail(&new_se->list, &sis->extent_list);
1379         return 1;
1380 }
1381
1382 /*
1383  * A `swap extent' is a simple thing which maps a contiguous range of pages
1384  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1385  * is built at swapon time and is then used at swap_writepage/swap_readpage
1386  * time for locating where on disk a page belongs.
1387  *
1388  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1389  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1390  * swap files identically.
1391  *
1392  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1393  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1394  * swapfiles are handled *identically* after swapon time.
1395  *
1396  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1397  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1398  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1399  * requirements, they are simply tossed out - we will never use those blocks
1400  * for swapping.
1401  *
1402  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1403  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1404  * which will scribble on the fs.
1405  *
1406  * The amount of disk space which a single swap extent represents varies.
1407  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1408  * extents in the list.  To avoid much list walking, we cache the previous
1409  * search location in `curr_swap_extent', and start new searches from there.
1410  * This is extremely effective.  The average number of iterations in
1411  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1412  */
1413 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1414 {
1415         struct inode *inode;
1416         unsigned blocks_per_page;
1417         unsigned long page_no;
1418         unsigned blkbits;
1419         sector_t probe_block;
1420         sector_t last_block;
1421         sector_t lowest_block = -1;
1422         sector_t highest_block = 0;
1423         int nr_extents = 0;
1424         int ret;
1425
1426         inode = sis->swap_file->f_mapping->host;
1427         if (S_ISBLK(inode->i_mode)) {
1428                 ret = add_swap_extent(sis, 0, sis->max, 0);
1429                 *span = sis->pages;
1430                 goto done;
1431         }
1432
1433         blkbits = inode->i_blkbits;
1434         blocks_per_page = PAGE_SIZE >> blkbits;
1435
1436         /*
1437          * Map all the blocks into the extent list.  This code doesn't try
1438          * to be very smart.
1439          */
1440         probe_block = 0;
1441         page_no = 0;
1442         last_block = i_size_read(inode) >> blkbits;
1443         while ((probe_block + blocks_per_page) <= last_block &&
1444                         page_no < sis->max) {
1445                 unsigned block_in_page;
1446                 sector_t first_block;
1447
1448                 first_block = bmap(inode, probe_block);
1449                 if (first_block == 0)
1450                         goto bad_bmap;
1451
1452                 /*
1453                  * It must be PAGE_SIZE aligned on-disk
1454                  */
1455                 if (first_block & (blocks_per_page - 1)) {
1456                         probe_block++;
1457                         goto reprobe;
1458                 }
1459
1460                 for (block_in_page = 1; block_in_page < blocks_per_page;
1461                                         block_in_page++) {
1462                         sector_t block;
1463
1464                         block = bmap(inode, probe_block + block_in_page);
1465                         if (block == 0)
1466                                 goto bad_bmap;
1467                         if (block != first_block + block_in_page) {
1468                                 /* Discontiguity */
1469                                 probe_block++;
1470                                 goto reprobe;
1471                         }
1472                 }
1473
1474                 first_block >>= (PAGE_SHIFT - blkbits);
1475                 if (page_no) {  /* exclude the header page */
1476                         if (first_block < lowest_block)
1477                                 lowest_block = first_block;
1478                         if (first_block > highest_block)
1479                                 highest_block = first_block;
1480                 }
1481
1482                 /*
1483                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1484                  */
1485                 ret = add_swap_extent(sis, page_no, 1, first_block);
1486                 if (ret < 0)
1487                         goto out;
1488                 nr_extents += ret;
1489                 page_no++;
1490                 probe_block += blocks_per_page;
1491 reprobe:
1492                 continue;
1493         }
1494         ret = nr_extents;
1495         *span = 1 + highest_block - lowest_block;
1496         if (page_no == 0)
1497                 page_no = 1;    /* force Empty message */
1498         sis->max = page_no;
1499         sis->pages = page_no - 1;
1500         sis->highest_bit = page_no - 1;
1501 done:
1502         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1503                                         struct swap_extent, list);
1504         goto out;
1505 bad_bmap:
1506         printk(KERN_ERR "swapon: swapfile has holes\n");
1507         ret = -EINVAL;
1508 out:
1509         return ret;
1510 }
1511
1512 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1513 {
1514         struct swap_info_struct * p = NULL;
1515         unsigned short *swap_map;
1516         struct file *swap_file, *victim;
1517         struct address_space *mapping;
1518         struct inode *inode;
1519         char * pathname;
1520         int i, type, prev;
1521         int err;
1522
1523         if (!capable(CAP_SYS_ADMIN))
1524                 return -EPERM;
1525
1526         pathname = getname(specialfile);
1527         err = PTR_ERR(pathname);
1528         if (IS_ERR(pathname))
1529                 goto out;
1530
1531         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1532         putname(pathname);
1533         err = PTR_ERR(victim);
1534         if (IS_ERR(victim))
1535                 goto out;
1536
1537         mapping = victim->f_mapping;
1538         prev = -1;
1539         spin_lock(&swap_lock);
1540         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1541                 p = swap_info + type;
1542                 if (p->flags & SWP_WRITEOK) {
1543                         if (p->swap_file->f_mapping == mapping)
1544                                 break;
1545                 }
1546                 prev = type;
1547         }
1548         if (type < 0) {
1549                 err = -EINVAL;
1550                 spin_unlock(&swap_lock);
1551                 goto out_dput;
1552         }
1553         if (!security_vm_enough_memory(p->pages))
1554                 vm_unacct_memory(p->pages);
1555         else {
1556                 err = -ENOMEM;
1557                 spin_unlock(&swap_lock);
1558                 goto out_dput;
1559         }
1560         if (prev < 0) {
1561                 swap_list.head = p->next;
1562         } else {
1563                 swap_info[prev].next = p->next;
1564         }
1565         if (type == swap_list.next) {
1566                 /* just pick something that's safe... */
1567                 swap_list.next = swap_list.head;
1568         }
1569         if (p->prio < 0) {
1570                 for (i = p->next; i >= 0; i = swap_info[i].next)
1571                         swap_info[i].prio = p->prio--;
1572                 least_priority++;
1573         }
1574         nr_swap_pages -= p->pages;
1575         total_swap_pages -= p->pages;
1576         p->flags &= ~SWP_WRITEOK;
1577         spin_unlock(&swap_lock);
1578
1579         current->flags |= PF_OOM_ORIGIN;
1580         err = try_to_unuse(type);
1581         current->flags &= ~PF_OOM_ORIGIN;
1582
1583         if (err) {
1584                 /* re-insert swap space back into swap_list */
1585                 spin_lock(&swap_lock);
1586                 if (p->prio < 0)
1587                         p->prio = --least_priority;
1588                 prev = -1;
1589                 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1590                         if (p->prio >= swap_info[i].prio)
1591                                 break;
1592                         prev = i;
1593                 }
1594                 p->next = i;
1595                 if (prev < 0)
1596                         swap_list.head = swap_list.next = p - swap_info;
1597                 else
1598                         swap_info[prev].next = p - swap_info;
1599                 nr_swap_pages += p->pages;
1600                 total_swap_pages += p->pages;
1601                 p->flags |= SWP_WRITEOK;
1602                 spin_unlock(&swap_lock);
1603                 goto out_dput;
1604         }
1605
1606         /* wait for any unplug function to finish */
1607         down_write(&swap_unplug_sem);
1608         up_write(&swap_unplug_sem);
1609
1610         destroy_swap_extents(p);
1611         mutex_lock(&swapon_mutex);
1612         spin_lock(&swap_lock);
1613         drain_mmlist();
1614
1615         /* wait for anyone still in scan_swap_map */
1616         p->highest_bit = 0;             /* cuts scans short */
1617         while (p->flags >= SWP_SCANNING) {
1618                 spin_unlock(&swap_lock);
1619                 schedule_timeout_uninterruptible(1);
1620                 spin_lock(&swap_lock);
1621         }
1622
1623         swap_file = p->swap_file;
1624         p->swap_file = NULL;
1625         p->max = 0;
1626         swap_map = p->swap_map;
1627         p->swap_map = NULL;
1628         p->flags = 0;
1629         spin_unlock(&swap_lock);
1630         mutex_unlock(&swapon_mutex);
1631         vfree(swap_map);
1632         /* Destroy swap account informatin */
1633         swap_cgroup_swapoff(type);
1634
1635         inode = mapping->host;
1636         if (S_ISBLK(inode->i_mode)) {
1637                 struct block_device *bdev = I_BDEV(inode);
1638                 set_blocksize(bdev, p->old_block_size);
1639                 bd_release(bdev);
1640         } else {
1641                 mutex_lock(&inode->i_mutex);
1642                 inode->i_flags &= ~S_SWAPFILE;
1643                 mutex_unlock(&inode->i_mutex);
1644         }
1645         filp_close(swap_file, NULL);
1646         err = 0;
1647
1648 out_dput:
1649         filp_close(victim, NULL);
1650 out:
1651         return err;
1652 }
1653
1654 #ifdef CONFIG_PROC_FS
1655 /* iterator */
1656 static void *swap_start(struct seq_file *swap, loff_t *pos)
1657 {
1658         struct swap_info_struct *ptr = swap_info;
1659         int i;
1660         loff_t l = *pos;
1661
1662         mutex_lock(&swapon_mutex);
1663
1664         if (!l)
1665                 return SEQ_START_TOKEN;
1666
1667         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1668                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1669                         continue;
1670                 if (!--l)
1671                         return ptr;
1672         }
1673
1674         return NULL;
1675 }
1676
1677 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1678 {
1679         struct swap_info_struct *ptr;
1680         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1681
1682         if (v == SEQ_START_TOKEN)
1683                 ptr = swap_info;
1684         else {
1685                 ptr = v;
1686                 ptr++;
1687         }
1688
1689         for (; ptr < endptr; ptr++) {
1690                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1691                         continue;
1692                 ++*pos;
1693                 return ptr;
1694         }
1695
1696         return NULL;
1697 }
1698
1699 static void swap_stop(struct seq_file *swap, void *v)
1700 {
1701         mutex_unlock(&swapon_mutex);
1702 }
1703
1704 static int swap_show(struct seq_file *swap, void *v)
1705 {
1706         struct swap_info_struct *ptr = v;
1707         struct file *file;
1708         int len;
1709
1710         if (ptr == SEQ_START_TOKEN) {
1711                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1712                 return 0;
1713         }
1714
1715         file = ptr->swap_file;
1716         len = seq_path(swap, &file->f_path, " \t\n\\");
1717         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1718                         len < 40 ? 40 - len : 1, " ",
1719                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1720                                 "partition" : "file\t",
1721                         ptr->pages << (PAGE_SHIFT - 10),
1722                         ptr->inuse_pages << (PAGE_SHIFT - 10),
1723                         ptr->prio);
1724         return 0;
1725 }
1726
1727 static const struct seq_operations swaps_op = {
1728         .start =        swap_start,
1729         .next =         swap_next,
1730         .stop =         swap_stop,
1731         .show =         swap_show
1732 };
1733
1734 static int swaps_open(struct inode *inode, struct file *file)
1735 {
1736         return seq_open(file, &swaps_op);
1737 }
1738
1739 static const struct file_operations proc_swaps_operations = {
1740         .open           = swaps_open,
1741         .read           = seq_read,
1742         .llseek         = seq_lseek,
1743         .release        = seq_release,
1744 };
1745
1746 static int __init procswaps_init(void)
1747 {
1748         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1749         return 0;
1750 }
1751 __initcall(procswaps_init);
1752 #endif /* CONFIG_PROC_FS */
1753
1754 #ifdef MAX_SWAPFILES_CHECK
1755 static int __init max_swapfiles_check(void)
1756 {
1757         MAX_SWAPFILES_CHECK();
1758         return 0;
1759 }
1760 late_initcall(max_swapfiles_check);
1761 #endif
1762
1763 /*
1764  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1765  *
1766  * The swapon system call
1767  */
1768 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1769 {
1770         struct swap_info_struct * p;
1771         char *name = NULL;
1772         struct block_device *bdev = NULL;
1773         struct file *swap_file = NULL;
1774         struct address_space *mapping;
1775         unsigned int type;
1776         int i, prev;
1777         int error;
1778         union swap_header *swap_header = NULL;
1779         unsigned int nr_good_pages = 0;
1780         int nr_extents = 0;
1781         sector_t span;
1782         unsigned long maxpages = 1;
1783         unsigned long swapfilepages;
1784         unsigned short *swap_map = NULL;
1785         struct page *page = NULL;
1786         struct inode *inode = NULL;
1787         int did_down = 0;
1788
1789         if (!capable(CAP_SYS_ADMIN))
1790                 return -EPERM;
1791         spin_lock(&swap_lock);
1792         p = swap_info;
1793         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1794                 if (!(p->flags & SWP_USED))
1795                         break;
1796         error = -EPERM;
1797         if (type >= MAX_SWAPFILES) {
1798                 spin_unlock(&swap_lock);
1799                 goto out;
1800         }
1801         if (type >= nr_swapfiles)
1802                 nr_swapfiles = type+1;
1803         memset(p, 0, sizeof(*p));
1804         INIT_LIST_HEAD(&p->extent_list);
1805         p->flags = SWP_USED;
1806         p->next = -1;
1807         spin_unlock(&swap_lock);
1808         name = getname(specialfile);
1809         error = PTR_ERR(name);
1810         if (IS_ERR(name)) {
1811                 name = NULL;
1812                 goto bad_swap_2;
1813         }
1814         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1815         error = PTR_ERR(swap_file);
1816         if (IS_ERR(swap_file)) {
1817                 swap_file = NULL;
1818                 goto bad_swap_2;
1819         }
1820
1821         p->swap_file = swap_file;
1822         mapping = swap_file->f_mapping;
1823         inode = mapping->host;
1824
1825         error = -EBUSY;
1826         for (i = 0; i < nr_swapfiles; i++) {
1827                 struct swap_info_struct *q = &swap_info[i];
1828
1829                 if (i == type || !q->swap_file)
1830                         continue;
1831                 if (mapping == q->swap_file->f_mapping)
1832                         goto bad_swap;
1833         }
1834
1835         error = -EINVAL;
1836         if (S_ISBLK(inode->i_mode)) {
1837                 bdev = I_BDEV(inode);
1838                 error = bd_claim(bdev, sys_swapon);
1839                 if (error < 0) {
1840                         bdev = NULL;
1841                         error = -EINVAL;
1842                         goto bad_swap;
1843                 }
1844                 p->old_block_size = block_size(bdev);
1845                 error = set_blocksize(bdev, PAGE_SIZE);
1846                 if (error < 0)
1847                         goto bad_swap;
1848                 p->bdev = bdev;
1849         } else if (S_ISREG(inode->i_mode)) {
1850                 p->bdev = inode->i_sb->s_bdev;
1851                 mutex_lock(&inode->i_mutex);
1852                 did_down = 1;
1853                 if (IS_SWAPFILE(inode)) {
1854                         error = -EBUSY;
1855                         goto bad_swap;
1856                 }
1857         } else {
1858                 goto bad_swap;
1859         }
1860
1861         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1862
1863         /*
1864          * Read the swap header.
1865          */
1866         if (!mapping->a_ops->readpage) {
1867                 error = -EINVAL;
1868                 goto bad_swap;
1869         }
1870         page = read_mapping_page(mapping, 0, swap_file);
1871         if (IS_ERR(page)) {
1872                 error = PTR_ERR(page);
1873                 goto bad_swap;
1874         }
1875         swap_header = kmap(page);
1876
1877         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1878                 printk(KERN_ERR "Unable to find swap-space signature\n");
1879                 error = -EINVAL;
1880                 goto bad_swap;
1881         }
1882
1883         /* swap partition endianess hack... */
1884         if (swab32(swap_header->info.version) == 1) {
1885                 swab32s(&swap_header->info.version);
1886                 swab32s(&swap_header->info.last_page);
1887                 swab32s(&swap_header->info.nr_badpages);
1888                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1889                         swab32s(&swap_header->info.badpages[i]);
1890         }
1891         /* Check the swap header's sub-version */
1892         if (swap_header->info.version != 1) {
1893                 printk(KERN_WARNING
1894                        "Unable to handle swap header version %d\n",
1895                        swap_header->info.version);
1896                 error = -EINVAL;
1897                 goto bad_swap;
1898         }
1899
1900         p->lowest_bit  = 1;
1901         p->cluster_next = 1;
1902
1903         /*
1904          * Find out how many pages are allowed for a single swap
1905          * device. There are two limiting factors: 1) the number of
1906          * bits for the swap offset in the swp_entry_t type and
1907          * 2) the number of bits in the a swap pte as defined by
1908          * the different architectures. In order to find the
1909          * largest possible bit mask a swap entry with swap type 0
1910          * and swap offset ~0UL is created, encoded to a swap pte,
1911          * decoded to a swp_entry_t again and finally the swap
1912          * offset is extracted. This will mask all the bits from
1913          * the initial ~0UL mask that can't be encoded in either
1914          * the swp_entry_t or the architecture definition of a
1915          * swap pte.
1916          */
1917         maxpages = swp_offset(pte_to_swp_entry(
1918                         swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1919         if (maxpages > swap_header->info.last_page)
1920                 maxpages = swap_header->info.last_page;
1921         p->highest_bit = maxpages - 1;
1922
1923         error = -EINVAL;
1924         if (!maxpages)
1925                 goto bad_swap;
1926         if (swapfilepages && maxpages > swapfilepages) {
1927                 printk(KERN_WARNING
1928                        "Swap area shorter than signature indicates\n");
1929                 goto bad_swap;
1930         }
1931         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1932                 goto bad_swap;
1933         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1934                 goto bad_swap;
1935
1936         /* OK, set up the swap map and apply the bad block list */
1937         swap_map = vmalloc(maxpages * sizeof(short));
1938         if (!swap_map) {
1939                 error = -ENOMEM;
1940                 goto bad_swap;
1941         }
1942
1943         memset(swap_map, 0, maxpages * sizeof(short));
1944         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1945                 int page_nr = swap_header->info.badpages[i];
1946                 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1947                         error = -EINVAL;
1948                         goto bad_swap;
1949                 }
1950                 swap_map[page_nr] = SWAP_MAP_BAD;
1951         }
1952
1953         error = swap_cgroup_swapon(type, maxpages);
1954         if (error)
1955                 goto bad_swap;
1956
1957         nr_good_pages = swap_header->info.last_page -
1958                         swap_header->info.nr_badpages -
1959                         1 /* header page */;
1960
1961         if (nr_good_pages) {
1962                 swap_map[0] = SWAP_MAP_BAD;
1963                 p->max = maxpages;
1964                 p->pages = nr_good_pages;
1965                 nr_extents = setup_swap_extents(p, &span);
1966                 if (nr_extents < 0) {
1967                         error = nr_extents;
1968                         goto bad_swap;
1969                 }
1970                 nr_good_pages = p->pages;
1971         }
1972         if (!nr_good_pages) {
1973                 printk(KERN_WARNING "Empty swap-file\n");
1974                 error = -EINVAL;
1975                 goto bad_swap;
1976         }
1977
1978         if (p->bdev) {
1979                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1980                         p->flags |= SWP_SOLIDSTATE;
1981                         p->cluster_next = 1 + (random32() % p->highest_bit);
1982                 }
1983                 if (discard_swap(p) == 0)
1984                         p->flags |= SWP_DISCARDABLE;
1985         }
1986
1987         mutex_lock(&swapon_mutex);
1988         spin_lock(&swap_lock);
1989         if (swap_flags & SWAP_FLAG_PREFER)
1990                 p->prio =
1991                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1992         else
1993                 p->prio = --least_priority;
1994         p->swap_map = swap_map;
1995         p->flags |= SWP_WRITEOK;
1996         nr_swap_pages += nr_good_pages;
1997         total_swap_pages += nr_good_pages;
1998
1999         printk(KERN_INFO "Adding %uk swap on %s.  "
2000                         "Priority:%d extents:%d across:%lluk %s%s\n",
2001                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2002                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2003                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2004                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2005
2006         /* insert swap space into swap_list: */
2007         prev = -1;
2008         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
2009                 if (p->prio >= swap_info[i].prio) {
2010                         break;
2011                 }
2012                 prev = i;
2013         }
2014         p->next = i;
2015         if (prev < 0) {
2016                 swap_list.head = swap_list.next = p - swap_info;
2017         } else {
2018                 swap_info[prev].next = p - swap_info;
2019         }
2020         spin_unlock(&swap_lock);
2021         mutex_unlock(&swapon_mutex);
2022         error = 0;
2023         goto out;
2024 bad_swap:
2025         if (bdev) {
2026                 set_blocksize(bdev, p->old_block_size);
2027                 bd_release(bdev);
2028         }
2029         destroy_swap_extents(p);
2030         swap_cgroup_swapoff(type);
2031 bad_swap_2:
2032         spin_lock(&swap_lock);
2033         p->swap_file = NULL;
2034         p->flags = 0;
2035         spin_unlock(&swap_lock);
2036         vfree(swap_map);
2037         if (swap_file)
2038                 filp_close(swap_file, NULL);
2039 out:
2040         if (page && !IS_ERR(page)) {
2041                 kunmap(page);
2042                 page_cache_release(page);
2043         }
2044         if (name)
2045                 putname(name);
2046         if (did_down) {
2047                 if (!error)
2048                         inode->i_flags |= S_SWAPFILE;
2049                 mutex_unlock(&inode->i_mutex);
2050         }
2051         return error;
2052 }
2053
2054 void si_swapinfo(struct sysinfo *val)
2055 {
2056         unsigned int i;
2057         unsigned long nr_to_be_unused = 0;
2058
2059         spin_lock(&swap_lock);
2060         for (i = 0; i < nr_swapfiles; i++) {
2061                 if (!(swap_info[i].flags & SWP_USED) ||
2062                      (swap_info[i].flags & SWP_WRITEOK))
2063                         continue;
2064                 nr_to_be_unused += swap_info[i].inuse_pages;
2065         }
2066         val->freeswap = nr_swap_pages + nr_to_be_unused;
2067         val->totalswap = total_swap_pages + nr_to_be_unused;
2068         spin_unlock(&swap_lock);
2069 }
2070
2071 /*
2072  * Verify that a swap entry is valid and increment its swap map count.
2073  *
2074  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2075  * "permanent", but will be reclaimed by the next swapoff.
2076  * Returns error code in following case.
2077  * - success -> 0
2078  * - swp_entry is invalid -> EINVAL
2079  * - swp_entry is migration entry -> EINVAL
2080  * - swap-cache reference is requested but there is already one. -> EEXIST
2081  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2082  */
2083 static int __swap_duplicate(swp_entry_t entry, bool cache)
2084 {
2085         struct swap_info_struct * p;
2086         unsigned long offset, type;
2087         int result = -EINVAL;
2088         int count;
2089         bool has_cache;
2090
2091         if (non_swap_entry(entry))
2092                 return -EINVAL;
2093
2094         type = swp_type(entry);
2095         if (type >= nr_swapfiles)
2096                 goto bad_file;
2097         p = type + swap_info;
2098         offset = swp_offset(entry);
2099
2100         spin_lock(&swap_lock);
2101
2102         if (unlikely(offset >= p->max))
2103                 goto unlock_out;
2104
2105         count = swap_count(p->swap_map[offset]);
2106         has_cache = swap_has_cache(p->swap_map[offset]);
2107
2108         if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2109
2110                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2111                 if (!has_cache && count) {
2112                         p->swap_map[offset] = encode_swapmap(count, true);
2113                         result = 0;
2114                 } else if (has_cache) /* someone added cache */
2115                         result = -EEXIST;
2116                 else if (!count) /* no users */
2117                         result = -ENOENT;
2118
2119         } else if (count || has_cache) {
2120                 if (count < SWAP_MAP_MAX - 1) {
2121                         p->swap_map[offset] = encode_swapmap(count + 1,
2122                                                              has_cache);
2123                         result = 0;
2124                 } else if (count <= SWAP_MAP_MAX) {
2125                         if (swap_overflow++ < 5)
2126                                 printk(KERN_WARNING
2127                                        "swap_dup: swap entry overflow\n");
2128                         p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2129                                                               has_cache);
2130                         result = 0;
2131                 }
2132         } else
2133                 result = -ENOENT; /* unused swap entry */
2134 unlock_out:
2135         spin_unlock(&swap_lock);
2136 out:
2137         return result;
2138
2139 bad_file:
2140         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2141         goto out;
2142 }
2143 /*
2144  * increase reference count of swap entry by 1.
2145  */
2146 void swap_duplicate(swp_entry_t entry)
2147 {
2148         __swap_duplicate(entry, SWAP_MAP);
2149 }
2150
2151 /*
2152  * @entry: swap entry for which we allocate swap cache.
2153  *
2154  * Called when allocating swap cache for exising swap entry,
2155  * This can return error codes. Returns 0 at success.
2156  * -EBUSY means there is a swap cache.
2157  * Note: return code is different from swap_duplicate().
2158  */
2159 int swapcache_prepare(swp_entry_t entry)
2160 {
2161         return __swap_duplicate(entry, SWAP_CACHE);
2162 }
2163
2164
2165 struct swap_info_struct *
2166 get_swap_info_struct(unsigned type)
2167 {
2168         return &swap_info[type];
2169 }
2170
2171 /*
2172  * swap_lock prevents swap_map being freed. Don't grab an extra
2173  * reference on the swaphandle, it doesn't matter if it becomes unused.
2174  */
2175 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2176 {
2177         struct swap_info_struct *si;
2178         int our_page_cluster = page_cluster;
2179         pgoff_t target, toff;
2180         pgoff_t base, end;
2181         int nr_pages = 0;
2182
2183         if (!our_page_cluster)  /* no readahead */
2184                 return 0;
2185
2186         si = &swap_info[swp_type(entry)];
2187         target = swp_offset(entry);
2188         base = (target >> our_page_cluster) << our_page_cluster;
2189         end = base + (1 << our_page_cluster);
2190         if (!base)              /* first page is swap header */
2191                 base++;
2192
2193         spin_lock(&swap_lock);
2194         if (end > si->max)      /* don't go beyond end of map */
2195                 end = si->max;
2196
2197         /* Count contiguous allocated slots above our target */
2198         for (toff = target; ++toff < end; nr_pages++) {
2199                 /* Don't read in free or bad pages */
2200                 if (!si->swap_map[toff])
2201                         break;
2202                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2203                         break;
2204         }
2205         /* Count contiguous allocated slots below our target */
2206         for (toff = target; --toff >= base; nr_pages++) {
2207                 /* Don't read in free or bad pages */
2208                 if (!si->swap_map[toff])
2209                         break;
2210                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2211                         break;
2212         }
2213         spin_unlock(&swap_lock);
2214
2215         /*
2216          * Indicate starting offset, and return number of pages to get:
2217          * if only 1, say 0, since there's then no readahead to be done.
2218          */
2219         *offset = ++toff;
2220         return nr_pages? ++nr_pages: 0;
2221 }