]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge tag 'wireless-drivers-next-for-davem-2016-11-25' of git://git.kernel.org/pub...
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp.tv64 = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp.tv64)      \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         int ret = ____dev_forward_skb(dev, skb);
1769
1770         if (likely(!ret)) {
1771                 skb->protocol = eth_type_trans(skb, dev);
1772                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773         }
1774
1775         return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *      NET_RX_SUCCESS  (no congestion)
1787  *      NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804                               struct packet_type *pt_prev,
1805                               struct net_device *orig_dev)
1806 {
1807         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808                 return -ENOMEM;
1809         atomic_inc(&skb->users);
1810         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814                                           struct packet_type **pt,
1815                                           struct net_device *orig_dev,
1816                                           __be16 type,
1817                                           struct list_head *ptype_list)
1818 {
1819         struct packet_type *ptype, *pt_prev = *pt;
1820
1821         list_for_each_entry_rcu(ptype, ptype_list, list) {
1822                 if (ptype->type != type)
1823                         continue;
1824                 if (pt_prev)
1825                         deliver_skb(skb, pt_prev, orig_dev);
1826                 pt_prev = ptype;
1827         }
1828         *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833         if (!ptype->af_packet_priv || !skb->sk)
1834                 return false;
1835
1836         if (ptype->id_match)
1837                 return ptype->id_match(ptype, skb->sk);
1838         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839                 return true;
1840
1841         return false;
1842 }
1843
1844 /*
1845  *      Support routine. Sends outgoing frames to any network
1846  *      taps currently in use.
1847  */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851         struct packet_type *ptype;
1852         struct sk_buff *skb2 = NULL;
1853         struct packet_type *pt_prev = NULL;
1854         struct list_head *ptype_list = &ptype_all;
1855
1856         rcu_read_lock();
1857 again:
1858         list_for_each_entry_rcu(ptype, ptype_list, list) {
1859                 /* Never send packets back to the socket
1860                  * they originated from - MvS (miquels@drinkel.ow.org)
1861                  */
1862                 if (skb_loop_sk(ptype, skb))
1863                         continue;
1864
1865                 if (pt_prev) {
1866                         deliver_skb(skb2, pt_prev, skb->dev);
1867                         pt_prev = ptype;
1868                         continue;
1869                 }
1870
1871                 /* need to clone skb, done only once */
1872                 skb2 = skb_clone(skb, GFP_ATOMIC);
1873                 if (!skb2)
1874                         goto out_unlock;
1875
1876                 net_timestamp_set(skb2);
1877
1878                 /* skb->nh should be correctly
1879                  * set by sender, so that the second statement is
1880                  * just protection against buggy protocols.
1881                  */
1882                 skb_reset_mac_header(skb2);
1883
1884                 if (skb_network_header(skb2) < skb2->data ||
1885                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887                                              ntohs(skb2->protocol),
1888                                              dev->name);
1889                         skb_reset_network_header(skb2);
1890                 }
1891
1892                 skb2->transport_header = skb2->network_header;
1893                 skb2->pkt_type = PACKET_OUTGOING;
1894                 pt_prev = ptype;
1895         }
1896
1897         if (ptype_list == &ptype_all) {
1898                 ptype_list = &dev->ptype_all;
1899                 goto again;
1900         }
1901 out_unlock:
1902         if (pt_prev)
1903                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904         rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923         int i;
1924         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926         /* If TC0 is invalidated disable TC mapping */
1927         if (tc->offset + tc->count > txq) {
1928                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929                 dev->num_tc = 0;
1930                 return;
1931         }
1932
1933         /* Invalidated prio to tc mappings set to TC0 */
1934         for (i = 1; i < TC_BITMASK + 1; i++) {
1935                 int q = netdev_get_prio_tc_map(dev, i);
1936
1937                 tc = &dev->tc_to_txq[q];
1938                 if (tc->offset + tc->count > txq) {
1939                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940                                 i, q);
1941                         netdev_set_prio_tc_map(dev, i, 0);
1942                 }
1943         }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         if (dev->num_tc) {
1949                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950                 int i;
1951
1952                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953                         if ((txq - tc->offset) < tc->count)
1954                                 return i;
1955                 }
1956
1957                 return -1;
1958         }
1959
1960         return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)             \
1966         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969                              int tci, u16 index)
1970 {
1971         struct xps_map *map = NULL;
1972         int pos;
1973
1974         if (dev_maps)
1975                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976         if (!map)
1977                 return false;
1978
1979         for (pos = map->len; pos--;) {
1980                 if (map->queues[pos] != index)
1981                         continue;
1982
1983                 if (map->len > 1) {
1984                         map->queues[pos] = map->queues[--map->len];
1985                         break;
1986                 }
1987
1988                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989                 kfree_rcu(map, rcu);
1990                 return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997                                  struct xps_dev_maps *dev_maps,
1998                                  int cpu, u16 offset, u16 count)
1999 {
2000         int num_tc = dev->num_tc ? : 1;
2001         bool active = false;
2002         int tci;
2003
2004         for (tci = cpu * num_tc; num_tc--; tci++) {
2005                 int i, j;
2006
2007                 for (i = count, j = offset; i--; j++) {
2008                         if (!remove_xps_queue(dev_maps, cpu, j))
2009                                 break;
2010                 }
2011
2012                 active |= i < 0;
2013         }
2014
2015         return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019                                    u16 count)
2020 {
2021         struct xps_dev_maps *dev_maps;
2022         int cpu, i;
2023         bool active = false;
2024
2025         mutex_lock(&xps_map_mutex);
2026         dev_maps = xmap_dereference(dev->xps_maps);
2027
2028         if (!dev_maps)
2029                 goto out_no_maps;
2030
2031         for_each_possible_cpu(cpu)
2032                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033                                                offset, count);
2034
2035         if (!active) {
2036                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037                 kfree_rcu(dev_maps, rcu);
2038         }
2039
2040         for (i = offset + (count - 1); count--; i--)
2041                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042                                              NUMA_NO_NODE);
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054                                       int cpu, u16 index)
2055 {
2056         struct xps_map *new_map;
2057         int alloc_len = XPS_MIN_MAP_ALLOC;
2058         int i, pos;
2059
2060         for (pos = 0; map && pos < map->len; pos++) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063                 return map;
2064         }
2065
2066         /* Need to add queue to this CPU's existing map */
2067         if (map) {
2068                 if (pos < map->alloc_len)
2069                         return map;
2070
2071                 alloc_len = map->alloc_len * 2;
2072         }
2073
2074         /* Need to allocate new map to store queue on this CPU's map */
2075         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076                                cpu_to_node(cpu));
2077         if (!new_map)
2078                 return NULL;
2079
2080         for (i = 0; i < pos; i++)
2081                 new_map->queues[i] = map->queues[i];
2082         new_map->alloc_len = alloc_len;
2083         new_map->len = pos;
2084
2085         return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089                         u16 index)
2090 {
2091         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092         int i, cpu, tci, numa_node_id = -2;
2093         int maps_sz, num_tc = 1, tc = 0;
2094         struct xps_map *map, *new_map;
2095         bool active = false;
2096
2097         if (dev->num_tc) {
2098                 num_tc = dev->num_tc;
2099                 tc = netdev_txq_to_tc(dev, index);
2100                 if (tc < 0)
2101                         return -EINVAL;
2102         }
2103
2104         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105         if (maps_sz < L1_CACHE_BYTES)
2106                 maps_sz = L1_CACHE_BYTES;
2107
2108         mutex_lock(&xps_map_mutex);
2109
2110         dev_maps = xmap_dereference(dev->xps_maps);
2111
2112         /* allocate memory for queue storage */
2113         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114                 if (!new_dev_maps)
2115                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116                 if (!new_dev_maps) {
2117                         mutex_unlock(&xps_map_mutex);
2118                         return -ENOMEM;
2119                 }
2120
2121                 tci = cpu * num_tc + tc;
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123                                  NULL;
2124
2125                 map = expand_xps_map(map, cpu, index);
2126                 if (!map)
2127                         goto error;
2128
2129                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130         }
2131
2132         if (!new_dev_maps)
2133                 goto out_no_new_maps;
2134
2135         for_each_possible_cpu(cpu) {
2136                 /* copy maps belonging to foreign traffic classes */
2137                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138                         /* fill in the new device map from the old device map */
2139                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2140                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141                 }
2142
2143                 /* We need to explicitly update tci as prevous loop
2144                  * could break out early if dev_maps is NULL.
2145                  */
2146                 tci = cpu * num_tc + tc;
2147
2148                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149                         /* add queue to CPU maps */
2150                         int pos = 0;
2151
2152                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153                         while ((pos < map->len) && (map->queues[pos] != index))
2154                                 pos++;
2155
2156                         if (pos == map->len)
2157                                 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159                         if (numa_node_id == -2)
2160                                 numa_node_id = cpu_to_node(cpu);
2161                         else if (numa_node_id != cpu_to_node(cpu))
2162                                 numa_node_id = -1;
2163 #endif
2164                 } else if (dev_maps) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* copy maps belonging to foreign traffic classes */
2171                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172                         /* fill in the new device map from the old device map */
2173                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2174                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175                 }
2176         }
2177
2178         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180         /* Cleanup old maps */
2181         if (!dev_maps)
2182                 goto out_no_old_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         if (map && map != new_map)
2189                                 kfree_rcu(map, rcu);
2190                 }
2191         }
2192
2193         kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196         dev_maps = new_dev_maps;
2197         active = true;
2198
2199 out_no_new_maps:
2200         /* update Tx queue numa node */
2201         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202                                      (numa_node_id >= 0) ? numa_node_id :
2203                                      NUMA_NO_NODE);
2204
2205         if (!dev_maps)
2206                 goto out_no_maps;
2207
2208         /* removes queue from unused CPUs */
2209         for_each_possible_cpu(cpu) {
2210                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211                         active |= remove_xps_queue(dev_maps, tci, index);
2212                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213                         active |= remove_xps_queue(dev_maps, tci, index);
2214                 for (i = num_tc - tc, tci++; --i; tci++)
2215                         active |= remove_xps_queue(dev_maps, tci, index);
2216         }
2217
2218         /* free map if not active */
2219         if (!active) {
2220                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221                 kfree_rcu(dev_maps, rcu);
2222         }
2223
2224 out_no_maps:
2225         mutex_unlock(&xps_map_mutex);
2226
2227         return 0;
2228 error:
2229         /* remove any maps that we added */
2230         for_each_possible_cpu(cpu) {
2231                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233                         map = dev_maps ?
2234                               xmap_dereference(dev_maps->cpu_map[tci]) :
2235                               NULL;
2236                         if (new_map && new_map != map)
2237                                 kfree(new_map);
2238                 }
2239         }
2240
2241         mutex_unlock(&xps_map_mutex);
2242
2243         kfree(new_dev_maps);
2244         return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252         netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254         dev->num_tc = 0;
2255         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262         if (tc >= dev->num_tc)
2263                 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266         netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268         dev->tc_to_txq[tc].count = count;
2269         dev->tc_to_txq[tc].offset = offset;
2270         return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276         if (num_tc > TC_MAX_QUEUE)
2277                 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = num_tc;
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293         int rc;
2294
2295         if (txq < 1 || txq > dev->num_tx_queues)
2296                 return -EINVAL;
2297
2298         if (dev->reg_state == NETREG_REGISTERED ||
2299             dev->reg_state == NETREG_UNREGISTERING) {
2300                 ASSERT_RTNL();
2301
2302                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303                                                   txq);
2304                 if (rc)
2305                         return rc;
2306
2307                 if (dev->num_tc)
2308                         netif_setup_tc(dev, txq);
2309
2310                 if (txq < dev->real_num_tx_queues) {
2311                         qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313                         netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315                 }
2316         }
2317
2318         dev->real_num_tx_queues = txq;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *      @dev: Network device
2327  *      @rxq: Actual number of RX queues
2328  *
2329  *      This must be called either with the rtnl_lock held or before
2330  *      registration of the net device.  Returns 0 on success, or a
2331  *      negative error code.  If called before registration, it always
2332  *      succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336         int rc;
2337
2338         if (rxq < 1 || rxq > dev->num_rx_queues)
2339                 return -EINVAL;
2340
2341         if (dev->reg_state == NETREG_REGISTERED) {
2342                 ASSERT_RTNL();
2343
2344                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345                                                   rxq);
2346                 if (rc)
2347                         return rc;
2348         }
2349
2350         dev->real_num_rx_queues = rxq;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364         return is_kdump_kernel() ?
2365                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371         struct softnet_data *sd;
2372         unsigned long flags;
2373
2374         local_irq_save(flags);
2375         sd = this_cpu_ptr(&softnet_data);
2376         q->next_sched = NULL;
2377         *sd->output_queue_tailp = q;
2378         sd->output_queue_tailp = &q->next_sched;
2379         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380         local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386                 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391         enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396         return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401         rcu_read_lock();
2402         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405                 __netif_schedule(q);
2406         }
2407         rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 /**
2412  *      netif_wake_subqueue - allow sending packets on subqueue
2413  *      @dev: network device
2414  *      @queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423                 struct Qdisc *q;
2424
2425                 rcu_read_lock();
2426                 q = rcu_dereference(txq->qdisc);
2427                 __netif_schedule(q);
2428                 rcu_read_unlock();
2429         }
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436                 struct Qdisc *q;
2437
2438                 rcu_read_lock();
2439                 q = rcu_dereference(dev_queue->qdisc);
2440                 __netif_schedule(q);
2441                 rcu_read_unlock();
2442         }
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448         unsigned long flags;
2449
2450         if (likely(atomic_read(&skb->users) == 1)) {
2451                 smp_rmb();
2452                 atomic_set(&skb->users, 0);
2453         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454                 return;
2455         }
2456         get_kfree_skb_cb(skb)->reason = reason;
2457         local_irq_save(flags);
2458         skb->next = __this_cpu_read(softnet_data.completion_queue);
2459         __this_cpu_write(softnet_data.completion_queue, skb);
2460         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461         local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467         if (in_irq() || irqs_disabled())
2468                 __dev_kfree_skb_irq(skb, reason);
2469         else
2470                 dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473
2474
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484             netif_running(dev)) {
2485                 netif_tx_stop_all_queues(dev);
2486         }
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499             netif_running(dev)) {
2500                 netif_tx_wake_all_queues(dev);
2501                 __netdev_watchdog_up(dev);
2502         }
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511                   unsigned int num_tx_queues)
2512 {
2513         u32 hash;
2514         u16 qoffset = 0;
2515         u16 qcount = num_tx_queues;
2516
2517         if (skb_rx_queue_recorded(skb)) {
2518                 hash = skb_get_rx_queue(skb);
2519                 while (unlikely(hash >= num_tx_queues))
2520                         hash -= num_tx_queues;
2521                 return hash;
2522         }
2523
2524         if (dev->num_tc) {
2525                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526                 qoffset = dev->tc_to_txq[tc].offset;
2527                 qcount = dev->tc_to_txq[tc].count;
2528         }
2529
2530         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536         static const netdev_features_t null_features;
2537         struct net_device *dev = skb->dev;
2538         const char *name = "";
2539
2540         if (!net_ratelimit())
2541                 return;
2542
2543         if (dev) {
2544                 if (dev->dev.parent)
2545                         name = dev_driver_string(dev->dev.parent);
2546                 else
2547                         name = netdev_name(dev);
2548         }
2549         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550              "gso_type=%d ip_summed=%d\n",
2551              name, dev ? &dev->features : &null_features,
2552              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554              skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563         __wsum csum;
2564         int ret = 0, offset;
2565
2566         if (skb->ip_summed == CHECKSUM_COMPLETE)
2567                 goto out_set_summed;
2568
2569         if (unlikely(skb_shinfo(skb)->gso_size)) {
2570                 skb_warn_bad_offload(skb);
2571                 return -EINVAL;
2572         }
2573
2574         /* Before computing a checksum, we should make sure no frag could
2575          * be modified by an external entity : checksum could be wrong.
2576          */
2577         if (skb_has_shared_frag(skb)) {
2578                 ret = __skb_linearize(skb);
2579                 if (ret)
2580                         goto out;
2581         }
2582
2583         offset = skb_checksum_start_offset(skb);
2584         BUG_ON(offset >= skb_headlen(skb));
2585         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587         offset += skb->csum_offset;
2588         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590         if (skb_cloned(skb) &&
2591             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593                 if (ret)
2594                         goto out;
2595         }
2596
2597         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599         skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601         return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607         __be16 type = skb->protocol;
2608
2609         /* Tunnel gso handlers can set protocol to ethernet. */
2610         if (type == htons(ETH_P_TEB)) {
2611                 struct ethhdr *eth;
2612
2613                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614                         return 0;
2615
2616                 eth = (struct ethhdr *)skb_mac_header(skb);
2617                 type = eth->h_proto;
2618         }
2619
2620         return __vlan_get_protocol(skb, type, depth);
2621 }
2622
2623 /**
2624  *      skb_mac_gso_segment - mac layer segmentation handler.
2625  *      @skb: buffer to segment
2626  *      @features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629                                     netdev_features_t features)
2630 {
2631         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632         struct packet_offload *ptype;
2633         int vlan_depth = skb->mac_len;
2634         __be16 type = skb_network_protocol(skb, &vlan_depth);
2635
2636         if (unlikely(!type))
2637                 return ERR_PTR(-EINVAL);
2638
2639         __skb_pull(skb, vlan_depth);
2640
2641         rcu_read_lock();
2642         list_for_each_entry_rcu(ptype, &offload_base, list) {
2643                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644                         segs = ptype->callbacks.gso_segment(skb, features);
2645                         break;
2646                 }
2647         }
2648         rcu_read_unlock();
2649
2650         __skb_push(skb, skb->data - skb_mac_header(skb));
2651
2652         return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661         if (tx_path)
2662                 return skb->ip_summed != CHECKSUM_PARTIAL;
2663         else
2664                 return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666
2667 /**
2668  *      __skb_gso_segment - Perform segmentation on skb.
2669  *      @skb: buffer to segment
2670  *      @features: features for the output path (see dev->features)
2671  *      @tx_path: whether it is called in TX path
2672  *
2673  *      This function segments the given skb and returns a list of segments.
2674  *
2675  *      It may return NULL if the skb requires no segmentation.  This is
2676  *      only possible when GSO is used for verifying header integrity.
2677  *
2678  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681                                   netdev_features_t features, bool tx_path)
2682 {
2683         if (unlikely(skb_needs_check(skb, tx_path))) {
2684                 int err;
2685
2686                 skb_warn_bad_offload(skb);
2687
2688                 err = skb_cow_head(skb, 0);
2689                 if (err < 0)
2690                         return ERR_PTR(err);
2691         }
2692
2693         /* Only report GSO partial support if it will enable us to
2694          * support segmentation on this frame without needing additional
2695          * work.
2696          */
2697         if (features & NETIF_F_GSO_PARTIAL) {
2698                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699                 struct net_device *dev = skb->dev;
2700
2701                 partial_features |= dev->features & dev->gso_partial_features;
2702                 if (!skb_gso_ok(skb, features | partial_features))
2703                         features &= ~NETIF_F_GSO_PARTIAL;
2704         }
2705
2706         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
2709         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710         SKB_GSO_CB(skb)->encap_level = 0;
2711
2712         skb_reset_mac_header(skb);
2713         skb_reset_mac_len(skb);
2714
2715         return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723         if (net_ratelimit()) {
2724                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725                 dump_stack();
2726         }
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739         int i;
2740         if (!(dev->features & NETIF_F_HIGHDMA)) {
2741                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743                         if (PageHighMem(skb_frag_page(frag)))
2744                                 return 1;
2745                 }
2746         }
2747
2748         if (PCI_DMA_BUS_IS_PHYS) {
2749                 struct device *pdev = dev->dev.parent;
2750
2751                 if (!pdev)
2752                         return 0;
2753                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757                                 return 1;
2758                 }
2759         }
2760 #endif
2761         return 0;
2762 }
2763
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769                                            netdev_features_t features,
2770                                            __be16 type)
2771 {
2772         if (eth_p_mpls(type))
2773                 features &= skb->dev->mpls_features;
2774
2775         return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779                                            netdev_features_t features,
2780                                            __be16 type)
2781 {
2782         return features;
2783 }
2784 #endif
2785
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787         netdev_features_t features)
2788 {
2789         int tmp;
2790         __be16 type;
2791
2792         type = skb_network_protocol(skb, &tmp);
2793         features = net_mpls_features(skb, features, type);
2794
2795         if (skb->ip_summed != CHECKSUM_NONE &&
2796             !can_checksum_protocol(features, type)) {
2797                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798         } else if (illegal_highdma(skb->dev, skb)) {
2799                 features &= ~NETIF_F_SG;
2800         }
2801
2802         return features;
2803 }
2804
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806                                           struct net_device *dev,
2807                                           netdev_features_t features)
2808 {
2809         return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814                                              struct net_device *dev,
2815                                              netdev_features_t features)
2816 {
2817         return vlan_features_check(skb, features);
2818 }
2819
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821                                             struct net_device *dev,
2822                                             netdev_features_t features)
2823 {
2824         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826         if (gso_segs > dev->gso_max_segs)
2827                 return features & ~NETIF_F_GSO_MASK;
2828
2829         /* Support for GSO partial features requires software
2830          * intervention before we can actually process the packets
2831          * so we need to strip support for any partial features now
2832          * and we can pull them back in after we have partially
2833          * segmented the frame.
2834          */
2835         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836                 features &= ~dev->gso_partial_features;
2837
2838         /* Make sure to clear the IPv4 ID mangling feature if the
2839          * IPv4 header has the potential to be fragmented.
2840          */
2841         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842                 struct iphdr *iph = skb->encapsulation ?
2843                                     inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845                 if (!(iph->frag_off & htons(IP_DF)))
2846                         features &= ~NETIF_F_TSO_MANGLEID;
2847         }
2848
2849         return features;
2850 }
2851
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854         struct net_device *dev = skb->dev;
2855         netdev_features_t features = dev->features;
2856
2857         if (skb_is_gso(skb))
2858                 features = gso_features_check(skb, dev, features);
2859
2860         /* If encapsulation offload request, verify we are testing
2861          * hardware encapsulation features instead of standard
2862          * features for the netdev
2863          */
2864         if (skb->encapsulation)
2865                 features &= dev->hw_enc_features;
2866
2867         if (skb_vlan_tagged(skb))
2868                 features = netdev_intersect_features(features,
2869                                                      dev->vlan_features |
2870                                                      NETIF_F_HW_VLAN_CTAG_TX |
2871                                                      NETIF_F_HW_VLAN_STAG_TX);
2872
2873         if (dev->netdev_ops->ndo_features_check)
2874                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875                                                                 features);
2876         else
2877                 features &= dflt_features_check(skb, dev, features);
2878
2879         return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884                     struct netdev_queue *txq, bool more)
2885 {
2886         unsigned int len;
2887         int rc;
2888
2889         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890                 dev_queue_xmit_nit(skb, dev);
2891
2892         len = skb->len;
2893         trace_net_dev_start_xmit(skb, dev);
2894         rc = netdev_start_xmit(skb, dev, txq, more);
2895         trace_net_dev_xmit(skb, rc, dev, len);
2896
2897         return rc;
2898 }
2899
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901                                     struct netdev_queue *txq, int *ret)
2902 {
2903         struct sk_buff *skb = first;
2904         int rc = NETDEV_TX_OK;
2905
2906         while (skb) {
2907                 struct sk_buff *next = skb->next;
2908
2909                 skb->next = NULL;
2910                 rc = xmit_one(skb, dev, txq, next != NULL);
2911                 if (unlikely(!dev_xmit_complete(rc))) {
2912                         skb->next = next;
2913                         goto out;
2914                 }
2915
2916                 skb = next;
2917                 if (netif_xmit_stopped(txq) && skb) {
2918                         rc = NETDEV_TX_BUSY;
2919                         break;
2920                 }
2921         }
2922
2923 out:
2924         *ret = rc;
2925         return skb;
2926 }
2927
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929                                           netdev_features_t features)
2930 {
2931         if (skb_vlan_tag_present(skb) &&
2932             !vlan_hw_offload_capable(features, skb->vlan_proto))
2933                 skb = __vlan_hwaccel_push_inside(skb);
2934         return skb;
2935 }
2936
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939         netdev_features_t features;
2940
2941         features = netif_skb_features(skb);
2942         skb = validate_xmit_vlan(skb, features);
2943         if (unlikely(!skb))
2944                 goto out_null;
2945
2946         if (netif_needs_gso(skb, features)) {
2947                 struct sk_buff *segs;
2948
2949                 segs = skb_gso_segment(skb, features);
2950                 if (IS_ERR(segs)) {
2951                         goto out_kfree_skb;
2952                 } else if (segs) {
2953                         consume_skb(skb);
2954                         skb = segs;
2955                 }
2956         } else {
2957                 if (skb_needs_linearize(skb, features) &&
2958                     __skb_linearize(skb))
2959                         goto out_kfree_skb;
2960
2961                 /* If packet is not checksummed and device does not
2962                  * support checksumming for this protocol, complete
2963                  * checksumming here.
2964                  */
2965                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966                         if (skb->encapsulation)
2967                                 skb_set_inner_transport_header(skb,
2968                                                                skb_checksum_start_offset(skb));
2969                         else
2970                                 skb_set_transport_header(skb,
2971                                                          skb_checksum_start_offset(skb));
2972                         if (!(features & NETIF_F_CSUM_MASK) &&
2973                             skb_checksum_help(skb))
2974                                 goto out_kfree_skb;
2975                 }
2976         }
2977
2978         return skb;
2979
2980 out_kfree_skb:
2981         kfree_skb(skb);
2982 out_null:
2983         atomic_long_inc(&dev->tx_dropped);
2984         return NULL;
2985 }
2986
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989         struct sk_buff *next, *head = NULL, *tail;
2990
2991         for (; skb != NULL; skb = next) {
2992                 next = skb->next;
2993                 skb->next = NULL;
2994
2995                 /* in case skb wont be segmented, point to itself */
2996                 skb->prev = skb;
2997
2998                 skb = validate_xmit_skb(skb, dev);
2999                 if (!skb)
3000                         continue;
3001
3002                 if (!head)
3003                         head = skb;
3004                 else
3005                         tail->next = skb;
3006                 /* If skb was segmented, skb->prev points to
3007                  * the last segment. If not, it still contains skb.
3008                  */
3009                 tail = skb->prev;
3010         }
3011         return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019         qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021         /* To get more precise estimation of bytes sent on wire,
3022          * we add to pkt_len the headers size of all segments
3023          */
3024         if (shinfo->gso_size)  {
3025                 unsigned int hdr_len;
3026                 u16 gso_segs = shinfo->gso_segs;
3027
3028                 /* mac layer + network layer */
3029                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031                 /* + transport layer */
3032                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033                         hdr_len += tcp_hdrlen(skb);
3034                 else
3035                         hdr_len += sizeof(struct udphdr);
3036
3037                 if (shinfo->gso_type & SKB_GSO_DODGY)
3038                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039                                                 shinfo->gso_size);
3040
3041                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042         }
3043 }
3044
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046                                  struct net_device *dev,
3047                                  struct netdev_queue *txq)
3048 {
3049         spinlock_t *root_lock = qdisc_lock(q);
3050         struct sk_buff *to_free = NULL;
3051         bool contended;
3052         int rc;
3053
3054         qdisc_calculate_pkt_len(skb, q);
3055         /*
3056          * Heuristic to force contended enqueues to serialize on a
3057          * separate lock before trying to get qdisc main lock.
3058          * This permits qdisc->running owner to get the lock more
3059          * often and dequeue packets faster.
3060          */
3061         contended = qdisc_is_running(q);
3062         if (unlikely(contended))
3063                 spin_lock(&q->busylock);
3064
3065         spin_lock(root_lock);
3066         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067                 __qdisc_drop(skb, &to_free);
3068                 rc = NET_XMIT_DROP;
3069         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070                    qdisc_run_begin(q)) {
3071                 /*
3072                  * This is a work-conserving queue; there are no old skbs
3073                  * waiting to be sent out; and the qdisc is not running -
3074                  * xmit the skb directly.
3075                  */
3076
3077                 qdisc_bstats_update(q, skb);
3078
3079                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080                         if (unlikely(contended)) {
3081                                 spin_unlock(&q->busylock);
3082                                 contended = false;
3083                         }
3084                         __qdisc_run(q);
3085                 } else
3086                         qdisc_run_end(q);
3087
3088                 rc = NET_XMIT_SUCCESS;
3089         } else {
3090                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091                 if (qdisc_run_begin(q)) {
3092                         if (unlikely(contended)) {
3093                                 spin_unlock(&q->busylock);
3094                                 contended = false;
3095                         }
3096                         __qdisc_run(q);
3097                 }
3098         }
3099         spin_unlock(root_lock);
3100         if (unlikely(to_free))
3101                 kfree_skb_list(to_free);
3102         if (unlikely(contended))
3103                 spin_unlock(&q->busylock);
3104         return rc;
3105 }
3106
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111
3112         if (!skb->priority && skb->sk && map) {
3113                 unsigned int prioidx =
3114                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115
3116                 if (prioidx < map->priomap_len)
3117                         skb->priority = map->priomap[prioidx];
3118         }
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126
3127 /**
3128  *      dev_loopback_xmit - loop back @skb
3129  *      @net: network namespace this loopback is happening in
3130  *      @sk:  sk needed to be a netfilter okfn
3131  *      @skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135         skb_reset_mac_header(skb);
3136         __skb_pull(skb, skb_network_offset(skb));
3137         skb->pkt_type = PACKET_LOOPBACK;
3138         skb->ip_summed = CHECKSUM_UNNECESSARY;
3139         WARN_ON(!skb_dst(skb));
3140         skb_dst_force(skb);
3141         netif_rx_ni(skb);
3142         return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151         struct tcf_result cl_res;
3152
3153         if (!cl)
3154                 return skb;
3155
3156         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157          * earlier by the caller.
3158          */
3159         qdisc_bstats_cpu_update(cl->q, skb);
3160
3161         switch (tc_classify(skb, cl, &cl_res, false)) {
3162         case TC_ACT_OK:
3163         case TC_ACT_RECLASSIFY:
3164                 skb->tc_index = TC_H_MIN(cl_res.classid);
3165                 break;
3166         case TC_ACT_SHOT:
3167                 qdisc_qstats_cpu_drop(cl->q);
3168                 *ret = NET_XMIT_DROP;
3169                 kfree_skb(skb);
3170                 return NULL;
3171         case TC_ACT_STOLEN:
3172         case TC_ACT_QUEUED:
3173                 *ret = NET_XMIT_SUCCESS;
3174                 consume_skb(skb);
3175                 return NULL;
3176         case TC_ACT_REDIRECT:
3177                 /* No need to push/pop skb's mac_header here on egress! */
3178                 skb_do_redirect(skb);
3179                 *ret = NET_XMIT_SUCCESS;
3180                 return NULL;
3181         default:
3182                 break;
3183         }
3184
3185         return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192         struct xps_dev_maps *dev_maps;
3193         struct xps_map *map;
3194         int queue_index = -1;
3195
3196         rcu_read_lock();
3197         dev_maps = rcu_dereference(dev->xps_maps);
3198         if (dev_maps) {
3199                 unsigned int tci = skb->sender_cpu - 1;
3200
3201                 if (dev->num_tc) {
3202                         tci *= dev->num_tc;
3203                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3204                 }
3205
3206                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3207                 if (map) {
3208                         if (map->len == 1)
3209                                 queue_index = map->queues[0];
3210                         else
3211                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212                                                                            map->len)];
3213                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3214                                 queue_index = -1;
3215                 }
3216         }
3217         rcu_read_unlock();
3218
3219         return queue_index;
3220 #else
3221         return -1;
3222 #endif
3223 }
3224
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227         struct sock *sk = skb->sk;
3228         int queue_index = sk_tx_queue_get(sk);
3229
3230         if (queue_index < 0 || skb->ooo_okay ||
3231             queue_index >= dev->real_num_tx_queues) {
3232                 int new_index = get_xps_queue(dev, skb);
3233                 if (new_index < 0)
3234                         new_index = skb_tx_hash(dev, skb);
3235
3236                 if (queue_index != new_index && sk &&
3237                     sk_fullsock(sk) &&
3238                     rcu_access_pointer(sk->sk_dst_cache))
3239                         sk_tx_queue_set(sk, new_index);
3240
3241                 queue_index = new_index;
3242         }
3243
3244         return queue_index;
3245 }
3246
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248                                     struct sk_buff *skb,
3249                                     void *accel_priv)
3250 {
3251         int queue_index = 0;
3252
3253 #ifdef CONFIG_XPS
3254         u32 sender_cpu = skb->sender_cpu - 1;
3255
3256         if (sender_cpu >= (u32)NR_CPUS)
3257                 skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259
3260         if (dev->real_num_tx_queues != 1) {
3261                 const struct net_device_ops *ops = dev->netdev_ops;
3262                 if (ops->ndo_select_queue)
3263                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264                                                             __netdev_pick_tx);
3265                 else
3266                         queue_index = __netdev_pick_tx(dev, skb);
3267
3268                 if (!accel_priv)
3269                         queue_index = netdev_cap_txqueue(dev, queue_index);
3270         }
3271
3272         skb_set_queue_mapping(skb, queue_index);
3273         return netdev_get_tx_queue(dev, queue_index);
3274 }
3275
3276 /**
3277  *      __dev_queue_xmit - transmit a buffer
3278  *      @skb: buffer to transmit
3279  *      @accel_priv: private data used for L2 forwarding offload
3280  *
3281  *      Queue a buffer for transmission to a network device. The caller must
3282  *      have set the device and priority and built the buffer before calling
3283  *      this function. The function can be called from an interrupt.
3284  *
3285  *      A negative errno code is returned on a failure. A success does not
3286  *      guarantee the frame will be transmitted as it may be dropped due
3287  *      to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304         struct net_device *dev = skb->dev;
3305         struct netdev_queue *txq;
3306         struct Qdisc *q;
3307         int rc = -ENOMEM;
3308
3309         skb_reset_mac_header(skb);
3310
3311         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
3314         /* Disable soft irqs for various locks below. Also
3315          * stops preemption for RCU.
3316          */
3317         rcu_read_lock_bh();
3318
3319         skb_update_prio(skb);
3320
3321         qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325         if (static_key_false(&egress_needed)) {
3326                 skb = sch_handle_egress(skb, &rc, dev);
3327                 if (!skb)
3328                         goto out;
3329         }
3330 # endif
3331 #endif
3332         /* If device/qdisc don't need skb->dst, release it right now while
3333          * its hot in this cpu cache.
3334          */
3335         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336                 skb_dst_drop(skb);
3337         else
3338                 skb_dst_force(skb);
3339
3340         txq = netdev_pick_tx(dev, skb, accel_priv);
3341         q = rcu_dereference_bh(txq->qdisc);
3342
3343         trace_net_dev_queue(skb);
3344         if (q->enqueue) {
3345                 rc = __dev_xmit_skb(skb, q, dev, txq);
3346                 goto out;
3347         }
3348
3349         /* The device has no queue. Common case for software devices:
3350            loopback, all the sorts of tunnels...
3351
3352            Really, it is unlikely that netif_tx_lock protection is necessary
3353            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354            counters.)
3355            However, it is possible, that they rely on protection
3356            made by us here.
3357
3358            Check this and shot the lock. It is not prone from deadlocks.
3359            Either shot noqueue qdisc, it is even simpler 8)
3360          */
3361         if (dev->flags & IFF_UP) {
3362                 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
3364                 if (txq->xmit_lock_owner != cpu) {
3365                         if (unlikely(__this_cpu_read(xmit_recursion) >
3366                                      XMIT_RECURSION_LIMIT))
3367                                 goto recursion_alert;
3368
3369                         skb = validate_xmit_skb(skb, dev);
3370                         if (!skb)
3371                                 goto out;
3372
3373                         HARD_TX_LOCK(dev, txq, cpu);
3374
3375                         if (!netif_xmit_stopped(txq)) {
3376                                 __this_cpu_inc(xmit_recursion);
3377                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378                                 __this_cpu_dec(xmit_recursion);
3379                                 if (dev_xmit_complete(rc)) {
3380                                         HARD_TX_UNLOCK(dev, txq);
3381                                         goto out;
3382                                 }
3383                         }
3384                         HARD_TX_UNLOCK(dev, txq);
3385                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386                                              dev->name);
3387                 } else {
3388                         /* Recursion is detected! It is possible,
3389                          * unfortunately
3390                          */
3391 recursion_alert:
3392                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393                                              dev->name);
3394                 }
3395         }
3396
3397         rc = -ENETDOWN;
3398         rcu_read_unlock_bh();
3399
3400         atomic_long_inc(&dev->tx_dropped);
3401         kfree_skb_list(skb);
3402         return rc;
3403 out:
3404         rcu_read_unlock_bh();
3405         return rc;
3406 }
3407
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410         return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416         return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
3420
3421 /*=======================================================================
3422                         Receiver routines
3423   =======================================================================*/
3424
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;            /* old backlog weight */
3431
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434                                      struct napi_struct *napi)
3435 {
3436         list_add_tail(&napi->poll_list, &sd->poll_list);
3437         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439
3440 #ifdef CONFIG_RPS
3441
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450
3451 static struct rps_dev_flow *
3452 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3453             struct rps_dev_flow *rflow, u16 next_cpu)
3454 {
3455         if (next_cpu < nr_cpu_ids) {
3456 #ifdef CONFIG_RFS_ACCEL
3457                 struct netdev_rx_queue *rxqueue;
3458                 struct rps_dev_flow_table *flow_table;
3459                 struct rps_dev_flow *old_rflow;
3460                 u32 flow_id;
3461                 u16 rxq_index;
3462                 int rc;
3463
3464                 /* Should we steer this flow to a different hardware queue? */
3465                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3466                     !(dev->features & NETIF_F_NTUPLE))
3467                         goto out;
3468                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3469                 if (rxq_index == skb_get_rx_queue(skb))
3470                         goto out;
3471
3472                 rxqueue = dev->_rx + rxq_index;
3473                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3474                 if (!flow_table)
3475                         goto out;
3476                 flow_id = skb_get_hash(skb) & flow_table->mask;
3477                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3478                                                         rxq_index, flow_id);
3479                 if (rc < 0)
3480                         goto out;
3481                 old_rflow = rflow;
3482                 rflow = &flow_table->flows[flow_id];
3483                 rflow->filter = rc;
3484                 if (old_rflow->filter == rflow->filter)
3485                         old_rflow->filter = RPS_NO_FILTER;
3486         out:
3487 #endif
3488                 rflow->last_qtail =
3489                         per_cpu(softnet_data, next_cpu).input_queue_head;
3490         }
3491
3492         rflow->cpu = next_cpu;
3493         return rflow;
3494 }
3495
3496 /*
3497  * get_rps_cpu is called from netif_receive_skb and returns the target
3498  * CPU from the RPS map of the receiving queue for a given skb.
3499  * rcu_read_lock must be held on entry.
3500  */
3501 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3502                        struct rps_dev_flow **rflowp)
3503 {
3504         const struct rps_sock_flow_table *sock_flow_table;
3505         struct netdev_rx_queue *rxqueue = dev->_rx;
3506         struct rps_dev_flow_table *flow_table;
3507         struct rps_map *map;
3508         int cpu = -1;
3509         u32 tcpu;
3510         u32 hash;
3511
3512         if (skb_rx_queue_recorded(skb)) {
3513                 u16 index = skb_get_rx_queue(skb);
3514
3515                 if (unlikely(index >= dev->real_num_rx_queues)) {
3516                         WARN_ONCE(dev->real_num_rx_queues > 1,
3517                                   "%s received packet on queue %u, but number "
3518                                   "of RX queues is %u\n",
3519                                   dev->name, index, dev->real_num_rx_queues);
3520                         goto done;
3521                 }
3522                 rxqueue += index;
3523         }
3524
3525         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3526
3527         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3528         map = rcu_dereference(rxqueue->rps_map);
3529         if (!flow_table && !map)
3530                 goto done;
3531
3532         skb_reset_network_header(skb);
3533         hash = skb_get_hash(skb);
3534         if (!hash)
3535                 goto done;
3536
3537         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3538         if (flow_table && sock_flow_table) {
3539                 struct rps_dev_flow *rflow;
3540                 u32 next_cpu;
3541                 u32 ident;
3542
3543                 /* First check into global flow table if there is a match */
3544                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3545                 if ((ident ^ hash) & ~rps_cpu_mask)
3546                         goto try_rps;
3547
3548                 next_cpu = ident & rps_cpu_mask;
3549
3550                 /* OK, now we know there is a match,
3551                  * we can look at the local (per receive queue) flow table
3552                  */
3553                 rflow = &flow_table->flows[hash & flow_table->mask];
3554                 tcpu = rflow->cpu;
3555
3556                 /*
3557                  * If the desired CPU (where last recvmsg was done) is
3558                  * different from current CPU (one in the rx-queue flow
3559                  * table entry), switch if one of the following holds:
3560                  *   - Current CPU is unset (>= nr_cpu_ids).
3561                  *   - Current CPU is offline.
3562                  *   - The current CPU's queue tail has advanced beyond the
3563                  *     last packet that was enqueued using this table entry.
3564                  *     This guarantees that all previous packets for the flow
3565                  *     have been dequeued, thus preserving in order delivery.
3566                  */
3567                 if (unlikely(tcpu != next_cpu) &&
3568                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3569                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3570                       rflow->last_qtail)) >= 0)) {
3571                         tcpu = next_cpu;
3572                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3573                 }
3574
3575                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3576                         *rflowp = rflow;
3577                         cpu = tcpu;
3578                         goto done;
3579                 }
3580         }
3581
3582 try_rps:
3583
3584         if (map) {
3585                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3586                 if (cpu_online(tcpu)) {
3587                         cpu = tcpu;
3588                         goto done;
3589                 }
3590         }
3591
3592 done:
3593         return cpu;
3594 }
3595
3596 #ifdef CONFIG_RFS_ACCEL
3597
3598 /**
3599  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3600  * @dev: Device on which the filter was set
3601  * @rxq_index: RX queue index
3602  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3603  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3604  *
3605  * Drivers that implement ndo_rx_flow_steer() should periodically call
3606  * this function for each installed filter and remove the filters for
3607  * which it returns %true.
3608  */
3609 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3610                          u32 flow_id, u16 filter_id)
3611 {
3612         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3613         struct rps_dev_flow_table *flow_table;
3614         struct rps_dev_flow *rflow;
3615         bool expire = true;
3616         unsigned int cpu;
3617
3618         rcu_read_lock();
3619         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3620         if (flow_table && flow_id <= flow_table->mask) {
3621                 rflow = &flow_table->flows[flow_id];
3622                 cpu = ACCESS_ONCE(rflow->cpu);
3623                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3624                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3625                            rflow->last_qtail) <
3626                      (int)(10 * flow_table->mask)))
3627                         expire = false;
3628         }
3629         rcu_read_unlock();
3630         return expire;
3631 }
3632 EXPORT_SYMBOL(rps_may_expire_flow);
3633
3634 #endif /* CONFIG_RFS_ACCEL */
3635
3636 /* Called from hardirq (IPI) context */
3637 static void rps_trigger_softirq(void *data)
3638 {
3639         struct softnet_data *sd = data;
3640
3641         ____napi_schedule(sd, &sd->backlog);
3642         sd->received_rps++;
3643 }
3644
3645 #endif /* CONFIG_RPS */
3646
3647 /*
3648  * Check if this softnet_data structure is another cpu one
3649  * If yes, queue it to our IPI list and return 1
3650  * If no, return 0
3651  */
3652 static int rps_ipi_queued(struct softnet_data *sd)
3653 {
3654 #ifdef CONFIG_RPS
3655         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3656
3657         if (sd != mysd) {
3658                 sd->rps_ipi_next = mysd->rps_ipi_list;
3659                 mysd->rps_ipi_list = sd;
3660
3661                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3662                 return 1;
3663         }
3664 #endif /* CONFIG_RPS */
3665         return 0;
3666 }
3667
3668 #ifdef CONFIG_NET_FLOW_LIMIT
3669 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3670 #endif
3671
3672 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3673 {
3674 #ifdef CONFIG_NET_FLOW_LIMIT
3675         struct sd_flow_limit *fl;
3676         struct softnet_data *sd;
3677         unsigned int old_flow, new_flow;
3678
3679         if (qlen < (netdev_max_backlog >> 1))
3680                 return false;
3681
3682         sd = this_cpu_ptr(&softnet_data);
3683
3684         rcu_read_lock();
3685         fl = rcu_dereference(sd->flow_limit);
3686         if (fl) {
3687                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3688                 old_flow = fl->history[fl->history_head];
3689                 fl->history[fl->history_head] = new_flow;
3690
3691                 fl->history_head++;
3692                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3693
3694                 if (likely(fl->buckets[old_flow]))
3695                         fl->buckets[old_flow]--;
3696
3697                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3698                         fl->count++;
3699                         rcu_read_unlock();
3700                         return true;
3701                 }
3702         }
3703         rcu_read_unlock();
3704 #endif
3705         return false;
3706 }
3707
3708 /*
3709  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3710  * queue (may be a remote CPU queue).
3711  */
3712 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3713                               unsigned int *qtail)
3714 {
3715         struct softnet_data *sd;
3716         unsigned long flags;
3717         unsigned int qlen;
3718
3719         sd = &per_cpu(softnet_data, cpu);
3720
3721         local_irq_save(flags);
3722
3723         rps_lock(sd);
3724         if (!netif_running(skb->dev))
3725                 goto drop;
3726         qlen = skb_queue_len(&sd->input_pkt_queue);
3727         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3728                 if (qlen) {
3729 enqueue:
3730                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3731                         input_queue_tail_incr_save(sd, qtail);
3732                         rps_unlock(sd);
3733                         local_irq_restore(flags);
3734                         return NET_RX_SUCCESS;
3735                 }
3736
3737                 /* Schedule NAPI for backlog device
3738                  * We can use non atomic operation since we own the queue lock
3739                  */
3740                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3741                         if (!rps_ipi_queued(sd))
3742                                 ____napi_schedule(sd, &sd->backlog);
3743                 }
3744                 goto enqueue;
3745         }
3746
3747 drop:
3748         sd->dropped++;
3749         rps_unlock(sd);
3750
3751         local_irq_restore(flags);
3752
3753         atomic_long_inc(&skb->dev->rx_dropped);
3754         kfree_skb(skb);
3755         return NET_RX_DROP;
3756 }
3757
3758 static int netif_rx_internal(struct sk_buff *skb)
3759 {
3760         int ret;
3761
3762         net_timestamp_check(netdev_tstamp_prequeue, skb);
3763
3764         trace_netif_rx(skb);
3765 #ifdef CONFIG_RPS
3766         if (static_key_false(&rps_needed)) {
3767                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3768                 int cpu;
3769
3770                 preempt_disable();
3771                 rcu_read_lock();
3772
3773                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3774                 if (cpu < 0)
3775                         cpu = smp_processor_id();
3776
3777                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3778
3779                 rcu_read_unlock();
3780                 preempt_enable();
3781         } else
3782 #endif
3783         {
3784                 unsigned int qtail;
3785                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3786                 put_cpu();
3787         }
3788         return ret;
3789 }
3790
3791 /**
3792  *      netif_rx        -       post buffer to the network code
3793  *      @skb: buffer to post
3794  *
3795  *      This function receives a packet from a device driver and queues it for
3796  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3797  *      may be dropped during processing for congestion control or by the
3798  *      protocol layers.
3799  *
3800  *      return values:
3801  *      NET_RX_SUCCESS  (no congestion)
3802  *      NET_RX_DROP     (packet was dropped)
3803  *
3804  */
3805
3806 int netif_rx(struct sk_buff *skb)
3807 {
3808         trace_netif_rx_entry(skb);
3809
3810         return netif_rx_internal(skb);
3811 }
3812 EXPORT_SYMBOL(netif_rx);
3813
3814 int netif_rx_ni(struct sk_buff *skb)
3815 {
3816         int err;
3817
3818         trace_netif_rx_ni_entry(skb);
3819
3820         preempt_disable();
3821         err = netif_rx_internal(skb);
3822         if (local_softirq_pending())
3823                 do_softirq();
3824         preempt_enable();
3825
3826         return err;
3827 }
3828 EXPORT_SYMBOL(netif_rx_ni);
3829
3830 static __latent_entropy void net_tx_action(struct softirq_action *h)
3831 {
3832         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3833
3834         if (sd->completion_queue) {
3835                 struct sk_buff *clist;
3836
3837                 local_irq_disable();
3838                 clist = sd->completion_queue;
3839                 sd->completion_queue = NULL;
3840                 local_irq_enable();
3841
3842                 while (clist) {
3843                         struct sk_buff *skb = clist;
3844                         clist = clist->next;
3845
3846                         WARN_ON(atomic_read(&skb->users));
3847                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3848                                 trace_consume_skb(skb);
3849                         else
3850                                 trace_kfree_skb(skb, net_tx_action);
3851
3852                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3853                                 __kfree_skb(skb);
3854                         else
3855                                 __kfree_skb_defer(skb);
3856                 }
3857
3858                 __kfree_skb_flush();
3859         }
3860
3861         if (sd->output_queue) {
3862                 struct Qdisc *head;
3863
3864                 local_irq_disable();
3865                 head = sd->output_queue;
3866                 sd->output_queue = NULL;
3867                 sd->output_queue_tailp = &sd->output_queue;
3868                 local_irq_enable();
3869
3870                 while (head) {
3871                         struct Qdisc *q = head;
3872                         spinlock_t *root_lock;
3873
3874                         head = head->next_sched;
3875
3876                         root_lock = qdisc_lock(q);
3877                         spin_lock(root_lock);
3878                         /* We need to make sure head->next_sched is read
3879                          * before clearing __QDISC_STATE_SCHED
3880                          */
3881                         smp_mb__before_atomic();
3882                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3883                         qdisc_run(q);
3884                         spin_unlock(root_lock);
3885                 }
3886         }
3887 }
3888
3889 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3890 /* This hook is defined here for ATM LANE */
3891 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3892                              unsigned char *addr) __read_mostly;
3893 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3894 #endif
3895
3896 static inline struct sk_buff *
3897 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3898                    struct net_device *orig_dev)
3899 {
3900 #ifdef CONFIG_NET_CLS_ACT
3901         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3902         struct tcf_result cl_res;
3903
3904         /* If there's at least one ingress present somewhere (so
3905          * we get here via enabled static key), remaining devices
3906          * that are not configured with an ingress qdisc will bail
3907          * out here.
3908          */
3909         if (!cl)
3910                 return skb;
3911         if (*pt_prev) {
3912                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3913                 *pt_prev = NULL;
3914         }
3915
3916         qdisc_skb_cb(skb)->pkt_len = skb->len;
3917         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3918         qdisc_bstats_cpu_update(cl->q, skb);
3919
3920         switch (tc_classify(skb, cl, &cl_res, false)) {
3921         case TC_ACT_OK:
3922         case TC_ACT_RECLASSIFY:
3923                 skb->tc_index = TC_H_MIN(cl_res.classid);
3924                 break;
3925         case TC_ACT_SHOT:
3926                 qdisc_qstats_cpu_drop(cl->q);
3927                 kfree_skb(skb);
3928                 return NULL;
3929         case TC_ACT_STOLEN:
3930         case TC_ACT_QUEUED:
3931                 consume_skb(skb);
3932                 return NULL;
3933         case TC_ACT_REDIRECT:
3934                 /* skb_mac_header check was done by cls/act_bpf, so
3935                  * we can safely push the L2 header back before
3936                  * redirecting to another netdev
3937                  */
3938                 __skb_push(skb, skb->mac_len);
3939                 skb_do_redirect(skb);
3940                 return NULL;
3941         default:
3942                 break;
3943         }
3944 #endif /* CONFIG_NET_CLS_ACT */
3945         return skb;
3946 }
3947
3948 /**
3949  *      netdev_is_rx_handler_busy - check if receive handler is registered
3950  *      @dev: device to check
3951  *
3952  *      Check if a receive handler is already registered for a given device.
3953  *      Return true if there one.
3954  *
3955  *      The caller must hold the rtnl_mutex.
3956  */
3957 bool netdev_is_rx_handler_busy(struct net_device *dev)
3958 {
3959         ASSERT_RTNL();
3960         return dev && rtnl_dereference(dev->rx_handler);
3961 }
3962 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3963
3964 /**
3965  *      netdev_rx_handler_register - register receive handler
3966  *      @dev: device to register a handler for
3967  *      @rx_handler: receive handler to register
3968  *      @rx_handler_data: data pointer that is used by rx handler
3969  *
3970  *      Register a receive handler for a device. This handler will then be
3971  *      called from __netif_receive_skb. A negative errno code is returned
3972  *      on a failure.
3973  *
3974  *      The caller must hold the rtnl_mutex.
3975  *
3976  *      For a general description of rx_handler, see enum rx_handler_result.
3977  */
3978 int netdev_rx_handler_register(struct net_device *dev,
3979                                rx_handler_func_t *rx_handler,
3980                                void *rx_handler_data)
3981 {
3982         ASSERT_RTNL();
3983
3984         if (dev->rx_handler)
3985                 return -EBUSY;
3986
3987         /* Note: rx_handler_data must be set before rx_handler */
3988         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3989         rcu_assign_pointer(dev->rx_handler, rx_handler);
3990
3991         return 0;
3992 }
3993 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3994
3995 /**
3996  *      netdev_rx_handler_unregister - unregister receive handler
3997  *      @dev: device to unregister a handler from
3998  *
3999  *      Unregister a receive handler from a device.
4000  *
4001  *      The caller must hold the rtnl_mutex.
4002  */
4003 void netdev_rx_handler_unregister(struct net_device *dev)
4004 {
4005
4006         ASSERT_RTNL();
4007         RCU_INIT_POINTER(dev->rx_handler, NULL);
4008         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4009          * section has a guarantee to see a non NULL rx_handler_data
4010          * as well.
4011          */
4012         synchronize_net();
4013         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4014 }
4015 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4016
4017 /*
4018  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4019  * the special handling of PFMEMALLOC skbs.
4020  */
4021 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4022 {
4023         switch (skb->protocol) {
4024         case htons(ETH_P_ARP):
4025         case htons(ETH_P_IP):
4026         case htons(ETH_P_IPV6):
4027         case htons(ETH_P_8021Q):
4028         case htons(ETH_P_8021AD):
4029                 return true;
4030         default:
4031                 return false;
4032         }
4033 }
4034
4035 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4036                              int *ret, struct net_device *orig_dev)
4037 {
4038 #ifdef CONFIG_NETFILTER_INGRESS
4039         if (nf_hook_ingress_active(skb)) {
4040                 int ingress_retval;
4041
4042                 if (*pt_prev) {
4043                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4044                         *pt_prev = NULL;
4045                 }
4046
4047                 rcu_read_lock();
4048                 ingress_retval = nf_hook_ingress(skb);
4049                 rcu_read_unlock();
4050                 return ingress_retval;
4051         }
4052 #endif /* CONFIG_NETFILTER_INGRESS */
4053         return 0;
4054 }
4055
4056 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4057 {
4058         struct packet_type *ptype, *pt_prev;
4059         rx_handler_func_t *rx_handler;
4060         struct net_device *orig_dev;
4061         bool deliver_exact = false;
4062         int ret = NET_RX_DROP;
4063         __be16 type;
4064
4065         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4066
4067         trace_netif_receive_skb(skb);
4068
4069         orig_dev = skb->dev;
4070
4071         skb_reset_network_header(skb);
4072         if (!skb_transport_header_was_set(skb))
4073                 skb_reset_transport_header(skb);
4074         skb_reset_mac_len(skb);
4075
4076         pt_prev = NULL;
4077
4078 another_round:
4079         skb->skb_iif = skb->dev->ifindex;
4080
4081         __this_cpu_inc(softnet_data.processed);
4082
4083         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4084             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4085                 skb = skb_vlan_untag(skb);
4086                 if (unlikely(!skb))
4087                         goto out;
4088         }
4089
4090 #ifdef CONFIG_NET_CLS_ACT
4091         if (skb->tc_verd & TC_NCLS) {
4092                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4093                 goto ncls;
4094         }
4095 #endif
4096
4097         if (pfmemalloc)
4098                 goto skip_taps;
4099
4100         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4101                 if (pt_prev)
4102                         ret = deliver_skb(skb, pt_prev, orig_dev);
4103                 pt_prev = ptype;
4104         }
4105
4106         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4107                 if (pt_prev)
4108                         ret = deliver_skb(skb, pt_prev, orig_dev);
4109                 pt_prev = ptype;
4110         }
4111
4112 skip_taps:
4113 #ifdef CONFIG_NET_INGRESS
4114         if (static_key_false(&ingress_needed)) {
4115                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4116                 if (!skb)
4117                         goto out;
4118
4119                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4120                         goto out;
4121         }
4122 #endif
4123 #ifdef CONFIG_NET_CLS_ACT
4124         skb->tc_verd = 0;
4125 ncls:
4126 #endif
4127         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4128                 goto drop;
4129
4130         if (skb_vlan_tag_present(skb)) {
4131                 if (pt_prev) {
4132                         ret = deliver_skb(skb, pt_prev, orig_dev);
4133                         pt_prev = NULL;
4134                 }
4135                 if (vlan_do_receive(&skb))
4136                         goto another_round;
4137                 else if (unlikely(!skb))
4138                         goto out;
4139         }
4140
4141         rx_handler = rcu_dereference(skb->dev->rx_handler);
4142         if (rx_handler) {
4143                 if (pt_prev) {
4144                         ret = deliver_skb(skb, pt_prev, orig_dev);
4145                         pt_prev = NULL;
4146                 }
4147                 switch (rx_handler(&skb)) {
4148                 case RX_HANDLER_CONSUMED:
4149                         ret = NET_RX_SUCCESS;
4150                         goto out;
4151                 case RX_HANDLER_ANOTHER:
4152                         goto another_round;
4153                 case RX_HANDLER_EXACT:
4154                         deliver_exact = true;
4155                 case RX_HANDLER_PASS:
4156                         break;
4157                 default:
4158                         BUG();
4159                 }
4160         }
4161
4162         if (unlikely(skb_vlan_tag_present(skb))) {
4163                 if (skb_vlan_tag_get_id(skb))
4164                         skb->pkt_type = PACKET_OTHERHOST;
4165                 /* Note: we might in the future use prio bits
4166                  * and set skb->priority like in vlan_do_receive()
4167                  * For the time being, just ignore Priority Code Point
4168                  */
4169                 skb->vlan_tci = 0;
4170         }
4171
4172         type = skb->protocol;
4173
4174         /* deliver only exact match when indicated */
4175         if (likely(!deliver_exact)) {
4176                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4177                                        &ptype_base[ntohs(type) &
4178                                                    PTYPE_HASH_MASK]);
4179         }
4180
4181         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182                                &orig_dev->ptype_specific);
4183
4184         if (unlikely(skb->dev != orig_dev)) {
4185                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186                                        &skb->dev->ptype_specific);
4187         }
4188
4189         if (pt_prev) {
4190                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4191                         goto drop;
4192                 else
4193                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4194         } else {
4195 drop:
4196                 if (!deliver_exact)
4197                         atomic_long_inc(&skb->dev->rx_dropped);
4198                 else
4199                         atomic_long_inc(&skb->dev->rx_nohandler);
4200                 kfree_skb(skb);
4201                 /* Jamal, now you will not able to escape explaining
4202                  * me how you were going to use this. :-)
4203                  */
4204                 ret = NET_RX_DROP;
4205         }
4206
4207 out:
4208         return ret;
4209 }
4210
4211 static int __netif_receive_skb(struct sk_buff *skb)
4212 {
4213         int ret;
4214
4215         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4216                 unsigned long pflags = current->flags;
4217
4218                 /*
4219                  * PFMEMALLOC skbs are special, they should
4220                  * - be delivered to SOCK_MEMALLOC sockets only
4221                  * - stay away from userspace
4222                  * - have bounded memory usage
4223                  *
4224                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4225                  * context down to all allocation sites.
4226                  */
4227                 current->flags |= PF_MEMALLOC;
4228                 ret = __netif_receive_skb_core(skb, true);
4229                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4230         } else
4231                 ret = __netif_receive_skb_core(skb, false);
4232
4233         return ret;
4234 }
4235
4236 static int netif_receive_skb_internal(struct sk_buff *skb)
4237 {
4238         int ret;
4239
4240         net_timestamp_check(netdev_tstamp_prequeue, skb);
4241
4242         if (skb_defer_rx_timestamp(skb))
4243                 return NET_RX_SUCCESS;
4244
4245         rcu_read_lock();
4246
4247 #ifdef CONFIG_RPS
4248         if (static_key_false(&rps_needed)) {
4249                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4250                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4251
4252                 if (cpu >= 0) {
4253                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4254                         rcu_read_unlock();
4255                         return ret;
4256                 }
4257         }
4258 #endif
4259         ret = __netif_receive_skb(skb);
4260         rcu_read_unlock();
4261         return ret;
4262 }
4263
4264 /**
4265  *      netif_receive_skb - process receive buffer from network
4266  *      @skb: buffer to process
4267  *
4268  *      netif_receive_skb() is the main receive data processing function.
4269  *      It always succeeds. The buffer may be dropped during processing
4270  *      for congestion control or by the protocol layers.
4271  *
4272  *      This function may only be called from softirq context and interrupts
4273  *      should be enabled.
4274  *
4275  *      Return values (usually ignored):
4276  *      NET_RX_SUCCESS: no congestion
4277  *      NET_RX_DROP: packet was dropped
4278  */
4279 int netif_receive_skb(struct sk_buff *skb)
4280 {
4281         trace_netif_receive_skb_entry(skb);
4282
4283         return netif_receive_skb_internal(skb);
4284 }
4285 EXPORT_SYMBOL(netif_receive_skb);
4286
4287 DEFINE_PER_CPU(struct work_struct, flush_works);
4288
4289 /* Network device is going away, flush any packets still pending */
4290 static void flush_backlog(struct work_struct *work)
4291 {
4292         struct sk_buff *skb, *tmp;
4293         struct softnet_data *sd;
4294
4295         local_bh_disable();
4296         sd = this_cpu_ptr(&softnet_data);
4297
4298         local_irq_disable();
4299         rps_lock(sd);
4300         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4301                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4302                         __skb_unlink(skb, &sd->input_pkt_queue);
4303                         kfree_skb(skb);
4304                         input_queue_head_incr(sd);
4305                 }
4306         }
4307         rps_unlock(sd);
4308         local_irq_enable();
4309
4310         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4311                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4312                         __skb_unlink(skb, &sd->process_queue);
4313                         kfree_skb(skb);
4314                         input_queue_head_incr(sd);
4315                 }
4316         }
4317         local_bh_enable();
4318 }
4319
4320 static void flush_all_backlogs(void)
4321 {
4322         unsigned int cpu;
4323
4324         get_online_cpus();
4325
4326         for_each_online_cpu(cpu)
4327                 queue_work_on(cpu, system_highpri_wq,
4328                               per_cpu_ptr(&flush_works, cpu));
4329
4330         for_each_online_cpu(cpu)
4331                 flush_work(per_cpu_ptr(&flush_works, cpu));
4332
4333         put_online_cpus();
4334 }
4335
4336 static int napi_gro_complete(struct sk_buff *skb)
4337 {
4338         struct packet_offload *ptype;
4339         __be16 type = skb->protocol;
4340         struct list_head *head = &offload_base;
4341         int err = -ENOENT;
4342
4343         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4344
4345         if (NAPI_GRO_CB(skb)->count == 1) {
4346                 skb_shinfo(skb)->gso_size = 0;
4347                 goto out;
4348         }
4349
4350         rcu_read_lock();
4351         list_for_each_entry_rcu(ptype, head, list) {
4352                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4353                         continue;
4354
4355                 err = ptype->callbacks.gro_complete(skb, 0);
4356                 break;
4357         }
4358         rcu_read_unlock();
4359
4360         if (err) {
4361                 WARN_ON(&ptype->list == head);
4362                 kfree_skb(skb);
4363                 return NET_RX_SUCCESS;
4364         }
4365
4366 out:
4367         return netif_receive_skb_internal(skb);
4368 }
4369
4370 /* napi->gro_list contains packets ordered by age.
4371  * youngest packets at the head of it.
4372  * Complete skbs in reverse order to reduce latencies.
4373  */
4374 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4375 {
4376         struct sk_buff *skb, *prev = NULL;
4377
4378         /* scan list and build reverse chain */
4379         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4380                 skb->prev = prev;
4381                 prev = skb;
4382         }
4383
4384         for (skb = prev; skb; skb = prev) {
4385                 skb->next = NULL;
4386
4387                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4388                         return;
4389
4390                 prev = skb->prev;
4391                 napi_gro_complete(skb);
4392                 napi->gro_count--;
4393         }
4394
4395         napi->gro_list = NULL;
4396 }
4397 EXPORT_SYMBOL(napi_gro_flush);
4398
4399 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4400 {
4401         struct sk_buff *p;
4402         unsigned int maclen = skb->dev->hard_header_len;
4403         u32 hash = skb_get_hash_raw(skb);
4404
4405         for (p = napi->gro_list; p; p = p->next) {
4406                 unsigned long diffs;
4407
4408                 NAPI_GRO_CB(p)->flush = 0;
4409
4410                 if (hash != skb_get_hash_raw(p)) {
4411                         NAPI_GRO_CB(p)->same_flow = 0;
4412                         continue;
4413                 }
4414
4415                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4416                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4417                 diffs |= skb_metadata_dst_cmp(p, skb);
4418                 if (maclen == ETH_HLEN)
4419                         diffs |= compare_ether_header(skb_mac_header(p),
4420                                                       skb_mac_header(skb));
4421                 else if (!diffs)
4422                         diffs = memcmp(skb_mac_header(p),
4423                                        skb_mac_header(skb),
4424                                        maclen);
4425                 NAPI_GRO_CB(p)->same_flow = !diffs;
4426         }
4427 }
4428
4429 static void skb_gro_reset_offset(struct sk_buff *skb)
4430 {
4431         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4432         const skb_frag_t *frag0 = &pinfo->frags[0];
4433
4434         NAPI_GRO_CB(skb)->data_offset = 0;
4435         NAPI_GRO_CB(skb)->frag0 = NULL;
4436         NAPI_GRO_CB(skb)->frag0_len = 0;
4437
4438         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4439             pinfo->nr_frags &&
4440             !PageHighMem(skb_frag_page(frag0))) {
4441                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4442                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4443         }
4444 }
4445
4446 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4447 {
4448         struct skb_shared_info *pinfo = skb_shinfo(skb);
4449
4450         BUG_ON(skb->end - skb->tail < grow);
4451
4452         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4453
4454         skb->data_len -= grow;
4455         skb->tail += grow;
4456
4457         pinfo->frags[0].page_offset += grow;
4458         skb_frag_size_sub(&pinfo->frags[0], grow);
4459
4460         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4461                 skb_frag_unref(skb, 0);
4462                 memmove(pinfo->frags, pinfo->frags + 1,
4463                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4464         }
4465 }
4466
4467 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4468 {
4469         struct sk_buff **pp = NULL;
4470         struct packet_offload *ptype;
4471         __be16 type = skb->protocol;
4472         struct list_head *head = &offload_base;
4473         int same_flow;
4474         enum gro_result ret;
4475         int grow;
4476
4477         if (!(skb->dev->features & NETIF_F_GRO))
4478                 goto normal;
4479
4480         if (skb->csum_bad)
4481                 goto normal;
4482
4483         gro_list_prepare(napi, skb);
4484
4485         rcu_read_lock();
4486         list_for_each_entry_rcu(ptype, head, list) {
4487                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4488                         continue;
4489
4490                 skb_set_network_header(skb, skb_gro_offset(skb));
4491                 skb_reset_mac_len(skb);
4492                 NAPI_GRO_CB(skb)->same_flow = 0;
4493                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4494                 NAPI_GRO_CB(skb)->free = 0;
4495                 NAPI_GRO_CB(skb)->encap_mark = 0;
4496                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4497                 NAPI_GRO_CB(skb)->is_fou = 0;
4498                 NAPI_GRO_CB(skb)->is_atomic = 1;
4499                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4500
4501                 /* Setup for GRO checksum validation */
4502                 switch (skb->ip_summed) {
4503                 case CHECKSUM_COMPLETE:
4504                         NAPI_GRO_CB(skb)->csum = skb->csum;
4505                         NAPI_GRO_CB(skb)->csum_valid = 1;
4506                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4507                         break;
4508                 case CHECKSUM_UNNECESSARY:
4509                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4510                         NAPI_GRO_CB(skb)->csum_valid = 0;
4511                         break;
4512                 default:
4513                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4514                         NAPI_GRO_CB(skb)->csum_valid = 0;
4515                 }
4516
4517                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4518                 break;
4519         }
4520         rcu_read_unlock();
4521
4522         if (&ptype->list == head)
4523                 goto normal;
4524
4525         same_flow = NAPI_GRO_CB(skb)->same_flow;
4526         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4527
4528         if (pp) {
4529                 struct sk_buff *nskb = *pp;
4530
4531                 *pp = nskb->next;
4532                 nskb->next = NULL;
4533                 napi_gro_complete(nskb);
4534                 napi->gro_count--;
4535         }
4536
4537         if (same_flow)
4538                 goto ok;
4539
4540         if (NAPI_GRO_CB(skb)->flush)
4541                 goto normal;
4542
4543         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4544                 struct sk_buff *nskb = napi->gro_list;
4545
4546                 /* locate the end of the list to select the 'oldest' flow */
4547                 while (nskb->next) {
4548                         pp = &nskb->next;
4549                         nskb = *pp;
4550                 }
4551                 *pp = NULL;
4552                 nskb->next = NULL;
4553                 napi_gro_complete(nskb);
4554         } else {
4555                 napi->gro_count++;
4556         }
4557         NAPI_GRO_CB(skb)->count = 1;
4558         NAPI_GRO_CB(skb)->age = jiffies;
4559         NAPI_GRO_CB(skb)->last = skb;
4560         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4561         skb->next = napi->gro_list;
4562         napi->gro_list = skb;
4563         ret = GRO_HELD;
4564
4565 pull:
4566         grow = skb_gro_offset(skb) - skb_headlen(skb);
4567         if (grow > 0)
4568                 gro_pull_from_frag0(skb, grow);
4569 ok:
4570         return ret;
4571
4572 normal:
4573         ret = GRO_NORMAL;
4574         goto pull;
4575 }
4576
4577 struct packet_offload *gro_find_receive_by_type(__be16 type)
4578 {
4579         struct list_head *offload_head = &offload_base;
4580         struct packet_offload *ptype;
4581
4582         list_for_each_entry_rcu(ptype, offload_head, list) {
4583                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4584                         continue;
4585                 return ptype;
4586         }
4587         return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_receive_by_type);
4590
4591 struct packet_offload *gro_find_complete_by_type(__be16 type)
4592 {
4593         struct list_head *offload_head = &offload_base;
4594         struct packet_offload *ptype;
4595
4596         list_for_each_entry_rcu(ptype, offload_head, list) {
4597                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4598                         continue;
4599                 return ptype;
4600         }
4601         return NULL;
4602 }
4603 EXPORT_SYMBOL(gro_find_complete_by_type);
4604
4605 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4606 {
4607         switch (ret) {
4608         case GRO_NORMAL:
4609                 if (netif_receive_skb_internal(skb))
4610                         ret = GRO_DROP;
4611                 break;
4612
4613         case GRO_DROP:
4614                 kfree_skb(skb);
4615                 break;
4616
4617         case GRO_MERGED_FREE:
4618                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4619                         skb_dst_drop(skb);
4620                         kmem_cache_free(skbuff_head_cache, skb);
4621                 } else {
4622                         __kfree_skb(skb);
4623                 }
4624                 break;
4625
4626         case GRO_HELD:
4627         case GRO_MERGED:
4628                 break;
4629         }
4630
4631         return ret;
4632 }
4633
4634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4635 {
4636         skb_mark_napi_id(skb, napi);
4637         trace_napi_gro_receive_entry(skb);
4638
4639         skb_gro_reset_offset(skb);
4640
4641         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4642 }
4643 EXPORT_SYMBOL(napi_gro_receive);
4644
4645 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4646 {
4647         if (unlikely(skb->pfmemalloc)) {
4648                 consume_skb(skb);
4649                 return;
4650         }
4651         __skb_pull(skb, skb_headlen(skb));
4652         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4653         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4654         skb->vlan_tci = 0;
4655         skb->dev = napi->dev;
4656         skb->skb_iif = 0;
4657         skb->encapsulation = 0;
4658         skb_shinfo(skb)->gso_type = 0;
4659         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4660
4661         napi->skb = skb;
4662 }
4663
4664 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4665 {
4666         struct sk_buff *skb = napi->skb;
4667
4668         if (!skb) {
4669                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4670                 if (skb) {
4671                         napi->skb = skb;
4672                         skb_mark_napi_id(skb, napi);
4673                 }
4674         }
4675         return skb;
4676 }
4677 EXPORT_SYMBOL(napi_get_frags);
4678
4679 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4680                                       struct sk_buff *skb,
4681                                       gro_result_t ret)
4682 {
4683         switch (ret) {
4684         case GRO_NORMAL:
4685         case GRO_HELD:
4686                 __skb_push(skb, ETH_HLEN);
4687                 skb->protocol = eth_type_trans(skb, skb->dev);
4688                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4689                         ret = GRO_DROP;
4690                 break;
4691
4692         case GRO_DROP:
4693         case GRO_MERGED_FREE:
4694                 napi_reuse_skb(napi, skb);
4695                 break;
4696
4697         case GRO_MERGED:
4698                 break;
4699         }
4700
4701         return ret;
4702 }
4703
4704 /* Upper GRO stack assumes network header starts at gro_offset=0
4705  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4706  * We copy ethernet header into skb->data to have a common layout.
4707  */
4708 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4709 {
4710         struct sk_buff *skb = napi->skb;
4711         const struct ethhdr *eth;
4712         unsigned int hlen = sizeof(*eth);
4713
4714         napi->skb = NULL;
4715
4716         skb_reset_mac_header(skb);
4717         skb_gro_reset_offset(skb);
4718
4719         eth = skb_gro_header_fast(skb, 0);
4720         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4721                 eth = skb_gro_header_slow(skb, hlen, 0);
4722                 if (unlikely(!eth)) {
4723                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4724                                              __func__, napi->dev->name);
4725                         napi_reuse_skb(napi, skb);
4726                         return NULL;
4727                 }
4728         } else {
4729                 gro_pull_from_frag0(skb, hlen);
4730                 NAPI_GRO_CB(skb)->frag0 += hlen;
4731                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4732         }
4733         __skb_pull(skb, hlen);
4734
4735         /*
4736          * This works because the only protocols we care about don't require
4737          * special handling.
4738          * We'll fix it up properly in napi_frags_finish()
4739          */
4740         skb->protocol = eth->h_proto;
4741
4742         return skb;
4743 }
4744
4745 gro_result_t napi_gro_frags(struct napi_struct *napi)
4746 {
4747         struct sk_buff *skb = napi_frags_skb(napi);
4748
4749         if (!skb)
4750                 return GRO_DROP;
4751
4752         trace_napi_gro_frags_entry(skb);
4753
4754         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4755 }
4756 EXPORT_SYMBOL(napi_gro_frags);
4757
4758 /* Compute the checksum from gro_offset and return the folded value
4759  * after adding in any pseudo checksum.
4760  */
4761 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4762 {
4763         __wsum wsum;
4764         __sum16 sum;
4765
4766         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4767
4768         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4769         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4770         if (likely(!sum)) {
4771                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4772                     !skb->csum_complete_sw)
4773                         netdev_rx_csum_fault(skb->dev);
4774         }
4775
4776         NAPI_GRO_CB(skb)->csum = wsum;
4777         NAPI_GRO_CB(skb)->csum_valid = 1;
4778
4779         return sum;
4780 }
4781 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4782
4783 /*
4784  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4785  * Note: called with local irq disabled, but exits with local irq enabled.
4786  */
4787 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4788 {
4789 #ifdef CONFIG_RPS
4790         struct softnet_data *remsd = sd->rps_ipi_list;
4791
4792         if (remsd) {
4793                 sd->rps_ipi_list = NULL;
4794
4795                 local_irq_enable();
4796
4797                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4798                 while (remsd) {
4799                         struct softnet_data *next = remsd->rps_ipi_next;
4800
4801                         if (cpu_online(remsd->cpu))
4802                                 smp_call_function_single_async(remsd->cpu,
4803                                                            &remsd->csd);
4804                         remsd = next;
4805                 }
4806         } else
4807 #endif
4808                 local_irq_enable();
4809 }
4810
4811 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814         return sd->rps_ipi_list != NULL;
4815 #else
4816         return false;
4817 #endif
4818 }
4819
4820 static int process_backlog(struct napi_struct *napi, int quota)
4821 {
4822         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4823         bool again = true;
4824         int work = 0;
4825
4826         /* Check if we have pending ipi, its better to send them now,
4827          * not waiting net_rx_action() end.
4828          */
4829         if (sd_has_rps_ipi_waiting(sd)) {
4830                 local_irq_disable();
4831                 net_rps_action_and_irq_enable(sd);
4832         }
4833
4834         napi->weight = weight_p;
4835         while (again) {
4836                 struct sk_buff *skb;
4837
4838                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4839                         rcu_read_lock();
4840                         __netif_receive_skb(skb);
4841                         rcu_read_unlock();
4842                         input_queue_head_incr(sd);
4843                         if (++work >= quota)
4844                                 return work;
4845
4846                 }
4847
4848                 local_irq_disable();
4849                 rps_lock(sd);
4850                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4851                         /*
4852                          * Inline a custom version of __napi_complete().
4853                          * only current cpu owns and manipulates this napi,
4854                          * and NAPI_STATE_SCHED is the only possible flag set
4855                          * on backlog.
4856                          * We can use a plain write instead of clear_bit(),
4857                          * and we dont need an smp_mb() memory barrier.
4858                          */
4859                         napi->state = 0;
4860                         again = false;
4861                 } else {
4862                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4863                                                    &sd->process_queue);
4864                 }
4865                 rps_unlock(sd);
4866                 local_irq_enable();
4867         }
4868
4869         return work;
4870 }
4871
4872 /**
4873  * __napi_schedule - schedule for receive
4874  * @n: entry to schedule
4875  *
4876  * The entry's receive function will be scheduled to run.
4877  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4878  */
4879 void __napi_schedule(struct napi_struct *n)
4880 {
4881         unsigned long flags;
4882
4883         local_irq_save(flags);
4884         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4885         local_irq_restore(flags);
4886 }
4887 EXPORT_SYMBOL(__napi_schedule);
4888
4889 /**
4890  * __napi_schedule_irqoff - schedule for receive
4891  * @n: entry to schedule
4892  *
4893  * Variant of __napi_schedule() assuming hard irqs are masked
4894  */
4895 void __napi_schedule_irqoff(struct napi_struct *n)
4896 {
4897         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4898 }
4899 EXPORT_SYMBOL(__napi_schedule_irqoff);
4900
4901 bool __napi_complete(struct napi_struct *n)
4902 {
4903         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4904
4905         /* Some drivers call us directly, instead of calling
4906          * napi_complete_done().
4907          */
4908         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4909                 return false;
4910
4911         list_del_init(&n->poll_list);
4912         smp_mb__before_atomic();
4913         clear_bit(NAPI_STATE_SCHED, &n->state);
4914         return true;
4915 }
4916 EXPORT_SYMBOL(__napi_complete);
4917
4918 bool napi_complete_done(struct napi_struct *n, int work_done)
4919 {
4920         unsigned long flags;
4921
4922         /*
4923          * 1) Don't let napi dequeue from the cpu poll list
4924          *    just in case its running on a different cpu.
4925          * 2) If we are busy polling, do nothing here, we have
4926          *    the guarantee we will be called later.
4927          */
4928         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4929                                  NAPIF_STATE_IN_BUSY_POLL)))
4930                 return false;
4931
4932         if (n->gro_list) {
4933                 unsigned long timeout = 0;
4934
4935                 if (work_done)
4936                         timeout = n->dev->gro_flush_timeout;
4937
4938                 if (timeout)
4939                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4940                                       HRTIMER_MODE_REL_PINNED);
4941                 else
4942                         napi_gro_flush(n, false);
4943         }
4944         if (likely(list_empty(&n->poll_list))) {
4945                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4946         } else {
4947                 /* If n->poll_list is not empty, we need to mask irqs */
4948                 local_irq_save(flags);
4949                 __napi_complete(n);
4950                 local_irq_restore(flags);
4951         }
4952         return true;
4953 }
4954 EXPORT_SYMBOL(napi_complete_done);
4955
4956 /* must be called under rcu_read_lock(), as we dont take a reference */
4957 static struct napi_struct *napi_by_id(unsigned int napi_id)
4958 {
4959         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4960         struct napi_struct *napi;
4961
4962         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4963                 if (napi->napi_id == napi_id)
4964                         return napi;
4965
4966         return NULL;
4967 }
4968
4969 #if defined(CONFIG_NET_RX_BUSY_POLL)
4970
4971 #define BUSY_POLL_BUDGET 8
4972
4973 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4974 {
4975         int rc;
4976
4977         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4978
4979         local_bh_disable();
4980
4981         /* All we really want here is to re-enable device interrupts.
4982          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4983          */
4984         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4985         netpoll_poll_unlock(have_poll_lock);
4986         if (rc == BUSY_POLL_BUDGET)
4987                 __napi_schedule(napi);
4988         local_bh_enable();
4989         if (local_softirq_pending())
4990                 do_softirq();
4991 }
4992
4993 bool sk_busy_loop(struct sock *sk, int nonblock)
4994 {
4995         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4996         int (*napi_poll)(struct napi_struct *napi, int budget);
4997         int (*busy_poll)(struct napi_struct *dev);
4998         void *have_poll_lock = NULL;
4999         struct napi_struct *napi;
5000         int rc;
5001
5002 restart:
5003         rc = false;
5004         napi_poll = NULL;
5005
5006         rcu_read_lock();
5007
5008         napi = napi_by_id(sk->sk_napi_id);
5009         if (!napi)
5010                 goto out;
5011
5012         /* Note: ndo_busy_poll method is optional in linux-4.5 */
5013         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5014
5015         preempt_disable();
5016         for (;;) {
5017                 rc = 0;
5018                 local_bh_disable();
5019                 if (busy_poll) {
5020                         rc = busy_poll(napi);
5021                         goto count;
5022                 }
5023                 if (!napi_poll) {
5024                         unsigned long val = READ_ONCE(napi->state);
5025
5026                         /* If multiple threads are competing for this napi,
5027                          * we avoid dirtying napi->state as much as we can.
5028                          */
5029                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5030                                    NAPIF_STATE_IN_BUSY_POLL))
5031                                 goto count;
5032                         if (cmpxchg(&napi->state, val,
5033                                     val | NAPIF_STATE_IN_BUSY_POLL |
5034                                           NAPIF_STATE_SCHED) != val)
5035                                 goto count;
5036                         have_poll_lock = netpoll_poll_lock(napi);
5037                         napi_poll = napi->poll;
5038                 }
5039                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5040                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5041 count:
5042                 if (rc > 0)
5043                         __NET_ADD_STATS(sock_net(sk),
5044                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5045                 local_bh_enable();
5046
5047                 if (rc == LL_FLUSH_FAILED)
5048                         break; /* permanent failure */
5049
5050                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5051                     busy_loop_timeout(end_time))
5052                         break;
5053
5054                 if (unlikely(need_resched())) {
5055                         if (napi_poll)
5056                                 busy_poll_stop(napi, have_poll_lock);
5057                         preempt_enable();
5058                         rcu_read_unlock();
5059                         cond_resched();
5060                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5061                         if (rc || busy_loop_timeout(end_time))
5062                                 return rc;
5063                         goto restart;
5064                 }
5065                 cpu_relax_lowlatency();
5066         }
5067         if (napi_poll)
5068                 busy_poll_stop(napi, have_poll_lock);
5069         preempt_enable();
5070         rc = !skb_queue_empty(&sk->sk_receive_queue);
5071 out:
5072         rcu_read_unlock();
5073         return rc;
5074 }
5075 EXPORT_SYMBOL(sk_busy_loop);
5076
5077 #endif /* CONFIG_NET_RX_BUSY_POLL */
5078
5079 static void napi_hash_add(struct napi_struct *napi)
5080 {
5081         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5082             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5083                 return;
5084
5085         spin_lock(&napi_hash_lock);
5086
5087         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5088         do {
5089                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5090                         napi_gen_id = NR_CPUS + 1;
5091         } while (napi_by_id(napi_gen_id));
5092         napi->napi_id = napi_gen_id;
5093
5094         hlist_add_head_rcu(&napi->napi_hash_node,
5095                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5096
5097         spin_unlock(&napi_hash_lock);
5098 }
5099
5100 /* Warning : caller is responsible to make sure rcu grace period
5101  * is respected before freeing memory containing @napi
5102  */
5103 bool napi_hash_del(struct napi_struct *napi)
5104 {
5105         bool rcu_sync_needed = false;
5106
5107         spin_lock(&napi_hash_lock);
5108
5109         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5110                 rcu_sync_needed = true;
5111                 hlist_del_rcu(&napi->napi_hash_node);
5112         }
5113         spin_unlock(&napi_hash_lock);
5114         return rcu_sync_needed;
5115 }
5116 EXPORT_SYMBOL_GPL(napi_hash_del);
5117
5118 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5119 {
5120         struct napi_struct *napi;
5121
5122         napi = container_of(timer, struct napi_struct, timer);
5123         if (napi->gro_list)
5124                 napi_schedule(napi);
5125
5126         return HRTIMER_NORESTART;
5127 }
5128
5129 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5130                     int (*poll)(struct napi_struct *, int), int weight)
5131 {
5132         INIT_LIST_HEAD(&napi->poll_list);
5133         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5134         napi->timer.function = napi_watchdog;
5135         napi->gro_count = 0;
5136         napi->gro_list = NULL;
5137         napi->skb = NULL;
5138         napi->poll = poll;
5139         if (weight > NAPI_POLL_WEIGHT)
5140                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5141                             weight, dev->name);
5142         napi->weight = weight;
5143         list_add(&napi->dev_list, &dev->napi_list);
5144         napi->dev = dev;
5145 #ifdef CONFIG_NETPOLL
5146         napi->poll_owner = -1;
5147 #endif
5148         set_bit(NAPI_STATE_SCHED, &napi->state);
5149         napi_hash_add(napi);
5150 }
5151 EXPORT_SYMBOL(netif_napi_add);
5152
5153 void napi_disable(struct napi_struct *n)
5154 {
5155         might_sleep();
5156         set_bit(NAPI_STATE_DISABLE, &n->state);
5157
5158         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5159                 msleep(1);
5160         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5161                 msleep(1);
5162
5163         hrtimer_cancel(&n->timer);
5164
5165         clear_bit(NAPI_STATE_DISABLE, &n->state);
5166 }
5167 EXPORT_SYMBOL(napi_disable);
5168
5169 /* Must be called in process context */
5170 void netif_napi_del(struct napi_struct *napi)
5171 {
5172         might_sleep();
5173         if (napi_hash_del(napi))
5174                 synchronize_net();
5175         list_del_init(&napi->dev_list);
5176         napi_free_frags(napi);
5177
5178         kfree_skb_list(napi->gro_list);
5179         napi->gro_list = NULL;
5180         napi->gro_count = 0;
5181 }
5182 EXPORT_SYMBOL(netif_napi_del);
5183
5184 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5185 {
5186         void *have;
5187         int work, weight;
5188
5189         list_del_init(&n->poll_list);
5190
5191         have = netpoll_poll_lock(n);
5192
5193         weight = n->weight;
5194
5195         /* This NAPI_STATE_SCHED test is for avoiding a race
5196          * with netpoll's poll_napi().  Only the entity which
5197          * obtains the lock and sees NAPI_STATE_SCHED set will
5198          * actually make the ->poll() call.  Therefore we avoid
5199          * accidentally calling ->poll() when NAPI is not scheduled.
5200          */
5201         work = 0;
5202         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5203                 work = n->poll(n, weight);
5204                 trace_napi_poll(n, work, weight);
5205         }
5206
5207         WARN_ON_ONCE(work > weight);
5208
5209         if (likely(work < weight))
5210                 goto out_unlock;
5211
5212         /* Drivers must not modify the NAPI state if they
5213          * consume the entire weight.  In such cases this code
5214          * still "owns" the NAPI instance and therefore can
5215          * move the instance around on the list at-will.
5216          */
5217         if (unlikely(napi_disable_pending(n))) {
5218                 napi_complete(n);
5219                 goto out_unlock;
5220         }
5221
5222         if (n->gro_list) {
5223                 /* flush too old packets
5224                  * If HZ < 1000, flush all packets.
5225                  */
5226                 napi_gro_flush(n, HZ >= 1000);
5227         }
5228
5229         /* Some drivers may have called napi_schedule
5230          * prior to exhausting their budget.
5231          */
5232         if (unlikely(!list_empty(&n->poll_list))) {
5233                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5234                              n->dev ? n->dev->name : "backlog");
5235                 goto out_unlock;
5236         }
5237
5238         list_add_tail(&n->poll_list, repoll);
5239
5240 out_unlock:
5241         netpoll_poll_unlock(have);
5242
5243         return work;
5244 }
5245
5246 static __latent_entropy void net_rx_action(struct softirq_action *h)
5247 {
5248         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5249         unsigned long time_limit = jiffies + 2;
5250         int budget = netdev_budget;
5251         LIST_HEAD(list);
5252         LIST_HEAD(repoll);
5253
5254         local_irq_disable();
5255         list_splice_init(&sd->poll_list, &list);
5256         local_irq_enable();
5257
5258         for (;;) {
5259                 struct napi_struct *n;
5260
5261                 if (list_empty(&list)) {
5262                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5263                                 goto out;
5264                         break;
5265                 }
5266
5267                 n = list_first_entry(&list, struct napi_struct, poll_list);
5268                 budget -= napi_poll(n, &repoll);
5269
5270                 /* If softirq window is exhausted then punt.
5271                  * Allow this to run for 2 jiffies since which will allow
5272                  * an average latency of 1.5/HZ.
5273                  */
5274                 if (unlikely(budget <= 0 ||
5275                              time_after_eq(jiffies, time_limit))) {
5276                         sd->time_squeeze++;
5277                         break;
5278                 }
5279         }
5280
5281         local_irq_disable();
5282
5283         list_splice_tail_init(&sd->poll_list, &list);
5284         list_splice_tail(&repoll, &list);
5285         list_splice(&list, &sd->poll_list);
5286         if (!list_empty(&sd->poll_list))
5287                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5288
5289         net_rps_action_and_irq_enable(sd);
5290 out:
5291         __kfree_skb_flush();
5292 }
5293
5294 struct netdev_adjacent {
5295         struct net_device *dev;
5296
5297         /* upper master flag, there can only be one master device per list */
5298         bool master;
5299
5300         /* counter for the number of times this device was added to us */
5301         u16 ref_nr;
5302
5303         /* private field for the users */
5304         void *private;
5305
5306         struct list_head list;
5307         struct rcu_head rcu;
5308 };
5309
5310 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5311                                                  struct list_head *adj_list)
5312 {
5313         struct netdev_adjacent *adj;
5314
5315         list_for_each_entry(adj, adj_list, list) {
5316                 if (adj->dev == adj_dev)
5317                         return adj;
5318         }
5319         return NULL;
5320 }
5321
5322 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5323 {
5324         struct net_device *dev = data;
5325
5326         return upper_dev == dev;
5327 }
5328
5329 /**
5330  * netdev_has_upper_dev - Check if device is linked to an upper device
5331  * @dev: device
5332  * @upper_dev: upper device to check
5333  *
5334  * Find out if a device is linked to specified upper device and return true
5335  * in case it is. Note that this checks only immediate upper device,
5336  * not through a complete stack of devices. The caller must hold the RTNL lock.
5337  */
5338 bool netdev_has_upper_dev(struct net_device *dev,
5339                           struct net_device *upper_dev)
5340 {
5341         ASSERT_RTNL();
5342
5343         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5344                                              upper_dev);
5345 }
5346 EXPORT_SYMBOL(netdev_has_upper_dev);
5347
5348 /**
5349  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5350  * @dev: device
5351  * @upper_dev: upper device to check
5352  *
5353  * Find out if a device is linked to specified upper device and return true
5354  * in case it is. Note that this checks the entire upper device chain.
5355  * The caller must hold rcu lock.
5356  */
5357
5358 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5359                                   struct net_device *upper_dev)
5360 {
5361         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5362                                                upper_dev);
5363 }
5364 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5365
5366 /**
5367  * netdev_has_any_upper_dev - Check if device is linked to some device
5368  * @dev: device
5369  *
5370  * Find out if a device is linked to an upper device and return true in case
5371  * it is. The caller must hold the RTNL lock.
5372  */
5373 static bool netdev_has_any_upper_dev(struct net_device *dev)
5374 {
5375         ASSERT_RTNL();
5376
5377         return !list_empty(&dev->adj_list.upper);
5378 }
5379
5380 /**
5381  * netdev_master_upper_dev_get - Get master upper device
5382  * @dev: device
5383  *
5384  * Find a master upper device and return pointer to it or NULL in case
5385  * it's not there. The caller must hold the RTNL lock.
5386  */
5387 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5388 {
5389         struct netdev_adjacent *upper;
5390
5391         ASSERT_RTNL();
5392
5393         if (list_empty(&dev->adj_list.upper))
5394                 return NULL;
5395
5396         upper = list_first_entry(&dev->adj_list.upper,
5397                                  struct netdev_adjacent, list);
5398         if (likely(upper->master))
5399                 return upper->dev;
5400         return NULL;
5401 }
5402 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5403
5404 /**
5405  * netdev_has_any_lower_dev - Check if device is linked to some device
5406  * @dev: device
5407  *
5408  * Find out if a device is linked to a lower device and return true in case
5409  * it is. The caller must hold the RTNL lock.
5410  */
5411 static bool netdev_has_any_lower_dev(struct net_device *dev)
5412 {
5413         ASSERT_RTNL();
5414
5415         return !list_empty(&dev->adj_list.lower);
5416 }
5417
5418 void *netdev_adjacent_get_private(struct list_head *adj_list)
5419 {
5420         struct netdev_adjacent *adj;
5421
5422         adj = list_entry(adj_list, struct netdev_adjacent, list);
5423
5424         return adj->private;
5425 }
5426 EXPORT_SYMBOL(netdev_adjacent_get_private);
5427
5428 /**
5429  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5430  * @dev: device
5431  * @iter: list_head ** of the current position
5432  *
5433  * Gets the next device from the dev's upper list, starting from iter
5434  * position. The caller must hold RCU read lock.
5435  */
5436 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5437                                                  struct list_head **iter)
5438 {
5439         struct netdev_adjacent *upper;
5440
5441         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5442
5443         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5444
5445         if (&upper->list == &dev->adj_list.upper)
5446                 return NULL;
5447
5448         *iter = &upper->list;
5449
5450         return upper->dev;
5451 }
5452 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5453
5454 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5455                                                     struct list_head **iter)
5456 {
5457         struct netdev_adjacent *upper;
5458
5459         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5460
5461         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5462
5463         if (&upper->list == &dev->adj_list.upper)
5464                 return NULL;
5465
5466         *iter = &upper->list;
5467
5468         return upper->dev;
5469 }
5470
5471 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5472                                   int (*fn)(struct net_device *dev,
5473                                             void *data),
5474                                   void *data)
5475 {
5476         struct net_device *udev;
5477         struct list_head *iter;
5478         int ret;
5479
5480         for (iter = &dev->adj_list.upper,
5481              udev = netdev_next_upper_dev_rcu(dev, &iter);
5482              udev;
5483              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5484                 /* first is the upper device itself */
5485                 ret = fn(udev, data);
5486                 if (ret)
5487                         return ret;
5488
5489                 /* then look at all of its upper devices */
5490                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5491                 if (ret)
5492                         return ret;
5493         }
5494
5495         return 0;
5496 }
5497 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5498
5499 /**
5500  * netdev_lower_get_next_private - Get the next ->private from the
5501  *                                 lower neighbour list
5502  * @dev: device
5503  * @iter: list_head ** of the current position
5504  *
5505  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5506  * list, starting from iter position. The caller must hold either hold the
5507  * RTNL lock or its own locking that guarantees that the neighbour lower
5508  * list will remain unchanged.
5509  */
5510 void *netdev_lower_get_next_private(struct net_device *dev,
5511                                     struct list_head **iter)
5512 {
5513         struct netdev_adjacent *lower;
5514
5515         lower = list_entry(*iter, struct netdev_adjacent, list);
5516
5517         if (&lower->list == &dev->adj_list.lower)
5518                 return NULL;
5519
5520         *iter = lower->list.next;
5521
5522         return lower->private;
5523 }
5524 EXPORT_SYMBOL(netdev_lower_get_next_private);
5525
5526 /**
5527  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5528  *                                     lower neighbour list, RCU
5529  *                                     variant
5530  * @dev: device
5531  * @iter: list_head ** of the current position
5532  *
5533  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5534  * list, starting from iter position. The caller must hold RCU read lock.
5535  */
5536 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5537                                         struct list_head **iter)
5538 {
5539         struct netdev_adjacent *lower;
5540
5541         WARN_ON_ONCE(!rcu_read_lock_held());
5542
5543         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5544
5545         if (&lower->list == &dev->adj_list.lower)
5546                 return NULL;
5547
5548         *iter = &lower->list;
5549
5550         return lower->private;
5551 }
5552 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5553
5554 /**
5555  * netdev_lower_get_next - Get the next device from the lower neighbour
5556  *                         list
5557  * @dev: device
5558  * @iter: list_head ** of the current position
5559  *
5560  * Gets the next netdev_adjacent from the dev's lower neighbour
5561  * list, starting from iter position. The caller must hold RTNL lock or
5562  * its own locking that guarantees that the neighbour lower
5563  * list will remain unchanged.
5564  */
5565 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5566 {
5567         struct netdev_adjacent *lower;
5568
5569         lower = list_entry(*iter, struct netdev_adjacent, list);
5570
5571         if (&lower->list == &dev->adj_list.lower)
5572                 return NULL;
5573
5574         *iter = lower->list.next;
5575
5576         return lower->dev;
5577 }
5578 EXPORT_SYMBOL(netdev_lower_get_next);
5579
5580 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5581                                                 struct list_head **iter)
5582 {
5583         struct netdev_adjacent *lower;
5584
5585         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5586
5587         if (&lower->list == &dev->adj_list.lower)
5588                 return NULL;
5589
5590         *iter = &lower->list;
5591
5592         return lower->dev;
5593 }
5594
5595 int netdev_walk_all_lower_dev(struct net_device *dev,
5596                               int (*fn)(struct net_device *dev,
5597                                         void *data),
5598                               void *data)
5599 {
5600         struct net_device *ldev;
5601         struct list_head *iter;
5602         int ret;
5603
5604         for (iter = &dev->adj_list.lower,
5605              ldev = netdev_next_lower_dev(dev, &iter);
5606              ldev;
5607              ldev = netdev_next_lower_dev(dev, &iter)) {
5608                 /* first is the lower device itself */
5609                 ret = fn(ldev, data);
5610                 if (ret)
5611                         return ret;
5612
5613                 /* then look at all of its lower devices */
5614                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5615                 if (ret)
5616                         return ret;
5617         }
5618
5619         return 0;
5620 }
5621 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5622
5623 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5624                                                     struct list_head **iter)
5625 {
5626         struct netdev_adjacent *lower;
5627
5628         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5629         if (&lower->list == &dev->adj_list.lower)
5630                 return NULL;
5631
5632         *iter = &lower->list;
5633
5634         return lower->dev;
5635 }
5636
5637 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5638                                   int (*fn)(struct net_device *dev,
5639                                             void *data),
5640                                   void *data)
5641 {
5642         struct net_device *ldev;
5643         struct list_head *iter;
5644         int ret;
5645
5646         for (iter = &dev->adj_list.lower,
5647              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5648              ldev;
5649              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5650                 /* first is the lower device itself */
5651                 ret = fn(ldev, data);
5652                 if (ret)
5653                         return ret;
5654
5655                 /* then look at all of its lower devices */
5656                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5657                 if (ret)
5658                         return ret;
5659         }
5660
5661         return 0;
5662 }
5663 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5664
5665 /**
5666  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5667  *                                     lower neighbour list, RCU
5668  *                                     variant
5669  * @dev: device
5670  *
5671  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5672  * list. The caller must hold RCU read lock.
5673  */
5674 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5675 {
5676         struct netdev_adjacent *lower;
5677
5678         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5679                         struct netdev_adjacent, list);
5680         if (lower)
5681                 return lower->private;
5682         return NULL;
5683 }
5684 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5685
5686 /**
5687  * netdev_master_upper_dev_get_rcu - Get master upper device
5688  * @dev: device
5689  *
5690  * Find a master upper device and return pointer to it or NULL in case
5691  * it's not there. The caller must hold the RCU read lock.
5692  */
5693 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5694 {
5695         struct netdev_adjacent *upper;
5696
5697         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5698                                        struct netdev_adjacent, list);
5699         if (upper && likely(upper->master))
5700                 return upper->dev;
5701         return NULL;
5702 }
5703 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5704
5705 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5706                               struct net_device *adj_dev,
5707                               struct list_head *dev_list)
5708 {
5709         char linkname[IFNAMSIZ+7];
5710         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5711                 "upper_%s" : "lower_%s", adj_dev->name);
5712         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5713                                  linkname);
5714 }
5715 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5716                                char *name,
5717                                struct list_head *dev_list)
5718 {
5719         char linkname[IFNAMSIZ+7];
5720         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5721                 "upper_%s" : "lower_%s", name);
5722         sysfs_remove_link(&(dev->dev.kobj), linkname);
5723 }
5724
5725 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5726                                                  struct net_device *adj_dev,
5727                                                  struct list_head *dev_list)
5728 {
5729         return (dev_list == &dev->adj_list.upper ||
5730                 dev_list == &dev->adj_list.lower) &&
5731                 net_eq(dev_net(dev), dev_net(adj_dev));
5732 }
5733
5734 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5735                                         struct net_device *adj_dev,
5736                                         struct list_head *dev_list,
5737                                         void *private, bool master)
5738 {
5739         struct netdev_adjacent *adj;
5740         int ret;
5741
5742         adj = __netdev_find_adj(adj_dev, dev_list);
5743
5744         if (adj) {
5745                 adj->ref_nr += 1;
5746                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5747                          dev->name, adj_dev->name, adj->ref_nr);
5748
5749                 return 0;
5750         }
5751
5752         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5753         if (!adj)
5754                 return -ENOMEM;
5755
5756         adj->dev = adj_dev;
5757         adj->master = master;
5758         adj->ref_nr = 1;
5759         adj->private = private;
5760         dev_hold(adj_dev);
5761
5762         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5763                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5764
5765         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5766                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5767                 if (ret)
5768                         goto free_adj;
5769         }
5770
5771         /* Ensure that master link is always the first item in list. */
5772         if (master) {
5773                 ret = sysfs_create_link(&(dev->dev.kobj),
5774                                         &(adj_dev->dev.kobj), "master");
5775                 if (ret)
5776                         goto remove_symlinks;
5777
5778                 list_add_rcu(&adj->list, dev_list);
5779         } else {
5780                 list_add_tail_rcu(&adj->list, dev_list);
5781         }
5782
5783         return 0;
5784
5785 remove_symlinks:
5786         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5787                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5788 free_adj:
5789         kfree(adj);
5790         dev_put(adj_dev);
5791
5792         return ret;
5793 }
5794
5795 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5796                                          struct net_device *adj_dev,
5797                                          u16 ref_nr,
5798                                          struct list_head *dev_list)
5799 {
5800         struct netdev_adjacent *adj;
5801
5802         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5803                  dev->name, adj_dev->name, ref_nr);
5804
5805         adj = __netdev_find_adj(adj_dev, dev_list);
5806
5807         if (!adj) {
5808                 pr_err("Adjacency does not exist for device %s from %s\n",
5809                        dev->name, adj_dev->name);
5810                 WARN_ON(1);
5811                 return;
5812         }
5813
5814         if (adj->ref_nr > ref_nr) {
5815                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5816                          dev->name, adj_dev->name, ref_nr,
5817                          adj->ref_nr - ref_nr);
5818                 adj->ref_nr -= ref_nr;
5819                 return;
5820         }
5821
5822         if (adj->master)
5823                 sysfs_remove_link(&(dev->dev.kobj), "master");
5824
5825         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5826                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5827
5828         list_del_rcu(&adj->list);
5829         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5830                  adj_dev->name, dev->name, adj_dev->name);
5831         dev_put(adj_dev);
5832         kfree_rcu(adj, rcu);
5833 }
5834
5835 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5836                                             struct net_device *upper_dev,
5837                                             struct list_head *up_list,
5838                                             struct list_head *down_list,
5839                                             void *private, bool master)
5840 {
5841         int ret;
5842
5843         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5844                                            private, master);
5845         if (ret)
5846                 return ret;
5847
5848         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5849                                            private, false);
5850         if (ret) {
5851                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5852                 return ret;
5853         }
5854
5855         return 0;
5856 }
5857
5858 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5859                                                struct net_device *upper_dev,
5860                                                u16 ref_nr,
5861                                                struct list_head *up_list,
5862                                                struct list_head *down_list)
5863 {
5864         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5865         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5866 }
5867
5868 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5869                                                 struct net_device *upper_dev,
5870                                                 void *private, bool master)
5871 {
5872         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5873                                                 &dev->adj_list.upper,
5874                                                 &upper_dev->adj_list.lower,
5875                                                 private, master);
5876 }
5877
5878 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5879                                                    struct net_device *upper_dev)
5880 {
5881         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5882                                            &dev->adj_list.upper,
5883                                            &upper_dev->adj_list.lower);
5884 }
5885
5886 static int __netdev_upper_dev_link(struct net_device *dev,
5887                                    struct net_device *upper_dev, bool master,
5888                                    void *upper_priv, void *upper_info)
5889 {
5890         struct netdev_notifier_changeupper_info changeupper_info;
5891         int ret = 0;
5892
5893         ASSERT_RTNL();
5894
5895         if (dev == upper_dev)
5896                 return -EBUSY;
5897
5898         /* To prevent loops, check if dev is not upper device to upper_dev. */
5899         if (netdev_has_upper_dev(upper_dev, dev))
5900                 return -EBUSY;
5901
5902         if (netdev_has_upper_dev(dev, upper_dev))
5903                 return -EEXIST;
5904
5905         if (master && netdev_master_upper_dev_get(dev))
5906                 return -EBUSY;
5907
5908         changeupper_info.upper_dev = upper_dev;
5909         changeupper_info.master = master;
5910         changeupper_info.linking = true;
5911         changeupper_info.upper_info = upper_info;
5912
5913         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5914                                             &changeupper_info.info);
5915         ret = notifier_to_errno(ret);
5916         if (ret)
5917                 return ret;
5918
5919         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5920                                                    master);
5921         if (ret)
5922                 return ret;
5923
5924         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5925                                             &changeupper_info.info);
5926         ret = notifier_to_errno(ret);
5927         if (ret)
5928                 goto rollback;
5929
5930         return 0;
5931
5932 rollback:
5933         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5934
5935         return ret;
5936 }
5937
5938 /**
5939  * netdev_upper_dev_link - Add a link to the upper device
5940  * @dev: device
5941  * @upper_dev: new upper device
5942  *
5943  * Adds a link to device which is upper to this one. The caller must hold
5944  * the RTNL lock. On a failure a negative errno code is returned.
5945  * On success the reference counts are adjusted and the function
5946  * returns zero.
5947  */
5948 int netdev_upper_dev_link(struct net_device *dev,
5949                           struct net_device *upper_dev)
5950 {
5951         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5952 }
5953 EXPORT_SYMBOL(netdev_upper_dev_link);
5954
5955 /**
5956  * netdev_master_upper_dev_link - Add a master link to the upper device
5957  * @dev: device
5958  * @upper_dev: new upper device
5959  * @upper_priv: upper device private
5960  * @upper_info: upper info to be passed down via notifier
5961  *
5962  * Adds a link to device which is upper to this one. In this case, only
5963  * one master upper device can be linked, although other non-master devices
5964  * might be linked as well. The caller must hold the RTNL lock.
5965  * On a failure a negative errno code is returned. On success the reference
5966  * counts are adjusted and the function returns zero.
5967  */
5968 int netdev_master_upper_dev_link(struct net_device *dev,
5969                                  struct net_device *upper_dev,
5970                                  void *upper_priv, void *upper_info)
5971 {
5972         return __netdev_upper_dev_link(dev, upper_dev, true,
5973                                        upper_priv, upper_info);
5974 }
5975 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5976
5977 /**
5978  * netdev_upper_dev_unlink - Removes a link to upper device
5979  * @dev: device
5980  * @upper_dev: new upper device
5981  *
5982  * Removes a link to device which is upper to this one. The caller must hold
5983  * the RTNL lock.
5984  */
5985 void netdev_upper_dev_unlink(struct net_device *dev,
5986                              struct net_device *upper_dev)
5987 {
5988         struct netdev_notifier_changeupper_info changeupper_info;
5989         ASSERT_RTNL();
5990
5991         changeupper_info.upper_dev = upper_dev;
5992         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5993         changeupper_info.linking = false;
5994
5995         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5996                                       &changeupper_info.info);
5997
5998         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5999
6000         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6001                                       &changeupper_info.info);
6002 }
6003 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6004
6005 /**
6006  * netdev_bonding_info_change - Dispatch event about slave change
6007  * @dev: device
6008  * @bonding_info: info to dispatch
6009  *
6010  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6011  * The caller must hold the RTNL lock.
6012  */
6013 void netdev_bonding_info_change(struct net_device *dev,
6014                                 struct netdev_bonding_info *bonding_info)
6015 {
6016         struct netdev_notifier_bonding_info     info;
6017
6018         memcpy(&info.bonding_info, bonding_info,
6019                sizeof(struct netdev_bonding_info));
6020         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6021                                       &info.info);
6022 }
6023 EXPORT_SYMBOL(netdev_bonding_info_change);
6024
6025 static void netdev_adjacent_add_links(struct net_device *dev)
6026 {
6027         struct netdev_adjacent *iter;
6028
6029         struct net *net = dev_net(dev);
6030
6031         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6032                 if (!net_eq(net, dev_net(iter->dev)))
6033                         continue;
6034                 netdev_adjacent_sysfs_add(iter->dev, dev,
6035                                           &iter->dev->adj_list.lower);
6036                 netdev_adjacent_sysfs_add(dev, iter->dev,
6037                                           &dev->adj_list.upper);
6038         }
6039
6040         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6041                 if (!net_eq(net, dev_net(iter->dev)))
6042                         continue;
6043                 netdev_adjacent_sysfs_add(iter->dev, dev,
6044                                           &iter->dev->adj_list.upper);
6045                 netdev_adjacent_sysfs_add(dev, iter->dev,
6046                                           &dev->adj_list.lower);
6047         }
6048 }
6049
6050 static void netdev_adjacent_del_links(struct net_device *dev)
6051 {
6052         struct netdev_adjacent *iter;
6053
6054         struct net *net = dev_net(dev);
6055
6056         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6057                 if (!net_eq(net, dev_net(iter->dev)))
6058                         continue;
6059                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6060                                           &iter->dev->adj_list.lower);
6061                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6062                                           &dev->adj_list.upper);
6063         }
6064
6065         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6066                 if (!net_eq(net, dev_net(iter->dev)))
6067                         continue;
6068                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6069                                           &iter->dev->adj_list.upper);
6070                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6071                                           &dev->adj_list.lower);
6072         }
6073 }
6074
6075 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6076 {
6077         struct netdev_adjacent *iter;
6078
6079         struct net *net = dev_net(dev);
6080
6081         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6082                 if (!net_eq(net, dev_net(iter->dev)))
6083                         continue;
6084                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6085                                           &iter->dev->adj_list.lower);
6086                 netdev_adjacent_sysfs_add(iter->dev, dev,
6087                                           &iter->dev->adj_list.lower);
6088         }
6089
6090         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6091                 if (!net_eq(net, dev_net(iter->dev)))
6092                         continue;
6093                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6094                                           &iter->dev->adj_list.upper);
6095                 netdev_adjacent_sysfs_add(iter->dev, dev,
6096                                           &iter->dev->adj_list.upper);
6097         }
6098 }
6099
6100 void *netdev_lower_dev_get_private(struct net_device *dev,
6101                                    struct net_device *lower_dev)
6102 {
6103         struct netdev_adjacent *lower;
6104
6105         if (!lower_dev)
6106                 return NULL;
6107         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6108         if (!lower)
6109                 return NULL;
6110
6111         return lower->private;
6112 }
6113 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6114
6115
6116 int dev_get_nest_level(struct net_device *dev)
6117 {
6118         struct net_device *lower = NULL;
6119         struct list_head *iter;
6120         int max_nest = -1;
6121         int nest;
6122
6123         ASSERT_RTNL();
6124
6125         netdev_for_each_lower_dev(dev, lower, iter) {
6126                 nest = dev_get_nest_level(lower);
6127                 if (max_nest < nest)
6128                         max_nest = nest;
6129         }
6130
6131         return max_nest + 1;
6132 }
6133 EXPORT_SYMBOL(dev_get_nest_level);
6134
6135 /**
6136  * netdev_lower_change - Dispatch event about lower device state change
6137  * @lower_dev: device
6138  * @lower_state_info: state to dispatch
6139  *
6140  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6141  * The caller must hold the RTNL lock.
6142  */
6143 void netdev_lower_state_changed(struct net_device *lower_dev,
6144                                 void *lower_state_info)
6145 {
6146         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6147
6148         ASSERT_RTNL();
6149         changelowerstate_info.lower_state_info = lower_state_info;
6150         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6151                                       &changelowerstate_info.info);
6152 }
6153 EXPORT_SYMBOL(netdev_lower_state_changed);
6154
6155 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6156                                            struct neighbour *n)
6157 {
6158         struct net_device *lower_dev, *stop_dev;
6159         struct list_head *iter;
6160         int err;
6161
6162         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6164                         continue;
6165                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6166                 if (err) {
6167                         stop_dev = lower_dev;
6168                         goto rollback;
6169                 }
6170         }
6171         return 0;
6172
6173 rollback:
6174         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6175                 if (lower_dev == stop_dev)
6176                         break;
6177                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6178                         continue;
6179                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6180         }
6181         return err;
6182 }
6183 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6184
6185 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6186                                           struct neighbour *n)
6187 {
6188         struct net_device *lower_dev;
6189         struct list_head *iter;
6190
6191         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6192                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6193                         continue;
6194                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6195         }
6196 }
6197 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6198
6199 static void dev_change_rx_flags(struct net_device *dev, int flags)
6200 {
6201         const struct net_device_ops *ops = dev->netdev_ops;
6202
6203         if (ops->ndo_change_rx_flags)
6204                 ops->ndo_change_rx_flags(dev, flags);
6205 }
6206
6207 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6208 {
6209         unsigned int old_flags = dev->flags;
6210         kuid_t uid;
6211         kgid_t gid;
6212
6213         ASSERT_RTNL();
6214
6215         dev->flags |= IFF_PROMISC;
6216         dev->promiscuity += inc;
6217         if (dev->promiscuity == 0) {
6218                 /*
6219                  * Avoid overflow.
6220                  * If inc causes overflow, untouch promisc and return error.
6221                  */
6222                 if (inc < 0)
6223                         dev->flags &= ~IFF_PROMISC;
6224                 else {
6225                         dev->promiscuity -= inc;
6226                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6227                                 dev->name);
6228                         return -EOVERFLOW;
6229                 }
6230         }
6231         if (dev->flags != old_flags) {
6232                 pr_info("device %s %s promiscuous mode\n",
6233                         dev->name,
6234                         dev->flags & IFF_PROMISC ? "entered" : "left");
6235                 if (audit_enabled) {
6236                         current_uid_gid(&uid, &gid);
6237                         audit_log(current->audit_context, GFP_ATOMIC,
6238                                 AUDIT_ANOM_PROMISCUOUS,
6239                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6240                                 dev->name, (dev->flags & IFF_PROMISC),
6241                                 (old_flags & IFF_PROMISC),
6242                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6243                                 from_kuid(&init_user_ns, uid),
6244                                 from_kgid(&init_user_ns, gid),
6245                                 audit_get_sessionid(current));
6246                 }
6247
6248                 dev_change_rx_flags(dev, IFF_PROMISC);
6249         }
6250         if (notify)
6251                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6252         return 0;
6253 }
6254
6255 /**
6256  *      dev_set_promiscuity     - update promiscuity count on a device
6257  *      @dev: device
6258  *      @inc: modifier
6259  *
6260  *      Add or remove promiscuity from a device. While the count in the device
6261  *      remains above zero the interface remains promiscuous. Once it hits zero
6262  *      the device reverts back to normal filtering operation. A negative inc
6263  *      value is used to drop promiscuity on the device.
6264  *      Return 0 if successful or a negative errno code on error.
6265  */
6266 int dev_set_promiscuity(struct net_device *dev, int inc)
6267 {
6268         unsigned int old_flags = dev->flags;
6269         int err;
6270
6271         err = __dev_set_promiscuity(dev, inc, true);
6272         if (err < 0)
6273                 return err;
6274         if (dev->flags != old_flags)
6275                 dev_set_rx_mode(dev);
6276         return err;
6277 }
6278 EXPORT_SYMBOL(dev_set_promiscuity);
6279
6280 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6281 {
6282         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6283
6284         ASSERT_RTNL();
6285
6286         dev->flags |= IFF_ALLMULTI;
6287         dev->allmulti += inc;
6288         if (dev->allmulti == 0) {
6289                 /*
6290                  * Avoid overflow.
6291                  * If inc causes overflow, untouch allmulti and return error.
6292                  */
6293                 if (inc < 0)
6294                         dev->flags &= ~IFF_ALLMULTI;
6295                 else {
6296                         dev->allmulti -= inc;
6297                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6298                                 dev->name);
6299                         return -EOVERFLOW;
6300                 }
6301         }
6302         if (dev->flags ^ old_flags) {
6303                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6304                 dev_set_rx_mode(dev);
6305                 if (notify)
6306                         __dev_notify_flags(dev, old_flags,
6307                                            dev->gflags ^ old_gflags);
6308         }
6309         return 0;
6310 }
6311
6312 /**
6313  *      dev_set_allmulti        - update allmulti count on a device
6314  *      @dev: device
6315  *      @inc: modifier
6316  *
6317  *      Add or remove reception of all multicast frames to a device. While the
6318  *      count in the device remains above zero the interface remains listening
6319  *      to all interfaces. Once it hits zero the device reverts back to normal
6320  *      filtering operation. A negative @inc value is used to drop the counter
6321  *      when releasing a resource needing all multicasts.
6322  *      Return 0 if successful or a negative errno code on error.
6323  */
6324
6325 int dev_set_allmulti(struct net_device *dev, int inc)
6326 {
6327         return __dev_set_allmulti(dev, inc, true);
6328 }
6329 EXPORT_SYMBOL(dev_set_allmulti);
6330
6331 /*
6332  *      Upload unicast and multicast address lists to device and
6333  *      configure RX filtering. When the device doesn't support unicast
6334  *      filtering it is put in promiscuous mode while unicast addresses
6335  *      are present.
6336  */
6337 void __dev_set_rx_mode(struct net_device *dev)
6338 {
6339         const struct net_device_ops *ops = dev->netdev_ops;
6340
6341         /* dev_open will call this function so the list will stay sane. */
6342         if (!(dev->flags&IFF_UP))
6343                 return;
6344
6345         if (!netif_device_present(dev))
6346                 return;
6347
6348         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6349                 /* Unicast addresses changes may only happen under the rtnl,
6350                  * therefore calling __dev_set_promiscuity here is safe.
6351                  */
6352                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6353                         __dev_set_promiscuity(dev, 1, false);
6354                         dev->uc_promisc = true;
6355                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6356                         __dev_set_promiscuity(dev, -1, false);
6357                         dev->uc_promisc = false;
6358                 }
6359         }
6360
6361         if (ops->ndo_set_rx_mode)
6362                 ops->ndo_set_rx_mode(dev);
6363 }
6364
6365 void dev_set_rx_mode(struct net_device *dev)
6366 {
6367         netif_addr_lock_bh(dev);
6368         __dev_set_rx_mode(dev);
6369         netif_addr_unlock_bh(dev);
6370 }
6371
6372 /**
6373  *      dev_get_flags - get flags reported to userspace
6374  *      @dev: device
6375  *
6376  *      Get the combination of flag bits exported through APIs to userspace.
6377  */
6378 unsigned int dev_get_flags(const struct net_device *dev)
6379 {
6380         unsigned int flags;
6381
6382         flags = (dev->flags & ~(IFF_PROMISC |
6383                                 IFF_ALLMULTI |
6384                                 IFF_RUNNING |
6385                                 IFF_LOWER_UP |
6386                                 IFF_DORMANT)) |
6387                 (dev->gflags & (IFF_PROMISC |
6388                                 IFF_ALLMULTI));
6389
6390         if (netif_running(dev)) {
6391                 if (netif_oper_up(dev))
6392                         flags |= IFF_RUNNING;
6393                 if (netif_carrier_ok(dev))
6394                         flags |= IFF_LOWER_UP;
6395                 if (netif_dormant(dev))
6396                         flags |= IFF_DORMANT;
6397         }
6398
6399         return flags;
6400 }
6401 EXPORT_SYMBOL(dev_get_flags);
6402
6403 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6404 {
6405         unsigned int old_flags = dev->flags;
6406         int ret;
6407
6408         ASSERT_RTNL();
6409
6410         /*
6411          *      Set the flags on our device.
6412          */
6413
6414         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6415                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6416                                IFF_AUTOMEDIA)) |
6417                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6418                                     IFF_ALLMULTI));
6419
6420         /*
6421          *      Load in the correct multicast list now the flags have changed.
6422          */
6423
6424         if ((old_flags ^ flags) & IFF_MULTICAST)
6425                 dev_change_rx_flags(dev, IFF_MULTICAST);
6426
6427         dev_set_rx_mode(dev);
6428
6429         /*
6430          *      Have we downed the interface. We handle IFF_UP ourselves
6431          *      according to user attempts to set it, rather than blindly
6432          *      setting it.
6433          */
6434
6435         ret = 0;
6436         if ((old_flags ^ flags) & IFF_UP)
6437                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6438
6439         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6440                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6441                 unsigned int old_flags = dev->flags;
6442
6443                 dev->gflags ^= IFF_PROMISC;
6444
6445                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6446                         if (dev->flags != old_flags)
6447                                 dev_set_rx_mode(dev);
6448         }
6449
6450         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6451            is important. Some (broken) drivers set IFF_PROMISC, when
6452            IFF_ALLMULTI is requested not asking us and not reporting.
6453          */
6454         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6455                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6456
6457                 dev->gflags ^= IFF_ALLMULTI;
6458                 __dev_set_allmulti(dev, inc, false);
6459         }
6460
6461         return ret;
6462 }
6463
6464 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6465                         unsigned int gchanges)
6466 {
6467         unsigned int changes = dev->flags ^ old_flags;
6468
6469         if (gchanges)
6470                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6471
6472         if (changes & IFF_UP) {
6473                 if (dev->flags & IFF_UP)
6474                         call_netdevice_notifiers(NETDEV_UP, dev);
6475                 else
6476                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6477         }
6478
6479         if (dev->flags & IFF_UP &&
6480             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6481                 struct netdev_notifier_change_info change_info;
6482
6483                 change_info.flags_changed = changes;
6484                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6485                                               &change_info.info);
6486         }
6487 }
6488
6489 /**
6490  *      dev_change_flags - change device settings
6491  *      @dev: device
6492  *      @flags: device state flags
6493  *
6494  *      Change settings on device based state flags. The flags are
6495  *      in the userspace exported format.
6496  */
6497 int dev_change_flags(struct net_device *dev, unsigned int flags)
6498 {
6499         int ret;
6500         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6501
6502         ret = __dev_change_flags(dev, flags);
6503         if (ret < 0)
6504                 return ret;
6505
6506         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6507         __dev_notify_flags(dev, old_flags, changes);
6508         return ret;
6509 }
6510 EXPORT_SYMBOL(dev_change_flags);
6511
6512 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6513 {
6514         const struct net_device_ops *ops = dev->netdev_ops;
6515
6516         if (ops->ndo_change_mtu)
6517                 return ops->ndo_change_mtu(dev, new_mtu);
6518
6519         dev->mtu = new_mtu;
6520         return 0;
6521 }
6522
6523 /**
6524  *      dev_set_mtu - Change maximum transfer unit
6525  *      @dev: device
6526  *      @new_mtu: new transfer unit
6527  *
6528  *      Change the maximum transfer size of the network device.
6529  */
6530 int dev_set_mtu(struct net_device *dev, int new_mtu)
6531 {
6532         int err, orig_mtu;
6533
6534         if (new_mtu == dev->mtu)
6535                 return 0;
6536
6537         /* MTU must be positive, and in range */
6538         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6539                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6540                                     dev->name, new_mtu, dev->min_mtu);
6541                 return -EINVAL;
6542         }
6543
6544         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6545                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6546                                     dev->name, new_mtu, dev->max_mtu);
6547                 return -EINVAL;
6548         }
6549
6550         if (!netif_device_present(dev))
6551                 return -ENODEV;
6552
6553         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6554         err = notifier_to_errno(err);
6555         if (err)
6556                 return err;
6557
6558         orig_mtu = dev->mtu;
6559         err = __dev_set_mtu(dev, new_mtu);
6560
6561         if (!err) {
6562                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6563                 err = notifier_to_errno(err);
6564                 if (err) {
6565                         /* setting mtu back and notifying everyone again,
6566                          * so that they have a chance to revert changes.
6567                          */
6568                         __dev_set_mtu(dev, orig_mtu);
6569                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6570                 }
6571         }
6572         return err;
6573 }
6574 EXPORT_SYMBOL(dev_set_mtu);
6575
6576 /**
6577  *      dev_set_group - Change group this device belongs to
6578  *      @dev: device
6579  *      @new_group: group this device should belong to
6580  */
6581 void dev_set_group(struct net_device *dev, int new_group)
6582 {
6583         dev->group = new_group;
6584 }
6585 EXPORT_SYMBOL(dev_set_group);
6586
6587 /**
6588  *      dev_set_mac_address - Change Media Access Control Address
6589  *      @dev: device
6590  *      @sa: new address
6591  *
6592  *      Change the hardware (MAC) address of the device
6593  */
6594 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6595 {
6596         const struct net_device_ops *ops = dev->netdev_ops;
6597         int err;
6598
6599         if (!ops->ndo_set_mac_address)
6600                 return -EOPNOTSUPP;
6601         if (sa->sa_family != dev->type)
6602                 return -EINVAL;
6603         if (!netif_device_present(dev))
6604                 return -ENODEV;
6605         err = ops->ndo_set_mac_address(dev, sa);
6606         if (err)
6607                 return err;
6608         dev->addr_assign_type = NET_ADDR_SET;
6609         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6610         add_device_randomness(dev->dev_addr, dev->addr_len);
6611         return 0;
6612 }
6613 EXPORT_SYMBOL(dev_set_mac_address);
6614
6615 /**
6616  *      dev_change_carrier - Change device carrier
6617  *      @dev: device
6618  *      @new_carrier: new value
6619  *
6620  *      Change device carrier
6621  */
6622 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6623 {
6624         const struct net_device_ops *ops = dev->netdev_ops;
6625
6626         if (!ops->ndo_change_carrier)
6627                 return -EOPNOTSUPP;
6628         if (!netif_device_present(dev))
6629                 return -ENODEV;
6630         return ops->ndo_change_carrier(dev, new_carrier);
6631 }
6632 EXPORT_SYMBOL(dev_change_carrier);
6633
6634 /**
6635  *      dev_get_phys_port_id - Get device physical port ID
6636  *      @dev: device
6637  *      @ppid: port ID
6638  *
6639  *      Get device physical port ID
6640  */
6641 int dev_get_phys_port_id(struct net_device *dev,
6642                          struct netdev_phys_item_id *ppid)
6643 {
6644         const struct net_device_ops *ops = dev->netdev_ops;
6645
6646         if (!ops->ndo_get_phys_port_id)
6647                 return -EOPNOTSUPP;
6648         return ops->ndo_get_phys_port_id(dev, ppid);
6649 }
6650 EXPORT_SYMBOL(dev_get_phys_port_id);
6651
6652 /**
6653  *      dev_get_phys_port_name - Get device physical port name
6654  *      @dev: device
6655  *      @name: port name
6656  *      @len: limit of bytes to copy to name
6657  *
6658  *      Get device physical port name
6659  */
6660 int dev_get_phys_port_name(struct net_device *dev,
6661                            char *name, size_t len)
6662 {
6663         const struct net_device_ops *ops = dev->netdev_ops;
6664
6665         if (!ops->ndo_get_phys_port_name)
6666                 return -EOPNOTSUPP;
6667         return ops->ndo_get_phys_port_name(dev, name, len);
6668 }
6669 EXPORT_SYMBOL(dev_get_phys_port_name);
6670
6671 /**
6672  *      dev_change_proto_down - update protocol port state information
6673  *      @dev: device
6674  *      @proto_down: new value
6675  *
6676  *      This info can be used by switch drivers to set the phys state of the
6677  *      port.
6678  */
6679 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6680 {
6681         const struct net_device_ops *ops = dev->netdev_ops;
6682
6683         if (!ops->ndo_change_proto_down)
6684                 return -EOPNOTSUPP;
6685         if (!netif_device_present(dev))
6686                 return -ENODEV;
6687         return ops->ndo_change_proto_down(dev, proto_down);
6688 }
6689 EXPORT_SYMBOL(dev_change_proto_down);
6690
6691 /**
6692  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6693  *      @dev: device
6694  *      @fd: new program fd or negative value to clear
6695  *
6696  *      Set or clear a bpf program for a device
6697  */
6698 int dev_change_xdp_fd(struct net_device *dev, int fd)
6699 {
6700         const struct net_device_ops *ops = dev->netdev_ops;
6701         struct bpf_prog *prog = NULL;
6702         struct netdev_xdp xdp = {};
6703         int err;
6704
6705         if (!ops->ndo_xdp)
6706                 return -EOPNOTSUPP;
6707         if (fd >= 0) {
6708                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6709                 if (IS_ERR(prog))
6710                         return PTR_ERR(prog);
6711         }
6712
6713         xdp.command = XDP_SETUP_PROG;
6714         xdp.prog = prog;
6715         err = ops->ndo_xdp(dev, &xdp);
6716         if (err < 0 && prog)
6717                 bpf_prog_put(prog);
6718
6719         return err;
6720 }
6721 EXPORT_SYMBOL(dev_change_xdp_fd);
6722
6723 /**
6724  *      dev_new_index   -       allocate an ifindex
6725  *      @net: the applicable net namespace
6726  *
6727  *      Returns a suitable unique value for a new device interface
6728  *      number.  The caller must hold the rtnl semaphore or the
6729  *      dev_base_lock to be sure it remains unique.
6730  */
6731 static int dev_new_index(struct net *net)
6732 {
6733         int ifindex = net->ifindex;
6734         for (;;) {
6735                 if (++ifindex <= 0)
6736                         ifindex = 1;
6737                 if (!__dev_get_by_index(net, ifindex))
6738                         return net->ifindex = ifindex;
6739         }
6740 }
6741
6742 /* Delayed registration/unregisteration */
6743 static LIST_HEAD(net_todo_list);
6744 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6745
6746 static void net_set_todo(struct net_device *dev)
6747 {
6748         list_add_tail(&dev->todo_list, &net_todo_list);
6749         dev_net(dev)->dev_unreg_count++;
6750 }
6751
6752 static void rollback_registered_many(struct list_head *head)
6753 {
6754         struct net_device *dev, *tmp;
6755         LIST_HEAD(close_head);
6756
6757         BUG_ON(dev_boot_phase);
6758         ASSERT_RTNL();
6759
6760         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6761                 /* Some devices call without registering
6762                  * for initialization unwind. Remove those
6763                  * devices and proceed with the remaining.
6764                  */
6765                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6766                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6767                                  dev->name, dev);
6768
6769                         WARN_ON(1);
6770                         list_del(&dev->unreg_list);
6771                         continue;
6772                 }
6773                 dev->dismantle = true;
6774                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6775         }
6776
6777         /* If device is running, close it first. */
6778         list_for_each_entry(dev, head, unreg_list)
6779                 list_add_tail(&dev->close_list, &close_head);
6780         dev_close_many(&close_head, true);
6781
6782         list_for_each_entry(dev, head, unreg_list) {
6783                 /* And unlink it from device chain. */
6784                 unlist_netdevice(dev);
6785
6786                 dev->reg_state = NETREG_UNREGISTERING;
6787         }
6788         flush_all_backlogs();
6789
6790         synchronize_net();
6791
6792         list_for_each_entry(dev, head, unreg_list) {
6793                 struct sk_buff *skb = NULL;
6794
6795                 /* Shutdown queueing discipline. */
6796                 dev_shutdown(dev);
6797
6798
6799                 /* Notify protocols, that we are about to destroy
6800                    this device. They should clean all the things.
6801                 */
6802                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6803
6804                 if (!dev->rtnl_link_ops ||
6805                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6806                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6807                                                      GFP_KERNEL);
6808
6809                 /*
6810                  *      Flush the unicast and multicast chains
6811                  */
6812                 dev_uc_flush(dev);
6813                 dev_mc_flush(dev);
6814
6815                 if (dev->netdev_ops->ndo_uninit)
6816                         dev->netdev_ops->ndo_uninit(dev);
6817
6818                 if (skb)
6819                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6820
6821                 /* Notifier chain MUST detach us all upper devices. */
6822                 WARN_ON(netdev_has_any_upper_dev(dev));
6823                 WARN_ON(netdev_has_any_lower_dev(dev));
6824
6825                 /* Remove entries from kobject tree */
6826                 netdev_unregister_kobject(dev);
6827 #ifdef CONFIG_XPS
6828                 /* Remove XPS queueing entries */
6829                 netif_reset_xps_queues_gt(dev, 0);
6830 #endif
6831         }
6832
6833         synchronize_net();
6834
6835         list_for_each_entry(dev, head, unreg_list)
6836                 dev_put(dev);
6837 }
6838
6839 static void rollback_registered(struct net_device *dev)
6840 {
6841         LIST_HEAD(single);
6842
6843         list_add(&dev->unreg_list, &single);
6844         rollback_registered_many(&single);
6845         list_del(&single);
6846 }
6847
6848 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6849         struct net_device *upper, netdev_features_t features)
6850 {
6851         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6852         netdev_features_t feature;
6853         int feature_bit;
6854
6855         for_each_netdev_feature(&upper_disables, feature_bit) {
6856                 feature = __NETIF_F_BIT(feature_bit);
6857                 if (!(upper->wanted_features & feature)
6858                     && (features & feature)) {
6859                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6860                                    &feature, upper->name);
6861                         features &= ~feature;
6862                 }
6863         }
6864
6865         return features;
6866 }
6867
6868 static void netdev_sync_lower_features(struct net_device *upper,
6869         struct net_device *lower, netdev_features_t features)
6870 {
6871         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6872         netdev_features_t feature;
6873         int feature_bit;
6874
6875         for_each_netdev_feature(&upper_disables, feature_bit) {
6876                 feature = __NETIF_F_BIT(feature_bit);
6877                 if (!(features & feature) && (lower->features & feature)) {
6878                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6879                                    &feature, lower->name);
6880                         lower->wanted_features &= ~feature;
6881                         netdev_update_features(lower);
6882
6883                         if (unlikely(lower->features & feature))
6884                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6885                                             &feature, lower->name);
6886                 }
6887         }
6888 }
6889
6890 static netdev_features_t netdev_fix_features(struct net_device *dev,
6891         netdev_features_t features)
6892 {
6893         /* Fix illegal checksum combinations */
6894         if ((features & NETIF_F_HW_CSUM) &&
6895             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6896                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6897                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6898         }
6899
6900         /* TSO requires that SG is present as well. */
6901         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6902                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6903                 features &= ~NETIF_F_ALL_TSO;
6904         }
6905
6906         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6907                                         !(features & NETIF_F_IP_CSUM)) {
6908                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6909                 features &= ~NETIF_F_TSO;
6910                 features &= ~NETIF_F_TSO_ECN;
6911         }
6912
6913         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6914                                          !(features & NETIF_F_IPV6_CSUM)) {
6915                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6916                 features &= ~NETIF_F_TSO6;
6917         }
6918
6919         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6920         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6921                 features &= ~NETIF_F_TSO_MANGLEID;
6922
6923         /* TSO ECN requires that TSO is present as well. */
6924         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6925                 features &= ~NETIF_F_TSO_ECN;
6926
6927         /* Software GSO depends on SG. */
6928         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6929                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6930                 features &= ~NETIF_F_GSO;
6931         }
6932
6933         /* UFO needs SG and checksumming */
6934         if (features & NETIF_F_UFO) {
6935                 /* maybe split UFO into V4 and V6? */
6936                 if (!(features & NETIF_F_HW_CSUM) &&
6937                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6938                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6939                         netdev_dbg(dev,
6940                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6941                         features &= ~NETIF_F_UFO;
6942                 }
6943
6944                 if (!(features & NETIF_F_SG)) {
6945                         netdev_dbg(dev,
6946                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6947                         features &= ~NETIF_F_UFO;
6948                 }
6949         }
6950
6951         /* GSO partial features require GSO partial be set */
6952         if ((features & dev->gso_partial_features) &&
6953             !(features & NETIF_F_GSO_PARTIAL)) {
6954                 netdev_dbg(dev,
6955                            "Dropping partially supported GSO features since no GSO partial.\n");
6956                 features &= ~dev->gso_partial_features;
6957         }
6958
6959 #ifdef CONFIG_NET_RX_BUSY_POLL
6960         if (dev->netdev_ops->ndo_busy_poll)
6961                 features |= NETIF_F_BUSY_POLL;
6962         else
6963 #endif
6964                 features &= ~NETIF_F_BUSY_POLL;
6965
6966         return features;
6967 }
6968
6969 int __netdev_update_features(struct net_device *dev)
6970 {
6971         struct net_device *upper, *lower;
6972         netdev_features_t features;
6973         struct list_head *iter;
6974         int err = -1;
6975
6976         ASSERT_RTNL();
6977
6978         features = netdev_get_wanted_features(dev);
6979
6980         if (dev->netdev_ops->ndo_fix_features)
6981                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6982
6983         /* driver might be less strict about feature dependencies */
6984         features = netdev_fix_features(dev, features);
6985
6986         /* some features can't be enabled if they're off an an upper device */
6987         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6988                 features = netdev_sync_upper_features(dev, upper, features);
6989
6990         if (dev->features == features)
6991                 goto sync_lower;
6992
6993         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6994                 &dev->features, &features);
6995
6996         if (dev->netdev_ops->ndo_set_features)
6997                 err = dev->netdev_ops->ndo_set_features(dev, features);
6998         else
6999                 err = 0;
7000
7001         if (unlikely(err < 0)) {
7002                 netdev_err(dev,
7003                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7004                         err, &features, &dev->features);
7005                 /* return non-0 since some features might have changed and
7006                  * it's better to fire a spurious notification than miss it
7007                  */
7008                 return -1;
7009         }
7010
7011 sync_lower:
7012         /* some features must be disabled on lower devices when disabled
7013          * on an upper device (think: bonding master or bridge)
7014          */
7015         netdev_for_each_lower_dev(dev, lower, iter)
7016                 netdev_sync_lower_features(dev, lower, features);
7017
7018         if (!err)
7019                 dev->features = features;
7020
7021         return err < 0 ? 0 : 1;
7022 }
7023
7024 /**
7025  *      netdev_update_features - recalculate device features
7026  *      @dev: the device to check
7027  *
7028  *      Recalculate dev->features set and send notifications if it
7029  *      has changed. Should be called after driver or hardware dependent
7030  *      conditions might have changed that influence the features.
7031  */
7032 void netdev_update_features(struct net_device *dev)
7033 {
7034         if (__netdev_update_features(dev))
7035                 netdev_features_change(dev);
7036 }
7037 EXPORT_SYMBOL(netdev_update_features);
7038
7039 /**
7040  *      netdev_change_features - recalculate device features
7041  *      @dev: the device to check
7042  *
7043  *      Recalculate dev->features set and send notifications even
7044  *      if they have not changed. Should be called instead of
7045  *      netdev_update_features() if also dev->vlan_features might
7046  *      have changed to allow the changes to be propagated to stacked
7047  *      VLAN devices.
7048  */
7049 void netdev_change_features(struct net_device *dev)
7050 {
7051         __netdev_update_features(dev);
7052         netdev_features_change(dev);
7053 }
7054 EXPORT_SYMBOL(netdev_change_features);
7055
7056 /**
7057  *      netif_stacked_transfer_operstate -      transfer operstate
7058  *      @rootdev: the root or lower level device to transfer state from
7059  *      @dev: the device to transfer operstate to
7060  *
7061  *      Transfer operational state from root to device. This is normally
7062  *      called when a stacking relationship exists between the root
7063  *      device and the device(a leaf device).
7064  */
7065 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7066                                         struct net_device *dev)
7067 {
7068         if (rootdev->operstate == IF_OPER_DORMANT)
7069                 netif_dormant_on(dev);
7070         else
7071                 netif_dormant_off(dev);
7072
7073         if (netif_carrier_ok(rootdev)) {
7074                 if (!netif_carrier_ok(dev))
7075                         netif_carrier_on(dev);
7076         } else {
7077                 if (netif_carrier_ok(dev))
7078                         netif_carrier_off(dev);
7079         }
7080 }
7081 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7082
7083 #ifdef CONFIG_SYSFS
7084 static int netif_alloc_rx_queues(struct net_device *dev)
7085 {
7086         unsigned int i, count = dev->num_rx_queues;
7087         struct netdev_rx_queue *rx;
7088         size_t sz = count * sizeof(*rx);
7089
7090         BUG_ON(count < 1);
7091
7092         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7093         if (!rx) {
7094                 rx = vzalloc(sz);
7095                 if (!rx)
7096                         return -ENOMEM;
7097         }
7098         dev->_rx = rx;
7099
7100         for (i = 0; i < count; i++)
7101                 rx[i].dev = dev;
7102         return 0;
7103 }
7104 #endif
7105
7106 static void netdev_init_one_queue(struct net_device *dev,
7107                                   struct netdev_queue *queue, void *_unused)
7108 {
7109         /* Initialize queue lock */
7110         spin_lock_init(&queue->_xmit_lock);
7111         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7112         queue->xmit_lock_owner = -1;
7113         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7114         queue->dev = dev;
7115 #ifdef CONFIG_BQL
7116         dql_init(&queue->dql, HZ);
7117 #endif
7118 }
7119
7120 static void netif_free_tx_queues(struct net_device *dev)
7121 {
7122         kvfree(dev->_tx);
7123 }
7124
7125 static int netif_alloc_netdev_queues(struct net_device *dev)
7126 {
7127         unsigned int count = dev->num_tx_queues;
7128         struct netdev_queue *tx;
7129         size_t sz = count * sizeof(*tx);
7130
7131         if (count < 1 || count > 0xffff)
7132                 return -EINVAL;
7133
7134         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7135         if (!tx) {
7136                 tx = vzalloc(sz);
7137                 if (!tx)
7138                         return -ENOMEM;
7139         }
7140         dev->_tx = tx;
7141
7142         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7143         spin_lock_init(&dev->tx_global_lock);
7144
7145         return 0;
7146 }
7147
7148 void netif_tx_stop_all_queues(struct net_device *dev)
7149 {
7150         unsigned int i;
7151
7152         for (i = 0; i < dev->num_tx_queues; i++) {
7153                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7154                 netif_tx_stop_queue(txq);
7155         }
7156 }
7157 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7158
7159 /**
7160  *      register_netdevice      - register a network device
7161  *      @dev: device to register
7162  *
7163  *      Take a completed network device structure and add it to the kernel
7164  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7165  *      chain. 0 is returned on success. A negative errno code is returned
7166  *      on a failure to set up the device, or if the name is a duplicate.
7167  *
7168  *      Callers must hold the rtnl semaphore. You may want
7169  *      register_netdev() instead of this.
7170  *
7171  *      BUGS:
7172  *      The locking appears insufficient to guarantee two parallel registers
7173  *      will not get the same name.
7174  */
7175
7176 int register_netdevice(struct net_device *dev)
7177 {
7178         int ret;
7179         struct net *net = dev_net(dev);
7180
7181         BUG_ON(dev_boot_phase);
7182         ASSERT_RTNL();
7183
7184         might_sleep();
7185
7186         /* When net_device's are persistent, this will be fatal. */
7187         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7188         BUG_ON(!net);
7189
7190         spin_lock_init(&dev->addr_list_lock);
7191         netdev_set_addr_lockdep_class(dev);
7192
7193         ret = dev_get_valid_name(net, dev, dev->name);
7194         if (ret < 0)
7195                 goto out;
7196
7197         /* Init, if this function is available */
7198         if (dev->netdev_ops->ndo_init) {
7199                 ret = dev->netdev_ops->ndo_init(dev);
7200                 if (ret) {
7201                         if (ret > 0)
7202                                 ret = -EIO;
7203                         goto out;
7204                 }
7205         }
7206
7207         if (((dev->hw_features | dev->features) &
7208              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7209             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7210              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7211                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7212                 ret = -EINVAL;
7213                 goto err_uninit;
7214         }
7215
7216         ret = -EBUSY;
7217         if (!dev->ifindex)
7218                 dev->ifindex = dev_new_index(net);
7219         else if (__dev_get_by_index(net, dev->ifindex))
7220                 goto err_uninit;
7221
7222         /* Transfer changeable features to wanted_features and enable
7223          * software offloads (GSO and GRO).
7224          */
7225         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7226         dev->features |= NETIF_F_SOFT_FEATURES;
7227         dev->wanted_features = dev->features & dev->hw_features;
7228
7229         if (!(dev->flags & IFF_LOOPBACK))
7230                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7231
7232         /* If IPv4 TCP segmentation offload is supported we should also
7233          * allow the device to enable segmenting the frame with the option
7234          * of ignoring a static IP ID value.  This doesn't enable the
7235          * feature itself but allows the user to enable it later.
7236          */
7237         if (dev->hw_features & NETIF_F_TSO)
7238                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7239         if (dev->vlan_features & NETIF_F_TSO)
7240                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7241         if (dev->mpls_features & NETIF_F_TSO)
7242                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7243         if (dev->hw_enc_features & NETIF_F_TSO)
7244                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7245
7246         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7247          */
7248         dev->vlan_features |= NETIF_F_HIGHDMA;
7249
7250         /* Make NETIF_F_SG inheritable to tunnel devices.
7251          */
7252         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7253
7254         /* Make NETIF_F_SG inheritable to MPLS.
7255          */
7256         dev->mpls_features |= NETIF_F_SG;
7257
7258         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7259         ret = notifier_to_errno(ret);
7260         if (ret)
7261                 goto err_uninit;
7262
7263         ret = netdev_register_kobject(dev);
7264         if (ret)
7265                 goto err_uninit;
7266         dev->reg_state = NETREG_REGISTERED;
7267
7268         __netdev_update_features(dev);
7269
7270         /*
7271          *      Default initial state at registry is that the
7272          *      device is present.
7273          */
7274
7275         set_bit(__LINK_STATE_PRESENT, &dev->state);
7276
7277         linkwatch_init_dev(dev);
7278
7279         dev_init_scheduler(dev);
7280         dev_hold(dev);
7281         list_netdevice(dev);
7282         add_device_randomness(dev->dev_addr, dev->addr_len);
7283
7284         /* If the device has permanent device address, driver should
7285          * set dev_addr and also addr_assign_type should be set to
7286          * NET_ADDR_PERM (default value).
7287          */
7288         if (dev->addr_assign_type == NET_ADDR_PERM)
7289                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7290
7291         /* Notify protocols, that a new device appeared. */
7292         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7293         ret = notifier_to_errno(ret);
7294         if (ret) {
7295                 rollback_registered(dev);
7296                 dev->reg_state = NETREG_UNREGISTERED;
7297         }
7298         /*
7299          *      Prevent userspace races by waiting until the network
7300          *      device is fully setup before sending notifications.
7301          */
7302         if (!dev->rtnl_link_ops ||
7303             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7304                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7305
7306 out:
7307         return ret;
7308
7309 err_uninit:
7310         if (dev->netdev_ops->ndo_uninit)
7311                 dev->netdev_ops->ndo_uninit(dev);
7312         goto out;
7313 }
7314 EXPORT_SYMBOL(register_netdevice);
7315
7316 /**
7317  *      init_dummy_netdev       - init a dummy network device for NAPI
7318  *      @dev: device to init
7319  *
7320  *      This takes a network device structure and initialize the minimum
7321  *      amount of fields so it can be used to schedule NAPI polls without
7322  *      registering a full blown interface. This is to be used by drivers
7323  *      that need to tie several hardware interfaces to a single NAPI
7324  *      poll scheduler due to HW limitations.
7325  */
7326 int init_dummy_netdev(struct net_device *dev)
7327 {
7328         /* Clear everything. Note we don't initialize spinlocks
7329          * are they aren't supposed to be taken by any of the
7330          * NAPI code and this dummy netdev is supposed to be
7331          * only ever used for NAPI polls
7332          */
7333         memset(dev, 0, sizeof(struct net_device));
7334
7335         /* make sure we BUG if trying to hit standard
7336          * register/unregister code path
7337          */
7338         dev->reg_state = NETREG_DUMMY;
7339
7340         /* NAPI wants this */
7341         INIT_LIST_HEAD(&dev->napi_list);
7342
7343         /* a dummy interface is started by default */
7344         set_bit(__LINK_STATE_PRESENT, &dev->state);
7345         set_bit(__LINK_STATE_START, &dev->state);
7346
7347         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7348          * because users of this 'device' dont need to change
7349          * its refcount.
7350          */
7351
7352         return 0;
7353 }
7354 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7355
7356
7357 /**
7358  *      register_netdev - register a network device
7359  *      @dev: device to register
7360  *
7361  *      Take a completed network device structure and add it to the kernel
7362  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7363  *      chain. 0 is returned on success. A negative errno code is returned
7364  *      on a failure to set up the device, or if the name is a duplicate.
7365  *
7366  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7367  *      and expands the device name if you passed a format string to
7368  *      alloc_netdev.
7369  */
7370 int register_netdev(struct net_device *dev)
7371 {
7372         int err;
7373
7374         rtnl_lock();
7375         err = register_netdevice(dev);
7376         rtnl_unlock();
7377         return err;
7378 }
7379 EXPORT_SYMBOL(register_netdev);
7380
7381 int netdev_refcnt_read(const struct net_device *dev)
7382 {
7383         int i, refcnt = 0;
7384
7385         for_each_possible_cpu(i)
7386                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7387         return refcnt;
7388 }
7389 EXPORT_SYMBOL(netdev_refcnt_read);
7390
7391 /**
7392  * netdev_wait_allrefs - wait until all references are gone.
7393  * @dev: target net_device
7394  *
7395  * This is called when unregistering network devices.
7396  *
7397  * Any protocol or device that holds a reference should register
7398  * for netdevice notification, and cleanup and put back the
7399  * reference if they receive an UNREGISTER event.
7400  * We can get stuck here if buggy protocols don't correctly
7401  * call dev_put.
7402  */
7403 static void netdev_wait_allrefs(struct net_device *dev)
7404 {
7405         unsigned long rebroadcast_time, warning_time;
7406         int refcnt;
7407
7408         linkwatch_forget_dev(dev);
7409
7410         rebroadcast_time = warning_time = jiffies;
7411         refcnt = netdev_refcnt_read(dev);
7412
7413         while (refcnt != 0) {
7414                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7415                         rtnl_lock();
7416
7417                         /* Rebroadcast unregister notification */
7418                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7419
7420                         __rtnl_unlock();
7421                         rcu_barrier();
7422                         rtnl_lock();
7423
7424                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7425                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7426                                      &dev->state)) {
7427                                 /* We must not have linkwatch events
7428                                  * pending on unregister. If this
7429                                  * happens, we simply run the queue
7430                                  * unscheduled, resulting in a noop
7431                                  * for this device.
7432                                  */
7433                                 linkwatch_run_queue();
7434                         }
7435
7436                         __rtnl_unlock();
7437
7438                         rebroadcast_time = jiffies;
7439                 }
7440
7441                 msleep(250);
7442
7443                 refcnt = netdev_refcnt_read(dev);
7444
7445                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7446                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7447                                  dev->name, refcnt);
7448                         warning_time = jiffies;
7449                 }
7450         }
7451 }
7452
7453 /* The sequence is:
7454  *
7455  *      rtnl_lock();
7456  *      ...
7457  *      register_netdevice(x1);
7458  *      register_netdevice(x2);
7459  *      ...
7460  *      unregister_netdevice(y1);
7461  *      unregister_netdevice(y2);
7462  *      ...
7463  *      rtnl_unlock();
7464  *      free_netdev(y1);
7465  *      free_netdev(y2);
7466  *
7467  * We are invoked by rtnl_unlock().
7468  * This allows us to deal with problems:
7469  * 1) We can delete sysfs objects which invoke hotplug
7470  *    without deadlocking with linkwatch via keventd.
7471  * 2) Since we run with the RTNL semaphore not held, we can sleep
7472  *    safely in order to wait for the netdev refcnt to drop to zero.
7473  *
7474  * We must not return until all unregister events added during
7475  * the interval the lock was held have been completed.
7476  */
7477 void netdev_run_todo(void)
7478 {
7479         struct list_head list;
7480
7481         /* Snapshot list, allow later requests */
7482         list_replace_init(&net_todo_list, &list);
7483
7484         __rtnl_unlock();
7485
7486
7487         /* Wait for rcu callbacks to finish before next phase */
7488         if (!list_empty(&list))
7489                 rcu_barrier();
7490
7491         while (!list_empty(&list)) {
7492                 struct net_device *dev
7493                         = list_first_entry(&list, struct net_device, todo_list);
7494                 list_del(&dev->todo_list);
7495
7496                 rtnl_lock();
7497                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7498                 __rtnl_unlock();
7499
7500                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7501                         pr_err("network todo '%s' but state %d\n",
7502                                dev->name, dev->reg_state);
7503                         dump_stack();
7504                         continue;
7505                 }
7506
7507                 dev->reg_state = NETREG_UNREGISTERED;
7508
7509                 netdev_wait_allrefs(dev);
7510
7511                 /* paranoia */
7512                 BUG_ON(netdev_refcnt_read(dev));
7513                 BUG_ON(!list_empty(&dev->ptype_all));
7514                 BUG_ON(!list_empty(&dev->ptype_specific));
7515                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7516                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7517                 WARN_ON(dev->dn_ptr);
7518
7519                 if (dev->destructor)
7520                         dev->destructor(dev);
7521
7522                 /* Report a network device has been unregistered */
7523                 rtnl_lock();
7524                 dev_net(dev)->dev_unreg_count--;
7525                 __rtnl_unlock();
7526                 wake_up(&netdev_unregistering_wq);
7527
7528                 /* Free network device */
7529                 kobject_put(&dev->dev.kobj);
7530         }
7531 }
7532
7533 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7534  * all the same fields in the same order as net_device_stats, with only
7535  * the type differing, but rtnl_link_stats64 may have additional fields
7536  * at the end for newer counters.
7537  */
7538 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7539                              const struct net_device_stats *netdev_stats)
7540 {
7541 #if BITS_PER_LONG == 64
7542         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7543         memcpy(stats64, netdev_stats, sizeof(*stats64));
7544         /* zero out counters that only exist in rtnl_link_stats64 */
7545         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7546                sizeof(*stats64) - sizeof(*netdev_stats));
7547 #else
7548         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7549         const unsigned long *src = (const unsigned long *)netdev_stats;
7550         u64 *dst = (u64 *)stats64;
7551
7552         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7553         for (i = 0; i < n; i++)
7554                 dst[i] = src[i];
7555         /* zero out counters that only exist in rtnl_link_stats64 */
7556         memset((char *)stats64 + n * sizeof(u64), 0,
7557                sizeof(*stats64) - n * sizeof(u64));
7558 #endif
7559 }
7560 EXPORT_SYMBOL(netdev_stats_to_stats64);
7561
7562 /**
7563  *      dev_get_stats   - get network device statistics
7564  *      @dev: device to get statistics from
7565  *      @storage: place to store stats
7566  *
7567  *      Get network statistics from device. Return @storage.
7568  *      The device driver may provide its own method by setting
7569  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7570  *      otherwise the internal statistics structure is used.
7571  */
7572 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7573                                         struct rtnl_link_stats64 *storage)
7574 {
7575         const struct net_device_ops *ops = dev->netdev_ops;
7576
7577         if (ops->ndo_get_stats64) {
7578                 memset(storage, 0, sizeof(*storage));
7579                 ops->ndo_get_stats64(dev, storage);
7580         } else if (ops->ndo_get_stats) {
7581                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7582         } else {
7583                 netdev_stats_to_stats64(storage, &dev->stats);
7584         }
7585         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7586         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7587         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7588         return storage;
7589 }
7590 EXPORT_SYMBOL(dev_get_stats);
7591
7592 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7593 {
7594         struct netdev_queue *queue = dev_ingress_queue(dev);
7595
7596 #ifdef CONFIG_NET_CLS_ACT
7597         if (queue)
7598                 return queue;
7599         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7600         if (!queue)
7601                 return NULL;
7602         netdev_init_one_queue(dev, queue, NULL);
7603         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7604         queue->qdisc_sleeping = &noop_qdisc;
7605         rcu_assign_pointer(dev->ingress_queue, queue);
7606 #endif
7607         return queue;
7608 }
7609
7610 static const struct ethtool_ops default_ethtool_ops;
7611
7612 void netdev_set_default_ethtool_ops(struct net_device *dev,
7613                                     const struct ethtool_ops *ops)
7614 {
7615         if (dev->ethtool_ops == &default_ethtool_ops)
7616                 dev->ethtool_ops = ops;
7617 }
7618 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7619
7620 void netdev_freemem(struct net_device *dev)
7621 {
7622         char *addr = (char *)dev - dev->padded;
7623
7624         kvfree(addr);
7625 }
7626
7627 /**
7628  *      alloc_netdev_mqs - allocate network device
7629  *      @sizeof_priv:           size of private data to allocate space for
7630  *      @name:                  device name format string
7631  *      @name_assign_type:      origin of device name
7632  *      @setup:                 callback to initialize device
7633  *      @txqs:                  the number of TX subqueues to allocate
7634  *      @rxqs:                  the number of RX subqueues to allocate
7635  *
7636  *      Allocates a struct net_device with private data area for driver use
7637  *      and performs basic initialization.  Also allocates subqueue structs
7638  *      for each queue on the device.
7639  */
7640 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7641                 unsigned char name_assign_type,
7642                 void (*setup)(struct net_device *),
7643                 unsigned int txqs, unsigned int rxqs)
7644 {
7645         struct net_device *dev;
7646         size_t alloc_size;
7647         struct net_device *p;
7648
7649         BUG_ON(strlen(name) >= sizeof(dev->name));
7650
7651         if (txqs < 1) {
7652                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7653                 return NULL;
7654         }
7655
7656 #ifdef CONFIG_SYSFS
7657         if (rxqs < 1) {
7658                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7659                 return NULL;
7660         }
7661 #endif
7662
7663         alloc_size = sizeof(struct net_device);
7664         if (sizeof_priv) {
7665                 /* ensure 32-byte alignment of private area */
7666                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7667                 alloc_size += sizeof_priv;
7668         }
7669         /* ensure 32-byte alignment of whole construct */
7670         alloc_size += NETDEV_ALIGN - 1;
7671
7672         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7673         if (!p)
7674                 p = vzalloc(alloc_size);
7675         if (!p)
7676                 return NULL;
7677
7678         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7679         dev->padded = (char *)dev - (char *)p;
7680
7681         dev->pcpu_refcnt = alloc_percpu(int);
7682         if (!dev->pcpu_refcnt)
7683                 goto free_dev;
7684
7685         if (dev_addr_init(dev))
7686                 goto free_pcpu;
7687
7688         dev_mc_init(dev);
7689         dev_uc_init(dev);
7690
7691         dev_net_set(dev, &init_net);
7692
7693         dev->gso_max_size = GSO_MAX_SIZE;
7694         dev->gso_max_segs = GSO_MAX_SEGS;
7695
7696         INIT_LIST_HEAD(&dev->napi_list);
7697         INIT_LIST_HEAD(&dev->unreg_list);
7698         INIT_LIST_HEAD(&dev->close_list);
7699         INIT_LIST_HEAD(&dev->link_watch_list);
7700         INIT_LIST_HEAD(&dev->adj_list.upper);
7701         INIT_LIST_HEAD(&dev->adj_list.lower);
7702         INIT_LIST_HEAD(&dev->ptype_all);
7703         INIT_LIST_HEAD(&dev->ptype_specific);
7704 #ifdef CONFIG_NET_SCHED
7705         hash_init(dev->qdisc_hash);
7706 #endif
7707         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7708         setup(dev);
7709
7710         if (!dev->tx_queue_len) {
7711                 dev->priv_flags |= IFF_NO_QUEUE;
7712                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7713         }
7714
7715         dev->num_tx_queues = txqs;
7716         dev->real_num_tx_queues = txqs;
7717         if (netif_alloc_netdev_queues(dev))
7718                 goto free_all;
7719
7720 #ifdef CONFIG_SYSFS
7721         dev->num_rx_queues = rxqs;
7722         dev->real_num_rx_queues = rxqs;
7723         if (netif_alloc_rx_queues(dev))
7724                 goto free_all;
7725 #endif
7726
7727         strcpy(dev->name, name);
7728         dev->name_assign_type = name_assign_type;
7729         dev->group = INIT_NETDEV_GROUP;
7730         if (!dev->ethtool_ops)
7731                 dev->ethtool_ops = &default_ethtool_ops;
7732
7733         nf_hook_ingress_init(dev);
7734
7735         return dev;
7736
7737 free_all:
7738         free_netdev(dev);
7739         return NULL;
7740
7741 free_pcpu:
7742         free_percpu(dev->pcpu_refcnt);
7743 free_dev:
7744         netdev_freemem(dev);
7745         return NULL;
7746 }
7747 EXPORT_SYMBOL(alloc_netdev_mqs);
7748
7749 /**
7750  *      free_netdev - free network device
7751  *      @dev: device
7752  *
7753  *      This function does the last stage of destroying an allocated device
7754  *      interface. The reference to the device object is released.
7755  *      If this is the last reference then it will be freed.
7756  *      Must be called in process context.
7757  */
7758 void free_netdev(struct net_device *dev)
7759 {
7760         struct napi_struct *p, *n;
7761
7762         might_sleep();
7763         netif_free_tx_queues(dev);
7764 #ifdef CONFIG_SYSFS
7765         kvfree(dev->_rx);
7766 #endif
7767
7768         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7769
7770         /* Flush device addresses */
7771         dev_addr_flush(dev);
7772
7773         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7774                 netif_napi_del(p);
7775
7776         free_percpu(dev->pcpu_refcnt);
7777         dev->pcpu_refcnt = NULL;
7778
7779         /*  Compatibility with error handling in drivers */
7780         if (dev->reg_state == NETREG_UNINITIALIZED) {
7781                 netdev_freemem(dev);
7782                 return;
7783         }
7784
7785         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7786         dev->reg_state = NETREG_RELEASED;
7787
7788         /* will free via device release */
7789         put_device(&dev->dev);
7790 }
7791 EXPORT_SYMBOL(free_netdev);
7792
7793 /**
7794  *      synchronize_net -  Synchronize with packet receive processing
7795  *
7796  *      Wait for packets currently being received to be done.
7797  *      Does not block later packets from starting.
7798  */
7799 void synchronize_net(void)
7800 {
7801         might_sleep();
7802         if (rtnl_is_locked())
7803                 synchronize_rcu_expedited();
7804         else
7805                 synchronize_rcu();
7806 }
7807 EXPORT_SYMBOL(synchronize_net);
7808
7809 /**
7810  *      unregister_netdevice_queue - remove device from the kernel
7811  *      @dev: device
7812  *      @head: list
7813  *
7814  *      This function shuts down a device interface and removes it
7815  *      from the kernel tables.
7816  *      If head not NULL, device is queued to be unregistered later.
7817  *
7818  *      Callers must hold the rtnl semaphore.  You may want
7819  *      unregister_netdev() instead of this.
7820  */
7821
7822 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7823 {
7824         ASSERT_RTNL();
7825
7826         if (head) {
7827                 list_move_tail(&dev->unreg_list, head);
7828         } else {
7829                 rollback_registered(dev);
7830                 /* Finish processing unregister after unlock */
7831                 net_set_todo(dev);
7832         }
7833 }
7834 EXPORT_SYMBOL(unregister_netdevice_queue);
7835
7836 /**
7837  *      unregister_netdevice_many - unregister many devices
7838  *      @head: list of devices
7839  *
7840  *  Note: As most callers use a stack allocated list_head,
7841  *  we force a list_del() to make sure stack wont be corrupted later.
7842  */
7843 void unregister_netdevice_many(struct list_head *head)
7844 {
7845         struct net_device *dev;
7846
7847         if (!list_empty(head)) {
7848                 rollback_registered_many(head);
7849                 list_for_each_entry(dev, head, unreg_list)
7850                         net_set_todo(dev);
7851                 list_del(head);
7852         }
7853 }
7854 EXPORT_SYMBOL(unregister_netdevice_many);
7855
7856 /**
7857  *      unregister_netdev - remove device from the kernel
7858  *      @dev: device
7859  *
7860  *      This function shuts down a device interface and removes it
7861  *      from the kernel tables.
7862  *
7863  *      This is just a wrapper for unregister_netdevice that takes
7864  *      the rtnl semaphore.  In general you want to use this and not
7865  *      unregister_netdevice.
7866  */
7867 void unregister_netdev(struct net_device *dev)
7868 {
7869         rtnl_lock();
7870         unregister_netdevice(dev);
7871         rtnl_unlock();
7872 }
7873 EXPORT_SYMBOL(unregister_netdev);
7874
7875 /**
7876  *      dev_change_net_namespace - move device to different nethost namespace
7877  *      @dev: device
7878  *      @net: network namespace
7879  *      @pat: If not NULL name pattern to try if the current device name
7880  *            is already taken in the destination network namespace.
7881  *
7882  *      This function shuts down a device interface and moves it
7883  *      to a new network namespace. On success 0 is returned, on
7884  *      a failure a netagive errno code is returned.
7885  *
7886  *      Callers must hold the rtnl semaphore.
7887  */
7888
7889 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7890 {
7891         int err;
7892
7893         ASSERT_RTNL();
7894
7895         /* Don't allow namespace local devices to be moved. */
7896         err = -EINVAL;
7897         if (dev->features & NETIF_F_NETNS_LOCAL)
7898                 goto out;
7899
7900         /* Ensure the device has been registrered */
7901         if (dev->reg_state != NETREG_REGISTERED)
7902                 goto out;
7903
7904         /* Get out if there is nothing todo */
7905         err = 0;
7906         if (net_eq(dev_net(dev), net))
7907                 goto out;
7908
7909         /* Pick the destination device name, and ensure
7910          * we can use it in the destination network namespace.
7911          */
7912         err = -EEXIST;
7913         if (__dev_get_by_name(net, dev->name)) {
7914                 /* We get here if we can't use the current device name */
7915                 if (!pat)
7916                         goto out;
7917                 if (dev_get_valid_name(net, dev, pat) < 0)
7918                         goto out;
7919         }
7920
7921         /*
7922          * And now a mini version of register_netdevice unregister_netdevice.
7923          */
7924
7925         /* If device is running close it first. */
7926         dev_close(dev);
7927
7928         /* And unlink it from device chain */
7929         err = -ENODEV;
7930         unlist_netdevice(dev);
7931
7932         synchronize_net();
7933
7934         /* Shutdown queueing discipline. */
7935         dev_shutdown(dev);
7936
7937         /* Notify protocols, that we are about to destroy
7938            this device. They should clean all the things.
7939
7940            Note that dev->reg_state stays at NETREG_REGISTERED.
7941            This is wanted because this way 8021q and macvlan know
7942            the device is just moving and can keep their slaves up.
7943         */
7944         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7945         rcu_barrier();
7946         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7947         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7948
7949         /*
7950          *      Flush the unicast and multicast chains
7951          */
7952         dev_uc_flush(dev);
7953         dev_mc_flush(dev);
7954
7955         /* Send a netdev-removed uevent to the old namespace */
7956         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7957         netdev_adjacent_del_links(dev);
7958
7959         /* Actually switch the network namespace */
7960         dev_net_set(dev, net);
7961
7962         /* If there is an ifindex conflict assign a new one */
7963         if (__dev_get_by_index(net, dev->ifindex))
7964                 dev->ifindex = dev_new_index(net);
7965
7966         /* Send a netdev-add uevent to the new namespace */
7967         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7968         netdev_adjacent_add_links(dev);
7969
7970         /* Fixup kobjects */
7971         err = device_rename(&dev->dev, dev->name);
7972         WARN_ON(err);
7973
7974         /* Add the device back in the hashes */
7975         list_netdevice(dev);
7976
7977         /* Notify protocols, that a new device appeared. */
7978         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7979
7980         /*
7981          *      Prevent userspace races by waiting until the network
7982          *      device is fully setup before sending notifications.
7983          */
7984         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7985
7986         synchronize_net();
7987         err = 0;
7988 out:
7989         return err;
7990 }
7991 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7992
7993 static int dev_cpu_callback(struct notifier_block *nfb,
7994                             unsigned long action,
7995                             void *ocpu)
7996 {
7997         struct sk_buff **list_skb;
7998         struct sk_buff *skb;
7999         unsigned int cpu, oldcpu = (unsigned long)ocpu;
8000         struct softnet_data *sd, *oldsd;
8001
8002         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
8003                 return NOTIFY_OK;
8004
8005         local_irq_disable();
8006         cpu = smp_processor_id();
8007         sd = &per_cpu(softnet_data, cpu);
8008         oldsd = &per_cpu(softnet_data, oldcpu);
8009
8010         /* Find end of our completion_queue. */
8011         list_skb = &sd->completion_queue;
8012         while (*list_skb)
8013                 list_skb = &(*list_skb)->next;
8014         /* Append completion queue from offline CPU. */
8015         *list_skb = oldsd->completion_queue;
8016         oldsd->completion_queue = NULL;
8017
8018         /* Append output queue from offline CPU. */
8019         if (oldsd->output_queue) {
8020                 *sd->output_queue_tailp = oldsd->output_queue;
8021                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8022                 oldsd->output_queue = NULL;
8023                 oldsd->output_queue_tailp = &oldsd->output_queue;
8024         }
8025         /* Append NAPI poll list from offline CPU, with one exception :
8026          * process_backlog() must be called by cpu owning percpu backlog.
8027          * We properly handle process_queue & input_pkt_queue later.
8028          */
8029         while (!list_empty(&oldsd->poll_list)) {
8030                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8031                                                             struct napi_struct,
8032                                                             poll_list);
8033
8034                 list_del_init(&napi->poll_list);
8035                 if (napi->poll == process_backlog)
8036                         napi->state = 0;
8037                 else
8038                         ____napi_schedule(sd, napi);
8039         }
8040
8041         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8042         local_irq_enable();
8043
8044         /* Process offline CPU's input_pkt_queue */
8045         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8046                 netif_rx_ni(skb);
8047                 input_queue_head_incr(oldsd);
8048         }
8049         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8050                 netif_rx_ni(skb);
8051                 input_queue_head_incr(oldsd);
8052         }
8053
8054         return NOTIFY_OK;
8055 }
8056
8057
8058 /**
8059  *      netdev_increment_features - increment feature set by one
8060  *      @all: current feature set
8061  *      @one: new feature set
8062  *      @mask: mask feature set
8063  *
8064  *      Computes a new feature set after adding a device with feature set
8065  *      @one to the master device with current feature set @all.  Will not
8066  *      enable anything that is off in @mask. Returns the new feature set.
8067  */
8068 netdev_features_t netdev_increment_features(netdev_features_t all,
8069         netdev_features_t one, netdev_features_t mask)
8070 {
8071         if (mask & NETIF_F_HW_CSUM)
8072                 mask |= NETIF_F_CSUM_MASK;
8073         mask |= NETIF_F_VLAN_CHALLENGED;
8074
8075         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8076         all &= one | ~NETIF_F_ALL_FOR_ALL;
8077
8078         /* If one device supports hw checksumming, set for all. */
8079         if (all & NETIF_F_HW_CSUM)
8080                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8081
8082         return all;
8083 }
8084 EXPORT_SYMBOL(netdev_increment_features);
8085
8086 static struct hlist_head * __net_init netdev_create_hash(void)
8087 {
8088         int i;
8089         struct hlist_head *hash;
8090
8091         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8092         if (hash != NULL)
8093                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8094                         INIT_HLIST_HEAD(&hash[i]);
8095
8096         return hash;
8097 }
8098
8099 /* Initialize per network namespace state */
8100 static int __net_init netdev_init(struct net *net)
8101 {
8102         if (net != &init_net)
8103                 INIT_LIST_HEAD(&net->dev_base_head);
8104
8105         net->dev_name_head = netdev_create_hash();
8106         if (net->dev_name_head == NULL)
8107                 goto err_name;
8108
8109         net->dev_index_head = netdev_create_hash();
8110         if (net->dev_index_head == NULL)
8111                 goto err_idx;
8112
8113         return 0;
8114
8115 err_idx:
8116         kfree(net->dev_name_head);
8117 err_name:
8118         return -ENOMEM;
8119 }
8120
8121 /**
8122  *      netdev_drivername - network driver for the device
8123  *      @dev: network device
8124  *
8125  *      Determine network driver for device.
8126  */
8127 const char *netdev_drivername(const struct net_device *dev)
8128 {
8129         const struct device_driver *driver;
8130         const struct device *parent;
8131         const char *empty = "";
8132
8133         parent = dev->dev.parent;
8134         if (!parent)
8135                 return empty;
8136
8137         driver = parent->driver;
8138         if (driver && driver->name)
8139                 return driver->name;
8140         return empty;
8141 }
8142
8143 static void __netdev_printk(const char *level, const struct net_device *dev,
8144                             struct va_format *vaf)
8145 {
8146         if (dev && dev->dev.parent) {
8147                 dev_printk_emit(level[1] - '0',
8148                                 dev->dev.parent,
8149                                 "%s %s %s%s: %pV",
8150                                 dev_driver_string(dev->dev.parent),
8151                                 dev_name(dev->dev.parent),
8152                                 netdev_name(dev), netdev_reg_state(dev),
8153                                 vaf);
8154         } else if (dev) {
8155                 printk("%s%s%s: %pV",
8156                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8157         } else {
8158                 printk("%s(NULL net_device): %pV", level, vaf);
8159         }
8160 }
8161
8162 void netdev_printk(const char *level, const struct net_device *dev,
8163                    const char *format, ...)
8164 {
8165         struct va_format vaf;
8166         va_list args;
8167
8168         va_start(args, format);
8169
8170         vaf.fmt = format;
8171         vaf.va = &args;
8172
8173         __netdev_printk(level, dev, &vaf);
8174
8175         va_end(args);
8176 }
8177 EXPORT_SYMBOL(netdev_printk);
8178
8179 #define define_netdev_printk_level(func, level)                 \
8180 void func(const struct net_device *dev, const char *fmt, ...)   \
8181 {                                                               \
8182         struct va_format vaf;                                   \
8183         va_list args;                                           \
8184                                                                 \
8185         va_start(args, fmt);                                    \
8186                                                                 \
8187         vaf.fmt = fmt;                                          \
8188         vaf.va = &args;                                         \
8189                                                                 \
8190         __netdev_printk(level, dev, &vaf);                      \
8191                                                                 \
8192         va_end(args);                                           \
8193 }                                                               \
8194 EXPORT_SYMBOL(func);
8195
8196 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8197 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8198 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8199 define_netdev_printk_level(netdev_err, KERN_ERR);
8200 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8201 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8202 define_netdev_printk_level(netdev_info, KERN_INFO);
8203
8204 static void __net_exit netdev_exit(struct net *net)
8205 {
8206         kfree(net->dev_name_head);
8207         kfree(net->dev_index_head);
8208 }
8209
8210 static struct pernet_operations __net_initdata netdev_net_ops = {
8211         .init = netdev_init,
8212         .exit = netdev_exit,
8213 };
8214
8215 static void __net_exit default_device_exit(struct net *net)
8216 {
8217         struct net_device *dev, *aux;
8218         /*
8219          * Push all migratable network devices back to the
8220          * initial network namespace
8221          */
8222         rtnl_lock();
8223         for_each_netdev_safe(net, dev, aux) {
8224                 int err;
8225                 char fb_name[IFNAMSIZ];
8226
8227                 /* Ignore unmoveable devices (i.e. loopback) */
8228                 if (dev->features & NETIF_F_NETNS_LOCAL)
8229                         continue;
8230
8231                 /* Leave virtual devices for the generic cleanup */
8232                 if (dev->rtnl_link_ops)
8233                         continue;
8234
8235                 /* Push remaining network devices to init_net */
8236                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8237                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8238                 if (err) {
8239                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8240                                  __func__, dev->name, err);
8241                         BUG();
8242                 }
8243         }
8244         rtnl_unlock();
8245 }
8246
8247 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8248 {
8249         /* Return with the rtnl_lock held when there are no network
8250          * devices unregistering in any network namespace in net_list.
8251          */
8252         struct net *net;
8253         bool unregistering;
8254         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8255
8256         add_wait_queue(&netdev_unregistering_wq, &wait);
8257         for (;;) {
8258                 unregistering = false;
8259                 rtnl_lock();
8260                 list_for_each_entry(net, net_list, exit_list) {
8261                         if (net->dev_unreg_count > 0) {
8262                                 unregistering = true;
8263                                 break;
8264                         }
8265                 }
8266                 if (!unregistering)
8267                         break;
8268                 __rtnl_unlock();
8269
8270                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8271         }
8272         remove_wait_queue(&netdev_unregistering_wq, &wait);
8273 }
8274
8275 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8276 {
8277         /* At exit all network devices most be removed from a network
8278          * namespace.  Do this in the reverse order of registration.
8279          * Do this across as many network namespaces as possible to
8280          * improve batching efficiency.
8281          */
8282         struct net_device *dev;
8283         struct net *net;
8284         LIST_HEAD(dev_kill_list);
8285
8286         /* To prevent network device cleanup code from dereferencing
8287          * loopback devices or network devices that have been freed
8288          * wait here for all pending unregistrations to complete,
8289          * before unregistring the loopback device and allowing the
8290          * network namespace be freed.
8291          *
8292          * The netdev todo list containing all network devices
8293          * unregistrations that happen in default_device_exit_batch
8294          * will run in the rtnl_unlock() at the end of
8295          * default_device_exit_batch.
8296          */
8297         rtnl_lock_unregistering(net_list);
8298         list_for_each_entry(net, net_list, exit_list) {
8299                 for_each_netdev_reverse(net, dev) {
8300                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8301                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8302                         else
8303                                 unregister_netdevice_queue(dev, &dev_kill_list);
8304                 }
8305         }
8306         unregister_netdevice_many(&dev_kill_list);
8307         rtnl_unlock();
8308 }
8309
8310 static struct pernet_operations __net_initdata default_device_ops = {
8311         .exit = default_device_exit,
8312         .exit_batch = default_device_exit_batch,
8313 };
8314
8315 /*
8316  *      Initialize the DEV module. At boot time this walks the device list and
8317  *      unhooks any devices that fail to initialise (normally hardware not
8318  *      present) and leaves us with a valid list of present and active devices.
8319  *
8320  */
8321
8322 /*
8323  *       This is called single threaded during boot, so no need
8324  *       to take the rtnl semaphore.
8325  */
8326 static int __init net_dev_init(void)
8327 {
8328         int i, rc = -ENOMEM;
8329
8330         BUG_ON(!dev_boot_phase);
8331
8332         if (dev_proc_init())
8333                 goto out;
8334
8335         if (netdev_kobject_init())
8336                 goto out;
8337
8338         INIT_LIST_HEAD(&ptype_all);
8339         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8340                 INIT_LIST_HEAD(&ptype_base[i]);
8341
8342         INIT_LIST_HEAD(&offload_base);
8343
8344         if (register_pernet_subsys(&netdev_net_ops))
8345                 goto out;
8346
8347         /*
8348          *      Initialise the packet receive queues.
8349          */
8350
8351         for_each_possible_cpu(i) {
8352                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8353                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8354
8355                 INIT_WORK(flush, flush_backlog);
8356
8357                 skb_queue_head_init(&sd->input_pkt_queue);
8358                 skb_queue_head_init(&sd->process_queue);
8359                 INIT_LIST_HEAD(&sd->poll_list);
8360                 sd->output_queue_tailp = &sd->output_queue;
8361 #ifdef CONFIG_RPS
8362                 sd->csd.func = rps_trigger_softirq;
8363                 sd->csd.info = sd;
8364                 sd->cpu = i;
8365 #endif
8366
8367                 sd->backlog.poll = process_backlog;
8368                 sd->backlog.weight = weight_p;
8369         }
8370
8371         dev_boot_phase = 0;
8372
8373         /* The loopback device is special if any other network devices
8374          * is present in a network namespace the loopback device must
8375          * be present. Since we now dynamically allocate and free the
8376          * loopback device ensure this invariant is maintained by
8377          * keeping the loopback device as the first device on the
8378          * list of network devices.  Ensuring the loopback devices
8379          * is the first device that appears and the last network device
8380          * that disappears.
8381          */
8382         if (register_pernet_device(&loopback_net_ops))
8383                 goto out;
8384
8385         if (register_pernet_device(&default_device_ops))
8386                 goto out;
8387
8388         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8389         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8390
8391         hotcpu_notifier(dev_cpu_callback, 0);
8392         dst_subsys_init();
8393         rc = 0;
8394 out:
8395         return rc;
8396 }
8397
8398 subsys_initcall(net_dev_init);