]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/ipv4/tcp_input.c
ab44f9d6dde7ece211eb2e250206500152af03fc
[karo-tx-linux.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97 int sysctl_tcp_nometrics_save __read_mostly;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_abc __read_mostly;
103
104 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
105 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
106 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
108 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
109 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
110 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
111 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
112 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
114 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
117 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
118
119 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
123 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
124
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127
128 /* Adapt the MSS value used to make delayed ack decision to the
129  * real world.
130  */
131 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
132 {
133         struct inet_connection_sock *icsk = inet_csk(sk);
134         const unsigned int lss = icsk->icsk_ack.last_seg_size;
135         unsigned int len;
136
137         icsk->icsk_ack.last_seg_size = 0;
138
139         /* skb->len may jitter because of SACKs, even if peer
140          * sends good full-sized frames.
141          */
142         len = skb_shinfo(skb)->gso_size ? : skb->len;
143         if (len >= icsk->icsk_ack.rcv_mss) {
144                 icsk->icsk_ack.rcv_mss = len;
145         } else {
146                 /* Otherwise, we make more careful check taking into account,
147                  * that SACKs block is variable.
148                  *
149                  * "len" is invariant segment length, including TCP header.
150                  */
151                 len += skb->data - skb_transport_header(skb);
152                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
153                     /* If PSH is not set, packet should be
154                      * full sized, provided peer TCP is not badly broken.
155                      * This observation (if it is correct 8)) allows
156                      * to handle super-low mtu links fairly.
157                      */
158                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
159                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
160                         /* Subtract also invariant (if peer is RFC compliant),
161                          * tcp header plus fixed timestamp option length.
162                          * Resulting "len" is MSS free of SACK jitter.
163                          */
164                         len -= tcp_sk(sk)->tcp_header_len;
165                         icsk->icsk_ack.last_seg_size = len;
166                         if (len == lss) {
167                                 icsk->icsk_ack.rcv_mss = len;
168                                 return;
169                         }
170                 }
171                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
172                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
173                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174         }
175 }
176
177 static void tcp_incr_quickack(struct sock *sk)
178 {
179         struct inet_connection_sock *icsk = inet_csk(sk);
180         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181
182         if (quickacks == 0)
183                 quickacks = 2;
184         if (quickacks > icsk->icsk_ack.quick)
185                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
186 }
187
188 static void tcp_enter_quickack_mode(struct sock *sk)
189 {
190         struct inet_connection_sock *icsk = inet_csk(sk);
191         tcp_incr_quickack(sk);
192         icsk->icsk_ack.pingpong = 0;
193         icsk->icsk_ack.ato = TCP_ATO_MIN;
194 }
195
196 /* Send ACKs quickly, if "quick" count is not exhausted
197  * and the session is not interactive.
198  */
199
200 static inline int tcp_in_quickack_mode(const struct sock *sk)
201 {
202         const struct inet_connection_sock *icsk = inet_csk(sk);
203         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205
206 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 {
208         if (tp->ecn_flags & TCP_ECN_OK)
209                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211
212 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
213 {
214         if (tcp_hdr(skb)->cwr)
215                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217
218 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 {
220         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222
223 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
224 {
225         if (tp->ecn_flags & TCP_ECN_OK) {
226                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
227                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
228                 /* Funny extension: if ECT is not set on a segment,
229                  * it is surely retransmit. It is not in ECN RFC,
230                  * but Linux follows this rule. */
231                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
232                         tcp_enter_quickack_mode((struct sock *)tp);
233         }
234 }
235
236 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
237 {
238         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
239                 tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241
242 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
243 {
244         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
245                 tp->ecn_flags &= ~TCP_ECN_OK;
246 }
247
248 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
249 {
250         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
251                 return 1;
252         return 0;
253 }
254
255 /* Buffer size and advertised window tuning.
256  *
257  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
258  */
259
260 static void tcp_fixup_sndbuf(struct sock *sk)
261 {
262         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
263                      sizeof(struct sk_buff);
264
265         if (sk->sk_sndbuf < 3 * sndmem) {
266                 sk->sk_sndbuf = 3 * sndmem;
267                 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
268                         sk->sk_sndbuf = sysctl_tcp_wmem[2];
269         }
270 }
271
272 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
273  *
274  * All tcp_full_space() is split to two parts: "network" buffer, allocated
275  * forward and advertised in receiver window (tp->rcv_wnd) and
276  * "application buffer", required to isolate scheduling/application
277  * latencies from network.
278  * window_clamp is maximal advertised window. It can be less than
279  * tcp_full_space(), in this case tcp_full_space() - window_clamp
280  * is reserved for "application" buffer. The less window_clamp is
281  * the smoother our behaviour from viewpoint of network, but the lower
282  * throughput and the higher sensitivity of the connection to losses. 8)
283  *
284  * rcv_ssthresh is more strict window_clamp used at "slow start"
285  * phase to predict further behaviour of this connection.
286  * It is used for two goals:
287  * - to enforce header prediction at sender, even when application
288  *   requires some significant "application buffer". It is check #1.
289  * - to prevent pruning of receive queue because of misprediction
290  *   of receiver window. Check #2.
291  *
292  * The scheme does not work when sender sends good segments opening
293  * window and then starts to feed us spaghetti. But it should work
294  * in common situations. Otherwise, we have to rely on queue collapsing.
295  */
296
297 /* Slow part of check#2. */
298 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
299 {
300         struct tcp_sock *tp = tcp_sk(sk);
301         /* Optimize this! */
302         int truesize = tcp_win_from_space(skb->truesize) >> 1;
303         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
304
305         while (tp->rcv_ssthresh <= window) {
306                 if (truesize <= skb->len)
307                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
308
309                 truesize >>= 1;
310                 window >>= 1;
311         }
312         return 0;
313 }
314
315 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
316 {
317         struct tcp_sock *tp = tcp_sk(sk);
318
319         /* Check #1 */
320         if (tp->rcv_ssthresh < tp->window_clamp &&
321             (int)tp->rcv_ssthresh < tcp_space(sk) &&
322             !tcp_memory_pressure) {
323                 int incr;
324
325                 /* Check #2. Increase window, if skb with such overhead
326                  * will fit to rcvbuf in future.
327                  */
328                 if (tcp_win_from_space(skb->truesize) <= skb->len)
329                         incr = 2 * tp->advmss;
330                 else
331                         incr = __tcp_grow_window(sk, skb);
332
333                 if (incr) {
334                         incr = max_t(int, incr, 2 * skb->len);
335                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
336                                                tp->window_clamp);
337                         inet_csk(sk)->icsk_ack.quick |= 1;
338                 }
339         }
340 }
341
342 /* 3. Tuning rcvbuf, when connection enters established state. */
343
344 static void tcp_fixup_rcvbuf(struct sock *sk)
345 {
346         struct tcp_sock *tp = tcp_sk(sk);
347         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
348
349         /* Try to select rcvbuf so that 4 mss-sized segments
350          * will fit to window and corresponding skbs will fit to our rcvbuf.
351          * (was 3; 4 is minimum to allow fast retransmit to work.)
352          */
353         while (tcp_win_from_space(rcvmem) < tp->advmss)
354                 rcvmem += 128;
355         if (sk->sk_rcvbuf < 4 * rcvmem)
356                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
357 }
358
359 /* 4. Try to fixup all. It is made immediately after connection enters
360  *    established state.
361  */
362 static void tcp_init_buffer_space(struct sock *sk)
363 {
364         struct tcp_sock *tp = tcp_sk(sk);
365         int maxwin;
366
367         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
368                 tcp_fixup_rcvbuf(sk);
369         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
370                 tcp_fixup_sndbuf(sk);
371
372         tp->rcvq_space.space = tp->rcv_wnd;
373
374         maxwin = tcp_full_space(sk);
375
376         if (tp->window_clamp >= maxwin) {
377                 tp->window_clamp = maxwin;
378
379                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
380                         tp->window_clamp = max(maxwin -
381                                                (maxwin >> sysctl_tcp_app_win),
382                                                4 * tp->advmss);
383         }
384
385         /* Force reservation of one segment. */
386         if (sysctl_tcp_app_win &&
387             tp->window_clamp > 2 * tp->advmss &&
388             tp->window_clamp + tp->advmss > maxwin)
389                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
390
391         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
392         tp->snd_cwnd_stamp = tcp_time_stamp;
393 }
394
395 /* 5. Recalculate window clamp after socket hit its memory bounds. */
396 static void tcp_clamp_window(struct sock *sk)
397 {
398         struct tcp_sock *tp = tcp_sk(sk);
399         struct inet_connection_sock *icsk = inet_csk(sk);
400
401         icsk->icsk_ack.quick = 0;
402
403         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
404             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
405             !tcp_memory_pressure &&
406             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
407                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
408                                     sysctl_tcp_rmem[2]);
409         }
410         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
411                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
412 }
413
414 /* Initialize RCV_MSS value.
415  * RCV_MSS is an our guess about MSS used by the peer.
416  * We haven't any direct information about the MSS.
417  * It's better to underestimate the RCV_MSS rather than overestimate.
418  * Overestimations make us ACKing less frequently than needed.
419  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
420  */
421 void tcp_initialize_rcv_mss(struct sock *sk)
422 {
423         struct tcp_sock *tp = tcp_sk(sk);
424         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
425
426         hint = min(hint, tp->rcv_wnd / 2);
427         hint = min(hint, TCP_MSS_DEFAULT);
428         hint = max(hint, TCP_MIN_MSS);
429
430         inet_csk(sk)->icsk_ack.rcv_mss = hint;
431 }
432 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
433
434 /* Receiver "autotuning" code.
435  *
436  * The algorithm for RTT estimation w/o timestamps is based on
437  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
438  * <http://public.lanl.gov/radiant/pubs.html#DRS>
439  *
440  * More detail on this code can be found at
441  * <http://staff.psc.edu/jheffner/>,
442  * though this reference is out of date.  A new paper
443  * is pending.
444  */
445 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
446 {
447         u32 new_sample = tp->rcv_rtt_est.rtt;
448         long m = sample;
449
450         if (m == 0)
451                 m = 1;
452
453         if (new_sample != 0) {
454                 /* If we sample in larger samples in the non-timestamp
455                  * case, we could grossly overestimate the RTT especially
456                  * with chatty applications or bulk transfer apps which
457                  * are stalled on filesystem I/O.
458                  *
459                  * Also, since we are only going for a minimum in the
460                  * non-timestamp case, we do not smooth things out
461                  * else with timestamps disabled convergence takes too
462                  * long.
463                  */
464                 if (!win_dep) {
465                         m -= (new_sample >> 3);
466                         new_sample += m;
467                 } else {
468                         m <<= 3;
469                         if (m < new_sample)
470                                 new_sample = m;
471                 }
472         } else {
473                 /* No previous measure. */
474                 new_sample = m << 3;
475         }
476
477         if (tp->rcv_rtt_est.rtt != new_sample)
478                 tp->rcv_rtt_est.rtt = new_sample;
479 }
480
481 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
482 {
483         if (tp->rcv_rtt_est.time == 0)
484                 goto new_measure;
485         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
486                 return;
487         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
488
489 new_measure:
490         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
491         tp->rcv_rtt_est.time = tcp_time_stamp;
492 }
493
494 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
495                                           const struct sk_buff *skb)
496 {
497         struct tcp_sock *tp = tcp_sk(sk);
498         if (tp->rx_opt.rcv_tsecr &&
499             (TCP_SKB_CB(skb)->end_seq -
500              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
501                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
502 }
503
504 /*
505  * This function should be called every time data is copied to user space.
506  * It calculates the appropriate TCP receive buffer space.
507  */
508 void tcp_rcv_space_adjust(struct sock *sk)
509 {
510         struct tcp_sock *tp = tcp_sk(sk);
511         int time;
512         int space;
513
514         if (tp->rcvq_space.time == 0)
515                 goto new_measure;
516
517         time = tcp_time_stamp - tp->rcvq_space.time;
518         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
519                 return;
520
521         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
522
523         space = max(tp->rcvq_space.space, space);
524
525         if (tp->rcvq_space.space != space) {
526                 int rcvmem;
527
528                 tp->rcvq_space.space = space;
529
530                 if (sysctl_tcp_moderate_rcvbuf &&
531                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
532                         int new_clamp = space;
533
534                         /* Receive space grows, normalize in order to
535                          * take into account packet headers and sk_buff
536                          * structure overhead.
537                          */
538                         space /= tp->advmss;
539                         if (!space)
540                                 space = 1;
541                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
542                                   16 + sizeof(struct sk_buff));
543                         while (tcp_win_from_space(rcvmem) < tp->advmss)
544                                 rcvmem += 128;
545                         space *= rcvmem;
546                         space = min(space, sysctl_tcp_rmem[2]);
547                         if (space > sk->sk_rcvbuf) {
548                                 sk->sk_rcvbuf = space;
549
550                                 /* Make the window clamp follow along.  */
551                                 tp->window_clamp = new_clamp;
552                         }
553                 }
554         }
555
556 new_measure:
557         tp->rcvq_space.seq = tp->copied_seq;
558         tp->rcvq_space.time = tcp_time_stamp;
559 }
560
561 /* There is something which you must keep in mind when you analyze the
562  * behavior of the tp->ato delayed ack timeout interval.  When a
563  * connection starts up, we want to ack as quickly as possible.  The
564  * problem is that "good" TCP's do slow start at the beginning of data
565  * transmission.  The means that until we send the first few ACK's the
566  * sender will sit on his end and only queue most of his data, because
567  * he can only send snd_cwnd unacked packets at any given time.  For
568  * each ACK we send, he increments snd_cwnd and transmits more of his
569  * queue.  -DaveM
570  */
571 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
572 {
573         struct tcp_sock *tp = tcp_sk(sk);
574         struct inet_connection_sock *icsk = inet_csk(sk);
575         u32 now;
576
577         inet_csk_schedule_ack(sk);
578
579         tcp_measure_rcv_mss(sk, skb);
580
581         tcp_rcv_rtt_measure(tp);
582
583         now = tcp_time_stamp;
584
585         if (!icsk->icsk_ack.ato) {
586                 /* The _first_ data packet received, initialize
587                  * delayed ACK engine.
588                  */
589                 tcp_incr_quickack(sk);
590                 icsk->icsk_ack.ato = TCP_ATO_MIN;
591         } else {
592                 int m = now - icsk->icsk_ack.lrcvtime;
593
594                 if (m <= TCP_ATO_MIN / 2) {
595                         /* The fastest case is the first. */
596                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
597                 } else if (m < icsk->icsk_ack.ato) {
598                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
599                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
600                                 icsk->icsk_ack.ato = icsk->icsk_rto;
601                 } else if (m > icsk->icsk_rto) {
602                         /* Too long gap. Apparently sender failed to
603                          * restart window, so that we send ACKs quickly.
604                          */
605                         tcp_incr_quickack(sk);
606                         sk_mem_reclaim(sk);
607                 }
608         }
609         icsk->icsk_ack.lrcvtime = now;
610
611         TCP_ECN_check_ce(tp, skb);
612
613         if (skb->len >= 128)
614                 tcp_grow_window(sk, skb);
615 }
616
617 /* Called to compute a smoothed rtt estimate. The data fed to this
618  * routine either comes from timestamps, or from segments that were
619  * known _not_ to have been retransmitted [see Karn/Partridge
620  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
621  * piece by Van Jacobson.
622  * NOTE: the next three routines used to be one big routine.
623  * To save cycles in the RFC 1323 implementation it was better to break
624  * it up into three procedures. -- erics
625  */
626 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
627 {
628         struct tcp_sock *tp = tcp_sk(sk);
629         long m = mrtt; /* RTT */
630
631         /*      The following amusing code comes from Jacobson's
632          *      article in SIGCOMM '88.  Note that rtt and mdev
633          *      are scaled versions of rtt and mean deviation.
634          *      This is designed to be as fast as possible
635          *      m stands for "measurement".
636          *
637          *      On a 1990 paper the rto value is changed to:
638          *      RTO = rtt + 4 * mdev
639          *
640          * Funny. This algorithm seems to be very broken.
641          * These formulae increase RTO, when it should be decreased, increase
642          * too slowly, when it should be increased quickly, decrease too quickly
643          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
644          * does not matter how to _calculate_ it. Seems, it was trap
645          * that VJ failed to avoid. 8)
646          */
647         if (m == 0)
648                 m = 1;
649         if (tp->srtt != 0) {
650                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
651                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
652                 if (m < 0) {
653                         m = -m;         /* m is now abs(error) */
654                         m -= (tp->mdev >> 2);   /* similar update on mdev */
655                         /* This is similar to one of Eifel findings.
656                          * Eifel blocks mdev updates when rtt decreases.
657                          * This solution is a bit different: we use finer gain
658                          * for mdev in this case (alpha*beta).
659                          * Like Eifel it also prevents growth of rto,
660                          * but also it limits too fast rto decreases,
661                          * happening in pure Eifel.
662                          */
663                         if (m > 0)
664                                 m >>= 3;
665                 } else {
666                         m -= (tp->mdev >> 2);   /* similar update on mdev */
667                 }
668                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
669                 if (tp->mdev > tp->mdev_max) {
670                         tp->mdev_max = tp->mdev;
671                         if (tp->mdev_max > tp->rttvar)
672                                 tp->rttvar = tp->mdev_max;
673                 }
674                 if (after(tp->snd_una, tp->rtt_seq)) {
675                         if (tp->mdev_max < tp->rttvar)
676                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
677                         tp->rtt_seq = tp->snd_nxt;
678                         tp->mdev_max = tcp_rto_min(sk);
679                 }
680         } else {
681                 /* no previous measure. */
682                 tp->srtt = m << 3;      /* take the measured time to be rtt */
683                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
684                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
685                 tp->rtt_seq = tp->snd_nxt;
686         }
687 }
688
689 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
690  * routine referred to above.
691  */
692 static inline void tcp_set_rto(struct sock *sk)
693 {
694         const struct tcp_sock *tp = tcp_sk(sk);
695         /* Old crap is replaced with new one. 8)
696          *
697          * More seriously:
698          * 1. If rtt variance happened to be less 50msec, it is hallucination.
699          *    It cannot be less due to utterly erratic ACK generation made
700          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
701          *    to do with delayed acks, because at cwnd>2 true delack timeout
702          *    is invisible. Actually, Linux-2.4 also generates erratic
703          *    ACKs in some circumstances.
704          */
705         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
706
707         /* 2. Fixups made earlier cannot be right.
708          *    If we do not estimate RTO correctly without them,
709          *    all the algo is pure shit and should be replaced
710          *    with correct one. It is exactly, which we pretend to do.
711          */
712
713         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
714          * guarantees that rto is higher.
715          */
716         tcp_bound_rto(sk);
717 }
718
719 /* Save metrics learned by this TCP session.
720    This function is called only, when TCP finishes successfully
721    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
722  */
723 void tcp_update_metrics(struct sock *sk)
724 {
725         struct tcp_sock *tp = tcp_sk(sk);
726         struct dst_entry *dst = __sk_dst_get(sk);
727
728         if (sysctl_tcp_nometrics_save)
729                 return;
730
731         dst_confirm(dst);
732
733         if (dst && (dst->flags & DST_HOST)) {
734                 const struct inet_connection_sock *icsk = inet_csk(sk);
735                 int m;
736                 unsigned long rtt;
737
738                 if (icsk->icsk_backoff || !tp->srtt) {
739                         /* This session failed to estimate rtt. Why?
740                          * Probably, no packets returned in time.
741                          * Reset our results.
742                          */
743                         if (!(dst_metric_locked(dst, RTAX_RTT)))
744                                 dst_metric_set(dst, RTAX_RTT, 0);
745                         return;
746                 }
747
748                 rtt = dst_metric_rtt(dst, RTAX_RTT);
749                 m = rtt - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
758                         else
759                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         unsigned long var;
764                         if (m < 0)
765                                 m = -m;
766
767                         /* Scale deviation to rttvar fixed point */
768                         m >>= 1;
769                         if (m < tp->mdev)
770                                 m = tp->mdev;
771
772                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
773                         if (m >= var)
774                                 var = m;
775                         else
776                                 var -= (var - m) >> 2;
777
778                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
779                 }
780
781                 if (tcp_in_initial_slowstart(tp)) {
782                         /* Slow start still did not finish. */
783                         if (dst_metric(dst, RTAX_SSTHRESH) &&
784                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
785                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
786                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
787                         if (!dst_metric_locked(dst, RTAX_CWND) &&
788                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
789                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
790                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
791                            icsk->icsk_ca_state == TCP_CA_Open) {
792                         /* Cong. avoidance phase, cwnd is reliable. */
793                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
794                                 dst_metric_set(dst, RTAX_SSTHRESH,
795                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
796                         if (!dst_metric_locked(dst, RTAX_CWND))
797                                 dst_metric_set(dst, RTAX_CWND,
798                                                (dst_metric(dst, RTAX_CWND) +
799                                                 tp->snd_cwnd) >> 1);
800                 } else {
801                         /* Else slow start did not finish, cwnd is non-sense,
802                            ssthresh may be also invalid.
803                          */
804                         if (!dst_metric_locked(dst, RTAX_CWND))
805                                 dst_metric_set(dst, RTAX_CWND,
806                                                (dst_metric(dst, RTAX_CWND) +
807                                                 tp->snd_ssthresh) >> 1);
808                         if (dst_metric(dst, RTAX_SSTHRESH) &&
809                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
810                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
811                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
812                 }
813
814                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
815                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
816                             tp->reordering != sysctl_tcp_reordering)
817                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
818                 }
819         }
820 }
821
822 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
823 {
824         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
825
826         if (!cwnd)
827                 cwnd = TCP_INIT_CWND;
828         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
829 }
830
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
833 {
834         struct tcp_sock *tp = tcp_sk(sk);
835         const struct inet_connection_sock *icsk = inet_csk(sk);
836
837         tp->prior_ssthresh = 0;
838         tp->bytes_acked = 0;
839         if (icsk->icsk_ca_state < TCP_CA_CWR) {
840                 tp->undo_marker = 0;
841                 if (set_ssthresh)
842                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843                 tp->snd_cwnd = min(tp->snd_cwnd,
844                                    tcp_packets_in_flight(tp) + 1U);
845                 tp->snd_cwnd_cnt = 0;
846                 tp->high_seq = tp->snd_nxt;
847                 tp->snd_cwnd_stamp = tcp_time_stamp;
848                 TCP_ECN_queue_cwr(tp);
849
850                 tcp_set_ca_state(sk, TCP_CA_CWR);
851         }
852 }
853
854 /*
855  * Packet counting of FACK is based on in-order assumptions, therefore TCP
856  * disables it when reordering is detected
857  */
858 static void tcp_disable_fack(struct tcp_sock *tp)
859 {
860         /* RFC3517 uses different metric in lost marker => reset on change */
861         if (tcp_is_fack(tp))
862                 tp->lost_skb_hint = NULL;
863         tp->rx_opt.sack_ok &= ~2;
864 }
865
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869         tp->rx_opt.sack_ok |= 4;
870 }
871
872 /* Initialize metrics on socket. */
873
874 static void tcp_init_metrics(struct sock *sk)
875 {
876         struct tcp_sock *tp = tcp_sk(sk);
877         struct dst_entry *dst = __sk_dst_get(sk);
878
879         if (dst == NULL)
880                 goto reset;
881
882         dst_confirm(dst);
883
884         if (dst_metric_locked(dst, RTAX_CWND))
885                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886         if (dst_metric(dst, RTAX_SSTHRESH)) {
887                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
890         }
891         if (dst_metric(dst, RTAX_REORDERING) &&
892             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
893                 tcp_disable_fack(tp);
894                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
895         }
896
897         if (dst_metric(dst, RTAX_RTT) == 0)
898                 goto reset;
899
900         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
901                 goto reset;
902
903         /* Initial rtt is determined from SYN,SYN-ACK.
904          * The segment is small and rtt may appear much
905          * less than real one. Use per-dst memory
906          * to make it more realistic.
907          *
908          * A bit of theory. RTT is time passed after "normal" sized packet
909          * is sent until it is ACKed. In normal circumstances sending small
910          * packets force peer to delay ACKs and calculation is correct too.
911          * The algorithm is adaptive and, provided we follow specs, it
912          * NEVER underestimate RTT. BUT! If peer tries to make some clever
913          * tricks sort of "quick acks" for time long enough to decrease RTT
914          * to low value, and then abruptly stops to do it and starts to delay
915          * ACKs, wait for troubles.
916          */
917         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
918                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
919                 tp->rtt_seq = tp->snd_nxt;
920         }
921         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
922                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
923                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
924         }
925         tcp_set_rto(sk);
926         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
927 reset:
928                 /* Play conservative. If timestamps are not
929                  * supported, TCP will fail to recalculate correct
930                  * rtt, if initial rto is too small. FORGET ALL AND RESET!
931                  */
932                 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
933                         tp->srtt = 0;
934                         tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
935                         inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
936                 }
937         }
938         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
939         tp->snd_cwnd_stamp = tcp_time_stamp;
940 }
941
942 static void tcp_update_reordering(struct sock *sk, const int metric,
943                                   const int ts)
944 {
945         struct tcp_sock *tp = tcp_sk(sk);
946         if (metric > tp->reordering) {
947                 int mib_idx;
948
949                 tp->reordering = min(TCP_MAX_REORDERING, metric);
950
951                 /* This exciting event is worth to be remembered. 8) */
952                 if (ts)
953                         mib_idx = LINUX_MIB_TCPTSREORDER;
954                 else if (tcp_is_reno(tp))
955                         mib_idx = LINUX_MIB_TCPRENOREORDER;
956                 else if (tcp_is_fack(tp))
957                         mib_idx = LINUX_MIB_TCPFACKREORDER;
958                 else
959                         mib_idx = LINUX_MIB_TCPSACKREORDER;
960
961                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
962 #if FASTRETRANS_DEBUG > 1
963                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
964                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
965                        tp->reordering,
966                        tp->fackets_out,
967                        tp->sacked_out,
968                        tp->undo_marker ? tp->undo_retrans : 0);
969 #endif
970                 tcp_disable_fack(tp);
971         }
972 }
973
974 /* This must be called before lost_out is incremented */
975 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
976 {
977         if ((tp->retransmit_skb_hint == NULL) ||
978             before(TCP_SKB_CB(skb)->seq,
979                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
980                 tp->retransmit_skb_hint = skb;
981
982         if (!tp->lost_out ||
983             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
984                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
985 }
986
987 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
988 {
989         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
990                 tcp_verify_retransmit_hint(tp, skb);
991
992                 tp->lost_out += tcp_skb_pcount(skb);
993                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
994         }
995 }
996
997 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
998                                             struct sk_buff *skb)
999 {
1000         tcp_verify_retransmit_hint(tp, skb);
1001
1002         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003                 tp->lost_out += tcp_skb_pcount(skb);
1004                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005         }
1006 }
1007
1008 /* This procedure tags the retransmission queue when SACKs arrive.
1009  *
1010  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1011  * Packets in queue with these bits set are counted in variables
1012  * sacked_out, retrans_out and lost_out, correspondingly.
1013  *
1014  * Valid combinations are:
1015  * Tag  InFlight        Description
1016  * 0    1               - orig segment is in flight.
1017  * S    0               - nothing flies, orig reached receiver.
1018  * L    0               - nothing flies, orig lost by net.
1019  * R    2               - both orig and retransmit are in flight.
1020  * L|R  1               - orig is lost, retransmit is in flight.
1021  * S|R  1               - orig reached receiver, retrans is still in flight.
1022  * (L|S|R is logically valid, it could occur when L|R is sacked,
1023  *  but it is equivalent to plain S and code short-curcuits it to S.
1024  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1025  *
1026  * These 6 states form finite state machine, controlled by the following events:
1027  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1028  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1029  * 3. Loss detection event of one of three flavors:
1030  *      A. Scoreboard estimator decided the packet is lost.
1031  *         A'. Reno "three dupacks" marks head of queue lost.
1032  *         A''. Its FACK modfication, head until snd.fack is lost.
1033  *      B. SACK arrives sacking data transmitted after never retransmitted
1034  *         hole was sent out.
1035  *      C. SACK arrives sacking SND.NXT at the moment, when the
1036  *         segment was retransmitted.
1037  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1038  *
1039  * It is pleasant to note, that state diagram turns out to be commutative,
1040  * so that we are allowed not to be bothered by order of our actions,
1041  * when multiple events arrive simultaneously. (see the function below).
1042  *
1043  * Reordering detection.
1044  * --------------------
1045  * Reordering metric is maximal distance, which a packet can be displaced
1046  * in packet stream. With SACKs we can estimate it:
1047  *
1048  * 1. SACK fills old hole and the corresponding segment was not
1049  *    ever retransmitted -> reordering. Alas, we cannot use it
1050  *    when segment was retransmitted.
1051  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1052  *    for retransmitted and already SACKed segment -> reordering..
1053  * Both of these heuristics are not used in Loss state, when we cannot
1054  * account for retransmits accurately.
1055  *
1056  * SACK block validation.
1057  * ----------------------
1058  *
1059  * SACK block range validation checks that the received SACK block fits to
1060  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1061  * Note that SND.UNA is not included to the range though being valid because
1062  * it means that the receiver is rather inconsistent with itself reporting
1063  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1064  * perfectly valid, however, in light of RFC2018 which explicitly states
1065  * that "SACK block MUST reflect the newest segment.  Even if the newest
1066  * segment is going to be discarded ...", not that it looks very clever
1067  * in case of head skb. Due to potentional receiver driven attacks, we
1068  * choose to avoid immediate execution of a walk in write queue due to
1069  * reneging and defer head skb's loss recovery to standard loss recovery
1070  * procedure that will eventually trigger (nothing forbids us doing this).
1071  *
1072  * Implements also blockage to start_seq wrap-around. Problem lies in the
1073  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1074  * there's no guarantee that it will be before snd_nxt (n). The problem
1075  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1076  * wrap (s_w):
1077  *
1078  *         <- outs wnd ->                          <- wrapzone ->
1079  *         u     e      n                         u_w   e_w  s n_w
1080  *         |     |      |                          |     |   |  |
1081  * |<------------+------+----- TCP seqno space --------------+---------->|
1082  * ...-- <2^31 ->|                                           |<--------...
1083  * ...---- >2^31 ------>|                                    |<--------...
1084  *
1085  * Current code wouldn't be vulnerable but it's better still to discard such
1086  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1087  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1088  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1089  * equal to the ideal case (infinite seqno space without wrap caused issues).
1090  *
1091  * With D-SACK the lower bound is extended to cover sequence space below
1092  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1093  * again, D-SACK block must not to go across snd_una (for the same reason as
1094  * for the normal SACK blocks, explained above). But there all simplicity
1095  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1096  * fully below undo_marker they do not affect behavior in anyway and can
1097  * therefore be safely ignored. In rare cases (which are more or less
1098  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1099  * fragmentation and packet reordering past skb's retransmission. To consider
1100  * them correctly, the acceptable range must be extended even more though
1101  * the exact amount is rather hard to quantify. However, tp->max_window can
1102  * be used as an exaggerated estimate.
1103  */
1104 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1105                                   u32 start_seq, u32 end_seq)
1106 {
1107         /* Too far in future, or reversed (interpretation is ambiguous) */
1108         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1109                 return 0;
1110
1111         /* Nasty start_seq wrap-around check (see comments above) */
1112         if (!before(start_seq, tp->snd_nxt))
1113                 return 0;
1114
1115         /* In outstanding window? ...This is valid exit for D-SACKs too.
1116          * start_seq == snd_una is non-sensical (see comments above)
1117          */
1118         if (after(start_seq, tp->snd_una))
1119                 return 1;
1120
1121         if (!is_dsack || !tp->undo_marker)
1122                 return 0;
1123
1124         /* ...Then it's D-SACK, and must reside below snd_una completely */
1125         if (after(end_seq, tp->snd_una))
1126                 return 0;
1127
1128         if (!before(start_seq, tp->undo_marker))
1129                 return 1;
1130
1131         /* Too old */
1132         if (!after(end_seq, tp->undo_marker))
1133                 return 0;
1134
1135         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1136          *   start_seq < undo_marker and end_seq >= undo_marker.
1137          */
1138         return !before(start_seq, end_seq - tp->max_window);
1139 }
1140
1141 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1142  * Event "C". Later note: FACK people cheated me again 8), we have to account
1143  * for reordering! Ugly, but should help.
1144  *
1145  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1146  * less than what is now known to be received by the other end (derived from
1147  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1148  * retransmitted skbs to avoid some costly processing per ACKs.
1149  */
1150 static void tcp_mark_lost_retrans(struct sock *sk)
1151 {
1152         const struct inet_connection_sock *icsk = inet_csk(sk);
1153         struct tcp_sock *tp = tcp_sk(sk);
1154         struct sk_buff *skb;
1155         int cnt = 0;
1156         u32 new_low_seq = tp->snd_nxt;
1157         u32 received_upto = tcp_highest_sack_seq(tp);
1158
1159         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1160             !after(received_upto, tp->lost_retrans_low) ||
1161             icsk->icsk_ca_state != TCP_CA_Recovery)
1162                 return;
1163
1164         tcp_for_write_queue(skb, sk) {
1165                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1166
1167                 if (skb == tcp_send_head(sk))
1168                         break;
1169                 if (cnt == tp->retrans_out)
1170                         break;
1171                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1172                         continue;
1173
1174                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1175                         continue;
1176
1177                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1178                  * constraint here (see above) but figuring out that at
1179                  * least tp->reordering SACK blocks reside between ack_seq
1180                  * and received_upto is not easy task to do cheaply with
1181                  * the available datastructures.
1182                  *
1183                  * Whether FACK should check here for tp->reordering segs
1184                  * in-between one could argue for either way (it would be
1185                  * rather simple to implement as we could count fack_count
1186                  * during the walk and do tp->fackets_out - fack_count).
1187                  */
1188                 if (after(received_upto, ack_seq)) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 struct tcp_sacktag_state {
1241         int reord;
1242         int fack_count;
1243         int flag;
1244 };
1245
1246 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1247  * the incoming SACK may not exactly match but we can find smaller MSS
1248  * aligned portion of it that matches. Therefore we might need to fragment
1249  * which may fail and creates some hassle (caller must handle error case
1250  * returns).
1251  *
1252  * FIXME: this could be merged to shift decision code
1253  */
1254 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1255                                  u32 start_seq, u32 end_seq)
1256 {
1257         int in_sack, err;
1258         unsigned int pkt_len;
1259         unsigned int mss;
1260
1261         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1262                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263
1264         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1265             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1266                 mss = tcp_skb_mss(skb);
1267                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268
1269                 if (!in_sack) {
1270                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1271                         if (pkt_len < mss)
1272                                 pkt_len = mss;
1273                 } else {
1274                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1275                         if (pkt_len < mss)
1276                                 return -EINVAL;
1277                 }
1278
1279                 /* Round if necessary so that SACKs cover only full MSSes
1280                  * and/or the remaining small portion (if present)
1281                  */
1282                 if (pkt_len > mss) {
1283                         unsigned int new_len = (pkt_len / mss) * mss;
1284                         if (!in_sack && new_len < pkt_len) {
1285                                 new_len += mss;
1286                                 if (new_len > skb->len)
1287                                         return 0;
1288                         }
1289                         pkt_len = new_len;
1290                 }
1291                 err = tcp_fragment(sk, skb, pkt_len, mss);
1292                 if (err < 0)
1293                         return err;
1294         }
1295
1296         return in_sack;
1297 }
1298
1299 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1300 static u8 tcp_sacktag_one(struct sock *sk,
1301                           struct tcp_sacktag_state *state, u8 sacked,
1302                           u32 start_seq, u32 end_seq,
1303                           int dup_sack, int pcount)
1304 {
1305         struct tcp_sock *tp = tcp_sk(sk);
1306         int fack_count = state->fack_count;
1307
1308         /* Account D-SACK for retransmitted packet. */
1309         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1310                 if (tp->undo_marker && tp->undo_retrans &&
1311                     after(end_seq, tp->undo_marker))
1312                         tp->undo_retrans--;
1313                 if (sacked & TCPCB_SACKED_ACKED)
1314                         state->reord = min(fack_count, state->reord);
1315         }
1316
1317         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1318         if (!after(end_seq, tp->snd_una))
1319                 return sacked;
1320
1321         if (!(sacked & TCPCB_SACKED_ACKED)) {
1322                 if (sacked & TCPCB_SACKED_RETRANS) {
1323                         /* If the segment is not tagged as lost,
1324                          * we do not clear RETRANS, believing
1325                          * that retransmission is still in flight.
1326                          */
1327                         if (sacked & TCPCB_LOST) {
1328                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1329                                 tp->lost_out -= pcount;
1330                                 tp->retrans_out -= pcount;
1331                         }
1332                 } else {
1333                         if (!(sacked & TCPCB_RETRANS)) {
1334                                 /* New sack for not retransmitted frame,
1335                                  * which was in hole. It is reordering.
1336                                  */
1337                                 if (before(start_seq,
1338                                            tcp_highest_sack_seq(tp)))
1339                                         state->reord = min(fack_count,
1340                                                            state->reord);
1341
1342                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1343                                 if (!after(end_seq, tp->frto_highmark))
1344                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1345                         }
1346
1347                         if (sacked & TCPCB_LOST) {
1348                                 sacked &= ~TCPCB_LOST;
1349                                 tp->lost_out -= pcount;
1350                         }
1351                 }
1352
1353                 sacked |= TCPCB_SACKED_ACKED;
1354                 state->flag |= FLAG_DATA_SACKED;
1355                 tp->sacked_out += pcount;
1356
1357                 fack_count += pcount;
1358
1359                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1360                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1361                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1362                         tp->lost_cnt_hint += pcount;
1363
1364                 if (fack_count > tp->fackets_out)
1365                         tp->fackets_out = fack_count;
1366         }
1367
1368         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1369          * frames and clear it. undo_retrans is decreased above, L|R frames
1370          * are accounted above as well.
1371          */
1372         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1373                 sacked &= ~TCPCB_SACKED_RETRANS;
1374                 tp->retrans_out -= pcount;
1375         }
1376
1377         return sacked;
1378 }
1379
1380 /* Shift newly-SACKed bytes from this skb to the immediately previous
1381  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1382  */
1383 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1384                            struct tcp_sacktag_state *state,
1385                            unsigned int pcount, int shifted, int mss,
1386                            int dup_sack)
1387 {
1388         struct tcp_sock *tp = tcp_sk(sk);
1389         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1390         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1391         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1392
1393         BUG_ON(!pcount);
1394
1395         /* Adjust counters and hints for the newly sacked sequence
1396          * range but discard the return value since prev is already
1397          * marked. We must tag the range first because the seq
1398          * advancement below implicitly advances
1399          * tcp_highest_sack_seq() when skb is highest_sack.
1400          */
1401         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1402                         start_seq, end_seq, dup_sack, pcount);
1403
1404         if (skb == tp->lost_skb_hint)
1405                 tp->lost_cnt_hint += pcount;
1406
1407         TCP_SKB_CB(prev)->end_seq += shifted;
1408         TCP_SKB_CB(skb)->seq += shifted;
1409
1410         skb_shinfo(prev)->gso_segs += pcount;
1411         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1412         skb_shinfo(skb)->gso_segs -= pcount;
1413
1414         /* When we're adding to gso_segs == 1, gso_size will be zero,
1415          * in theory this shouldn't be necessary but as long as DSACK
1416          * code can come after this skb later on it's better to keep
1417          * setting gso_size to something.
1418          */
1419         if (!skb_shinfo(prev)->gso_size) {
1420                 skb_shinfo(prev)->gso_size = mss;
1421                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1422         }
1423
1424         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1425         if (skb_shinfo(skb)->gso_segs <= 1) {
1426                 skb_shinfo(skb)->gso_size = 0;
1427                 skb_shinfo(skb)->gso_type = 0;
1428         }
1429
1430         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1431         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1432
1433         if (skb->len > 0) {
1434                 BUG_ON(!tcp_skb_pcount(skb));
1435                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1436                 return 0;
1437         }
1438
1439         /* Whole SKB was eaten :-) */
1440
1441         if (skb == tp->retransmit_skb_hint)
1442                 tp->retransmit_skb_hint = prev;
1443         if (skb == tp->scoreboard_skb_hint)
1444                 tp->scoreboard_skb_hint = prev;
1445         if (skb == tp->lost_skb_hint) {
1446                 tp->lost_skb_hint = prev;
1447                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1448         }
1449
1450         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1451         if (skb == tcp_highest_sack(sk))
1452                 tcp_advance_highest_sack(sk, skb);
1453
1454         tcp_unlink_write_queue(skb, sk);
1455         sk_wmem_free_skb(sk, skb);
1456
1457         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1458
1459         return 1;
1460 }
1461
1462 /* I wish gso_size would have a bit more sane initialization than
1463  * something-or-zero which complicates things
1464  */
1465 static int tcp_skb_seglen(struct sk_buff *skb)
1466 {
1467         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1468 }
1469
1470 /* Shifting pages past head area doesn't work */
1471 static int skb_can_shift(struct sk_buff *skb)
1472 {
1473         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1474 }
1475
1476 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1477  * skb.
1478  */
1479 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1480                                           struct tcp_sacktag_state *state,
1481                                           u32 start_seq, u32 end_seq,
1482                                           int dup_sack)
1483 {
1484         struct tcp_sock *tp = tcp_sk(sk);
1485         struct sk_buff *prev;
1486         int mss;
1487         int pcount = 0;
1488         int len;
1489         int in_sack;
1490
1491         if (!sk_can_gso(sk))
1492                 goto fallback;
1493
1494         /* Normally R but no L won't result in plain S */
1495         if (!dup_sack &&
1496             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1497                 goto fallback;
1498         if (!skb_can_shift(skb))
1499                 goto fallback;
1500         /* This frame is about to be dropped (was ACKed). */
1501         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1502                 goto fallback;
1503
1504         /* Can only happen with delayed DSACK + discard craziness */
1505         if (unlikely(skb == tcp_write_queue_head(sk)))
1506                 goto fallback;
1507         prev = tcp_write_queue_prev(sk, skb);
1508
1509         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1510                 goto fallback;
1511
1512         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1513                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1514
1515         if (in_sack) {
1516                 len = skb->len;
1517                 pcount = tcp_skb_pcount(skb);
1518                 mss = tcp_skb_seglen(skb);
1519
1520                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1521                  * drop this restriction as unnecessary
1522                  */
1523                 if (mss != tcp_skb_seglen(prev))
1524                         goto fallback;
1525         } else {
1526                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1527                         goto noop;
1528                 /* CHECKME: This is non-MSS split case only?, this will
1529                  * cause skipped skbs due to advancing loop btw, original
1530                  * has that feature too
1531                  */
1532                 if (tcp_skb_pcount(skb) <= 1)
1533                         goto noop;
1534
1535                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1536                 if (!in_sack) {
1537                         /* TODO: head merge to next could be attempted here
1538                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1539                          * though it might not be worth of the additional hassle
1540                          *
1541                          * ...we can probably just fallback to what was done
1542                          * previously. We could try merging non-SACKed ones
1543                          * as well but it probably isn't going to buy off
1544                          * because later SACKs might again split them, and
1545                          * it would make skb timestamp tracking considerably
1546                          * harder problem.
1547                          */
1548                         goto fallback;
1549                 }
1550
1551                 len = end_seq - TCP_SKB_CB(skb)->seq;
1552                 BUG_ON(len < 0);
1553                 BUG_ON(len > skb->len);
1554
1555                 /* MSS boundaries should be honoured or else pcount will
1556                  * severely break even though it makes things bit trickier.
1557                  * Optimize common case to avoid most of the divides
1558                  */
1559                 mss = tcp_skb_mss(skb);
1560
1561                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1562                  * drop this restriction as unnecessary
1563                  */
1564                 if (mss != tcp_skb_seglen(prev))
1565                         goto fallback;
1566
1567                 if (len == mss) {
1568                         pcount = 1;
1569                 } else if (len < mss) {
1570                         goto noop;
1571                 } else {
1572                         pcount = len / mss;
1573                         len = pcount * mss;
1574                 }
1575         }
1576
1577         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1578         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1579                 goto fallback;
1580
1581         if (!skb_shift(prev, skb, len))
1582                 goto fallback;
1583         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1584                 goto out;
1585
1586         /* Hole filled allows collapsing with the next as well, this is very
1587          * useful when hole on every nth skb pattern happens
1588          */
1589         if (prev == tcp_write_queue_tail(sk))
1590                 goto out;
1591         skb = tcp_write_queue_next(sk, prev);
1592
1593         if (!skb_can_shift(skb) ||
1594             (skb == tcp_send_head(sk)) ||
1595             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1596             (mss != tcp_skb_seglen(skb)))
1597                 goto out;
1598
1599         len = skb->len;
1600         if (skb_shift(prev, skb, len)) {
1601                 pcount += tcp_skb_pcount(skb);
1602                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1603         }
1604
1605 out:
1606         state->fack_count += pcount;
1607         return prev;
1608
1609 noop:
1610         return skb;
1611
1612 fallback:
1613         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1614         return NULL;
1615 }
1616
1617 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1618                                         struct tcp_sack_block *next_dup,
1619                                         struct tcp_sacktag_state *state,
1620                                         u32 start_seq, u32 end_seq,
1621                                         int dup_sack_in)
1622 {
1623         struct tcp_sock *tp = tcp_sk(sk);
1624         struct sk_buff *tmp;
1625
1626         tcp_for_write_queue_from(skb, sk) {
1627                 int in_sack = 0;
1628                 int dup_sack = dup_sack_in;
1629
1630                 if (skb == tcp_send_head(sk))
1631                         break;
1632
1633                 /* queue is in-order => we can short-circuit the walk early */
1634                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1635                         break;
1636
1637                 if ((next_dup != NULL) &&
1638                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1639                         in_sack = tcp_match_skb_to_sack(sk, skb,
1640                                                         next_dup->start_seq,
1641                                                         next_dup->end_seq);
1642                         if (in_sack > 0)
1643                                 dup_sack = 1;
1644                 }
1645
1646                 /* skb reference here is a bit tricky to get right, since
1647                  * shifting can eat and free both this skb and the next,
1648                  * so not even _safe variant of the loop is enough.
1649                  */
1650                 if (in_sack <= 0) {
1651                         tmp = tcp_shift_skb_data(sk, skb, state,
1652                                                  start_seq, end_seq, dup_sack);
1653                         if (tmp != NULL) {
1654                                 if (tmp != skb) {
1655                                         skb = tmp;
1656                                         continue;
1657                                 }
1658
1659                                 in_sack = 0;
1660                         } else {
1661                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1662                                                                 start_seq,
1663                                                                 end_seq);
1664                         }
1665                 }
1666
1667                 if (unlikely(in_sack < 0))
1668                         break;
1669
1670                 if (in_sack) {
1671                         TCP_SKB_CB(skb)->sacked =
1672                                 tcp_sacktag_one(sk,
1673                                                 state,
1674                                                 TCP_SKB_CB(skb)->sacked,
1675                                                 TCP_SKB_CB(skb)->seq,
1676                                                 TCP_SKB_CB(skb)->end_seq,
1677                                                 dup_sack,
1678                                                 tcp_skb_pcount(skb));
1679
1680                         if (!before(TCP_SKB_CB(skb)->seq,
1681                                     tcp_highest_sack_seq(tp)))
1682                                 tcp_advance_highest_sack(sk, skb);
1683                 }
1684
1685                 state->fack_count += tcp_skb_pcount(skb);
1686         }
1687         return skb;
1688 }
1689
1690 /* Avoid all extra work that is being done by sacktag while walking in
1691  * a normal way
1692  */
1693 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1694                                         struct tcp_sacktag_state *state,
1695                                         u32 skip_to_seq)
1696 {
1697         tcp_for_write_queue_from(skb, sk) {
1698                 if (skb == tcp_send_head(sk))
1699                         break;
1700
1701                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1702                         break;
1703
1704                 state->fack_count += tcp_skb_pcount(skb);
1705         }
1706         return skb;
1707 }
1708
1709 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1710                                                 struct sock *sk,
1711                                                 struct tcp_sack_block *next_dup,
1712                                                 struct tcp_sacktag_state *state,
1713                                                 u32 skip_to_seq)
1714 {
1715         if (next_dup == NULL)
1716                 return skb;
1717
1718         if (before(next_dup->start_seq, skip_to_seq)) {
1719                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1720                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1721                                        next_dup->start_seq, next_dup->end_seq,
1722                                        1);
1723         }
1724
1725         return skb;
1726 }
1727
1728 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1729 {
1730         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 }
1732
1733 static int
1734 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1735                         u32 prior_snd_una)
1736 {
1737         const struct inet_connection_sock *icsk = inet_csk(sk);
1738         struct tcp_sock *tp = tcp_sk(sk);
1739         unsigned char *ptr = (skb_transport_header(ack_skb) +
1740                               TCP_SKB_CB(ack_skb)->sacked);
1741         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1742         struct tcp_sack_block sp[TCP_NUM_SACKS];
1743         struct tcp_sack_block *cache;
1744         struct tcp_sacktag_state state;
1745         struct sk_buff *skb;
1746         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1747         int used_sacks;
1748         int found_dup_sack = 0;
1749         int i, j;
1750         int first_sack_index;
1751
1752         state.flag = 0;
1753         state.reord = tp->packets_out;
1754
1755         if (!tp->sacked_out) {
1756                 if (WARN_ON(tp->fackets_out))
1757                         tp->fackets_out = 0;
1758                 tcp_highest_sack_reset(sk);
1759         }
1760
1761         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1762                                          num_sacks, prior_snd_una);
1763         if (found_dup_sack)
1764                 state.flag |= FLAG_DSACKING_ACK;
1765
1766         /* Eliminate too old ACKs, but take into
1767          * account more or less fresh ones, they can
1768          * contain valid SACK info.
1769          */
1770         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1771                 return 0;
1772
1773         if (!tp->packets_out)
1774                 goto out;
1775
1776         used_sacks = 0;
1777         first_sack_index = 0;
1778         for (i = 0; i < num_sacks; i++) {
1779                 int dup_sack = !i && found_dup_sack;
1780
1781                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1782                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1783
1784                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1785                                             sp[used_sacks].start_seq,
1786                                             sp[used_sacks].end_seq)) {
1787                         int mib_idx;
1788
1789                         if (dup_sack) {
1790                                 if (!tp->undo_marker)
1791                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1792                                 else
1793                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1794                         } else {
1795                                 /* Don't count olds caused by ACK reordering */
1796                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1797                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1798                                         continue;
1799                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1800                         }
1801
1802                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1803                         if (i == 0)
1804                                 first_sack_index = -1;
1805                         continue;
1806                 }
1807
1808                 /* Ignore very old stuff early */
1809                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1810                         continue;
1811
1812                 used_sacks++;
1813         }
1814
1815         /* order SACK blocks to allow in order walk of the retrans queue */
1816         for (i = used_sacks - 1; i > 0; i--) {
1817                 for (j = 0; j < i; j++) {
1818                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1819                                 swap(sp[j], sp[j + 1]);
1820
1821                                 /* Track where the first SACK block goes to */
1822                                 if (j == first_sack_index)
1823                                         first_sack_index = j + 1;
1824                         }
1825                 }
1826         }
1827
1828         skb = tcp_write_queue_head(sk);
1829         state.fack_count = 0;
1830         i = 0;
1831
1832         if (!tp->sacked_out) {
1833                 /* It's already past, so skip checking against it */
1834                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1835         } else {
1836                 cache = tp->recv_sack_cache;
1837                 /* Skip empty blocks in at head of the cache */
1838                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1839                        !cache->end_seq)
1840                         cache++;
1841         }
1842
1843         while (i < used_sacks) {
1844                 u32 start_seq = sp[i].start_seq;
1845                 u32 end_seq = sp[i].end_seq;
1846                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1847                 struct tcp_sack_block *next_dup = NULL;
1848
1849                 if (found_dup_sack && ((i + 1) == first_sack_index))
1850                         next_dup = &sp[i + 1];
1851
1852                 /* Event "B" in the comment above. */
1853                 if (after(end_seq, tp->high_seq))
1854                         state.flag |= FLAG_DATA_LOST;
1855
1856                 /* Skip too early cached blocks */
1857                 while (tcp_sack_cache_ok(tp, cache) &&
1858                        !before(start_seq, cache->end_seq))
1859                         cache++;
1860
1861                 /* Can skip some work by looking recv_sack_cache? */
1862                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1863                     after(end_seq, cache->start_seq)) {
1864
1865                         /* Head todo? */
1866                         if (before(start_seq, cache->start_seq)) {
1867                                 skb = tcp_sacktag_skip(skb, sk, &state,
1868                                                        start_seq);
1869                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1870                                                        &state,
1871                                                        start_seq,
1872                                                        cache->start_seq,
1873                                                        dup_sack);
1874                         }
1875
1876                         /* Rest of the block already fully processed? */
1877                         if (!after(end_seq, cache->end_seq))
1878                                 goto advance_sp;
1879
1880                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1881                                                        &state,
1882                                                        cache->end_seq);
1883
1884                         /* ...tail remains todo... */
1885                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1886                                 /* ...but better entrypoint exists! */
1887                                 skb = tcp_highest_sack(sk);
1888                                 if (skb == NULL)
1889                                         break;
1890                                 state.fack_count = tp->fackets_out;
1891                                 cache++;
1892                                 goto walk;
1893                         }
1894
1895                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1896                         /* Check overlap against next cached too (past this one already) */
1897                         cache++;
1898                         continue;
1899                 }
1900
1901                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1902                         skb = tcp_highest_sack(sk);
1903                         if (skb == NULL)
1904                                 break;
1905                         state.fack_count = tp->fackets_out;
1906                 }
1907                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1908
1909 walk:
1910                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1911                                        start_seq, end_seq, dup_sack);
1912
1913 advance_sp:
1914                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1915                  * due to in-order walk
1916                  */
1917                 if (after(end_seq, tp->frto_highmark))
1918                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1919
1920                 i++;
1921         }
1922
1923         /* Clear the head of the cache sack blocks so we can skip it next time */
1924         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1925                 tp->recv_sack_cache[i].start_seq = 0;
1926                 tp->recv_sack_cache[i].end_seq = 0;
1927         }
1928         for (j = 0; j < used_sacks; j++)
1929                 tp->recv_sack_cache[i++] = sp[j];
1930
1931         tcp_mark_lost_retrans(sk);
1932
1933         tcp_verify_left_out(tp);
1934
1935         if ((state.reord < tp->fackets_out) &&
1936             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1937             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1938                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1939
1940 out:
1941
1942 #if FASTRETRANS_DEBUG > 0
1943         WARN_ON((int)tp->sacked_out < 0);
1944         WARN_ON((int)tp->lost_out < 0);
1945         WARN_ON((int)tp->retrans_out < 0);
1946         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1947 #endif
1948         return state.flag;
1949 }
1950
1951 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1952  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1953  */
1954 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1955 {
1956         u32 holes;
1957
1958         holes = max(tp->lost_out, 1U);
1959         holes = min(holes, tp->packets_out);
1960
1961         if ((tp->sacked_out + holes) > tp->packets_out) {
1962                 tp->sacked_out = tp->packets_out - holes;
1963                 return 1;
1964         }
1965         return 0;
1966 }
1967
1968 /* If we receive more dupacks than we expected counting segments
1969  * in assumption of absent reordering, interpret this as reordering.
1970  * The only another reason could be bug in receiver TCP.
1971  */
1972 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1973 {
1974         struct tcp_sock *tp = tcp_sk(sk);
1975         if (tcp_limit_reno_sacked(tp))
1976                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1977 }
1978
1979 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1980
1981 static void tcp_add_reno_sack(struct sock *sk)
1982 {
1983         struct tcp_sock *tp = tcp_sk(sk);
1984         tp->sacked_out++;
1985         tcp_check_reno_reordering(sk, 0);
1986         tcp_verify_left_out(tp);
1987 }
1988
1989 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1990
1991 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1992 {
1993         struct tcp_sock *tp = tcp_sk(sk);
1994
1995         if (acked > 0) {
1996                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1997                 if (acked - 1 >= tp->sacked_out)
1998                         tp->sacked_out = 0;
1999                 else
2000                         tp->sacked_out -= acked - 1;
2001         }
2002         tcp_check_reno_reordering(sk, acked);
2003         tcp_verify_left_out(tp);
2004 }
2005
2006 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2007 {
2008         tp->sacked_out = 0;
2009 }
2010
2011 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2012 {
2013         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2014 }
2015
2016 /* F-RTO can only be used if TCP has never retransmitted anything other than
2017  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2018  */
2019 int tcp_use_frto(struct sock *sk)
2020 {
2021         const struct tcp_sock *tp = tcp_sk(sk);
2022         const struct inet_connection_sock *icsk = inet_csk(sk);
2023         struct sk_buff *skb;
2024
2025         if (!sysctl_tcp_frto)
2026                 return 0;
2027
2028         /* MTU probe and F-RTO won't really play nicely along currently */
2029         if (icsk->icsk_mtup.probe_size)
2030                 return 0;
2031
2032         if (tcp_is_sackfrto(tp))
2033                 return 1;
2034
2035         /* Avoid expensive walking of rexmit queue if possible */
2036         if (tp->retrans_out > 1)
2037                 return 0;
2038
2039         skb = tcp_write_queue_head(sk);
2040         if (tcp_skb_is_last(sk, skb))
2041                 return 1;
2042         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2043         tcp_for_write_queue_from(skb, sk) {
2044                 if (skb == tcp_send_head(sk))
2045                         break;
2046                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2047                         return 0;
2048                 /* Short-circuit when first non-SACKed skb has been checked */
2049                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2050                         break;
2051         }
2052         return 1;
2053 }
2054
2055 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2056  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2057  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2058  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2059  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2060  * bits are handled if the Loss state is really to be entered (in
2061  * tcp_enter_frto_loss).
2062  *
2063  * Do like tcp_enter_loss() would; when RTO expires the second time it
2064  * does:
2065  *  "Reduce ssthresh if it has not yet been made inside this window."
2066  */
2067 void tcp_enter_frto(struct sock *sk)
2068 {
2069         const struct inet_connection_sock *icsk = inet_csk(sk);
2070         struct tcp_sock *tp = tcp_sk(sk);
2071         struct sk_buff *skb;
2072
2073         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2074             tp->snd_una == tp->high_seq ||
2075             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2076              !icsk->icsk_retransmits)) {
2077                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2078                 /* Our state is too optimistic in ssthresh() call because cwnd
2079                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2080                  * recovery has not yet completed. Pattern would be this: RTO,
2081                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2082                  * up here twice).
2083                  * RFC4138 should be more specific on what to do, even though
2084                  * RTO is quite unlikely to occur after the first Cumulative ACK
2085                  * due to back-off and complexity of triggering events ...
2086                  */
2087                 if (tp->frto_counter) {
2088                         u32 stored_cwnd;
2089                         stored_cwnd = tp->snd_cwnd;
2090                         tp->snd_cwnd = 2;
2091                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2092                         tp->snd_cwnd = stored_cwnd;
2093                 } else {
2094                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2095                 }
2096                 /* ... in theory, cong.control module could do "any tricks" in
2097                  * ssthresh(), which means that ca_state, lost bits and lost_out
2098                  * counter would have to be faked before the call occurs. We
2099                  * consider that too expensive, unlikely and hacky, so modules
2100                  * using these in ssthresh() must deal these incompatibility
2101                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2102                  */
2103                 tcp_ca_event(sk, CA_EVENT_FRTO);
2104         }
2105
2106         tp->undo_marker = tp->snd_una;
2107         tp->undo_retrans = 0;
2108
2109         skb = tcp_write_queue_head(sk);
2110         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2111                 tp->undo_marker = 0;
2112         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2113                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2114                 tp->retrans_out -= tcp_skb_pcount(skb);
2115         }
2116         tcp_verify_left_out(tp);
2117
2118         /* Too bad if TCP was application limited */
2119         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2120
2121         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2122          * The last condition is necessary at least in tp->frto_counter case.
2123          */
2124         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2125             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2126             after(tp->high_seq, tp->snd_una)) {
2127                 tp->frto_highmark = tp->high_seq;
2128         } else {
2129                 tp->frto_highmark = tp->snd_nxt;
2130         }
2131         tcp_set_ca_state(sk, TCP_CA_Disorder);
2132         tp->high_seq = tp->snd_nxt;
2133         tp->frto_counter = 1;
2134 }
2135
2136 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2137  * which indicates that we should follow the traditional RTO recovery,
2138  * i.e. mark everything lost and do go-back-N retransmission.
2139  */
2140 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2141 {
2142         struct tcp_sock *tp = tcp_sk(sk);
2143         struct sk_buff *skb;
2144
2145         tp->lost_out = 0;
2146         tp->retrans_out = 0;
2147         if (tcp_is_reno(tp))
2148                 tcp_reset_reno_sack(tp);
2149
2150         tcp_for_write_queue(skb, sk) {
2151                 if (skb == tcp_send_head(sk))
2152                         break;
2153
2154                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2155                 /*
2156                  * Count the retransmission made on RTO correctly (only when
2157                  * waiting for the first ACK and did not get it)...
2158                  */
2159                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2160                         /* For some reason this R-bit might get cleared? */
2161                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2162                                 tp->retrans_out += tcp_skb_pcount(skb);
2163                         /* ...enter this if branch just for the first segment */
2164                         flag |= FLAG_DATA_ACKED;
2165                 } else {
2166                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2167                                 tp->undo_marker = 0;
2168                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2169                 }
2170
2171                 /* Marking forward transmissions that were made after RTO lost
2172                  * can cause unnecessary retransmissions in some scenarios,
2173                  * SACK blocks will mitigate that in some but not in all cases.
2174                  * We used to not mark them but it was causing break-ups with
2175                  * receivers that do only in-order receival.
2176                  *
2177                  * TODO: we could detect presence of such receiver and select
2178                  * different behavior per flow.
2179                  */
2180                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2181                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2182                         tp->lost_out += tcp_skb_pcount(skb);
2183                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2184                 }
2185         }
2186         tcp_verify_left_out(tp);
2187
2188         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2189         tp->snd_cwnd_cnt = 0;
2190         tp->snd_cwnd_stamp = tcp_time_stamp;
2191         tp->frto_counter = 0;
2192         tp->bytes_acked = 0;
2193
2194         tp->reordering = min_t(unsigned int, tp->reordering,
2195                                sysctl_tcp_reordering);
2196         tcp_set_ca_state(sk, TCP_CA_Loss);
2197         tp->high_seq = tp->snd_nxt;
2198         TCP_ECN_queue_cwr(tp);
2199
2200         tcp_clear_all_retrans_hints(tp);
2201 }
2202
2203 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2204 {
2205         tp->retrans_out = 0;
2206         tp->lost_out = 0;
2207
2208         tp->undo_marker = 0;
2209         tp->undo_retrans = 0;
2210 }
2211
2212 void tcp_clear_retrans(struct tcp_sock *tp)
2213 {
2214         tcp_clear_retrans_partial(tp);
2215
2216         tp->fackets_out = 0;
2217         tp->sacked_out = 0;
2218 }
2219
2220 /* Enter Loss state. If "how" is not zero, forget all SACK information
2221  * and reset tags completely, otherwise preserve SACKs. If receiver
2222  * dropped its ofo queue, we will know this due to reneging detection.
2223  */
2224 void tcp_enter_loss(struct sock *sk, int how)
2225 {
2226         const struct inet_connection_sock *icsk = inet_csk(sk);
2227         struct tcp_sock *tp = tcp_sk(sk);
2228         struct sk_buff *skb;
2229
2230         /* Reduce ssthresh if it has not yet been made inside this window. */
2231         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2232             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2233                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2234                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2235                 tcp_ca_event(sk, CA_EVENT_LOSS);
2236         }
2237         tp->snd_cwnd       = 1;
2238         tp->snd_cwnd_cnt   = 0;
2239         tp->snd_cwnd_stamp = tcp_time_stamp;
2240
2241         tp->bytes_acked = 0;
2242         tcp_clear_retrans_partial(tp);
2243
2244         if (tcp_is_reno(tp))
2245                 tcp_reset_reno_sack(tp);
2246
2247         tp->undo_marker = tp->snd_una;
2248         if (how) {
2249                 tp->sacked_out = 0;
2250                 tp->fackets_out = 0;
2251         }
2252         tcp_clear_all_retrans_hints(tp);
2253
2254         tcp_for_write_queue(skb, sk) {
2255                 if (skb == tcp_send_head(sk))
2256                         break;
2257
2258                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2259                         tp->undo_marker = 0;
2260                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2261                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2262                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2263                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2264                         tp->lost_out += tcp_skb_pcount(skb);
2265                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2266                 }
2267         }
2268         tcp_verify_left_out(tp);
2269
2270         tp->reordering = min_t(unsigned int, tp->reordering,
2271                                sysctl_tcp_reordering);
2272         tcp_set_ca_state(sk, TCP_CA_Loss);
2273         tp->high_seq = tp->snd_nxt;
2274         TCP_ECN_queue_cwr(tp);
2275         /* Abort F-RTO algorithm if one is in progress */
2276         tp->frto_counter = 0;
2277 }
2278
2279 /* If ACK arrived pointing to a remembered SACK, it means that our
2280  * remembered SACKs do not reflect real state of receiver i.e.
2281  * receiver _host_ is heavily congested (or buggy).
2282  *
2283  * Do processing similar to RTO timeout.
2284  */
2285 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2286 {
2287         if (flag & FLAG_SACK_RENEGING) {
2288                 struct inet_connection_sock *icsk = inet_csk(sk);
2289                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2290
2291                 tcp_enter_loss(sk, 1);
2292                 icsk->icsk_retransmits++;
2293                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2294                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2295                                           icsk->icsk_rto, TCP_RTO_MAX);
2296                 return 1;
2297         }
2298         return 0;
2299 }
2300
2301 static inline int tcp_fackets_out(struct tcp_sock *tp)
2302 {
2303         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2304 }
2305
2306 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2307  * counter when SACK is enabled (without SACK, sacked_out is used for
2308  * that purpose).
2309  *
2310  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2311  * segments up to the highest received SACK block so far and holes in
2312  * between them.
2313  *
2314  * With reordering, holes may still be in flight, so RFC3517 recovery
2315  * uses pure sacked_out (total number of SACKed segments) even though
2316  * it violates the RFC that uses duplicate ACKs, often these are equal
2317  * but when e.g. out-of-window ACKs or packet duplication occurs,
2318  * they differ. Since neither occurs due to loss, TCP should really
2319  * ignore them.
2320  */
2321 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2322 {
2323         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2324 }
2325
2326 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2327 {
2328         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2329 }
2330
2331 static inline int tcp_head_timedout(struct sock *sk)
2332 {
2333         struct tcp_sock *tp = tcp_sk(sk);
2334
2335         return tp->packets_out &&
2336                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2337 }
2338
2339 /* Linux NewReno/SACK/FACK/ECN state machine.
2340  * --------------------------------------
2341  *
2342  * "Open"       Normal state, no dubious events, fast path.
2343  * "Disorder"   In all the respects it is "Open",
2344  *              but requires a bit more attention. It is entered when
2345  *              we see some SACKs or dupacks. It is split of "Open"
2346  *              mainly to move some processing from fast path to slow one.
2347  * "CWR"        CWND was reduced due to some Congestion Notification event.
2348  *              It can be ECN, ICMP source quench, local device congestion.
2349  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2350  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2351  *
2352  * tcp_fastretrans_alert() is entered:
2353  * - each incoming ACK, if state is not "Open"
2354  * - when arrived ACK is unusual, namely:
2355  *      * SACK
2356  *      * Duplicate ACK.
2357  *      * ECN ECE.
2358  *
2359  * Counting packets in flight is pretty simple.
2360  *
2361  *      in_flight = packets_out - left_out + retrans_out
2362  *
2363  *      packets_out is SND.NXT-SND.UNA counted in packets.
2364  *
2365  *      retrans_out is number of retransmitted segments.
2366  *
2367  *      left_out is number of segments left network, but not ACKed yet.
2368  *
2369  *              left_out = sacked_out + lost_out
2370  *
2371  *     sacked_out: Packets, which arrived to receiver out of order
2372  *                 and hence not ACKed. With SACKs this number is simply
2373  *                 amount of SACKed data. Even without SACKs
2374  *                 it is easy to give pretty reliable estimate of this number,
2375  *                 counting duplicate ACKs.
2376  *
2377  *       lost_out: Packets lost by network. TCP has no explicit
2378  *                 "loss notification" feedback from network (for now).
2379  *                 It means that this number can be only _guessed_.
2380  *                 Actually, it is the heuristics to predict lossage that
2381  *                 distinguishes different algorithms.
2382  *
2383  *      F.e. after RTO, when all the queue is considered as lost,
2384  *      lost_out = packets_out and in_flight = retrans_out.
2385  *
2386  *              Essentially, we have now two algorithms counting
2387  *              lost packets.
2388  *
2389  *              FACK: It is the simplest heuristics. As soon as we decided
2390  *              that something is lost, we decide that _all_ not SACKed
2391  *              packets until the most forward SACK are lost. I.e.
2392  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2393  *              It is absolutely correct estimate, if network does not reorder
2394  *              packets. And it loses any connection to reality when reordering
2395  *              takes place. We use FACK by default until reordering
2396  *              is suspected on the path to this destination.
2397  *
2398  *              NewReno: when Recovery is entered, we assume that one segment
2399  *              is lost (classic Reno). While we are in Recovery and
2400  *              a partial ACK arrives, we assume that one more packet
2401  *              is lost (NewReno). This heuristics are the same in NewReno
2402  *              and SACK.
2403  *
2404  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2405  *  deflation etc. CWND is real congestion window, never inflated, changes
2406  *  only according to classic VJ rules.
2407  *
2408  * Really tricky (and requiring careful tuning) part of algorithm
2409  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2410  * The first determines the moment _when_ we should reduce CWND and,
2411  * hence, slow down forward transmission. In fact, it determines the moment
2412  * when we decide that hole is caused by loss, rather than by a reorder.
2413  *
2414  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2415  * holes, caused by lost packets.
2416  *
2417  * And the most logically complicated part of algorithm is undo
2418  * heuristics. We detect false retransmits due to both too early
2419  * fast retransmit (reordering) and underestimated RTO, analyzing
2420  * timestamps and D-SACKs. When we detect that some segments were
2421  * retransmitted by mistake and CWND reduction was wrong, we undo
2422  * window reduction and abort recovery phase. This logic is hidden
2423  * inside several functions named tcp_try_undo_<something>.
2424  */
2425
2426 /* This function decides, when we should leave Disordered state
2427  * and enter Recovery phase, reducing congestion window.
2428  *
2429  * Main question: may we further continue forward transmission
2430  * with the same cwnd?
2431  */
2432 static int tcp_time_to_recover(struct sock *sk)
2433 {
2434         struct tcp_sock *tp = tcp_sk(sk);
2435         __u32 packets_out;
2436
2437         /* Do not perform any recovery during F-RTO algorithm */
2438         if (tp->frto_counter)
2439                 return 0;
2440
2441         /* Trick#1: The loss is proven. */
2442         if (tp->lost_out)
2443                 return 1;
2444
2445         /* Not-A-Trick#2 : Classic rule... */
2446         if (tcp_dupack_heuristics(tp) > tp->reordering)
2447                 return 1;
2448
2449         /* Trick#3 : when we use RFC2988 timer restart, fast
2450          * retransmit can be triggered by timeout of queue head.
2451          */
2452         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2453                 return 1;
2454
2455         /* Trick#4: It is still not OK... But will it be useful to delay
2456          * recovery more?
2457          */
2458         packets_out = tp->packets_out;
2459         if (packets_out <= tp->reordering &&
2460             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2461             !tcp_may_send_now(sk)) {
2462                 /* We have nothing to send. This connection is limited
2463                  * either by receiver window or by application.
2464                  */
2465                 return 1;
2466         }
2467
2468         /* If a thin stream is detected, retransmit after first
2469          * received dupack. Employ only if SACK is supported in order
2470          * to avoid possible corner-case series of spurious retransmissions
2471          * Use only if there are no unsent data.
2472          */
2473         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2474             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2475             tcp_is_sack(tp) && !tcp_send_head(sk))
2476                 return 1;
2477
2478         return 0;
2479 }
2480
2481 /* New heuristics: it is possible only after we switched to restart timer
2482  * each time when something is ACKed. Hence, we can detect timed out packets
2483  * during fast retransmit without falling to slow start.
2484  *
2485  * Usefulness of this as is very questionable, since we should know which of
2486  * the segments is the next to timeout which is relatively expensive to find
2487  * in general case unless we add some data structure just for that. The
2488  * current approach certainly won't find the right one too often and when it
2489  * finally does find _something_ it usually marks large part of the window
2490  * right away (because a retransmission with a larger timestamp blocks the
2491  * loop from advancing). -ij
2492  */
2493 static void tcp_timeout_skbs(struct sock *sk)
2494 {
2495         struct tcp_sock *tp = tcp_sk(sk);
2496         struct sk_buff *skb;
2497
2498         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2499                 return;
2500
2501         skb = tp->scoreboard_skb_hint;
2502         if (tp->scoreboard_skb_hint == NULL)
2503                 skb = tcp_write_queue_head(sk);
2504
2505         tcp_for_write_queue_from(skb, sk) {
2506                 if (skb == tcp_send_head(sk))
2507                         break;
2508                 if (!tcp_skb_timedout(sk, skb))
2509                         break;
2510
2511                 tcp_skb_mark_lost(tp, skb);
2512         }
2513
2514         tp->scoreboard_skb_hint = skb;
2515
2516         tcp_verify_left_out(tp);
2517 }
2518
2519 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2520  * is against sacked "cnt", otherwise it's against facked "cnt"
2521  */
2522 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2523 {
2524         struct tcp_sock *tp = tcp_sk(sk);
2525         struct sk_buff *skb;
2526         int cnt, oldcnt;
2527         int err;
2528         unsigned int mss;
2529
2530         WARN_ON(packets > tp->packets_out);
2531         if (tp->lost_skb_hint) {
2532                 skb = tp->lost_skb_hint;
2533                 cnt = tp->lost_cnt_hint;
2534                 /* Head already handled? */
2535                 if (mark_head && skb != tcp_write_queue_head(sk))
2536                         return;
2537         } else {
2538                 skb = tcp_write_queue_head(sk);
2539                 cnt = 0;
2540         }
2541
2542         tcp_for_write_queue_from(skb, sk) {
2543                 if (skb == tcp_send_head(sk))
2544                         break;
2545                 /* TODO: do this better */
2546                 /* this is not the most efficient way to do this... */
2547                 tp->lost_skb_hint = skb;
2548                 tp->lost_cnt_hint = cnt;
2549
2550                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2551                         break;
2552
2553                 oldcnt = cnt;
2554                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2555                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2556                         cnt += tcp_skb_pcount(skb);
2557
2558                 if (cnt > packets) {
2559                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2560                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2561                             (oldcnt >= packets))
2562                                 break;
2563
2564                         mss = skb_shinfo(skb)->gso_size;
2565                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2566                         if (err < 0)
2567                                 break;
2568                         cnt = packets;
2569                 }
2570
2571                 tcp_skb_mark_lost(tp, skb);
2572
2573                 if (mark_head)
2574                         break;
2575         }
2576         tcp_verify_left_out(tp);
2577 }
2578
2579 /* Account newly detected lost packet(s) */
2580
2581 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2582 {
2583         struct tcp_sock *tp = tcp_sk(sk);
2584
2585         if (tcp_is_reno(tp)) {
2586                 tcp_mark_head_lost(sk, 1, 1);
2587         } else if (tcp_is_fack(tp)) {
2588                 int lost = tp->fackets_out - tp->reordering;
2589                 if (lost <= 0)
2590                         lost = 1;
2591                 tcp_mark_head_lost(sk, lost, 0);
2592         } else {
2593                 int sacked_upto = tp->sacked_out - tp->reordering;
2594                 if (sacked_upto >= 0)
2595                         tcp_mark_head_lost(sk, sacked_upto, 0);
2596                 else if (fast_rexmit)
2597                         tcp_mark_head_lost(sk, 1, 1);
2598         }
2599
2600         tcp_timeout_skbs(sk);
2601 }
2602
2603 /* CWND moderation, preventing bursts due to too big ACKs
2604  * in dubious situations.
2605  */
2606 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2607 {
2608         tp->snd_cwnd = min(tp->snd_cwnd,
2609                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2610         tp->snd_cwnd_stamp = tcp_time_stamp;
2611 }
2612
2613 /* Lower bound on congestion window is slow start threshold
2614  * unless congestion avoidance choice decides to overide it.
2615  */
2616 static inline u32 tcp_cwnd_min(const struct sock *sk)
2617 {
2618         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2619
2620         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2621 }
2622
2623 /* Decrease cwnd each second ack. */
2624 static void tcp_cwnd_down(struct sock *sk, int flag)
2625 {
2626         struct tcp_sock *tp = tcp_sk(sk);
2627         int decr = tp->snd_cwnd_cnt + 1;
2628
2629         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2630             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2631                 tp->snd_cwnd_cnt = decr & 1;
2632                 decr >>= 1;
2633
2634                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2635                         tp->snd_cwnd -= decr;
2636
2637                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2638                 tp->snd_cwnd_stamp = tcp_time_stamp;
2639         }
2640 }
2641
2642 /* Nothing was retransmitted or returned timestamp is less
2643  * than timestamp of the first retransmission.
2644  */
2645 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2646 {
2647         return !tp->retrans_stamp ||
2648                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2649                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2650 }
2651
2652 /* Undo procedures. */
2653
2654 #if FASTRETRANS_DEBUG > 1
2655 static void DBGUNDO(struct sock *sk, const char *msg)
2656 {
2657         struct tcp_sock *tp = tcp_sk(sk);
2658         struct inet_sock *inet = inet_sk(sk);
2659
2660         if (sk->sk_family == AF_INET) {
2661                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2662                        msg,
2663                        &inet->inet_daddr, ntohs(inet->inet_dport),
2664                        tp->snd_cwnd, tcp_left_out(tp),
2665                        tp->snd_ssthresh, tp->prior_ssthresh,
2666                        tp->packets_out);
2667         }
2668 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2669         else if (sk->sk_family == AF_INET6) {
2670                 struct ipv6_pinfo *np = inet6_sk(sk);
2671                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2672                        msg,
2673                        &np->daddr, ntohs(inet->inet_dport),
2674                        tp->snd_cwnd, tcp_left_out(tp),
2675                        tp->snd_ssthresh, tp->prior_ssthresh,
2676                        tp->packets_out);
2677         }
2678 #endif
2679 }
2680 #else
2681 #define DBGUNDO(x...) do { } while (0)
2682 #endif
2683
2684 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2685 {
2686         struct tcp_sock *tp = tcp_sk(sk);
2687
2688         if (tp->prior_ssthresh) {
2689                 const struct inet_connection_sock *icsk = inet_csk(sk);
2690
2691                 if (icsk->icsk_ca_ops->undo_cwnd)
2692                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2693                 else
2694                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2695
2696                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2697                         tp->snd_ssthresh = tp->prior_ssthresh;
2698                         TCP_ECN_withdraw_cwr(tp);
2699                 }
2700         } else {
2701                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2702         }
2703         tp->snd_cwnd_stamp = tcp_time_stamp;
2704 }
2705
2706 static inline int tcp_may_undo(struct tcp_sock *tp)
2707 {
2708         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2709 }
2710
2711 /* People celebrate: "We love our President!" */
2712 static int tcp_try_undo_recovery(struct sock *sk)
2713 {
2714         struct tcp_sock *tp = tcp_sk(sk);
2715
2716         if (tcp_may_undo(tp)) {
2717                 int mib_idx;
2718
2719                 /* Happy end! We did not retransmit anything
2720                  * or our original transmission succeeded.
2721                  */
2722                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2723                 tcp_undo_cwr(sk, true);
2724                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2725                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2726                 else
2727                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2728
2729                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2730                 tp->undo_marker = 0;
2731         }
2732         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2733                 /* Hold old state until something *above* high_seq
2734                  * is ACKed. For Reno it is MUST to prevent false
2735                  * fast retransmits (RFC2582). SACK TCP is safe. */
2736                 tcp_moderate_cwnd(tp);
2737                 return 1;
2738         }
2739         tcp_set_ca_state(sk, TCP_CA_Open);
2740         return 0;
2741 }
2742
2743 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2744 static void tcp_try_undo_dsack(struct sock *sk)
2745 {
2746         struct tcp_sock *tp = tcp_sk(sk);
2747
2748         if (tp->undo_marker && !tp->undo_retrans) {
2749                 DBGUNDO(sk, "D-SACK");
2750                 tcp_undo_cwr(sk, true);
2751                 tp->undo_marker = 0;
2752                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2753         }
2754 }
2755
2756 /* We can clear retrans_stamp when there are no retransmissions in the
2757  * window. It would seem that it is trivially available for us in
2758  * tp->retrans_out, however, that kind of assumptions doesn't consider
2759  * what will happen if errors occur when sending retransmission for the
2760  * second time. ...It could the that such segment has only
2761  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2762  * the head skb is enough except for some reneging corner cases that
2763  * are not worth the effort.
2764  *
2765  * Main reason for all this complexity is the fact that connection dying
2766  * time now depends on the validity of the retrans_stamp, in particular,
2767  * that successive retransmissions of a segment must not advance
2768  * retrans_stamp under any conditions.
2769  */
2770 static int tcp_any_retrans_done(struct sock *sk)
2771 {
2772         struct tcp_sock *tp = tcp_sk(sk);
2773         struct sk_buff *skb;
2774
2775         if (tp->retrans_out)
2776                 return 1;
2777
2778         skb = tcp_write_queue_head(sk);
2779         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2780                 return 1;
2781
2782         return 0;
2783 }
2784
2785 /* Undo during fast recovery after partial ACK. */
2786
2787 static int tcp_try_undo_partial(struct sock *sk, int acked)
2788 {
2789         struct tcp_sock *tp = tcp_sk(sk);
2790         /* Partial ACK arrived. Force Hoe's retransmit. */
2791         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2792
2793         if (tcp_may_undo(tp)) {
2794                 /* Plain luck! Hole if filled with delayed
2795                  * packet, rather than with a retransmit.
2796                  */
2797                 if (!tcp_any_retrans_done(sk))
2798                         tp->retrans_stamp = 0;
2799
2800                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2801
2802                 DBGUNDO(sk, "Hoe");
2803                 tcp_undo_cwr(sk, false);
2804                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2805
2806                 /* So... Do not make Hoe's retransmit yet.
2807                  * If the first packet was delayed, the rest
2808                  * ones are most probably delayed as well.
2809                  */
2810                 failed = 0;
2811         }
2812         return failed;
2813 }
2814
2815 /* Undo during loss recovery after partial ACK. */
2816 static int tcp_try_undo_loss(struct sock *sk)
2817 {
2818         struct tcp_sock *tp = tcp_sk(sk);
2819
2820         if (tcp_may_undo(tp)) {
2821                 struct sk_buff *skb;
2822                 tcp_for_write_queue(skb, sk) {
2823                         if (skb == tcp_send_head(sk))
2824                                 break;
2825                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2826                 }
2827
2828                 tcp_clear_all_retrans_hints(tp);
2829
2830                 DBGUNDO(sk, "partial loss");
2831                 tp->lost_out = 0;
2832                 tcp_undo_cwr(sk, true);
2833                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2834                 inet_csk(sk)->icsk_retransmits = 0;
2835                 tp->undo_marker = 0;
2836                 if (tcp_is_sack(tp))
2837                         tcp_set_ca_state(sk, TCP_CA_Open);
2838                 return 1;
2839         }
2840         return 0;
2841 }
2842
2843 static inline void tcp_complete_cwr(struct sock *sk)
2844 {
2845         struct tcp_sock *tp = tcp_sk(sk);
2846         /* Do not moderate cwnd if it's already undone in cwr or recovery */
2847         if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2848                 tp->snd_cwnd = tp->snd_ssthresh;
2849                 tp->snd_cwnd_stamp = tcp_time_stamp;
2850         }
2851         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2852 }
2853
2854 static void tcp_try_keep_open(struct sock *sk)
2855 {
2856         struct tcp_sock *tp = tcp_sk(sk);
2857         int state = TCP_CA_Open;
2858
2859         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2860                 state = TCP_CA_Disorder;
2861
2862         if (inet_csk(sk)->icsk_ca_state != state) {
2863                 tcp_set_ca_state(sk, state);
2864                 tp->high_seq = tp->snd_nxt;
2865         }
2866 }
2867
2868 static void tcp_try_to_open(struct sock *sk, int flag)
2869 {
2870         struct tcp_sock *tp = tcp_sk(sk);
2871
2872         tcp_verify_left_out(tp);
2873
2874         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2875                 tp->retrans_stamp = 0;
2876
2877         if (flag & FLAG_ECE)
2878                 tcp_enter_cwr(sk, 1);
2879
2880         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2881                 tcp_try_keep_open(sk);
2882                 tcp_moderate_cwnd(tp);
2883         } else {
2884                 tcp_cwnd_down(sk, flag);
2885         }
2886 }
2887
2888 static void tcp_mtup_probe_failed(struct sock *sk)
2889 {
2890         struct inet_connection_sock *icsk = inet_csk(sk);
2891
2892         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2893         icsk->icsk_mtup.probe_size = 0;
2894 }
2895
2896 static void tcp_mtup_probe_success(struct sock *sk)
2897 {
2898         struct tcp_sock *tp = tcp_sk(sk);
2899         struct inet_connection_sock *icsk = inet_csk(sk);
2900
2901         /* FIXME: breaks with very large cwnd */
2902         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2903         tp->snd_cwnd = tp->snd_cwnd *
2904                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2905                        icsk->icsk_mtup.probe_size;
2906         tp->snd_cwnd_cnt = 0;
2907         tp->snd_cwnd_stamp = tcp_time_stamp;
2908         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2909
2910         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2911         icsk->icsk_mtup.probe_size = 0;
2912         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2913 }
2914
2915 /* Do a simple retransmit without using the backoff mechanisms in
2916  * tcp_timer. This is used for path mtu discovery.
2917  * The socket is already locked here.
2918  */
2919 void tcp_simple_retransmit(struct sock *sk)
2920 {
2921         const struct inet_connection_sock *icsk = inet_csk(sk);
2922         struct tcp_sock *tp = tcp_sk(sk);
2923         struct sk_buff *skb;
2924         unsigned int mss = tcp_current_mss(sk);
2925         u32 prior_lost = tp->lost_out;
2926
2927         tcp_for_write_queue(skb, sk) {
2928                 if (skb == tcp_send_head(sk))
2929                         break;
2930                 if (tcp_skb_seglen(skb) > mss &&
2931                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2932                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2933                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2934                                 tp->retrans_out -= tcp_skb_pcount(skb);
2935                         }
2936                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2937                 }
2938         }
2939
2940         tcp_clear_retrans_hints_partial(tp);
2941
2942         if (prior_lost == tp->lost_out)
2943                 return;
2944
2945         if (tcp_is_reno(tp))
2946                 tcp_limit_reno_sacked(tp);
2947
2948         tcp_verify_left_out(tp);
2949
2950         /* Don't muck with the congestion window here.
2951          * Reason is that we do not increase amount of _data_
2952          * in network, but units changed and effective
2953          * cwnd/ssthresh really reduced now.
2954          */
2955         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2956                 tp->high_seq = tp->snd_nxt;
2957                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2958                 tp->prior_ssthresh = 0;
2959                 tp->undo_marker = 0;
2960                 tcp_set_ca_state(sk, TCP_CA_Loss);
2961         }
2962         tcp_xmit_retransmit_queue(sk);
2963 }
2964 EXPORT_SYMBOL(tcp_simple_retransmit);
2965
2966 /* Process an event, which can update packets-in-flight not trivially.
2967  * Main goal of this function is to calculate new estimate for left_out,
2968  * taking into account both packets sitting in receiver's buffer and
2969  * packets lost by network.
2970  *
2971  * Besides that it does CWND reduction, when packet loss is detected
2972  * and changes state of machine.
2973  *
2974  * It does _not_ decide what to send, it is made in function
2975  * tcp_xmit_retransmit_queue().
2976  */
2977 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2978 {
2979         struct inet_connection_sock *icsk = inet_csk(sk);
2980         struct tcp_sock *tp = tcp_sk(sk);
2981         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2982         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2983                                     (tcp_fackets_out(tp) > tp->reordering));
2984         int fast_rexmit = 0, mib_idx;
2985
2986         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2987                 tp->sacked_out = 0;
2988         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2989                 tp->fackets_out = 0;
2990
2991         /* Now state machine starts.
2992          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2993         if (flag & FLAG_ECE)
2994                 tp->prior_ssthresh = 0;
2995
2996         /* B. In all the states check for reneging SACKs. */
2997         if (tcp_check_sack_reneging(sk, flag))
2998                 return;
2999
3000         /* C. Process data loss notification, provided it is valid. */
3001         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3002             before(tp->snd_una, tp->high_seq) &&
3003             icsk->icsk_ca_state != TCP_CA_Open &&
3004             tp->fackets_out > tp->reordering) {
3005                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3006                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3007         }
3008
3009         /* D. Check consistency of the current state. */
3010         tcp_verify_left_out(tp);
3011
3012         /* E. Check state exit conditions. State can be terminated
3013          *    when high_seq is ACKed. */
3014         if (icsk->icsk_ca_state == TCP_CA_Open) {
3015                 WARN_ON(tp->retrans_out != 0);
3016                 tp->retrans_stamp = 0;
3017         } else if (!before(tp->snd_una, tp->high_seq)) {
3018                 switch (icsk->icsk_ca_state) {
3019                 case TCP_CA_Loss:
3020                         icsk->icsk_retransmits = 0;
3021                         if (tcp_try_undo_recovery(sk))
3022                                 return;
3023                         break;
3024
3025                 case TCP_CA_CWR:
3026                         /* CWR is to be held something *above* high_seq
3027                          * is ACKed for CWR bit to reach receiver. */
3028                         if (tp->snd_una != tp->high_seq) {
3029                                 tcp_complete_cwr(sk);
3030                                 tcp_set_ca_state(sk, TCP_CA_Open);
3031                         }
3032                         break;
3033
3034                 case TCP_CA_Disorder:
3035                         tcp_try_undo_dsack(sk);
3036                         if (!tp->undo_marker ||
3037                             /* For SACK case do not Open to allow to undo
3038                              * catching for all duplicate ACKs. */
3039                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3040                                 tp->undo_marker = 0;
3041                                 tcp_set_ca_state(sk, TCP_CA_Open);
3042                         }
3043                         break;
3044
3045                 case TCP_CA_Recovery:
3046                         if (tcp_is_reno(tp))
3047                                 tcp_reset_reno_sack(tp);
3048                         if (tcp_try_undo_recovery(sk))
3049                                 return;
3050                         tcp_complete_cwr(sk);
3051                         break;
3052                 }
3053         }
3054
3055         /* F. Process state. */
3056         switch (icsk->icsk_ca_state) {
3057         case TCP_CA_Recovery:
3058                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3059                         if (tcp_is_reno(tp) && is_dupack)
3060                                 tcp_add_reno_sack(sk);
3061                 } else
3062                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3063                 break;
3064         case TCP_CA_Loss:
3065                 if (flag & FLAG_DATA_ACKED)
3066                         icsk->icsk_retransmits = 0;
3067                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3068                         tcp_reset_reno_sack(tp);
3069                 if (!tcp_try_undo_loss(sk)) {
3070                         tcp_moderate_cwnd(tp);
3071                         tcp_xmit_retransmit_queue(sk);
3072                         return;
3073                 }
3074                 if (icsk->icsk_ca_state != TCP_CA_Open)
3075                         return;
3076                 /* Loss is undone; fall through to processing in Open state. */
3077         default:
3078                 if (tcp_is_reno(tp)) {
3079                         if (flag & FLAG_SND_UNA_ADVANCED)
3080                                 tcp_reset_reno_sack(tp);
3081                         if (is_dupack)
3082                                 tcp_add_reno_sack(sk);
3083                 }
3084
3085                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3086                         tcp_try_undo_dsack(sk);
3087
3088                 if (!tcp_time_to_recover(sk)) {
3089                         tcp_try_to_open(sk, flag);
3090                         return;
3091                 }
3092
3093                 /* MTU probe failure: don't reduce cwnd */
3094                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3095                     icsk->icsk_mtup.probe_size &&
3096                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3097                         tcp_mtup_probe_failed(sk);
3098                         /* Restores the reduction we did in tcp_mtup_probe() */
3099                         tp->snd_cwnd++;
3100                         tcp_simple_retransmit(sk);
3101                         return;
3102                 }
3103
3104                 /* Otherwise enter Recovery state */
3105
3106                 if (tcp_is_reno(tp))
3107                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3108                 else
3109                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3110
3111                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3112
3113                 tp->high_seq = tp->snd_nxt;
3114                 tp->prior_ssthresh = 0;
3115                 tp->undo_marker = tp->snd_una;
3116                 tp->undo_retrans = tp->retrans_out;
3117
3118                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3119                         if (!(flag & FLAG_ECE))
3120                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3121                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3122                         TCP_ECN_queue_cwr(tp);
3123                 }
3124
3125                 tp->bytes_acked = 0;
3126                 tp->snd_cwnd_cnt = 0;
3127                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3128                 fast_rexmit = 1;
3129         }
3130
3131         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3132                 tcp_update_scoreboard(sk, fast_rexmit);
3133         tcp_cwnd_down(sk, flag);
3134         tcp_xmit_retransmit_queue(sk);
3135 }
3136
3137 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3138 {
3139         tcp_rtt_estimator(sk, seq_rtt);
3140         tcp_set_rto(sk);
3141         inet_csk(sk)->icsk_backoff = 0;
3142 }
3143
3144 /* Read draft-ietf-tcplw-high-performance before mucking
3145  * with this code. (Supersedes RFC1323)
3146  */
3147 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3148 {
3149         /* RTTM Rule: A TSecr value received in a segment is used to
3150          * update the averaged RTT measurement only if the segment
3151          * acknowledges some new data, i.e., only if it advances the
3152          * left edge of the send window.
3153          *
3154          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3155          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3156          *
3157          * Changed: reset backoff as soon as we see the first valid sample.
3158          * If we do not, we get strongly overestimated rto. With timestamps
3159          * samples are accepted even from very old segments: f.e., when rtt=1
3160          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3161          * answer arrives rto becomes 120 seconds! If at least one of segments
3162          * in window is lost... Voila.                          --ANK (010210)
3163          */
3164         struct tcp_sock *tp = tcp_sk(sk);
3165
3166         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3167 }
3168
3169 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3170 {
3171         /* We don't have a timestamp. Can only use
3172          * packets that are not retransmitted to determine
3173          * rtt estimates. Also, we must not reset the
3174          * backoff for rto until we get a non-retransmitted
3175          * packet. This allows us to deal with a situation
3176          * where the network delay has increased suddenly.
3177          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3178          */
3179
3180         if (flag & FLAG_RETRANS_DATA_ACKED)
3181                 return;
3182
3183         tcp_valid_rtt_meas(sk, seq_rtt);
3184 }
3185
3186 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3187                                       const s32 seq_rtt)
3188 {
3189         const struct tcp_sock *tp = tcp_sk(sk);
3190         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3191         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3192                 tcp_ack_saw_tstamp(sk, flag);
3193         else if (seq_rtt >= 0)
3194                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3195 }
3196
3197 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3198 {
3199         const struct inet_connection_sock *icsk = inet_csk(sk);
3200         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3201         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3202 }
3203
3204 /* Restart timer after forward progress on connection.
3205  * RFC2988 recommends to restart timer to now+rto.
3206  */
3207 static void tcp_rearm_rto(struct sock *sk)
3208 {
3209         struct tcp_sock *tp = tcp_sk(sk);
3210
3211         if (!tp->packets_out) {
3212                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213         } else {
3214                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3215                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3216         }
3217 }
3218
3219 /* If we get here, the whole TSO packet has not been acked. */
3220 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3221 {
3222         struct tcp_sock *tp = tcp_sk(sk);
3223         u32 packets_acked;
3224
3225         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3226
3227         packets_acked = tcp_skb_pcount(skb);
3228         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3229                 return 0;
3230         packets_acked -= tcp_skb_pcount(skb);
3231
3232         if (packets_acked) {
3233                 BUG_ON(tcp_skb_pcount(skb) == 0);
3234                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3235         }
3236
3237         return packets_acked;
3238 }
3239
3240 /* Remove acknowledged frames from the retransmission queue. If our packet
3241  * is before the ack sequence we can discard it as it's confirmed to have
3242  * arrived at the other end.
3243  */
3244 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3245                                u32 prior_snd_una)
3246 {
3247         struct tcp_sock *tp = tcp_sk(sk);
3248         const struct inet_connection_sock *icsk = inet_csk(sk);
3249         struct sk_buff *skb;
3250         u32 now = tcp_time_stamp;
3251         int fully_acked = 1;
3252         int flag = 0;
3253         u32 pkts_acked = 0;
3254         u32 reord = tp->packets_out;
3255         u32 prior_sacked = tp->sacked_out;
3256         s32 seq_rtt = -1;
3257         s32 ca_seq_rtt = -1;
3258         ktime_t last_ackt = net_invalid_timestamp();
3259
3260         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3261                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3262                 u32 acked_pcount;
3263                 u8 sacked = scb->sacked;
3264
3265                 /* Determine how many packets and what bytes were acked, tso and else */
3266                 if (after(scb->end_seq, tp->snd_una)) {
3267                         if (tcp_skb_pcount(skb) == 1 ||
3268                             !after(tp->snd_una, scb->seq))
3269                                 break;
3270
3271                         acked_pcount = tcp_tso_acked(sk, skb);
3272                         if (!acked_pcount)
3273                                 break;
3274
3275                         fully_acked = 0;
3276                 } else {
3277                         acked_pcount = tcp_skb_pcount(skb);
3278                 }
3279
3280                 if (sacked & TCPCB_RETRANS) {
3281                         if (sacked & TCPCB_SACKED_RETRANS)
3282                                 tp->retrans_out -= acked_pcount;
3283                         flag |= FLAG_RETRANS_DATA_ACKED;
3284                         ca_seq_rtt = -1;
3285                         seq_rtt = -1;
3286                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3287                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3288                 } else {
3289                         ca_seq_rtt = now - scb->when;
3290                         last_ackt = skb->tstamp;
3291                         if (seq_rtt < 0) {
3292                                 seq_rtt = ca_seq_rtt;
3293                         }
3294                         if (!(sacked & TCPCB_SACKED_ACKED))
3295                                 reord = min(pkts_acked, reord);
3296                 }
3297
3298                 if (sacked & TCPCB_SACKED_ACKED)
3299                         tp->sacked_out -= acked_pcount;
3300                 if (sacked & TCPCB_LOST)
3301                         tp->lost_out -= acked_pcount;
3302
3303                 tp->packets_out -= acked_pcount;
3304                 pkts_acked += acked_pcount;
3305
3306                 /* Initial outgoing SYN's get put onto the write_queue
3307                  * just like anything else we transmit.  It is not
3308                  * true data, and if we misinform our callers that
3309                  * this ACK acks real data, we will erroneously exit
3310                  * connection startup slow start one packet too
3311                  * quickly.  This is severely frowned upon behavior.
3312                  */
3313                 if (!(scb->flags & TCPHDR_SYN)) {
3314                         flag |= FLAG_DATA_ACKED;
3315                 } else {
3316                         flag |= FLAG_SYN_ACKED;
3317                         tp->retrans_stamp = 0;
3318                 }
3319
3320                 if (!fully_acked)
3321                         break;
3322
3323                 tcp_unlink_write_queue(skb, sk);
3324                 sk_wmem_free_skb(sk, skb);
3325                 tp->scoreboard_skb_hint = NULL;
3326                 if (skb == tp->retransmit_skb_hint)
3327                         tp->retransmit_skb_hint = NULL;
3328                 if (skb == tp->lost_skb_hint)
3329                         tp->lost_skb_hint = NULL;
3330         }
3331
3332         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3333                 tp->snd_up = tp->snd_una;
3334
3335         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3336                 flag |= FLAG_SACK_RENEGING;
3337
3338         if (flag & FLAG_ACKED) {
3339                 const struct tcp_congestion_ops *ca_ops
3340                         = inet_csk(sk)->icsk_ca_ops;
3341
3342                 if (unlikely(icsk->icsk_mtup.probe_size &&
3343                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3344                         tcp_mtup_probe_success(sk);
3345                 }
3346
3347                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3348                 tcp_rearm_rto(sk);
3349
3350                 if (tcp_is_reno(tp)) {
3351                         tcp_remove_reno_sacks(sk, pkts_acked);
3352                 } else {
3353                         int delta;
3354
3355                         /* Non-retransmitted hole got filled? That's reordering */
3356                         if (reord < prior_fackets)
3357                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3358
3359                         delta = tcp_is_fack(tp) ? pkts_acked :
3360                                                   prior_sacked - tp->sacked_out;
3361                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3362                 }
3363
3364                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3365
3366                 if (ca_ops->pkts_acked) {
3367                         s32 rtt_us = -1;
3368
3369                         /* Is the ACK triggering packet unambiguous? */
3370                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3371                                 /* High resolution needed and available? */
3372                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3373                                     !ktime_equal(last_ackt,
3374                                                  net_invalid_timestamp()))
3375                                         rtt_us = ktime_us_delta(ktime_get_real(),
3376                                                                 last_ackt);
3377                                 else if (ca_seq_rtt >= 0)
3378                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3379                         }
3380
3381                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3382                 }
3383         }
3384
3385 #if FASTRETRANS_DEBUG > 0
3386         WARN_ON((int)tp->sacked_out < 0);
3387         WARN_ON((int)tp->lost_out < 0);
3388         WARN_ON((int)tp->retrans_out < 0);
3389         if (!tp->packets_out && tcp_is_sack(tp)) {
3390                 icsk = inet_csk(sk);
3391                 if (tp->lost_out) {
3392                         printk(KERN_DEBUG "Leak l=%u %d\n",
3393                                tp->lost_out, icsk->icsk_ca_state);
3394                         tp->lost_out = 0;
3395                 }
3396                 if (tp->sacked_out) {
3397                         printk(KERN_DEBUG "Leak s=%u %d\n",
3398                                tp->sacked_out, icsk->icsk_ca_state);
3399                         tp->sacked_out = 0;
3400                 }
3401                 if (tp->retrans_out) {
3402                         printk(KERN_DEBUG "Leak r=%u %d\n",
3403                                tp->retrans_out, icsk->icsk_ca_state);
3404                         tp->retrans_out = 0;
3405                 }
3406         }
3407 #endif
3408         return flag;
3409 }
3410
3411 static void tcp_ack_probe(struct sock *sk)
3412 {
3413         const struct tcp_sock *tp = tcp_sk(sk);
3414         struct inet_connection_sock *icsk = inet_csk(sk);
3415
3416         /* Was it a usable window open? */
3417
3418         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3419                 icsk->icsk_backoff = 0;
3420                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3421                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3422                  * This function is not for random using!
3423                  */
3424         } else {
3425                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3426                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3427                                           TCP_RTO_MAX);
3428         }
3429 }
3430
3431 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3432 {
3433         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3434                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3435 }
3436
3437 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3438 {
3439         const struct tcp_sock *tp = tcp_sk(sk);
3440         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3441                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3442 }
3443
3444 /* Check that window update is acceptable.
3445  * The function assumes that snd_una<=ack<=snd_next.
3446  */
3447 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3448                                         const u32 ack, const u32 ack_seq,
3449                                         const u32 nwin)
3450 {
3451         return  after(ack, tp->snd_una) ||
3452                 after(ack_seq, tp->snd_wl1) ||
3453                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3454 }
3455
3456 /* Update our send window.
3457  *
3458  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3459  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3460  */
3461 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3462                                  u32 ack_seq)
3463 {
3464         struct tcp_sock *tp = tcp_sk(sk);
3465         int flag = 0;
3466         u32 nwin = ntohs(tcp_hdr(skb)->window);
3467
3468         if (likely(!tcp_hdr(skb)->syn))
3469                 nwin <<= tp->rx_opt.snd_wscale;
3470
3471         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3472                 flag |= FLAG_WIN_UPDATE;
3473                 tcp_update_wl(tp, ack_seq);
3474
3475                 if (tp->snd_wnd != nwin) {
3476                         tp->snd_wnd = nwin;
3477
3478                         /* Note, it is the only place, where
3479                          * fast path is recovered for sending TCP.
3480                          */
3481                         tp->pred_flags = 0;
3482                         tcp_fast_path_check(sk);
3483
3484                         if (nwin > tp->max_window) {
3485                                 tp->max_window = nwin;
3486                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3487                         }
3488                 }
3489         }
3490
3491         tp->snd_una = ack;
3492
3493         return flag;
3494 }
3495
3496 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3497  * continue in congestion avoidance.
3498  */
3499 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3500 {
3501         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3502         tp->snd_cwnd_cnt = 0;
3503         tp->bytes_acked = 0;
3504         TCP_ECN_queue_cwr(tp);
3505         tcp_moderate_cwnd(tp);
3506 }
3507
3508 /* A conservative spurious RTO response algorithm: reduce cwnd using
3509  * rate halving and continue in congestion avoidance.
3510  */
3511 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3512 {
3513         tcp_enter_cwr(sk, 0);
3514 }
3515
3516 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3517 {
3518         if (flag & FLAG_ECE)
3519                 tcp_ratehalving_spur_to_response(sk);
3520         else
3521                 tcp_undo_cwr(sk, true);
3522 }
3523
3524 /* F-RTO spurious RTO detection algorithm (RFC4138)
3525  *
3526  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3527  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3528  * window (but not to or beyond highest sequence sent before RTO):
3529  *   On First ACK,  send two new segments out.
3530  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3531  *                  algorithm is not part of the F-RTO detection algorithm
3532  *                  given in RFC4138 but can be selected separately).
3533  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3534  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3535  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3536  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3537  *
3538  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3539  * original window even after we transmit two new data segments.
3540  *
3541  * SACK version:
3542  *   on first step, wait until first cumulative ACK arrives, then move to
3543  *   the second step. In second step, the next ACK decides.
3544  *
3545  * F-RTO is implemented (mainly) in four functions:
3546  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3547  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3548  *     called when tcp_use_frto() showed green light
3549  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3550  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3551  *     to prove that the RTO is indeed spurious. It transfers the control
3552  *     from F-RTO to the conventional RTO recovery
3553  */
3554 static int tcp_process_frto(struct sock *sk, int flag)
3555 {
3556         struct tcp_sock *tp = tcp_sk(sk);
3557
3558         tcp_verify_left_out(tp);
3559
3560         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3561         if (flag & FLAG_DATA_ACKED)
3562                 inet_csk(sk)->icsk_retransmits = 0;
3563
3564         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3565             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3566                 tp->undo_marker = 0;
3567
3568         if (!before(tp->snd_una, tp->frto_highmark)) {
3569                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3570                 return 1;
3571         }
3572
3573         if (!tcp_is_sackfrto(tp)) {
3574                 /* RFC4138 shortcoming in step 2; should also have case c):
3575                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3576                  * data, winupdate
3577                  */
3578                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3579                         return 1;
3580
3581                 if (!(flag & FLAG_DATA_ACKED)) {
3582                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3583                                             flag);
3584                         return 1;
3585                 }
3586         } else {
3587                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3588                         if (!tcp_packets_in_flight(tp)) {
3589                                 tcp_enter_frto_loss(sk, 2, flag);
3590                                 return true;
3591                         }
3592
3593                         /* Prevent sending of new data. */
3594                         tp->snd_cwnd = min(tp->snd_cwnd,
3595                                            tcp_packets_in_flight(tp));
3596                         return 1;
3597                 }
3598
3599                 if ((tp->frto_counter >= 2) &&
3600                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3601                      ((flag & FLAG_DATA_SACKED) &&
3602                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3603                         /* RFC4138 shortcoming (see comment above) */
3604                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3605                             (flag & FLAG_NOT_DUP))
3606                                 return 1;
3607
3608                         tcp_enter_frto_loss(sk, 3, flag);
3609                         return 1;
3610                 }
3611         }
3612
3613         if (tp->frto_counter == 1) {
3614                 /* tcp_may_send_now needs to see updated state */
3615                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3616                 tp->frto_counter = 2;
3617
3618                 if (!tcp_may_send_now(sk))
3619                         tcp_enter_frto_loss(sk, 2, flag);
3620
3621                 return 1;
3622         } else {
3623                 switch (sysctl_tcp_frto_response) {
3624                 case 2:
3625                         tcp_undo_spur_to_response(sk, flag);
3626                         break;
3627                 case 1:
3628                         tcp_conservative_spur_to_response(tp);
3629                         break;
3630                 default:
3631                         tcp_ratehalving_spur_to_response(sk);
3632                         break;
3633                 }
3634                 tp->frto_counter = 0;
3635                 tp->undo_marker = 0;
3636                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3637         }
3638         return 0;
3639 }
3640
3641 /* RFC 5961 7 [ACK Throttling] */
3642 static void tcp_send_challenge_ack(struct sock *sk)
3643 {
3644         /* unprotected vars, we dont care of overwrites */
3645         static u32 challenge_timestamp;
3646         static unsigned int challenge_count;
3647         u32 now = jiffies / HZ;
3648
3649         if (now != challenge_timestamp) {
3650                 challenge_timestamp = now;
3651                 challenge_count = 0;
3652         }
3653         if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3654                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3655                 tcp_send_ack(sk);
3656         }
3657 }
3658
3659 /* This routine deals with incoming acks, but not outgoing ones. */
3660 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3661 {
3662         struct inet_connection_sock *icsk = inet_csk(sk);
3663         struct tcp_sock *tp = tcp_sk(sk);
3664         u32 prior_snd_una = tp->snd_una;
3665         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3666         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3667         u32 prior_in_flight;
3668         u32 prior_fackets;
3669         int prior_packets;
3670         int frto_cwnd = 0;
3671
3672         /* If the ack is older than previous acks
3673          * then we can probably ignore it.
3674          */
3675         if (before(ack, prior_snd_una)) {
3676                 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3677                 if (before(ack, prior_snd_una - tp->max_window)) {
3678                         tcp_send_challenge_ack(sk);
3679                         return -1;
3680                 }
3681                 goto old_ack;
3682         }
3683
3684         /* If the ack includes data we haven't sent yet, discard
3685          * this segment (RFC793 Section 3.9).
3686          */
3687         if (after(ack, tp->snd_nxt))
3688                 goto invalid_ack;
3689
3690         if (after(ack, prior_snd_una))
3691                 flag |= FLAG_SND_UNA_ADVANCED;
3692
3693         if (sysctl_tcp_abc) {
3694                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3695                         tp->bytes_acked += ack - prior_snd_una;
3696                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3697                         /* we assume just one segment left network */
3698                         tp->bytes_acked += min(ack - prior_snd_una,
3699                                                tp->mss_cache);
3700         }
3701
3702         prior_fackets = tp->fackets_out;
3703         prior_in_flight = tcp_packets_in_flight(tp);
3704
3705         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3706                 /* Window is constant, pure forward advance.
3707                  * No more checks are required.
3708                  * Note, we use the fact that SND.UNA>=SND.WL2.
3709                  */
3710                 tcp_update_wl(tp, ack_seq);
3711                 tp->snd_una = ack;
3712                 flag |= FLAG_WIN_UPDATE;
3713
3714                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3715
3716                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3717         } else {
3718                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3719                         flag |= FLAG_DATA;
3720                 else
3721                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3722
3723                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3724
3725                 if (TCP_SKB_CB(skb)->sacked)
3726                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3727
3728                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3729                         flag |= FLAG_ECE;
3730
3731                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3732         }
3733
3734         /* We passed data and got it acked, remove any soft error
3735          * log. Something worked...
3736          */
3737         sk->sk_err_soft = 0;
3738         icsk->icsk_probes_out = 0;
3739         tp->rcv_tstamp = tcp_time_stamp;
3740         prior_packets = tp->packets_out;
3741         if (!prior_packets)
3742                 goto no_queue;
3743
3744         /* See if we can take anything off of the retransmit queue. */
3745         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3746
3747         if (tp->frto_counter)
3748                 frto_cwnd = tcp_process_frto(sk, flag);
3749         /* Guarantee sacktag reordering detection against wrap-arounds */
3750         if (before(tp->frto_highmark, tp->snd_una))
3751                 tp->frto_highmark = 0;
3752
3753         if (tcp_ack_is_dubious(sk, flag)) {
3754                 /* Advance CWND, if state allows this. */
3755                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3756                     tcp_may_raise_cwnd(sk, flag))
3757                         tcp_cong_avoid(sk, ack, prior_in_flight);
3758                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3759                                       flag);
3760         } else {
3761                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3762                         tcp_cong_avoid(sk, ack, prior_in_flight);
3763         }
3764
3765         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3766                 dst_confirm(__sk_dst_get(sk));
3767
3768         return 1;
3769
3770 no_queue:
3771         /* If this ack opens up a zero window, clear backoff.  It was
3772          * being used to time the probes, and is probably far higher than
3773          * it needs to be for normal retransmission.
3774          */
3775         if (tcp_send_head(sk))
3776                 tcp_ack_probe(sk);
3777         return 1;
3778
3779 invalid_ack:
3780         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3781         return -1;
3782
3783 old_ack:
3784         if (TCP_SKB_CB(skb)->sacked) {
3785                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3786                 if (icsk->icsk_ca_state == TCP_CA_Open)
3787                         tcp_try_keep_open(sk);
3788         }
3789
3790         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3791         return 0;
3792 }
3793
3794 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3795  * But, this can also be called on packets in the established flow when
3796  * the fast version below fails.
3797  */
3798 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3799                        u8 **hvpp, int estab)
3800 {
3801         unsigned char *ptr;
3802         struct tcphdr *th = tcp_hdr(skb);
3803         int length = (th->doff * 4) - sizeof(struct tcphdr);
3804
3805         ptr = (unsigned char *)(th + 1);
3806         opt_rx->saw_tstamp = 0;
3807
3808         while (length > 0) {
3809                 int opcode = *ptr++;
3810                 int opsize;
3811
3812                 switch (opcode) {
3813                 case TCPOPT_EOL:
3814                         return;
3815                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3816                         length--;
3817                         continue;
3818                 default:
3819                         opsize = *ptr++;
3820                         if (opsize < 2) /* "silly options" */
3821                                 return;
3822                         if (opsize > length)
3823                                 return; /* don't parse partial options */
3824                         switch (opcode) {
3825                         case TCPOPT_MSS:
3826                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3827                                         u16 in_mss = get_unaligned_be16(ptr);
3828                                         if (in_mss) {
3829                                                 if (opt_rx->user_mss &&
3830                                                     opt_rx->user_mss < in_mss)
3831                                                         in_mss = opt_rx->user_mss;
3832                                                 opt_rx->mss_clamp = in_mss;
3833                                         }
3834                                 }
3835                                 break;
3836                         case TCPOPT_WINDOW:
3837                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3838                                     !estab && sysctl_tcp_window_scaling) {
3839                                         __u8 snd_wscale = *(__u8 *)ptr;
3840                                         opt_rx->wscale_ok = 1;
3841                                         if (snd_wscale > 14) {
3842                                                 if (net_ratelimit())
3843                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3844                                                                "scaling value %d >14 received.\n",
3845                                                                snd_wscale);
3846                                                 snd_wscale = 14;
3847                                         }
3848                                         opt_rx->snd_wscale = snd_wscale;
3849                                 }
3850                                 break;
3851                         case TCPOPT_TIMESTAMP:
3852                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3853                                     ((estab && opt_rx->tstamp_ok) ||
3854                                      (!estab && sysctl_tcp_timestamps))) {
3855                                         opt_rx->saw_tstamp = 1;
3856                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3857                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3858                                 }
3859                                 break;
3860                         case TCPOPT_SACK_PERM:
3861                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3862                                     !estab && sysctl_tcp_sack) {
3863                                         opt_rx->sack_ok = 1;
3864                                         tcp_sack_reset(opt_rx);
3865                                 }
3866                                 break;
3867
3868                         case TCPOPT_SACK:
3869                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3870                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3871                                    opt_rx->sack_ok) {
3872                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3873                                 }
3874                                 break;
3875 #ifdef CONFIG_TCP_MD5SIG
3876                         case TCPOPT_MD5SIG:
3877                                 /*
3878                                  * The MD5 Hash has already been
3879                                  * checked (see tcp_v{4,6}_do_rcv()).
3880                                  */
3881                                 break;
3882 #endif
3883                         case TCPOPT_COOKIE:
3884                                 /* This option is variable length.
3885                                  */
3886                                 switch (opsize) {
3887                                 case TCPOLEN_COOKIE_BASE:
3888                                         /* not yet implemented */
3889                                         break;
3890                                 case TCPOLEN_COOKIE_PAIR:
3891                                         /* not yet implemented */
3892                                         break;
3893                                 case TCPOLEN_COOKIE_MIN+0:
3894                                 case TCPOLEN_COOKIE_MIN+2:
3895                                 case TCPOLEN_COOKIE_MIN+4:
3896                                 case TCPOLEN_COOKIE_MIN+6:
3897                                 case TCPOLEN_COOKIE_MAX:
3898                                         /* 16-bit multiple */
3899                                         opt_rx->cookie_plus = opsize;
3900                                         *hvpp = ptr;
3901                                         break;
3902                                 default:
3903                                         /* ignore option */
3904                                         break;
3905                                 }
3906                                 break;
3907                         }
3908
3909                         ptr += opsize-2;
3910                         length -= opsize;
3911                 }
3912         }
3913 }
3914 EXPORT_SYMBOL(tcp_parse_options);
3915
3916 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3917 {
3918         __be32 *ptr = (__be32 *)(th + 1);
3919
3920         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3921                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3922                 tp->rx_opt.saw_tstamp = 1;
3923                 ++ptr;
3924                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3925                 ++ptr;
3926                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3927                 return 1;
3928         }
3929         return 0;
3930 }
3931
3932 /* Fast parse options. This hopes to only see timestamps.
3933  * If it is wrong it falls back on tcp_parse_options().
3934  */
3935 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3936                                   struct tcp_sock *tp, u8 **hvpp)
3937 {
3938         /* In the spirit of fast parsing, compare doff directly to constant
3939          * values.  Because equality is used, short doff can be ignored here.
3940          */
3941         if (th->doff == (sizeof(*th) / 4)) {
3942                 tp->rx_opt.saw_tstamp = 0;
3943                 return 0;
3944         } else if (tp->rx_opt.tstamp_ok &&
3945                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3946                 if (tcp_parse_aligned_timestamp(tp, th))
3947                         return 1;
3948         }
3949         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3950         return 1;
3951 }
3952
3953 #ifdef CONFIG_TCP_MD5SIG
3954 /*
3955  * Parse MD5 Signature option
3956  */
3957 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3958 {
3959         int length = (th->doff << 2) - sizeof (*th);
3960         u8 *ptr = (u8*)(th + 1);
3961
3962         /* If the TCP option is too short, we can short cut */
3963         if (length < TCPOLEN_MD5SIG)
3964                 return NULL;
3965
3966         while (length > 0) {
3967                 int opcode = *ptr++;
3968                 int opsize;
3969
3970                 switch(opcode) {
3971                 case TCPOPT_EOL:
3972                         return NULL;
3973                 case TCPOPT_NOP:
3974                         length--;
3975                         continue;
3976                 default:
3977                         opsize = *ptr++;
3978                         if (opsize < 2 || opsize > length)
3979                                 return NULL;
3980                         if (opcode == TCPOPT_MD5SIG)
3981                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3982                 }
3983                 ptr += opsize - 2;
3984                 length -= opsize;
3985         }
3986         return NULL;
3987 }
3988 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3989 #endif
3990
3991 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3992 {
3993         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3994         tp->rx_opt.ts_recent_stamp = get_seconds();
3995 }
3996
3997 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3998 {
3999         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4000                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4001                  * extra check below makes sure this can only happen
4002                  * for pure ACK frames.  -DaveM
4003                  *
4004                  * Not only, also it occurs for expired timestamps.
4005                  */
4006
4007                 if (tcp_paws_check(&tp->rx_opt, 0))
4008                         tcp_store_ts_recent(tp);
4009         }
4010 }
4011
4012 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4013  *
4014  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4015  * it can pass through stack. So, the following predicate verifies that
4016  * this segment is not used for anything but congestion avoidance or
4017  * fast retransmit. Moreover, we even are able to eliminate most of such
4018  * second order effects, if we apply some small "replay" window (~RTO)
4019  * to timestamp space.
4020  *
4021  * All these measures still do not guarantee that we reject wrapped ACKs
4022  * on networks with high bandwidth, when sequence space is recycled fastly,
4023  * but it guarantees that such events will be very rare and do not affect
4024  * connection seriously. This doesn't look nice, but alas, PAWS is really
4025  * buggy extension.
4026  *
4027  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4028  * states that events when retransmit arrives after original data are rare.
4029  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4030  * the biggest problem on large power networks even with minor reordering.
4031  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4032  * up to bandwidth of 18Gigabit/sec. 8) ]
4033  */
4034
4035 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4036 {
4037         struct tcp_sock *tp = tcp_sk(sk);
4038         struct tcphdr *th = tcp_hdr(skb);
4039         u32 seq = TCP_SKB_CB(skb)->seq;
4040         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4041
4042         return (/* 1. Pure ACK with correct sequence number. */
4043                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4044
4045                 /* 2. ... and duplicate ACK. */
4046                 ack == tp->snd_una &&
4047
4048                 /* 3. ... and does not update window. */
4049                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4050
4051                 /* 4. ... and sits in replay window. */
4052                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4053 }
4054
4055 static inline int tcp_paws_discard(const struct sock *sk,
4056                                    const struct sk_buff *skb)
4057 {
4058         const struct tcp_sock *tp = tcp_sk(sk);
4059
4060         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4061                !tcp_disordered_ack(sk, skb);
4062 }
4063
4064 /* Check segment sequence number for validity.
4065  *
4066  * Segment controls are considered valid, if the segment
4067  * fits to the window after truncation to the window. Acceptability
4068  * of data (and SYN, FIN, of course) is checked separately.
4069  * See tcp_data_queue(), for example.
4070  *
4071  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4072  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4073  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4074  * (borrowed from freebsd)
4075  */
4076
4077 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4078 {
4079         return  !before(end_seq, tp->rcv_wup) &&
4080                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4081 }
4082
4083 /* When we get a reset we do this. */
4084 static void tcp_reset(struct sock *sk)
4085 {
4086         /* We want the right error as BSD sees it (and indeed as we do). */
4087         switch (sk->sk_state) {
4088         case TCP_SYN_SENT:
4089                 sk->sk_err = ECONNREFUSED;
4090                 break;
4091         case TCP_CLOSE_WAIT:
4092                 sk->sk_err = EPIPE;
4093                 break;
4094         case TCP_CLOSE:
4095                 return;
4096         default:
4097                 sk->sk_err = ECONNRESET;
4098         }
4099         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4100         smp_wmb();
4101
4102         if (!sock_flag(sk, SOCK_DEAD))
4103                 sk->sk_error_report(sk);
4104
4105         tcp_done(sk);
4106 }
4107
4108 /*
4109  *      Process the FIN bit. This now behaves as it is supposed to work
4110  *      and the FIN takes effect when it is validly part of sequence
4111  *      space. Not before when we get holes.
4112  *
4113  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4114  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4115  *      TIME-WAIT)
4116  *
4117  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4118  *      close and we go into CLOSING (and later onto TIME-WAIT)
4119  *
4120  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4121  */
4122 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4123 {
4124         struct tcp_sock *tp = tcp_sk(sk);
4125
4126         inet_csk_schedule_ack(sk);
4127
4128         sk->sk_shutdown |= RCV_SHUTDOWN;
4129         sock_set_flag(sk, SOCK_DONE);
4130
4131         switch (sk->sk_state) {
4132         case TCP_SYN_RECV:
4133         case TCP_ESTABLISHED:
4134                 /* Move to CLOSE_WAIT */
4135                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4136                 inet_csk(sk)->icsk_ack.pingpong = 1;
4137                 break;
4138
4139         case TCP_CLOSE_WAIT:
4140         case TCP_CLOSING:
4141                 /* Received a retransmission of the FIN, do
4142                  * nothing.
4143                  */
4144                 break;
4145         case TCP_LAST_ACK:
4146                 /* RFC793: Remain in the LAST-ACK state. */
4147                 break;
4148
4149         case TCP_FIN_WAIT1:
4150                 /* This case occurs when a simultaneous close
4151                  * happens, we must ack the received FIN and
4152                  * enter the CLOSING state.
4153                  */
4154                 tcp_send_ack(sk);
4155                 tcp_set_state(sk, TCP_CLOSING);
4156                 break;
4157         case TCP_FIN_WAIT2:
4158                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4159                 tcp_send_ack(sk);
4160                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4161                 break;
4162         default:
4163                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4164                  * cases we should never reach this piece of code.
4165                  */
4166                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4167                        __func__, sk->sk_state);
4168                 break;
4169         }
4170
4171         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4172          * Probably, we should reset in this case. For now drop them.
4173          */
4174         __skb_queue_purge(&tp->out_of_order_queue);
4175         if (tcp_is_sack(tp))
4176                 tcp_sack_reset(&tp->rx_opt);
4177         sk_mem_reclaim(sk);
4178
4179         if (!sock_flag(sk, SOCK_DEAD)) {
4180                 sk->sk_state_change(sk);
4181
4182                 /* Do not send POLL_HUP for half duplex close. */
4183                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4184                     sk->sk_state == TCP_CLOSE)
4185                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4186                 else
4187                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4188         }
4189 }
4190
4191 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4192                                   u32 end_seq)
4193 {
4194         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4195                 if (before(seq, sp->start_seq))
4196                         sp->start_seq = seq;
4197                 if (after(end_seq, sp->end_seq))
4198                         sp->end_seq = end_seq;
4199                 return 1;
4200         }
4201         return 0;
4202 }
4203
4204 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4205 {
4206         struct tcp_sock *tp = tcp_sk(sk);
4207
4208         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4209                 int mib_idx;
4210
4211                 if (before(seq, tp->rcv_nxt))
4212                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4213                 else
4214                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4215
4216                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4217
4218                 tp->rx_opt.dsack = 1;
4219                 tp->duplicate_sack[0].start_seq = seq;
4220                 tp->duplicate_sack[0].end_seq = end_seq;
4221         }
4222 }
4223
4224 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4225 {
4226         struct tcp_sock *tp = tcp_sk(sk);
4227
4228         if (!tp->rx_opt.dsack)
4229                 tcp_dsack_set(sk, seq, end_seq);
4230         else
4231                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4232 }
4233
4234 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4235 {
4236         struct tcp_sock *tp = tcp_sk(sk);
4237
4238         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4239             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4240                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4241                 tcp_enter_quickack_mode(sk);
4242
4243                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4244                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4245
4246                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4247                                 end_seq = tp->rcv_nxt;
4248                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4249                 }
4250         }
4251
4252         tcp_send_ack(sk);
4253 }
4254
4255 /* These routines update the SACK block as out-of-order packets arrive or
4256  * in-order packets close up the sequence space.
4257  */
4258 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4259 {
4260         int this_sack;
4261         struct tcp_sack_block *sp = &tp->selective_acks[0];
4262         struct tcp_sack_block *swalk = sp + 1;
4263
4264         /* See if the recent change to the first SACK eats into
4265          * or hits the sequence space of other SACK blocks, if so coalesce.
4266          */
4267         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4268                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4269                         int i;
4270
4271                         /* Zap SWALK, by moving every further SACK up by one slot.
4272                          * Decrease num_sacks.
4273                          */
4274                         tp->rx_opt.num_sacks--;
4275                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4276                                 sp[i] = sp[i + 1];
4277                         continue;
4278                 }
4279                 this_sack++, swalk++;
4280         }
4281 }
4282
4283 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4284 {
4285         struct tcp_sock *tp = tcp_sk(sk);
4286         struct tcp_sack_block *sp = &tp->selective_acks[0];
4287         int cur_sacks = tp->rx_opt.num_sacks;
4288         int this_sack;
4289
4290         if (!cur_sacks)
4291                 goto new_sack;
4292
4293         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4294                 if (tcp_sack_extend(sp, seq, end_seq)) {
4295                         /* Rotate this_sack to the first one. */
4296                         for (; this_sack > 0; this_sack--, sp--)
4297                                 swap(*sp, *(sp - 1));
4298                         if (cur_sacks > 1)
4299                                 tcp_sack_maybe_coalesce(tp);
4300                         return;
4301                 }
4302         }
4303
4304         /* Could not find an adjacent existing SACK, build a new one,
4305          * put it at the front, and shift everyone else down.  We
4306          * always know there is at least one SACK present already here.
4307          *
4308          * If the sack array is full, forget about the last one.
4309          */
4310         if (this_sack >= TCP_NUM_SACKS) {
4311                 this_sack--;
4312                 tp->rx_opt.num_sacks--;
4313                 sp--;
4314         }
4315         for (; this_sack > 0; this_sack--, sp--)
4316                 *sp = *(sp - 1);
4317
4318 new_sack:
4319         /* Build the new head SACK, and we're done. */
4320         sp->start_seq = seq;
4321         sp->end_seq = end_seq;
4322         tp->rx_opt.num_sacks++;
4323 }
4324
4325 /* RCV.NXT advances, some SACKs should be eaten. */
4326
4327 static void tcp_sack_remove(struct tcp_sock *tp)
4328 {
4329         struct tcp_sack_block *sp = &tp->selective_acks[0];
4330         int num_sacks = tp->rx_opt.num_sacks;
4331         int this_sack;
4332
4333         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4334         if (skb_queue_empty(&tp->out_of_order_queue)) {
4335                 tp->rx_opt.num_sacks = 0;
4336                 return;
4337         }
4338
4339         for (this_sack = 0; this_sack < num_sacks;) {
4340                 /* Check if the start of the sack is covered by RCV.NXT. */
4341                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4342                         int i;
4343
4344                         /* RCV.NXT must cover all the block! */
4345                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4346
4347                         /* Zap this SACK, by moving forward any other SACKS. */
4348                         for (i=this_sack+1; i < num_sacks; i++)
4349                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4350                         num_sacks--;
4351                         continue;
4352                 }
4353                 this_sack++;
4354                 sp++;
4355         }
4356         tp->rx_opt.num_sacks = num_sacks;
4357 }
4358
4359 /* This one checks to see if we can put data from the
4360  * out_of_order queue into the receive_queue.
4361  */
4362 static void tcp_ofo_queue(struct sock *sk)
4363 {
4364         struct tcp_sock *tp = tcp_sk(sk);
4365         __u32 dsack_high = tp->rcv_nxt;
4366         struct sk_buff *skb;
4367
4368         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4369                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4370                         break;
4371
4372                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4373                         __u32 dsack = dsack_high;
4374                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4375                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4376                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4377                 }
4378
4379                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4380                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4381                         __skb_unlink(skb, &tp->out_of_order_queue);
4382                         __kfree_skb(skb);
4383                         continue;
4384                 }
4385                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4386                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4387                            TCP_SKB_CB(skb)->end_seq);
4388
4389                 __skb_unlink(skb, &tp->out_of_order_queue);
4390                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4391                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4392                 if (tcp_hdr(skb)->fin)
4393                         tcp_fin(skb, sk, tcp_hdr(skb));
4394         }
4395 }
4396
4397 static int tcp_prune_ofo_queue(struct sock *sk);
4398 static int tcp_prune_queue(struct sock *sk);
4399
4400 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4401 {
4402         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4403             !sk_rmem_schedule(sk, size)) {
4404
4405                 if (tcp_prune_queue(sk) < 0)
4406                         return -1;
4407
4408                 if (!sk_rmem_schedule(sk, size)) {
4409                         if (!tcp_prune_ofo_queue(sk))
4410                                 return -1;
4411
4412                         if (!sk_rmem_schedule(sk, size))
4413                                 return -1;
4414                 }
4415         }
4416         return 0;
4417 }
4418
4419 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4420 {
4421         struct tcphdr *th = tcp_hdr(skb);
4422         struct tcp_sock *tp = tcp_sk(sk);
4423         int eaten = -1;
4424
4425         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4426                 goto drop;
4427
4428         skb_dst_drop(skb);
4429         __skb_pull(skb, th->doff * 4);
4430
4431         TCP_ECN_accept_cwr(tp, skb);
4432
4433         tp->rx_opt.dsack = 0;
4434
4435         /*  Queue data for delivery to the user.
4436          *  Packets in sequence go to the receive queue.
4437          *  Out of sequence packets to the out_of_order_queue.
4438          */
4439         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4440                 if (tcp_receive_window(tp) == 0)
4441                         goto out_of_window;
4442
4443                 /* Ok. In sequence. In window. */
4444                 if (tp->ucopy.task == current &&
4445                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4446                     sock_owned_by_user(sk) && !tp->urg_data) {
4447                         int chunk = min_t(unsigned int, skb->len,
4448                                           tp->ucopy.len);
4449
4450                         __set_current_state(TASK_RUNNING);
4451
4452                         local_bh_enable();
4453                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4454                                 tp->ucopy.len -= chunk;
4455                                 tp->copied_seq += chunk;
4456                                 eaten = (chunk == skb->len);
4457                                 tcp_rcv_space_adjust(sk);
4458                         }
4459                         local_bh_disable();
4460                 }
4461
4462                 if (eaten <= 0) {
4463 queue_and_out:
4464                         if (eaten < 0 &&
4465                             tcp_try_rmem_schedule(sk, skb->truesize))
4466                                 goto drop;
4467
4468                         skb_set_owner_r(skb, sk);
4469                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4470                 }
4471                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4472                 if (skb->len)
4473                         tcp_event_data_recv(sk, skb);
4474                 if (th->fin)
4475                         tcp_fin(skb, sk, th);
4476
4477                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4478                         tcp_ofo_queue(sk);
4479
4480                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4481                          * gap in queue is filled.
4482                          */
4483                         if (skb_queue_empty(&tp->out_of_order_queue))
4484                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4485                 }
4486
4487                 if (tp->rx_opt.num_sacks)
4488                         tcp_sack_remove(tp);
4489
4490                 tcp_fast_path_check(sk);
4491
4492                 if (eaten > 0)
4493                         __kfree_skb(skb);
4494                 else if (!sock_flag(sk, SOCK_DEAD))
4495                         sk->sk_data_ready(sk, 0);
4496                 return;
4497         }
4498
4499         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4500                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4501                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4502                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4503
4504 out_of_window:
4505                 tcp_enter_quickack_mode(sk);
4506                 inet_csk_schedule_ack(sk);
4507 drop:
4508                 __kfree_skb(skb);
4509                 return;
4510         }
4511
4512         /* Out of window. F.e. zero window probe. */
4513         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4514                 goto out_of_window;
4515
4516         tcp_enter_quickack_mode(sk);
4517
4518         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4519                 /* Partial packet, seq < rcv_next < end_seq */
4520                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4521                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4522                            TCP_SKB_CB(skb)->end_seq);
4523
4524                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4525
4526                 /* If window is closed, drop tail of packet. But after
4527                  * remembering D-SACK for its head made in previous line.
4528                  */
4529                 if (!tcp_receive_window(tp))
4530                         goto out_of_window;
4531                 goto queue_and_out;
4532         }
4533
4534         TCP_ECN_check_ce(tp, skb);
4535
4536         if (tcp_try_rmem_schedule(sk, skb->truesize))
4537                 goto drop;
4538
4539         /* Disable header prediction. */
4540         tp->pred_flags = 0;
4541         inet_csk_schedule_ack(sk);
4542
4543         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4544                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4545
4546         skb_set_owner_r(skb, sk);
4547
4548         if (!skb_peek(&tp->out_of_order_queue)) {
4549                 /* Initial out of order segment, build 1 SACK. */
4550                 if (tcp_is_sack(tp)) {
4551                         tp->rx_opt.num_sacks = 1;
4552                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4553                         tp->selective_acks[0].end_seq =
4554                                                 TCP_SKB_CB(skb)->end_seq;
4555                 }
4556                 __skb_queue_head(&tp->out_of_order_queue, skb);
4557         } else {
4558                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4559                 u32 seq = TCP_SKB_CB(skb)->seq;
4560                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4561
4562                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4563                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4564
4565                         if (!tp->rx_opt.num_sacks ||
4566                             tp->selective_acks[0].end_seq != seq)
4567                                 goto add_sack;
4568
4569                         /* Common case: data arrive in order after hole. */
4570                         tp->selective_acks[0].end_seq = end_seq;
4571                         return;
4572                 }
4573
4574                 /* Find place to insert this segment. */
4575                 while (1) {
4576                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4577                                 break;
4578                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4579                                 skb1 = NULL;
4580                                 break;
4581                         }
4582                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4583                 }
4584
4585                 /* Do skb overlap to previous one? */
4586                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4587                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4588                                 /* All the bits are present. Drop. */
4589                                 __kfree_skb(skb);
4590                                 tcp_dsack_set(sk, seq, end_seq);
4591                                 goto add_sack;
4592                         }
4593                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4594                                 /* Partial overlap. */
4595                                 tcp_dsack_set(sk, seq,
4596                                               TCP_SKB_CB(skb1)->end_seq);
4597                         } else {
4598                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4599                                                        skb1))
4600                                         skb1 = NULL;
4601                                 else
4602                                         skb1 = skb_queue_prev(
4603                                                 &tp->out_of_order_queue,
4604                                                 skb1);
4605                         }
4606                 }
4607                 if (!skb1)
4608                         __skb_queue_head(&tp->out_of_order_queue, skb);
4609                 else
4610                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4611
4612                 /* And clean segments covered by new one as whole. */
4613                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4614                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4615
4616                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4617                                 break;
4618                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4619                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4620                                                  end_seq);
4621                                 break;
4622                         }
4623                         __skb_unlink(skb1, &tp->out_of_order_queue);
4624                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4625                                          TCP_SKB_CB(skb1)->end_seq);
4626                         __kfree_skb(skb1);
4627                 }
4628
4629 add_sack:
4630                 if (tcp_is_sack(tp))
4631                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4632         }
4633 }
4634
4635 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4636                                         struct sk_buff_head *list)
4637 {
4638         struct sk_buff *next = NULL;
4639
4640         if (!skb_queue_is_last(list, skb))
4641                 next = skb_queue_next(list, skb);
4642
4643         __skb_unlink(skb, list);
4644         __kfree_skb(skb);
4645         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4646
4647         return next;
4648 }
4649
4650 /* Collapse contiguous sequence of skbs head..tail with
4651  * sequence numbers start..end.
4652  *
4653  * If tail is NULL, this means until the end of the list.
4654  *
4655  * Segments with FIN/SYN are not collapsed (only because this
4656  * simplifies code)
4657  */
4658 static void
4659 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4660              struct sk_buff *head, struct sk_buff *tail,
4661              u32 start, u32 end)
4662 {
4663         struct sk_buff *skb, *n;
4664         bool end_of_skbs;
4665
4666         /* First, check that queue is collapsible and find
4667          * the point where collapsing can be useful. */
4668         skb = head;
4669 restart:
4670         end_of_skbs = true;
4671         skb_queue_walk_from_safe(list, skb, n) {
4672                 if (skb == tail)
4673                         break;
4674                 /* No new bits? It is possible on ofo queue. */
4675                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4676                         skb = tcp_collapse_one(sk, skb, list);
4677                         if (!skb)
4678                                 break;
4679                         goto restart;
4680                 }
4681
4682                 /* The first skb to collapse is:
4683                  * - not SYN/FIN and
4684                  * - bloated or contains data before "start" or
4685                  *   overlaps to the next one.
4686                  */
4687                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4688                     (tcp_win_from_space(skb->truesize) > skb->len ||
4689                      before(TCP_SKB_CB(skb)->seq, start))) {
4690                         end_of_skbs = false;
4691                         break;
4692                 }
4693
4694                 if (!skb_queue_is_last(list, skb)) {
4695                         struct sk_buff *next = skb_queue_next(list, skb);
4696                         if (next != tail &&
4697                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4698                                 end_of_skbs = false;
4699                                 break;
4700                         }
4701                 }
4702
4703                 /* Decided to skip this, advance start seq. */
4704                 start = TCP_SKB_CB(skb)->end_seq;
4705         }
4706         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4707                 return;
4708
4709         while (before(start, end)) {
4710                 struct sk_buff *nskb;
4711                 unsigned int header = skb_headroom(skb);
4712                 int copy = SKB_MAX_ORDER(header, 0);
4713
4714                 /* Too big header? This can happen with IPv6. */
4715                 if (copy < 0)
4716                         return;
4717                 if (end - start < copy)
4718                         copy = end - start;
4719                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4720                 if (!nskb)
4721                         return;
4722
4723                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4724                 skb_set_network_header(nskb, (skb_network_header(skb) -
4725                                               skb->head));
4726                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4727                                                 skb->head));
4728                 skb_reserve(nskb, header);
4729                 memcpy(nskb->head, skb->head, header);
4730                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4731                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4732                 __skb_queue_before(list, skb, nskb);
4733                 skb_set_owner_r(nskb, sk);
4734
4735                 /* Copy data, releasing collapsed skbs. */
4736                 while (copy > 0) {
4737                         int offset = start - TCP_SKB_CB(skb)->seq;
4738                         int size = TCP_SKB_CB(skb)->end_seq - start;
4739
4740                         BUG_ON(offset < 0);
4741                         if (size > 0) {
4742                                 size = min(copy, size);
4743                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4744                                         BUG();
4745                                 TCP_SKB_CB(nskb)->end_seq += size;
4746                                 copy -= size;
4747                                 start += size;
4748                         }
4749                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4750                                 skb = tcp_collapse_one(sk, skb, list);
4751                                 if (!skb ||
4752                                     skb == tail ||
4753                                     tcp_hdr(skb)->syn ||
4754                                     tcp_hdr(skb)->fin)
4755                                         return;
4756                         }
4757                 }
4758         }
4759 }
4760
4761 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4762  * and tcp_collapse() them until all the queue is collapsed.
4763  */
4764 static void tcp_collapse_ofo_queue(struct sock *sk)
4765 {
4766         struct tcp_sock *tp = tcp_sk(sk);
4767         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4768         struct sk_buff *head;
4769         u32 start, end;
4770
4771         if (skb == NULL)
4772                 return;
4773
4774         start = TCP_SKB_CB(skb)->seq;
4775         end = TCP_SKB_CB(skb)->end_seq;
4776         head = skb;
4777
4778         for (;;) {
4779                 struct sk_buff *next = NULL;
4780
4781                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4782                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4783                 skb = next;
4784
4785                 /* Segment is terminated when we see gap or when
4786                  * we are at the end of all the queue. */
4787                 if (!skb ||
4788                     after(TCP_SKB_CB(skb)->seq, end) ||
4789                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4790                         tcp_collapse(sk, &tp->out_of_order_queue,
4791                                      head, skb, start, end);
4792                         head = skb;
4793                         if (!skb)
4794                                 break;
4795                         /* Start new segment */
4796                         start = TCP_SKB_CB(skb)->seq;
4797                         end = TCP_SKB_CB(skb)->end_seq;
4798                 } else {
4799                         if (before(TCP_SKB_CB(skb)->seq, start))
4800                                 start = TCP_SKB_CB(skb)->seq;
4801                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4802                                 end = TCP_SKB_CB(skb)->end_seq;
4803                 }
4804         }
4805 }
4806
4807 /*
4808  * Purge the out-of-order queue.
4809  * Return true if queue was pruned.
4810  */
4811 static int tcp_prune_ofo_queue(struct sock *sk)
4812 {
4813         struct tcp_sock *tp = tcp_sk(sk);
4814         int res = 0;
4815
4816         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4817                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4818                 __skb_queue_purge(&tp->out_of_order_queue);
4819
4820                 /* Reset SACK state.  A conforming SACK implementation will
4821                  * do the same at a timeout based retransmit.  When a connection
4822                  * is in a sad state like this, we care only about integrity
4823                  * of the connection not performance.
4824                  */
4825                 if (tp->rx_opt.sack_ok)
4826                         tcp_sack_reset(&tp->rx_opt);
4827                 sk_mem_reclaim(sk);
4828                 res = 1;
4829         }
4830         return res;
4831 }
4832
4833 /* Reduce allocated memory if we can, trying to get
4834  * the socket within its memory limits again.
4835  *
4836  * Return less than zero if we should start dropping frames
4837  * until the socket owning process reads some of the data
4838  * to stabilize the situation.
4839  */
4840 static int tcp_prune_queue(struct sock *sk)
4841 {
4842         struct tcp_sock *tp = tcp_sk(sk);
4843
4844         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4845
4846         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4847
4848         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4849                 tcp_clamp_window(sk);
4850         else if (tcp_memory_pressure)
4851                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4852
4853         tcp_collapse_ofo_queue(sk);
4854         if (!skb_queue_empty(&sk->sk_receive_queue))
4855                 tcp_collapse(sk, &sk->sk_receive_queue,
4856                              skb_peek(&sk->sk_receive_queue),
4857                              NULL,
4858                              tp->copied_seq, tp->rcv_nxt);
4859         sk_mem_reclaim(sk);
4860
4861         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4862                 return 0;
4863
4864         /* Collapsing did not help, destructive actions follow.
4865          * This must not ever occur. */
4866
4867         tcp_prune_ofo_queue(sk);
4868
4869         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4870                 return 0;
4871
4872         /* If we are really being abused, tell the caller to silently
4873          * drop receive data on the floor.  It will get retransmitted
4874          * and hopefully then we'll have sufficient space.
4875          */
4876         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4877
4878         /* Massive buffer overcommit. */
4879         tp->pred_flags = 0;
4880         return -1;
4881 }
4882
4883 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4884  * As additional protections, we do not touch cwnd in retransmission phases,
4885  * and if application hit its sndbuf limit recently.
4886  */
4887 void tcp_cwnd_application_limited(struct sock *sk)
4888 {
4889         struct tcp_sock *tp = tcp_sk(sk);
4890
4891         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4892             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4893                 /* Limited by application or receiver window. */
4894                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4895                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4896                 if (win_used < tp->snd_cwnd) {
4897                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4898                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4899                 }
4900                 tp->snd_cwnd_used = 0;
4901         }
4902         tp->snd_cwnd_stamp = tcp_time_stamp;
4903 }
4904
4905 static int tcp_should_expand_sndbuf(struct sock *sk)
4906 {
4907         struct tcp_sock *tp = tcp_sk(sk);
4908
4909         /* If the user specified a specific send buffer setting, do
4910          * not modify it.
4911          */
4912         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4913                 return 0;
4914
4915         /* If we are under global TCP memory pressure, do not expand.  */
4916         if (tcp_memory_pressure)
4917                 return 0;
4918
4919         /* If we are under soft global TCP memory pressure, do not expand.  */
4920         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4921                 return 0;
4922
4923         /* If we filled the congestion window, do not expand.  */
4924         if (tp->packets_out >= tp->snd_cwnd)
4925                 return 0;
4926
4927         return 1;
4928 }
4929
4930 /* When incoming ACK allowed to free some skb from write_queue,
4931  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4932  * on the exit from tcp input handler.
4933  *
4934  * PROBLEM: sndbuf expansion does not work well with largesend.
4935  */
4936 static void tcp_new_space(struct sock *sk)
4937 {
4938         struct tcp_sock *tp = tcp_sk(sk);
4939
4940         if (tcp_should_expand_sndbuf(sk)) {
4941                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4942                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4943                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4944                                      tp->reordering + 1);
4945                 sndmem *= 2 * demanded;
4946                 if (sndmem > sk->sk_sndbuf)
4947                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4948                 tp->snd_cwnd_stamp = tcp_time_stamp;
4949         }
4950
4951         sk->sk_write_space(sk);
4952 }
4953
4954 static void tcp_check_space(struct sock *sk)
4955 {
4956         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4957                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4958                 if (sk->sk_socket &&
4959                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4960                         tcp_new_space(sk);
4961         }
4962 }
4963
4964 static inline void tcp_data_snd_check(struct sock *sk)
4965 {
4966         tcp_push_pending_frames(sk);
4967         tcp_check_space(sk);
4968 }
4969
4970 /*
4971  * Check if sending an ack is needed.
4972  */
4973 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4974 {
4975         struct tcp_sock *tp = tcp_sk(sk);
4976
4977             /* More than one full frame received... */
4978         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4979              /* ... and right edge of window advances far enough.
4980               * (tcp_recvmsg() will send ACK otherwise). Or...
4981               */
4982              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4983             /* We ACK each frame or... */
4984             tcp_in_quickack_mode(sk) ||
4985             /* We have out of order data. */
4986             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4987                 /* Then ack it now */
4988                 tcp_send_ack(sk);
4989         } else {
4990                 /* Else, send delayed ack. */
4991                 tcp_send_delayed_ack(sk);
4992         }
4993 }
4994
4995 static inline void tcp_ack_snd_check(struct sock *sk)
4996 {
4997         if (!inet_csk_ack_scheduled(sk)) {
4998                 /* We sent a data segment already. */
4999                 return;
5000         }
5001         __tcp_ack_snd_check(sk, 1);
5002 }
5003
5004 /*
5005  *      This routine is only called when we have urgent data
5006  *      signaled. Its the 'slow' part of tcp_urg. It could be
5007  *      moved inline now as tcp_urg is only called from one
5008  *      place. We handle URGent data wrong. We have to - as
5009  *      BSD still doesn't use the correction from RFC961.
5010  *      For 1003.1g we should support a new option TCP_STDURG to permit
5011  *      either form (or just set the sysctl tcp_stdurg).
5012  */
5013
5014 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
5015 {
5016         struct tcp_sock *tp = tcp_sk(sk);
5017         u32 ptr = ntohs(th->urg_ptr);
5018
5019         if (ptr && !sysctl_tcp_stdurg)
5020                 ptr--;
5021         ptr += ntohl(th->seq);
5022
5023         /* Ignore urgent data that we've already seen and read. */
5024         if (after(tp->copied_seq, ptr))
5025                 return;
5026
5027         /* Do not replay urg ptr.
5028          *
5029          * NOTE: interesting situation not covered by specs.
5030          * Misbehaving sender may send urg ptr, pointing to segment,
5031          * which we already have in ofo queue. We are not able to fetch
5032          * such data and will stay in TCP_URG_NOTYET until will be eaten
5033          * by recvmsg(). Seems, we are not obliged to handle such wicked
5034          * situations. But it is worth to think about possibility of some
5035          * DoSes using some hypothetical application level deadlock.
5036          */
5037         if (before(ptr, tp->rcv_nxt))
5038                 return;
5039
5040         /* Do we already have a newer (or duplicate) urgent pointer? */
5041         if (tp->urg_data && !after(ptr, tp->urg_seq))
5042                 return;
5043
5044         /* Tell the world about our new urgent pointer. */
5045         sk_send_sigurg(sk);
5046
5047         /* We may be adding urgent data when the last byte read was
5048          * urgent. To do this requires some care. We cannot just ignore
5049          * tp->copied_seq since we would read the last urgent byte again
5050          * as data, nor can we alter copied_seq until this data arrives
5051          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5052          *
5053          * NOTE. Double Dutch. Rendering to plain English: author of comment
5054          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5055          * and expect that both A and B disappear from stream. This is _wrong_.
5056          * Though this happens in BSD with high probability, this is occasional.
5057          * Any application relying on this is buggy. Note also, that fix "works"
5058          * only in this artificial test. Insert some normal data between A and B and we will
5059          * decline of BSD again. Verdict: it is better to remove to trap
5060          * buggy users.
5061          */
5062         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5063             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5064                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5065                 tp->copied_seq++;
5066                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5067                         __skb_unlink(skb, &sk->sk_receive_queue);
5068                         __kfree_skb(skb);
5069                 }
5070         }
5071
5072         tp->urg_data = TCP_URG_NOTYET;
5073         tp->urg_seq = ptr;
5074
5075         /* Disable header prediction. */
5076         tp->pred_flags = 0;
5077 }
5078
5079 /* This is the 'fast' part of urgent handling. */
5080 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5081 {
5082         struct tcp_sock *tp = tcp_sk(sk);
5083
5084         /* Check if we get a new urgent pointer - normally not. */
5085         if (th->urg)
5086                 tcp_check_urg(sk, th);
5087
5088         /* Do we wait for any urgent data? - normally not... */
5089         if (tp->urg_data == TCP_URG_NOTYET) {
5090                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5091                           th->syn;
5092
5093                 /* Is the urgent pointer pointing into this packet? */
5094                 if (ptr < skb->len) {
5095                         u8 tmp;
5096                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5097                                 BUG();
5098                         tp->urg_data = TCP_URG_VALID | tmp;
5099                         if (!sock_flag(sk, SOCK_DEAD))
5100                                 sk->sk_data_ready(sk, 0);
5101                 }
5102         }
5103 }
5104
5105 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5106 {
5107         struct tcp_sock *tp = tcp_sk(sk);
5108         int chunk = skb->len - hlen;
5109         int err;
5110
5111         local_bh_enable();
5112         if (skb_csum_unnecessary(skb))
5113                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5114         else
5115                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5116                                                        tp->ucopy.iov);
5117
5118         if (!err) {
5119                 tp->ucopy.len -= chunk;
5120                 tp->copied_seq += chunk;
5121                 tcp_rcv_space_adjust(sk);
5122         }
5123
5124         local_bh_disable();
5125         return err;
5126 }
5127
5128 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5129                                             struct sk_buff *skb)
5130 {
5131         __sum16 result;
5132
5133         if (sock_owned_by_user(sk)) {
5134                 local_bh_enable();
5135                 result = __tcp_checksum_complete(skb);
5136                 local_bh_disable();
5137         } else {
5138                 result = __tcp_checksum_complete(skb);
5139         }
5140         return result;
5141 }
5142
5143 static inline int tcp_checksum_complete_user(struct sock *sk,
5144                                              struct sk_buff *skb)
5145 {
5146         return !skb_csum_unnecessary(skb) &&
5147                __tcp_checksum_complete_user(sk, skb);
5148 }
5149
5150 #ifdef CONFIG_NET_DMA
5151 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5152                                   int hlen)
5153 {
5154         struct tcp_sock *tp = tcp_sk(sk);
5155         int chunk = skb->len - hlen;
5156         int dma_cookie;
5157         int copied_early = 0;
5158
5159         if (tp->ucopy.wakeup)
5160                 return 0;
5161
5162         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5163                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5164
5165         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5166
5167                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5168                                                          skb, hlen,
5169                                                          tp->ucopy.iov, chunk,
5170                                                          tp->ucopy.pinned_list);
5171
5172                 if (dma_cookie < 0)
5173                         goto out;
5174
5175                 tp->ucopy.dma_cookie = dma_cookie;
5176                 copied_early = 1;
5177
5178                 tp->ucopy.len -= chunk;
5179                 tp->copied_seq += chunk;
5180                 tcp_rcv_space_adjust(sk);
5181
5182                 if ((tp->ucopy.len == 0) ||
5183                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5184                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5185                         tp->ucopy.wakeup = 1;
5186                         sk->sk_data_ready(sk, 0);
5187                 }
5188         } else if (chunk > 0) {
5189                 tp->ucopy.wakeup = 1;
5190                 sk->sk_data_ready(sk, 0);
5191         }
5192 out:
5193         return copied_early;
5194 }
5195 #endif /* CONFIG_NET_DMA */
5196
5197 /* Does PAWS and seqno based validation of an incoming segment, flags will
5198  * play significant role here.
5199  */
5200 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5201                                   struct tcphdr *th, int syn_inerr)
5202 {
5203         u8 *hash_location;
5204         struct tcp_sock *tp = tcp_sk(sk);
5205
5206         /* RFC1323: H1. Apply PAWS check first. */
5207         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5208             tp->rx_opt.saw_tstamp &&
5209             tcp_paws_discard(sk, skb)) {
5210                 if (!th->rst) {
5211                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5212                         tcp_send_dupack(sk, skb);
5213                         goto discard;
5214                 }
5215                 /* Reset is accepted even if it did not pass PAWS. */
5216         }
5217
5218         /* Step 1: check sequence number */
5219         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5220                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5221                  * (RST) segments are validated by checking their SEQ-fields."
5222                  * And page 69: "If an incoming segment is not acceptable,
5223                  * an acknowledgment should be sent in reply (unless the RST
5224                  * bit is set, if so drop the segment and return)".
5225                  */
5226                 if (!th->rst) {
5227                         if (th->syn)
5228                                 goto syn_challenge;
5229                         tcp_send_dupack(sk, skb);
5230                 }
5231                 goto discard;
5232         }
5233
5234         /* Step 2: check RST bit */
5235         if (th->rst) {
5236                 /* RFC 5961 3.2 :
5237                  * If sequence number exactly matches RCV.NXT, then
5238                  *     RESET the connection
5239                  * else
5240                  *     Send a challenge ACK
5241                  */
5242                 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5243                         tcp_reset(sk);
5244                 else
5245                         tcp_send_challenge_ack(sk);
5246                 goto discard;
5247         }
5248
5249         /* step 3: check security and precedence [ignored] */
5250
5251         /* step 4: Check for a SYN
5252          * RFC 5691 4.2 : Send a challenge ack
5253          */
5254         if (th->syn) {
5255 syn_challenge:
5256                 if (syn_inerr)
5257                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5258                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5259                 tcp_send_challenge_ack(sk);
5260                 goto discard;
5261         }
5262
5263         return true;
5264
5265 discard:
5266         __kfree_skb(skb);
5267         return false;
5268 }
5269
5270 /*
5271  *      TCP receive function for the ESTABLISHED state.
5272  *
5273  *      It is split into a fast path and a slow path. The fast path is
5274  *      disabled when:
5275  *      - A zero window was announced from us - zero window probing
5276  *        is only handled properly in the slow path.
5277  *      - Out of order segments arrived.
5278  *      - Urgent data is expected.
5279  *      - There is no buffer space left
5280  *      - Unexpected TCP flags/window values/header lengths are received
5281  *        (detected by checking the TCP header against pred_flags)
5282  *      - Data is sent in both directions. Fast path only supports pure senders
5283  *        or pure receivers (this means either the sequence number or the ack
5284  *        value must stay constant)
5285  *      - Unexpected TCP option.
5286  *
5287  *      When these conditions are not satisfied it drops into a standard
5288  *      receive procedure patterned after RFC793 to handle all cases.
5289  *      The first three cases are guaranteed by proper pred_flags setting,
5290  *      the rest is checked inline. Fast processing is turned on in
5291  *      tcp_data_queue when everything is OK.
5292  */
5293 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5294                         struct tcphdr *th, unsigned len)
5295 {
5296         struct tcp_sock *tp = tcp_sk(sk);
5297
5298         /*
5299          *      Header prediction.
5300          *      The code loosely follows the one in the famous
5301          *      "30 instruction TCP receive" Van Jacobson mail.
5302          *
5303          *      Van's trick is to deposit buffers into socket queue
5304          *      on a device interrupt, to call tcp_recv function
5305          *      on the receive process context and checksum and copy
5306          *      the buffer to user space. smart...
5307          *
5308          *      Our current scheme is not silly either but we take the
5309          *      extra cost of the net_bh soft interrupt processing...
5310          *      We do checksum and copy also but from device to kernel.
5311          */
5312
5313         tp->rx_opt.saw_tstamp = 0;
5314
5315         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5316          *      if header_prediction is to be made
5317          *      'S' will always be tp->tcp_header_len >> 2
5318          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5319          *  turn it off (when there are holes in the receive
5320          *       space for instance)
5321          *      PSH flag is ignored.
5322          */
5323
5324         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5325             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5326             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5327                 int tcp_header_len = tp->tcp_header_len;
5328
5329                 /* Timestamp header prediction: tcp_header_len
5330                  * is automatically equal to th->doff*4 due to pred_flags
5331                  * match.
5332                  */
5333
5334                 /* Check timestamp */
5335                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5336                         /* No? Slow path! */
5337                         if (!tcp_parse_aligned_timestamp(tp, th))
5338                                 goto slow_path;
5339
5340                         /* If PAWS failed, check it more carefully in slow path */
5341                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5342                                 goto slow_path;
5343
5344                         /* DO NOT update ts_recent here, if checksum fails
5345                          * and timestamp was corrupted part, it will result
5346                          * in a hung connection since we will drop all
5347                          * future packets due to the PAWS test.
5348                          */
5349                 }
5350
5351                 if (len <= tcp_header_len) {
5352                         /* Bulk data transfer: sender */
5353                         if (len == tcp_header_len) {
5354                                 /* Predicted packet is in window by definition.
5355                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5356                                  * Hence, check seq<=rcv_wup reduces to:
5357                                  */
5358                                 if (tcp_header_len ==
5359                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5360                                     tp->rcv_nxt == tp->rcv_wup)
5361                                         tcp_store_ts_recent(tp);
5362
5363                                 /* We know that such packets are checksummed
5364                                  * on entry.
5365                                  */
5366                                 tcp_ack(sk, skb, 0);
5367                                 __kfree_skb(skb);
5368                                 tcp_data_snd_check(sk);
5369                                 return 0;
5370                         } else { /* Header too small */
5371                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5372                                 goto discard;
5373                         }
5374                 } else {
5375                         int eaten = 0;
5376                         int copied_early = 0;
5377
5378                         if (tp->copied_seq == tp->rcv_nxt &&
5379                             len - tcp_header_len <= tp->ucopy.len) {
5380 #ifdef CONFIG_NET_DMA
5381                                 if (tp->ucopy.task == current &&
5382                                     sock_owned_by_user(sk) &&
5383                                     tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5384                                         copied_early = 1;
5385                                         eaten = 1;
5386                                 }
5387 #endif
5388                                 if (tp->ucopy.task == current &&
5389                                     sock_owned_by_user(sk) && !copied_early) {
5390                                         __set_current_state(TASK_RUNNING);
5391
5392                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5393                                                 eaten = 1;
5394                                 }
5395                                 if (eaten) {
5396                                         /* Predicted packet is in window by definition.
5397                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5398                                          * Hence, check seq<=rcv_wup reduces to:
5399                                          */
5400                                         if (tcp_header_len ==
5401                                             (sizeof(struct tcphdr) +
5402                                              TCPOLEN_TSTAMP_ALIGNED) &&
5403                                             tp->rcv_nxt == tp->rcv_wup)
5404                                                 tcp_store_ts_recent(tp);
5405
5406                                         tcp_rcv_rtt_measure_ts(sk, skb);
5407
5408                                         __skb_pull(skb, tcp_header_len);
5409                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5410                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5411                                 }
5412                                 if (copied_early)
5413                                         tcp_cleanup_rbuf(sk, skb->len);
5414                         }
5415                         if (!eaten) {
5416                                 if (tcp_checksum_complete_user(sk, skb))
5417                                         goto csum_error;
5418
5419                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5420                                         goto step5;
5421
5422                                 /* Predicted packet is in window by definition.
5423                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5424                                  * Hence, check seq<=rcv_wup reduces to:
5425                                  */
5426                                 if (tcp_header_len ==
5427                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5428                                     tp->rcv_nxt == tp->rcv_wup)
5429                                         tcp_store_ts_recent(tp);
5430
5431                                 tcp_rcv_rtt_measure_ts(sk, skb);
5432
5433                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5434
5435                                 /* Bulk data transfer: receiver */
5436                                 __skb_pull(skb, tcp_header_len);
5437                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5438                                 skb_set_owner_r(skb, sk);
5439                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5440                         }
5441
5442                         tcp_event_data_recv(sk, skb);
5443
5444                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5445                                 /* Well, only one small jumplet in fast path... */
5446                                 tcp_ack(sk, skb, FLAG_DATA);
5447                                 tcp_data_snd_check(sk);
5448                                 if (!inet_csk_ack_scheduled(sk))
5449                                         goto no_ack;
5450                         }
5451
5452                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5453                                 __tcp_ack_snd_check(sk, 0);
5454 no_ack:
5455 #ifdef CONFIG_NET_DMA
5456                         if (copied_early)
5457                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5458                         else
5459 #endif
5460                         if (eaten)
5461                                 __kfree_skb(skb);
5462                         else
5463                                 sk->sk_data_ready(sk, 0);
5464                         return 0;
5465                 }
5466         }
5467
5468 slow_path:
5469         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5470                 goto csum_error;
5471
5472         /*
5473          *      Standard slow path.
5474          */
5475
5476         if (!tcp_validate_incoming(sk, skb, th, 1))
5477                 return 0;
5478
5479 step5:
5480         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5481                 goto discard;
5482
5483         /* ts_recent update must be made after we are sure that the packet
5484          * is in window.
5485          */
5486         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5487
5488         tcp_rcv_rtt_measure_ts(sk, skb);
5489
5490         /* Process urgent data. */
5491         tcp_urg(sk, skb, th);
5492
5493         /* step 7: process the segment text */
5494         tcp_data_queue(sk, skb);
5495
5496         tcp_data_snd_check(sk);
5497         tcp_ack_snd_check(sk);
5498         return 0;
5499
5500 csum_error:
5501         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5502
5503 discard:
5504         __kfree_skb(skb);
5505         return 0;
5506 }
5507 EXPORT_SYMBOL(tcp_rcv_established);
5508
5509 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5510                                          struct tcphdr *th, unsigned len)
5511 {
5512         u8 *hash_location;
5513         struct inet_connection_sock *icsk = inet_csk(sk);
5514         struct tcp_sock *tp = tcp_sk(sk);
5515         struct tcp_cookie_values *cvp = tp->cookie_values;
5516         int saved_clamp = tp->rx_opt.mss_clamp;
5517
5518         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5519
5520         if (th->ack) {
5521                 /* rfc793:
5522                  * "If the state is SYN-SENT then
5523                  *    first check the ACK bit
5524                  *      If the ACK bit is set
5525                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5526                  *        a reset (unless the RST bit is set, if so drop
5527                  *        the segment and return)"
5528                  *
5529                  *  We do not send data with SYN, so that RFC-correct
5530                  *  test reduces to:
5531                  */
5532                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5533                         goto reset_and_undo;
5534
5535                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5536                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5537                              tcp_time_stamp)) {
5538                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5539                         goto reset_and_undo;
5540                 }
5541
5542                 /* Now ACK is acceptable.
5543                  *
5544                  * "If the RST bit is set
5545                  *    If the ACK was acceptable then signal the user "error:
5546                  *    connection reset", drop the segment, enter CLOSED state,
5547                  *    delete TCB, and return."
5548                  */
5549
5550                 if (th->rst) {
5551                         tcp_reset(sk);
5552                         goto discard;
5553                 }
5554
5555                 /* rfc793:
5556                  *   "fifth, if neither of the SYN or RST bits is set then
5557                  *    drop the segment and return."
5558                  *
5559                  *    See note below!
5560                  *                                        --ANK(990513)
5561                  */
5562                 if (!th->syn)
5563                         goto discard_and_undo;
5564
5565                 /* rfc793:
5566                  *   "If the SYN bit is on ...
5567                  *    are acceptable then ...
5568                  *    (our SYN has been ACKed), change the connection
5569                  *    state to ESTABLISHED..."
5570                  */
5571
5572                 TCP_ECN_rcv_synack(tp, th);
5573
5574                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5575                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5576
5577                 /* Ok.. it's good. Set up sequence numbers and
5578                  * move to established.
5579                  */
5580                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5581                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5582
5583                 /* RFC1323: The window in SYN & SYN/ACK segments is
5584                  * never scaled.
5585                  */
5586                 tp->snd_wnd = ntohs(th->window);
5587                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5588
5589                 if (!tp->rx_opt.wscale_ok) {
5590                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5591                         tp->window_clamp = min(tp->window_clamp, 65535U);
5592                 }
5593
5594                 if (tp->rx_opt.saw_tstamp) {
5595                         tp->rx_opt.tstamp_ok       = 1;
5596                         tp->tcp_header_len =
5597                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5598                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5599                         tcp_store_ts_recent(tp);
5600                 } else {
5601                         tp->tcp_header_len = sizeof(struct tcphdr);
5602                 }
5603
5604                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5605                         tcp_enable_fack(tp);
5606
5607                 tcp_mtup_init(sk);
5608                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5609                 tcp_initialize_rcv_mss(sk);
5610
5611                 /* Remember, tcp_poll() does not lock socket!
5612                  * Change state from SYN-SENT only after copied_seq
5613                  * is initialized. */
5614                 tp->copied_seq = tp->rcv_nxt;
5615
5616                 if (cvp != NULL &&
5617                     cvp->cookie_pair_size > 0 &&
5618                     tp->rx_opt.cookie_plus > 0) {
5619                         int cookie_size = tp->rx_opt.cookie_plus
5620                                         - TCPOLEN_COOKIE_BASE;
5621                         int cookie_pair_size = cookie_size
5622                                              + cvp->cookie_desired;
5623
5624                         /* A cookie extension option was sent and returned.
5625                          * Note that each incoming SYNACK replaces the
5626                          * Responder cookie.  The initial exchange is most
5627                          * fragile, as protection against spoofing relies
5628                          * entirely upon the sequence and timestamp (above).
5629                          * This replacement strategy allows the correct pair to
5630                          * pass through, while any others will be filtered via
5631                          * Responder verification later.
5632                          */
5633                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5634                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5635                                        hash_location, cookie_size);
5636                                 cvp->cookie_pair_size = cookie_pair_size;
5637                         }
5638                 }
5639
5640                 smp_mb();
5641                 tcp_set_state(sk, TCP_ESTABLISHED);
5642
5643                 security_inet_conn_established(sk, skb);
5644
5645                 /* Make sure socket is routed, for correct metrics.  */
5646                 icsk->icsk_af_ops->rebuild_header(sk);
5647
5648                 tcp_init_metrics(sk);
5649
5650                 tcp_init_congestion_control(sk);
5651
5652                 /* Prevent spurious tcp_cwnd_restart() on first data
5653                  * packet.
5654                  */
5655                 tp->lsndtime = tcp_time_stamp;
5656
5657                 tcp_init_buffer_space(sk);
5658
5659                 if (sock_flag(sk, SOCK_KEEPOPEN))
5660                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5661
5662                 if (!tp->rx_opt.snd_wscale)
5663                         __tcp_fast_path_on(tp, tp->snd_wnd);
5664                 else
5665                         tp->pred_flags = 0;
5666
5667                 if (!sock_flag(sk, SOCK_DEAD)) {
5668                         sk->sk_state_change(sk);
5669                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5670                 }
5671
5672                 if (sk->sk_write_pending ||
5673                     icsk->icsk_accept_queue.rskq_defer_accept ||
5674                     icsk->icsk_ack.pingpong) {
5675                         /* Save one ACK. Data will be ready after
5676                          * several ticks, if write_pending is set.
5677                          *
5678                          * It may be deleted, but with this feature tcpdumps
5679                          * look so _wonderfully_ clever, that I was not able
5680                          * to stand against the temptation 8)     --ANK
5681                          */
5682                         inet_csk_schedule_ack(sk);
5683                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5684                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5685                         tcp_incr_quickack(sk);
5686                         tcp_enter_quickack_mode(sk);
5687                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5688                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5689
5690 discard:
5691                         __kfree_skb(skb);
5692                         return 0;
5693                 } else {
5694                         tcp_send_ack(sk);
5695                 }
5696                 return -1;
5697         }
5698
5699         /* No ACK in the segment */
5700
5701         if (th->rst) {
5702                 /* rfc793:
5703                  * "If the RST bit is set
5704                  *
5705                  *      Otherwise (no ACK) drop the segment and return."
5706                  */
5707
5708                 goto discard_and_undo;
5709         }
5710
5711         /* PAWS check. */
5712         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5713             tcp_paws_reject(&tp->rx_opt, 0))
5714                 goto discard_and_undo;
5715
5716         if (th->syn) {
5717                 /* We see SYN without ACK. It is attempt of
5718                  * simultaneous connect with crossed SYNs.
5719                  * Particularly, it can be connect to self.
5720                  */
5721                 tcp_set_state(sk, TCP_SYN_RECV);
5722
5723                 if (tp->rx_opt.saw_tstamp) {
5724                         tp->rx_opt.tstamp_ok = 1;
5725                         tcp_store_ts_recent(tp);
5726                         tp->tcp_header_len =
5727                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5728                 } else {
5729                         tp->tcp_header_len = sizeof(struct tcphdr);
5730                 }
5731
5732                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5733                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5734
5735                 /* RFC1323: The window in SYN & SYN/ACK segments is
5736                  * never scaled.
5737                  */
5738                 tp->snd_wnd    = ntohs(th->window);
5739                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5740                 tp->max_window = tp->snd_wnd;
5741
5742                 TCP_ECN_rcv_syn(tp, th);
5743
5744                 tcp_mtup_init(sk);
5745                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746                 tcp_initialize_rcv_mss(sk);
5747
5748                 tcp_send_synack(sk);
5749 #if 0
5750                 /* Note, we could accept data and URG from this segment.
5751                  * There are no obstacles to make this.
5752                  *
5753                  * However, if we ignore data in ACKless segments sometimes,
5754                  * we have no reasons to accept it sometimes.
5755                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5756                  * is not flawless. So, discard packet for sanity.
5757                  * Uncomment this return to process the data.
5758                  */
5759                 return -1;
5760 #else
5761                 goto discard;
5762 #endif
5763         }
5764         /* "fifth, if neither of the SYN or RST bits is set then
5765          * drop the segment and return."
5766          */
5767
5768 discard_and_undo:
5769         tcp_clear_options(&tp->rx_opt);
5770         tp->rx_opt.mss_clamp = saved_clamp;
5771         goto discard;
5772
5773 reset_and_undo:
5774         tcp_clear_options(&tp->rx_opt);
5775         tp->rx_opt.mss_clamp = saved_clamp;
5776         return 1;
5777 }
5778
5779 /*
5780  *      This function implements the receiving procedure of RFC 793 for
5781  *      all states except ESTABLISHED and TIME_WAIT.
5782  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5783  *      address independent.
5784  */
5785
5786 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5787                           struct tcphdr *th, unsigned len)
5788 {
5789         struct tcp_sock *tp = tcp_sk(sk);
5790         struct inet_connection_sock *icsk = inet_csk(sk);
5791         int queued = 0;
5792
5793         tp->rx_opt.saw_tstamp = 0;
5794
5795         switch (sk->sk_state) {
5796         case TCP_CLOSE:
5797                 goto discard;
5798
5799         case TCP_LISTEN:
5800                 if (th->ack)
5801                         return 1;
5802
5803                 if (th->rst)
5804                         goto discard;
5805
5806                 if (th->syn) {
5807                         if (th->fin)
5808                                 goto discard;
5809                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5810                                 return 1;
5811
5812                         /* Now we have several options: In theory there is
5813                          * nothing else in the frame. KA9Q has an option to
5814                          * send data with the syn, BSD accepts data with the
5815                          * syn up to the [to be] advertised window and
5816                          * Solaris 2.1 gives you a protocol error. For now
5817                          * we just ignore it, that fits the spec precisely
5818                          * and avoids incompatibilities. It would be nice in
5819                          * future to drop through and process the data.
5820                          *
5821                          * Now that TTCP is starting to be used we ought to
5822                          * queue this data.
5823                          * But, this leaves one open to an easy denial of
5824                          * service attack, and SYN cookies can't defend
5825                          * against this problem. So, we drop the data
5826                          * in the interest of security over speed unless
5827                          * it's still in use.
5828                          */
5829                         kfree_skb(skb);
5830                         return 0;
5831                 }
5832                 goto discard;
5833
5834         case TCP_SYN_SENT:
5835                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5836                 if (queued >= 0)
5837                         return queued;
5838
5839                 /* Do step6 onward by hand. */
5840                 tcp_urg(sk, skb, th);
5841                 __kfree_skb(skb);
5842                 tcp_data_snd_check(sk);
5843                 return 0;
5844         }
5845
5846         if (!tcp_validate_incoming(sk, skb, th, 0))
5847                 return 0;
5848
5849         /* step 5: check the ACK field */
5850         if (th->ack) {
5851                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5852
5853                 switch (sk->sk_state) {
5854                 case TCP_SYN_RECV:
5855                         if (acceptable) {
5856                                 tp->copied_seq = tp->rcv_nxt;
5857                                 smp_mb();
5858                                 tcp_set_state(sk, TCP_ESTABLISHED);
5859                                 sk->sk_state_change(sk);
5860
5861                                 /* Note, that this wakeup is only for marginal
5862                                  * crossed SYN case. Passively open sockets
5863                                  * are not waked up, because sk->sk_sleep ==
5864                                  * NULL and sk->sk_socket == NULL.
5865                                  */
5866                                 if (sk->sk_socket)
5867                                         sk_wake_async(sk,
5868                                                       SOCK_WAKE_IO, POLL_OUT);
5869
5870                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5871                                 tp->snd_wnd = ntohs(th->window) <<
5872                                               tp->rx_opt.snd_wscale;
5873                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5874
5875                                 /* tcp_ack considers this ACK as duplicate
5876                                  * and does not calculate rtt.
5877                                  * Force it here.
5878                                  */
5879                                 tcp_ack_update_rtt(sk, 0, 0);
5880
5881                                 if (tp->rx_opt.tstamp_ok)
5882                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5883
5884                                 /* Make sure socket is routed, for
5885                                  * correct metrics.
5886                                  */
5887                                 icsk->icsk_af_ops->rebuild_header(sk);
5888
5889                                 tcp_init_metrics(sk);
5890
5891                                 tcp_init_congestion_control(sk);
5892
5893                                 /* Prevent spurious tcp_cwnd_restart() on
5894                                  * first data packet.
5895                                  */
5896                                 tp->lsndtime = tcp_time_stamp;
5897
5898                                 tcp_mtup_init(sk);
5899                                 tcp_initialize_rcv_mss(sk);
5900                                 tcp_init_buffer_space(sk);
5901                                 tcp_fast_path_on(tp);
5902                         } else {
5903                                 return 1;
5904                         }
5905                         break;
5906
5907                 case TCP_FIN_WAIT1:
5908                         if (tp->snd_una == tp->write_seq) {
5909                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5910                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5911                                 dst_confirm(__sk_dst_get(sk));
5912
5913                                 if (!sock_flag(sk, SOCK_DEAD))
5914                                         /* Wake up lingering close() */
5915                                         sk->sk_state_change(sk);
5916                                 else {
5917                                         int tmo;
5918
5919                                         if (tp->linger2 < 0 ||
5920                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5921                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5922                                                 tcp_done(sk);
5923                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5924                                                 return 1;
5925                                         }
5926
5927                                         tmo = tcp_fin_time(sk);
5928                                         if (tmo > TCP_TIMEWAIT_LEN) {
5929                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5930                                         } else if (th->fin || sock_owned_by_user(sk)) {
5931                                                 /* Bad case. We could lose such FIN otherwise.
5932                                                  * It is not a big problem, but it looks confusing
5933                                                  * and not so rare event. We still can lose it now,
5934                                                  * if it spins in bh_lock_sock(), but it is really
5935                                                  * marginal case.
5936                                                  */
5937                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5938                                         } else {
5939                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5940                                                 goto discard;
5941                                         }
5942                                 }
5943                         }
5944                         break;
5945
5946                 case TCP_CLOSING:
5947                         if (tp->snd_una == tp->write_seq) {
5948                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5949                                 goto discard;
5950                         }
5951                         break;
5952
5953                 case TCP_LAST_ACK:
5954                         if (tp->snd_una == tp->write_seq) {
5955                                 tcp_update_metrics(sk);
5956                                 tcp_done(sk);
5957                                 goto discard;
5958                         }
5959                         break;
5960                 }
5961         } else
5962                 goto discard;
5963
5964         /* ts_recent update must be made after we are sure that the packet
5965          * is in window.
5966          */
5967         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5968
5969         /* step 6: check the URG bit */
5970         tcp_urg(sk, skb, th);
5971
5972         /* step 7: process the segment text */
5973         switch (sk->sk_state) {
5974         case TCP_CLOSE_WAIT:
5975         case TCP_CLOSING:
5976         case TCP_LAST_ACK:
5977                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5978                         break;
5979         case TCP_FIN_WAIT1:
5980         case TCP_FIN_WAIT2:
5981                 /* RFC 793 says to queue data in these states,
5982                  * RFC 1122 says we MUST send a reset.
5983                  * BSD 4.4 also does reset.
5984                  */
5985                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5986                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5987                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5988                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5989                                 tcp_reset(sk);
5990                                 return 1;
5991                         }
5992                 }
5993                 /* Fall through */
5994         case TCP_ESTABLISHED:
5995                 tcp_data_queue(sk, skb);
5996                 queued = 1;
5997                 break;
5998         }
5999
6000         /* tcp_data could move socket to TIME-WAIT */
6001         if (sk->sk_state != TCP_CLOSE) {
6002                 tcp_data_snd_check(sk);
6003                 tcp_ack_snd_check(sk);
6004         }
6005
6006         if (!queued) {
6007 discard:
6008                 __kfree_skb(skb);
6009         }
6010         return 0;
6011 }
6012 EXPORT_SYMBOL(tcp_rcv_state_process);