]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/filter.c
net: filter: add jited flag to indicate jit compiled filters
[karo-tx-linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/ratelimit.h>
40 #include <linux/seccomp.h>
41 #include <linux/if_vlan.h>
42
43 /* No hurry in this branch
44  *
45  * Exported for the bpf jit load helper.
46  */
47 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
48 {
49         u8 *ptr = NULL;
50
51         if (k >= SKF_NET_OFF)
52                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
53         else if (k >= SKF_LL_OFF)
54                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
55
56         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
57                 return ptr;
58         return NULL;
59 }
60
61 static inline void *load_pointer(const struct sk_buff *skb, int k,
62                                  unsigned int size, void *buffer)
63 {
64         if (k >= 0)
65                 return skb_header_pointer(skb, k, size, buffer);
66         return bpf_internal_load_pointer_neg_helper(skb, k, size);
67 }
68
69 /**
70  *      sk_filter - run a packet through a socket filter
71  *      @sk: sock associated with &sk_buff
72  *      @skb: buffer to filter
73  *
74  * Run the filter code and then cut skb->data to correct size returned by
75  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to sk_run_filter. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter(struct sock *sk, struct sk_buff *skb)
82 {
83         int err;
84         struct sk_filter *filter;
85
86         /*
87          * If the skb was allocated from pfmemalloc reserves, only
88          * allow SOCK_MEMALLOC sockets to use it as this socket is
89          * helping free memory
90          */
91         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
92                 return -ENOMEM;
93
94         err = security_sock_rcv_skb(sk, skb);
95         if (err)
96                 return err;
97
98         rcu_read_lock();
99         filter = rcu_dereference(sk->sk_filter);
100         if (filter) {
101                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
102
103                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
104         }
105         rcu_read_unlock();
106
107         return err;
108 }
109 EXPORT_SYMBOL(sk_filter);
110
111 /**
112  *      sk_run_filter - run a filter on a socket
113  *      @skb: buffer to run the filter on
114  *      @fentry: filter to apply
115  *
116  * Decode and apply filter instructions to the skb->data.
117  * Return length to keep, 0 for none. @skb is the data we are
118  * filtering, @filter is the array of filter instructions.
119  * Because all jumps are guaranteed to be before last instruction,
120  * and last instruction guaranteed to be a RET, we dont need to check
121  * flen. (We used to pass to this function the length of filter)
122  */
123 unsigned int sk_run_filter(const struct sk_buff *skb,
124                            const struct sock_filter *fentry)
125 {
126         void *ptr;
127         u32 A = 0;                      /* Accumulator */
128         u32 X = 0;                      /* Index Register */
129         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
130         u32 tmp;
131         int k;
132
133         /*
134          * Process array of filter instructions.
135          */
136         for (;; fentry++) {
137 #if defined(CONFIG_X86_32)
138 #define K (fentry->k)
139 #else
140                 const u32 K = fentry->k;
141 #endif
142
143                 switch (fentry->code) {
144                 case BPF_S_ALU_ADD_X:
145                         A += X;
146                         continue;
147                 case BPF_S_ALU_ADD_K:
148                         A += K;
149                         continue;
150                 case BPF_S_ALU_SUB_X:
151                         A -= X;
152                         continue;
153                 case BPF_S_ALU_SUB_K:
154                         A -= K;
155                         continue;
156                 case BPF_S_ALU_MUL_X:
157                         A *= X;
158                         continue;
159                 case BPF_S_ALU_MUL_K:
160                         A *= K;
161                         continue;
162                 case BPF_S_ALU_DIV_X:
163                         if (X == 0)
164                                 return 0;
165                         A /= X;
166                         continue;
167                 case BPF_S_ALU_DIV_K:
168                         A /= K;
169                         continue;
170                 case BPF_S_ALU_MOD_X:
171                         if (X == 0)
172                                 return 0;
173                         A %= X;
174                         continue;
175                 case BPF_S_ALU_MOD_K:
176                         A %= K;
177                         continue;
178                 case BPF_S_ALU_AND_X:
179                         A &= X;
180                         continue;
181                 case BPF_S_ALU_AND_K:
182                         A &= K;
183                         continue;
184                 case BPF_S_ALU_OR_X:
185                         A |= X;
186                         continue;
187                 case BPF_S_ALU_OR_K:
188                         A |= K;
189                         continue;
190                 case BPF_S_ANC_ALU_XOR_X:
191                 case BPF_S_ALU_XOR_X:
192                         A ^= X;
193                         continue;
194                 case BPF_S_ALU_XOR_K:
195                         A ^= K;
196                         continue;
197                 case BPF_S_ALU_LSH_X:
198                         A <<= X;
199                         continue;
200                 case BPF_S_ALU_LSH_K:
201                         A <<= K;
202                         continue;
203                 case BPF_S_ALU_RSH_X:
204                         A >>= X;
205                         continue;
206                 case BPF_S_ALU_RSH_K:
207                         A >>= K;
208                         continue;
209                 case BPF_S_ALU_NEG:
210                         A = -A;
211                         continue;
212                 case BPF_S_JMP_JA:
213                         fentry += K;
214                         continue;
215                 case BPF_S_JMP_JGT_K:
216                         fentry += (A > K) ? fentry->jt : fentry->jf;
217                         continue;
218                 case BPF_S_JMP_JGE_K:
219                         fentry += (A >= K) ? fentry->jt : fentry->jf;
220                         continue;
221                 case BPF_S_JMP_JEQ_K:
222                         fentry += (A == K) ? fentry->jt : fentry->jf;
223                         continue;
224                 case BPF_S_JMP_JSET_K:
225                         fentry += (A & K) ? fentry->jt : fentry->jf;
226                         continue;
227                 case BPF_S_JMP_JGT_X:
228                         fentry += (A > X) ? fentry->jt : fentry->jf;
229                         continue;
230                 case BPF_S_JMP_JGE_X:
231                         fentry += (A >= X) ? fentry->jt : fentry->jf;
232                         continue;
233                 case BPF_S_JMP_JEQ_X:
234                         fentry += (A == X) ? fentry->jt : fentry->jf;
235                         continue;
236                 case BPF_S_JMP_JSET_X:
237                         fentry += (A & X) ? fentry->jt : fentry->jf;
238                         continue;
239                 case BPF_S_LD_W_ABS:
240                         k = K;
241 load_w:
242                         ptr = load_pointer(skb, k, 4, &tmp);
243                         if (ptr != NULL) {
244                                 A = get_unaligned_be32(ptr);
245                                 continue;
246                         }
247                         return 0;
248                 case BPF_S_LD_H_ABS:
249                         k = K;
250 load_h:
251                         ptr = load_pointer(skb, k, 2, &tmp);
252                         if (ptr != NULL) {
253                                 A = get_unaligned_be16(ptr);
254                                 continue;
255                         }
256                         return 0;
257                 case BPF_S_LD_B_ABS:
258                         k = K;
259 load_b:
260                         ptr = load_pointer(skb, k, 1, &tmp);
261                         if (ptr != NULL) {
262                                 A = *(u8 *)ptr;
263                                 continue;
264                         }
265                         return 0;
266                 case BPF_S_LD_W_LEN:
267                         A = skb->len;
268                         continue;
269                 case BPF_S_LDX_W_LEN:
270                         X = skb->len;
271                         continue;
272                 case BPF_S_LD_W_IND:
273                         k = X + K;
274                         goto load_w;
275                 case BPF_S_LD_H_IND:
276                         k = X + K;
277                         goto load_h;
278                 case BPF_S_LD_B_IND:
279                         k = X + K;
280                         goto load_b;
281                 case BPF_S_LDX_B_MSH:
282                         ptr = load_pointer(skb, K, 1, &tmp);
283                         if (ptr != NULL) {
284                                 X = (*(u8 *)ptr & 0xf) << 2;
285                                 continue;
286                         }
287                         return 0;
288                 case BPF_S_LD_IMM:
289                         A = K;
290                         continue;
291                 case BPF_S_LDX_IMM:
292                         X = K;
293                         continue;
294                 case BPF_S_LD_MEM:
295                         A = mem[K];
296                         continue;
297                 case BPF_S_LDX_MEM:
298                         X = mem[K];
299                         continue;
300                 case BPF_S_MISC_TAX:
301                         X = A;
302                         continue;
303                 case BPF_S_MISC_TXA:
304                         A = X;
305                         continue;
306                 case BPF_S_RET_K:
307                         return K;
308                 case BPF_S_RET_A:
309                         return A;
310                 case BPF_S_ST:
311                         mem[K] = A;
312                         continue;
313                 case BPF_S_STX:
314                         mem[K] = X;
315                         continue;
316                 case BPF_S_ANC_PROTOCOL:
317                         A = ntohs(skb->protocol);
318                         continue;
319                 case BPF_S_ANC_PKTTYPE:
320                         A = skb->pkt_type;
321                         continue;
322                 case BPF_S_ANC_IFINDEX:
323                         if (!skb->dev)
324                                 return 0;
325                         A = skb->dev->ifindex;
326                         continue;
327                 case BPF_S_ANC_MARK:
328                         A = skb->mark;
329                         continue;
330                 case BPF_S_ANC_QUEUE:
331                         A = skb->queue_mapping;
332                         continue;
333                 case BPF_S_ANC_HATYPE:
334                         if (!skb->dev)
335                                 return 0;
336                         A = skb->dev->type;
337                         continue;
338                 case BPF_S_ANC_RXHASH:
339                         A = skb->hash;
340                         continue;
341                 case BPF_S_ANC_CPU:
342                         A = raw_smp_processor_id();
343                         continue;
344                 case BPF_S_ANC_VLAN_TAG:
345                         A = vlan_tx_tag_get(skb);
346                         continue;
347                 case BPF_S_ANC_VLAN_TAG_PRESENT:
348                         A = !!vlan_tx_tag_present(skb);
349                         continue;
350                 case BPF_S_ANC_PAY_OFFSET:
351                         A = __skb_get_poff(skb);
352                         continue;
353                 case BPF_S_ANC_NLATTR: {
354                         struct nlattr *nla;
355
356                         if (skb_is_nonlinear(skb))
357                                 return 0;
358                         if (A > skb->len - sizeof(struct nlattr))
359                                 return 0;
360
361                         nla = nla_find((struct nlattr *)&skb->data[A],
362                                        skb->len - A, X);
363                         if (nla)
364                                 A = (void *)nla - (void *)skb->data;
365                         else
366                                 A = 0;
367                         continue;
368                 }
369                 case BPF_S_ANC_NLATTR_NEST: {
370                         struct nlattr *nla;
371
372                         if (skb_is_nonlinear(skb))
373                                 return 0;
374                         if (A > skb->len - sizeof(struct nlattr))
375                                 return 0;
376
377                         nla = (struct nlattr *)&skb->data[A];
378                         if (nla->nla_len > A - skb->len)
379                                 return 0;
380
381                         nla = nla_find_nested(nla, X);
382                         if (nla)
383                                 A = (void *)nla - (void *)skb->data;
384                         else
385                                 A = 0;
386                         continue;
387                 }
388 #ifdef CONFIG_SECCOMP_FILTER
389                 case BPF_S_ANC_SECCOMP_LD_W:
390                         A = seccomp_bpf_load(fentry->k);
391                         continue;
392 #endif
393                 default:
394                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
395                                        fentry->code, fentry->jt,
396                                        fentry->jf, fentry->k);
397                         return 0;
398                 }
399         }
400
401         return 0;
402 }
403 EXPORT_SYMBOL(sk_run_filter);
404
405 /*
406  * Security :
407  * A BPF program is able to use 16 cells of memory to store intermediate
408  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
409  * As we dont want to clear mem[] array for each packet going through
410  * sk_run_filter(), we check that filter loaded by user never try to read
411  * a cell if not previously written, and we check all branches to be sure
412  * a malicious user doesn't try to abuse us.
413  */
414 static int check_load_and_stores(struct sock_filter *filter, int flen)
415 {
416         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
417         int pc, ret = 0;
418
419         BUILD_BUG_ON(BPF_MEMWORDS > 16);
420         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
421         if (!masks)
422                 return -ENOMEM;
423         memset(masks, 0xff, flen * sizeof(*masks));
424
425         for (pc = 0; pc < flen; pc++) {
426                 memvalid &= masks[pc];
427
428                 switch (filter[pc].code) {
429                 case BPF_S_ST:
430                 case BPF_S_STX:
431                         memvalid |= (1 << filter[pc].k);
432                         break;
433                 case BPF_S_LD_MEM:
434                 case BPF_S_LDX_MEM:
435                         if (!(memvalid & (1 << filter[pc].k))) {
436                                 ret = -EINVAL;
437                                 goto error;
438                         }
439                         break;
440                 case BPF_S_JMP_JA:
441                         /* a jump must set masks on target */
442                         masks[pc + 1 + filter[pc].k] &= memvalid;
443                         memvalid = ~0;
444                         break;
445                 case BPF_S_JMP_JEQ_K:
446                 case BPF_S_JMP_JEQ_X:
447                 case BPF_S_JMP_JGE_K:
448                 case BPF_S_JMP_JGE_X:
449                 case BPF_S_JMP_JGT_K:
450                 case BPF_S_JMP_JGT_X:
451                 case BPF_S_JMP_JSET_X:
452                 case BPF_S_JMP_JSET_K:
453                         /* a jump must set masks on targets */
454                         masks[pc + 1 + filter[pc].jt] &= memvalid;
455                         masks[pc + 1 + filter[pc].jf] &= memvalid;
456                         memvalid = ~0;
457                         break;
458                 }
459         }
460 error:
461         kfree(masks);
462         return ret;
463 }
464
465 /**
466  *      sk_chk_filter - verify socket filter code
467  *      @filter: filter to verify
468  *      @flen: length of filter
469  *
470  * Check the user's filter code. If we let some ugly
471  * filter code slip through kaboom! The filter must contain
472  * no references or jumps that are out of range, no illegal
473  * instructions, and must end with a RET instruction.
474  *
475  * All jumps are forward as they are not signed.
476  *
477  * Returns 0 if the rule set is legal or -EINVAL if not.
478  */
479 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
480 {
481         /*
482          * Valid instructions are initialized to non-0.
483          * Invalid instructions are initialized to 0.
484          */
485         static const u8 codes[] = {
486                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
487                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
488                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
489                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
490                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
491                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
492                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
493                 [BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
494                 [BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
495                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
496                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
497                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
498                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
499                 [BPF_ALU|BPF_XOR|BPF_K]  = BPF_S_ALU_XOR_K,
500                 [BPF_ALU|BPF_XOR|BPF_X]  = BPF_S_ALU_XOR_X,
501                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
502                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
503                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
504                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
505                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
506                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
507                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
508                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
509                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
510                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
511                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
512                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
513                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
514                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
515                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
516                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
517                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
518                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
519                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
520                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
521                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
522                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
523                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
524                 [BPF_ST]                 = BPF_S_ST,
525                 [BPF_STX]                = BPF_S_STX,
526                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
527                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
528                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
529                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
530                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
531                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
532                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
533                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
534                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
535         };
536         int pc;
537         bool anc_found;
538
539         if (flen == 0 || flen > BPF_MAXINSNS)
540                 return -EINVAL;
541
542         /* check the filter code now */
543         for (pc = 0; pc < flen; pc++) {
544                 struct sock_filter *ftest = &filter[pc];
545                 u16 code = ftest->code;
546
547                 if (code >= ARRAY_SIZE(codes))
548                         return -EINVAL;
549                 code = codes[code];
550                 if (!code)
551                         return -EINVAL;
552                 /* Some instructions need special checks */
553                 switch (code) {
554                 case BPF_S_ALU_DIV_K:
555                 case BPF_S_ALU_MOD_K:
556                         /* check for division by zero */
557                         if (ftest->k == 0)
558                                 return -EINVAL;
559                         break;
560                 case BPF_S_LD_MEM:
561                 case BPF_S_LDX_MEM:
562                 case BPF_S_ST:
563                 case BPF_S_STX:
564                         /* check for invalid memory addresses */
565                         if (ftest->k >= BPF_MEMWORDS)
566                                 return -EINVAL;
567                         break;
568                 case BPF_S_JMP_JA:
569                         /*
570                          * Note, the large ftest->k might cause loops.
571                          * Compare this with conditional jumps below,
572                          * where offsets are limited. --ANK (981016)
573                          */
574                         if (ftest->k >= (unsigned int)(flen-pc-1))
575                                 return -EINVAL;
576                         break;
577                 case BPF_S_JMP_JEQ_K:
578                 case BPF_S_JMP_JEQ_X:
579                 case BPF_S_JMP_JGE_K:
580                 case BPF_S_JMP_JGE_X:
581                 case BPF_S_JMP_JGT_K:
582                 case BPF_S_JMP_JGT_X:
583                 case BPF_S_JMP_JSET_X:
584                 case BPF_S_JMP_JSET_K:
585                         /* for conditionals both must be safe */
586                         if (pc + ftest->jt + 1 >= flen ||
587                             pc + ftest->jf + 1 >= flen)
588                                 return -EINVAL;
589                         break;
590                 case BPF_S_LD_W_ABS:
591                 case BPF_S_LD_H_ABS:
592                 case BPF_S_LD_B_ABS:
593                         anc_found = false;
594 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
595                                 code = BPF_S_ANC_##CODE;        \
596                                 anc_found = true;               \
597                                 break
598                         switch (ftest->k) {
599                         ANCILLARY(PROTOCOL);
600                         ANCILLARY(PKTTYPE);
601                         ANCILLARY(IFINDEX);
602                         ANCILLARY(NLATTR);
603                         ANCILLARY(NLATTR_NEST);
604                         ANCILLARY(MARK);
605                         ANCILLARY(QUEUE);
606                         ANCILLARY(HATYPE);
607                         ANCILLARY(RXHASH);
608                         ANCILLARY(CPU);
609                         ANCILLARY(ALU_XOR_X);
610                         ANCILLARY(VLAN_TAG);
611                         ANCILLARY(VLAN_TAG_PRESENT);
612                         ANCILLARY(PAY_OFFSET);
613                         }
614
615                         /* ancillary operation unknown or unsupported */
616                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
617                                 return -EINVAL;
618                 }
619                 ftest->code = code;
620         }
621
622         /* last instruction must be a RET code */
623         switch (filter[flen - 1].code) {
624         case BPF_S_RET_K:
625         case BPF_S_RET_A:
626                 return check_load_and_stores(filter, flen);
627         }
628         return -EINVAL;
629 }
630 EXPORT_SYMBOL(sk_chk_filter);
631
632 /**
633  *      sk_filter_release_rcu - Release a socket filter by rcu_head
634  *      @rcu: rcu_head that contains the sk_filter to free
635  */
636 void sk_filter_release_rcu(struct rcu_head *rcu)
637 {
638         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
639
640         bpf_jit_free(fp);
641 }
642 EXPORT_SYMBOL(sk_filter_release_rcu);
643
644 static int __sk_prepare_filter(struct sk_filter *fp)
645 {
646         int err;
647
648         fp->bpf_func = sk_run_filter;
649         fp->jited = 0;
650
651         err = sk_chk_filter(fp->insns, fp->len);
652         if (err)
653                 return err;
654
655         bpf_jit_compile(fp);
656         return 0;
657 }
658
659 /**
660  *      sk_unattached_filter_create - create an unattached filter
661  *      @fprog: the filter program
662  *      @pfp: the unattached filter that is created
663  *
664  * Create a filter independent of any socket. We first run some
665  * sanity checks on it to make sure it does not explode on us later.
666  * If an error occurs or there is insufficient memory for the filter
667  * a negative errno code is returned. On success the return is zero.
668  */
669 int sk_unattached_filter_create(struct sk_filter **pfp,
670                                 struct sock_fprog *fprog)
671 {
672         struct sk_filter *fp;
673         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
674         int err;
675
676         /* Make sure new filter is there and in the right amounts. */
677         if (fprog->filter == NULL)
678                 return -EINVAL;
679
680         fp = kmalloc(sk_filter_size(fprog->len), GFP_KERNEL);
681         if (!fp)
682                 return -ENOMEM;
683         memcpy(fp->insns, fprog->filter, fsize);
684
685         atomic_set(&fp->refcnt, 1);
686         fp->len = fprog->len;
687
688         err = __sk_prepare_filter(fp);
689         if (err)
690                 goto free_mem;
691
692         *pfp = fp;
693         return 0;
694 free_mem:
695         kfree(fp);
696         return err;
697 }
698 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
699
700 void sk_unattached_filter_destroy(struct sk_filter *fp)
701 {
702         sk_filter_release(fp);
703 }
704 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
705
706 /**
707  *      sk_attach_filter - attach a socket filter
708  *      @fprog: the filter program
709  *      @sk: the socket to use
710  *
711  * Attach the user's filter code. We first run some sanity checks on
712  * it to make sure it does not explode on us later. If an error
713  * occurs or there is insufficient memory for the filter a negative
714  * errno code is returned. On success the return is zero.
715  */
716 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
717 {
718         struct sk_filter *fp, *old_fp;
719         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
720         unsigned int sk_fsize = sk_filter_size(fprog->len);
721         int err;
722
723         if (sock_flag(sk, SOCK_FILTER_LOCKED))
724                 return -EPERM;
725
726         /* Make sure new filter is there and in the right amounts. */
727         if (fprog->filter == NULL)
728                 return -EINVAL;
729
730         fp = sock_kmalloc(sk, sk_fsize, GFP_KERNEL);
731         if (!fp)
732                 return -ENOMEM;
733         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
734                 sock_kfree_s(sk, fp, sk_fsize);
735                 return -EFAULT;
736         }
737
738         atomic_set(&fp->refcnt, 1);
739         fp->len = fprog->len;
740
741         err = __sk_prepare_filter(fp);
742         if (err) {
743                 sk_filter_uncharge(sk, fp);
744                 return err;
745         }
746
747         old_fp = rcu_dereference_protected(sk->sk_filter,
748                                            sock_owned_by_user(sk));
749         rcu_assign_pointer(sk->sk_filter, fp);
750
751         if (old_fp)
752                 sk_filter_uncharge(sk, old_fp);
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(sk_attach_filter);
756
757 int sk_detach_filter(struct sock *sk)
758 {
759         int ret = -ENOENT;
760         struct sk_filter *filter;
761
762         if (sock_flag(sk, SOCK_FILTER_LOCKED))
763                 return -EPERM;
764
765         filter = rcu_dereference_protected(sk->sk_filter,
766                                            sock_owned_by_user(sk));
767         if (filter) {
768                 RCU_INIT_POINTER(sk->sk_filter, NULL);
769                 sk_filter_uncharge(sk, filter);
770                 ret = 0;
771         }
772         return ret;
773 }
774 EXPORT_SYMBOL_GPL(sk_detach_filter);
775
776 void sk_decode_filter(struct sock_filter *filt, struct sock_filter *to)
777 {
778         static const u16 decodes[] = {
779                 [BPF_S_ALU_ADD_K]       = BPF_ALU|BPF_ADD|BPF_K,
780                 [BPF_S_ALU_ADD_X]       = BPF_ALU|BPF_ADD|BPF_X,
781                 [BPF_S_ALU_SUB_K]       = BPF_ALU|BPF_SUB|BPF_K,
782                 [BPF_S_ALU_SUB_X]       = BPF_ALU|BPF_SUB|BPF_X,
783                 [BPF_S_ALU_MUL_K]       = BPF_ALU|BPF_MUL|BPF_K,
784                 [BPF_S_ALU_MUL_X]       = BPF_ALU|BPF_MUL|BPF_X,
785                 [BPF_S_ALU_DIV_X]       = BPF_ALU|BPF_DIV|BPF_X,
786                 [BPF_S_ALU_MOD_K]       = BPF_ALU|BPF_MOD|BPF_K,
787                 [BPF_S_ALU_MOD_X]       = BPF_ALU|BPF_MOD|BPF_X,
788                 [BPF_S_ALU_AND_K]       = BPF_ALU|BPF_AND|BPF_K,
789                 [BPF_S_ALU_AND_X]       = BPF_ALU|BPF_AND|BPF_X,
790                 [BPF_S_ALU_OR_K]        = BPF_ALU|BPF_OR|BPF_K,
791                 [BPF_S_ALU_OR_X]        = BPF_ALU|BPF_OR|BPF_X,
792                 [BPF_S_ALU_XOR_K]       = BPF_ALU|BPF_XOR|BPF_K,
793                 [BPF_S_ALU_XOR_X]       = BPF_ALU|BPF_XOR|BPF_X,
794                 [BPF_S_ALU_LSH_K]       = BPF_ALU|BPF_LSH|BPF_K,
795                 [BPF_S_ALU_LSH_X]       = BPF_ALU|BPF_LSH|BPF_X,
796                 [BPF_S_ALU_RSH_K]       = BPF_ALU|BPF_RSH|BPF_K,
797                 [BPF_S_ALU_RSH_X]       = BPF_ALU|BPF_RSH|BPF_X,
798                 [BPF_S_ALU_NEG]         = BPF_ALU|BPF_NEG,
799                 [BPF_S_LD_W_ABS]        = BPF_LD|BPF_W|BPF_ABS,
800                 [BPF_S_LD_H_ABS]        = BPF_LD|BPF_H|BPF_ABS,
801                 [BPF_S_LD_B_ABS]        = BPF_LD|BPF_B|BPF_ABS,
802                 [BPF_S_ANC_PROTOCOL]    = BPF_LD|BPF_B|BPF_ABS,
803                 [BPF_S_ANC_PKTTYPE]     = BPF_LD|BPF_B|BPF_ABS,
804                 [BPF_S_ANC_IFINDEX]     = BPF_LD|BPF_B|BPF_ABS,
805                 [BPF_S_ANC_NLATTR]      = BPF_LD|BPF_B|BPF_ABS,
806                 [BPF_S_ANC_NLATTR_NEST] = BPF_LD|BPF_B|BPF_ABS,
807                 [BPF_S_ANC_MARK]        = BPF_LD|BPF_B|BPF_ABS,
808                 [BPF_S_ANC_QUEUE]       = BPF_LD|BPF_B|BPF_ABS,
809                 [BPF_S_ANC_HATYPE]      = BPF_LD|BPF_B|BPF_ABS,
810                 [BPF_S_ANC_RXHASH]      = BPF_LD|BPF_B|BPF_ABS,
811                 [BPF_S_ANC_CPU]         = BPF_LD|BPF_B|BPF_ABS,
812                 [BPF_S_ANC_ALU_XOR_X]   = BPF_LD|BPF_B|BPF_ABS,
813                 [BPF_S_ANC_SECCOMP_LD_W] = BPF_LD|BPF_B|BPF_ABS,
814                 [BPF_S_ANC_VLAN_TAG]    = BPF_LD|BPF_B|BPF_ABS,
815                 [BPF_S_ANC_VLAN_TAG_PRESENT] = BPF_LD|BPF_B|BPF_ABS,
816                 [BPF_S_ANC_PAY_OFFSET]  = BPF_LD|BPF_B|BPF_ABS,
817                 [BPF_S_LD_W_LEN]        = BPF_LD|BPF_W|BPF_LEN,
818                 [BPF_S_LD_W_IND]        = BPF_LD|BPF_W|BPF_IND,
819                 [BPF_S_LD_H_IND]        = BPF_LD|BPF_H|BPF_IND,
820                 [BPF_S_LD_B_IND]        = BPF_LD|BPF_B|BPF_IND,
821                 [BPF_S_LD_IMM]          = BPF_LD|BPF_IMM,
822                 [BPF_S_LDX_W_LEN]       = BPF_LDX|BPF_W|BPF_LEN,
823                 [BPF_S_LDX_B_MSH]       = BPF_LDX|BPF_B|BPF_MSH,
824                 [BPF_S_LDX_IMM]         = BPF_LDX|BPF_IMM,
825                 [BPF_S_MISC_TAX]        = BPF_MISC|BPF_TAX,
826                 [BPF_S_MISC_TXA]        = BPF_MISC|BPF_TXA,
827                 [BPF_S_RET_K]           = BPF_RET|BPF_K,
828                 [BPF_S_RET_A]           = BPF_RET|BPF_A,
829                 [BPF_S_ALU_DIV_K]       = BPF_ALU|BPF_DIV|BPF_K,
830                 [BPF_S_LD_MEM]          = BPF_LD|BPF_MEM,
831                 [BPF_S_LDX_MEM]         = BPF_LDX|BPF_MEM,
832                 [BPF_S_ST]              = BPF_ST,
833                 [BPF_S_STX]             = BPF_STX,
834                 [BPF_S_JMP_JA]          = BPF_JMP|BPF_JA,
835                 [BPF_S_JMP_JEQ_K]       = BPF_JMP|BPF_JEQ|BPF_K,
836                 [BPF_S_JMP_JEQ_X]       = BPF_JMP|BPF_JEQ|BPF_X,
837                 [BPF_S_JMP_JGE_K]       = BPF_JMP|BPF_JGE|BPF_K,
838                 [BPF_S_JMP_JGE_X]       = BPF_JMP|BPF_JGE|BPF_X,
839                 [BPF_S_JMP_JGT_K]       = BPF_JMP|BPF_JGT|BPF_K,
840                 [BPF_S_JMP_JGT_X]       = BPF_JMP|BPF_JGT|BPF_X,
841                 [BPF_S_JMP_JSET_K]      = BPF_JMP|BPF_JSET|BPF_K,
842                 [BPF_S_JMP_JSET_X]      = BPF_JMP|BPF_JSET|BPF_X,
843         };
844         u16 code;
845
846         code = filt->code;
847
848         to->code = decodes[code];
849         to->jt = filt->jt;
850         to->jf = filt->jf;
851         to->k = filt->k;
852 }
853
854 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf, unsigned int len)
855 {
856         struct sk_filter *filter;
857         int i, ret;
858
859         lock_sock(sk);
860         filter = rcu_dereference_protected(sk->sk_filter,
861                         sock_owned_by_user(sk));
862         ret = 0;
863         if (!filter)
864                 goto out;
865         ret = filter->len;
866         if (!len)
867                 goto out;
868         ret = -EINVAL;
869         if (len < filter->len)
870                 goto out;
871
872         ret = -EFAULT;
873         for (i = 0; i < filter->len; i++) {
874                 struct sock_filter fb;
875
876                 sk_decode_filter(&filter->insns[i], &fb);
877                 if (copy_to_user(&ubuf[i], &fb, sizeof(fb)))
878                         goto out;
879         }
880
881         ret = filter->len;
882 out:
883         release_sock(sk);
884         return ret;
885 }