]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/bluetooth/hci_core.c
networking: introduce and use skb_put_data()
[karo-tx-linux.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63                              size_t count, loff_t *ppos)
64 {
65         struct hci_dev *hdev = file->private_data;
66         char buf[3];
67
68         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69         buf[1] = '\n';
70         buf[2] = '\0';
71         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75                               size_t count, loff_t *ppos)
76 {
77         struct hci_dev *hdev = file->private_data;
78         struct sk_buff *skb;
79         char buf[32];
80         size_t buf_size = min(count, (sizeof(buf)-1));
81         bool enable;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         if (copy_from_user(buf, user_buf, buf_size))
87                 return -EFAULT;
88
89         buf[buf_size] = '\0';
90         if (strtobool(buf, &enable))
91                 return -EINVAL;
92
93         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94                 return -EALREADY;
95
96         hci_req_sync_lock(hdev);
97         if (enable)
98                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         else
101                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102                                      HCI_CMD_TIMEOUT);
103         hci_req_sync_unlock(hdev);
104
105         if (IS_ERR(skb))
106                 return PTR_ERR(skb);
107
108         kfree_skb(skb);
109
110         hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112         return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116         .open           = simple_open,
117         .read           = dut_mode_read,
118         .write          = dut_mode_write,
119         .llseek         = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123                                 size_t count, loff_t *ppos)
124 {
125         struct hci_dev *hdev = file->private_data;
126         char buf[3];
127
128         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129         buf[1] = '\n';
130         buf[2] = '\0';
131         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135                                  size_t count, loff_t *ppos)
136 {
137         struct hci_dev *hdev = file->private_data;
138         char buf[32];
139         size_t buf_size = min(count, (sizeof(buf)-1));
140         bool enable;
141         int err;
142
143         if (copy_from_user(buf, user_buf, buf_size))
144                 return -EFAULT;
145
146         buf[buf_size] = '\0';
147         if (strtobool(buf, &enable))
148                 return -EINVAL;
149
150         /* When the diagnostic flags are not persistent and the transport
151          * is not active or in user channel operation, then there is no need
152          * for the vendor callback. Instead just store the desired value and
153          * the setting will be programmed when the controller gets powered on.
154          */
155         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
156             (!test_bit(HCI_RUNNING, &hdev->flags) ||
157              hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
158                 goto done;
159
160         hci_req_sync_lock(hdev);
161         err = hdev->set_diag(hdev, enable);
162         hci_req_sync_unlock(hdev);
163
164         if (err < 0)
165                 return err;
166
167 done:
168         if (enable)
169                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170         else
171                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173         return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177         .open           = simple_open,
178         .read           = vendor_diag_read,
179         .write          = vendor_diag_write,
180         .llseek         = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186                             &dut_mode_fops);
187
188         if (hdev->set_diag)
189                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190                                     &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195         BT_DBG("%s %ld", req->hdev->name, opt);
196
197         /* Reset device */
198         set_bit(HCI_RESET, &req->hdev->flags);
199         hci_req_add(req, HCI_OP_RESET, 0, NULL);
200         return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207         /* Read Local Supported Features */
208         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210         /* Read Local Version */
211         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213         /* Read BD Address */
214         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221         /* Read Local Version */
222         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224         /* Read Local Supported Commands */
225         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227         /* Read Local AMP Info */
228         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230         /* Read Data Blk size */
231         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233         /* Read Flow Control Mode */
234         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236         /* Read Location Data */
237         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242         /* Read Local Supported Features. Not all AMP controllers
243          * support this so it's placed conditionally in the second
244          * stage init.
245          */
246         if (req->hdev->commands[14] & 0x20)
247                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249         return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254         struct hci_dev *hdev = req->hdev;
255
256         BT_DBG("%s %ld", hdev->name, opt);
257
258         /* Reset */
259         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260                 hci_reset_req(req, 0);
261
262         switch (hdev->dev_type) {
263         case HCI_PRIMARY:
264                 bredr_init(req);
265                 break;
266         case HCI_AMP:
267                 amp_init1(req);
268                 break;
269         default:
270                 BT_ERR("Unknown device type %d", hdev->dev_type);
271                 break;
272         }
273
274         return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279         __le16 param;
280         __u8 flt_type;
281
282         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285         /* Read Class of Device */
286         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288         /* Read Local Name */
289         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291         /* Read Voice Setting */
292         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294         /* Read Number of Supported IAC */
295         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297         /* Read Current IAC LAP */
298         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300         /* Clear Event Filters */
301         flt_type = HCI_FLT_CLEAR_ALL;
302         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304         /* Connection accept timeout ~20 secs */
305         param = cpu_to_le16(0x7d00);
306         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311         struct hci_dev *hdev = req->hdev;
312
313         /* Read LE Buffer Size */
314         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316         /* Read LE Local Supported Features */
317         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319         /* Read LE Supported States */
320         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322         /* LE-only controllers have LE implicitly enabled */
323         if (!lmp_bredr_capable(hdev))
324                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329         struct hci_dev *hdev = req->hdev;
330
331         /* The second byte is 0xff instead of 0x9f (two reserved bits
332          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333          * command otherwise.
334          */
335         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338          * any event mask for pre 1.2 devices.
339          */
340         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341                 return;
342
343         if (lmp_bredr_capable(hdev)) {
344                 events[4] |= 0x01; /* Flow Specification Complete */
345         } else {
346                 /* Use a different default for LE-only devices */
347                 memset(events, 0, sizeof(events));
348                 events[1] |= 0x20; /* Command Complete */
349                 events[1] |= 0x40; /* Command Status */
350                 events[1] |= 0x80; /* Hardware Error */
351
352                 /* If the controller supports the Disconnect command, enable
353                  * the corresponding event. In addition enable packet flow
354                  * control related events.
355                  */
356                 if (hdev->commands[0] & 0x20) {
357                         events[0] |= 0x10; /* Disconnection Complete */
358                         events[2] |= 0x04; /* Number of Completed Packets */
359                         events[3] |= 0x02; /* Data Buffer Overflow */
360                 }
361
362                 /* If the controller supports the Read Remote Version
363                  * Information command, enable the corresponding event.
364                  */
365                 if (hdev->commands[2] & 0x80)
366                         events[1] |= 0x08; /* Read Remote Version Information
367                                             * Complete
368                                             */
369
370                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371                         events[0] |= 0x80; /* Encryption Change */
372                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
373                 }
374         }
375
376         if (lmp_inq_rssi_capable(hdev) ||
377             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378                 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380         if (lmp_ext_feat_capable(hdev))
381                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383         if (lmp_esco_capable(hdev)) {
384                 events[5] |= 0x08; /* Synchronous Connection Complete */
385                 events[5] |= 0x10; /* Synchronous Connection Changed */
386         }
387
388         if (lmp_sniffsubr_capable(hdev))
389                 events[5] |= 0x20; /* Sniff Subrating */
390
391         if (lmp_pause_enc_capable(hdev))
392                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394         if (lmp_ext_inq_capable(hdev))
395                 events[5] |= 0x40; /* Extended Inquiry Result */
396
397         if (lmp_no_flush_capable(hdev))
398                 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400         if (lmp_lsto_capable(hdev))
401                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403         if (lmp_ssp_capable(hdev)) {
404                 events[6] |= 0x01;      /* IO Capability Request */
405                 events[6] |= 0x02;      /* IO Capability Response */
406                 events[6] |= 0x04;      /* User Confirmation Request */
407                 events[6] |= 0x08;      /* User Passkey Request */
408                 events[6] |= 0x10;      /* Remote OOB Data Request */
409                 events[6] |= 0x20;      /* Simple Pairing Complete */
410                 events[7] |= 0x04;      /* User Passkey Notification */
411                 events[7] |= 0x08;      /* Keypress Notification */
412                 events[7] |= 0x10;      /* Remote Host Supported
413                                          * Features Notification
414                                          */
415         }
416
417         if (lmp_le_capable(hdev))
418                 events[7] |= 0x20;      /* LE Meta-Event */
419
420         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425         struct hci_dev *hdev = req->hdev;
426
427         if (hdev->dev_type == HCI_AMP)
428                 return amp_init2(req);
429
430         if (lmp_bredr_capable(hdev))
431                 bredr_setup(req);
432         else
433                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435         if (lmp_le_capable(hdev))
436                 le_setup(req);
437
438         /* All Bluetooth 1.2 and later controllers should support the
439          * HCI command for reading the local supported commands.
440          *
441          * Unfortunately some controllers indicate Bluetooth 1.2 support,
442          * but do not have support for this command. If that is the case,
443          * the driver can quirk the behavior and skip reading the local
444          * supported commands.
445          */
446         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450         if (lmp_ssp_capable(hdev)) {
451                 /* When SSP is available, then the host features page
452                  * should also be available as well. However some
453                  * controllers list the max_page as 0 as long as SSP
454                  * has not been enabled. To achieve proper debugging
455                  * output, force the minimum max_page to 1 at least.
456                  */
457                 hdev->max_page = 0x01;
458
459                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460                         u8 mode = 0x01;
461
462                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463                                     sizeof(mode), &mode);
464                 } else {
465                         struct hci_cp_write_eir cp;
466
467                         memset(hdev->eir, 0, sizeof(hdev->eir));
468                         memset(&cp, 0, sizeof(cp));
469
470                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471                 }
472         }
473
474         if (lmp_inq_rssi_capable(hdev) ||
475             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476                 u8 mode;
477
478                 /* If Extended Inquiry Result events are supported, then
479                  * they are clearly preferred over Inquiry Result with RSSI
480                  * events.
481                  */
482                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485         }
486
487         if (lmp_inq_tx_pwr_capable(hdev))
488                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490         if (lmp_ext_feat_capable(hdev)) {
491                 struct hci_cp_read_local_ext_features cp;
492
493                 cp.page = 0x01;
494                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495                             sizeof(cp), &cp);
496         }
497
498         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499                 u8 enable = 1;
500                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501                             &enable);
502         }
503
504         return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509         struct hci_dev *hdev = req->hdev;
510         struct hci_cp_write_def_link_policy cp;
511         u16 link_policy = 0;
512
513         if (lmp_rswitch_capable(hdev))
514                 link_policy |= HCI_LP_RSWITCH;
515         if (lmp_hold_capable(hdev))
516                 link_policy |= HCI_LP_HOLD;
517         if (lmp_sniff_capable(hdev))
518                 link_policy |= HCI_LP_SNIFF;
519         if (lmp_park_capable(hdev))
520                 link_policy |= HCI_LP_PARK;
521
522         cp.policy = cpu_to_le16(link_policy);
523         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528         struct hci_dev *hdev = req->hdev;
529         struct hci_cp_write_le_host_supported cp;
530
531         /* LE-only devices do not support explicit enablement */
532         if (!lmp_bredr_capable(hdev))
533                 return;
534
535         memset(&cp, 0, sizeof(cp));
536
537         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538                 cp.le = 0x01;
539                 cp.simul = 0x00;
540         }
541
542         if (cp.le != lmp_host_le_capable(hdev))
543                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544                             &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549         struct hci_dev *hdev = req->hdev;
550         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551         bool changed = false;
552
553         /* If Connectionless Slave Broadcast master role is supported
554          * enable all necessary events for it.
555          */
556         if (lmp_csb_master_capable(hdev)) {
557                 events[1] |= 0x40;      /* Triggered Clock Capture */
558                 events[1] |= 0x80;      /* Synchronization Train Complete */
559                 events[2] |= 0x10;      /* Slave Page Response Timeout */
560                 events[2] |= 0x20;      /* CSB Channel Map Change */
561                 changed = true;
562         }
563
564         /* If Connectionless Slave Broadcast slave role is supported
565          * enable all necessary events for it.
566          */
567         if (lmp_csb_slave_capable(hdev)) {
568                 events[2] |= 0x01;      /* Synchronization Train Received */
569                 events[2] |= 0x02;      /* CSB Receive */
570                 events[2] |= 0x04;      /* CSB Timeout */
571                 events[2] |= 0x08;      /* Truncated Page Complete */
572                 changed = true;
573         }
574
575         /* Enable Authenticated Payload Timeout Expired event if supported */
576         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
577                 events[2] |= 0x80;
578                 changed = true;
579         }
580
581         /* Some Broadcom based controllers indicate support for Set Event
582          * Mask Page 2 command, but then actually do not support it. Since
583          * the default value is all bits set to zero, the command is only
584          * required if the event mask has to be changed. In case no change
585          * to the event mask is needed, skip this command.
586          */
587         if (changed)
588                 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
589                             sizeof(events), events);
590 }
591
592 static int hci_init3_req(struct hci_request *req, unsigned long opt)
593 {
594         struct hci_dev *hdev = req->hdev;
595         u8 p;
596
597         hci_setup_event_mask(req);
598
599         if (hdev->commands[6] & 0x20 &&
600             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
601                 struct hci_cp_read_stored_link_key cp;
602
603                 bacpy(&cp.bdaddr, BDADDR_ANY);
604                 cp.read_all = 0x01;
605                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
606         }
607
608         if (hdev->commands[5] & 0x10)
609                 hci_setup_link_policy(req);
610
611         if (hdev->commands[8] & 0x01)
612                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
613
614         /* Some older Broadcom based Bluetooth 1.2 controllers do not
615          * support the Read Page Scan Type command. Check support for
616          * this command in the bit mask of supported commands.
617          */
618         if (hdev->commands[13] & 0x01)
619                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
620
621         if (lmp_le_capable(hdev)) {
622                 u8 events[8];
623
624                 memset(events, 0, sizeof(events));
625
626                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
627                         events[0] |= 0x10;      /* LE Long Term Key Request */
628
629                 /* If controller supports the Connection Parameters Request
630                  * Link Layer Procedure, enable the corresponding event.
631                  */
632                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
633                         events[0] |= 0x20;      /* LE Remote Connection
634                                                  * Parameter Request
635                                                  */
636
637                 /* If the controller supports the Data Length Extension
638                  * feature, enable the corresponding event.
639                  */
640                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
641                         events[0] |= 0x40;      /* LE Data Length Change */
642
643                 /* If the controller supports Extended Scanner Filter
644                  * Policies, enable the correspondig event.
645                  */
646                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
647                         events[1] |= 0x04;      /* LE Direct Advertising
648                                                  * Report
649                                                  */
650
651                 /* If the controller supports Channel Selection Algorithm #2
652                  * feature, enable the corresponding event.
653                  */
654                 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
655                         events[2] |= 0x08;      /* LE Channel Selection
656                                                  * Algorithm
657                                                  */
658
659                 /* If the controller supports the LE Set Scan Enable command,
660                  * enable the corresponding advertising report event.
661                  */
662                 if (hdev->commands[26] & 0x08)
663                         events[0] |= 0x02;      /* LE Advertising Report */
664
665                 /* If the controller supports the LE Create Connection
666                  * command, enable the corresponding event.
667                  */
668                 if (hdev->commands[26] & 0x10)
669                         events[0] |= 0x01;      /* LE Connection Complete */
670
671                 /* If the controller supports the LE Connection Update
672                  * command, enable the corresponding event.
673                  */
674                 if (hdev->commands[27] & 0x04)
675                         events[0] |= 0x04;      /* LE Connection Update
676                                                  * Complete
677                                                  */
678
679                 /* If the controller supports the LE Read Remote Used Features
680                  * command, enable the corresponding event.
681                  */
682                 if (hdev->commands[27] & 0x20)
683                         events[0] |= 0x08;      /* LE Read Remote Used
684                                                  * Features Complete
685                                                  */
686
687                 /* If the controller supports the LE Read Local P-256
688                  * Public Key command, enable the corresponding event.
689                  */
690                 if (hdev->commands[34] & 0x02)
691                         events[0] |= 0x80;      /* LE Read Local P-256
692                                                  * Public Key Complete
693                                                  */
694
695                 /* If the controller supports the LE Generate DHKey
696                  * command, enable the corresponding event.
697                  */
698                 if (hdev->commands[34] & 0x04)
699                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
700
701                 /* If the controller supports the LE Set Default PHY or
702                  * LE Set PHY commands, enable the corresponding event.
703                  */
704                 if (hdev->commands[35] & (0x20 | 0x40))
705                         events[1] |= 0x08;        /* LE PHY Update Complete */
706
707                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
708                             events);
709
710                 if (hdev->commands[25] & 0x40) {
711                         /* Read LE Advertising Channel TX Power */
712                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
713                 }
714
715                 if (hdev->commands[26] & 0x40) {
716                         /* Read LE White List Size */
717                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
718                                     0, NULL);
719                 }
720
721                 if (hdev->commands[26] & 0x80) {
722                         /* Clear LE White List */
723                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
724                 }
725
726                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
727                         /* Read LE Maximum Data Length */
728                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
729
730                         /* Read LE Suggested Default Data Length */
731                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
732                 }
733
734                 hci_set_le_support(req);
735         }
736
737         /* Read features beyond page 1 if available */
738         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
739                 struct hci_cp_read_local_ext_features cp;
740
741                 cp.page = p;
742                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
743                             sizeof(cp), &cp);
744         }
745
746         return 0;
747 }
748
749 static int hci_init4_req(struct hci_request *req, unsigned long opt)
750 {
751         struct hci_dev *hdev = req->hdev;
752
753         /* Some Broadcom based Bluetooth controllers do not support the
754          * Delete Stored Link Key command. They are clearly indicating its
755          * absence in the bit mask of supported commands.
756          *
757          * Check the supported commands and only if the the command is marked
758          * as supported send it. If not supported assume that the controller
759          * does not have actual support for stored link keys which makes this
760          * command redundant anyway.
761          *
762          * Some controllers indicate that they support handling deleting
763          * stored link keys, but they don't. The quirk lets a driver
764          * just disable this command.
765          */
766         if (hdev->commands[6] & 0x80 &&
767             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
768                 struct hci_cp_delete_stored_link_key cp;
769
770                 bacpy(&cp.bdaddr, BDADDR_ANY);
771                 cp.delete_all = 0x01;
772                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
773                             sizeof(cp), &cp);
774         }
775
776         /* Set event mask page 2 if the HCI command for it is supported */
777         if (hdev->commands[22] & 0x04)
778                 hci_set_event_mask_page_2(req);
779
780         /* Read local codec list if the HCI command is supported */
781         if (hdev->commands[29] & 0x20)
782                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
783
784         /* Get MWS transport configuration if the HCI command is supported */
785         if (hdev->commands[30] & 0x08)
786                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
787
788         /* Check for Synchronization Train support */
789         if (lmp_sync_train_capable(hdev))
790                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
791
792         /* Enable Secure Connections if supported and configured */
793         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
794             bredr_sc_enabled(hdev)) {
795                 u8 support = 0x01;
796
797                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
798                             sizeof(support), &support);
799         }
800
801         /* Set Suggested Default Data Length to maximum if supported */
802         if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
803                 struct hci_cp_le_write_def_data_len cp;
804
805                 cp.tx_len = hdev->le_max_tx_len;
806                 cp.tx_time = hdev->le_max_tx_time;
807                 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
808         }
809
810         /* Set Default PHY parameters if command is supported */
811         if (hdev->commands[35] & 0x20) {
812                 struct hci_cp_le_set_default_phy cp;
813
814                 /* No transmitter PHY or receiver PHY preferences */
815                 cp.all_phys = 0x03;
816                 cp.tx_phys = 0;
817                 cp.rx_phys = 0;
818
819                 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
820         }
821
822         return 0;
823 }
824
825 static int __hci_init(struct hci_dev *hdev)
826 {
827         int err;
828
829         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
830         if (err < 0)
831                 return err;
832
833         if (hci_dev_test_flag(hdev, HCI_SETUP))
834                 hci_debugfs_create_basic(hdev);
835
836         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
837         if (err < 0)
838                 return err;
839
840         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
841          * BR/EDR/LE type controllers. AMP controllers only need the
842          * first two stages of init.
843          */
844         if (hdev->dev_type != HCI_PRIMARY)
845                 return 0;
846
847         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
848         if (err < 0)
849                 return err;
850
851         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
852         if (err < 0)
853                 return err;
854
855         /* This function is only called when the controller is actually in
856          * configured state. When the controller is marked as unconfigured,
857          * this initialization procedure is not run.
858          *
859          * It means that it is possible that a controller runs through its
860          * setup phase and then discovers missing settings. If that is the
861          * case, then this function will not be called. It then will only
862          * be called during the config phase.
863          *
864          * So only when in setup phase or config phase, create the debugfs
865          * entries and register the SMP channels.
866          */
867         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
868             !hci_dev_test_flag(hdev, HCI_CONFIG))
869                 return 0;
870
871         hci_debugfs_create_common(hdev);
872
873         if (lmp_bredr_capable(hdev))
874                 hci_debugfs_create_bredr(hdev);
875
876         if (lmp_le_capable(hdev))
877                 hci_debugfs_create_le(hdev);
878
879         return 0;
880 }
881
882 static int hci_init0_req(struct hci_request *req, unsigned long opt)
883 {
884         struct hci_dev *hdev = req->hdev;
885
886         BT_DBG("%s %ld", hdev->name, opt);
887
888         /* Reset */
889         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
890                 hci_reset_req(req, 0);
891
892         /* Read Local Version */
893         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
894
895         /* Read BD Address */
896         if (hdev->set_bdaddr)
897                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
898
899         return 0;
900 }
901
902 static int __hci_unconf_init(struct hci_dev *hdev)
903 {
904         int err;
905
906         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
907                 return 0;
908
909         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
910         if (err < 0)
911                 return err;
912
913         if (hci_dev_test_flag(hdev, HCI_SETUP))
914                 hci_debugfs_create_basic(hdev);
915
916         return 0;
917 }
918
919 static int hci_scan_req(struct hci_request *req, unsigned long opt)
920 {
921         __u8 scan = opt;
922
923         BT_DBG("%s %x", req->hdev->name, scan);
924
925         /* Inquiry and Page scans */
926         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
927         return 0;
928 }
929
930 static int hci_auth_req(struct hci_request *req, unsigned long opt)
931 {
932         __u8 auth = opt;
933
934         BT_DBG("%s %x", req->hdev->name, auth);
935
936         /* Authentication */
937         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
938         return 0;
939 }
940
941 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
942 {
943         __u8 encrypt = opt;
944
945         BT_DBG("%s %x", req->hdev->name, encrypt);
946
947         /* Encryption */
948         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
949         return 0;
950 }
951
952 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
953 {
954         __le16 policy = cpu_to_le16(opt);
955
956         BT_DBG("%s %x", req->hdev->name, policy);
957
958         /* Default link policy */
959         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
960         return 0;
961 }
962
963 /* Get HCI device by index.
964  * Device is held on return. */
965 struct hci_dev *hci_dev_get(int index)
966 {
967         struct hci_dev *hdev = NULL, *d;
968
969         BT_DBG("%d", index);
970
971         if (index < 0)
972                 return NULL;
973
974         read_lock(&hci_dev_list_lock);
975         list_for_each_entry(d, &hci_dev_list, list) {
976                 if (d->id == index) {
977                         hdev = hci_dev_hold(d);
978                         break;
979                 }
980         }
981         read_unlock(&hci_dev_list_lock);
982         return hdev;
983 }
984
985 /* ---- Inquiry support ---- */
986
987 bool hci_discovery_active(struct hci_dev *hdev)
988 {
989         struct discovery_state *discov = &hdev->discovery;
990
991         switch (discov->state) {
992         case DISCOVERY_FINDING:
993         case DISCOVERY_RESOLVING:
994                 return true;
995
996         default:
997                 return false;
998         }
999 }
1000
1001 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1002 {
1003         int old_state = hdev->discovery.state;
1004
1005         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1006
1007         if (old_state == state)
1008                 return;
1009
1010         hdev->discovery.state = state;
1011
1012         switch (state) {
1013         case DISCOVERY_STOPPED:
1014                 hci_update_background_scan(hdev);
1015
1016                 if (old_state != DISCOVERY_STARTING)
1017                         mgmt_discovering(hdev, 0);
1018                 break;
1019         case DISCOVERY_STARTING:
1020                 break;
1021         case DISCOVERY_FINDING:
1022                 mgmt_discovering(hdev, 1);
1023                 break;
1024         case DISCOVERY_RESOLVING:
1025                 break;
1026         case DISCOVERY_STOPPING:
1027                 break;
1028         }
1029 }
1030
1031 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1032 {
1033         struct discovery_state *cache = &hdev->discovery;
1034         struct inquiry_entry *p, *n;
1035
1036         list_for_each_entry_safe(p, n, &cache->all, all) {
1037                 list_del(&p->all);
1038                 kfree(p);
1039         }
1040
1041         INIT_LIST_HEAD(&cache->unknown);
1042         INIT_LIST_HEAD(&cache->resolve);
1043 }
1044
1045 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1046                                                bdaddr_t *bdaddr)
1047 {
1048         struct discovery_state *cache = &hdev->discovery;
1049         struct inquiry_entry *e;
1050
1051         BT_DBG("cache %p, %pMR", cache, bdaddr);
1052
1053         list_for_each_entry(e, &cache->all, all) {
1054                 if (!bacmp(&e->data.bdaddr, bdaddr))
1055                         return e;
1056         }
1057
1058         return NULL;
1059 }
1060
1061 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1062                                                        bdaddr_t *bdaddr)
1063 {
1064         struct discovery_state *cache = &hdev->discovery;
1065         struct inquiry_entry *e;
1066
1067         BT_DBG("cache %p, %pMR", cache, bdaddr);
1068
1069         list_for_each_entry(e, &cache->unknown, list) {
1070                 if (!bacmp(&e->data.bdaddr, bdaddr))
1071                         return e;
1072         }
1073
1074         return NULL;
1075 }
1076
1077 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1078                                                        bdaddr_t *bdaddr,
1079                                                        int state)
1080 {
1081         struct discovery_state *cache = &hdev->discovery;
1082         struct inquiry_entry *e;
1083
1084         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1085
1086         list_for_each_entry(e, &cache->resolve, list) {
1087                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1088                         return e;
1089                 if (!bacmp(&e->data.bdaddr, bdaddr))
1090                         return e;
1091         }
1092
1093         return NULL;
1094 }
1095
1096 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1097                                       struct inquiry_entry *ie)
1098 {
1099         struct discovery_state *cache = &hdev->discovery;
1100         struct list_head *pos = &cache->resolve;
1101         struct inquiry_entry *p;
1102
1103         list_del(&ie->list);
1104
1105         list_for_each_entry(p, &cache->resolve, list) {
1106                 if (p->name_state != NAME_PENDING &&
1107                     abs(p->data.rssi) >= abs(ie->data.rssi))
1108                         break;
1109                 pos = &p->list;
1110         }
1111
1112         list_add(&ie->list, pos);
1113 }
1114
1115 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1116                              bool name_known)
1117 {
1118         struct discovery_state *cache = &hdev->discovery;
1119         struct inquiry_entry *ie;
1120         u32 flags = 0;
1121
1122         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1123
1124         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1125
1126         if (!data->ssp_mode)
1127                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1128
1129         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1130         if (ie) {
1131                 if (!ie->data.ssp_mode)
1132                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1133
1134                 if (ie->name_state == NAME_NEEDED &&
1135                     data->rssi != ie->data.rssi) {
1136                         ie->data.rssi = data->rssi;
1137                         hci_inquiry_cache_update_resolve(hdev, ie);
1138                 }
1139
1140                 goto update;
1141         }
1142
1143         /* Entry not in the cache. Add new one. */
1144         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1145         if (!ie) {
1146                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1147                 goto done;
1148         }
1149
1150         list_add(&ie->all, &cache->all);
1151
1152         if (name_known) {
1153                 ie->name_state = NAME_KNOWN;
1154         } else {
1155                 ie->name_state = NAME_NOT_KNOWN;
1156                 list_add(&ie->list, &cache->unknown);
1157         }
1158
1159 update:
1160         if (name_known && ie->name_state != NAME_KNOWN &&
1161             ie->name_state != NAME_PENDING) {
1162                 ie->name_state = NAME_KNOWN;
1163                 list_del(&ie->list);
1164         }
1165
1166         memcpy(&ie->data, data, sizeof(*data));
1167         ie->timestamp = jiffies;
1168         cache->timestamp = jiffies;
1169
1170         if (ie->name_state == NAME_NOT_KNOWN)
1171                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1172
1173 done:
1174         return flags;
1175 }
1176
1177 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1178 {
1179         struct discovery_state *cache = &hdev->discovery;
1180         struct inquiry_info *info = (struct inquiry_info *) buf;
1181         struct inquiry_entry *e;
1182         int copied = 0;
1183
1184         list_for_each_entry(e, &cache->all, all) {
1185                 struct inquiry_data *data = &e->data;
1186
1187                 if (copied >= num)
1188                         break;
1189
1190                 bacpy(&info->bdaddr, &data->bdaddr);
1191                 info->pscan_rep_mode    = data->pscan_rep_mode;
1192                 info->pscan_period_mode = data->pscan_period_mode;
1193                 info->pscan_mode        = data->pscan_mode;
1194                 memcpy(info->dev_class, data->dev_class, 3);
1195                 info->clock_offset      = data->clock_offset;
1196
1197                 info++;
1198                 copied++;
1199         }
1200
1201         BT_DBG("cache %p, copied %d", cache, copied);
1202         return copied;
1203 }
1204
1205 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1206 {
1207         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1208         struct hci_dev *hdev = req->hdev;
1209         struct hci_cp_inquiry cp;
1210
1211         BT_DBG("%s", hdev->name);
1212
1213         if (test_bit(HCI_INQUIRY, &hdev->flags))
1214                 return 0;
1215
1216         /* Start Inquiry */
1217         memcpy(&cp.lap, &ir->lap, 3);
1218         cp.length  = ir->length;
1219         cp.num_rsp = ir->num_rsp;
1220         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1221
1222         return 0;
1223 }
1224
1225 int hci_inquiry(void __user *arg)
1226 {
1227         __u8 __user *ptr = arg;
1228         struct hci_inquiry_req ir;
1229         struct hci_dev *hdev;
1230         int err = 0, do_inquiry = 0, max_rsp;
1231         long timeo;
1232         __u8 *buf;
1233
1234         if (copy_from_user(&ir, ptr, sizeof(ir)))
1235                 return -EFAULT;
1236
1237         hdev = hci_dev_get(ir.dev_id);
1238         if (!hdev)
1239                 return -ENODEV;
1240
1241         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1242                 err = -EBUSY;
1243                 goto done;
1244         }
1245
1246         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1247                 err = -EOPNOTSUPP;
1248                 goto done;
1249         }
1250
1251         if (hdev->dev_type != HCI_PRIMARY) {
1252                 err = -EOPNOTSUPP;
1253                 goto done;
1254         }
1255
1256         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1257                 err = -EOPNOTSUPP;
1258                 goto done;
1259         }
1260
1261         hci_dev_lock(hdev);
1262         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1263             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1264                 hci_inquiry_cache_flush(hdev);
1265                 do_inquiry = 1;
1266         }
1267         hci_dev_unlock(hdev);
1268
1269         timeo = ir.length * msecs_to_jiffies(2000);
1270
1271         if (do_inquiry) {
1272                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1273                                    timeo, NULL);
1274                 if (err < 0)
1275                         goto done;
1276
1277                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278                  * cleared). If it is interrupted by a signal, return -EINTR.
1279                  */
1280                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1281                                 TASK_INTERRUPTIBLE))
1282                         return -EINTR;
1283         }
1284
1285         /* for unlimited number of responses we will use buffer with
1286          * 255 entries
1287          */
1288         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1289
1290         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291          * copy it to the user space.
1292          */
1293         buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1294         if (!buf) {
1295                 err = -ENOMEM;
1296                 goto done;
1297         }
1298
1299         hci_dev_lock(hdev);
1300         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1301         hci_dev_unlock(hdev);
1302
1303         BT_DBG("num_rsp %d", ir.num_rsp);
1304
1305         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1306                 ptr += sizeof(ir);
1307                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1308                                  ir.num_rsp))
1309                         err = -EFAULT;
1310         } else
1311                 err = -EFAULT;
1312
1313         kfree(buf);
1314
1315 done:
1316         hci_dev_put(hdev);
1317         return err;
1318 }
1319
1320 static int hci_dev_do_open(struct hci_dev *hdev)
1321 {
1322         int ret = 0;
1323
1324         BT_DBG("%s %p", hdev->name, hdev);
1325
1326         hci_req_sync_lock(hdev);
1327
1328         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1329                 ret = -ENODEV;
1330                 goto done;
1331         }
1332
1333         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1334             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1335                 /* Check for rfkill but allow the HCI setup stage to
1336                  * proceed (which in itself doesn't cause any RF activity).
1337                  */
1338                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1339                         ret = -ERFKILL;
1340                         goto done;
1341                 }
1342
1343                 /* Check for valid public address or a configured static
1344                  * random adddress, but let the HCI setup proceed to
1345                  * be able to determine if there is a public address
1346                  * or not.
1347                  *
1348                  * In case of user channel usage, it is not important
1349                  * if a public address or static random address is
1350                  * available.
1351                  *
1352                  * This check is only valid for BR/EDR controllers
1353                  * since AMP controllers do not have an address.
1354                  */
1355                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1356                     hdev->dev_type == HCI_PRIMARY &&
1357                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1358                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1359                         ret = -EADDRNOTAVAIL;
1360                         goto done;
1361                 }
1362         }
1363
1364         if (test_bit(HCI_UP, &hdev->flags)) {
1365                 ret = -EALREADY;
1366                 goto done;
1367         }
1368
1369         if (hdev->open(hdev)) {
1370                 ret = -EIO;
1371                 goto done;
1372         }
1373
1374         set_bit(HCI_RUNNING, &hdev->flags);
1375         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1376
1377         atomic_set(&hdev->cmd_cnt, 1);
1378         set_bit(HCI_INIT, &hdev->flags);
1379
1380         if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1381                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1382
1383                 if (hdev->setup)
1384                         ret = hdev->setup(hdev);
1385
1386                 /* The transport driver can set these quirks before
1387                  * creating the HCI device or in its setup callback.
1388                  *
1389                  * In case any of them is set, the controller has to
1390                  * start up as unconfigured.
1391                  */
1392                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1393                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1394                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1395
1396                 /* For an unconfigured controller it is required to
1397                  * read at least the version information provided by
1398                  * the Read Local Version Information command.
1399                  *
1400                  * If the set_bdaddr driver callback is provided, then
1401                  * also the original Bluetooth public device address
1402                  * will be read using the Read BD Address command.
1403                  */
1404                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1405                         ret = __hci_unconf_init(hdev);
1406         }
1407
1408         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1409                 /* If public address change is configured, ensure that
1410                  * the address gets programmed. If the driver does not
1411                  * support changing the public address, fail the power
1412                  * on procedure.
1413                  */
1414                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1415                     hdev->set_bdaddr)
1416                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1417                 else
1418                         ret = -EADDRNOTAVAIL;
1419         }
1420
1421         if (!ret) {
1422                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1423                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1424                         ret = __hci_init(hdev);
1425                         if (!ret && hdev->post_init)
1426                                 ret = hdev->post_init(hdev);
1427                 }
1428         }
1429
1430         /* If the HCI Reset command is clearing all diagnostic settings,
1431          * then they need to be reprogrammed after the init procedure
1432          * completed.
1433          */
1434         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1435             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1436             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1437                 ret = hdev->set_diag(hdev, true);
1438
1439         clear_bit(HCI_INIT, &hdev->flags);
1440
1441         if (!ret) {
1442                 hci_dev_hold(hdev);
1443                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444                 set_bit(HCI_UP, &hdev->flags);
1445                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1446                 hci_leds_update_powered(hdev, true);
1447                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1448                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1449                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1450                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1451                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1452                     hdev->dev_type == HCI_PRIMARY) {
1453                         ret = __hci_req_hci_power_on(hdev);
1454                         mgmt_power_on(hdev, ret);
1455                 }
1456         } else {
1457                 /* Init failed, cleanup */
1458                 flush_work(&hdev->tx_work);
1459                 flush_work(&hdev->cmd_work);
1460                 flush_work(&hdev->rx_work);
1461
1462                 skb_queue_purge(&hdev->cmd_q);
1463                 skb_queue_purge(&hdev->rx_q);
1464
1465                 if (hdev->flush)
1466                         hdev->flush(hdev);
1467
1468                 if (hdev->sent_cmd) {
1469                         kfree_skb(hdev->sent_cmd);
1470                         hdev->sent_cmd = NULL;
1471                 }
1472
1473                 clear_bit(HCI_RUNNING, &hdev->flags);
1474                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1475
1476                 hdev->close(hdev);
1477                 hdev->flags &= BIT(HCI_RAW);
1478         }
1479
1480 done:
1481         hci_req_sync_unlock(hdev);
1482         return ret;
1483 }
1484
1485 /* ---- HCI ioctl helpers ---- */
1486
1487 int hci_dev_open(__u16 dev)
1488 {
1489         struct hci_dev *hdev;
1490         int err;
1491
1492         hdev = hci_dev_get(dev);
1493         if (!hdev)
1494                 return -ENODEV;
1495
1496         /* Devices that are marked as unconfigured can only be powered
1497          * up as user channel. Trying to bring them up as normal devices
1498          * will result into a failure. Only user channel operation is
1499          * possible.
1500          *
1501          * When this function is called for a user channel, the flag
1502          * HCI_USER_CHANNEL will be set first before attempting to
1503          * open the device.
1504          */
1505         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1506             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1507                 err = -EOPNOTSUPP;
1508                 goto done;
1509         }
1510
1511         /* We need to ensure that no other power on/off work is pending
1512          * before proceeding to call hci_dev_do_open. This is
1513          * particularly important if the setup procedure has not yet
1514          * completed.
1515          */
1516         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1517                 cancel_delayed_work(&hdev->power_off);
1518
1519         /* After this call it is guaranteed that the setup procedure
1520          * has finished. This means that error conditions like RFKILL
1521          * or no valid public or static random address apply.
1522          */
1523         flush_workqueue(hdev->req_workqueue);
1524
1525         /* For controllers not using the management interface and that
1526          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527          * so that pairing works for them. Once the management interface
1528          * is in use this bit will be cleared again and userspace has
1529          * to explicitly enable it.
1530          */
1531         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532             !hci_dev_test_flag(hdev, HCI_MGMT))
1533                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1534
1535         err = hci_dev_do_open(hdev);
1536
1537 done:
1538         hci_dev_put(hdev);
1539         return err;
1540 }
1541
1542 /* This function requires the caller holds hdev->lock */
1543 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1544 {
1545         struct hci_conn_params *p;
1546
1547         list_for_each_entry(p, &hdev->le_conn_params, list) {
1548                 if (p->conn) {
1549                         hci_conn_drop(p->conn);
1550                         hci_conn_put(p->conn);
1551                         p->conn = NULL;
1552                 }
1553                 list_del_init(&p->action);
1554         }
1555
1556         BT_DBG("All LE pending actions cleared");
1557 }
1558
1559 int hci_dev_do_close(struct hci_dev *hdev)
1560 {
1561         bool auto_off;
1562
1563         BT_DBG("%s %p", hdev->name, hdev);
1564
1565         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1566             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1567             test_bit(HCI_UP, &hdev->flags)) {
1568                 /* Execute vendor specific shutdown routine */
1569                 if (hdev->shutdown)
1570                         hdev->shutdown(hdev);
1571         }
1572
1573         cancel_delayed_work(&hdev->power_off);
1574
1575         hci_request_cancel_all(hdev);
1576         hci_req_sync_lock(hdev);
1577
1578         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1579                 cancel_delayed_work_sync(&hdev->cmd_timer);
1580                 hci_req_sync_unlock(hdev);
1581                 return 0;
1582         }
1583
1584         hci_leds_update_powered(hdev, false);
1585
1586         /* Flush RX and TX works */
1587         flush_work(&hdev->tx_work);
1588         flush_work(&hdev->rx_work);
1589
1590         if (hdev->discov_timeout > 0) {
1591                 hdev->discov_timeout = 0;
1592                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1593                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1594         }
1595
1596         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1597                 cancel_delayed_work(&hdev->service_cache);
1598
1599         if (hci_dev_test_flag(hdev, HCI_MGMT))
1600                 cancel_delayed_work_sync(&hdev->rpa_expired);
1601
1602         /* Avoid potential lockdep warnings from the *_flush() calls by
1603          * ensuring the workqueue is empty up front.
1604          */
1605         drain_workqueue(hdev->workqueue);
1606
1607         hci_dev_lock(hdev);
1608
1609         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1610
1611         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1612
1613         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1614             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615             hci_dev_test_flag(hdev, HCI_MGMT))
1616                 __mgmt_power_off(hdev);
1617
1618         hci_inquiry_cache_flush(hdev);
1619         hci_pend_le_actions_clear(hdev);
1620         hci_conn_hash_flush(hdev);
1621         hci_dev_unlock(hdev);
1622
1623         smp_unregister(hdev);
1624
1625         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1626
1627         if (hdev->flush)
1628                 hdev->flush(hdev);
1629
1630         /* Reset device */
1631         skb_queue_purge(&hdev->cmd_q);
1632         atomic_set(&hdev->cmd_cnt, 1);
1633         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1634             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1635                 set_bit(HCI_INIT, &hdev->flags);
1636                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1637                 clear_bit(HCI_INIT, &hdev->flags);
1638         }
1639
1640         /* flush cmd  work */
1641         flush_work(&hdev->cmd_work);
1642
1643         /* Drop queues */
1644         skb_queue_purge(&hdev->rx_q);
1645         skb_queue_purge(&hdev->cmd_q);
1646         skb_queue_purge(&hdev->raw_q);
1647
1648         /* Drop last sent command */
1649         if (hdev->sent_cmd) {
1650                 cancel_delayed_work_sync(&hdev->cmd_timer);
1651                 kfree_skb(hdev->sent_cmd);
1652                 hdev->sent_cmd = NULL;
1653         }
1654
1655         clear_bit(HCI_RUNNING, &hdev->flags);
1656         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1657
1658         /* After this point our queues are empty
1659          * and no tasks are scheduled. */
1660         hdev->close(hdev);
1661
1662         /* Clear flags */
1663         hdev->flags &= BIT(HCI_RAW);
1664         hci_dev_clear_volatile_flags(hdev);
1665
1666         /* Controller radio is available but is currently powered down */
1667         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1668
1669         memset(hdev->eir, 0, sizeof(hdev->eir));
1670         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1671         bacpy(&hdev->random_addr, BDADDR_ANY);
1672
1673         hci_req_sync_unlock(hdev);
1674
1675         hci_dev_put(hdev);
1676         return 0;
1677 }
1678
1679 int hci_dev_close(__u16 dev)
1680 {
1681         struct hci_dev *hdev;
1682         int err;
1683
1684         hdev = hci_dev_get(dev);
1685         if (!hdev)
1686                 return -ENODEV;
1687
1688         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1689                 err = -EBUSY;
1690                 goto done;
1691         }
1692
1693         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1694                 cancel_delayed_work(&hdev->power_off);
1695
1696         err = hci_dev_do_close(hdev);
1697
1698 done:
1699         hci_dev_put(hdev);
1700         return err;
1701 }
1702
1703 static int hci_dev_do_reset(struct hci_dev *hdev)
1704 {
1705         int ret;
1706
1707         BT_DBG("%s %p", hdev->name, hdev);
1708
1709         hci_req_sync_lock(hdev);
1710
1711         /* Drop queues */
1712         skb_queue_purge(&hdev->rx_q);
1713         skb_queue_purge(&hdev->cmd_q);
1714
1715         /* Avoid potential lockdep warnings from the *_flush() calls by
1716          * ensuring the workqueue is empty up front.
1717          */
1718         drain_workqueue(hdev->workqueue);
1719
1720         hci_dev_lock(hdev);
1721         hci_inquiry_cache_flush(hdev);
1722         hci_conn_hash_flush(hdev);
1723         hci_dev_unlock(hdev);
1724
1725         if (hdev->flush)
1726                 hdev->flush(hdev);
1727
1728         atomic_set(&hdev->cmd_cnt, 1);
1729         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1730
1731         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1732
1733         hci_req_sync_unlock(hdev);
1734         return ret;
1735 }
1736
1737 int hci_dev_reset(__u16 dev)
1738 {
1739         struct hci_dev *hdev;
1740         int err;
1741
1742         hdev = hci_dev_get(dev);
1743         if (!hdev)
1744                 return -ENODEV;
1745
1746         if (!test_bit(HCI_UP, &hdev->flags)) {
1747                 err = -ENETDOWN;
1748                 goto done;
1749         }
1750
1751         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1752                 err = -EBUSY;
1753                 goto done;
1754         }
1755
1756         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757                 err = -EOPNOTSUPP;
1758                 goto done;
1759         }
1760
1761         err = hci_dev_do_reset(hdev);
1762
1763 done:
1764         hci_dev_put(hdev);
1765         return err;
1766 }
1767
1768 int hci_dev_reset_stat(__u16 dev)
1769 {
1770         struct hci_dev *hdev;
1771         int ret = 0;
1772
1773         hdev = hci_dev_get(dev);
1774         if (!hdev)
1775                 return -ENODEV;
1776
1777         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1778                 ret = -EBUSY;
1779                 goto done;
1780         }
1781
1782         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1783                 ret = -EOPNOTSUPP;
1784                 goto done;
1785         }
1786
1787         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1788
1789 done:
1790         hci_dev_put(hdev);
1791         return ret;
1792 }
1793
1794 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1795 {
1796         bool conn_changed, discov_changed;
1797
1798         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1799
1800         if ((scan & SCAN_PAGE))
1801                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1802                                                           HCI_CONNECTABLE);
1803         else
1804                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1805                                                            HCI_CONNECTABLE);
1806
1807         if ((scan & SCAN_INQUIRY)) {
1808                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1809                                                             HCI_DISCOVERABLE);
1810         } else {
1811                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1812                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1813                                                              HCI_DISCOVERABLE);
1814         }
1815
1816         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1817                 return;
1818
1819         if (conn_changed || discov_changed) {
1820                 /* In case this was disabled through mgmt */
1821                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1822
1823                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1824                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1825
1826                 mgmt_new_settings(hdev);
1827         }
1828 }
1829
1830 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1831 {
1832         struct hci_dev *hdev;
1833         struct hci_dev_req dr;
1834         int err = 0;
1835
1836         if (copy_from_user(&dr, arg, sizeof(dr)))
1837                 return -EFAULT;
1838
1839         hdev = hci_dev_get(dr.dev_id);
1840         if (!hdev)
1841                 return -ENODEV;
1842
1843         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844                 err = -EBUSY;
1845                 goto done;
1846         }
1847
1848         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1849                 err = -EOPNOTSUPP;
1850                 goto done;
1851         }
1852
1853         if (hdev->dev_type != HCI_PRIMARY) {
1854                 err = -EOPNOTSUPP;
1855                 goto done;
1856         }
1857
1858         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1859                 err = -EOPNOTSUPP;
1860                 goto done;
1861         }
1862
1863         switch (cmd) {
1864         case HCISETAUTH:
1865                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1866                                    HCI_INIT_TIMEOUT, NULL);
1867                 break;
1868
1869         case HCISETENCRYPT:
1870                 if (!lmp_encrypt_capable(hdev)) {
1871                         err = -EOPNOTSUPP;
1872                         break;
1873                 }
1874
1875                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1876                         /* Auth must be enabled first */
1877                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1878                                            HCI_INIT_TIMEOUT, NULL);
1879                         if (err)
1880                                 break;
1881                 }
1882
1883                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1884                                    HCI_INIT_TIMEOUT, NULL);
1885                 break;
1886
1887         case HCISETSCAN:
1888                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1889                                    HCI_INIT_TIMEOUT, NULL);
1890
1891                 /* Ensure that the connectable and discoverable states
1892                  * get correctly modified as this was a non-mgmt change.
1893                  */
1894                 if (!err)
1895                         hci_update_scan_state(hdev, dr.dev_opt);
1896                 break;
1897
1898         case HCISETLINKPOL:
1899                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1900                                    HCI_INIT_TIMEOUT, NULL);
1901                 break;
1902
1903         case HCISETLINKMODE:
1904                 hdev->link_mode = ((__u16) dr.dev_opt) &
1905                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1906                 break;
1907
1908         case HCISETPTYPE:
1909                 hdev->pkt_type = (__u16) dr.dev_opt;
1910                 break;
1911
1912         case HCISETACLMTU:
1913                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1914                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1915                 break;
1916
1917         case HCISETSCOMTU:
1918                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1919                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1920                 break;
1921
1922         default:
1923                 err = -EINVAL;
1924                 break;
1925         }
1926
1927 done:
1928         hci_dev_put(hdev);
1929         return err;
1930 }
1931
1932 int hci_get_dev_list(void __user *arg)
1933 {
1934         struct hci_dev *hdev;
1935         struct hci_dev_list_req *dl;
1936         struct hci_dev_req *dr;
1937         int n = 0, size, err;
1938         __u16 dev_num;
1939
1940         if (get_user(dev_num, (__u16 __user *) arg))
1941                 return -EFAULT;
1942
1943         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1944                 return -EINVAL;
1945
1946         size = sizeof(*dl) + dev_num * sizeof(*dr);
1947
1948         dl = kzalloc(size, GFP_KERNEL);
1949         if (!dl)
1950                 return -ENOMEM;
1951
1952         dr = dl->dev_req;
1953
1954         read_lock(&hci_dev_list_lock);
1955         list_for_each_entry(hdev, &hci_dev_list, list) {
1956                 unsigned long flags = hdev->flags;
1957
1958                 /* When the auto-off is configured it means the transport
1959                  * is running, but in that case still indicate that the
1960                  * device is actually down.
1961                  */
1962                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1963                         flags &= ~BIT(HCI_UP);
1964
1965                 (dr + n)->dev_id  = hdev->id;
1966                 (dr + n)->dev_opt = flags;
1967
1968                 if (++n >= dev_num)
1969                         break;
1970         }
1971         read_unlock(&hci_dev_list_lock);
1972
1973         dl->dev_num = n;
1974         size = sizeof(*dl) + n * sizeof(*dr);
1975
1976         err = copy_to_user(arg, dl, size);
1977         kfree(dl);
1978
1979         return err ? -EFAULT : 0;
1980 }
1981
1982 int hci_get_dev_info(void __user *arg)
1983 {
1984         struct hci_dev *hdev;
1985         struct hci_dev_info di;
1986         unsigned long flags;
1987         int err = 0;
1988
1989         if (copy_from_user(&di, arg, sizeof(di)))
1990                 return -EFAULT;
1991
1992         hdev = hci_dev_get(di.dev_id);
1993         if (!hdev)
1994                 return -ENODEV;
1995
1996         /* When the auto-off is configured it means the transport
1997          * is running, but in that case still indicate that the
1998          * device is actually down.
1999          */
2000         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001                 flags = hdev->flags & ~BIT(HCI_UP);
2002         else
2003                 flags = hdev->flags;
2004
2005         strcpy(di.name, hdev->name);
2006         di.bdaddr   = hdev->bdaddr;
2007         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2008         di.flags    = flags;
2009         di.pkt_type = hdev->pkt_type;
2010         if (lmp_bredr_capable(hdev)) {
2011                 di.acl_mtu  = hdev->acl_mtu;
2012                 di.acl_pkts = hdev->acl_pkts;
2013                 di.sco_mtu  = hdev->sco_mtu;
2014                 di.sco_pkts = hdev->sco_pkts;
2015         } else {
2016                 di.acl_mtu  = hdev->le_mtu;
2017                 di.acl_pkts = hdev->le_pkts;
2018                 di.sco_mtu  = 0;
2019                 di.sco_pkts = 0;
2020         }
2021         di.link_policy = hdev->link_policy;
2022         di.link_mode   = hdev->link_mode;
2023
2024         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2025         memcpy(&di.features, &hdev->features, sizeof(di.features));
2026
2027         if (copy_to_user(arg, &di, sizeof(di)))
2028                 err = -EFAULT;
2029
2030         hci_dev_put(hdev);
2031
2032         return err;
2033 }
2034
2035 /* ---- Interface to HCI drivers ---- */
2036
2037 static int hci_rfkill_set_block(void *data, bool blocked)
2038 {
2039         struct hci_dev *hdev = data;
2040
2041         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2042
2043         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2044                 return -EBUSY;
2045
2046         if (blocked) {
2047                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2048                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2049                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2050                         hci_dev_do_close(hdev);
2051         } else {
2052                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2053         }
2054
2055         return 0;
2056 }
2057
2058 static const struct rfkill_ops hci_rfkill_ops = {
2059         .set_block = hci_rfkill_set_block,
2060 };
2061
2062 static void hci_power_on(struct work_struct *work)
2063 {
2064         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2065         int err;
2066
2067         BT_DBG("%s", hdev->name);
2068
2069         if (test_bit(HCI_UP, &hdev->flags) &&
2070             hci_dev_test_flag(hdev, HCI_MGMT) &&
2071             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2072                 cancel_delayed_work(&hdev->power_off);
2073                 hci_req_sync_lock(hdev);
2074                 err = __hci_req_hci_power_on(hdev);
2075                 hci_req_sync_unlock(hdev);
2076                 mgmt_power_on(hdev, err);
2077                 return;
2078         }
2079
2080         err = hci_dev_do_open(hdev);
2081         if (err < 0) {
2082                 hci_dev_lock(hdev);
2083                 mgmt_set_powered_failed(hdev, err);
2084                 hci_dev_unlock(hdev);
2085                 return;
2086         }
2087
2088         /* During the HCI setup phase, a few error conditions are
2089          * ignored and they need to be checked now. If they are still
2090          * valid, it is important to turn the device back off.
2091          */
2092         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2093             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2094             (hdev->dev_type == HCI_PRIMARY &&
2095              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2096              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2097                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2098                 hci_dev_do_close(hdev);
2099         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2100                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2101                                    HCI_AUTO_OFF_TIMEOUT);
2102         }
2103
2104         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2105                 /* For unconfigured devices, set the HCI_RAW flag
2106                  * so that userspace can easily identify them.
2107                  */
2108                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2109                         set_bit(HCI_RAW, &hdev->flags);
2110
2111                 /* For fully configured devices, this will send
2112                  * the Index Added event. For unconfigured devices,
2113                  * it will send Unconfigued Index Added event.
2114                  *
2115                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116                  * and no event will be send.
2117                  */
2118                 mgmt_index_added(hdev);
2119         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2120                 /* When the controller is now configured, then it
2121                  * is important to clear the HCI_RAW flag.
2122                  */
2123                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2124                         clear_bit(HCI_RAW, &hdev->flags);
2125
2126                 /* Powering on the controller with HCI_CONFIG set only
2127                  * happens with the transition from unconfigured to
2128                  * configured. This will send the Index Added event.
2129                  */
2130                 mgmt_index_added(hdev);
2131         }
2132 }
2133
2134 static void hci_power_off(struct work_struct *work)
2135 {
2136         struct hci_dev *hdev = container_of(work, struct hci_dev,
2137                                             power_off.work);
2138
2139         BT_DBG("%s", hdev->name);
2140
2141         hci_dev_do_close(hdev);
2142 }
2143
2144 static void hci_error_reset(struct work_struct *work)
2145 {
2146         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2147
2148         BT_DBG("%s", hdev->name);
2149
2150         if (hdev->hw_error)
2151                 hdev->hw_error(hdev, hdev->hw_error_code);
2152         else
2153                 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2154                        hdev->hw_error_code);
2155
2156         if (hci_dev_do_close(hdev))
2157                 return;
2158
2159         hci_dev_do_open(hdev);
2160 }
2161
2162 void hci_uuids_clear(struct hci_dev *hdev)
2163 {
2164         struct bt_uuid *uuid, *tmp;
2165
2166         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2167                 list_del(&uuid->list);
2168                 kfree(uuid);
2169         }
2170 }
2171
2172 void hci_link_keys_clear(struct hci_dev *hdev)
2173 {
2174         struct link_key *key;
2175
2176         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2177                 list_del_rcu(&key->list);
2178                 kfree_rcu(key, rcu);
2179         }
2180 }
2181
2182 void hci_smp_ltks_clear(struct hci_dev *hdev)
2183 {
2184         struct smp_ltk *k;
2185
2186         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2187                 list_del_rcu(&k->list);
2188                 kfree_rcu(k, rcu);
2189         }
2190 }
2191
2192 void hci_smp_irks_clear(struct hci_dev *hdev)
2193 {
2194         struct smp_irk *k;
2195
2196         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2197                 list_del_rcu(&k->list);
2198                 kfree_rcu(k, rcu);
2199         }
2200 }
2201
2202 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2203 {
2204         struct link_key *k;
2205
2206         rcu_read_lock();
2207         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2208                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2209                         rcu_read_unlock();
2210                         return k;
2211                 }
2212         }
2213         rcu_read_unlock();
2214
2215         return NULL;
2216 }
2217
2218 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2219                                u8 key_type, u8 old_key_type)
2220 {
2221         /* Legacy key */
2222         if (key_type < 0x03)
2223                 return true;
2224
2225         /* Debug keys are insecure so don't store them persistently */
2226         if (key_type == HCI_LK_DEBUG_COMBINATION)
2227                 return false;
2228
2229         /* Changed combination key and there's no previous one */
2230         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2231                 return false;
2232
2233         /* Security mode 3 case */
2234         if (!conn)
2235                 return true;
2236
2237         /* BR/EDR key derived using SC from an LE link */
2238         if (conn->type == LE_LINK)
2239                 return true;
2240
2241         /* Neither local nor remote side had no-bonding as requirement */
2242         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2243                 return true;
2244
2245         /* Local side had dedicated bonding as requirement */
2246         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2247                 return true;
2248
2249         /* Remote side had dedicated bonding as requirement */
2250         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2251                 return true;
2252
2253         /* If none of the above criteria match, then don't store the key
2254          * persistently */
2255         return false;
2256 }
2257
2258 static u8 ltk_role(u8 type)
2259 {
2260         if (type == SMP_LTK)
2261                 return HCI_ROLE_MASTER;
2262
2263         return HCI_ROLE_SLAVE;
2264 }
2265
2266 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2267                              u8 addr_type, u8 role)
2268 {
2269         struct smp_ltk *k;
2270
2271         rcu_read_lock();
2272         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2273                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2274                         continue;
2275
2276                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2277                         rcu_read_unlock();
2278                         return k;
2279                 }
2280         }
2281         rcu_read_unlock();
2282
2283         return NULL;
2284 }
2285
2286 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2287 {
2288         struct smp_irk *irk;
2289
2290         rcu_read_lock();
2291         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2292                 if (!bacmp(&irk->rpa, rpa)) {
2293                         rcu_read_unlock();
2294                         return irk;
2295                 }
2296         }
2297
2298         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2299                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2300                         bacpy(&irk->rpa, rpa);
2301                         rcu_read_unlock();
2302                         return irk;
2303                 }
2304         }
2305         rcu_read_unlock();
2306
2307         return NULL;
2308 }
2309
2310 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2311                                      u8 addr_type)
2312 {
2313         struct smp_irk *irk;
2314
2315         /* Identity Address must be public or static random */
2316         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2317                 return NULL;
2318
2319         rcu_read_lock();
2320         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2321                 if (addr_type == irk->addr_type &&
2322                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2323                         rcu_read_unlock();
2324                         return irk;
2325                 }
2326         }
2327         rcu_read_unlock();
2328
2329         return NULL;
2330 }
2331
2332 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2333                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2334                                   u8 pin_len, bool *persistent)
2335 {
2336         struct link_key *key, *old_key;
2337         u8 old_key_type;
2338
2339         old_key = hci_find_link_key(hdev, bdaddr);
2340         if (old_key) {
2341                 old_key_type = old_key->type;
2342                 key = old_key;
2343         } else {
2344                 old_key_type = conn ? conn->key_type : 0xff;
2345                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2346                 if (!key)
2347                         return NULL;
2348                 list_add_rcu(&key->list, &hdev->link_keys);
2349         }
2350
2351         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2352
2353         /* Some buggy controller combinations generate a changed
2354          * combination key for legacy pairing even when there's no
2355          * previous key */
2356         if (type == HCI_LK_CHANGED_COMBINATION &&
2357             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2358                 type = HCI_LK_COMBINATION;
2359                 if (conn)
2360                         conn->key_type = type;
2361         }
2362
2363         bacpy(&key->bdaddr, bdaddr);
2364         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2365         key->pin_len = pin_len;
2366
2367         if (type == HCI_LK_CHANGED_COMBINATION)
2368                 key->type = old_key_type;
2369         else
2370                 key->type = type;
2371
2372         if (persistent)
2373                 *persistent = hci_persistent_key(hdev, conn, type,
2374                                                  old_key_type);
2375
2376         return key;
2377 }
2378
2379 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2380                             u8 addr_type, u8 type, u8 authenticated,
2381                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2382 {
2383         struct smp_ltk *key, *old_key;
2384         u8 role = ltk_role(type);
2385
2386         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2387         if (old_key)
2388                 key = old_key;
2389         else {
2390                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2391                 if (!key)
2392                         return NULL;
2393                 list_add_rcu(&key->list, &hdev->long_term_keys);
2394         }
2395
2396         bacpy(&key->bdaddr, bdaddr);
2397         key->bdaddr_type = addr_type;
2398         memcpy(key->val, tk, sizeof(key->val));
2399         key->authenticated = authenticated;
2400         key->ediv = ediv;
2401         key->rand = rand;
2402         key->enc_size = enc_size;
2403         key->type = type;
2404
2405         return key;
2406 }
2407
2408 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2409                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2410 {
2411         struct smp_irk *irk;
2412
2413         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2414         if (!irk) {
2415                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2416                 if (!irk)
2417                         return NULL;
2418
2419                 bacpy(&irk->bdaddr, bdaddr);
2420                 irk->addr_type = addr_type;
2421
2422                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2423         }
2424
2425         memcpy(irk->val, val, 16);
2426         bacpy(&irk->rpa, rpa);
2427
2428         return irk;
2429 }
2430
2431 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2432 {
2433         struct link_key *key;
2434
2435         key = hci_find_link_key(hdev, bdaddr);
2436         if (!key)
2437                 return -ENOENT;
2438
2439         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2440
2441         list_del_rcu(&key->list);
2442         kfree_rcu(key, rcu);
2443
2444         return 0;
2445 }
2446
2447 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2448 {
2449         struct smp_ltk *k;
2450         int removed = 0;
2451
2452         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2453                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2454                         continue;
2455
2456                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2457
2458                 list_del_rcu(&k->list);
2459                 kfree_rcu(k, rcu);
2460                 removed++;
2461         }
2462
2463         return removed ? 0 : -ENOENT;
2464 }
2465
2466 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2467 {
2468         struct smp_irk *k;
2469
2470         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2471                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2472                         continue;
2473
2474                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2475
2476                 list_del_rcu(&k->list);
2477                 kfree_rcu(k, rcu);
2478         }
2479 }
2480
2481 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2482 {
2483         struct smp_ltk *k;
2484         struct smp_irk *irk;
2485         u8 addr_type;
2486
2487         if (type == BDADDR_BREDR) {
2488                 if (hci_find_link_key(hdev, bdaddr))
2489                         return true;
2490                 return false;
2491         }
2492
2493         /* Convert to HCI addr type which struct smp_ltk uses */
2494         if (type == BDADDR_LE_PUBLIC)
2495                 addr_type = ADDR_LE_DEV_PUBLIC;
2496         else
2497                 addr_type = ADDR_LE_DEV_RANDOM;
2498
2499         irk = hci_get_irk(hdev, bdaddr, addr_type);
2500         if (irk) {
2501                 bdaddr = &irk->bdaddr;
2502                 addr_type = irk->addr_type;
2503         }
2504
2505         rcu_read_lock();
2506         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2507                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2508                         rcu_read_unlock();
2509                         return true;
2510                 }
2511         }
2512         rcu_read_unlock();
2513
2514         return false;
2515 }
2516
2517 /* HCI command timer function */
2518 static void hci_cmd_timeout(struct work_struct *work)
2519 {
2520         struct hci_dev *hdev = container_of(work, struct hci_dev,
2521                                             cmd_timer.work);
2522
2523         if (hdev->sent_cmd) {
2524                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2525                 u16 opcode = __le16_to_cpu(sent->opcode);
2526
2527                 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2528         } else {
2529                 BT_ERR("%s command tx timeout", hdev->name);
2530         }
2531
2532         atomic_set(&hdev->cmd_cnt, 1);
2533         queue_work(hdev->workqueue, &hdev->cmd_work);
2534 }
2535
2536 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2537                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2538 {
2539         struct oob_data *data;
2540
2541         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2542                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2543                         continue;
2544                 if (data->bdaddr_type != bdaddr_type)
2545                         continue;
2546                 return data;
2547         }
2548
2549         return NULL;
2550 }
2551
2552 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2553                                u8 bdaddr_type)
2554 {
2555         struct oob_data *data;
2556
2557         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2558         if (!data)
2559                 return -ENOENT;
2560
2561         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2562
2563         list_del(&data->list);
2564         kfree(data);
2565
2566         return 0;
2567 }
2568
2569 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2570 {
2571         struct oob_data *data, *n;
2572
2573         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2574                 list_del(&data->list);
2575                 kfree(data);
2576         }
2577 }
2578
2579 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2580                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2581                             u8 *hash256, u8 *rand256)
2582 {
2583         struct oob_data *data;
2584
2585         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2586         if (!data) {
2587                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2588                 if (!data)
2589                         return -ENOMEM;
2590
2591                 bacpy(&data->bdaddr, bdaddr);
2592                 data->bdaddr_type = bdaddr_type;
2593                 list_add(&data->list, &hdev->remote_oob_data);
2594         }
2595
2596         if (hash192 && rand192) {
2597                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2598                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2599                 if (hash256 && rand256)
2600                         data->present = 0x03;
2601         } else {
2602                 memset(data->hash192, 0, sizeof(data->hash192));
2603                 memset(data->rand192, 0, sizeof(data->rand192));
2604                 if (hash256 && rand256)
2605                         data->present = 0x02;
2606                 else
2607                         data->present = 0x00;
2608         }
2609
2610         if (hash256 && rand256) {
2611                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2612                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2613         } else {
2614                 memset(data->hash256, 0, sizeof(data->hash256));
2615                 memset(data->rand256, 0, sizeof(data->rand256));
2616                 if (hash192 && rand192)
2617                         data->present = 0x01;
2618         }
2619
2620         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2621
2622         return 0;
2623 }
2624
2625 /* This function requires the caller holds hdev->lock */
2626 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2627 {
2628         struct adv_info *adv_instance;
2629
2630         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2631                 if (adv_instance->instance == instance)
2632                         return adv_instance;
2633         }
2634
2635         return NULL;
2636 }
2637
2638 /* This function requires the caller holds hdev->lock */
2639 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2640 {
2641         struct adv_info *cur_instance;
2642
2643         cur_instance = hci_find_adv_instance(hdev, instance);
2644         if (!cur_instance)
2645                 return NULL;
2646
2647         if (cur_instance == list_last_entry(&hdev->adv_instances,
2648                                             struct adv_info, list))
2649                 return list_first_entry(&hdev->adv_instances,
2650                                                  struct adv_info, list);
2651         else
2652                 return list_next_entry(cur_instance, list);
2653 }
2654
2655 /* This function requires the caller holds hdev->lock */
2656 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2657 {
2658         struct adv_info *adv_instance;
2659
2660         adv_instance = hci_find_adv_instance(hdev, instance);
2661         if (!adv_instance)
2662                 return -ENOENT;
2663
2664         BT_DBG("%s removing %dMR", hdev->name, instance);
2665
2666         if (hdev->cur_adv_instance == instance) {
2667                 if (hdev->adv_instance_timeout) {
2668                         cancel_delayed_work(&hdev->adv_instance_expire);
2669                         hdev->adv_instance_timeout = 0;
2670                 }
2671                 hdev->cur_adv_instance = 0x00;
2672         }
2673
2674         list_del(&adv_instance->list);
2675         kfree(adv_instance);
2676
2677         hdev->adv_instance_cnt--;
2678
2679         return 0;
2680 }
2681
2682 /* This function requires the caller holds hdev->lock */
2683 void hci_adv_instances_clear(struct hci_dev *hdev)
2684 {
2685         struct adv_info *adv_instance, *n;
2686
2687         if (hdev->adv_instance_timeout) {
2688                 cancel_delayed_work(&hdev->adv_instance_expire);
2689                 hdev->adv_instance_timeout = 0;
2690         }
2691
2692         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2693                 list_del(&adv_instance->list);
2694                 kfree(adv_instance);
2695         }
2696
2697         hdev->adv_instance_cnt = 0;
2698         hdev->cur_adv_instance = 0x00;
2699 }
2700
2701 /* This function requires the caller holds hdev->lock */
2702 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2703                          u16 adv_data_len, u8 *adv_data,
2704                          u16 scan_rsp_len, u8 *scan_rsp_data,
2705                          u16 timeout, u16 duration)
2706 {
2707         struct adv_info *adv_instance;
2708
2709         adv_instance = hci_find_adv_instance(hdev, instance);
2710         if (adv_instance) {
2711                 memset(adv_instance->adv_data, 0,
2712                        sizeof(adv_instance->adv_data));
2713                 memset(adv_instance->scan_rsp_data, 0,
2714                        sizeof(adv_instance->scan_rsp_data));
2715         } else {
2716                 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2717                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2718                         return -EOVERFLOW;
2719
2720                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2721                 if (!adv_instance)
2722                         return -ENOMEM;
2723
2724                 adv_instance->pending = true;
2725                 adv_instance->instance = instance;
2726                 list_add(&adv_instance->list, &hdev->adv_instances);
2727                 hdev->adv_instance_cnt++;
2728         }
2729
2730         adv_instance->flags = flags;
2731         adv_instance->adv_data_len = adv_data_len;
2732         adv_instance->scan_rsp_len = scan_rsp_len;
2733
2734         if (adv_data_len)
2735                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2736
2737         if (scan_rsp_len)
2738                 memcpy(adv_instance->scan_rsp_data,
2739                        scan_rsp_data, scan_rsp_len);
2740
2741         adv_instance->timeout = timeout;
2742         adv_instance->remaining_time = timeout;
2743
2744         if (duration == 0)
2745                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2746         else
2747                 adv_instance->duration = duration;
2748
2749         BT_DBG("%s for %dMR", hdev->name, instance);
2750
2751         return 0;
2752 }
2753
2754 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2755                                          bdaddr_t *bdaddr, u8 type)
2756 {
2757         struct bdaddr_list *b;
2758
2759         list_for_each_entry(b, bdaddr_list, list) {
2760                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2761                         return b;
2762         }
2763
2764         return NULL;
2765 }
2766
2767 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2768 {
2769         struct bdaddr_list *b, *n;
2770
2771         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2772                 list_del(&b->list);
2773                 kfree(b);
2774         }
2775 }
2776
2777 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2778 {
2779         struct bdaddr_list *entry;
2780
2781         if (!bacmp(bdaddr, BDADDR_ANY))
2782                 return -EBADF;
2783
2784         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2785                 return -EEXIST;
2786
2787         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2788         if (!entry)
2789                 return -ENOMEM;
2790
2791         bacpy(&entry->bdaddr, bdaddr);
2792         entry->bdaddr_type = type;
2793
2794         list_add(&entry->list, list);
2795
2796         return 0;
2797 }
2798
2799 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2800 {
2801         struct bdaddr_list *entry;
2802
2803         if (!bacmp(bdaddr, BDADDR_ANY)) {
2804                 hci_bdaddr_list_clear(list);
2805                 return 0;
2806         }
2807
2808         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2809         if (!entry)
2810                 return -ENOENT;
2811
2812         list_del(&entry->list);
2813         kfree(entry);
2814
2815         return 0;
2816 }
2817
2818 /* This function requires the caller holds hdev->lock */
2819 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2820                                                bdaddr_t *addr, u8 addr_type)
2821 {
2822         struct hci_conn_params *params;
2823
2824         list_for_each_entry(params, &hdev->le_conn_params, list) {
2825                 if (bacmp(&params->addr, addr) == 0 &&
2826                     params->addr_type == addr_type) {
2827                         return params;
2828                 }
2829         }
2830
2831         return NULL;
2832 }
2833
2834 /* This function requires the caller holds hdev->lock */
2835 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2836                                                   bdaddr_t *addr, u8 addr_type)
2837 {
2838         struct hci_conn_params *param;
2839
2840         list_for_each_entry(param, list, action) {
2841                 if (bacmp(&param->addr, addr) == 0 &&
2842                     param->addr_type == addr_type)
2843                         return param;
2844         }
2845
2846         return NULL;
2847 }
2848
2849 /* This function requires the caller holds hdev->lock */
2850 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2851                                             bdaddr_t *addr, u8 addr_type)
2852 {
2853         struct hci_conn_params *params;
2854
2855         params = hci_conn_params_lookup(hdev, addr, addr_type);
2856         if (params)
2857                 return params;
2858
2859         params = kzalloc(sizeof(*params), GFP_KERNEL);
2860         if (!params) {
2861                 BT_ERR("Out of memory");
2862                 return NULL;
2863         }
2864
2865         bacpy(&params->addr, addr);
2866         params->addr_type = addr_type;
2867
2868         list_add(&params->list, &hdev->le_conn_params);
2869         INIT_LIST_HEAD(&params->action);
2870
2871         params->conn_min_interval = hdev->le_conn_min_interval;
2872         params->conn_max_interval = hdev->le_conn_max_interval;
2873         params->conn_latency = hdev->le_conn_latency;
2874         params->supervision_timeout = hdev->le_supv_timeout;
2875         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2876
2877         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2878
2879         return params;
2880 }
2881
2882 static void hci_conn_params_free(struct hci_conn_params *params)
2883 {
2884         if (params->conn) {
2885                 hci_conn_drop(params->conn);
2886                 hci_conn_put(params->conn);
2887         }
2888
2889         list_del(&params->action);
2890         list_del(&params->list);
2891         kfree(params);
2892 }
2893
2894 /* This function requires the caller holds hdev->lock */
2895 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2896 {
2897         struct hci_conn_params *params;
2898
2899         params = hci_conn_params_lookup(hdev, addr, addr_type);
2900         if (!params)
2901                 return;
2902
2903         hci_conn_params_free(params);
2904
2905         hci_update_background_scan(hdev);
2906
2907         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2908 }
2909
2910 /* This function requires the caller holds hdev->lock */
2911 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2912 {
2913         struct hci_conn_params *params, *tmp;
2914
2915         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2916                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2917                         continue;
2918
2919                 /* If trying to estabilish one time connection to disabled
2920                  * device, leave the params, but mark them as just once.
2921                  */
2922                 if (params->explicit_connect) {
2923                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2924                         continue;
2925                 }
2926
2927                 list_del(&params->list);
2928                 kfree(params);
2929         }
2930
2931         BT_DBG("All LE disabled connection parameters were removed");
2932 }
2933
2934 /* This function requires the caller holds hdev->lock */
2935 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2936 {
2937         struct hci_conn_params *params, *tmp;
2938
2939         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2940                 hci_conn_params_free(params);
2941
2942         BT_DBG("All LE connection parameters were removed");
2943 }
2944
2945 /* Copy the Identity Address of the controller.
2946  *
2947  * If the controller has a public BD_ADDR, then by default use that one.
2948  * If this is a LE only controller without a public address, default to
2949  * the static random address.
2950  *
2951  * For debugging purposes it is possible to force controllers with a
2952  * public address to use the static random address instead.
2953  *
2954  * In case BR/EDR has been disabled on a dual-mode controller and
2955  * userspace has configured a static address, then that address
2956  * becomes the identity address instead of the public BR/EDR address.
2957  */
2958 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2959                                u8 *bdaddr_type)
2960 {
2961         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2962             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2963             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2964              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2965                 bacpy(bdaddr, &hdev->static_addr);
2966                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2967         } else {
2968                 bacpy(bdaddr, &hdev->bdaddr);
2969                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2970         }
2971 }
2972
2973 /* Alloc HCI device */
2974 struct hci_dev *hci_alloc_dev(void)
2975 {
2976         struct hci_dev *hdev;
2977
2978         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2979         if (!hdev)
2980                 return NULL;
2981
2982         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2983         hdev->esco_type = (ESCO_HV1);
2984         hdev->link_mode = (HCI_LM_ACCEPT);
2985         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2986         hdev->io_capability = 0x03;     /* No Input No Output */
2987         hdev->manufacturer = 0xffff;    /* Default to internal use */
2988         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2989         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2990         hdev->adv_instance_cnt = 0;
2991         hdev->cur_adv_instance = 0x00;
2992         hdev->adv_instance_timeout = 0;
2993
2994         hdev->sniff_max_interval = 800;
2995         hdev->sniff_min_interval = 80;
2996
2997         hdev->le_adv_channel_map = 0x07;
2998         hdev->le_adv_min_interval = 0x0800;
2999         hdev->le_adv_max_interval = 0x0800;
3000         hdev->le_scan_interval = 0x0060;
3001         hdev->le_scan_window = 0x0030;
3002         hdev->le_conn_min_interval = 0x0018;
3003         hdev->le_conn_max_interval = 0x0028;
3004         hdev->le_conn_latency = 0x0000;
3005         hdev->le_supv_timeout = 0x002a;
3006         hdev->le_def_tx_len = 0x001b;
3007         hdev->le_def_tx_time = 0x0148;
3008         hdev->le_max_tx_len = 0x001b;
3009         hdev->le_max_tx_time = 0x0148;
3010         hdev->le_max_rx_len = 0x001b;
3011         hdev->le_max_rx_time = 0x0148;
3012
3013         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3014         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3015         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3016         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3017
3018         mutex_init(&hdev->lock);
3019         mutex_init(&hdev->req_lock);
3020
3021         INIT_LIST_HEAD(&hdev->mgmt_pending);
3022         INIT_LIST_HEAD(&hdev->blacklist);
3023         INIT_LIST_HEAD(&hdev->whitelist);
3024         INIT_LIST_HEAD(&hdev->uuids);
3025         INIT_LIST_HEAD(&hdev->link_keys);
3026         INIT_LIST_HEAD(&hdev->long_term_keys);
3027         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3028         INIT_LIST_HEAD(&hdev->remote_oob_data);
3029         INIT_LIST_HEAD(&hdev->le_white_list);
3030         INIT_LIST_HEAD(&hdev->le_conn_params);
3031         INIT_LIST_HEAD(&hdev->pend_le_conns);
3032         INIT_LIST_HEAD(&hdev->pend_le_reports);
3033         INIT_LIST_HEAD(&hdev->conn_hash.list);
3034         INIT_LIST_HEAD(&hdev->adv_instances);
3035
3036         INIT_WORK(&hdev->rx_work, hci_rx_work);
3037         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3038         INIT_WORK(&hdev->tx_work, hci_tx_work);
3039         INIT_WORK(&hdev->power_on, hci_power_on);
3040         INIT_WORK(&hdev->error_reset, hci_error_reset);
3041
3042         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3043
3044         skb_queue_head_init(&hdev->rx_q);
3045         skb_queue_head_init(&hdev->cmd_q);
3046         skb_queue_head_init(&hdev->raw_q);
3047
3048         init_waitqueue_head(&hdev->req_wait_q);
3049
3050         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3051
3052         hci_request_setup(hdev);
3053
3054         hci_init_sysfs(hdev);
3055         discovery_init(hdev);
3056
3057         return hdev;
3058 }
3059 EXPORT_SYMBOL(hci_alloc_dev);
3060
3061 /* Free HCI device */
3062 void hci_free_dev(struct hci_dev *hdev)
3063 {
3064         /* will free via device release */
3065         put_device(&hdev->dev);
3066 }
3067 EXPORT_SYMBOL(hci_free_dev);
3068
3069 /* Register HCI device */
3070 int hci_register_dev(struct hci_dev *hdev)
3071 {
3072         int id, error;
3073
3074         if (!hdev->open || !hdev->close || !hdev->send)
3075                 return -EINVAL;
3076
3077         /* Do not allow HCI_AMP devices to register at index 0,
3078          * so the index can be used as the AMP controller ID.
3079          */
3080         switch (hdev->dev_type) {
3081         case HCI_PRIMARY:
3082                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3083                 break;
3084         case HCI_AMP:
3085                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3086                 break;
3087         default:
3088                 return -EINVAL;
3089         }
3090
3091         if (id < 0)
3092                 return id;
3093
3094         sprintf(hdev->name, "hci%d", id);
3095         hdev->id = id;
3096
3097         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3098
3099         hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3100                                           WQ_MEM_RECLAIM, 1, hdev->name);
3101         if (!hdev->workqueue) {
3102                 error = -ENOMEM;
3103                 goto err;
3104         }
3105
3106         hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3107                                               WQ_MEM_RECLAIM, 1, hdev->name);
3108         if (!hdev->req_workqueue) {
3109                 destroy_workqueue(hdev->workqueue);
3110                 error = -ENOMEM;
3111                 goto err;
3112         }
3113
3114         if (!IS_ERR_OR_NULL(bt_debugfs))
3115                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3116
3117         dev_set_name(&hdev->dev, "%s", hdev->name);
3118
3119         error = device_add(&hdev->dev);
3120         if (error < 0)
3121                 goto err_wqueue;
3122
3123         hci_leds_init(hdev);
3124
3125         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3126                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3127                                     hdev);
3128         if (hdev->rfkill) {
3129                 if (rfkill_register(hdev->rfkill) < 0) {
3130                         rfkill_destroy(hdev->rfkill);
3131                         hdev->rfkill = NULL;
3132                 }
3133         }
3134
3135         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3136                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3137
3138         hci_dev_set_flag(hdev, HCI_SETUP);
3139         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3140
3141         if (hdev->dev_type == HCI_PRIMARY) {
3142                 /* Assume BR/EDR support until proven otherwise (such as
3143                  * through reading supported features during init.
3144                  */
3145                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3146         }
3147
3148         write_lock(&hci_dev_list_lock);
3149         list_add(&hdev->list, &hci_dev_list);
3150         write_unlock(&hci_dev_list_lock);
3151
3152         /* Devices that are marked for raw-only usage are unconfigured
3153          * and should not be included in normal operation.
3154          */
3155         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3156                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3157
3158         hci_sock_dev_event(hdev, HCI_DEV_REG);
3159         hci_dev_hold(hdev);
3160
3161         queue_work(hdev->req_workqueue, &hdev->power_on);
3162
3163         return id;
3164
3165 err_wqueue:
3166         destroy_workqueue(hdev->workqueue);
3167         destroy_workqueue(hdev->req_workqueue);
3168 err:
3169         ida_simple_remove(&hci_index_ida, hdev->id);
3170
3171         return error;
3172 }
3173 EXPORT_SYMBOL(hci_register_dev);
3174
3175 /* Unregister HCI device */
3176 void hci_unregister_dev(struct hci_dev *hdev)
3177 {
3178         int id;
3179
3180         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3181
3182         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3183
3184         id = hdev->id;
3185
3186         write_lock(&hci_dev_list_lock);
3187         list_del(&hdev->list);
3188         write_unlock(&hci_dev_list_lock);
3189
3190         cancel_work_sync(&hdev->power_on);
3191
3192         hci_dev_do_close(hdev);
3193
3194         if (!test_bit(HCI_INIT, &hdev->flags) &&
3195             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3196             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3197                 hci_dev_lock(hdev);
3198                 mgmt_index_removed(hdev);
3199                 hci_dev_unlock(hdev);
3200         }
3201
3202         /* mgmt_index_removed should take care of emptying the
3203          * pending list */
3204         BUG_ON(!list_empty(&hdev->mgmt_pending));
3205
3206         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3207
3208         if (hdev->rfkill) {
3209                 rfkill_unregister(hdev->rfkill);
3210                 rfkill_destroy(hdev->rfkill);
3211         }
3212
3213         device_del(&hdev->dev);
3214
3215         debugfs_remove_recursive(hdev->debugfs);
3216         kfree_const(hdev->hw_info);
3217         kfree_const(hdev->fw_info);
3218
3219         destroy_workqueue(hdev->workqueue);
3220         destroy_workqueue(hdev->req_workqueue);
3221
3222         hci_dev_lock(hdev);
3223         hci_bdaddr_list_clear(&hdev->blacklist);
3224         hci_bdaddr_list_clear(&hdev->whitelist);
3225         hci_uuids_clear(hdev);
3226         hci_link_keys_clear(hdev);
3227         hci_smp_ltks_clear(hdev);
3228         hci_smp_irks_clear(hdev);
3229         hci_remote_oob_data_clear(hdev);
3230         hci_adv_instances_clear(hdev);
3231         hci_bdaddr_list_clear(&hdev->le_white_list);
3232         hci_conn_params_clear_all(hdev);
3233         hci_discovery_filter_clear(hdev);
3234         hci_dev_unlock(hdev);
3235
3236         hci_dev_put(hdev);
3237
3238         ida_simple_remove(&hci_index_ida, id);
3239 }
3240 EXPORT_SYMBOL(hci_unregister_dev);
3241
3242 /* Suspend HCI device */
3243 int hci_suspend_dev(struct hci_dev *hdev)
3244 {
3245         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3246         return 0;
3247 }
3248 EXPORT_SYMBOL(hci_suspend_dev);
3249
3250 /* Resume HCI device */
3251 int hci_resume_dev(struct hci_dev *hdev)
3252 {
3253         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3254         return 0;
3255 }
3256 EXPORT_SYMBOL(hci_resume_dev);
3257
3258 /* Reset HCI device */
3259 int hci_reset_dev(struct hci_dev *hdev)
3260 {
3261         const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3262         struct sk_buff *skb;
3263
3264         skb = bt_skb_alloc(3, GFP_ATOMIC);
3265         if (!skb)
3266                 return -ENOMEM;
3267
3268         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3269         skb_put_data(skb, hw_err, 3);
3270
3271         /* Send Hardware Error to upper stack */
3272         return hci_recv_frame(hdev, skb);
3273 }
3274 EXPORT_SYMBOL(hci_reset_dev);
3275
3276 /* Receive frame from HCI drivers */
3277 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3278 {
3279         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3280                       && !test_bit(HCI_INIT, &hdev->flags))) {
3281                 kfree_skb(skb);
3282                 return -ENXIO;
3283         }
3284
3285         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3286             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3287             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3288                 kfree_skb(skb);
3289                 return -EINVAL;
3290         }
3291
3292         /* Incoming skb */
3293         bt_cb(skb)->incoming = 1;
3294
3295         /* Time stamp */
3296         __net_timestamp(skb);
3297
3298         skb_queue_tail(&hdev->rx_q, skb);
3299         queue_work(hdev->workqueue, &hdev->rx_work);
3300
3301         return 0;
3302 }
3303 EXPORT_SYMBOL(hci_recv_frame);
3304
3305 /* Receive diagnostic message from HCI drivers */
3306 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3307 {
3308         /* Mark as diagnostic packet */
3309         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3310
3311         /* Time stamp */
3312         __net_timestamp(skb);
3313
3314         skb_queue_tail(&hdev->rx_q, skb);
3315         queue_work(hdev->workqueue, &hdev->rx_work);
3316
3317         return 0;
3318 }
3319 EXPORT_SYMBOL(hci_recv_diag);
3320
3321 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3322 {
3323         va_list vargs;
3324
3325         va_start(vargs, fmt);
3326         kfree_const(hdev->hw_info);
3327         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3328         va_end(vargs);
3329 }
3330 EXPORT_SYMBOL(hci_set_hw_info);
3331
3332 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3333 {
3334         va_list vargs;
3335
3336         va_start(vargs, fmt);
3337         kfree_const(hdev->fw_info);
3338         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3339         va_end(vargs);
3340 }
3341 EXPORT_SYMBOL(hci_set_fw_info);
3342
3343 /* ---- Interface to upper protocols ---- */
3344
3345 int hci_register_cb(struct hci_cb *cb)
3346 {
3347         BT_DBG("%p name %s", cb, cb->name);
3348
3349         mutex_lock(&hci_cb_list_lock);
3350         list_add_tail(&cb->list, &hci_cb_list);
3351         mutex_unlock(&hci_cb_list_lock);
3352
3353         return 0;
3354 }
3355 EXPORT_SYMBOL(hci_register_cb);
3356
3357 int hci_unregister_cb(struct hci_cb *cb)
3358 {
3359         BT_DBG("%p name %s", cb, cb->name);
3360
3361         mutex_lock(&hci_cb_list_lock);
3362         list_del(&cb->list);
3363         mutex_unlock(&hci_cb_list_lock);
3364
3365         return 0;
3366 }
3367 EXPORT_SYMBOL(hci_unregister_cb);
3368
3369 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3370 {
3371         int err;
3372
3373         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3374                skb->len);
3375
3376         /* Time stamp */
3377         __net_timestamp(skb);
3378
3379         /* Send copy to monitor */
3380         hci_send_to_monitor(hdev, skb);
3381
3382         if (atomic_read(&hdev->promisc)) {
3383                 /* Send copy to the sockets */
3384                 hci_send_to_sock(hdev, skb);
3385         }
3386
3387         /* Get rid of skb owner, prior to sending to the driver. */
3388         skb_orphan(skb);
3389
3390         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3391                 kfree_skb(skb);
3392                 return;
3393         }
3394
3395         err = hdev->send(hdev, skb);
3396         if (err < 0) {
3397                 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3398                 kfree_skb(skb);
3399         }
3400 }
3401
3402 /* Send HCI command */
3403 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3404                  const void *param)
3405 {
3406         struct sk_buff *skb;
3407
3408         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3409
3410         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3411         if (!skb) {
3412                 BT_ERR("%s no memory for command", hdev->name);
3413                 return -ENOMEM;
3414         }
3415
3416         /* Stand-alone HCI commands must be flagged as
3417          * single-command requests.
3418          */
3419         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3420
3421         skb_queue_tail(&hdev->cmd_q, skb);
3422         queue_work(hdev->workqueue, &hdev->cmd_work);
3423
3424         return 0;
3425 }
3426
3427 /* Get data from the previously sent command */
3428 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3429 {
3430         struct hci_command_hdr *hdr;
3431
3432         if (!hdev->sent_cmd)
3433                 return NULL;
3434
3435         hdr = (void *) hdev->sent_cmd->data;
3436
3437         if (hdr->opcode != cpu_to_le16(opcode))
3438                 return NULL;
3439
3440         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3441
3442         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3443 }
3444
3445 /* Send HCI command and wait for command commplete event */
3446 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3447                              const void *param, u32 timeout)
3448 {
3449         struct sk_buff *skb;
3450
3451         if (!test_bit(HCI_UP, &hdev->flags))
3452                 return ERR_PTR(-ENETDOWN);
3453
3454         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3455
3456         hci_req_sync_lock(hdev);
3457         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3458         hci_req_sync_unlock(hdev);
3459
3460         return skb;
3461 }
3462 EXPORT_SYMBOL(hci_cmd_sync);
3463
3464 /* Send ACL data */
3465 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3466 {
3467         struct hci_acl_hdr *hdr;
3468         int len = skb->len;
3469
3470         skb_push(skb, HCI_ACL_HDR_SIZE);
3471         skb_reset_transport_header(skb);
3472         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3473         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3474         hdr->dlen   = cpu_to_le16(len);
3475 }
3476
3477 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3478                           struct sk_buff *skb, __u16 flags)
3479 {
3480         struct hci_conn *conn = chan->conn;
3481         struct hci_dev *hdev = conn->hdev;
3482         struct sk_buff *list;
3483
3484         skb->len = skb_headlen(skb);
3485         skb->data_len = 0;
3486
3487         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3488
3489         switch (hdev->dev_type) {
3490         case HCI_PRIMARY:
3491                 hci_add_acl_hdr(skb, conn->handle, flags);
3492                 break;
3493         case HCI_AMP:
3494                 hci_add_acl_hdr(skb, chan->handle, flags);
3495                 break;
3496         default:
3497                 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3498                 return;
3499         }
3500
3501         list = skb_shinfo(skb)->frag_list;
3502         if (!list) {
3503                 /* Non fragmented */
3504                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3505
3506                 skb_queue_tail(queue, skb);
3507         } else {
3508                 /* Fragmented */
3509                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3510
3511                 skb_shinfo(skb)->frag_list = NULL;
3512
3513                 /* Queue all fragments atomically. We need to use spin_lock_bh
3514                  * here because of 6LoWPAN links, as there this function is
3515                  * called from softirq and using normal spin lock could cause
3516                  * deadlocks.
3517                  */
3518                 spin_lock_bh(&queue->lock);
3519
3520                 __skb_queue_tail(queue, skb);
3521
3522                 flags &= ~ACL_START;
3523                 flags |= ACL_CONT;
3524                 do {
3525                         skb = list; list = list->next;
3526
3527                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3528                         hci_add_acl_hdr(skb, conn->handle, flags);
3529
3530                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3531
3532                         __skb_queue_tail(queue, skb);
3533                 } while (list);
3534
3535                 spin_unlock_bh(&queue->lock);
3536         }
3537 }
3538
3539 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3540 {
3541         struct hci_dev *hdev = chan->conn->hdev;
3542
3543         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3544
3545         hci_queue_acl(chan, &chan->data_q, skb, flags);
3546
3547         queue_work(hdev->workqueue, &hdev->tx_work);
3548 }
3549
3550 /* Send SCO data */
3551 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3552 {
3553         struct hci_dev *hdev = conn->hdev;
3554         struct hci_sco_hdr hdr;
3555
3556         BT_DBG("%s len %d", hdev->name, skb->len);
3557
3558         hdr.handle = cpu_to_le16(conn->handle);
3559         hdr.dlen   = skb->len;
3560
3561         skb_push(skb, HCI_SCO_HDR_SIZE);
3562         skb_reset_transport_header(skb);
3563         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3564
3565         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3566
3567         skb_queue_tail(&conn->data_q, skb);
3568         queue_work(hdev->workqueue, &hdev->tx_work);
3569 }
3570
3571 /* ---- HCI TX task (outgoing data) ---- */
3572
3573 /* HCI Connection scheduler */
3574 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3575                                      int *quote)
3576 {
3577         struct hci_conn_hash *h = &hdev->conn_hash;
3578         struct hci_conn *conn = NULL, *c;
3579         unsigned int num = 0, min = ~0;
3580
3581         /* We don't have to lock device here. Connections are always
3582          * added and removed with TX task disabled. */
3583
3584         rcu_read_lock();
3585
3586         list_for_each_entry_rcu(c, &h->list, list) {
3587                 if (c->type != type || skb_queue_empty(&c->data_q))
3588                         continue;
3589
3590                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3591                         continue;
3592
3593                 num++;
3594
3595                 if (c->sent < min) {
3596                         min  = c->sent;
3597                         conn = c;
3598                 }
3599
3600                 if (hci_conn_num(hdev, type) == num)
3601                         break;
3602         }
3603
3604         rcu_read_unlock();
3605
3606         if (conn) {
3607                 int cnt, q;
3608
3609                 switch (conn->type) {
3610                 case ACL_LINK:
3611                         cnt = hdev->acl_cnt;
3612                         break;
3613                 case SCO_LINK:
3614                 case ESCO_LINK:
3615                         cnt = hdev->sco_cnt;
3616                         break;
3617                 case LE_LINK:
3618                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3619                         break;
3620                 default:
3621                         cnt = 0;
3622                         BT_ERR("Unknown link type");
3623                 }
3624
3625                 q = cnt / num;
3626                 *quote = q ? q : 1;
3627         } else
3628                 *quote = 0;
3629
3630         BT_DBG("conn %p quote %d", conn, *quote);
3631         return conn;
3632 }
3633
3634 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3635 {
3636         struct hci_conn_hash *h = &hdev->conn_hash;
3637         struct hci_conn *c;
3638
3639         BT_ERR("%s link tx timeout", hdev->name);
3640
3641         rcu_read_lock();
3642
3643         /* Kill stalled connections */
3644         list_for_each_entry_rcu(c, &h->list, list) {
3645                 if (c->type == type && c->sent) {
3646                         BT_ERR("%s killing stalled connection %pMR",
3647                                hdev->name, &c->dst);
3648                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3649                 }
3650         }
3651
3652         rcu_read_unlock();
3653 }
3654
3655 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3656                                       int *quote)
3657 {
3658         struct hci_conn_hash *h = &hdev->conn_hash;
3659         struct hci_chan *chan = NULL;
3660         unsigned int num = 0, min = ~0, cur_prio = 0;
3661         struct hci_conn *conn;
3662         int cnt, q, conn_num = 0;
3663
3664         BT_DBG("%s", hdev->name);
3665
3666         rcu_read_lock();
3667
3668         list_for_each_entry_rcu(conn, &h->list, list) {
3669                 struct hci_chan *tmp;
3670
3671                 if (conn->type != type)
3672                         continue;
3673
3674                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3675                         continue;
3676
3677                 conn_num++;
3678
3679                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3680                         struct sk_buff *skb;
3681
3682                         if (skb_queue_empty(&tmp->data_q))
3683                                 continue;
3684
3685                         skb = skb_peek(&tmp->data_q);
3686                         if (skb->priority < cur_prio)
3687                                 continue;
3688
3689                         if (skb->priority > cur_prio) {
3690                                 num = 0;
3691                                 min = ~0;
3692                                 cur_prio = skb->priority;
3693                         }
3694
3695                         num++;
3696
3697                         if (conn->sent < min) {
3698                                 min  = conn->sent;
3699                                 chan = tmp;
3700                         }
3701                 }
3702
3703                 if (hci_conn_num(hdev, type) == conn_num)
3704                         break;
3705         }
3706
3707         rcu_read_unlock();
3708
3709         if (!chan)
3710                 return NULL;
3711
3712         switch (chan->conn->type) {
3713         case ACL_LINK:
3714                 cnt = hdev->acl_cnt;
3715                 break;
3716         case AMP_LINK:
3717                 cnt = hdev->block_cnt;
3718                 break;
3719         case SCO_LINK:
3720         case ESCO_LINK:
3721                 cnt = hdev->sco_cnt;
3722                 break;
3723         case LE_LINK:
3724                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3725                 break;
3726         default:
3727                 cnt = 0;
3728                 BT_ERR("Unknown link type");
3729         }
3730
3731         q = cnt / num;
3732         *quote = q ? q : 1;
3733         BT_DBG("chan %p quote %d", chan, *quote);
3734         return chan;
3735 }
3736
3737 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3738 {
3739         struct hci_conn_hash *h = &hdev->conn_hash;
3740         struct hci_conn *conn;
3741         int num = 0;
3742
3743         BT_DBG("%s", hdev->name);
3744
3745         rcu_read_lock();
3746
3747         list_for_each_entry_rcu(conn, &h->list, list) {
3748                 struct hci_chan *chan;
3749
3750                 if (conn->type != type)
3751                         continue;
3752
3753                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3754                         continue;
3755
3756                 num++;
3757
3758                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3759                         struct sk_buff *skb;
3760
3761                         if (chan->sent) {
3762                                 chan->sent = 0;
3763                                 continue;
3764                         }
3765
3766                         if (skb_queue_empty(&chan->data_q))
3767                                 continue;
3768
3769                         skb = skb_peek(&chan->data_q);
3770                         if (skb->priority >= HCI_PRIO_MAX - 1)
3771                                 continue;
3772
3773                         skb->priority = HCI_PRIO_MAX - 1;
3774
3775                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3776                                skb->priority);
3777                 }
3778
3779                 if (hci_conn_num(hdev, type) == num)
3780                         break;
3781         }
3782
3783         rcu_read_unlock();
3784
3785 }
3786
3787 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3788 {
3789         /* Calculate count of blocks used by this packet */
3790         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3791 }
3792
3793 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3794 {
3795         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3796                 /* ACL tx timeout must be longer than maximum
3797                  * link supervision timeout (40.9 seconds) */
3798                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3799                                        HCI_ACL_TX_TIMEOUT))
3800                         hci_link_tx_to(hdev, ACL_LINK);
3801         }
3802 }
3803
3804 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3805 {
3806         unsigned int cnt = hdev->acl_cnt;
3807         struct hci_chan *chan;
3808         struct sk_buff *skb;
3809         int quote;
3810
3811         __check_timeout(hdev, cnt);
3812
3813         while (hdev->acl_cnt &&
3814                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3815                 u32 priority = (skb_peek(&chan->data_q))->priority;
3816                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3817                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3818                                skb->len, skb->priority);
3819
3820                         /* Stop if priority has changed */
3821                         if (skb->priority < priority)
3822                                 break;
3823
3824                         skb = skb_dequeue(&chan->data_q);
3825
3826                         hci_conn_enter_active_mode(chan->conn,
3827                                                    bt_cb(skb)->force_active);
3828
3829                         hci_send_frame(hdev, skb);
3830                         hdev->acl_last_tx = jiffies;
3831
3832                         hdev->acl_cnt--;
3833                         chan->sent++;
3834                         chan->conn->sent++;
3835                 }
3836         }
3837
3838         if (cnt != hdev->acl_cnt)
3839                 hci_prio_recalculate(hdev, ACL_LINK);
3840 }
3841
3842 static void hci_sched_acl_blk(struct hci_dev *hdev)
3843 {
3844         unsigned int cnt = hdev->block_cnt;
3845         struct hci_chan *chan;
3846         struct sk_buff *skb;
3847         int quote;
3848         u8 type;
3849
3850         __check_timeout(hdev, cnt);
3851
3852         BT_DBG("%s", hdev->name);
3853
3854         if (hdev->dev_type == HCI_AMP)
3855                 type = AMP_LINK;
3856         else
3857                 type = ACL_LINK;
3858
3859         while (hdev->block_cnt > 0 &&
3860                (chan = hci_chan_sent(hdev, type, &quote))) {
3861                 u32 priority = (skb_peek(&chan->data_q))->priority;
3862                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3863                         int blocks;
3864
3865                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3866                                skb->len, skb->priority);
3867
3868                         /* Stop if priority has changed */
3869                         if (skb->priority < priority)
3870                                 break;
3871
3872                         skb = skb_dequeue(&chan->data_q);
3873
3874                         blocks = __get_blocks(hdev, skb);
3875                         if (blocks > hdev->block_cnt)
3876                                 return;
3877
3878                         hci_conn_enter_active_mode(chan->conn,
3879                                                    bt_cb(skb)->force_active);
3880
3881                         hci_send_frame(hdev, skb);
3882                         hdev->acl_last_tx = jiffies;
3883
3884                         hdev->block_cnt -= blocks;
3885                         quote -= blocks;
3886
3887                         chan->sent += blocks;
3888                         chan->conn->sent += blocks;
3889                 }
3890         }
3891
3892         if (cnt != hdev->block_cnt)
3893                 hci_prio_recalculate(hdev, type);
3894 }
3895
3896 static void hci_sched_acl(struct hci_dev *hdev)
3897 {
3898         BT_DBG("%s", hdev->name);
3899
3900         /* No ACL link over BR/EDR controller */
3901         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3902                 return;
3903
3904         /* No AMP link over AMP controller */
3905         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3906                 return;
3907
3908         switch (hdev->flow_ctl_mode) {
3909         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3910                 hci_sched_acl_pkt(hdev);
3911                 break;
3912
3913         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3914                 hci_sched_acl_blk(hdev);
3915                 break;
3916         }
3917 }
3918
3919 /* Schedule SCO */
3920 static void hci_sched_sco(struct hci_dev *hdev)
3921 {
3922         struct hci_conn *conn;
3923         struct sk_buff *skb;
3924         int quote;
3925
3926         BT_DBG("%s", hdev->name);
3927
3928         if (!hci_conn_num(hdev, SCO_LINK))
3929                 return;
3930
3931         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3932                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3933                         BT_DBG("skb %p len %d", skb, skb->len);
3934                         hci_send_frame(hdev, skb);
3935
3936                         conn->sent++;
3937                         if (conn->sent == ~0)
3938                                 conn->sent = 0;
3939                 }
3940         }
3941 }
3942
3943 static void hci_sched_esco(struct hci_dev *hdev)
3944 {
3945         struct hci_conn *conn;
3946         struct sk_buff *skb;
3947         int quote;
3948
3949         BT_DBG("%s", hdev->name);
3950
3951         if (!hci_conn_num(hdev, ESCO_LINK))
3952                 return;
3953
3954         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3955                                                      &quote))) {
3956                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3957                         BT_DBG("skb %p len %d", skb, skb->len);
3958                         hci_send_frame(hdev, skb);
3959
3960                         conn->sent++;
3961                         if (conn->sent == ~0)
3962                                 conn->sent = 0;
3963                 }
3964         }
3965 }
3966
3967 static void hci_sched_le(struct hci_dev *hdev)
3968 {
3969         struct hci_chan *chan;
3970         struct sk_buff *skb;
3971         int quote, cnt, tmp;
3972
3973         BT_DBG("%s", hdev->name);
3974
3975         if (!hci_conn_num(hdev, LE_LINK))
3976                 return;
3977
3978         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3979                 /* LE tx timeout must be longer than maximum
3980                  * link supervision timeout (40.9 seconds) */
3981                 if (!hdev->le_cnt && hdev->le_pkts &&
3982                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
3983                         hci_link_tx_to(hdev, LE_LINK);
3984         }
3985
3986         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3987         tmp = cnt;
3988         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3989                 u32 priority = (skb_peek(&chan->data_q))->priority;
3990                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3991                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3992                                skb->len, skb->priority);
3993
3994                         /* Stop if priority has changed */
3995                         if (skb->priority < priority)
3996                                 break;
3997
3998                         skb = skb_dequeue(&chan->data_q);
3999
4000                         hci_send_frame(hdev, skb);
4001                         hdev->le_last_tx = jiffies;
4002
4003                         cnt--;
4004                         chan->sent++;
4005                         chan->conn->sent++;
4006                 }
4007         }
4008
4009         if (hdev->le_pkts)
4010                 hdev->le_cnt = cnt;
4011         else
4012                 hdev->acl_cnt = cnt;
4013
4014         if (cnt != tmp)
4015                 hci_prio_recalculate(hdev, LE_LINK);
4016 }
4017
4018 static void hci_tx_work(struct work_struct *work)
4019 {
4020         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4021         struct sk_buff *skb;
4022
4023         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4024                hdev->sco_cnt, hdev->le_cnt);
4025
4026         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4027                 /* Schedule queues and send stuff to HCI driver */
4028                 hci_sched_acl(hdev);
4029                 hci_sched_sco(hdev);
4030                 hci_sched_esco(hdev);
4031                 hci_sched_le(hdev);
4032         }
4033
4034         /* Send next queued raw (unknown type) packet */
4035         while ((skb = skb_dequeue(&hdev->raw_q)))
4036                 hci_send_frame(hdev, skb);
4037 }
4038
4039 /* ----- HCI RX task (incoming data processing) ----- */
4040
4041 /* ACL data packet */
4042 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4043 {
4044         struct hci_acl_hdr *hdr = (void *) skb->data;
4045         struct hci_conn *conn;
4046         __u16 handle, flags;
4047
4048         skb_pull(skb, HCI_ACL_HDR_SIZE);
4049
4050         handle = __le16_to_cpu(hdr->handle);
4051         flags  = hci_flags(handle);
4052         handle = hci_handle(handle);
4053
4054         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4055                handle, flags);
4056
4057         hdev->stat.acl_rx++;
4058
4059         hci_dev_lock(hdev);
4060         conn = hci_conn_hash_lookup_handle(hdev, handle);
4061         hci_dev_unlock(hdev);
4062
4063         if (conn) {
4064                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4065
4066                 /* Send to upper protocol */
4067                 l2cap_recv_acldata(conn, skb, flags);
4068                 return;
4069         } else {
4070                 BT_ERR("%s ACL packet for unknown connection handle %d",
4071                        hdev->name, handle);
4072         }
4073
4074         kfree_skb(skb);
4075 }
4076
4077 /* SCO data packet */
4078 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4079 {
4080         struct hci_sco_hdr *hdr = (void *) skb->data;
4081         struct hci_conn *conn;
4082         __u16 handle;
4083
4084         skb_pull(skb, HCI_SCO_HDR_SIZE);
4085
4086         handle = __le16_to_cpu(hdr->handle);
4087
4088         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4089
4090         hdev->stat.sco_rx++;
4091
4092         hci_dev_lock(hdev);
4093         conn = hci_conn_hash_lookup_handle(hdev, handle);
4094         hci_dev_unlock(hdev);
4095
4096         if (conn) {
4097                 /* Send to upper protocol */
4098                 sco_recv_scodata(conn, skb);
4099                 return;
4100         } else {
4101                 BT_ERR("%s SCO packet for unknown connection handle %d",
4102                        hdev->name, handle);
4103         }
4104
4105         kfree_skb(skb);
4106 }
4107
4108 static bool hci_req_is_complete(struct hci_dev *hdev)
4109 {
4110         struct sk_buff *skb;
4111
4112         skb = skb_peek(&hdev->cmd_q);
4113         if (!skb)
4114                 return true;
4115
4116         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4117 }
4118
4119 static void hci_resend_last(struct hci_dev *hdev)
4120 {
4121         struct hci_command_hdr *sent;
4122         struct sk_buff *skb;
4123         u16 opcode;
4124
4125         if (!hdev->sent_cmd)
4126                 return;
4127
4128         sent = (void *) hdev->sent_cmd->data;
4129         opcode = __le16_to_cpu(sent->opcode);
4130         if (opcode == HCI_OP_RESET)
4131                 return;
4132
4133         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4134         if (!skb)
4135                 return;
4136
4137         skb_queue_head(&hdev->cmd_q, skb);
4138         queue_work(hdev->workqueue, &hdev->cmd_work);
4139 }
4140
4141 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4142                           hci_req_complete_t *req_complete,
4143                           hci_req_complete_skb_t *req_complete_skb)
4144 {
4145         struct sk_buff *skb;
4146         unsigned long flags;
4147
4148         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4149
4150         /* If the completed command doesn't match the last one that was
4151          * sent we need to do special handling of it.
4152          */
4153         if (!hci_sent_cmd_data(hdev, opcode)) {
4154                 /* Some CSR based controllers generate a spontaneous
4155                  * reset complete event during init and any pending
4156                  * command will never be completed. In such a case we
4157                  * need to resend whatever was the last sent
4158                  * command.
4159                  */
4160                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4161                         hci_resend_last(hdev);
4162
4163                 return;
4164         }
4165
4166         /* If the command succeeded and there's still more commands in
4167          * this request the request is not yet complete.
4168          */
4169         if (!status && !hci_req_is_complete(hdev))
4170                 return;
4171
4172         /* If this was the last command in a request the complete
4173          * callback would be found in hdev->sent_cmd instead of the
4174          * command queue (hdev->cmd_q).
4175          */
4176         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4177                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4178                 return;
4179         }
4180
4181         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4182                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4183                 return;
4184         }
4185
4186         /* Remove all pending commands belonging to this request */
4187         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4188         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4189                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4190                         __skb_queue_head(&hdev->cmd_q, skb);
4191                         break;
4192                 }
4193
4194                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4195                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4196                 else
4197                         *req_complete = bt_cb(skb)->hci.req_complete;
4198                 kfree_skb(skb);
4199         }
4200         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4201 }
4202
4203 static void hci_rx_work(struct work_struct *work)
4204 {
4205         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4206         struct sk_buff *skb;
4207
4208         BT_DBG("%s", hdev->name);
4209
4210         while ((skb = skb_dequeue(&hdev->rx_q))) {
4211                 /* Send copy to monitor */
4212                 hci_send_to_monitor(hdev, skb);
4213
4214                 if (atomic_read(&hdev->promisc)) {
4215                         /* Send copy to the sockets */
4216                         hci_send_to_sock(hdev, skb);
4217                 }
4218
4219                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4220                         kfree_skb(skb);
4221                         continue;
4222                 }
4223
4224                 if (test_bit(HCI_INIT, &hdev->flags)) {
4225                         /* Don't process data packets in this states. */
4226                         switch (hci_skb_pkt_type(skb)) {
4227                         case HCI_ACLDATA_PKT:
4228                         case HCI_SCODATA_PKT:
4229                                 kfree_skb(skb);
4230                                 continue;
4231                         }
4232                 }
4233
4234                 /* Process frame */
4235                 switch (hci_skb_pkt_type(skb)) {
4236                 case HCI_EVENT_PKT:
4237                         BT_DBG("%s Event packet", hdev->name);
4238                         hci_event_packet(hdev, skb);
4239                         break;
4240
4241                 case HCI_ACLDATA_PKT:
4242                         BT_DBG("%s ACL data packet", hdev->name);
4243                         hci_acldata_packet(hdev, skb);
4244                         break;
4245
4246                 case HCI_SCODATA_PKT:
4247                         BT_DBG("%s SCO data packet", hdev->name);
4248                         hci_scodata_packet(hdev, skb);
4249                         break;
4250
4251                 default:
4252                         kfree_skb(skb);
4253                         break;
4254                 }
4255         }
4256 }
4257
4258 static void hci_cmd_work(struct work_struct *work)
4259 {
4260         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4261         struct sk_buff *skb;
4262
4263         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4264                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4265
4266         /* Send queued commands */
4267         if (atomic_read(&hdev->cmd_cnt)) {
4268                 skb = skb_dequeue(&hdev->cmd_q);
4269                 if (!skb)
4270                         return;
4271
4272                 kfree_skb(hdev->sent_cmd);
4273
4274                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4275                 if (hdev->sent_cmd) {
4276                         atomic_dec(&hdev->cmd_cnt);
4277                         hci_send_frame(hdev, skb);
4278                         if (test_bit(HCI_RESET, &hdev->flags))
4279                                 cancel_delayed_work(&hdev->cmd_timer);
4280                         else
4281                                 schedule_delayed_work(&hdev->cmd_timer,
4282                                                       HCI_CMD_TIMEOUT);
4283                 } else {
4284                         skb_queue_head(&hdev->cmd_q, skb);
4285                         queue_work(hdev->workqueue, &hdev->cmd_work);
4286                 }
4287         }
4288 }