4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
67 /* This context's GFP mask */
70 /* Allocation order */
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
83 struct mem_cgroup *target_mem_cgroup;
85 /* Scan (total_size >> priority) pages at once */
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
100 /* Can cgroups be reclaimed below their normal consumption range? */
101 unsigned int may_thrash:1;
103 unsigned int hibernation_mode:1;
105 /* One of the zones is ready for compaction */
106 unsigned int compaction_ready:1;
108 /* Incremented by the number of inactive pages that were scanned */
109 unsigned long nr_scanned;
111 /* Number of pages freed so far during a call to shrink_zones() */
112 unsigned long nr_reclaimed;
115 #ifdef ARCH_HAS_PREFETCH
116 #define prefetch_prev_lru_page(_page, _base, _field) \
118 if ((_page)->lru.prev != _base) { \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetch(&prev->_field); \
126 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
129 #ifdef ARCH_HAS_PREFETCHW
130 #define prefetchw_prev_lru_page(_page, _base, _field) \
132 if ((_page)->lru.prev != _base) { \
135 prev = lru_to_page(&(_page->lru)); \
136 prefetchw(&prev->_field); \
140 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 * From 0 .. 100. Higher means more swappy.
146 int vm_swappiness = 60;
148 * The total number of pages which are beyond the high watermark within all
151 unsigned long vm_total_pages;
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
157 static bool global_reclaim(struct scan_control *sc)
159 return !sc->target_mem_cgroup;
163 * sane_reclaim - is the usual dirty throttling mechanism operational?
164 * @sc: scan_control in question
166 * The normal page dirty throttling mechanism in balance_dirty_pages() is
167 * completely broken with the legacy memcg and direct stalling in
168 * shrink_page_list() is used for throttling instead, which lacks all the
169 * niceties such as fairness, adaptive pausing, bandwidth proportional
170 * allocation and configurability.
172 * This function tests whether the vmscan currently in progress can assume
173 * that the normal dirty throttling mechanism is operational.
175 static bool sane_reclaim(struct scan_control *sc)
177 struct mem_cgroup *memcg = sc->target_mem_cgroup;
181 #ifdef CONFIG_CGROUP_WRITEBACK
182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 static bool global_reclaim(struct scan_control *sc)
193 static bool sane_reclaim(struct scan_control *sc)
200 * This misses isolated pages which are not accounted for to save counters.
201 * As the data only determines if reclaim or compaction continues, it is
202 * not expected that isolated pages will be a dominating factor.
204 unsigned long zone_reclaimable_pages(struct zone *zone)
208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 if (get_nr_swap_pages() > 0)
211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
217 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
225 if (get_nr_swap_pages() > 0)
226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
233 bool pgdat_reclaimable(struct pglist_data *pgdat)
235 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
236 pgdat_reclaimable_pages(pgdat) * 6;
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 unsigned long lru_size;
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
259 if (!managed_zone(zone))
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
275 * Add a shrinker callback to be called from the vm.
277 int register_shrinker(struct shrinker *shrinker)
279 size_t size = sizeof(*shrinker->nr_deferred);
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
293 EXPORT_SYMBOL(register_shrinker);
298 void unregister_shrinker(struct shrinker *shrinker)
300 down_write(&shrinker_rwsem);
301 list_del(&shrinker->list);
302 up_write(&shrinker_rwsem);
303 kfree(shrinker->nr_deferred);
305 EXPORT_SYMBOL(unregister_shrinker);
307 #define SHRINK_BATCH 128
309 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
310 struct shrinker *shrinker,
311 unsigned long nr_scanned,
312 unsigned long nr_eligible)
314 unsigned long freed = 0;
315 unsigned long long delta;
320 int nid = shrinkctl->nid;
321 long batch_size = shrinker->batch ? shrinker->batch
323 long scanned = 0, next_deferred;
325 freeable = shrinker->count_objects(shrinker, shrinkctl);
330 * copy the current shrinker scan count into a local variable
331 * and zero it so that other concurrent shrinker invocations
332 * don't also do this scanning work.
334 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
337 delta = (4 * nr_scanned) / shrinker->seeks;
339 do_div(delta, nr_eligible + 1);
341 if (total_scan < 0) {
342 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
343 shrinker->scan_objects, total_scan);
344 total_scan = freeable;
347 next_deferred = total_scan;
350 * We need to avoid excessive windup on filesystem shrinkers
351 * due to large numbers of GFP_NOFS allocations causing the
352 * shrinkers to return -1 all the time. This results in a large
353 * nr being built up so when a shrink that can do some work
354 * comes along it empties the entire cache due to nr >>>
355 * freeable. This is bad for sustaining a working set in
358 * Hence only allow the shrinker to scan the entire cache when
359 * a large delta change is calculated directly.
361 if (delta < freeable / 4)
362 total_scan = min(total_scan, freeable / 2);
365 * Avoid risking looping forever due to too large nr value:
366 * never try to free more than twice the estimate number of
369 if (total_scan > freeable * 2)
370 total_scan = freeable * 2;
372 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
373 nr_scanned, nr_eligible,
374 freeable, delta, total_scan);
377 * Normally, we should not scan less than batch_size objects in one
378 * pass to avoid too frequent shrinker calls, but if the slab has less
379 * than batch_size objects in total and we are really tight on memory,
380 * we will try to reclaim all available objects, otherwise we can end
381 * up failing allocations although there are plenty of reclaimable
382 * objects spread over several slabs with usage less than the
385 * We detect the "tight on memory" situations by looking at the total
386 * number of objects we want to scan (total_scan). If it is greater
387 * than the total number of objects on slab (freeable), we must be
388 * scanning at high prio and therefore should try to reclaim as much as
391 while (total_scan >= batch_size ||
392 total_scan >= freeable) {
394 unsigned long nr_to_scan = min(batch_size, total_scan);
396 shrinkctl->nr_to_scan = nr_to_scan;
397 ret = shrinker->scan_objects(shrinker, shrinkctl);
398 if (ret == SHRINK_STOP)
402 count_vm_events(SLABS_SCANNED, nr_to_scan);
403 total_scan -= nr_to_scan;
404 scanned += nr_to_scan;
409 if (next_deferred >= scanned)
410 next_deferred -= scanned;
414 * move the unused scan count back into the shrinker in a
415 * manner that handles concurrent updates. If we exhausted the
416 * scan, there is no need to do an update.
418 if (next_deferred > 0)
419 new_nr = atomic_long_add_return(next_deferred,
420 &shrinker->nr_deferred[nid]);
422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
429 * shrink_slab - shrink slab caches
430 * @gfp_mask: allocation context
431 * @nid: node whose slab caches to target
432 * @memcg: memory cgroup whose slab caches to target
433 * @nr_scanned: pressure numerator
434 * @nr_eligible: pressure denominator
436 * Call the shrink functions to age shrinkable caches.
438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439 * unaware shrinkers will receive a node id of 0 instead.
441 * @memcg specifies the memory cgroup to target. If it is not NULL,
442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443 * objects from the memory cgroup specified. Otherwise, only unaware
444 * shrinkers are called.
446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447 * the available objects should be scanned. Page reclaim for example
448 * passes the number of pages scanned and the number of pages on the
449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450 * when it encountered mapped pages. The ratio is further biased by
451 * the ->seeks setting of the shrink function, which indicates the
452 * cost to recreate an object relative to that of an LRU page.
454 * Returns the number of reclaimed slab objects.
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 struct mem_cgroup *memcg,
458 unsigned long nr_scanned,
459 unsigned long nr_eligible)
461 struct shrinker *shrinker;
462 unsigned long freed = 0;
464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
468 nr_scanned = SWAP_CLUSTER_MAX;
470 if (!down_read_trylock(&shrinker_rwsem)) {
472 * If we would return 0, our callers would understand that we
473 * have nothing else to shrink and give up trying. By returning
474 * 1 we keep it going and assume we'll be able to shrink next
481 list_for_each_entry(shrinker, &shrinker_list, list) {
482 struct shrink_control sc = {
483 .gfp_mask = gfp_mask,
489 * If kernel memory accounting is disabled, we ignore
490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 * passing NULL for memcg.
493 if (memcg_kmem_enabled() &&
494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
503 up_read(&shrinker_rwsem);
509 void drop_slab_node(int nid)
514 struct mem_cgroup *memcg = NULL;
518 freed += shrink_slab(GFP_KERNEL, nid, memcg,
520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 } while (freed > 10);
528 for_each_online_node(nid)
532 static inline int is_page_cache_freeable(struct page *page)
535 * A freeable page cache page is referenced only by the caller
536 * that isolated the page, the page cache radix tree and
537 * optional buffer heads at page->private.
539 return page_count(page) - page_has_private(page) == 2;
542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
544 if (current->flags & PF_SWAPWRITE)
546 if (!inode_write_congested(inode))
548 if (inode_to_bdi(inode) == current->backing_dev_info)
554 * We detected a synchronous write error writing a page out. Probably
555 * -ENOSPC. We need to propagate that into the address_space for a subsequent
556 * fsync(), msync() or close().
558 * The tricky part is that after writepage we cannot touch the mapping: nothing
559 * prevents it from being freed up. But we have a ref on the page and once
560 * that page is locked, the mapping is pinned.
562 * We're allowed to run sleeping lock_page() here because we know the caller has
565 static void handle_write_error(struct address_space *mapping,
566 struct page *page, int error)
569 if (page_mapping(page) == mapping)
570 mapping_set_error(mapping, error);
574 /* possible outcome of pageout() */
576 /* failed to write page out, page is locked */
578 /* move page to the active list, page is locked */
580 /* page has been sent to the disk successfully, page is unlocked */
582 /* page is clean and locked */
587 * pageout is called by shrink_page_list() for each dirty page.
588 * Calls ->writepage().
590 static pageout_t pageout(struct page *page, struct address_space *mapping,
591 struct scan_control *sc)
594 * If the page is dirty, only perform writeback if that write
595 * will be non-blocking. To prevent this allocation from being
596 * stalled by pagecache activity. But note that there may be
597 * stalls if we need to run get_block(). We could test
598 * PagePrivate for that.
600 * If this process is currently in __generic_file_write_iter() against
601 * this page's queue, we can perform writeback even if that
604 * If the page is swapcache, write it back even if that would
605 * block, for some throttling. This happens by accident, because
606 * swap_backing_dev_info is bust: it doesn't reflect the
607 * congestion state of the swapdevs. Easy to fix, if needed.
609 if (!is_page_cache_freeable(page))
613 * Some data journaling orphaned pages can have
614 * page->mapping == NULL while being dirty with clean buffers.
616 if (page_has_private(page)) {
617 if (try_to_free_buffers(page)) {
618 ClearPageDirty(page);
619 pr_info("%s: orphaned page\n", __func__);
625 if (mapping->a_ops->writepage == NULL)
626 return PAGE_ACTIVATE;
627 if (!may_write_to_inode(mapping->host, sc))
630 if (clear_page_dirty_for_io(page)) {
632 struct writeback_control wbc = {
633 .sync_mode = WB_SYNC_NONE,
634 .nr_to_write = SWAP_CLUSTER_MAX,
636 .range_end = LLONG_MAX,
640 SetPageReclaim(page);
641 res = mapping->a_ops->writepage(page, &wbc);
643 handle_write_error(mapping, page, res);
644 if (res == AOP_WRITEPAGE_ACTIVATE) {
645 ClearPageReclaim(page);
646 return PAGE_ACTIVATE;
649 if (!PageWriteback(page)) {
650 /* synchronous write or broken a_ops? */
651 ClearPageReclaim(page);
653 trace_mm_vmscan_writepage(page);
654 inc_node_page_state(page, NR_VMSCAN_WRITE);
662 * Same as remove_mapping, but if the page is removed from the mapping, it
663 * gets returned with a refcount of 0.
665 static int __remove_mapping(struct address_space *mapping, struct page *page,
670 BUG_ON(!PageLocked(page));
671 BUG_ON(mapping != page_mapping(page));
673 spin_lock_irqsave(&mapping->tree_lock, flags);
675 * The non racy check for a busy page.
677 * Must be careful with the order of the tests. When someone has
678 * a ref to the page, it may be possible that they dirty it then
679 * drop the reference. So if PageDirty is tested before page_count
680 * here, then the following race may occur:
682 * get_user_pages(&page);
683 * [user mapping goes away]
685 * !PageDirty(page) [good]
686 * SetPageDirty(page);
688 * !page_count(page) [good, discard it]
690 * [oops, our write_to data is lost]
692 * Reversing the order of the tests ensures such a situation cannot
693 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
694 * load is not satisfied before that of page->_refcount.
696 * Note that if SetPageDirty is always performed via set_page_dirty,
697 * and thus under tree_lock, then this ordering is not required.
699 if (!page_ref_freeze(page, 2))
701 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
702 if (unlikely(PageDirty(page))) {
703 page_ref_unfreeze(page, 2);
707 if (PageSwapCache(page)) {
708 swp_entry_t swap = { .val = page_private(page) };
709 mem_cgroup_swapout(page, swap);
710 __delete_from_swap_cache(page);
711 spin_unlock_irqrestore(&mapping->tree_lock, flags);
712 swapcache_free(swap);
714 void (*freepage)(struct page *);
717 freepage = mapping->a_ops->freepage;
719 * Remember a shadow entry for reclaimed file cache in
720 * order to detect refaults, thus thrashing, later on.
722 * But don't store shadows in an address space that is
723 * already exiting. This is not just an optizimation,
724 * inode reclaim needs to empty out the radix tree or
725 * the nodes are lost. Don't plant shadows behind its
728 * We also don't store shadows for DAX mappings because the
729 * only page cache pages found in these are zero pages
730 * covering holes, and because we don't want to mix DAX
731 * exceptional entries and shadow exceptional entries in the
734 if (reclaimed && page_is_file_cache(page) &&
735 !mapping_exiting(mapping) && !dax_mapping(mapping))
736 shadow = workingset_eviction(mapping, page);
737 __delete_from_page_cache(page, shadow);
738 spin_unlock_irqrestore(&mapping->tree_lock, flags);
740 if (freepage != NULL)
747 spin_unlock_irqrestore(&mapping->tree_lock, flags);
752 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
753 * someone else has a ref on the page, abort and return 0. If it was
754 * successfully detached, return 1. Assumes the caller has a single ref on
757 int remove_mapping(struct address_space *mapping, struct page *page)
759 if (__remove_mapping(mapping, page, false)) {
761 * Unfreezing the refcount with 1 rather than 2 effectively
762 * drops the pagecache ref for us without requiring another
765 page_ref_unfreeze(page, 1);
772 * putback_lru_page - put previously isolated page onto appropriate LRU list
773 * @page: page to be put back to appropriate lru list
775 * Add previously isolated @page to appropriate LRU list.
776 * Page may still be unevictable for other reasons.
778 * lru_lock must not be held, interrupts must be enabled.
780 void putback_lru_page(struct page *page)
783 int was_unevictable = PageUnevictable(page);
785 VM_BUG_ON_PAGE(PageLRU(page), page);
788 ClearPageUnevictable(page);
790 if (page_evictable(page)) {
792 * For evictable pages, we can use the cache.
793 * In event of a race, worst case is we end up with an
794 * unevictable page on [in]active list.
795 * We know how to handle that.
797 is_unevictable = false;
801 * Put unevictable pages directly on zone's unevictable
804 is_unevictable = true;
805 add_page_to_unevictable_list(page);
807 * When racing with an mlock or AS_UNEVICTABLE clearing
808 * (page is unlocked) make sure that if the other thread
809 * does not observe our setting of PG_lru and fails
810 * isolation/check_move_unevictable_pages,
811 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
812 * the page back to the evictable list.
814 * The other side is TestClearPageMlocked() or shmem_lock().
820 * page's status can change while we move it among lru. If an evictable
821 * page is on unevictable list, it never be freed. To avoid that,
822 * check after we added it to the list, again.
824 if (is_unevictable && page_evictable(page)) {
825 if (!isolate_lru_page(page)) {
829 /* This means someone else dropped this page from LRU
830 * So, it will be freed or putback to LRU again. There is
831 * nothing to do here.
835 if (was_unevictable && !is_unevictable)
836 count_vm_event(UNEVICTABLE_PGRESCUED);
837 else if (!was_unevictable && is_unevictable)
838 count_vm_event(UNEVICTABLE_PGCULLED);
840 put_page(page); /* drop ref from isolate */
843 enum page_references {
845 PAGEREF_RECLAIM_CLEAN,
850 static enum page_references page_check_references(struct page *page,
851 struct scan_control *sc)
853 int referenced_ptes, referenced_page;
854 unsigned long vm_flags;
856 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
858 referenced_page = TestClearPageReferenced(page);
861 * Mlock lost the isolation race with us. Let try_to_unmap()
862 * move the page to the unevictable list.
864 if (vm_flags & VM_LOCKED)
865 return PAGEREF_RECLAIM;
867 if (referenced_ptes) {
868 if (PageSwapBacked(page))
869 return PAGEREF_ACTIVATE;
871 * All mapped pages start out with page table
872 * references from the instantiating fault, so we need
873 * to look twice if a mapped file page is used more
876 * Mark it and spare it for another trip around the
877 * inactive list. Another page table reference will
878 * lead to its activation.
880 * Note: the mark is set for activated pages as well
881 * so that recently deactivated but used pages are
884 SetPageReferenced(page);
886 if (referenced_page || referenced_ptes > 1)
887 return PAGEREF_ACTIVATE;
890 * Activate file-backed executable pages after first usage.
892 if (vm_flags & VM_EXEC)
893 return PAGEREF_ACTIVATE;
898 /* Reclaim if clean, defer dirty pages to writeback */
899 if (referenced_page && !PageSwapBacked(page))
900 return PAGEREF_RECLAIM_CLEAN;
902 return PAGEREF_RECLAIM;
905 /* Check if a page is dirty or under writeback */
906 static void page_check_dirty_writeback(struct page *page,
907 bool *dirty, bool *writeback)
909 struct address_space *mapping;
912 * Anonymous pages are not handled by flushers and must be written
913 * from reclaim context. Do not stall reclaim based on them
915 if (!page_is_file_cache(page)) {
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
934 struct reclaim_stat {
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
946 * shrink_page_list() returns the number of reclaimed pages
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 struct pglist_data *pgdat,
950 struct scan_control *sc,
951 enum ttu_flags ttu_flags,
952 struct reclaim_stat *stat,
955 LIST_HEAD(ret_pages);
956 LIST_HEAD(free_pages);
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 bool dirty, writeback;
975 bool lazyfree = false;
976 int ret = SWAP_SUCCESS;
980 page = lru_to_page(page_list);
981 list_del(&page->lru);
983 if (!trylock_page(page))
986 VM_BUG_ON_PAGE(PageActive(page), page);
990 if (unlikely(!page_evictable(page)))
993 if (!sc->may_unmap && page_mapped(page))
996 /* Double the slab pressure for mapped and swapcache pages */
997 if (page_mapped(page) || PageSwapCache(page))
1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1004 * The number of dirty pages determines if a zone is marked
1005 * reclaim_congested which affects wait_iff_congested. kswapd
1006 * will stall and start writing pages if the tail of the LRU
1007 * is all dirty unqueued pages.
1009 page_check_dirty_writeback(page, &dirty, &writeback);
1010 if (dirty || writeback)
1013 if (dirty && !writeback)
1014 nr_unqueued_dirty++;
1017 * Treat this page as congested if the underlying BDI is or if
1018 * pages are cycling through the LRU so quickly that the
1019 * pages marked for immediate reclaim are making it to the
1020 * end of the LRU a second time.
1022 mapping = page_mapping(page);
1023 if (((dirty || writeback) && mapping &&
1024 inode_write_congested(mapping->host)) ||
1025 (writeback && PageReclaim(page)))
1029 * If a page at the tail of the LRU is under writeback, there
1030 * are three cases to consider.
1032 * 1) If reclaim is encountering an excessive number of pages
1033 * under writeback and this page is both under writeback and
1034 * PageReclaim then it indicates that pages are being queued
1035 * for IO but are being recycled through the LRU before the
1036 * IO can complete. Waiting on the page itself risks an
1037 * indefinite stall if it is impossible to writeback the
1038 * page due to IO error or disconnected storage so instead
1039 * note that the LRU is being scanned too quickly and the
1040 * caller can stall after page list has been processed.
1042 * 2) Global or new memcg reclaim encounters a page that is
1043 * not marked for immediate reclaim, or the caller does not
1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 * not to fs). In this case mark the page for immediate
1046 * reclaim and continue scanning.
1048 * Require may_enter_fs because we would wait on fs, which
1049 * may not have submitted IO yet. And the loop driver might
1050 * enter reclaim, and deadlock if it waits on a page for
1051 * which it is needed to do the write (loop masks off
1052 * __GFP_IO|__GFP_FS for this reason); but more thought
1053 * would probably show more reasons.
1055 * 3) Legacy memcg encounters a page that is already marked
1056 * PageReclaim. memcg does not have any dirty pages
1057 * throttling so we could easily OOM just because too many
1058 * pages are in writeback and there is nothing else to
1059 * reclaim. Wait for the writeback to complete.
1061 * In cases 1) and 2) we activate the pages to get them out of
1062 * the way while we continue scanning for clean pages on the
1063 * inactive list and refilling from the active list. The
1064 * observation here is that waiting for disk writes is more
1065 * expensive than potentially causing reloads down the line.
1066 * Since they're marked for immediate reclaim, they won't put
1067 * memory pressure on the cache working set any longer than it
1068 * takes to write them to disk.
1070 if (PageWriteback(page)) {
1072 if (current_is_kswapd() &&
1073 PageReclaim(page) &&
1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1076 goto activate_locked;
1079 } else if (sane_reclaim(sc) ||
1080 !PageReclaim(page) || !may_enter_fs) {
1082 * This is slightly racy - end_page_writeback()
1083 * might have just cleared PageReclaim, then
1084 * setting PageReclaim here end up interpreted
1085 * as PageReadahead - but that does not matter
1086 * enough to care. What we do want is for this
1087 * page to have PageReclaim set next time memcg
1088 * reclaim reaches the tests above, so it will
1089 * then wait_on_page_writeback() to avoid OOM;
1090 * and it's also appropriate in global reclaim.
1092 SetPageReclaim(page);
1094 goto activate_locked;
1099 wait_on_page_writeback(page);
1100 /* then go back and try same page again */
1101 list_add_tail(&page->lru, page_list);
1107 references = page_check_references(page, sc);
1109 switch (references) {
1110 case PAGEREF_ACTIVATE:
1111 goto activate_locked;
1115 case PAGEREF_RECLAIM:
1116 case PAGEREF_RECLAIM_CLEAN:
1117 ; /* try to reclaim the page below */
1121 * Anonymous process memory has backing store?
1122 * Try to allocate it some swap space here.
1124 if (PageAnon(page) && !PageSwapCache(page)) {
1125 if (!(sc->gfp_mask & __GFP_IO))
1127 if (!add_to_swap(page, page_list))
1128 goto activate_locked;
1132 /* Adding to swap updated mapping */
1133 mapping = page_mapping(page);
1134 } else if (unlikely(PageTransHuge(page))) {
1135 /* Split file THP */
1136 if (split_huge_page_to_list(page, page_list))
1140 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1143 * The page is mapped into the page tables of one or more
1144 * processes. Try to unmap it here.
1146 if (page_mapped(page) && mapping) {
1147 switch (ret = try_to_unmap(page, lazyfree ?
1148 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1149 (ttu_flags | TTU_BATCH_FLUSH))) {
1152 goto activate_locked;
1160 ; /* try to free the page below */
1164 if (PageDirty(page)) {
1166 * Only kswapd can writeback filesystem pages
1167 * to avoid risk of stack overflow. But avoid
1168 * injecting inefficient single-page IO into
1169 * flusher writeback as much as possible: only
1170 * write pages when we've encountered many
1171 * dirty pages, and when we've already scanned
1172 * the rest of the LRU for clean pages and see
1173 * the same dirty pages again (PageReclaim).
1175 if (page_is_file_cache(page) &&
1176 (!current_is_kswapd() || !PageReclaim(page) ||
1177 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1179 * Immediately reclaim when written back.
1180 * Similar in principal to deactivate_page()
1181 * except we already have the page isolated
1182 * and know it's dirty
1184 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1185 SetPageReclaim(page);
1187 goto activate_locked;
1190 if (references == PAGEREF_RECLAIM_CLEAN)
1194 if (!sc->may_writepage)
1198 * Page is dirty. Flush the TLB if a writable entry
1199 * potentially exists to avoid CPU writes after IO
1200 * starts and then write it out here.
1202 try_to_unmap_flush_dirty();
1203 switch (pageout(page, mapping, sc)) {
1207 goto activate_locked;
1209 if (PageWriteback(page))
1211 if (PageDirty(page))
1215 * A synchronous write - probably a ramdisk. Go
1216 * ahead and try to reclaim the page.
1218 if (!trylock_page(page))
1220 if (PageDirty(page) || PageWriteback(page))
1222 mapping = page_mapping(page);
1224 ; /* try to free the page below */
1229 * If the page has buffers, try to free the buffer mappings
1230 * associated with this page. If we succeed we try to free
1233 * We do this even if the page is PageDirty().
1234 * try_to_release_page() does not perform I/O, but it is
1235 * possible for a page to have PageDirty set, but it is actually
1236 * clean (all its buffers are clean). This happens if the
1237 * buffers were written out directly, with submit_bh(). ext3
1238 * will do this, as well as the blockdev mapping.
1239 * try_to_release_page() will discover that cleanness and will
1240 * drop the buffers and mark the page clean - it can be freed.
1242 * Rarely, pages can have buffers and no ->mapping. These are
1243 * the pages which were not successfully invalidated in
1244 * truncate_complete_page(). We try to drop those buffers here
1245 * and if that worked, and the page is no longer mapped into
1246 * process address space (page_count == 1) it can be freed.
1247 * Otherwise, leave the page on the LRU so it is swappable.
1249 if (page_has_private(page)) {
1250 if (!try_to_release_page(page, sc->gfp_mask))
1251 goto activate_locked;
1252 if (!mapping && page_count(page) == 1) {
1254 if (put_page_testzero(page))
1258 * rare race with speculative reference.
1259 * the speculative reference will free
1260 * this page shortly, so we may
1261 * increment nr_reclaimed here (and
1262 * leave it off the LRU).
1271 if (!mapping || !__remove_mapping(mapping, page, true))
1275 * At this point, we have no other references and there is
1276 * no way to pick any more up (removed from LRU, removed
1277 * from pagecache). Can use non-atomic bitops now (and
1278 * we obviously don't have to worry about waking up a process
1279 * waiting on the page lock, because there are no references.
1281 __ClearPageLocked(page);
1283 if (ret == SWAP_LZFREE)
1284 count_vm_event(PGLAZYFREED);
1289 * Is there need to periodically free_page_list? It would
1290 * appear not as the counts should be low
1292 list_add(&page->lru, &free_pages);
1296 if (PageSwapCache(page))
1297 try_to_free_swap(page);
1299 list_add(&page->lru, &ret_pages);
1303 /* Not a candidate for swapping, so reclaim swap space. */
1304 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1305 try_to_free_swap(page);
1306 VM_BUG_ON_PAGE(PageActive(page), page);
1307 SetPageActive(page);
1312 list_add(&page->lru, &ret_pages);
1313 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1316 mem_cgroup_uncharge_list(&free_pages);
1317 try_to_unmap_flush();
1318 free_hot_cold_page_list(&free_pages, true);
1320 list_splice(&ret_pages, page_list);
1321 count_vm_events(PGACTIVATE, pgactivate);
1324 stat->nr_dirty = nr_dirty;
1325 stat->nr_congested = nr_congested;
1326 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1327 stat->nr_writeback = nr_writeback;
1328 stat->nr_immediate = nr_immediate;
1329 stat->nr_activate = pgactivate;
1330 stat->nr_ref_keep = nr_ref_keep;
1331 stat->nr_unmap_fail = nr_unmap_fail;
1333 return nr_reclaimed;
1336 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1337 struct list_head *page_list)
1339 struct scan_control sc = {
1340 .gfp_mask = GFP_KERNEL,
1341 .priority = DEF_PRIORITY,
1345 struct page *page, *next;
1346 LIST_HEAD(clean_pages);
1348 list_for_each_entry_safe(page, next, page_list, lru) {
1349 if (page_is_file_cache(page) && !PageDirty(page) &&
1350 !__PageMovable(page)) {
1351 ClearPageActive(page);
1352 list_move(&page->lru, &clean_pages);
1356 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1357 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1358 list_splice(&clean_pages, page_list);
1359 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364 * Attempt to remove the specified page from its LRU. Only take this page
1365 * if it is of the appropriate PageActive status. Pages which are being
1366 * freed elsewhere are also ignored.
1368 * page: page to consider
1369 * mode: one of the LRU isolation modes defined above
1371 * returns 0 on success, -ve errno on failure.
1373 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1377 /* Only take pages on the LRU. */
1381 /* Compaction should not handle unevictable pages but CMA can do so */
1382 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1388 * To minimise LRU disruption, the caller can indicate that it only
1389 * wants to isolate pages it will be able to operate on without
1390 * blocking - clean pages for the most part.
1392 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1393 * that it is possible to migrate without blocking
1395 if (mode & ISOLATE_ASYNC_MIGRATE) {
1396 /* All the caller can do on PageWriteback is block */
1397 if (PageWriteback(page))
1400 if (PageDirty(page)) {
1401 struct address_space *mapping;
1404 * Only pages without mappings or that have a
1405 * ->migratepage callback are possible to migrate
1408 mapping = page_mapping(page);
1409 if (mapping && !mapping->a_ops->migratepage)
1414 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1417 if (likely(get_page_unless_zero(page))) {
1419 * Be careful not to clear PageLRU until after we're
1420 * sure the page is not being freed elsewhere -- the
1421 * page release code relies on it.
1432 * Update LRU sizes after isolating pages. The LRU size updates must
1433 * be complete before mem_cgroup_update_lru_size due to a santity check.
1435 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1436 enum lru_list lru, unsigned long *nr_zone_taken)
1440 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1441 if (!nr_zone_taken[zid])
1444 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1446 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1453 * zone_lru_lock is heavily contended. Some of the functions that
1454 * shrink the lists perform better by taking out a batch of pages
1455 * and working on them outside the LRU lock.
1457 * For pagecache intensive workloads, this function is the hottest
1458 * spot in the kernel (apart from copy_*_user functions).
1460 * Appropriate locks must be held before calling this function.
1462 * @nr_to_scan: The number of pages to look through on the list.
1463 * @lruvec: The LRU vector to pull pages from.
1464 * @dst: The temp list to put pages on to.
1465 * @nr_scanned: The number of pages that were scanned.
1466 * @sc: The scan_control struct for this reclaim session
1467 * @mode: One of the LRU isolation modes
1468 * @lru: LRU list id for isolating
1470 * returns how many pages were moved onto *@dst.
1472 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1473 struct lruvec *lruvec, struct list_head *dst,
1474 unsigned long *nr_scanned, struct scan_control *sc,
1475 isolate_mode_t mode, enum lru_list lru)
1477 struct list_head *src = &lruvec->lists[lru];
1478 unsigned long nr_taken = 0;
1479 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1480 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1481 unsigned long skipped = 0, total_skipped = 0;
1482 unsigned long scan, nr_pages;
1483 LIST_HEAD(pages_skipped);
1485 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1486 !list_empty(src);) {
1489 page = lru_to_page(src);
1490 prefetchw_prev_lru_page(page, src, flags);
1492 VM_BUG_ON_PAGE(!PageLRU(page), page);
1494 if (page_zonenum(page) > sc->reclaim_idx) {
1495 list_move(&page->lru, &pages_skipped);
1496 nr_skipped[page_zonenum(page)]++;
1501 * Account for scanned and skipped separetly to avoid the pgdat
1502 * being prematurely marked unreclaimable by pgdat_reclaimable.
1506 switch (__isolate_lru_page(page, mode)) {
1508 nr_pages = hpage_nr_pages(page);
1509 nr_taken += nr_pages;
1510 nr_zone_taken[page_zonenum(page)] += nr_pages;
1511 list_move(&page->lru, dst);
1515 /* else it is being freed elsewhere */
1516 list_move(&page->lru, src);
1525 * Splice any skipped pages to the start of the LRU list. Note that
1526 * this disrupts the LRU order when reclaiming for lower zones but
1527 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1528 * scanning would soon rescan the same pages to skip and put the
1529 * system at risk of premature OOM.
1531 if (!list_empty(&pages_skipped)) {
1534 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1535 if (!nr_skipped[zid])
1538 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1539 skipped += nr_skipped[zid];
1543 * Account skipped pages as a partial scan as the pgdat may be
1544 * close to unreclaimable. If the LRU list is empty, account
1545 * skipped pages as a full scan.
1547 total_skipped = list_empty(src) ? skipped : skipped >> 2;
1549 list_splice(&pages_skipped, src);
1551 *nr_scanned = scan + total_skipped;
1552 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1553 scan, skipped, nr_taken, mode, lru);
1554 update_lru_sizes(lruvec, lru, nr_zone_taken);
1559 * isolate_lru_page - tries to isolate a page from its LRU list
1560 * @page: page to isolate from its LRU list
1562 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1563 * vmstat statistic corresponding to whatever LRU list the page was on.
1565 * Returns 0 if the page was removed from an LRU list.
1566 * Returns -EBUSY if the page was not on an LRU list.
1568 * The returned page will have PageLRU() cleared. If it was found on
1569 * the active list, it will have PageActive set. If it was found on
1570 * the unevictable list, it will have the PageUnevictable bit set. That flag
1571 * may need to be cleared by the caller before letting the page go.
1573 * The vmstat statistic corresponding to the list on which the page was
1574 * found will be decremented.
1577 * (1) Must be called with an elevated refcount on the page. This is a
1578 * fundamentnal difference from isolate_lru_pages (which is called
1579 * without a stable reference).
1580 * (2) the lru_lock must not be held.
1581 * (3) interrupts must be enabled.
1583 int isolate_lru_page(struct page *page)
1587 VM_BUG_ON_PAGE(!page_count(page), page);
1588 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1590 if (PageLRU(page)) {
1591 struct zone *zone = page_zone(page);
1592 struct lruvec *lruvec;
1594 spin_lock_irq(zone_lru_lock(zone));
1595 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1596 if (PageLRU(page)) {
1597 int lru = page_lru(page);
1600 del_page_from_lru_list(page, lruvec, lru);
1603 spin_unlock_irq(zone_lru_lock(zone));
1609 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1610 * then get resheduled. When there are massive number of tasks doing page
1611 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1612 * the LRU list will go small and be scanned faster than necessary, leading to
1613 * unnecessary swapping, thrashing and OOM.
1615 static int too_many_isolated(struct pglist_data *pgdat, int file,
1616 struct scan_control *sc)
1618 unsigned long inactive, isolated;
1620 if (current_is_kswapd())
1623 if (!sane_reclaim(sc))
1627 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1628 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1630 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1631 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1635 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1636 * won't get blocked by normal direct-reclaimers, forming a circular
1639 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1642 return isolated > inactive;
1645 static noinline_for_stack void
1646 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1648 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1649 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1650 LIST_HEAD(pages_to_free);
1653 * Put back any unfreeable pages.
1655 while (!list_empty(page_list)) {
1656 struct page *page = lru_to_page(page_list);
1659 VM_BUG_ON_PAGE(PageLRU(page), page);
1660 list_del(&page->lru);
1661 if (unlikely(!page_evictable(page))) {
1662 spin_unlock_irq(&pgdat->lru_lock);
1663 putback_lru_page(page);
1664 spin_lock_irq(&pgdat->lru_lock);
1668 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1671 lru = page_lru(page);
1672 add_page_to_lru_list(page, lruvec, lru);
1674 if (is_active_lru(lru)) {
1675 int file = is_file_lru(lru);
1676 int numpages = hpage_nr_pages(page);
1677 reclaim_stat->recent_rotated[file] += numpages;
1679 if (put_page_testzero(page)) {
1680 __ClearPageLRU(page);
1681 __ClearPageActive(page);
1682 del_page_from_lru_list(page, lruvec, lru);
1684 if (unlikely(PageCompound(page))) {
1685 spin_unlock_irq(&pgdat->lru_lock);
1686 mem_cgroup_uncharge(page);
1687 (*get_compound_page_dtor(page))(page);
1688 spin_lock_irq(&pgdat->lru_lock);
1690 list_add(&page->lru, &pages_to_free);
1695 * To save our caller's stack, now use input list for pages to free.
1697 list_splice(&pages_to_free, page_list);
1701 * If a kernel thread (such as nfsd for loop-back mounts) services
1702 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1703 * In that case we should only throttle if the backing device it is
1704 * writing to is congested. In other cases it is safe to throttle.
1706 static int current_may_throttle(void)
1708 return !(current->flags & PF_LESS_THROTTLE) ||
1709 current->backing_dev_info == NULL ||
1710 bdi_write_congested(current->backing_dev_info);
1714 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1715 * of reclaimed pages
1717 static noinline_for_stack unsigned long
1718 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719 struct scan_control *sc, enum lru_list lru)
1721 LIST_HEAD(page_list);
1722 unsigned long nr_scanned;
1723 unsigned long nr_reclaimed = 0;
1724 unsigned long nr_taken;
1725 struct reclaim_stat stat = {};
1726 isolate_mode_t isolate_mode = 0;
1727 int file = is_file_lru(lru);
1728 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1729 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1731 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1732 congestion_wait(BLK_RW_ASYNC, HZ/10);
1734 /* We are about to die and free our memory. Return now. */
1735 if (fatal_signal_pending(current))
1736 return SWAP_CLUSTER_MAX;
1742 isolate_mode |= ISOLATE_UNMAPPED;
1744 spin_lock_irq(&pgdat->lru_lock);
1746 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1747 &nr_scanned, sc, isolate_mode, lru);
1749 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1750 reclaim_stat->recent_scanned[file] += nr_taken;
1752 if (global_reclaim(sc)) {
1753 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1754 if (current_is_kswapd())
1755 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1757 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1759 spin_unlock_irq(&pgdat->lru_lock);
1764 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1767 spin_lock_irq(&pgdat->lru_lock);
1769 if (global_reclaim(sc)) {
1770 if (current_is_kswapd())
1771 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1773 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1776 putback_inactive_pages(lruvec, &page_list);
1778 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1780 spin_unlock_irq(&pgdat->lru_lock);
1782 mem_cgroup_uncharge_list(&page_list);
1783 free_hot_cold_page_list(&page_list, true);
1786 * If reclaim is isolating dirty pages under writeback, it implies
1787 * that the long-lived page allocation rate is exceeding the page
1788 * laundering rate. Either the global limits are not being effective
1789 * at throttling processes due to the page distribution throughout
1790 * zones or there is heavy usage of a slow backing device. The
1791 * only option is to throttle from reclaim context which is not ideal
1792 * as there is no guarantee the dirtying process is throttled in the
1793 * same way balance_dirty_pages() manages.
1795 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1796 * of pages under pages flagged for immediate reclaim and stall if any
1797 * are encountered in the nr_immediate check below.
1799 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1800 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1803 * Legacy memcg will stall in page writeback so avoid forcibly
1806 if (sane_reclaim(sc)) {
1808 * Tag a zone as congested if all the dirty pages scanned were
1809 * backed by a congested BDI and wait_iff_congested will stall.
1811 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1812 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1815 * If dirty pages are scanned that are not queued for IO, it
1816 * implies that flushers are not doing their job. This can
1817 * happen when memory pressure pushes dirty pages to the end of
1818 * the LRU before the dirty limits are breached and the dirty
1819 * data has expired. It can also happen when the proportion of
1820 * dirty pages grows not through writes but through memory
1821 * pressure reclaiming all the clean cache. And in some cases,
1822 * the flushers simply cannot keep up with the allocation
1823 * rate. Nudge the flusher threads in case they are asleep, but
1824 * also allow kswapd to start writing pages during reclaim.
1826 if (stat.nr_unqueued_dirty == nr_taken) {
1827 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1828 set_bit(PGDAT_DIRTY, &pgdat->flags);
1832 * If kswapd scans pages marked marked for immediate
1833 * reclaim and under writeback (nr_immediate), it implies
1834 * that pages are cycling through the LRU faster than
1835 * they are written so also forcibly stall.
1837 if (stat.nr_immediate && current_may_throttle())
1838 congestion_wait(BLK_RW_ASYNC, HZ/10);
1842 * Stall direct reclaim for IO completions if underlying BDIs or zone
1843 * is congested. Allow kswapd to continue until it starts encountering
1844 * unqueued dirty pages or cycling through the LRU too quickly.
1846 if (!sc->hibernation_mode && !current_is_kswapd() &&
1847 current_may_throttle())
1848 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1850 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1851 nr_scanned, nr_reclaimed,
1852 stat.nr_dirty, stat.nr_writeback,
1853 stat.nr_congested, stat.nr_immediate,
1854 stat.nr_activate, stat.nr_ref_keep,
1856 sc->priority, file);
1857 return nr_reclaimed;
1861 * This moves pages from the active list to the inactive list.
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1877 * Returns the number of pages moved to the given lru.
1880 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1881 struct list_head *list,
1882 struct list_head *pages_to_free,
1885 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1890 while (!list_empty(list)) {
1891 page = lru_to_page(list);
1892 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1894 VM_BUG_ON_PAGE(PageLRU(page), page);
1897 nr_pages = hpage_nr_pages(page);
1898 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899 list_move(&page->lru, &lruvec->lists[lru]);
1901 if (put_page_testzero(page)) {
1902 __ClearPageLRU(page);
1903 __ClearPageActive(page);
1904 del_page_from_lru_list(page, lruvec, lru);
1906 if (unlikely(PageCompound(page))) {
1907 spin_unlock_irq(&pgdat->lru_lock);
1908 mem_cgroup_uncharge(page);
1909 (*get_compound_page_dtor(page))(page);
1910 spin_lock_irq(&pgdat->lru_lock);
1912 list_add(&page->lru, pages_to_free);
1914 nr_moved += nr_pages;
1918 if (!is_active_lru(lru))
1919 __count_vm_events(PGDEACTIVATE, nr_moved);
1924 static void shrink_active_list(unsigned long nr_to_scan,
1925 struct lruvec *lruvec,
1926 struct scan_control *sc,
1929 unsigned long nr_taken;
1930 unsigned long nr_scanned;
1931 unsigned long vm_flags;
1932 LIST_HEAD(l_hold); /* The pages which were snipped off */
1933 LIST_HEAD(l_active);
1934 LIST_HEAD(l_inactive);
1936 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1937 unsigned nr_deactivate, nr_activate;
1938 unsigned nr_rotated = 0;
1939 isolate_mode_t isolate_mode = 0;
1940 int file = is_file_lru(lru);
1941 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1946 isolate_mode |= ISOLATE_UNMAPPED;
1948 spin_lock_irq(&pgdat->lru_lock);
1950 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1951 &nr_scanned, sc, isolate_mode, lru);
1953 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1954 reclaim_stat->recent_scanned[file] += nr_taken;
1956 if (global_reclaim(sc))
1957 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1958 __count_vm_events(PGREFILL, nr_scanned);
1960 spin_unlock_irq(&pgdat->lru_lock);
1962 while (!list_empty(&l_hold)) {
1964 page = lru_to_page(&l_hold);
1965 list_del(&page->lru);
1967 if (unlikely(!page_evictable(page))) {
1968 putback_lru_page(page);
1972 if (unlikely(buffer_heads_over_limit)) {
1973 if (page_has_private(page) && trylock_page(page)) {
1974 if (page_has_private(page))
1975 try_to_release_page(page, 0);
1980 if (page_referenced(page, 0, sc->target_mem_cgroup,
1982 nr_rotated += hpage_nr_pages(page);
1984 * Identify referenced, file-backed active pages and
1985 * give them one more trip around the active list. So
1986 * that executable code get better chances to stay in
1987 * memory under moderate memory pressure. Anon pages
1988 * are not likely to be evicted by use-once streaming
1989 * IO, plus JVM can create lots of anon VM_EXEC pages,
1990 * so we ignore them here.
1992 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1993 list_add(&page->lru, &l_active);
1998 ClearPageActive(page); /* we are de-activating */
1999 list_add(&page->lru, &l_inactive);
2003 * Move pages back to the lru list.
2005 spin_lock_irq(&pgdat->lru_lock);
2007 * Count referenced pages from currently used mappings as rotated,
2008 * even though only some of them are actually re-activated. This
2009 * helps balance scan pressure between file and anonymous pages in
2012 reclaim_stat->recent_rotated[file] += nr_rotated;
2014 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2015 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2016 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2017 spin_unlock_irq(&pgdat->lru_lock);
2019 mem_cgroup_uncharge_list(&l_hold);
2020 free_hot_cold_page_list(&l_hold, true);
2021 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2022 nr_deactivate, nr_rotated, sc->priority, file);
2026 * The inactive anon list should be small enough that the VM never has
2027 * to do too much work.
2029 * The inactive file list should be small enough to leave most memory
2030 * to the established workingset on the scan-resistant active list,
2031 * but large enough to avoid thrashing the aggregate readahead window.
2033 * Both inactive lists should also be large enough that each inactive
2034 * page has a chance to be referenced again before it is reclaimed.
2036 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2037 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2038 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2041 * memory ratio inactive
2042 * -------------------------------------
2051 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2052 struct scan_control *sc, bool trace)
2054 unsigned long inactive_ratio;
2055 unsigned long inactive, active;
2056 enum lru_list inactive_lru = file * LRU_FILE;
2057 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2061 * If we don't have swap space, anonymous page deactivation
2064 if (!file && !total_swap_pages)
2067 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2068 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2070 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2072 inactive_ratio = int_sqrt(10 * gb);
2077 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2079 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 inactive_ratio, file);
2083 return inactive * inactive_ratio < active;
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 struct lruvec *lruvec, struct scan_control *sc)
2089 if (is_active_lru(lru)) {
2090 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2091 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2095 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned. The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 struct scan_control *sc, unsigned long *nr,
2116 unsigned long *lru_pages)
2118 int swappiness = mem_cgroup_swappiness(memcg);
2119 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2121 u64 denominator = 0; /* gcc */
2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 unsigned long anon_prio, file_prio;
2124 enum scan_balance scan_balance;
2125 unsigned long anon, file;
2126 bool force_scan = false;
2127 unsigned long ap, fp;
2133 * If the zone or memcg is small, nr[l] can be 0. This
2134 * results in no scanning on this priority and a potential
2135 * priority drop. Global direct reclaim can go to the next
2136 * zone and tends to have no problems. Global kswapd is for
2137 * zone balancing and it needs to scan a minimum amount. When
2138 * reclaiming for a memcg, a priority drop can cause high
2139 * latencies, so it's better to scan a minimum amount there as
2142 if (current_is_kswapd()) {
2143 if (!pgdat_reclaimable(pgdat))
2145 if (!mem_cgroup_online(memcg))
2148 if (!global_reclaim(sc))
2151 /* If we have no swap space, do not bother scanning anon pages. */
2152 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2153 scan_balance = SCAN_FILE;
2158 * Global reclaim will swap to prevent OOM even with no
2159 * swappiness, but memcg users want to use this knob to
2160 * disable swapping for individual groups completely when
2161 * using the memory controller's swap limit feature would be
2164 if (!global_reclaim(sc) && !swappiness) {
2165 scan_balance = SCAN_FILE;
2170 * Do not apply any pressure balancing cleverness when the
2171 * system is close to OOM, scan both anon and file equally
2172 * (unless the swappiness setting disagrees with swapping).
2174 if (!sc->priority && swappiness) {
2175 scan_balance = SCAN_EQUAL;
2180 * Prevent the reclaimer from falling into the cache trap: as
2181 * cache pages start out inactive, every cache fault will tip
2182 * the scan balance towards the file LRU. And as the file LRU
2183 * shrinks, so does the window for rotation from references.
2184 * This means we have a runaway feedback loop where a tiny
2185 * thrashing file LRU becomes infinitely more attractive than
2186 * anon pages. Try to detect this based on file LRU size.
2188 if (global_reclaim(sc)) {
2189 unsigned long pgdatfile;
2190 unsigned long pgdatfree;
2192 unsigned long total_high_wmark = 0;
2194 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2195 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2196 node_page_state(pgdat, NR_INACTIVE_FILE);
2198 for (z = 0; z < MAX_NR_ZONES; z++) {
2199 struct zone *zone = &pgdat->node_zones[z];
2200 if (!managed_zone(zone))
2203 total_high_wmark += high_wmark_pages(zone);
2206 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2207 scan_balance = SCAN_ANON;
2213 * If there is enough inactive page cache, i.e. if the size of the
2214 * inactive list is greater than that of the active list *and* the
2215 * inactive list actually has some pages to scan on this priority, we
2216 * do not reclaim anything from the anonymous working set right now.
2217 * Without the second condition we could end up never scanning an
2218 * lruvec even if it has plenty of old anonymous pages unless the
2219 * system is under heavy pressure.
2221 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2222 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2223 scan_balance = SCAN_FILE;
2227 scan_balance = SCAN_FRACT;
2230 * With swappiness at 100, anonymous and file have the same priority.
2231 * This scanning priority is essentially the inverse of IO cost.
2233 anon_prio = swappiness;
2234 file_prio = 200 - anon_prio;
2237 * OK, so we have swap space and a fair amount of page cache
2238 * pages. We use the recently rotated / recently scanned
2239 * ratios to determine how valuable each cache is.
2241 * Because workloads change over time (and to avoid overflow)
2242 * we keep these statistics as a floating average, which ends
2243 * up weighing recent references more than old ones.
2245 * anon in [0], file in [1]
2248 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2249 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2250 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2251 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2253 spin_lock_irq(&pgdat->lru_lock);
2254 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2255 reclaim_stat->recent_scanned[0] /= 2;
2256 reclaim_stat->recent_rotated[0] /= 2;
2259 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2260 reclaim_stat->recent_scanned[1] /= 2;
2261 reclaim_stat->recent_rotated[1] /= 2;
2265 * The amount of pressure on anon vs file pages is inversely
2266 * proportional to the fraction of recently scanned pages on
2267 * each list that were recently referenced and in active use.
2269 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2270 ap /= reclaim_stat->recent_rotated[0] + 1;
2272 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2273 fp /= reclaim_stat->recent_rotated[1] + 1;
2274 spin_unlock_irq(&pgdat->lru_lock);
2278 denominator = ap + fp + 1;
2280 some_scanned = false;
2281 /* Only use force_scan on second pass. */
2282 for (pass = 0; !some_scanned && pass < 2; pass++) {
2284 for_each_evictable_lru(lru) {
2285 int file = is_file_lru(lru);
2289 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2290 scan = size >> sc->priority;
2292 if (!scan && pass && force_scan)
2293 scan = min(size, SWAP_CLUSTER_MAX);
2295 switch (scan_balance) {
2297 /* Scan lists relative to size */
2301 * Scan types proportional to swappiness and
2302 * their relative recent reclaim efficiency.
2304 scan = div64_u64(scan * fraction[file],
2309 /* Scan one type exclusively */
2310 if ((scan_balance == SCAN_FILE) != file) {
2316 /* Look ma, no brain */
2324 * Skip the second pass and don't force_scan,
2325 * if we found something to scan.
2327 some_scanned |= !!scan;
2333 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2335 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2336 struct scan_control *sc, unsigned long *lru_pages)
2338 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2339 unsigned long nr[NR_LRU_LISTS];
2340 unsigned long targets[NR_LRU_LISTS];
2341 unsigned long nr_to_scan;
2343 unsigned long nr_reclaimed = 0;
2344 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2345 struct blk_plug plug;
2348 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2350 /* Record the original scan target for proportional adjustments later */
2351 memcpy(targets, nr, sizeof(nr));
2354 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2355 * event that can occur when there is little memory pressure e.g.
2356 * multiple streaming readers/writers. Hence, we do not abort scanning
2357 * when the requested number of pages are reclaimed when scanning at
2358 * DEF_PRIORITY on the assumption that the fact we are direct
2359 * reclaiming implies that kswapd is not keeping up and it is best to
2360 * do a batch of work at once. For memcg reclaim one check is made to
2361 * abort proportional reclaim if either the file or anon lru has already
2362 * dropped to zero at the first pass.
2364 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2365 sc->priority == DEF_PRIORITY);
2367 blk_start_plug(&plug);
2368 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2369 nr[LRU_INACTIVE_FILE]) {
2370 unsigned long nr_anon, nr_file, percentage;
2371 unsigned long nr_scanned;
2373 for_each_evictable_lru(lru) {
2375 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2376 nr[lru] -= nr_to_scan;
2378 nr_reclaimed += shrink_list(lru, nr_to_scan,
2385 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2389 * For kswapd and memcg, reclaim at least the number of pages
2390 * requested. Ensure that the anon and file LRUs are scanned
2391 * proportionally what was requested by get_scan_count(). We
2392 * stop reclaiming one LRU and reduce the amount scanning
2393 * proportional to the original scan target.
2395 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2396 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2399 * It's just vindictive to attack the larger once the smaller
2400 * has gone to zero. And given the way we stop scanning the
2401 * smaller below, this makes sure that we only make one nudge
2402 * towards proportionality once we've got nr_to_reclaim.
2404 if (!nr_file || !nr_anon)
2407 if (nr_file > nr_anon) {
2408 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2409 targets[LRU_ACTIVE_ANON] + 1;
2411 percentage = nr_anon * 100 / scan_target;
2413 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2414 targets[LRU_ACTIVE_FILE] + 1;
2416 percentage = nr_file * 100 / scan_target;
2419 /* Stop scanning the smaller of the LRU */
2421 nr[lru + LRU_ACTIVE] = 0;
2424 * Recalculate the other LRU scan count based on its original
2425 * scan target and the percentage scanning already complete
2427 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2428 nr_scanned = targets[lru] - nr[lru];
2429 nr[lru] = targets[lru] * (100 - percentage) / 100;
2430 nr[lru] -= min(nr[lru], nr_scanned);
2433 nr_scanned = targets[lru] - nr[lru];
2434 nr[lru] = targets[lru] * (100 - percentage) / 100;
2435 nr[lru] -= min(nr[lru], nr_scanned);
2437 scan_adjusted = true;
2439 blk_finish_plug(&plug);
2440 sc->nr_reclaimed += nr_reclaimed;
2443 * Even if we did not try to evict anon pages at all, we want to
2444 * rebalance the anon lru active/inactive ratio.
2446 if (inactive_list_is_low(lruvec, false, sc, true))
2447 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2448 sc, LRU_ACTIVE_ANON);
2451 /* Use reclaim/compaction for costly allocs or under memory pressure */
2452 static bool in_reclaim_compaction(struct scan_control *sc)
2454 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2455 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2456 sc->priority < DEF_PRIORITY - 2))
2463 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2464 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2465 * true if more pages should be reclaimed such that when the page allocator
2466 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2467 * It will give up earlier than that if there is difficulty reclaiming pages.
2469 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2470 unsigned long nr_reclaimed,
2471 unsigned long nr_scanned,
2472 struct scan_control *sc)
2474 unsigned long pages_for_compaction;
2475 unsigned long inactive_lru_pages;
2478 /* If not in reclaim/compaction mode, stop */
2479 if (!in_reclaim_compaction(sc))
2482 /* Consider stopping depending on scan and reclaim activity */
2483 if (sc->gfp_mask & __GFP_REPEAT) {
2485 * For __GFP_REPEAT allocations, stop reclaiming if the
2486 * full LRU list has been scanned and we are still failing
2487 * to reclaim pages. This full LRU scan is potentially
2488 * expensive but a __GFP_REPEAT caller really wants to succeed
2490 if (!nr_reclaimed && !nr_scanned)
2494 * For non-__GFP_REPEAT allocations which can presumably
2495 * fail without consequence, stop if we failed to reclaim
2496 * any pages from the last SWAP_CLUSTER_MAX number of
2497 * pages that were scanned. This will return to the
2498 * caller faster at the risk reclaim/compaction and
2499 * the resulting allocation attempt fails
2506 * If we have not reclaimed enough pages for compaction and the
2507 * inactive lists are large enough, continue reclaiming
2509 pages_for_compaction = compact_gap(sc->order);
2510 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2511 if (get_nr_swap_pages() > 0)
2512 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2513 if (sc->nr_reclaimed < pages_for_compaction &&
2514 inactive_lru_pages > pages_for_compaction)
2517 /* If compaction would go ahead or the allocation would succeed, stop */
2518 for (z = 0; z <= sc->reclaim_idx; z++) {
2519 struct zone *zone = &pgdat->node_zones[z];
2520 if (!managed_zone(zone))
2523 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2524 case COMPACT_SUCCESS:
2525 case COMPACT_CONTINUE:
2528 /* check next zone */
2535 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2537 struct reclaim_state *reclaim_state = current->reclaim_state;
2538 unsigned long nr_reclaimed, nr_scanned;
2539 bool reclaimable = false;
2542 struct mem_cgroup *root = sc->target_mem_cgroup;
2543 struct mem_cgroup_reclaim_cookie reclaim = {
2545 .priority = sc->priority,
2547 unsigned long node_lru_pages = 0;
2548 struct mem_cgroup *memcg;
2550 nr_reclaimed = sc->nr_reclaimed;
2551 nr_scanned = sc->nr_scanned;
2553 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2555 unsigned long lru_pages;
2556 unsigned long reclaimed;
2557 unsigned long scanned;
2559 if (mem_cgroup_low(root, memcg)) {
2560 if (!sc->may_thrash)
2562 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2565 reclaimed = sc->nr_reclaimed;
2566 scanned = sc->nr_scanned;
2568 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2569 node_lru_pages += lru_pages;
2572 shrink_slab(sc->gfp_mask, pgdat->node_id,
2573 memcg, sc->nr_scanned - scanned,
2576 /* Record the group's reclaim efficiency */
2577 vmpressure(sc->gfp_mask, memcg, false,
2578 sc->nr_scanned - scanned,
2579 sc->nr_reclaimed - reclaimed);
2582 * Direct reclaim and kswapd have to scan all memory
2583 * cgroups to fulfill the overall scan target for the
2586 * Limit reclaim, on the other hand, only cares about
2587 * nr_to_reclaim pages to be reclaimed and it will
2588 * retry with decreasing priority if one round over the
2589 * whole hierarchy is not sufficient.
2591 if (!global_reclaim(sc) &&
2592 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2593 mem_cgroup_iter_break(root, memcg);
2596 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2599 * Shrink the slab caches in the same proportion that
2600 * the eligible LRU pages were scanned.
2602 if (global_reclaim(sc))
2603 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2604 sc->nr_scanned - nr_scanned,
2607 if (reclaim_state) {
2608 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2609 reclaim_state->reclaimed_slab = 0;
2612 /* Record the subtree's reclaim efficiency */
2613 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2614 sc->nr_scanned - nr_scanned,
2615 sc->nr_reclaimed - nr_reclaimed);
2617 if (sc->nr_reclaimed - nr_reclaimed)
2620 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2621 sc->nr_scanned - nr_scanned, sc));
2627 * Returns true if compaction should go ahead for a costly-order request, or
2628 * the allocation would already succeed without compaction. Return false if we
2629 * should reclaim first.
2631 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2633 unsigned long watermark;
2634 enum compact_result suitable;
2636 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2637 if (suitable == COMPACT_SUCCESS)
2638 /* Allocation should succeed already. Don't reclaim. */
2640 if (suitable == COMPACT_SKIPPED)
2641 /* Compaction cannot yet proceed. Do reclaim. */
2645 * Compaction is already possible, but it takes time to run and there
2646 * are potentially other callers using the pages just freed. So proceed
2647 * with reclaim to make a buffer of free pages available to give
2648 * compaction a reasonable chance of completing and allocating the page.
2649 * Note that we won't actually reclaim the whole buffer in one attempt
2650 * as the target watermark in should_continue_reclaim() is lower. But if
2651 * we are already above the high+gap watermark, don't reclaim at all.
2653 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2655 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2659 * This is the direct reclaim path, for page-allocating processes. We only
2660 * try to reclaim pages from zones which will satisfy the caller's allocation
2663 * If a zone is deemed to be full of pinned pages then just give it a light
2664 * scan then give up on it.
2666 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2670 unsigned long nr_soft_reclaimed;
2671 unsigned long nr_soft_scanned;
2673 pg_data_t *last_pgdat = NULL;
2676 * If the number of buffer_heads in the machine exceeds the maximum
2677 * allowed level, force direct reclaim to scan the highmem zone as
2678 * highmem pages could be pinning lowmem pages storing buffer_heads
2680 orig_mask = sc->gfp_mask;
2681 if (buffer_heads_over_limit) {
2682 sc->gfp_mask |= __GFP_HIGHMEM;
2683 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2686 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2687 sc->reclaim_idx, sc->nodemask) {
2689 * Take care memory controller reclaiming has small influence
2692 if (global_reclaim(sc)) {
2693 if (!cpuset_zone_allowed(zone,
2694 GFP_KERNEL | __GFP_HARDWALL))
2697 if (sc->priority != DEF_PRIORITY &&
2698 !pgdat_reclaimable(zone->zone_pgdat))
2699 continue; /* Let kswapd poll it */
2702 * If we already have plenty of memory free for
2703 * compaction in this zone, don't free any more.
2704 * Even though compaction is invoked for any
2705 * non-zero order, only frequent costly order
2706 * reclamation is disruptive enough to become a
2707 * noticeable problem, like transparent huge
2710 if (IS_ENABLED(CONFIG_COMPACTION) &&
2711 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2712 compaction_ready(zone, sc)) {
2713 sc->compaction_ready = true;
2718 * Shrink each node in the zonelist once. If the
2719 * zonelist is ordered by zone (not the default) then a
2720 * node may be shrunk multiple times but in that case
2721 * the user prefers lower zones being preserved.
2723 if (zone->zone_pgdat == last_pgdat)
2727 * This steals pages from memory cgroups over softlimit
2728 * and returns the number of reclaimed pages and
2729 * scanned pages. This works for global memory pressure
2730 * and balancing, not for a memcg's limit.
2732 nr_soft_scanned = 0;
2733 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2734 sc->order, sc->gfp_mask,
2736 sc->nr_reclaimed += nr_soft_reclaimed;
2737 sc->nr_scanned += nr_soft_scanned;
2738 /* need some check for avoid more shrink_zone() */
2741 /* See comment about same check for global reclaim above */
2742 if (zone->zone_pgdat == last_pgdat)
2744 last_pgdat = zone->zone_pgdat;
2745 shrink_node(zone->zone_pgdat, sc);
2749 * Restore to original mask to avoid the impact on the caller if we
2750 * promoted it to __GFP_HIGHMEM.
2752 sc->gfp_mask = orig_mask;
2756 * This is the main entry point to direct page reclaim.
2758 * If a full scan of the inactive list fails to free enough memory then we
2759 * are "out of memory" and something needs to be killed.
2761 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2762 * high - the zone may be full of dirty or under-writeback pages, which this
2763 * caller can't do much about. We kick the writeback threads and take explicit
2764 * naps in the hope that some of these pages can be written. But if the
2765 * allocating task holds filesystem locks which prevent writeout this might not
2766 * work, and the allocation attempt will fail.
2768 * returns: 0, if no pages reclaimed
2769 * else, the number of pages reclaimed
2771 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2772 struct scan_control *sc)
2774 int initial_priority = sc->priority;
2776 delayacct_freepages_start();
2778 if (global_reclaim(sc))
2779 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2782 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2785 shrink_zones(zonelist, sc);
2787 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2790 if (sc->compaction_ready)
2794 * If we're getting trouble reclaiming, start doing
2795 * writepage even in laptop mode.
2797 if (sc->priority < DEF_PRIORITY - 2)
2798 sc->may_writepage = 1;
2799 } while (--sc->priority >= 0);
2801 delayacct_freepages_end();
2803 if (sc->nr_reclaimed)
2804 return sc->nr_reclaimed;
2806 /* Aborted reclaim to try compaction? don't OOM, then */
2807 if (sc->compaction_ready)
2810 /* Untapped cgroup reserves? Don't OOM, retry. */
2811 if (!sc->may_thrash) {
2812 sc->priority = initial_priority;
2820 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2823 unsigned long pfmemalloc_reserve = 0;
2824 unsigned long free_pages = 0;
2828 for (i = 0; i <= ZONE_NORMAL; i++) {
2829 zone = &pgdat->node_zones[i];
2830 if (!managed_zone(zone) ||
2831 pgdat_reclaimable_pages(pgdat) == 0)
2834 pfmemalloc_reserve += min_wmark_pages(zone);
2835 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2838 /* If there are no reserves (unexpected config) then do not throttle */
2839 if (!pfmemalloc_reserve)
2842 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2844 /* kswapd must be awake if processes are being throttled */
2845 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2846 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2847 (enum zone_type)ZONE_NORMAL);
2848 wake_up_interruptible(&pgdat->kswapd_wait);
2855 * Throttle direct reclaimers if backing storage is backed by the network
2856 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2857 * depleted. kswapd will continue to make progress and wake the processes
2858 * when the low watermark is reached.
2860 * Returns true if a fatal signal was delivered during throttling. If this
2861 * happens, the page allocator should not consider triggering the OOM killer.
2863 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2864 nodemask_t *nodemask)
2868 pg_data_t *pgdat = NULL;
2871 * Kernel threads should not be throttled as they may be indirectly
2872 * responsible for cleaning pages necessary for reclaim to make forward
2873 * progress. kjournald for example may enter direct reclaim while
2874 * committing a transaction where throttling it could forcing other
2875 * processes to block on log_wait_commit().
2877 if (current->flags & PF_KTHREAD)
2881 * If a fatal signal is pending, this process should not throttle.
2882 * It should return quickly so it can exit and free its memory
2884 if (fatal_signal_pending(current))
2888 * Check if the pfmemalloc reserves are ok by finding the first node
2889 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2890 * GFP_KERNEL will be required for allocating network buffers when
2891 * swapping over the network so ZONE_HIGHMEM is unusable.
2893 * Throttling is based on the first usable node and throttled processes
2894 * wait on a queue until kswapd makes progress and wakes them. There
2895 * is an affinity then between processes waking up and where reclaim
2896 * progress has been made assuming the process wakes on the same node.
2897 * More importantly, processes running on remote nodes will not compete
2898 * for remote pfmemalloc reserves and processes on different nodes
2899 * should make reasonable progress.
2901 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2902 gfp_zone(gfp_mask), nodemask) {
2903 if (zone_idx(zone) > ZONE_NORMAL)
2906 /* Throttle based on the first usable node */
2907 pgdat = zone->zone_pgdat;
2908 if (pfmemalloc_watermark_ok(pgdat))
2913 /* If no zone was usable by the allocation flags then do not throttle */
2917 /* Account for the throttling */
2918 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2921 * If the caller cannot enter the filesystem, it's possible that it
2922 * is due to the caller holding an FS lock or performing a journal
2923 * transaction in the case of a filesystem like ext[3|4]. In this case,
2924 * it is not safe to block on pfmemalloc_wait as kswapd could be
2925 * blocked waiting on the same lock. Instead, throttle for up to a
2926 * second before continuing.
2928 if (!(gfp_mask & __GFP_FS)) {
2929 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2930 pfmemalloc_watermark_ok(pgdat), HZ);
2935 /* Throttle until kswapd wakes the process */
2936 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2937 pfmemalloc_watermark_ok(pgdat));
2940 if (fatal_signal_pending(current))
2947 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2948 gfp_t gfp_mask, nodemask_t *nodemask)
2950 unsigned long nr_reclaimed;
2951 struct scan_control sc = {
2952 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2953 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2954 .reclaim_idx = gfp_zone(gfp_mask),
2956 .nodemask = nodemask,
2957 .priority = DEF_PRIORITY,
2958 .may_writepage = !laptop_mode,
2964 * Do not enter reclaim if fatal signal was delivered while throttled.
2965 * 1 is returned so that the page allocator does not OOM kill at this
2968 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2971 trace_mm_vmscan_direct_reclaim_begin(order,
2976 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2978 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2980 return nr_reclaimed;
2985 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2986 gfp_t gfp_mask, bool noswap,
2988 unsigned long *nr_scanned)
2990 struct scan_control sc = {
2991 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2992 .target_mem_cgroup = memcg,
2993 .may_writepage = !laptop_mode,
2995 .reclaim_idx = MAX_NR_ZONES - 1,
2996 .may_swap = !noswap,
2998 unsigned long lru_pages;
3000 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3001 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3003 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3009 * NOTE: Although we can get the priority field, using it
3010 * here is not a good idea, since it limits the pages we can scan.
3011 * if we don't reclaim here, the shrink_node from balance_pgdat
3012 * will pick up pages from other mem cgroup's as well. We hack
3013 * the priority and make it zero.
3015 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3017 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3019 *nr_scanned = sc.nr_scanned;
3020 return sc.nr_reclaimed;
3023 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3024 unsigned long nr_pages,
3028 struct zonelist *zonelist;
3029 unsigned long nr_reclaimed;
3031 struct scan_control sc = {
3032 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3033 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3034 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3035 .reclaim_idx = MAX_NR_ZONES - 1,
3036 .target_mem_cgroup = memcg,
3037 .priority = DEF_PRIORITY,
3038 .may_writepage = !laptop_mode,
3040 .may_swap = may_swap,
3044 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3045 * take care of from where we get pages. So the node where we start the
3046 * scan does not need to be the current node.
3048 nid = mem_cgroup_select_victim_node(memcg);
3050 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3052 trace_mm_vmscan_memcg_reclaim_begin(0,
3057 current->flags |= PF_MEMALLOC;
3058 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3059 current->flags &= ~PF_MEMALLOC;
3061 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3063 return nr_reclaimed;
3067 static void age_active_anon(struct pglist_data *pgdat,
3068 struct scan_control *sc)
3070 struct mem_cgroup *memcg;
3072 if (!total_swap_pages)
3075 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3077 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3079 if (inactive_list_is_low(lruvec, false, sc, true))
3080 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3081 sc, LRU_ACTIVE_ANON);
3083 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3087 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3089 unsigned long mark = high_wmark_pages(zone);
3091 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3095 * If any eligible zone is balanced then the node is not considered
3096 * to be congested or dirty
3098 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3099 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3100 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3106 * Prepare kswapd for sleeping. This verifies that there are no processes
3107 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3109 * Returns true if kswapd is ready to sleep
3111 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3116 * The throttled processes are normally woken up in balance_pgdat() as
3117 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3118 * race between when kswapd checks the watermarks and a process gets
3119 * throttled. There is also a potential race if processes get
3120 * throttled, kswapd wakes, a large process exits thereby balancing the
3121 * zones, which causes kswapd to exit balance_pgdat() before reaching
3122 * the wake up checks. If kswapd is going to sleep, no process should
3123 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3124 * the wake up is premature, processes will wake kswapd and get
3125 * throttled again. The difference from wake ups in balance_pgdat() is
3126 * that here we are under prepare_to_wait().
3128 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3129 wake_up_all(&pgdat->pfmemalloc_wait);
3131 for (i = 0; i <= classzone_idx; i++) {
3132 struct zone *zone = pgdat->node_zones + i;
3134 if (!managed_zone(zone))
3137 if (!zone_balanced(zone, order, classzone_idx))
3145 * kswapd shrinks a node of pages that are at or below the highest usable
3146 * zone that is currently unbalanced.
3148 * Returns true if kswapd scanned at least the requested number of pages to
3149 * reclaim or if the lack of progress was due to pages under writeback.
3150 * This is used to determine if the scanning priority needs to be raised.
3152 static bool kswapd_shrink_node(pg_data_t *pgdat,
3153 struct scan_control *sc)
3158 /* Reclaim a number of pages proportional to the number of zones */
3159 sc->nr_to_reclaim = 0;
3160 for (z = 0; z <= sc->reclaim_idx; z++) {
3161 zone = pgdat->node_zones + z;
3162 if (!managed_zone(zone))
3165 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3169 * Historically care was taken to put equal pressure on all zones but
3170 * now pressure is applied based on node LRU order.
3172 shrink_node(pgdat, sc);
3175 * Fragmentation may mean that the system cannot be rebalanced for
3176 * high-order allocations. If twice the allocation size has been
3177 * reclaimed then recheck watermarks only at order-0 to prevent
3178 * excessive reclaim. Assume that a process requested a high-order
3179 * can direct reclaim/compact.
3181 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3184 return sc->nr_scanned >= sc->nr_to_reclaim;
3188 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3189 * that are eligible for use by the caller until at least one zone is
3192 * Returns the order kswapd finished reclaiming at.
3194 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3195 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3196 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3197 * or lower is eligible for reclaim until at least one usable zone is
3200 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3203 unsigned long nr_soft_reclaimed;
3204 unsigned long nr_soft_scanned;
3206 struct scan_control sc = {
3207 .gfp_mask = GFP_KERNEL,
3209 .priority = DEF_PRIORITY,
3210 .may_writepage = !laptop_mode,
3214 count_vm_event(PAGEOUTRUN);
3217 bool raise_priority = true;
3219 sc.nr_reclaimed = 0;
3220 sc.reclaim_idx = classzone_idx;
3223 * If the number of buffer_heads exceeds the maximum allowed
3224 * then consider reclaiming from all zones. This has a dual
3225 * purpose -- on 64-bit systems it is expected that
3226 * buffer_heads are stripped during active rotation. On 32-bit
3227 * systems, highmem pages can pin lowmem memory and shrinking
3228 * buffers can relieve lowmem pressure. Reclaim may still not
3229 * go ahead if all eligible zones for the original allocation
3230 * request are balanced to avoid excessive reclaim from kswapd.
3232 if (buffer_heads_over_limit) {
3233 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3234 zone = pgdat->node_zones + i;
3235 if (!managed_zone(zone))
3244 * Only reclaim if there are no eligible zones. Check from
3245 * high to low zone as allocations prefer higher zones.
3246 * Scanning from low to high zone would allow congestion to be
3247 * cleared during a very small window when a small low
3248 * zone was balanced even under extreme pressure when the
3249 * overall node may be congested. Note that sc.reclaim_idx
3250 * is not used as buffer_heads_over_limit may have adjusted
3253 for (i = classzone_idx; i >= 0; i--) {
3254 zone = pgdat->node_zones + i;
3255 if (!managed_zone(zone))
3258 if (zone_balanced(zone, sc.order, classzone_idx))
3263 * Do some background aging of the anon list, to give
3264 * pages a chance to be referenced before reclaiming. All
3265 * pages are rotated regardless of classzone as this is
3266 * about consistent aging.
3268 age_active_anon(pgdat, &sc);
3271 * If we're getting trouble reclaiming, start doing writepage
3272 * even in laptop mode.
3274 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3275 sc.may_writepage = 1;
3277 /* Call soft limit reclaim before calling shrink_node. */
3279 nr_soft_scanned = 0;
3280 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3281 sc.gfp_mask, &nr_soft_scanned);
3282 sc.nr_reclaimed += nr_soft_reclaimed;
3285 * There should be no need to raise the scanning priority if
3286 * enough pages are already being scanned that that high
3287 * watermark would be met at 100% efficiency.
3289 if (kswapd_shrink_node(pgdat, &sc))
3290 raise_priority = false;
3293 * If the low watermark is met there is no need for processes
3294 * to be throttled on pfmemalloc_wait as they should not be
3295 * able to safely make forward progress. Wake them
3297 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3298 pfmemalloc_watermark_ok(pgdat))
3299 wake_up_all(&pgdat->pfmemalloc_wait);
3301 /* Check if kswapd should be suspending */
3302 if (try_to_freeze() || kthread_should_stop())
3306 * Raise priority if scanning rate is too low or there was no
3307 * progress in reclaiming pages
3309 if (raise_priority || !sc.nr_reclaimed)
3311 } while (sc.priority >= 1);
3315 * Return the order kswapd stopped reclaiming at as
3316 * prepare_kswapd_sleep() takes it into account. If another caller
3317 * entered the allocator slow path while kswapd was awake, order will
3318 * remain at the higher level.
3323 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3324 unsigned int classzone_idx)
3329 if (freezing(current) || kthread_should_stop())
3332 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3334 /* Try to sleep for a short interval */
3335 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3337 * Compaction records what page blocks it recently failed to
3338 * isolate pages from and skips them in the future scanning.
3339 * When kswapd is going to sleep, it is reasonable to assume
3340 * that pages and compaction may succeed so reset the cache.
3342 reset_isolation_suitable(pgdat);
3345 * We have freed the memory, now we should compact it to make
3346 * allocation of the requested order possible.
3348 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3350 remaining = schedule_timeout(HZ/10);
3353 * If woken prematurely then reset kswapd_classzone_idx and
3354 * order. The values will either be from a wakeup request or
3355 * the previous request that slept prematurely.
3358 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3359 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3362 finish_wait(&pgdat->kswapd_wait, &wait);
3363 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3367 * After a short sleep, check if it was a premature sleep. If not, then
3368 * go fully to sleep until explicitly woken up.
3371 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3372 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3375 * vmstat counters are not perfectly accurate and the estimated
3376 * value for counters such as NR_FREE_PAGES can deviate from the
3377 * true value by nr_online_cpus * threshold. To avoid the zone
3378 * watermarks being breached while under pressure, we reduce the
3379 * per-cpu vmstat threshold while kswapd is awake and restore
3380 * them before going back to sleep.
3382 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3384 if (!kthread_should_stop())
3387 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3390 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3392 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3394 finish_wait(&pgdat->kswapd_wait, &wait);
3398 * The background pageout daemon, started as a kernel thread
3399 * from the init process.
3401 * This basically trickles out pages so that we have _some_
3402 * free memory available even if there is no other activity
3403 * that frees anything up. This is needed for things like routing
3404 * etc, where we otherwise might have all activity going on in
3405 * asynchronous contexts that cannot page things out.
3407 * If there are applications that are active memory-allocators
3408 * (most normal use), this basically shouldn't matter.
3410 static int kswapd(void *p)
3412 unsigned int alloc_order, reclaim_order, classzone_idx;
3413 pg_data_t *pgdat = (pg_data_t*)p;
3414 struct task_struct *tsk = current;
3416 struct reclaim_state reclaim_state = {
3417 .reclaimed_slab = 0,
3419 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3421 lockdep_set_current_reclaim_state(GFP_KERNEL);
3423 if (!cpumask_empty(cpumask))
3424 set_cpus_allowed_ptr(tsk, cpumask);
3425 current->reclaim_state = &reclaim_state;
3428 * Tell the memory management that we're a "memory allocator",
3429 * and that if we need more memory we should get access to it
3430 * regardless (see "__alloc_pages()"). "kswapd" should
3431 * never get caught in the normal page freeing logic.
3433 * (Kswapd normally doesn't need memory anyway, but sometimes
3434 * you need a small amount of memory in order to be able to
3435 * page out something else, and this flag essentially protects
3436 * us from recursively trying to free more memory as we're
3437 * trying to free the first piece of memory in the first place).
3439 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3442 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3443 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3448 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3451 /* Read the new order and classzone_idx */
3452 alloc_order = reclaim_order = pgdat->kswapd_order;
3453 classzone_idx = pgdat->kswapd_classzone_idx;
3454 pgdat->kswapd_order = 0;
3455 pgdat->kswapd_classzone_idx = 0;
3457 ret = try_to_freeze();
3458 if (kthread_should_stop())
3462 * We can speed up thawing tasks if we don't call balance_pgdat
3463 * after returning from the refrigerator
3469 * Reclaim begins at the requested order but if a high-order
3470 * reclaim fails then kswapd falls back to reclaiming for
3471 * order-0. If that happens, kswapd will consider sleeping
3472 * for the order it finished reclaiming at (reclaim_order)
3473 * but kcompactd is woken to compact for the original
3474 * request (alloc_order).
3476 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3478 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3479 if (reclaim_order < alloc_order)
3480 goto kswapd_try_sleep;
3482 alloc_order = reclaim_order = pgdat->kswapd_order;
3483 classzone_idx = pgdat->kswapd_classzone_idx;
3486 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3487 current->reclaim_state = NULL;
3488 lockdep_clear_current_reclaim_state();
3494 * A zone is low on free memory, so wake its kswapd task to service it.
3496 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3501 if (!managed_zone(zone))
3504 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3506 pgdat = zone->zone_pgdat;
3507 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3508 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3509 if (!waitqueue_active(&pgdat->kswapd_wait))
3512 /* Only wake kswapd if all zones are unbalanced */
3513 for (z = 0; z <= classzone_idx; z++) {
3514 zone = pgdat->node_zones + z;
3515 if (!managed_zone(zone))
3518 if (zone_balanced(zone, order, classzone_idx))
3522 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3523 wake_up_interruptible(&pgdat->kswapd_wait);
3526 #ifdef CONFIG_HIBERNATION
3528 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3531 * Rather than trying to age LRUs the aim is to preserve the overall
3532 * LRU order by reclaiming preferentially
3533 * inactive > active > active referenced > active mapped
3535 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3537 struct reclaim_state reclaim_state;
3538 struct scan_control sc = {
3539 .nr_to_reclaim = nr_to_reclaim,
3540 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3541 .reclaim_idx = MAX_NR_ZONES - 1,
3542 .priority = DEF_PRIORITY,
3546 .hibernation_mode = 1,
3548 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3549 struct task_struct *p = current;
3550 unsigned long nr_reclaimed;
3552 p->flags |= PF_MEMALLOC;
3553 lockdep_set_current_reclaim_state(sc.gfp_mask);
3554 reclaim_state.reclaimed_slab = 0;
3555 p->reclaim_state = &reclaim_state;
3557 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3559 p->reclaim_state = NULL;
3560 lockdep_clear_current_reclaim_state();
3561 p->flags &= ~PF_MEMALLOC;
3563 return nr_reclaimed;
3565 #endif /* CONFIG_HIBERNATION */
3567 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3568 not required for correctness. So if the last cpu in a node goes
3569 away, we get changed to run anywhere: as the first one comes back,
3570 restore their cpu bindings. */
3571 static int kswapd_cpu_online(unsigned int cpu)
3575 for_each_node_state(nid, N_MEMORY) {
3576 pg_data_t *pgdat = NODE_DATA(nid);
3577 const struct cpumask *mask;
3579 mask = cpumask_of_node(pgdat->node_id);
3581 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3582 /* One of our CPUs online: restore mask */
3583 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3589 * This kswapd start function will be called by init and node-hot-add.
3590 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3592 int kswapd_run(int nid)
3594 pg_data_t *pgdat = NODE_DATA(nid);
3600 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3601 if (IS_ERR(pgdat->kswapd)) {
3602 /* failure at boot is fatal */
3603 BUG_ON(system_state == SYSTEM_BOOTING);
3604 pr_err("Failed to start kswapd on node %d\n", nid);
3605 ret = PTR_ERR(pgdat->kswapd);
3606 pgdat->kswapd = NULL;
3612 * Called by memory hotplug when all memory in a node is offlined. Caller must
3613 * hold mem_hotplug_begin/end().
3615 void kswapd_stop(int nid)
3617 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3620 kthread_stop(kswapd);
3621 NODE_DATA(nid)->kswapd = NULL;
3625 static int __init kswapd_init(void)
3630 for_each_node_state(nid, N_MEMORY)
3632 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3633 "mm/vmscan:online", kswapd_cpu_online,
3639 module_init(kswapd_init)
3645 * If non-zero call node_reclaim when the number of free pages falls below
3648 int node_reclaim_mode __read_mostly;
3650 #define RECLAIM_OFF 0
3651 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3652 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3653 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3656 * Priority for NODE_RECLAIM. This determines the fraction of pages
3657 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3660 #define NODE_RECLAIM_PRIORITY 4
3663 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3666 int sysctl_min_unmapped_ratio = 1;
3669 * If the number of slab pages in a zone grows beyond this percentage then
3670 * slab reclaim needs to occur.
3672 int sysctl_min_slab_ratio = 5;
3674 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3676 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3677 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3678 node_page_state(pgdat, NR_ACTIVE_FILE);
3681 * It's possible for there to be more file mapped pages than
3682 * accounted for by the pages on the file LRU lists because
3683 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3685 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3688 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3689 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3691 unsigned long nr_pagecache_reclaimable;
3692 unsigned long delta = 0;
3695 * If RECLAIM_UNMAP is set, then all file pages are considered
3696 * potentially reclaimable. Otherwise, we have to worry about
3697 * pages like swapcache and node_unmapped_file_pages() provides
3700 if (node_reclaim_mode & RECLAIM_UNMAP)
3701 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3703 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3705 /* If we can't clean pages, remove dirty pages from consideration */
3706 if (!(node_reclaim_mode & RECLAIM_WRITE))
3707 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3709 /* Watch for any possible underflows due to delta */
3710 if (unlikely(delta > nr_pagecache_reclaimable))
3711 delta = nr_pagecache_reclaimable;
3713 return nr_pagecache_reclaimable - delta;
3717 * Try to free up some pages from this node through reclaim.
3719 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3721 /* Minimum pages needed in order to stay on node */
3722 const unsigned long nr_pages = 1 << order;
3723 struct task_struct *p = current;
3724 struct reclaim_state reclaim_state;
3725 int classzone_idx = gfp_zone(gfp_mask);
3726 struct scan_control sc = {
3727 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3728 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3730 .priority = NODE_RECLAIM_PRIORITY,
3731 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3732 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3734 .reclaim_idx = classzone_idx,
3739 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3740 * and we also need to be able to write out pages for RECLAIM_WRITE
3741 * and RECLAIM_UNMAP.
3743 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3744 lockdep_set_current_reclaim_state(gfp_mask);
3745 reclaim_state.reclaimed_slab = 0;
3746 p->reclaim_state = &reclaim_state;
3748 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3750 * Free memory by calling shrink zone with increasing
3751 * priorities until we have enough memory freed.
3754 shrink_node(pgdat, &sc);
3755 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3758 p->reclaim_state = NULL;
3759 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3760 lockdep_clear_current_reclaim_state();
3761 return sc.nr_reclaimed >= nr_pages;
3764 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3769 * Node reclaim reclaims unmapped file backed pages and
3770 * slab pages if we are over the defined limits.
3772 * A small portion of unmapped file backed pages is needed for
3773 * file I/O otherwise pages read by file I/O will be immediately
3774 * thrown out if the node is overallocated. So we do not reclaim
3775 * if less than a specified percentage of the node is used by
3776 * unmapped file backed pages.
3778 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3779 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3780 return NODE_RECLAIM_FULL;
3782 if (!pgdat_reclaimable(pgdat))
3783 return NODE_RECLAIM_FULL;
3786 * Do not scan if the allocation should not be delayed.
3788 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3789 return NODE_RECLAIM_NOSCAN;
3792 * Only run node reclaim on the local node or on nodes that do not
3793 * have associated processors. This will favor the local processor
3794 * over remote processors and spread off node memory allocations
3795 * as wide as possible.
3797 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3798 return NODE_RECLAIM_NOSCAN;
3800 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3801 return NODE_RECLAIM_NOSCAN;
3803 ret = __node_reclaim(pgdat, gfp_mask, order);
3804 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3807 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3814 * page_evictable - test whether a page is evictable
3815 * @page: the page to test
3817 * Test whether page is evictable--i.e., should be placed on active/inactive
3818 * lists vs unevictable list.
3820 * Reasons page might not be evictable:
3821 * (1) page's mapping marked unevictable
3822 * (2) page is part of an mlocked VMA
3825 int page_evictable(struct page *page)
3827 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3832 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3833 * @pages: array of pages to check
3834 * @nr_pages: number of pages to check
3836 * Checks pages for evictability and moves them to the appropriate lru list.
3838 * This function is only used for SysV IPC SHM_UNLOCK.
3840 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3842 struct lruvec *lruvec;
3843 struct pglist_data *pgdat = NULL;
3848 for (i = 0; i < nr_pages; i++) {
3849 struct page *page = pages[i];
3850 struct pglist_data *pagepgdat = page_pgdat(page);
3853 if (pagepgdat != pgdat) {
3855 spin_unlock_irq(&pgdat->lru_lock);
3857 spin_lock_irq(&pgdat->lru_lock);
3859 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3861 if (!PageLRU(page) || !PageUnevictable(page))
3864 if (page_evictable(page)) {
3865 enum lru_list lru = page_lru_base_type(page);
3867 VM_BUG_ON_PAGE(PageActive(page), page);
3868 ClearPageUnevictable(page);
3869 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3870 add_page_to_lru_list(page, lruvec, lru);
3876 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3877 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3878 spin_unlock_irq(&pgdat->lru_lock);
3881 #endif /* CONFIG_SHMEM */