]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/ipv4/tcp_input.c
e042cabb695e2bc9dfa4c1e3ed6de79f434b7e45
[karo-tx-linux.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 int sysctl_tcp_early_retrans __read_mostly = 2;
103
104 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
105 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
106 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
108 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
109 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
110 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
111 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
113 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
116 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
117
118 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132         struct inet_connection_sock *icsk = inet_csk(sk);
133         const unsigned int lss = icsk->icsk_ack.last_seg_size;
134         unsigned int len;
135
136         icsk->icsk_ack.last_seg_size = 0;
137
138         /* skb->len may jitter because of SACKs, even if peer
139          * sends good full-sized frames.
140          */
141         len = skb_shinfo(skb)->gso_size ? : skb->len;
142         if (len >= icsk->icsk_ack.rcv_mss) {
143                 icsk->icsk_ack.rcv_mss = len;
144         } else {
145                 /* Otherwise, we make more careful check taking into account,
146                  * that SACKs block is variable.
147                  *
148                  * "len" is invariant segment length, including TCP header.
149                  */
150                 len += skb->data - skb_transport_header(skb);
151                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152                     /* If PSH is not set, packet should be
153                      * full sized, provided peer TCP is not badly broken.
154                      * This observation (if it is correct 8)) allows
155                      * to handle super-low mtu links fairly.
156                      */
157                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159                         /* Subtract also invariant (if peer is RFC compliant),
160                          * tcp header plus fixed timestamp option length.
161                          * Resulting "len" is MSS free of SACK jitter.
162                          */
163                         len -= tcp_sk(sk)->tcp_header_len;
164                         icsk->icsk_ack.last_seg_size = len;
165                         if (len == lss) {
166                                 icsk->icsk_ack.rcv_mss = len;
167                                 return;
168                         }
169                 }
170                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173         }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178         struct inet_connection_sock *icsk = inet_csk(sk);
179         unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181         if (quickacks == 0)
182                 quickacks = 2;
183         if (quickacks > icsk->icsk_ack.quick)
184                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189         struct inet_connection_sock *icsk = inet_csk(sk);
190         tcp_incr_quickack(sk);
191         icsk->icsk_ack.pingpong = 0;
192         icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198
199 static inline int tcp_in_quickack_mode(const struct sock *sk)
200 {
201         const struct inet_connection_sock *icsk = inet_csk(sk);
202         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206 {
207         if (tp->ecn_flags & TCP_ECN_OK)
208                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213         if (tcp_hdr(skb)->cwr)
214                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218 {
219         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224         if (!(tp->ecn_flags & TCP_ECN_OK))
225                 return;
226
227         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228         case INET_ECN_NOT_ECT:
229                 /* Funny extension: if ECT is not set on a segment,
230                  * and we already seen ECT on a previous segment,
231                  * it is probably a retransmit.
232                  */
233                 if (tp->ecn_flags & TCP_ECN_SEEN)
234                         tcp_enter_quickack_mode((struct sock *)tp);
235                 break;
236         case INET_ECN_CE:
237                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
238                 /* fallinto */
239         default:
240                 tp->ecn_flags |= TCP_ECN_SEEN;
241         }
242 }
243
244 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
245 {
246         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
247                 tp->ecn_flags &= ~TCP_ECN_OK;
248 }
249
250 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
251 {
252         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
253                 tp->ecn_flags &= ~TCP_ECN_OK;
254 }
255
256 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
257 {
258         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
259                 return 1;
260         return 0;
261 }
262
263 /* Buffer size and advertised window tuning.
264  *
265  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266  */
267
268 static void tcp_fixup_sndbuf(struct sock *sk)
269 {
270         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
271
272         sndmem *= TCP_INIT_CWND;
273         if (sk->sk_sndbuf < sndmem)
274                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
275 }
276
277 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278  *
279  * All tcp_full_space() is split to two parts: "network" buffer, allocated
280  * forward and advertised in receiver window (tp->rcv_wnd) and
281  * "application buffer", required to isolate scheduling/application
282  * latencies from network.
283  * window_clamp is maximal advertised window. It can be less than
284  * tcp_full_space(), in this case tcp_full_space() - window_clamp
285  * is reserved for "application" buffer. The less window_clamp is
286  * the smoother our behaviour from viewpoint of network, but the lower
287  * throughput and the higher sensitivity of the connection to losses. 8)
288  *
289  * rcv_ssthresh is more strict window_clamp used at "slow start"
290  * phase to predict further behaviour of this connection.
291  * It is used for two goals:
292  * - to enforce header prediction at sender, even when application
293  *   requires some significant "application buffer". It is check #1.
294  * - to prevent pruning of receive queue because of misprediction
295  *   of receiver window. Check #2.
296  *
297  * The scheme does not work when sender sends good segments opening
298  * window and then starts to feed us spaghetti. But it should work
299  * in common situations. Otherwise, we have to rely on queue collapsing.
300  */
301
302 /* Slow part of check#2. */
303 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
304 {
305         struct tcp_sock *tp = tcp_sk(sk);
306         /* Optimize this! */
307         int truesize = tcp_win_from_space(skb->truesize) >> 1;
308         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
309
310         while (tp->rcv_ssthresh <= window) {
311                 if (truesize <= skb->len)
312                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
313
314                 truesize >>= 1;
315                 window >>= 1;
316         }
317         return 0;
318 }
319
320 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
321 {
322         struct tcp_sock *tp = tcp_sk(sk);
323
324         /* Check #1 */
325         if (tp->rcv_ssthresh < tp->window_clamp &&
326             (int)tp->rcv_ssthresh < tcp_space(sk) &&
327             !sk_under_memory_pressure(sk)) {
328                 int incr;
329
330                 /* Check #2. Increase window, if skb with such overhead
331                  * will fit to rcvbuf in future.
332                  */
333                 if (tcp_win_from_space(skb->truesize) <= skb->len)
334                         incr = 2 * tp->advmss;
335                 else
336                         incr = __tcp_grow_window(sk, skb);
337
338                 if (incr) {
339                         incr = max_t(int, incr, 2 * skb->len);
340                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
341                                                tp->window_clamp);
342                         inet_csk(sk)->icsk_ack.quick |= 1;
343                 }
344         }
345 }
346
347 /* 3. Tuning rcvbuf, when connection enters established state. */
348
349 static void tcp_fixup_rcvbuf(struct sock *sk)
350 {
351         u32 mss = tcp_sk(sk)->advmss;
352         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
353         int rcvmem;
354
355         /* Limit to 10 segments if mss <= 1460,
356          * or 14600/mss segments, with a minimum of two segments.
357          */
358         if (mss > 1460)
359                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
360
361         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
362         while (tcp_win_from_space(rcvmem) < mss)
363                 rcvmem += 128;
364
365         rcvmem *= icwnd;
366
367         if (sk->sk_rcvbuf < rcvmem)
368                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369 }
370
371 /* 4. Try to fixup all. It is made immediately after connection enters
372  *    established state.
373  */
374 static void tcp_init_buffer_space(struct sock *sk)
375 {
376         struct tcp_sock *tp = tcp_sk(sk);
377         int maxwin;
378
379         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380                 tcp_fixup_rcvbuf(sk);
381         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382                 tcp_fixup_sndbuf(sk);
383
384         tp->rcvq_space.space = tp->rcv_wnd;
385
386         maxwin = tcp_full_space(sk);
387
388         if (tp->window_clamp >= maxwin) {
389                 tp->window_clamp = maxwin;
390
391                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392                         tp->window_clamp = max(maxwin -
393                                                (maxwin >> sysctl_tcp_app_win),
394                                                4 * tp->advmss);
395         }
396
397         /* Force reservation of one segment. */
398         if (sysctl_tcp_app_win &&
399             tp->window_clamp > 2 * tp->advmss &&
400             tp->window_clamp + tp->advmss > maxwin)
401                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402
403         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404         tp->snd_cwnd_stamp = tcp_time_stamp;
405 }
406
407 /* 5. Recalculate window clamp after socket hit its memory bounds. */
408 static void tcp_clamp_window(struct sock *sk)
409 {
410         struct tcp_sock *tp = tcp_sk(sk);
411         struct inet_connection_sock *icsk = inet_csk(sk);
412
413         icsk->icsk_ack.quick = 0;
414
415         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
417             !sk_under_memory_pressure(sk) &&
418             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
419                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420                                     sysctl_tcp_rmem[2]);
421         }
422         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
423                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424 }
425
426 /* Initialize RCV_MSS value.
427  * RCV_MSS is an our guess about MSS used by the peer.
428  * We haven't any direct information about the MSS.
429  * It's better to underestimate the RCV_MSS rather than overestimate.
430  * Overestimations make us ACKing less frequently than needed.
431  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432  */
433 void tcp_initialize_rcv_mss(struct sock *sk)
434 {
435         const struct tcp_sock *tp = tcp_sk(sk);
436         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437
438         hint = min(hint, tp->rcv_wnd / 2);
439         hint = min(hint, TCP_MSS_DEFAULT);
440         hint = max(hint, TCP_MIN_MSS);
441
442         inet_csk(sk)->icsk_ack.rcv_mss = hint;
443 }
444 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
445
446 /* Receiver "autotuning" code.
447  *
448  * The algorithm for RTT estimation w/o timestamps is based on
449  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
450  * <http://public.lanl.gov/radiant/pubs.html#DRS>
451  *
452  * More detail on this code can be found at
453  * <http://staff.psc.edu/jheffner/>,
454  * though this reference is out of date.  A new paper
455  * is pending.
456  */
457 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458 {
459         u32 new_sample = tp->rcv_rtt_est.rtt;
460         long m = sample;
461
462         if (m == 0)
463                 m = 1;
464
465         if (new_sample != 0) {
466                 /* If we sample in larger samples in the non-timestamp
467                  * case, we could grossly overestimate the RTT especially
468                  * with chatty applications or bulk transfer apps which
469                  * are stalled on filesystem I/O.
470                  *
471                  * Also, since we are only going for a minimum in the
472                  * non-timestamp case, we do not smooth things out
473                  * else with timestamps disabled convergence takes too
474                  * long.
475                  */
476                 if (!win_dep) {
477                         m -= (new_sample >> 3);
478                         new_sample += m;
479                 } else {
480                         m <<= 3;
481                         if (m < new_sample)
482                                 new_sample = m;
483                 }
484         } else {
485                 /* No previous measure. */
486                 new_sample = m << 3;
487         }
488
489         if (tp->rcv_rtt_est.rtt != new_sample)
490                 tp->rcv_rtt_est.rtt = new_sample;
491 }
492
493 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494 {
495         if (tp->rcv_rtt_est.time == 0)
496                 goto new_measure;
497         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498                 return;
499         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
500
501 new_measure:
502         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503         tp->rcv_rtt_est.time = tcp_time_stamp;
504 }
505
506 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507                                           const struct sk_buff *skb)
508 {
509         struct tcp_sock *tp = tcp_sk(sk);
510         if (tp->rx_opt.rcv_tsecr &&
511             (TCP_SKB_CB(skb)->end_seq -
512              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
513                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514 }
515
516 /*
517  * This function should be called every time data is copied to user space.
518  * It calculates the appropriate TCP receive buffer space.
519  */
520 void tcp_rcv_space_adjust(struct sock *sk)
521 {
522         struct tcp_sock *tp = tcp_sk(sk);
523         int time;
524         int space;
525
526         if (tp->rcvq_space.time == 0)
527                 goto new_measure;
528
529         time = tcp_time_stamp - tp->rcvq_space.time;
530         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531                 return;
532
533         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534
535         space = max(tp->rcvq_space.space, space);
536
537         if (tp->rcvq_space.space != space) {
538                 int rcvmem;
539
540                 tp->rcvq_space.space = space;
541
542                 if (sysctl_tcp_moderate_rcvbuf &&
543                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
544                         int new_clamp = space;
545
546                         /* Receive space grows, normalize in order to
547                          * take into account packet headers and sk_buff
548                          * structure overhead.
549                          */
550                         space /= tp->advmss;
551                         if (!space)
552                                 space = 1;
553                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
554                         while (tcp_win_from_space(rcvmem) < tp->advmss)
555                                 rcvmem += 128;
556                         space *= rcvmem;
557                         space = min(space, sysctl_tcp_rmem[2]);
558                         if (space > sk->sk_rcvbuf) {
559                                 sk->sk_rcvbuf = space;
560
561                                 /* Make the window clamp follow along.  */
562                                 tp->window_clamp = new_clamp;
563                         }
564                 }
565         }
566
567 new_measure:
568         tp->rcvq_space.seq = tp->copied_seq;
569         tp->rcvq_space.time = tcp_time_stamp;
570 }
571
572 /* There is something which you must keep in mind when you analyze the
573  * behavior of the tp->ato delayed ack timeout interval.  When a
574  * connection starts up, we want to ack as quickly as possible.  The
575  * problem is that "good" TCP's do slow start at the beginning of data
576  * transmission.  The means that until we send the first few ACK's the
577  * sender will sit on his end and only queue most of his data, because
578  * he can only send snd_cwnd unacked packets at any given time.  For
579  * each ACK we send, he increments snd_cwnd and transmits more of his
580  * queue.  -DaveM
581  */
582 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
583 {
584         struct tcp_sock *tp = tcp_sk(sk);
585         struct inet_connection_sock *icsk = inet_csk(sk);
586         u32 now;
587
588         inet_csk_schedule_ack(sk);
589
590         tcp_measure_rcv_mss(sk, skb);
591
592         tcp_rcv_rtt_measure(tp);
593
594         now = tcp_time_stamp;
595
596         if (!icsk->icsk_ack.ato) {
597                 /* The _first_ data packet received, initialize
598                  * delayed ACK engine.
599                  */
600                 tcp_incr_quickack(sk);
601                 icsk->icsk_ack.ato = TCP_ATO_MIN;
602         } else {
603                 int m = now - icsk->icsk_ack.lrcvtime;
604
605                 if (m <= TCP_ATO_MIN / 2) {
606                         /* The fastest case is the first. */
607                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608                 } else if (m < icsk->icsk_ack.ato) {
609                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
611                                 icsk->icsk_ack.ato = icsk->icsk_rto;
612                 } else if (m > icsk->icsk_rto) {
613                         /* Too long gap. Apparently sender failed to
614                          * restart window, so that we send ACKs quickly.
615                          */
616                         tcp_incr_quickack(sk);
617                         sk_mem_reclaim(sk);
618                 }
619         }
620         icsk->icsk_ack.lrcvtime = now;
621
622         TCP_ECN_check_ce(tp, skb);
623
624         if (skb->len >= 128)
625                 tcp_grow_window(sk, skb);
626 }
627
628 /* Called to compute a smoothed rtt estimate. The data fed to this
629  * routine either comes from timestamps, or from segments that were
630  * known _not_ to have been retransmitted [see Karn/Partridge
631  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632  * piece by Van Jacobson.
633  * NOTE: the next three routines used to be one big routine.
634  * To save cycles in the RFC 1323 implementation it was better to break
635  * it up into three procedures. -- erics
636  */
637 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
638 {
639         struct tcp_sock *tp = tcp_sk(sk);
640         long m = mrtt; /* RTT */
641
642         /*      The following amusing code comes from Jacobson's
643          *      article in SIGCOMM '88.  Note that rtt and mdev
644          *      are scaled versions of rtt and mean deviation.
645          *      This is designed to be as fast as possible
646          *      m stands for "measurement".
647          *
648          *      On a 1990 paper the rto value is changed to:
649          *      RTO = rtt + 4 * mdev
650          *
651          * Funny. This algorithm seems to be very broken.
652          * These formulae increase RTO, when it should be decreased, increase
653          * too slowly, when it should be increased quickly, decrease too quickly
654          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655          * does not matter how to _calculate_ it. Seems, it was trap
656          * that VJ failed to avoid. 8)
657          */
658         if (m == 0)
659                 m = 1;
660         if (tp->srtt != 0) {
661                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
662                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
663                 if (m < 0) {
664                         m = -m;         /* m is now abs(error) */
665                         m -= (tp->mdev >> 2);   /* similar update on mdev */
666                         /* This is similar to one of Eifel findings.
667                          * Eifel blocks mdev updates when rtt decreases.
668                          * This solution is a bit different: we use finer gain
669                          * for mdev in this case (alpha*beta).
670                          * Like Eifel it also prevents growth of rto,
671                          * but also it limits too fast rto decreases,
672                          * happening in pure Eifel.
673                          */
674                         if (m > 0)
675                                 m >>= 3;
676                 } else {
677                         m -= (tp->mdev >> 2);   /* similar update on mdev */
678                 }
679                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
680                 if (tp->mdev > tp->mdev_max) {
681                         tp->mdev_max = tp->mdev;
682                         if (tp->mdev_max > tp->rttvar)
683                                 tp->rttvar = tp->mdev_max;
684                 }
685                 if (after(tp->snd_una, tp->rtt_seq)) {
686                         if (tp->mdev_max < tp->rttvar)
687                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
688                         tp->rtt_seq = tp->snd_nxt;
689                         tp->mdev_max = tcp_rto_min(sk);
690                 }
691         } else {
692                 /* no previous measure. */
693                 tp->srtt = m << 3;      /* take the measured time to be rtt */
694                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
695                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
696                 tp->rtt_seq = tp->snd_nxt;
697         }
698 }
699
700 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
701  * routine referred to above.
702  */
703 static inline void tcp_set_rto(struct sock *sk)
704 {
705         const struct tcp_sock *tp = tcp_sk(sk);
706         /* Old crap is replaced with new one. 8)
707          *
708          * More seriously:
709          * 1. If rtt variance happened to be less 50msec, it is hallucination.
710          *    It cannot be less due to utterly erratic ACK generation made
711          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712          *    to do with delayed acks, because at cwnd>2 true delack timeout
713          *    is invisible. Actually, Linux-2.4 also generates erratic
714          *    ACKs in some circumstances.
715          */
716         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
717
718         /* 2. Fixups made earlier cannot be right.
719          *    If we do not estimate RTO correctly without them,
720          *    all the algo is pure shit and should be replaced
721          *    with correct one. It is exactly, which we pretend to do.
722          */
723
724         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725          * guarantees that rto is higher.
726          */
727         tcp_bound_rto(sk);
728 }
729
730 /* Save metrics learned by this TCP session.
731    This function is called only, when TCP finishes successfully
732    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
733  */
734 void tcp_update_metrics(struct sock *sk)
735 {
736         struct tcp_sock *tp = tcp_sk(sk);
737         struct dst_entry *dst = __sk_dst_get(sk);
738
739         if (sysctl_tcp_nometrics_save)
740                 return;
741
742         dst_confirm(dst);
743
744         if (dst && (dst->flags & DST_HOST)) {
745                 const struct inet_connection_sock *icsk = inet_csk(sk);
746                 int m;
747                 unsigned long rtt;
748
749                 if (icsk->icsk_backoff || !tp->srtt) {
750                         /* This session failed to estimate rtt. Why?
751                          * Probably, no packets returned in time.
752                          * Reset our results.
753                          */
754                         if (!(dst_metric_locked(dst, RTAX_RTT)))
755                                 dst_metric_set(dst, RTAX_RTT, 0);
756                         return;
757                 }
758
759                 rtt = dst_metric_rtt(dst, RTAX_RTT);
760                 m = rtt - tp->srtt;
761
762                 /* If newly calculated rtt larger than stored one,
763                  * store new one. Otherwise, use EWMA. Remember,
764                  * rtt overestimation is always better than underestimation.
765                  */
766                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
767                         if (m <= 0)
768                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
769                         else
770                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
771                 }
772
773                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
774                         unsigned long var;
775                         if (m < 0)
776                                 m = -m;
777
778                         /* Scale deviation to rttvar fixed point */
779                         m >>= 1;
780                         if (m < tp->mdev)
781                                 m = tp->mdev;
782
783                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
784                         if (m >= var)
785                                 var = m;
786                         else
787                                 var -= (var - m) >> 2;
788
789                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
790                 }
791
792                 if (tcp_in_initial_slowstart(tp)) {
793                         /* Slow start still did not finish. */
794                         if (dst_metric(dst, RTAX_SSTHRESH) &&
795                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
797                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
798                         if (!dst_metric_locked(dst, RTAX_CWND) &&
799                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
800                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
801                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
802                            icsk->icsk_ca_state == TCP_CA_Open) {
803                         /* Cong. avoidance phase, cwnd is reliable. */
804                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
805                                 dst_metric_set(dst, RTAX_SSTHRESH,
806                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
807                         if (!dst_metric_locked(dst, RTAX_CWND))
808                                 dst_metric_set(dst, RTAX_CWND,
809                                                (dst_metric(dst, RTAX_CWND) +
810                                                 tp->snd_cwnd) >> 1);
811                 } else {
812                         /* Else slow start did not finish, cwnd is non-sense,
813                            ssthresh may be also invalid.
814                          */
815                         if (!dst_metric_locked(dst, RTAX_CWND))
816                                 dst_metric_set(dst, RTAX_CWND,
817                                                (dst_metric(dst, RTAX_CWND) +
818                                                 tp->snd_ssthresh) >> 1);
819                         if (dst_metric(dst, RTAX_SSTHRESH) &&
820                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
821                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
822                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
823                 }
824
825                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
826                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
827                             tp->reordering != sysctl_tcp_reordering)
828                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
829                 }
830         }
831 }
832
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836
837         if (!cwnd)
838                 cwnd = TCP_INIT_CWND;
839         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841
842 /* Set slow start threshold and cwnd not falling to slow start */
843 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
844 {
845         struct tcp_sock *tp = tcp_sk(sk);
846         const struct inet_connection_sock *icsk = inet_csk(sk);
847
848         tp->prior_ssthresh = 0;
849         tp->bytes_acked = 0;
850         if (icsk->icsk_ca_state < TCP_CA_CWR) {
851                 tp->undo_marker = 0;
852                 if (set_ssthresh)
853                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
854                 tp->snd_cwnd = min(tp->snd_cwnd,
855                                    tcp_packets_in_flight(tp) + 1U);
856                 tp->snd_cwnd_cnt = 0;
857                 tp->high_seq = tp->snd_nxt;
858                 tp->snd_cwnd_stamp = tcp_time_stamp;
859                 TCP_ECN_queue_cwr(tp);
860
861                 tcp_set_ca_state(sk, TCP_CA_CWR);
862         }
863 }
864
865 /*
866  * Packet counting of FACK is based on in-order assumptions, therefore TCP
867  * disables it when reordering is detected
868  */
869 static void tcp_disable_fack(struct tcp_sock *tp)
870 {
871         /* RFC3517 uses different metric in lost marker => reset on change */
872         if (tcp_is_fack(tp))
873                 tp->lost_skb_hint = NULL;
874         tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875 }
876
877 /* Take a notice that peer is sending D-SACKs */
878 static void tcp_dsack_seen(struct tcp_sock *tp)
879 {
880         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881 }
882
883 /* Initialize metrics on socket. */
884
885 static void tcp_init_metrics(struct sock *sk)
886 {
887         struct tcp_sock *tp = tcp_sk(sk);
888         struct dst_entry *dst = __sk_dst_get(sk);
889
890         if (dst == NULL)
891                 goto reset;
892
893         dst_confirm(dst);
894
895         if (dst_metric_locked(dst, RTAX_CWND))
896                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
897         if (dst_metric(dst, RTAX_SSTHRESH)) {
898                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
899                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
900                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
901         } else {
902                 /* ssthresh may have been reduced unnecessarily during.
903                  * 3WHS. Restore it back to its initial default.
904                  */
905                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
906         }
907         if (dst_metric(dst, RTAX_REORDERING) &&
908             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
909                 tcp_disable_fack(tp);
910                 tcp_disable_early_retrans(tp);
911                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
912         }
913
914         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
915                 goto reset;
916
917         /* Initial rtt is determined from SYN,SYN-ACK.
918          * The segment is small and rtt may appear much
919          * less than real one. Use per-dst memory
920          * to make it more realistic.
921          *
922          * A bit of theory. RTT is time passed after "normal" sized packet
923          * is sent until it is ACKed. In normal circumstances sending small
924          * packets force peer to delay ACKs and calculation is correct too.
925          * The algorithm is adaptive and, provided we follow specs, it
926          * NEVER underestimate RTT. BUT! If peer tries to make some clever
927          * tricks sort of "quick acks" for time long enough to decrease RTT
928          * to low value, and then abruptly stops to do it and starts to delay
929          * ACKs, wait for troubles.
930          */
931         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
932                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
933                 tp->rtt_seq = tp->snd_nxt;
934         }
935         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
936                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
937                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
938         }
939         tcp_set_rto(sk);
940 reset:
941         if (tp->srtt == 0) {
942                 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
943                  * 3WHS. This is most likely due to retransmission,
944                  * including spurious one. Reset the RTO back to 3secs
945                  * from the more aggressive 1sec to avoid more spurious
946                  * retransmission.
947                  */
948                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
949                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
950         }
951         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
952          * retransmitted. In light of RFC6298 more aggressive 1sec
953          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
954          * retransmission has occurred.
955          */
956         if (tp->total_retrans > 1)
957                 tp->snd_cwnd = 1;
958         else
959                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
960         tp->snd_cwnd_stamp = tcp_time_stamp;
961 }
962
963 static void tcp_update_reordering(struct sock *sk, const int metric,
964                                   const int ts)
965 {
966         struct tcp_sock *tp = tcp_sk(sk);
967         if (metric > tp->reordering) {
968                 int mib_idx;
969
970                 tp->reordering = min(TCP_MAX_REORDERING, metric);
971
972                 /* This exciting event is worth to be remembered. 8) */
973                 if (ts)
974                         mib_idx = LINUX_MIB_TCPTSREORDER;
975                 else if (tcp_is_reno(tp))
976                         mib_idx = LINUX_MIB_TCPRENOREORDER;
977                 else if (tcp_is_fack(tp))
978                         mib_idx = LINUX_MIB_TCPFACKREORDER;
979                 else
980                         mib_idx = LINUX_MIB_TCPSACKREORDER;
981
982                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
983 #if FASTRETRANS_DEBUG > 1
984                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
985                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
986                        tp->reordering,
987                        tp->fackets_out,
988                        tp->sacked_out,
989                        tp->undo_marker ? tp->undo_retrans : 0);
990 #endif
991                 tcp_disable_fack(tp);
992         }
993
994         if (metric > 0)
995                 tcp_disable_early_retrans(tp);
996 }
997
998 /* This must be called before lost_out is incremented */
999 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1000 {
1001         if ((tp->retransmit_skb_hint == NULL) ||
1002             before(TCP_SKB_CB(skb)->seq,
1003                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1004                 tp->retransmit_skb_hint = skb;
1005
1006         if (!tp->lost_out ||
1007             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1008                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1009 }
1010
1011 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1012 {
1013         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1014                 tcp_verify_retransmit_hint(tp, skb);
1015
1016                 tp->lost_out += tcp_skb_pcount(skb);
1017                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018         }
1019 }
1020
1021 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1022                                             struct sk_buff *skb)
1023 {
1024         tcp_verify_retransmit_hint(tp, skb);
1025
1026         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1027                 tp->lost_out += tcp_skb_pcount(skb);
1028                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1029         }
1030 }
1031
1032 /* This procedure tags the retransmission queue when SACKs arrive.
1033  *
1034  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1035  * Packets in queue with these bits set are counted in variables
1036  * sacked_out, retrans_out and lost_out, correspondingly.
1037  *
1038  * Valid combinations are:
1039  * Tag  InFlight        Description
1040  * 0    1               - orig segment is in flight.
1041  * S    0               - nothing flies, orig reached receiver.
1042  * L    0               - nothing flies, orig lost by net.
1043  * R    2               - both orig and retransmit are in flight.
1044  * L|R  1               - orig is lost, retransmit is in flight.
1045  * S|R  1               - orig reached receiver, retrans is still in flight.
1046  * (L|S|R is logically valid, it could occur when L|R is sacked,
1047  *  but it is equivalent to plain S and code short-curcuits it to S.
1048  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1049  *
1050  * These 6 states form finite state machine, controlled by the following events:
1051  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1052  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1053  * 3. Loss detection event of two flavors:
1054  *      A. Scoreboard estimator decided the packet is lost.
1055  *         A'. Reno "three dupacks" marks head of queue lost.
1056  *         A''. Its FACK modification, head until snd.fack is lost.
1057  *      B. SACK arrives sacking SND.NXT at the moment, when the
1058  *         segment was retransmitted.
1059  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060  *
1061  * It is pleasant to note, that state diagram turns out to be commutative,
1062  * so that we are allowed not to be bothered by order of our actions,
1063  * when multiple events arrive simultaneously. (see the function below).
1064  *
1065  * Reordering detection.
1066  * --------------------
1067  * Reordering metric is maximal distance, which a packet can be displaced
1068  * in packet stream. With SACKs we can estimate it:
1069  *
1070  * 1. SACK fills old hole and the corresponding segment was not
1071  *    ever retransmitted -> reordering. Alas, we cannot use it
1072  *    when segment was retransmitted.
1073  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074  *    for retransmitted and already SACKed segment -> reordering..
1075  * Both of these heuristics are not used in Loss state, when we cannot
1076  * account for retransmits accurately.
1077  *
1078  * SACK block validation.
1079  * ----------------------
1080  *
1081  * SACK block range validation checks that the received SACK block fits to
1082  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083  * Note that SND.UNA is not included to the range though being valid because
1084  * it means that the receiver is rather inconsistent with itself reporting
1085  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086  * perfectly valid, however, in light of RFC2018 which explicitly states
1087  * that "SACK block MUST reflect the newest segment.  Even if the newest
1088  * segment is going to be discarded ...", not that it looks very clever
1089  * in case of head skb. Due to potentional receiver driven attacks, we
1090  * choose to avoid immediate execution of a walk in write queue due to
1091  * reneging and defer head skb's loss recovery to standard loss recovery
1092  * procedure that will eventually trigger (nothing forbids us doing this).
1093  *
1094  * Implements also blockage to start_seq wrap-around. Problem lies in the
1095  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096  * there's no guarantee that it will be before snd_nxt (n). The problem
1097  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098  * wrap (s_w):
1099  *
1100  *         <- outs wnd ->                          <- wrapzone ->
1101  *         u     e      n                         u_w   e_w  s n_w
1102  *         |     |      |                          |     |   |  |
1103  * |<------------+------+----- TCP seqno space --------------+---------->|
1104  * ...-- <2^31 ->|                                           |<--------...
1105  * ...---- >2^31 ------>|                                    |<--------...
1106  *
1107  * Current code wouldn't be vulnerable but it's better still to discard such
1108  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111  * equal to the ideal case (infinite seqno space without wrap caused issues).
1112  *
1113  * With D-SACK the lower bound is extended to cover sequence space below
1114  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115  * again, D-SACK block must not to go across snd_una (for the same reason as
1116  * for the normal SACK blocks, explained above). But there all simplicity
1117  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118  * fully below undo_marker they do not affect behavior in anyway and can
1119  * therefore be safely ignored. In rare cases (which are more or less
1120  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121  * fragmentation and packet reordering past skb's retransmission. To consider
1122  * them correctly, the acceptable range must be extended even more though
1123  * the exact amount is rather hard to quantify. However, tp->max_window can
1124  * be used as an exaggerated estimate.
1125  */
1126 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127                                   u32 start_seq, u32 end_seq)
1128 {
1129         /* Too far in future, or reversed (interpretation is ambiguous) */
1130         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131                 return 0;
1132
1133         /* Nasty start_seq wrap-around check (see comments above) */
1134         if (!before(start_seq, tp->snd_nxt))
1135                 return 0;
1136
1137         /* In outstanding window? ...This is valid exit for D-SACKs too.
1138          * start_seq == snd_una is non-sensical (see comments above)
1139          */
1140         if (after(start_seq, tp->snd_una))
1141                 return 1;
1142
1143         if (!is_dsack || !tp->undo_marker)
1144                 return 0;
1145
1146         /* ...Then it's D-SACK, and must reside below snd_una completely */
1147         if (after(end_seq, tp->snd_una))
1148                 return 0;
1149
1150         if (!before(start_seq, tp->undo_marker))
1151                 return 1;
1152
1153         /* Too old */
1154         if (!after(end_seq, tp->undo_marker))
1155                 return 0;
1156
1157         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1158          *   start_seq < undo_marker and end_seq >= undo_marker.
1159          */
1160         return !before(start_seq, end_seq - tp->max_window);
1161 }
1162
1163 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164  * Event "B". Later note: FACK people cheated me again 8), we have to account
1165  * for reordering! Ugly, but should help.
1166  *
1167  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168  * less than what is now known to be received by the other end (derived from
1169  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170  * retransmitted skbs to avoid some costly processing per ACKs.
1171  */
1172 static void tcp_mark_lost_retrans(struct sock *sk)
1173 {
1174         const struct inet_connection_sock *icsk = inet_csk(sk);
1175         struct tcp_sock *tp = tcp_sk(sk);
1176         struct sk_buff *skb;
1177         int cnt = 0;
1178         u32 new_low_seq = tp->snd_nxt;
1179         u32 received_upto = tcp_highest_sack_seq(tp);
1180
1181         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182             !after(received_upto, tp->lost_retrans_low) ||
1183             icsk->icsk_ca_state != TCP_CA_Recovery)
1184                 return;
1185
1186         tcp_for_write_queue(skb, sk) {
1187                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188
1189                 if (skb == tcp_send_head(sk))
1190                         break;
1191                 if (cnt == tp->retrans_out)
1192                         break;
1193                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194                         continue;
1195
1196                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197                         continue;
1198
1199                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1200                  * constraint here (see above) but figuring out that at
1201                  * least tp->reordering SACK blocks reside between ack_seq
1202                  * and received_upto is not easy task to do cheaply with
1203                  * the available datastructures.
1204                  *
1205                  * Whether FACK should check here for tp->reordering segs
1206                  * in-between one could argue for either way (it would be
1207                  * rather simple to implement as we could count fack_count
1208                  * during the walk and do tp->fackets_out - fack_count).
1209                  */
1210                 if (after(received_upto, ack_seq)) {
1211                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212                         tp->retrans_out -= tcp_skb_pcount(skb);
1213
1214                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1215                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216                 } else {
1217                         if (before(ack_seq, new_low_seq))
1218                                 new_low_seq = ack_seq;
1219                         cnt += tcp_skb_pcount(skb);
1220                 }
1221         }
1222
1223         if (tp->retrans_out)
1224                 tp->lost_retrans_low = new_low_seq;
1225 }
1226
1227 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228                            struct tcp_sack_block_wire *sp, int num_sacks,
1229                            u32 prior_snd_una)
1230 {
1231         struct tcp_sock *tp = tcp_sk(sk);
1232         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234         int dup_sack = 0;
1235
1236         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237                 dup_sack = 1;
1238                 tcp_dsack_seen(tp);
1239                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240         } else if (num_sacks > 1) {
1241                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243
1244                 if (!after(end_seq_0, end_seq_1) &&
1245                     !before(start_seq_0, start_seq_1)) {
1246                         dup_sack = 1;
1247                         tcp_dsack_seen(tp);
1248                         NET_INC_STATS_BH(sock_net(sk),
1249                                         LINUX_MIB_TCPDSACKOFORECV);
1250                 }
1251         }
1252
1253         /* D-SACK for already forgotten data... Do dumb counting. */
1254         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255             !after(end_seq_0, prior_snd_una) &&
1256             after(end_seq_0, tp->undo_marker))
1257                 tp->undo_retrans--;
1258
1259         return dup_sack;
1260 }
1261
1262 struct tcp_sacktag_state {
1263         int reord;
1264         int fack_count;
1265         int flag;
1266 };
1267
1268 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269  * the incoming SACK may not exactly match but we can find smaller MSS
1270  * aligned portion of it that matches. Therefore we might need to fragment
1271  * which may fail and creates some hassle (caller must handle error case
1272  * returns).
1273  *
1274  * FIXME: this could be merged to shift decision code
1275  */
1276 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277                                  u32 start_seq, u32 end_seq)
1278 {
1279         int in_sack, err;
1280         unsigned int pkt_len;
1281         unsigned int mss;
1282
1283         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285
1286         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288                 mss = tcp_skb_mss(skb);
1289                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290
1291                 if (!in_sack) {
1292                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293                         if (pkt_len < mss)
1294                                 pkt_len = mss;
1295                 } else {
1296                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297                         if (pkt_len < mss)
1298                                 return -EINVAL;
1299                 }
1300
1301                 /* Round if necessary so that SACKs cover only full MSSes
1302                  * and/or the remaining small portion (if present)
1303                  */
1304                 if (pkt_len > mss) {
1305                         unsigned int new_len = (pkt_len / mss) * mss;
1306                         if (!in_sack && new_len < pkt_len) {
1307                                 new_len += mss;
1308                                 if (new_len > skb->len)
1309                                         return 0;
1310                         }
1311                         pkt_len = new_len;
1312                 }
1313                 err = tcp_fragment(sk, skb, pkt_len, mss);
1314                 if (err < 0)
1315                         return err;
1316         }
1317
1318         return in_sack;
1319 }
1320
1321 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1322 static u8 tcp_sacktag_one(struct sock *sk,
1323                           struct tcp_sacktag_state *state, u8 sacked,
1324                           u32 start_seq, u32 end_seq,
1325                           int dup_sack, int pcount)
1326 {
1327         struct tcp_sock *tp = tcp_sk(sk);
1328         int fack_count = state->fack_count;
1329
1330         /* Account D-SACK for retransmitted packet. */
1331         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1332                 if (tp->undo_marker && tp->undo_retrans &&
1333                     after(end_seq, tp->undo_marker))
1334                         tp->undo_retrans--;
1335                 if (sacked & TCPCB_SACKED_ACKED)
1336                         state->reord = min(fack_count, state->reord);
1337         }
1338
1339         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1340         if (!after(end_seq, tp->snd_una))
1341                 return sacked;
1342
1343         if (!(sacked & TCPCB_SACKED_ACKED)) {
1344                 if (sacked & TCPCB_SACKED_RETRANS) {
1345                         /* If the segment is not tagged as lost,
1346                          * we do not clear RETRANS, believing
1347                          * that retransmission is still in flight.
1348                          */
1349                         if (sacked & TCPCB_LOST) {
1350                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1351                                 tp->lost_out -= pcount;
1352                                 tp->retrans_out -= pcount;
1353                         }
1354                 } else {
1355                         if (!(sacked & TCPCB_RETRANS)) {
1356                                 /* New sack for not retransmitted frame,
1357                                  * which was in hole. It is reordering.
1358                                  */
1359                                 if (before(start_seq,
1360                                            tcp_highest_sack_seq(tp)))
1361                                         state->reord = min(fack_count,
1362                                                            state->reord);
1363
1364                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1365                                 if (!after(end_seq, tp->frto_highmark))
1366                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1367                         }
1368
1369                         if (sacked & TCPCB_LOST) {
1370                                 sacked &= ~TCPCB_LOST;
1371                                 tp->lost_out -= pcount;
1372                         }
1373                 }
1374
1375                 sacked |= TCPCB_SACKED_ACKED;
1376                 state->flag |= FLAG_DATA_SACKED;
1377                 tp->sacked_out += pcount;
1378
1379                 fack_count += pcount;
1380
1381                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1382                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1383                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1384                         tp->lost_cnt_hint += pcount;
1385
1386                 if (fack_count > tp->fackets_out)
1387                         tp->fackets_out = fack_count;
1388         }
1389
1390         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1391          * frames and clear it. undo_retrans is decreased above, L|R frames
1392          * are accounted above as well.
1393          */
1394         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1395                 sacked &= ~TCPCB_SACKED_RETRANS;
1396                 tp->retrans_out -= pcount;
1397         }
1398
1399         return sacked;
1400 }
1401
1402 /* Shift newly-SACKed bytes from this skb to the immediately previous
1403  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1404  */
1405 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1406                            struct tcp_sacktag_state *state,
1407                            unsigned int pcount, int shifted, int mss,
1408                            int dup_sack)
1409 {
1410         struct tcp_sock *tp = tcp_sk(sk);
1411         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1412         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1413         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1414
1415         BUG_ON(!pcount);
1416
1417         /* Adjust counters and hints for the newly sacked sequence
1418          * range but discard the return value since prev is already
1419          * marked. We must tag the range first because the seq
1420          * advancement below implicitly advances
1421          * tcp_highest_sack_seq() when skb is highest_sack.
1422          */
1423         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1424                         start_seq, end_seq, dup_sack, pcount);
1425
1426         if (skb == tp->lost_skb_hint)
1427                 tp->lost_cnt_hint += pcount;
1428
1429         TCP_SKB_CB(prev)->end_seq += shifted;
1430         TCP_SKB_CB(skb)->seq += shifted;
1431
1432         skb_shinfo(prev)->gso_segs += pcount;
1433         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1434         skb_shinfo(skb)->gso_segs -= pcount;
1435
1436         /* When we're adding to gso_segs == 1, gso_size will be zero,
1437          * in theory this shouldn't be necessary but as long as DSACK
1438          * code can come after this skb later on it's better to keep
1439          * setting gso_size to something.
1440          */
1441         if (!skb_shinfo(prev)->gso_size) {
1442                 skb_shinfo(prev)->gso_size = mss;
1443                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1444         }
1445
1446         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1447         if (skb_shinfo(skb)->gso_segs <= 1) {
1448                 skb_shinfo(skb)->gso_size = 0;
1449                 skb_shinfo(skb)->gso_type = 0;
1450         }
1451
1452         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1453         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1454
1455         if (skb->len > 0) {
1456                 BUG_ON(!tcp_skb_pcount(skb));
1457                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1458                 return 0;
1459         }
1460
1461         /* Whole SKB was eaten :-) */
1462
1463         if (skb == tp->retransmit_skb_hint)
1464                 tp->retransmit_skb_hint = prev;
1465         if (skb == tp->scoreboard_skb_hint)
1466                 tp->scoreboard_skb_hint = prev;
1467         if (skb == tp->lost_skb_hint) {
1468                 tp->lost_skb_hint = prev;
1469                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1470         }
1471
1472         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1473         if (skb == tcp_highest_sack(sk))
1474                 tcp_advance_highest_sack(sk, skb);
1475
1476         tcp_unlink_write_queue(skb, sk);
1477         sk_wmem_free_skb(sk, skb);
1478
1479         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1480
1481         return 1;
1482 }
1483
1484 /* I wish gso_size would have a bit more sane initialization than
1485  * something-or-zero which complicates things
1486  */
1487 static int tcp_skb_seglen(const struct sk_buff *skb)
1488 {
1489         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1490 }
1491
1492 /* Shifting pages past head area doesn't work */
1493 static int skb_can_shift(const struct sk_buff *skb)
1494 {
1495         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1496 }
1497
1498 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1499  * skb.
1500  */
1501 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1502                                           struct tcp_sacktag_state *state,
1503                                           u32 start_seq, u32 end_seq,
1504                                           int dup_sack)
1505 {
1506         struct tcp_sock *tp = tcp_sk(sk);
1507         struct sk_buff *prev;
1508         int mss;
1509         int pcount = 0;
1510         int len;
1511         int in_sack;
1512
1513         if (!sk_can_gso(sk))
1514                 goto fallback;
1515
1516         /* Normally R but no L won't result in plain S */
1517         if (!dup_sack &&
1518             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519                 goto fallback;
1520         if (!skb_can_shift(skb))
1521                 goto fallback;
1522         /* This frame is about to be dropped (was ACKed). */
1523         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524                 goto fallback;
1525
1526         /* Can only happen with delayed DSACK + discard craziness */
1527         if (unlikely(skb == tcp_write_queue_head(sk)))
1528                 goto fallback;
1529         prev = tcp_write_queue_prev(sk, skb);
1530
1531         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532                 goto fallback;
1533
1534         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1535                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1536
1537         if (in_sack) {
1538                 len = skb->len;
1539                 pcount = tcp_skb_pcount(skb);
1540                 mss = tcp_skb_seglen(skb);
1541
1542                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1543                  * drop this restriction as unnecessary
1544                  */
1545                 if (mss != tcp_skb_seglen(prev))
1546                         goto fallback;
1547         } else {
1548                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1549                         goto noop;
1550                 /* CHECKME: This is non-MSS split case only?, this will
1551                  * cause skipped skbs due to advancing loop btw, original
1552                  * has that feature too
1553                  */
1554                 if (tcp_skb_pcount(skb) <= 1)
1555                         goto noop;
1556
1557                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1558                 if (!in_sack) {
1559                         /* TODO: head merge to next could be attempted here
1560                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1561                          * though it might not be worth of the additional hassle
1562                          *
1563                          * ...we can probably just fallback to what was done
1564                          * previously. We could try merging non-SACKed ones
1565                          * as well but it probably isn't going to buy off
1566                          * because later SACKs might again split them, and
1567                          * it would make skb timestamp tracking considerably
1568                          * harder problem.
1569                          */
1570                         goto fallback;
1571                 }
1572
1573                 len = end_seq - TCP_SKB_CB(skb)->seq;
1574                 BUG_ON(len < 0);
1575                 BUG_ON(len > skb->len);
1576
1577                 /* MSS boundaries should be honoured or else pcount will
1578                  * severely break even though it makes things bit trickier.
1579                  * Optimize common case to avoid most of the divides
1580                  */
1581                 mss = tcp_skb_mss(skb);
1582
1583                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1584                  * drop this restriction as unnecessary
1585                  */
1586                 if (mss != tcp_skb_seglen(prev))
1587                         goto fallback;
1588
1589                 if (len == mss) {
1590                         pcount = 1;
1591                 } else if (len < mss) {
1592                         goto noop;
1593                 } else {
1594                         pcount = len / mss;
1595                         len = pcount * mss;
1596                 }
1597         }
1598
1599         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1600         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1601                 goto fallback;
1602
1603         if (!skb_shift(prev, skb, len))
1604                 goto fallback;
1605         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1606                 goto out;
1607
1608         /* Hole filled allows collapsing with the next as well, this is very
1609          * useful when hole on every nth skb pattern happens
1610          */
1611         if (prev == tcp_write_queue_tail(sk))
1612                 goto out;
1613         skb = tcp_write_queue_next(sk, prev);
1614
1615         if (!skb_can_shift(skb) ||
1616             (skb == tcp_send_head(sk)) ||
1617             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1618             (mss != tcp_skb_seglen(skb)))
1619                 goto out;
1620
1621         len = skb->len;
1622         if (skb_shift(prev, skb, len)) {
1623                 pcount += tcp_skb_pcount(skb);
1624                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1625         }
1626
1627 out:
1628         state->fack_count += pcount;
1629         return prev;
1630
1631 noop:
1632         return skb;
1633
1634 fallback:
1635         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1636         return NULL;
1637 }
1638
1639 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1640                                         struct tcp_sack_block *next_dup,
1641                                         struct tcp_sacktag_state *state,
1642                                         u32 start_seq, u32 end_seq,
1643                                         int dup_sack_in)
1644 {
1645         struct tcp_sock *tp = tcp_sk(sk);
1646         struct sk_buff *tmp;
1647
1648         tcp_for_write_queue_from(skb, sk) {
1649                 int in_sack = 0;
1650                 int dup_sack = dup_sack_in;
1651
1652                 if (skb == tcp_send_head(sk))
1653                         break;
1654
1655                 /* queue is in-order => we can short-circuit the walk early */
1656                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1657                         break;
1658
1659                 if ((next_dup != NULL) &&
1660                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1661                         in_sack = tcp_match_skb_to_sack(sk, skb,
1662                                                         next_dup->start_seq,
1663                                                         next_dup->end_seq);
1664                         if (in_sack > 0)
1665                                 dup_sack = 1;
1666                 }
1667
1668                 /* skb reference here is a bit tricky to get right, since
1669                  * shifting can eat and free both this skb and the next,
1670                  * so not even _safe variant of the loop is enough.
1671                  */
1672                 if (in_sack <= 0) {
1673                         tmp = tcp_shift_skb_data(sk, skb, state,
1674                                                  start_seq, end_seq, dup_sack);
1675                         if (tmp != NULL) {
1676                                 if (tmp != skb) {
1677                                         skb = tmp;
1678                                         continue;
1679                                 }
1680
1681                                 in_sack = 0;
1682                         } else {
1683                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1684                                                                 start_seq,
1685                                                                 end_seq);
1686                         }
1687                 }
1688
1689                 if (unlikely(in_sack < 0))
1690                         break;
1691
1692                 if (in_sack) {
1693                         TCP_SKB_CB(skb)->sacked =
1694                                 tcp_sacktag_one(sk,
1695                                                 state,
1696                                                 TCP_SKB_CB(skb)->sacked,
1697                                                 TCP_SKB_CB(skb)->seq,
1698                                                 TCP_SKB_CB(skb)->end_seq,
1699                                                 dup_sack,
1700                                                 tcp_skb_pcount(skb));
1701
1702                         if (!before(TCP_SKB_CB(skb)->seq,
1703                                     tcp_highest_sack_seq(tp)))
1704                                 tcp_advance_highest_sack(sk, skb);
1705                 }
1706
1707                 state->fack_count += tcp_skb_pcount(skb);
1708         }
1709         return skb;
1710 }
1711
1712 /* Avoid all extra work that is being done by sacktag while walking in
1713  * a normal way
1714  */
1715 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1716                                         struct tcp_sacktag_state *state,
1717                                         u32 skip_to_seq)
1718 {
1719         tcp_for_write_queue_from(skb, sk) {
1720                 if (skb == tcp_send_head(sk))
1721                         break;
1722
1723                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1724                         break;
1725
1726                 state->fack_count += tcp_skb_pcount(skb);
1727         }
1728         return skb;
1729 }
1730
1731 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1732                                                 struct sock *sk,
1733                                                 struct tcp_sack_block *next_dup,
1734                                                 struct tcp_sacktag_state *state,
1735                                                 u32 skip_to_seq)
1736 {
1737         if (next_dup == NULL)
1738                 return skb;
1739
1740         if (before(next_dup->start_seq, skip_to_seq)) {
1741                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1742                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1743                                        next_dup->start_seq, next_dup->end_seq,
1744                                        1);
1745         }
1746
1747         return skb;
1748 }
1749
1750 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1751 {
1752         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753 }
1754
1755 static int
1756 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1757                         u32 prior_snd_una)
1758 {
1759         const struct inet_connection_sock *icsk = inet_csk(sk);
1760         struct tcp_sock *tp = tcp_sk(sk);
1761         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1762                                     TCP_SKB_CB(ack_skb)->sacked);
1763         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1764         struct tcp_sack_block sp[TCP_NUM_SACKS];
1765         struct tcp_sack_block *cache;
1766         struct tcp_sacktag_state state;
1767         struct sk_buff *skb;
1768         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1769         int used_sacks;
1770         int found_dup_sack = 0;
1771         int i, j;
1772         int first_sack_index;
1773
1774         state.flag = 0;
1775         state.reord = tp->packets_out;
1776
1777         if (!tp->sacked_out) {
1778                 if (WARN_ON(tp->fackets_out))
1779                         tp->fackets_out = 0;
1780                 tcp_highest_sack_reset(sk);
1781         }
1782
1783         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1784                                          num_sacks, prior_snd_una);
1785         if (found_dup_sack)
1786                 state.flag |= FLAG_DSACKING_ACK;
1787
1788         /* Eliminate too old ACKs, but take into
1789          * account more or less fresh ones, they can
1790          * contain valid SACK info.
1791          */
1792         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1793                 return 0;
1794
1795         if (!tp->packets_out)
1796                 goto out;
1797
1798         used_sacks = 0;
1799         first_sack_index = 0;
1800         for (i = 0; i < num_sacks; i++) {
1801                 int dup_sack = !i && found_dup_sack;
1802
1803                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1804                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1805
1806                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1807                                             sp[used_sacks].start_seq,
1808                                             sp[used_sacks].end_seq)) {
1809                         int mib_idx;
1810
1811                         if (dup_sack) {
1812                                 if (!tp->undo_marker)
1813                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1814                                 else
1815                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1816                         } else {
1817                                 /* Don't count olds caused by ACK reordering */
1818                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1819                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1820                                         continue;
1821                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1822                         }
1823
1824                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1825                         if (i == 0)
1826                                 first_sack_index = -1;
1827                         continue;
1828                 }
1829
1830                 /* Ignore very old stuff early */
1831                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1832                         continue;
1833
1834                 used_sacks++;
1835         }
1836
1837         /* order SACK blocks to allow in order walk of the retrans queue */
1838         for (i = used_sacks - 1; i > 0; i--) {
1839                 for (j = 0; j < i; j++) {
1840                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1841                                 swap(sp[j], sp[j + 1]);
1842
1843                                 /* Track where the first SACK block goes to */
1844                                 if (j == first_sack_index)
1845                                         first_sack_index = j + 1;
1846                         }
1847                 }
1848         }
1849
1850         skb = tcp_write_queue_head(sk);
1851         state.fack_count = 0;
1852         i = 0;
1853
1854         if (!tp->sacked_out) {
1855                 /* It's already past, so skip checking against it */
1856                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1857         } else {
1858                 cache = tp->recv_sack_cache;
1859                 /* Skip empty blocks in at head of the cache */
1860                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1861                        !cache->end_seq)
1862                         cache++;
1863         }
1864
1865         while (i < used_sacks) {
1866                 u32 start_seq = sp[i].start_seq;
1867                 u32 end_seq = sp[i].end_seq;
1868                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1869                 struct tcp_sack_block *next_dup = NULL;
1870
1871                 if (found_dup_sack && ((i + 1) == first_sack_index))
1872                         next_dup = &sp[i + 1];
1873
1874                 /* Skip too early cached blocks */
1875                 while (tcp_sack_cache_ok(tp, cache) &&
1876                        !before(start_seq, cache->end_seq))
1877                         cache++;
1878
1879                 /* Can skip some work by looking recv_sack_cache? */
1880                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1881                     after(end_seq, cache->start_seq)) {
1882
1883                         /* Head todo? */
1884                         if (before(start_seq, cache->start_seq)) {
1885                                 skb = tcp_sacktag_skip(skb, sk, &state,
1886                                                        start_seq);
1887                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1888                                                        &state,
1889                                                        start_seq,
1890                                                        cache->start_seq,
1891                                                        dup_sack);
1892                         }
1893
1894                         /* Rest of the block already fully processed? */
1895                         if (!after(end_seq, cache->end_seq))
1896                                 goto advance_sp;
1897
1898                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1899                                                        &state,
1900                                                        cache->end_seq);
1901
1902                         /* ...tail remains todo... */
1903                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1904                                 /* ...but better entrypoint exists! */
1905                                 skb = tcp_highest_sack(sk);
1906                                 if (skb == NULL)
1907                                         break;
1908                                 state.fack_count = tp->fackets_out;
1909                                 cache++;
1910                                 goto walk;
1911                         }
1912
1913                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1914                         /* Check overlap against next cached too (past this one already) */
1915                         cache++;
1916                         continue;
1917                 }
1918
1919                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1920                         skb = tcp_highest_sack(sk);
1921                         if (skb == NULL)
1922                                 break;
1923                         state.fack_count = tp->fackets_out;
1924                 }
1925                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1926
1927 walk:
1928                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1929                                        start_seq, end_seq, dup_sack);
1930
1931 advance_sp:
1932                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1933                  * due to in-order walk
1934                  */
1935                 if (after(end_seq, tp->frto_highmark))
1936                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1937
1938                 i++;
1939         }
1940
1941         /* Clear the head of the cache sack blocks so we can skip it next time */
1942         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943                 tp->recv_sack_cache[i].start_seq = 0;
1944                 tp->recv_sack_cache[i].end_seq = 0;
1945         }
1946         for (j = 0; j < used_sacks; j++)
1947                 tp->recv_sack_cache[i++] = sp[j];
1948
1949         tcp_mark_lost_retrans(sk);
1950
1951         tcp_verify_left_out(tp);
1952
1953         if ((state.reord < tp->fackets_out) &&
1954             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1955             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1956                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1957
1958 out:
1959
1960 #if FASTRETRANS_DEBUG > 0
1961         WARN_ON((int)tp->sacked_out < 0);
1962         WARN_ON((int)tp->lost_out < 0);
1963         WARN_ON((int)tp->retrans_out < 0);
1964         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1965 #endif
1966         return state.flag;
1967 }
1968
1969 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1970  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1971  */
1972 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1973 {
1974         u32 holes;
1975
1976         holes = max(tp->lost_out, 1U);
1977         holes = min(holes, tp->packets_out);
1978
1979         if ((tp->sacked_out + holes) > tp->packets_out) {
1980                 tp->sacked_out = tp->packets_out - holes;
1981                 return 1;
1982         }
1983         return 0;
1984 }
1985
1986 /* If we receive more dupacks than we expected counting segments
1987  * in assumption of absent reordering, interpret this as reordering.
1988  * The only another reason could be bug in receiver TCP.
1989  */
1990 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1991 {
1992         struct tcp_sock *tp = tcp_sk(sk);
1993         if (tcp_limit_reno_sacked(tp))
1994                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1995 }
1996
1997 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1998
1999 static void tcp_add_reno_sack(struct sock *sk)
2000 {
2001         struct tcp_sock *tp = tcp_sk(sk);
2002         tp->sacked_out++;
2003         tcp_check_reno_reordering(sk, 0);
2004         tcp_verify_left_out(tp);
2005 }
2006
2007 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2008
2009 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2010 {
2011         struct tcp_sock *tp = tcp_sk(sk);
2012
2013         if (acked > 0) {
2014                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2015                 if (acked - 1 >= tp->sacked_out)
2016                         tp->sacked_out = 0;
2017                 else
2018                         tp->sacked_out -= acked - 1;
2019         }
2020         tcp_check_reno_reordering(sk, acked);
2021         tcp_verify_left_out(tp);
2022 }
2023
2024 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2025 {
2026         tp->sacked_out = 0;
2027 }
2028
2029 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2030 {
2031         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2032 }
2033
2034 /* F-RTO can only be used if TCP has never retransmitted anything other than
2035  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2036  */
2037 int tcp_use_frto(struct sock *sk)
2038 {
2039         const struct tcp_sock *tp = tcp_sk(sk);
2040         const struct inet_connection_sock *icsk = inet_csk(sk);
2041         struct sk_buff *skb;
2042
2043         if (!sysctl_tcp_frto)
2044                 return 0;
2045
2046         /* MTU probe and F-RTO won't really play nicely along currently */
2047         if (icsk->icsk_mtup.probe_size)
2048                 return 0;
2049
2050         if (tcp_is_sackfrto(tp))
2051                 return 1;
2052
2053         /* Avoid expensive walking of rexmit queue if possible */
2054         if (tp->retrans_out > 1)
2055                 return 0;
2056
2057         skb = tcp_write_queue_head(sk);
2058         if (tcp_skb_is_last(sk, skb))
2059                 return 1;
2060         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2061         tcp_for_write_queue_from(skb, sk) {
2062                 if (skb == tcp_send_head(sk))
2063                         break;
2064                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2065                         return 0;
2066                 /* Short-circuit when first non-SACKed skb has been checked */
2067                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2068                         break;
2069         }
2070         return 1;
2071 }
2072
2073 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2074  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2075  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2076  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2077  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2078  * bits are handled if the Loss state is really to be entered (in
2079  * tcp_enter_frto_loss).
2080  *
2081  * Do like tcp_enter_loss() would; when RTO expires the second time it
2082  * does:
2083  *  "Reduce ssthresh if it has not yet been made inside this window."
2084  */
2085 void tcp_enter_frto(struct sock *sk)
2086 {
2087         const struct inet_connection_sock *icsk = inet_csk(sk);
2088         struct tcp_sock *tp = tcp_sk(sk);
2089         struct sk_buff *skb;
2090
2091         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2092             tp->snd_una == tp->high_seq ||
2093             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2094              !icsk->icsk_retransmits)) {
2095                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2096                 /* Our state is too optimistic in ssthresh() call because cwnd
2097                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2098                  * recovery has not yet completed. Pattern would be this: RTO,
2099                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2100                  * up here twice).
2101                  * RFC4138 should be more specific on what to do, even though
2102                  * RTO is quite unlikely to occur after the first Cumulative ACK
2103                  * due to back-off and complexity of triggering events ...
2104                  */
2105                 if (tp->frto_counter) {
2106                         u32 stored_cwnd;
2107                         stored_cwnd = tp->snd_cwnd;
2108                         tp->snd_cwnd = 2;
2109                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110                         tp->snd_cwnd = stored_cwnd;
2111                 } else {
2112                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2113                 }
2114                 /* ... in theory, cong.control module could do "any tricks" in
2115                  * ssthresh(), which means that ca_state, lost bits and lost_out
2116                  * counter would have to be faked before the call occurs. We
2117                  * consider that too expensive, unlikely and hacky, so modules
2118                  * using these in ssthresh() must deal these incompatibility
2119                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2120                  */
2121                 tcp_ca_event(sk, CA_EVENT_FRTO);
2122         }
2123
2124         tp->undo_marker = tp->snd_una;
2125         tp->undo_retrans = 0;
2126
2127         skb = tcp_write_queue_head(sk);
2128         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2129                 tp->undo_marker = 0;
2130         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2131                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2132                 tp->retrans_out -= tcp_skb_pcount(skb);
2133         }
2134         tcp_verify_left_out(tp);
2135
2136         /* Too bad if TCP was application limited */
2137         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2138
2139         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2140          * The last condition is necessary at least in tp->frto_counter case.
2141          */
2142         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2143             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2144             after(tp->high_seq, tp->snd_una)) {
2145                 tp->frto_highmark = tp->high_seq;
2146         } else {
2147                 tp->frto_highmark = tp->snd_nxt;
2148         }
2149         tcp_set_ca_state(sk, TCP_CA_Disorder);
2150         tp->high_seq = tp->snd_nxt;
2151         tp->frto_counter = 1;
2152 }
2153
2154 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2155  * which indicates that we should follow the traditional RTO recovery,
2156  * i.e. mark everything lost and do go-back-N retransmission.
2157  */
2158 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2159 {
2160         struct tcp_sock *tp = tcp_sk(sk);
2161         struct sk_buff *skb;
2162
2163         tp->lost_out = 0;
2164         tp->retrans_out = 0;
2165         if (tcp_is_reno(tp))
2166                 tcp_reset_reno_sack(tp);
2167
2168         tcp_for_write_queue(skb, sk) {
2169                 if (skb == tcp_send_head(sk))
2170                         break;
2171
2172                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2173                 /*
2174                  * Count the retransmission made on RTO correctly (only when
2175                  * waiting for the first ACK and did not get it)...
2176                  */
2177                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2178                         /* For some reason this R-bit might get cleared? */
2179                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2180                                 tp->retrans_out += tcp_skb_pcount(skb);
2181                         /* ...enter this if branch just for the first segment */
2182                         flag |= FLAG_DATA_ACKED;
2183                 } else {
2184                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2185                                 tp->undo_marker = 0;
2186                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2187                 }
2188
2189                 /* Marking forward transmissions that were made after RTO lost
2190                  * can cause unnecessary retransmissions in some scenarios,
2191                  * SACK blocks will mitigate that in some but not in all cases.
2192                  * We used to not mark them but it was causing break-ups with
2193                  * receivers that do only in-order receival.
2194                  *
2195                  * TODO: we could detect presence of such receiver and select
2196                  * different behavior per flow.
2197                  */
2198                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2199                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2200                         tp->lost_out += tcp_skb_pcount(skb);
2201                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2202                 }
2203         }
2204         tcp_verify_left_out(tp);
2205
2206         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2207         tp->snd_cwnd_cnt = 0;
2208         tp->snd_cwnd_stamp = tcp_time_stamp;
2209         tp->frto_counter = 0;
2210         tp->bytes_acked = 0;
2211
2212         tp->reordering = min_t(unsigned int, tp->reordering,
2213                                sysctl_tcp_reordering);
2214         tcp_set_ca_state(sk, TCP_CA_Loss);
2215         tp->high_seq = tp->snd_nxt;
2216         TCP_ECN_queue_cwr(tp);
2217
2218         tcp_clear_all_retrans_hints(tp);
2219 }
2220
2221 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2222 {
2223         tp->retrans_out = 0;
2224         tp->lost_out = 0;
2225
2226         tp->undo_marker = 0;
2227         tp->undo_retrans = 0;
2228 }
2229
2230 void tcp_clear_retrans(struct tcp_sock *tp)
2231 {
2232         tcp_clear_retrans_partial(tp);
2233
2234         tp->fackets_out = 0;
2235         tp->sacked_out = 0;
2236 }
2237
2238 /* Enter Loss state. If "how" is not zero, forget all SACK information
2239  * and reset tags completely, otherwise preserve SACKs. If receiver
2240  * dropped its ofo queue, we will know this due to reneging detection.
2241  */
2242 void tcp_enter_loss(struct sock *sk, int how)
2243 {
2244         const struct inet_connection_sock *icsk = inet_csk(sk);
2245         struct tcp_sock *tp = tcp_sk(sk);
2246         struct sk_buff *skb;
2247
2248         /* Reduce ssthresh if it has not yet been made inside this window. */
2249         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2250             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2251                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253                 tcp_ca_event(sk, CA_EVENT_LOSS);
2254         }
2255         tp->snd_cwnd       = 1;
2256         tp->snd_cwnd_cnt   = 0;
2257         tp->snd_cwnd_stamp = tcp_time_stamp;
2258
2259         tp->bytes_acked = 0;
2260         tcp_clear_retrans_partial(tp);
2261
2262         if (tcp_is_reno(tp))
2263                 tcp_reset_reno_sack(tp);
2264
2265         if (!how) {
2266                 /* Push undo marker, if it was plain RTO and nothing
2267                  * was retransmitted. */
2268                 tp->undo_marker = tp->snd_una;
2269         } else {
2270                 tp->sacked_out = 0;
2271                 tp->fackets_out = 0;
2272         }
2273         tcp_clear_all_retrans_hints(tp);
2274
2275         tcp_for_write_queue(skb, sk) {
2276                 if (skb == tcp_send_head(sk))
2277                         break;
2278
2279                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2280                         tp->undo_marker = 0;
2281                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2282                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2283                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2284                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2285                         tp->lost_out += tcp_skb_pcount(skb);
2286                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2287                 }
2288         }
2289         tcp_verify_left_out(tp);
2290
2291         tp->reordering = min_t(unsigned int, tp->reordering,
2292                                sysctl_tcp_reordering);
2293         tcp_set_ca_state(sk, TCP_CA_Loss);
2294         tp->high_seq = tp->snd_nxt;
2295         TCP_ECN_queue_cwr(tp);
2296         /* Abort F-RTO algorithm if one is in progress */
2297         tp->frto_counter = 0;
2298 }
2299
2300 /* If ACK arrived pointing to a remembered SACK, it means that our
2301  * remembered SACKs do not reflect real state of receiver i.e.
2302  * receiver _host_ is heavily congested (or buggy).
2303  *
2304  * Do processing similar to RTO timeout.
2305  */
2306 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2307 {
2308         if (flag & FLAG_SACK_RENEGING) {
2309                 struct inet_connection_sock *icsk = inet_csk(sk);
2310                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2311
2312                 tcp_enter_loss(sk, 1);
2313                 icsk->icsk_retransmits++;
2314                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2315                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2316                                           icsk->icsk_rto, TCP_RTO_MAX);
2317                 return 1;
2318         }
2319         return 0;
2320 }
2321
2322 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2323 {
2324         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2325 }
2326
2327 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2328  * counter when SACK is enabled (without SACK, sacked_out is used for
2329  * that purpose).
2330  *
2331  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2332  * segments up to the highest received SACK block so far and holes in
2333  * between them.
2334  *
2335  * With reordering, holes may still be in flight, so RFC3517 recovery
2336  * uses pure sacked_out (total number of SACKed segments) even though
2337  * it violates the RFC that uses duplicate ACKs, often these are equal
2338  * but when e.g. out-of-window ACKs or packet duplication occurs,
2339  * they differ. Since neither occurs due to loss, TCP should really
2340  * ignore them.
2341  */
2342 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2343 {
2344         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2345 }
2346
2347 static inline int tcp_skb_timedout(const struct sock *sk,
2348                                    const struct sk_buff *skb)
2349 {
2350         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2351 }
2352
2353 static inline int tcp_head_timedout(const struct sock *sk)
2354 {
2355         const struct tcp_sock *tp = tcp_sk(sk);
2356
2357         return tp->packets_out &&
2358                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2359 }
2360
2361 /* Linux NewReno/SACK/FACK/ECN state machine.
2362  * --------------------------------------
2363  *
2364  * "Open"       Normal state, no dubious events, fast path.
2365  * "Disorder"   In all the respects it is "Open",
2366  *              but requires a bit more attention. It is entered when
2367  *              we see some SACKs or dupacks. It is split of "Open"
2368  *              mainly to move some processing from fast path to slow one.
2369  * "CWR"        CWND was reduced due to some Congestion Notification event.
2370  *              It can be ECN, ICMP source quench, local device congestion.
2371  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2372  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2373  *
2374  * tcp_fastretrans_alert() is entered:
2375  * - each incoming ACK, if state is not "Open"
2376  * - when arrived ACK is unusual, namely:
2377  *      * SACK
2378  *      * Duplicate ACK.
2379  *      * ECN ECE.
2380  *
2381  * Counting packets in flight is pretty simple.
2382  *
2383  *      in_flight = packets_out - left_out + retrans_out
2384  *
2385  *      packets_out is SND.NXT-SND.UNA counted in packets.
2386  *
2387  *      retrans_out is number of retransmitted segments.
2388  *
2389  *      left_out is number of segments left network, but not ACKed yet.
2390  *
2391  *              left_out = sacked_out + lost_out
2392  *
2393  *     sacked_out: Packets, which arrived to receiver out of order
2394  *                 and hence not ACKed. With SACKs this number is simply
2395  *                 amount of SACKed data. Even without SACKs
2396  *                 it is easy to give pretty reliable estimate of this number,
2397  *                 counting duplicate ACKs.
2398  *
2399  *       lost_out: Packets lost by network. TCP has no explicit
2400  *                 "loss notification" feedback from network (for now).
2401  *                 It means that this number can be only _guessed_.
2402  *                 Actually, it is the heuristics to predict lossage that
2403  *                 distinguishes different algorithms.
2404  *
2405  *      F.e. after RTO, when all the queue is considered as lost,
2406  *      lost_out = packets_out and in_flight = retrans_out.
2407  *
2408  *              Essentially, we have now two algorithms counting
2409  *              lost packets.
2410  *
2411  *              FACK: It is the simplest heuristics. As soon as we decided
2412  *              that something is lost, we decide that _all_ not SACKed
2413  *              packets until the most forward SACK are lost. I.e.
2414  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2415  *              It is absolutely correct estimate, if network does not reorder
2416  *              packets. And it loses any connection to reality when reordering
2417  *              takes place. We use FACK by default until reordering
2418  *              is suspected on the path to this destination.
2419  *
2420  *              NewReno: when Recovery is entered, we assume that one segment
2421  *              is lost (classic Reno). While we are in Recovery and
2422  *              a partial ACK arrives, we assume that one more packet
2423  *              is lost (NewReno). This heuristics are the same in NewReno
2424  *              and SACK.
2425  *
2426  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2427  *  deflation etc. CWND is real congestion window, never inflated, changes
2428  *  only according to classic VJ rules.
2429  *
2430  * Really tricky (and requiring careful tuning) part of algorithm
2431  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2432  * The first determines the moment _when_ we should reduce CWND and,
2433  * hence, slow down forward transmission. In fact, it determines the moment
2434  * when we decide that hole is caused by loss, rather than by a reorder.
2435  *
2436  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2437  * holes, caused by lost packets.
2438  *
2439  * And the most logically complicated part of algorithm is undo
2440  * heuristics. We detect false retransmits due to both too early
2441  * fast retransmit (reordering) and underestimated RTO, analyzing
2442  * timestamps and D-SACKs. When we detect that some segments were
2443  * retransmitted by mistake and CWND reduction was wrong, we undo
2444  * window reduction and abort recovery phase. This logic is hidden
2445  * inside several functions named tcp_try_undo_<something>.
2446  */
2447
2448 /* This function decides, when we should leave Disordered state
2449  * and enter Recovery phase, reducing congestion window.
2450  *
2451  * Main question: may we further continue forward transmission
2452  * with the same cwnd?
2453  */
2454 static int tcp_time_to_recover(struct sock *sk)
2455 {
2456         struct tcp_sock *tp = tcp_sk(sk);
2457         __u32 packets_out;
2458
2459         /* Do not perform any recovery during F-RTO algorithm */
2460         if (tp->frto_counter)
2461                 return 0;
2462
2463         /* Trick#1: The loss is proven. */
2464         if (tp->lost_out)
2465                 return 1;
2466
2467         /* Not-A-Trick#2 : Classic rule... */
2468         if (tcp_dupack_heuristics(tp) > tp->reordering)
2469                 return 1;
2470
2471         /* Trick#3 : when we use RFC2988 timer restart, fast
2472          * retransmit can be triggered by timeout of queue head.
2473          */
2474         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2475                 return 1;
2476
2477         /* Trick#4: It is still not OK... But will it be useful to delay
2478          * recovery more?
2479          */
2480         packets_out = tp->packets_out;
2481         if (packets_out <= tp->reordering &&
2482             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2483             !tcp_may_send_now(sk)) {
2484                 /* We have nothing to send. This connection is limited
2485                  * either by receiver window or by application.
2486                  */
2487                 return 1;
2488         }
2489
2490         /* If a thin stream is detected, retransmit after first
2491          * received dupack. Employ only if SACK is supported in order
2492          * to avoid possible corner-case series of spurious retransmissions
2493          * Use only if there are no unsent data.
2494          */
2495         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2496             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2497             tcp_is_sack(tp) && !tcp_send_head(sk))
2498                 return 1;
2499
2500         /* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2501          * retransmissions due to small network reorderings, we implement
2502          * Mitigation A.3 in the RFC and delay the retransmission for a short
2503          * interval if appropriate.
2504          */
2505         if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2506             (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2507             !tcp_may_send_now(sk))
2508                 return 1;
2509
2510         return 0;
2511 }
2512
2513 /* New heuristics: it is possible only after we switched to restart timer
2514  * each time when something is ACKed. Hence, we can detect timed out packets
2515  * during fast retransmit without falling to slow start.
2516  *
2517  * Usefulness of this as is very questionable, since we should know which of
2518  * the segments is the next to timeout which is relatively expensive to find
2519  * in general case unless we add some data structure just for that. The
2520  * current approach certainly won't find the right one too often and when it
2521  * finally does find _something_ it usually marks large part of the window
2522  * right away (because a retransmission with a larger timestamp blocks the
2523  * loop from advancing). -ij
2524  */
2525 static void tcp_timeout_skbs(struct sock *sk)
2526 {
2527         struct tcp_sock *tp = tcp_sk(sk);
2528         struct sk_buff *skb;
2529
2530         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2531                 return;
2532
2533         skb = tp->scoreboard_skb_hint;
2534         if (tp->scoreboard_skb_hint == NULL)
2535                 skb = tcp_write_queue_head(sk);
2536
2537         tcp_for_write_queue_from(skb, sk) {
2538                 if (skb == tcp_send_head(sk))
2539                         break;
2540                 if (!tcp_skb_timedout(sk, skb))
2541                         break;
2542
2543                 tcp_skb_mark_lost(tp, skb);
2544         }
2545
2546         tp->scoreboard_skb_hint = skb;
2547
2548         tcp_verify_left_out(tp);
2549 }
2550
2551 /* Detect loss in event "A" above by marking head of queue up as lost.
2552  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2553  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2554  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2555  * the maximum SACKed segments to pass before reaching this limit.
2556  */
2557 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2558 {
2559         struct tcp_sock *tp = tcp_sk(sk);
2560         struct sk_buff *skb;
2561         int cnt, oldcnt;
2562         int err;
2563         unsigned int mss;
2564         /* Use SACK to deduce losses of new sequences sent during recovery */
2565         const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2566
2567         WARN_ON(packets > tp->packets_out);
2568         if (tp->lost_skb_hint) {
2569                 skb = tp->lost_skb_hint;
2570                 cnt = tp->lost_cnt_hint;
2571                 /* Head already handled? */
2572                 if (mark_head && skb != tcp_write_queue_head(sk))
2573                         return;
2574         } else {
2575                 skb = tcp_write_queue_head(sk);
2576                 cnt = 0;
2577         }
2578
2579         tcp_for_write_queue_from(skb, sk) {
2580                 if (skb == tcp_send_head(sk))
2581                         break;
2582                 /* TODO: do this better */
2583                 /* this is not the most efficient way to do this... */
2584                 tp->lost_skb_hint = skb;
2585                 tp->lost_cnt_hint = cnt;
2586
2587                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2588                         break;
2589
2590                 oldcnt = cnt;
2591                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2592                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2593                         cnt += tcp_skb_pcount(skb);
2594
2595                 if (cnt > packets) {
2596                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2597                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2598                             (oldcnt >= packets))
2599                                 break;
2600
2601                         mss = skb_shinfo(skb)->gso_size;
2602                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2603                         if (err < 0)
2604                                 break;
2605                         cnt = packets;
2606                 }
2607
2608                 tcp_skb_mark_lost(tp, skb);
2609
2610                 if (mark_head)
2611                         break;
2612         }
2613         tcp_verify_left_out(tp);
2614 }
2615
2616 /* Account newly detected lost packet(s) */
2617
2618 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2619 {
2620         struct tcp_sock *tp = tcp_sk(sk);
2621
2622         if (tcp_is_reno(tp)) {
2623                 tcp_mark_head_lost(sk, 1, 1);
2624         } else if (tcp_is_fack(tp)) {
2625                 int lost = tp->fackets_out - tp->reordering;
2626                 if (lost <= 0)
2627                         lost = 1;
2628                 tcp_mark_head_lost(sk, lost, 0);
2629         } else {
2630                 int sacked_upto = tp->sacked_out - tp->reordering;
2631                 if (sacked_upto >= 0)
2632                         tcp_mark_head_lost(sk, sacked_upto, 0);
2633                 else if (fast_rexmit)
2634                         tcp_mark_head_lost(sk, 1, 1);
2635         }
2636
2637         tcp_timeout_skbs(sk);
2638 }
2639
2640 /* CWND moderation, preventing bursts due to too big ACKs
2641  * in dubious situations.
2642  */
2643 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2644 {
2645         tp->snd_cwnd = min(tp->snd_cwnd,
2646                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2647         tp->snd_cwnd_stamp = tcp_time_stamp;
2648 }
2649
2650 /* Lower bound on congestion window is slow start threshold
2651  * unless congestion avoidance choice decides to overide it.
2652  */
2653 static inline u32 tcp_cwnd_min(const struct sock *sk)
2654 {
2655         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2656
2657         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2658 }
2659
2660 /* Decrease cwnd each second ack. */
2661 static void tcp_cwnd_down(struct sock *sk, int flag)
2662 {
2663         struct tcp_sock *tp = tcp_sk(sk);
2664         int decr = tp->snd_cwnd_cnt + 1;
2665
2666         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2667             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2668                 tp->snd_cwnd_cnt = decr & 1;
2669                 decr >>= 1;
2670
2671                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2672                         tp->snd_cwnd -= decr;
2673
2674                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2675                 tp->snd_cwnd_stamp = tcp_time_stamp;
2676         }
2677 }
2678
2679 /* Nothing was retransmitted or returned timestamp is less
2680  * than timestamp of the first retransmission.
2681  */
2682 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2683 {
2684         return !tp->retrans_stamp ||
2685                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2686                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2687 }
2688
2689 /* Undo procedures. */
2690
2691 #if FASTRETRANS_DEBUG > 1
2692 static void DBGUNDO(struct sock *sk, const char *msg)
2693 {
2694         struct tcp_sock *tp = tcp_sk(sk);
2695         struct inet_sock *inet = inet_sk(sk);
2696
2697         if (sk->sk_family == AF_INET) {
2698                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2699                        msg,
2700                        &inet->inet_daddr, ntohs(inet->inet_dport),
2701                        tp->snd_cwnd, tcp_left_out(tp),
2702                        tp->snd_ssthresh, tp->prior_ssthresh,
2703                        tp->packets_out);
2704         }
2705 #if IS_ENABLED(CONFIG_IPV6)
2706         else if (sk->sk_family == AF_INET6) {
2707                 struct ipv6_pinfo *np = inet6_sk(sk);
2708                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2709                        msg,
2710                        &np->daddr, ntohs(inet->inet_dport),
2711                        tp->snd_cwnd, tcp_left_out(tp),
2712                        tp->snd_ssthresh, tp->prior_ssthresh,
2713                        tp->packets_out);
2714         }
2715 #endif
2716 }
2717 #else
2718 #define DBGUNDO(x...) do { } while (0)
2719 #endif
2720
2721 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2722 {
2723         struct tcp_sock *tp = tcp_sk(sk);
2724
2725         if (tp->prior_ssthresh) {
2726                 const struct inet_connection_sock *icsk = inet_csk(sk);
2727
2728                 if (icsk->icsk_ca_ops->undo_cwnd)
2729                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2730                 else
2731                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2732
2733                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2734                         tp->snd_ssthresh = tp->prior_ssthresh;
2735                         TCP_ECN_withdraw_cwr(tp);
2736                 }
2737         } else {
2738                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2739         }
2740         tp->snd_cwnd_stamp = tcp_time_stamp;
2741 }
2742
2743 static inline int tcp_may_undo(const struct tcp_sock *tp)
2744 {
2745         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2746 }
2747
2748 /* People celebrate: "We love our President!" */
2749 static int tcp_try_undo_recovery(struct sock *sk)
2750 {
2751         struct tcp_sock *tp = tcp_sk(sk);
2752
2753         if (tcp_may_undo(tp)) {
2754                 int mib_idx;
2755
2756                 /* Happy end! We did not retransmit anything
2757                  * or our original transmission succeeded.
2758                  */
2759                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2760                 tcp_undo_cwr(sk, true);
2761                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2762                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2763                 else
2764                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2765
2766                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2767                 tp->undo_marker = 0;
2768         }
2769         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2770                 /* Hold old state until something *above* high_seq
2771                  * is ACKed. For Reno it is MUST to prevent false
2772                  * fast retransmits (RFC2582). SACK TCP is safe. */
2773                 tcp_moderate_cwnd(tp);
2774                 return 1;
2775         }
2776         tcp_set_ca_state(sk, TCP_CA_Open);
2777         return 0;
2778 }
2779
2780 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2781 static void tcp_try_undo_dsack(struct sock *sk)
2782 {
2783         struct tcp_sock *tp = tcp_sk(sk);
2784
2785         if (tp->undo_marker && !tp->undo_retrans) {
2786                 DBGUNDO(sk, "D-SACK");
2787                 tcp_undo_cwr(sk, true);
2788                 tp->undo_marker = 0;
2789                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2790         }
2791 }
2792
2793 /* We can clear retrans_stamp when there are no retransmissions in the
2794  * window. It would seem that it is trivially available for us in
2795  * tp->retrans_out, however, that kind of assumptions doesn't consider
2796  * what will happen if errors occur when sending retransmission for the
2797  * second time. ...It could the that such segment has only
2798  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2799  * the head skb is enough except for some reneging corner cases that
2800  * are not worth the effort.
2801  *
2802  * Main reason for all this complexity is the fact that connection dying
2803  * time now depends on the validity of the retrans_stamp, in particular,
2804  * that successive retransmissions of a segment must not advance
2805  * retrans_stamp under any conditions.
2806  */
2807 static int tcp_any_retrans_done(const struct sock *sk)
2808 {
2809         const struct tcp_sock *tp = tcp_sk(sk);
2810         struct sk_buff *skb;
2811
2812         if (tp->retrans_out)
2813                 return 1;
2814
2815         skb = tcp_write_queue_head(sk);
2816         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2817                 return 1;
2818
2819         return 0;
2820 }
2821
2822 /* Undo during fast recovery after partial ACK. */
2823
2824 static int tcp_try_undo_partial(struct sock *sk, int acked)
2825 {
2826         struct tcp_sock *tp = tcp_sk(sk);
2827         /* Partial ACK arrived. Force Hoe's retransmit. */
2828         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2829
2830         if (tcp_may_undo(tp)) {
2831                 /* Plain luck! Hole if filled with delayed
2832                  * packet, rather than with a retransmit.
2833                  */
2834                 if (!tcp_any_retrans_done(sk))
2835                         tp->retrans_stamp = 0;
2836
2837                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2838
2839                 DBGUNDO(sk, "Hoe");
2840                 tcp_undo_cwr(sk, false);
2841                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2842
2843                 /* So... Do not make Hoe's retransmit yet.
2844                  * If the first packet was delayed, the rest
2845                  * ones are most probably delayed as well.
2846                  */
2847                 failed = 0;
2848         }
2849         return failed;
2850 }
2851
2852 /* Undo during loss recovery after partial ACK. */
2853 static int tcp_try_undo_loss(struct sock *sk)
2854 {
2855         struct tcp_sock *tp = tcp_sk(sk);
2856
2857         if (tcp_may_undo(tp)) {
2858                 struct sk_buff *skb;
2859                 tcp_for_write_queue(skb, sk) {
2860                         if (skb == tcp_send_head(sk))
2861                                 break;
2862                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2863                 }
2864
2865                 tcp_clear_all_retrans_hints(tp);
2866
2867                 DBGUNDO(sk, "partial loss");
2868                 tp->lost_out = 0;
2869                 tcp_undo_cwr(sk, true);
2870                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2871                 inet_csk(sk)->icsk_retransmits = 0;
2872                 tp->undo_marker = 0;
2873                 if (tcp_is_sack(tp))
2874                         tcp_set_ca_state(sk, TCP_CA_Open);
2875                 return 1;
2876         }
2877         return 0;
2878 }
2879
2880 static inline void tcp_complete_cwr(struct sock *sk)
2881 {
2882         struct tcp_sock *tp = tcp_sk(sk);
2883
2884         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2885         if (tp->undo_marker) {
2886                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2887                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2888                 else /* PRR */
2889                         tp->snd_cwnd = tp->snd_ssthresh;
2890                 tp->snd_cwnd_stamp = tcp_time_stamp;
2891         }
2892         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2893 }
2894
2895 static void tcp_try_keep_open(struct sock *sk)
2896 {
2897         struct tcp_sock *tp = tcp_sk(sk);
2898         int state = TCP_CA_Open;
2899
2900         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2901                 state = TCP_CA_Disorder;
2902
2903         if (inet_csk(sk)->icsk_ca_state != state) {
2904                 tcp_set_ca_state(sk, state);
2905                 tp->high_seq = tp->snd_nxt;
2906         }
2907 }
2908
2909 static void tcp_try_to_open(struct sock *sk, int flag)
2910 {
2911         struct tcp_sock *tp = tcp_sk(sk);
2912
2913         tcp_verify_left_out(tp);
2914
2915         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2916                 tp->retrans_stamp = 0;
2917
2918         if (flag & FLAG_ECE)
2919                 tcp_enter_cwr(sk, 1);
2920
2921         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2922                 tcp_try_keep_open(sk);
2923                 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2924                         tcp_moderate_cwnd(tp);
2925         } else {
2926                 tcp_cwnd_down(sk, flag);
2927         }
2928 }
2929
2930 static void tcp_mtup_probe_failed(struct sock *sk)
2931 {
2932         struct inet_connection_sock *icsk = inet_csk(sk);
2933
2934         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2935         icsk->icsk_mtup.probe_size = 0;
2936 }
2937
2938 static void tcp_mtup_probe_success(struct sock *sk)
2939 {
2940         struct tcp_sock *tp = tcp_sk(sk);
2941         struct inet_connection_sock *icsk = inet_csk(sk);
2942
2943         /* FIXME: breaks with very large cwnd */
2944         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2945         tp->snd_cwnd = tp->snd_cwnd *
2946                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2947                        icsk->icsk_mtup.probe_size;
2948         tp->snd_cwnd_cnt = 0;
2949         tp->snd_cwnd_stamp = tcp_time_stamp;
2950         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2951
2952         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2953         icsk->icsk_mtup.probe_size = 0;
2954         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2955 }
2956
2957 /* Do a simple retransmit without using the backoff mechanisms in
2958  * tcp_timer. This is used for path mtu discovery.
2959  * The socket is already locked here.
2960  */
2961 void tcp_simple_retransmit(struct sock *sk)
2962 {
2963         const struct inet_connection_sock *icsk = inet_csk(sk);
2964         struct tcp_sock *tp = tcp_sk(sk);
2965         struct sk_buff *skb;
2966         unsigned int mss = tcp_current_mss(sk);
2967         u32 prior_lost = tp->lost_out;
2968
2969         tcp_for_write_queue(skb, sk) {
2970                 if (skb == tcp_send_head(sk))
2971                         break;
2972                 if (tcp_skb_seglen(skb) > mss &&
2973                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2974                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2975                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2976                                 tp->retrans_out -= tcp_skb_pcount(skb);
2977                         }
2978                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2979                 }
2980         }
2981
2982         tcp_clear_retrans_hints_partial(tp);
2983
2984         if (prior_lost == tp->lost_out)
2985                 return;
2986
2987         if (tcp_is_reno(tp))
2988                 tcp_limit_reno_sacked(tp);
2989
2990         tcp_verify_left_out(tp);
2991
2992         /* Don't muck with the congestion window here.
2993          * Reason is that we do not increase amount of _data_
2994          * in network, but units changed and effective
2995          * cwnd/ssthresh really reduced now.
2996          */
2997         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2998                 tp->high_seq = tp->snd_nxt;
2999                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3000                 tp->prior_ssthresh = 0;
3001                 tp->undo_marker = 0;
3002                 tcp_set_ca_state(sk, TCP_CA_Loss);
3003         }
3004         tcp_xmit_retransmit_queue(sk);
3005 }
3006 EXPORT_SYMBOL(tcp_simple_retransmit);
3007
3008 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3009  * (proportional rate reduction with slow start reduction bound) as described in
3010  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3011  * It computes the number of packets to send (sndcnt) based on packets newly
3012  * delivered:
3013  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3014  *      cwnd reductions across a full RTT.
3015  *   2) If packets in flight is lower than ssthresh (such as due to excess
3016  *      losses and/or application stalls), do not perform any further cwnd
3017  *      reductions, but instead slow start up to ssthresh.
3018  */
3019 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3020                                         int fast_rexmit, int flag)
3021 {
3022         struct tcp_sock *tp = tcp_sk(sk);
3023         int sndcnt = 0;
3024         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3025
3026         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3027                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3028                                tp->prior_cwnd - 1;
3029                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3030         } else {
3031                 sndcnt = min_t(int, delta,
3032                                max_t(int, tp->prr_delivered - tp->prr_out,
3033                                      newly_acked_sacked) + 1);
3034         }
3035
3036         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3037         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3038 }
3039
3040 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3041 {
3042         struct tcp_sock *tp = tcp_sk(sk);
3043         int mib_idx;
3044
3045         if (tcp_is_reno(tp))
3046                 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3047         else
3048                 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3049
3050         NET_INC_STATS_BH(sock_net(sk), mib_idx);
3051
3052         tp->high_seq = tp->snd_nxt;
3053         tp->prior_ssthresh = 0;
3054         tp->undo_marker = tp->snd_una;
3055         tp->undo_retrans = tp->retrans_out;
3056
3057         if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3058                 if (!ece_ack)
3059                         tp->prior_ssthresh = tcp_current_ssthresh(sk);
3060                 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3061                 TCP_ECN_queue_cwr(tp);
3062         }
3063
3064         tp->bytes_acked = 0;
3065         tp->snd_cwnd_cnt = 0;
3066         tp->prior_cwnd = tp->snd_cwnd;
3067         tp->prr_delivered = 0;
3068         tp->prr_out = 0;
3069         tcp_set_ca_state(sk, TCP_CA_Recovery);
3070 }
3071
3072 /* Process an event, which can update packets-in-flight not trivially.
3073  * Main goal of this function is to calculate new estimate for left_out,
3074  * taking into account both packets sitting in receiver's buffer and
3075  * packets lost by network.
3076  *
3077  * Besides that it does CWND reduction, when packet loss is detected
3078  * and changes state of machine.
3079  *
3080  * It does _not_ decide what to send, it is made in function
3081  * tcp_xmit_retransmit_queue().
3082  */
3083 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3084                                   int newly_acked_sacked, bool is_dupack,
3085                                   int flag)
3086 {
3087         struct inet_connection_sock *icsk = inet_csk(sk);
3088         struct tcp_sock *tp = tcp_sk(sk);
3089         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3090                                     (tcp_fackets_out(tp) > tp->reordering));
3091         int fast_rexmit = 0;
3092
3093         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3094                 tp->sacked_out = 0;
3095         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3096                 tp->fackets_out = 0;
3097
3098         /* Now state machine starts.
3099          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3100         if (flag & FLAG_ECE)
3101                 tp->prior_ssthresh = 0;
3102
3103         /* B. In all the states check for reneging SACKs. */
3104         if (tcp_check_sack_reneging(sk, flag))
3105                 return;
3106
3107         /* C. Check consistency of the current state. */
3108         tcp_verify_left_out(tp);
3109
3110         /* D. Check state exit conditions. State can be terminated
3111          *    when high_seq is ACKed. */
3112         if (icsk->icsk_ca_state == TCP_CA_Open) {
3113                 WARN_ON(tp->retrans_out != 0);
3114                 tp->retrans_stamp = 0;
3115         } else if (!before(tp->snd_una, tp->high_seq)) {
3116                 switch (icsk->icsk_ca_state) {
3117                 case TCP_CA_Loss:
3118                         icsk->icsk_retransmits = 0;
3119                         if (tcp_try_undo_recovery(sk))
3120                                 return;
3121                         break;
3122
3123                 case TCP_CA_CWR:
3124                         /* CWR is to be held something *above* high_seq
3125                          * is ACKed for CWR bit to reach receiver. */
3126                         if (tp->snd_una != tp->high_seq) {
3127                                 tcp_complete_cwr(sk);
3128                                 tcp_set_ca_state(sk, TCP_CA_Open);
3129                         }
3130                         break;
3131
3132                 case TCP_CA_Recovery:
3133                         if (tcp_is_reno(tp))
3134                                 tcp_reset_reno_sack(tp);
3135                         if (tcp_try_undo_recovery(sk))
3136                                 return;
3137                         tcp_complete_cwr(sk);
3138                         break;
3139                 }
3140         }
3141
3142         /* E. Process state. */
3143         switch (icsk->icsk_ca_state) {
3144         case TCP_CA_Recovery:
3145                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3146                         if (tcp_is_reno(tp) && is_dupack)
3147                                 tcp_add_reno_sack(sk);
3148                 } else
3149                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3150                 break;
3151         case TCP_CA_Loss:
3152                 if (flag & FLAG_DATA_ACKED)
3153                         icsk->icsk_retransmits = 0;
3154                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3155                         tcp_reset_reno_sack(tp);
3156                 if (!tcp_try_undo_loss(sk)) {
3157                         tcp_moderate_cwnd(tp);
3158                         tcp_xmit_retransmit_queue(sk);
3159                         return;
3160                 }
3161                 if (icsk->icsk_ca_state != TCP_CA_Open)
3162                         return;
3163                 /* Loss is undone; fall through to processing in Open state. */
3164         default:
3165                 if (tcp_is_reno(tp)) {
3166                         if (flag & FLAG_SND_UNA_ADVANCED)
3167                                 tcp_reset_reno_sack(tp);
3168                         if (is_dupack)
3169                                 tcp_add_reno_sack(sk);
3170                 }
3171
3172                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3173                         tcp_try_undo_dsack(sk);
3174
3175                 if (!tcp_time_to_recover(sk)) {
3176                         tcp_try_to_open(sk, flag);
3177                         return;
3178                 }
3179
3180                 /* MTU probe failure: don't reduce cwnd */
3181                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3182                     icsk->icsk_mtup.probe_size &&
3183                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3184                         tcp_mtup_probe_failed(sk);
3185                         /* Restores the reduction we did in tcp_mtup_probe() */
3186                         tp->snd_cwnd++;
3187                         tcp_simple_retransmit(sk);
3188                         return;
3189                 }
3190
3191                 /* Otherwise enter Recovery state */
3192                 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3193                 fast_rexmit = 1;
3194         }
3195
3196         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3197                 tcp_update_scoreboard(sk, fast_rexmit);
3198         tp->prr_delivered += newly_acked_sacked;
3199         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3200         tcp_xmit_retransmit_queue(sk);
3201 }
3202
3203 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3204 {
3205         tcp_rtt_estimator(sk, seq_rtt);
3206         tcp_set_rto(sk);
3207         inet_csk(sk)->icsk_backoff = 0;
3208 }
3209 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3210
3211 /* Read draft-ietf-tcplw-high-performance before mucking
3212  * with this code. (Supersedes RFC1323)
3213  */
3214 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3215 {
3216         /* RTTM Rule: A TSecr value received in a segment is used to
3217          * update the averaged RTT measurement only if the segment
3218          * acknowledges some new data, i.e., only if it advances the
3219          * left edge of the send window.
3220          *
3221          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3222          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3223          *
3224          * Changed: reset backoff as soon as we see the first valid sample.
3225          * If we do not, we get strongly overestimated rto. With timestamps
3226          * samples are accepted even from very old segments: f.e., when rtt=1
3227          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3228          * answer arrives rto becomes 120 seconds! If at least one of segments
3229          * in window is lost... Voila.                          --ANK (010210)
3230          */
3231         struct tcp_sock *tp = tcp_sk(sk);
3232
3233         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3234 }
3235
3236 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3237 {
3238         /* We don't have a timestamp. Can only use
3239          * packets that are not retransmitted to determine
3240          * rtt estimates. Also, we must not reset the
3241          * backoff for rto until we get a non-retransmitted
3242          * packet. This allows us to deal with a situation
3243          * where the network delay has increased suddenly.
3244          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3245          */
3246
3247         if (flag & FLAG_RETRANS_DATA_ACKED)
3248                 return;
3249
3250         tcp_valid_rtt_meas(sk, seq_rtt);
3251 }
3252
3253 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3254                                       const s32 seq_rtt)
3255 {
3256         const struct tcp_sock *tp = tcp_sk(sk);
3257         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3258         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3259                 tcp_ack_saw_tstamp(sk, flag);
3260         else if (seq_rtt >= 0)
3261                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3262 }
3263
3264 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3265 {
3266         const struct inet_connection_sock *icsk = inet_csk(sk);
3267         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3268         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3269 }
3270
3271 /* Restart timer after forward progress on connection.
3272  * RFC2988 recommends to restart timer to now+rto.
3273  */
3274 static void tcp_rearm_rto(struct sock *sk)
3275 {
3276         const struct tcp_sock *tp = tcp_sk(sk);
3277
3278         if (!tp->packets_out) {
3279                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3280         } else {
3281                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3282                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3283         }
3284 }
3285
3286 /* If we get here, the whole TSO packet has not been acked. */
3287 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3288 {
3289         struct tcp_sock *tp = tcp_sk(sk);
3290         u32 packets_acked;
3291
3292         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3293
3294         packets_acked = tcp_skb_pcount(skb);
3295         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3296                 return 0;
3297         packets_acked -= tcp_skb_pcount(skb);
3298
3299         if (packets_acked) {
3300                 BUG_ON(tcp_skb_pcount(skb) == 0);
3301                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3302         }
3303
3304         return packets_acked;
3305 }
3306
3307 /* Remove acknowledged frames from the retransmission queue. If our packet
3308  * is before the ack sequence we can discard it as it's confirmed to have
3309  * arrived at the other end.
3310  */
3311 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3312                                u32 prior_snd_una)
3313 {
3314         struct tcp_sock *tp = tcp_sk(sk);
3315         const struct inet_connection_sock *icsk = inet_csk(sk);
3316         struct sk_buff *skb;
3317         u32 now = tcp_time_stamp;
3318         int fully_acked = 1;
3319         int flag = 0;
3320         u32 pkts_acked = 0;
3321         u32 reord = tp->packets_out;
3322         u32 prior_sacked = tp->sacked_out;
3323         s32 seq_rtt = -1;
3324         s32 ca_seq_rtt = -1;
3325         ktime_t last_ackt = net_invalid_timestamp();
3326
3327         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3328                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3329                 u32 acked_pcount;
3330                 u8 sacked = scb->sacked;
3331
3332                 /* Determine how many packets and what bytes were acked, tso and else */
3333                 if (after(scb->end_seq, tp->snd_una)) {
3334                         if (tcp_skb_pcount(skb) == 1 ||
3335                             !after(tp->snd_una, scb->seq))
3336                                 break;
3337
3338                         acked_pcount = tcp_tso_acked(sk, skb);
3339                         if (!acked_pcount)
3340                                 break;
3341
3342                         fully_acked = 0;
3343                 } else {
3344                         acked_pcount = tcp_skb_pcount(skb);
3345                 }
3346
3347                 if (sacked & TCPCB_RETRANS) {
3348                         if (sacked & TCPCB_SACKED_RETRANS)
3349                                 tp->retrans_out -= acked_pcount;
3350                         flag |= FLAG_RETRANS_DATA_ACKED;
3351                         ca_seq_rtt = -1;
3352                         seq_rtt = -1;
3353                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3354                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3355                 } else {
3356                         ca_seq_rtt = now - scb->when;
3357                         last_ackt = skb->tstamp;
3358                         if (seq_rtt < 0) {
3359                                 seq_rtt = ca_seq_rtt;
3360                         }
3361                         if (!(sacked & TCPCB_SACKED_ACKED))
3362                                 reord = min(pkts_acked, reord);
3363                 }
3364
3365                 if (sacked & TCPCB_SACKED_ACKED)
3366                         tp->sacked_out -= acked_pcount;
3367                 if (sacked & TCPCB_LOST)
3368                         tp->lost_out -= acked_pcount;
3369
3370                 tp->packets_out -= acked_pcount;
3371                 pkts_acked += acked_pcount;
3372
3373                 /* Initial outgoing SYN's get put onto the write_queue
3374                  * just like anything else we transmit.  It is not
3375                  * true data, and if we misinform our callers that
3376                  * this ACK acks real data, we will erroneously exit
3377                  * connection startup slow start one packet too
3378                  * quickly.  This is severely frowned upon behavior.
3379                  */
3380                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3381                         flag |= FLAG_DATA_ACKED;
3382                 } else {
3383                         flag |= FLAG_SYN_ACKED;
3384                         tp->retrans_stamp = 0;
3385                 }
3386
3387                 if (!fully_acked)
3388                         break;
3389
3390                 tcp_unlink_write_queue(skb, sk);
3391                 sk_wmem_free_skb(sk, skb);
3392                 tp->scoreboard_skb_hint = NULL;
3393                 if (skb == tp->retransmit_skb_hint)
3394                         tp->retransmit_skb_hint = NULL;
3395                 if (skb == tp->lost_skb_hint)
3396                         tp->lost_skb_hint = NULL;
3397         }
3398
3399         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3400                 tp->snd_up = tp->snd_una;
3401
3402         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3403                 flag |= FLAG_SACK_RENEGING;
3404
3405         if (flag & FLAG_ACKED) {
3406                 const struct tcp_congestion_ops *ca_ops
3407                         = inet_csk(sk)->icsk_ca_ops;
3408
3409                 if (unlikely(icsk->icsk_mtup.probe_size &&
3410                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3411                         tcp_mtup_probe_success(sk);
3412                 }
3413
3414                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3415                 tcp_rearm_rto(sk);
3416
3417                 if (tcp_is_reno(tp)) {
3418                         tcp_remove_reno_sacks(sk, pkts_acked);
3419                 } else {
3420                         int delta;
3421
3422                         /* Non-retransmitted hole got filled? That's reordering */
3423                         if (reord < prior_fackets)
3424                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3425
3426                         delta = tcp_is_fack(tp) ? pkts_acked :
3427                                                   prior_sacked - tp->sacked_out;
3428                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3429                 }
3430
3431                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3432
3433                 if (ca_ops->pkts_acked) {
3434                         s32 rtt_us = -1;
3435
3436                         /* Is the ACK triggering packet unambiguous? */
3437                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3438                                 /* High resolution needed and available? */
3439                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3440                                     !ktime_equal(last_ackt,
3441                                                  net_invalid_timestamp()))
3442                                         rtt_us = ktime_us_delta(ktime_get_real(),
3443                                                                 last_ackt);
3444                                 else if (ca_seq_rtt >= 0)
3445                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3446                         }
3447
3448                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3449                 }
3450         }
3451
3452 #if FASTRETRANS_DEBUG > 0
3453         WARN_ON((int)tp->sacked_out < 0);
3454         WARN_ON((int)tp->lost_out < 0);
3455         WARN_ON((int)tp->retrans_out < 0);
3456         if (!tp->packets_out && tcp_is_sack(tp)) {
3457                 icsk = inet_csk(sk);
3458                 if (tp->lost_out) {
3459                         printk(KERN_DEBUG "Leak l=%u %d\n",
3460                                tp->lost_out, icsk->icsk_ca_state);
3461                         tp->lost_out = 0;
3462                 }
3463                 if (tp->sacked_out) {
3464                         printk(KERN_DEBUG "Leak s=%u %d\n",
3465                                tp->sacked_out, icsk->icsk_ca_state);
3466                         tp->sacked_out = 0;
3467                 }
3468                 if (tp->retrans_out) {
3469                         printk(KERN_DEBUG "Leak r=%u %d\n",
3470                                tp->retrans_out, icsk->icsk_ca_state);
3471                         tp->retrans_out = 0;
3472                 }
3473         }
3474 #endif
3475         return flag;
3476 }
3477
3478 static void tcp_ack_probe(struct sock *sk)
3479 {
3480         const struct tcp_sock *tp = tcp_sk(sk);
3481         struct inet_connection_sock *icsk = inet_csk(sk);
3482
3483         /* Was it a usable window open? */
3484
3485         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3486                 icsk->icsk_backoff = 0;
3487                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3488                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3489                  * This function is not for random using!
3490                  */
3491         } else {
3492                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3493                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3494                                           TCP_RTO_MAX);
3495         }
3496 }
3497
3498 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3499 {
3500         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3501                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3502 }
3503
3504 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3505 {
3506         const struct tcp_sock *tp = tcp_sk(sk);
3507         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3508                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3509 }
3510
3511 /* Check that window update is acceptable.
3512  * The function assumes that snd_una<=ack<=snd_next.
3513  */
3514 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3515                                         const u32 ack, const u32 ack_seq,
3516                                         const u32 nwin)
3517 {
3518         return  after(ack, tp->snd_una) ||
3519                 after(ack_seq, tp->snd_wl1) ||
3520                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3521 }
3522
3523 /* Update our send window.
3524  *
3525  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3526  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3527  */
3528 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3529                                  u32 ack_seq)
3530 {
3531         struct tcp_sock *tp = tcp_sk(sk);
3532         int flag = 0;
3533         u32 nwin = ntohs(tcp_hdr(skb)->window);
3534
3535         if (likely(!tcp_hdr(skb)->syn))
3536                 nwin <<= tp->rx_opt.snd_wscale;
3537
3538         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3539                 flag |= FLAG_WIN_UPDATE;
3540                 tcp_update_wl(tp, ack_seq);
3541
3542                 if (tp->snd_wnd != nwin) {
3543                         tp->snd_wnd = nwin;
3544
3545                         /* Note, it is the only place, where
3546                          * fast path is recovered for sending TCP.
3547                          */
3548                         tp->pred_flags = 0;
3549                         tcp_fast_path_check(sk);
3550
3551                         if (nwin > tp->max_window) {
3552                                 tp->max_window = nwin;
3553                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3554                         }
3555                 }
3556         }
3557
3558         tp->snd_una = ack;
3559
3560         return flag;
3561 }
3562
3563 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3564  * continue in congestion avoidance.
3565  */
3566 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3567 {
3568         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3569         tp->snd_cwnd_cnt = 0;
3570         tp->bytes_acked = 0;
3571         TCP_ECN_queue_cwr(tp);
3572         tcp_moderate_cwnd(tp);
3573 }
3574
3575 /* A conservative spurious RTO response algorithm: reduce cwnd using
3576  * rate halving and continue in congestion avoidance.
3577  */
3578 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3579 {
3580         tcp_enter_cwr(sk, 0);
3581 }
3582
3583 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3584 {
3585         if (flag & FLAG_ECE)
3586                 tcp_ratehalving_spur_to_response(sk);
3587         else
3588                 tcp_undo_cwr(sk, true);
3589 }
3590
3591 /* F-RTO spurious RTO detection algorithm (RFC4138)
3592  *
3593  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3594  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3595  * window (but not to or beyond highest sequence sent before RTO):
3596  *   On First ACK,  send two new segments out.
3597  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3598  *                  algorithm is not part of the F-RTO detection algorithm
3599  *                  given in RFC4138 but can be selected separately).
3600  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3601  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3602  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3603  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3604  *
3605  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3606  * original window even after we transmit two new data segments.
3607  *
3608  * SACK version:
3609  *   on first step, wait until first cumulative ACK arrives, then move to
3610  *   the second step. In second step, the next ACK decides.
3611  *
3612  * F-RTO is implemented (mainly) in four functions:
3613  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3614  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3615  *     called when tcp_use_frto() showed green light
3616  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3617  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3618  *     to prove that the RTO is indeed spurious. It transfers the control
3619  *     from F-RTO to the conventional RTO recovery
3620  */
3621 static int tcp_process_frto(struct sock *sk, int flag)
3622 {
3623         struct tcp_sock *tp = tcp_sk(sk);
3624
3625         tcp_verify_left_out(tp);
3626
3627         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3628         if (flag & FLAG_DATA_ACKED)
3629                 inet_csk(sk)->icsk_retransmits = 0;
3630
3631         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3632             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3633                 tp->undo_marker = 0;
3634
3635         if (!before(tp->snd_una, tp->frto_highmark)) {
3636                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3637                 return 1;
3638         }
3639
3640         if (!tcp_is_sackfrto(tp)) {
3641                 /* RFC4138 shortcoming in step 2; should also have case c):
3642                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3643                  * data, winupdate
3644                  */
3645                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3646                         return 1;
3647
3648                 if (!(flag & FLAG_DATA_ACKED)) {
3649                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3650                                             flag);
3651                         return 1;
3652                 }
3653         } else {
3654                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3655                         /* Prevent sending of new data. */
3656                         tp->snd_cwnd = min(tp->snd_cwnd,
3657                                            tcp_packets_in_flight(tp));
3658                         return 1;
3659                 }
3660
3661                 if ((tp->frto_counter >= 2) &&
3662                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3663                      ((flag & FLAG_DATA_SACKED) &&
3664                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3665                         /* RFC4138 shortcoming (see comment above) */
3666                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3667                             (flag & FLAG_NOT_DUP))
3668                                 return 1;
3669
3670                         tcp_enter_frto_loss(sk, 3, flag);
3671                         return 1;
3672                 }
3673         }
3674
3675         if (tp->frto_counter == 1) {
3676                 /* tcp_may_send_now needs to see updated state */
3677                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3678                 tp->frto_counter = 2;
3679
3680                 if (!tcp_may_send_now(sk))
3681                         tcp_enter_frto_loss(sk, 2, flag);
3682
3683                 return 1;
3684         } else {
3685                 switch (sysctl_tcp_frto_response) {
3686                 case 2:
3687                         tcp_undo_spur_to_response(sk, flag);
3688                         break;
3689                 case 1:
3690                         tcp_conservative_spur_to_response(tp);
3691                         break;
3692                 default:
3693                         tcp_ratehalving_spur_to_response(sk);
3694                         break;
3695                 }
3696                 tp->frto_counter = 0;
3697                 tp->undo_marker = 0;
3698                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3699         }
3700         return 0;
3701 }
3702
3703 /* This routine deals with incoming acks, but not outgoing ones. */
3704 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3705 {
3706         struct inet_connection_sock *icsk = inet_csk(sk);
3707         struct tcp_sock *tp = tcp_sk(sk);
3708         u32 prior_snd_una = tp->snd_una;
3709         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3710         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3711         bool is_dupack = false;
3712         u32 prior_in_flight;
3713         u32 prior_fackets;
3714         int prior_packets;
3715         int prior_sacked = tp->sacked_out;
3716         int pkts_acked = 0;
3717         int newly_acked_sacked = 0;
3718         int frto_cwnd = 0;
3719
3720         /* If the ack is older than previous acks
3721          * then we can probably ignore it.
3722          */
3723         if (before(ack, prior_snd_una))
3724                 goto old_ack;
3725
3726         /* If the ack includes data we haven't sent yet, discard
3727          * this segment (RFC793 Section 3.9).
3728          */
3729         if (after(ack, tp->snd_nxt))
3730                 goto invalid_ack;
3731
3732         if (after(ack, prior_snd_una))
3733                 flag |= FLAG_SND_UNA_ADVANCED;
3734
3735         if (sysctl_tcp_abc) {
3736                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3737                         tp->bytes_acked += ack - prior_snd_una;
3738                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3739                         /* we assume just one segment left network */
3740                         tp->bytes_acked += min(ack - prior_snd_una,
3741                                                tp->mss_cache);
3742         }
3743
3744         prior_fackets = tp->fackets_out;
3745         prior_in_flight = tcp_packets_in_flight(tp);
3746
3747         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3748                 /* Window is constant, pure forward advance.
3749                  * No more checks are required.
3750                  * Note, we use the fact that SND.UNA>=SND.WL2.
3751                  */
3752                 tcp_update_wl(tp, ack_seq);
3753                 tp->snd_una = ack;
3754                 flag |= FLAG_WIN_UPDATE;
3755
3756                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3757
3758                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3759         } else {
3760                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3761                         flag |= FLAG_DATA;
3762                 else
3763                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3764
3765                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3766
3767                 if (TCP_SKB_CB(skb)->sacked)
3768                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3769
3770                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3771                         flag |= FLAG_ECE;
3772
3773                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3774         }
3775
3776         /* We passed data and got it acked, remove any soft error
3777          * log. Something worked...
3778          */
3779         sk->sk_err_soft = 0;
3780         icsk->icsk_probes_out = 0;
3781         tp->rcv_tstamp = tcp_time_stamp;
3782         prior_packets = tp->packets_out;
3783         if (!prior_packets)
3784                 goto no_queue;
3785
3786         /* See if we can take anything off of the retransmit queue. */
3787         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3788
3789         pkts_acked = prior_packets - tp->packets_out;
3790         newly_acked_sacked = (prior_packets - prior_sacked) -
3791                              (tp->packets_out - tp->sacked_out);
3792
3793         if (tp->frto_counter)
3794                 frto_cwnd = tcp_process_frto(sk, flag);
3795         /* Guarantee sacktag reordering detection against wrap-arounds */
3796         if (before(tp->frto_highmark, tp->snd_una))
3797                 tp->frto_highmark = 0;
3798
3799         if (tcp_ack_is_dubious(sk, flag)) {
3800                 /* Advance CWND, if state allows this. */
3801                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3802                     tcp_may_raise_cwnd(sk, flag))
3803                         tcp_cong_avoid(sk, ack, prior_in_flight);
3804                 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3805                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3806                                       is_dupack, flag);
3807         } else {
3808                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3809                         tcp_cong_avoid(sk, ack, prior_in_flight);
3810         }
3811
3812         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3813                 dst_confirm(__sk_dst_get(sk));
3814
3815         return 1;
3816
3817 no_queue:
3818         /* If data was DSACKed, see if we can undo a cwnd reduction. */
3819         if (flag & FLAG_DSACKING_ACK)
3820                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3821                                       is_dupack, flag);
3822         /* If this ack opens up a zero window, clear backoff.  It was
3823          * being used to time the probes, and is probably far higher than
3824          * it needs to be for normal retransmission.
3825          */
3826         if (tcp_send_head(sk))
3827                 tcp_ack_probe(sk);
3828         return 1;
3829
3830 invalid_ack:
3831         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3832         return -1;
3833
3834 old_ack:
3835         /* If data was SACKed, tag it and see if we should send more data.
3836          * If data was DSACKed, see if we can undo a cwnd reduction.
3837          */
3838         if (TCP_SKB_CB(skb)->sacked) {
3839                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3840                 newly_acked_sacked = tp->sacked_out - prior_sacked;
3841                 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3842                                       is_dupack, flag);
3843         }
3844
3845         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3846         return 0;
3847 }
3848
3849 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3850  * But, this can also be called on packets in the established flow when
3851  * the fast version below fails.
3852  */
3853 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3854                        const u8 **hvpp, int estab)
3855 {
3856         const unsigned char *ptr;
3857         const struct tcphdr *th = tcp_hdr(skb);
3858         int length = (th->doff * 4) - sizeof(struct tcphdr);
3859
3860         ptr = (const unsigned char *)(th + 1);
3861         opt_rx->saw_tstamp = 0;
3862
3863         while (length > 0) {
3864                 int opcode = *ptr++;
3865                 int opsize;
3866
3867                 switch (opcode) {
3868                 case TCPOPT_EOL:
3869                         return;
3870                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3871                         length--;
3872                         continue;
3873                 default:
3874                         opsize = *ptr++;
3875                         if (opsize < 2) /* "silly options" */
3876                                 return;
3877                         if (opsize > length)
3878                                 return; /* don't parse partial options */
3879                         switch (opcode) {
3880                         case TCPOPT_MSS:
3881                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3882                                         u16 in_mss = get_unaligned_be16(ptr);
3883                                         if (in_mss) {
3884                                                 if (opt_rx->user_mss &&
3885                                                     opt_rx->user_mss < in_mss)
3886                                                         in_mss = opt_rx->user_mss;
3887                                                 opt_rx->mss_clamp = in_mss;
3888                                         }
3889                                 }
3890                                 break;
3891                         case TCPOPT_WINDOW:
3892                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3893                                     !estab && sysctl_tcp_window_scaling) {
3894                                         __u8 snd_wscale = *(__u8 *)ptr;
3895                                         opt_rx->wscale_ok = 1;
3896                                         if (snd_wscale > 14) {
3897                                                 if (net_ratelimit())
3898                                                         pr_info("%s: Illegal window scaling value %d >14 received\n",
3899                                                                 __func__,
3900                                                                 snd_wscale);
3901                                                 snd_wscale = 14;
3902                                         }
3903                                         opt_rx->snd_wscale = snd_wscale;
3904                                 }
3905                                 break;
3906                         case TCPOPT_TIMESTAMP:
3907                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3908                                     ((estab && opt_rx->tstamp_ok) ||
3909                                      (!estab && sysctl_tcp_timestamps))) {
3910                                         opt_rx->saw_tstamp = 1;
3911                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3912                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3913                                 }
3914                                 break;
3915                         case TCPOPT_SACK_PERM:
3916                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3917                                     !estab && sysctl_tcp_sack) {
3918                                         opt_rx->sack_ok = TCP_SACK_SEEN;
3919                                         tcp_sack_reset(opt_rx);
3920                                 }
3921                                 break;
3922
3923                         case TCPOPT_SACK:
3924                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3925                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3926                                    opt_rx->sack_ok) {
3927                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3928                                 }
3929                                 break;
3930 #ifdef CONFIG_TCP_MD5SIG
3931                         case TCPOPT_MD5SIG:
3932                                 /*
3933                                  * The MD5 Hash has already been
3934                                  * checked (see tcp_v{4,6}_do_rcv()).
3935                                  */
3936                                 break;
3937 #endif
3938                         case TCPOPT_COOKIE:
3939                                 /* This option is variable length.
3940                                  */
3941                                 switch (opsize) {
3942                                 case TCPOLEN_COOKIE_BASE:
3943                                         /* not yet implemented */
3944                                         break;
3945                                 case TCPOLEN_COOKIE_PAIR:
3946                                         /* not yet implemented */
3947                                         break;
3948                                 case TCPOLEN_COOKIE_MIN+0:
3949                                 case TCPOLEN_COOKIE_MIN+2:
3950                                 case TCPOLEN_COOKIE_MIN+4:
3951                                 case TCPOLEN_COOKIE_MIN+6:
3952                                 case TCPOLEN_COOKIE_MAX:
3953                                         /* 16-bit multiple */
3954                                         opt_rx->cookie_plus = opsize;
3955                                         *hvpp = ptr;
3956                                         break;
3957                                 default:
3958                                         /* ignore option */
3959                                         break;
3960                                 }
3961                                 break;
3962                         }
3963
3964                         ptr += opsize-2;
3965                         length -= opsize;
3966                 }
3967         }
3968 }
3969 EXPORT_SYMBOL(tcp_parse_options);
3970
3971 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3972 {
3973         const __be32 *ptr = (const __be32 *)(th + 1);
3974
3975         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3976                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3977                 tp->rx_opt.saw_tstamp = 1;
3978                 ++ptr;
3979                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3980                 ++ptr;
3981                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3982                 return 1;
3983         }
3984         return 0;
3985 }
3986
3987 /* Fast parse options. This hopes to only see timestamps.
3988  * If it is wrong it falls back on tcp_parse_options().
3989  */
3990 static int tcp_fast_parse_options(const struct sk_buff *skb,
3991                                   const struct tcphdr *th,
3992                                   struct tcp_sock *tp, const u8 **hvpp)
3993 {
3994         /* In the spirit of fast parsing, compare doff directly to constant
3995          * values.  Because equality is used, short doff can be ignored here.
3996          */
3997         if (th->doff == (sizeof(*th) / 4)) {
3998                 tp->rx_opt.saw_tstamp = 0;
3999                 return 0;
4000         } else if (tp->rx_opt.tstamp_ok &&
4001                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4002                 if (tcp_parse_aligned_timestamp(tp, th))
4003                         return 1;
4004         }
4005         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4006         return 1;
4007 }
4008
4009 #ifdef CONFIG_TCP_MD5SIG
4010 /*
4011  * Parse MD5 Signature option
4012  */
4013 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4014 {
4015         int length = (th->doff << 2) - sizeof(*th);
4016         const u8 *ptr = (const u8 *)(th + 1);
4017
4018         /* If the TCP option is too short, we can short cut */
4019         if (length < TCPOLEN_MD5SIG)
4020                 return NULL;
4021
4022         while (length > 0) {
4023                 int opcode = *ptr++;
4024                 int opsize;
4025
4026                 switch(opcode) {
4027                 case TCPOPT_EOL:
4028                         return NULL;
4029                 case TCPOPT_NOP:
4030                         length--;
4031                         continue;
4032                 default:
4033                         opsize = *ptr++;
4034                         if (opsize < 2 || opsize > length)
4035                                 return NULL;
4036                         if (opcode == TCPOPT_MD5SIG)
4037                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4038                 }
4039                 ptr += opsize - 2;
4040                 length -= opsize;
4041         }
4042         return NULL;
4043 }
4044 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4045 #endif
4046
4047 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4048 {
4049         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4050         tp->rx_opt.ts_recent_stamp = get_seconds();
4051 }
4052
4053 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4054 {
4055         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4056                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4057                  * extra check below makes sure this can only happen
4058                  * for pure ACK frames.  -DaveM
4059                  *
4060                  * Not only, also it occurs for expired timestamps.
4061                  */
4062
4063                 if (tcp_paws_check(&tp->rx_opt, 0))
4064                         tcp_store_ts_recent(tp);
4065         }
4066 }
4067
4068 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4069  *
4070  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4071  * it can pass through stack. So, the following predicate verifies that
4072  * this segment is not used for anything but congestion avoidance or
4073  * fast retransmit. Moreover, we even are able to eliminate most of such
4074  * second order effects, if we apply some small "replay" window (~RTO)
4075  * to timestamp space.
4076  *
4077  * All these measures still do not guarantee that we reject wrapped ACKs
4078  * on networks with high bandwidth, when sequence space is recycled fastly,
4079  * but it guarantees that such events will be very rare and do not affect
4080  * connection seriously. This doesn't look nice, but alas, PAWS is really
4081  * buggy extension.
4082  *
4083  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4084  * states that events when retransmit arrives after original data are rare.
4085  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4086  * the biggest problem on large power networks even with minor reordering.
4087  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4088  * up to bandwidth of 18Gigabit/sec. 8) ]
4089  */
4090
4091 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4092 {
4093         const struct tcp_sock *tp = tcp_sk(sk);
4094         const struct tcphdr *th = tcp_hdr(skb);
4095         u32 seq = TCP_SKB_CB(skb)->seq;
4096         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4097
4098         return (/* 1. Pure ACK with correct sequence number. */
4099                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4100
4101                 /* 2. ... and duplicate ACK. */
4102                 ack == tp->snd_una &&
4103
4104                 /* 3. ... and does not update window. */
4105                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4106
4107                 /* 4. ... and sits in replay window. */
4108                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4109 }
4110
4111 static inline int tcp_paws_discard(const struct sock *sk,
4112                                    const struct sk_buff *skb)
4113 {
4114         const struct tcp_sock *tp = tcp_sk(sk);
4115
4116         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4117                !tcp_disordered_ack(sk, skb);
4118 }
4119
4120 /* Check segment sequence number for validity.
4121  *
4122  * Segment controls are considered valid, if the segment
4123  * fits to the window after truncation to the window. Acceptability
4124  * of data (and SYN, FIN, of course) is checked separately.
4125  * See tcp_data_queue(), for example.
4126  *
4127  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4128  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4129  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4130  * (borrowed from freebsd)
4131  */
4132
4133 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4134 {
4135         return  !before(end_seq, tp->rcv_wup) &&
4136                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4137 }
4138
4139 /* When we get a reset we do this. */
4140 static void tcp_reset(struct sock *sk)
4141 {
4142         /* We want the right error as BSD sees it (and indeed as we do). */
4143         switch (sk->sk_state) {
4144         case TCP_SYN_SENT:
4145                 sk->sk_err = ECONNREFUSED;
4146                 break;
4147         case TCP_CLOSE_WAIT:
4148                 sk->sk_err = EPIPE;
4149                 break;
4150         case TCP_CLOSE:
4151                 return;
4152         default:
4153                 sk->sk_err = ECONNRESET;
4154         }
4155         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4156         smp_wmb();
4157
4158         if (!sock_flag(sk, SOCK_DEAD))
4159                 sk->sk_error_report(sk);
4160
4161         tcp_done(sk);
4162 }
4163
4164 /*
4165  *      Process the FIN bit. This now behaves as it is supposed to work
4166  *      and the FIN takes effect when it is validly part of sequence
4167  *      space. Not before when we get holes.
4168  *
4169  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4170  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4171  *      TIME-WAIT)
4172  *
4173  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4174  *      close and we go into CLOSING (and later onto TIME-WAIT)
4175  *
4176  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4177  */
4178 static void tcp_fin(struct sock *sk)
4179 {
4180         struct tcp_sock *tp = tcp_sk(sk);
4181
4182         inet_csk_schedule_ack(sk);
4183
4184         sk->sk_shutdown |= RCV_SHUTDOWN;
4185         sock_set_flag(sk, SOCK_DONE);
4186
4187         switch (sk->sk_state) {
4188         case TCP_SYN_RECV:
4189         case TCP_ESTABLISHED:
4190                 /* Move to CLOSE_WAIT */
4191                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4192                 inet_csk(sk)->icsk_ack.pingpong = 1;
4193                 break;
4194
4195         case TCP_CLOSE_WAIT:
4196         case TCP_CLOSING:
4197                 /* Received a retransmission of the FIN, do
4198                  * nothing.
4199                  */
4200                 break;
4201         case TCP_LAST_ACK:
4202                 /* RFC793: Remain in the LAST-ACK state. */
4203                 break;
4204
4205         case TCP_FIN_WAIT1:
4206                 /* This case occurs when a simultaneous close
4207                  * happens, we must ack the received FIN and
4208                  * enter the CLOSING state.
4209                  */
4210                 tcp_send_ack(sk);
4211                 tcp_set_state(sk, TCP_CLOSING);
4212                 break;
4213         case TCP_FIN_WAIT2:
4214                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4215                 tcp_send_ack(sk);
4216                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4217                 break;
4218         default:
4219                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4220                  * cases we should never reach this piece of code.
4221                  */
4222                 pr_err("%s: Impossible, sk->sk_state=%d\n",
4223                        __func__, sk->sk_state);
4224                 break;
4225         }
4226
4227         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4228          * Probably, we should reset in this case. For now drop them.
4229          */
4230         __skb_queue_purge(&tp->out_of_order_queue);
4231         if (tcp_is_sack(tp))
4232                 tcp_sack_reset(&tp->rx_opt);
4233         sk_mem_reclaim(sk);
4234
4235         if (!sock_flag(sk, SOCK_DEAD)) {
4236                 sk->sk_state_change(sk);
4237
4238                 /* Do not send POLL_HUP for half duplex close. */
4239                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4240                     sk->sk_state == TCP_CLOSE)
4241                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4242                 else
4243                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4244         }
4245 }
4246
4247 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4248                                   u32 end_seq)
4249 {
4250         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4251                 if (before(seq, sp->start_seq))
4252                         sp->start_seq = seq;
4253                 if (after(end_seq, sp->end_seq))
4254                         sp->end_seq = end_seq;
4255                 return 1;
4256         }
4257         return 0;
4258 }
4259
4260 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4261 {
4262         struct tcp_sock *tp = tcp_sk(sk);
4263
4264         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4265                 int mib_idx;
4266
4267                 if (before(seq, tp->rcv_nxt))
4268                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4269                 else
4270                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4271
4272                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4273
4274                 tp->rx_opt.dsack = 1;
4275                 tp->duplicate_sack[0].start_seq = seq;
4276                 tp->duplicate_sack[0].end_seq = end_seq;
4277         }
4278 }
4279
4280 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4281 {
4282         struct tcp_sock *tp = tcp_sk(sk);
4283
4284         if (!tp->rx_opt.dsack)
4285                 tcp_dsack_set(sk, seq, end_seq);
4286         else
4287                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4288 }
4289
4290 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4291 {
4292         struct tcp_sock *tp = tcp_sk(sk);
4293
4294         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4295             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4296                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4297                 tcp_enter_quickack_mode(sk);
4298
4299                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4300                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4301
4302                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4303                                 end_seq = tp->rcv_nxt;
4304                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4305                 }
4306         }
4307
4308         tcp_send_ack(sk);
4309 }
4310
4311 /* These routines update the SACK block as out-of-order packets arrive or
4312  * in-order packets close up the sequence space.
4313  */
4314 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4315 {
4316         int this_sack;
4317         struct tcp_sack_block *sp = &tp->selective_acks[0];
4318         struct tcp_sack_block *swalk = sp + 1;
4319
4320         /* See if the recent change to the first SACK eats into
4321          * or hits the sequence space of other SACK blocks, if so coalesce.
4322          */
4323         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4324                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4325                         int i;
4326
4327                         /* Zap SWALK, by moving every further SACK up by one slot.
4328                          * Decrease num_sacks.
4329                          */
4330                         tp->rx_opt.num_sacks--;
4331                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4332                                 sp[i] = sp[i + 1];
4333                         continue;
4334                 }
4335                 this_sack++, swalk++;
4336         }
4337 }
4338
4339 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4340 {
4341         struct tcp_sock *tp = tcp_sk(sk);
4342         struct tcp_sack_block *sp = &tp->selective_acks[0];
4343         int cur_sacks = tp->rx_opt.num_sacks;
4344         int this_sack;
4345
4346         if (!cur_sacks)
4347                 goto new_sack;
4348
4349         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4350                 if (tcp_sack_extend(sp, seq, end_seq)) {
4351                         /* Rotate this_sack to the first one. */
4352                         for (; this_sack > 0; this_sack--, sp--)
4353                                 swap(*sp, *(sp - 1));
4354                         if (cur_sacks > 1)
4355                                 tcp_sack_maybe_coalesce(tp);
4356                         return;
4357                 }
4358         }
4359
4360         /* Could not find an adjacent existing SACK, build a new one,
4361          * put it at the front, and shift everyone else down.  We
4362          * always know there is at least one SACK present already here.
4363          *
4364          * If the sack array is full, forget about the last one.
4365          */
4366         if (this_sack >= TCP_NUM_SACKS) {
4367                 this_sack--;
4368                 tp->rx_opt.num_sacks--;
4369                 sp--;
4370         }
4371         for (; this_sack > 0; this_sack--, sp--)
4372                 *sp = *(sp - 1);
4373
4374 new_sack:
4375         /* Build the new head SACK, and we're done. */
4376         sp->start_seq = seq;
4377         sp->end_seq = end_seq;
4378         tp->rx_opt.num_sacks++;
4379 }
4380
4381 /* RCV.NXT advances, some SACKs should be eaten. */
4382
4383 static void tcp_sack_remove(struct tcp_sock *tp)
4384 {
4385         struct tcp_sack_block *sp = &tp->selective_acks[0];
4386         int num_sacks = tp->rx_opt.num_sacks;
4387         int this_sack;
4388
4389         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4390         if (skb_queue_empty(&tp->out_of_order_queue)) {
4391                 tp->rx_opt.num_sacks = 0;
4392                 return;
4393         }
4394
4395         for (this_sack = 0; this_sack < num_sacks;) {
4396                 /* Check if the start of the sack is covered by RCV.NXT. */
4397                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4398                         int i;
4399
4400                         /* RCV.NXT must cover all the block! */
4401                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4402
4403                         /* Zap this SACK, by moving forward any other SACKS. */
4404                         for (i=this_sack+1; i < num_sacks; i++)
4405                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4406                         num_sacks--;
4407                         continue;
4408                 }
4409                 this_sack++;
4410                 sp++;
4411         }
4412         tp->rx_opt.num_sacks = num_sacks;
4413 }
4414
4415 /* This one checks to see if we can put data from the
4416  * out_of_order queue into the receive_queue.
4417  */
4418 static void tcp_ofo_queue(struct sock *sk)
4419 {
4420         struct tcp_sock *tp = tcp_sk(sk);
4421         __u32 dsack_high = tp->rcv_nxt;
4422         struct sk_buff *skb;
4423
4424         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4425                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4426                         break;
4427
4428                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4429                         __u32 dsack = dsack_high;
4430                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4431                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4432                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4433                 }
4434
4435                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4436                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4437                         __skb_unlink(skb, &tp->out_of_order_queue);
4438                         __kfree_skb(skb);
4439                         continue;
4440                 }
4441                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4442                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4443                            TCP_SKB_CB(skb)->end_seq);
4444
4445                 __skb_unlink(skb, &tp->out_of_order_queue);
4446                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4447                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4448                 if (tcp_hdr(skb)->fin)
4449                         tcp_fin(sk);
4450         }
4451 }
4452
4453 static int tcp_prune_ofo_queue(struct sock *sk);
4454 static int tcp_prune_queue(struct sock *sk);
4455
4456 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4457 {
4458         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4459             !sk_rmem_schedule(sk, size)) {
4460
4461                 if (tcp_prune_queue(sk) < 0)
4462                         return -1;
4463
4464                 if (!sk_rmem_schedule(sk, size)) {
4465                         if (!tcp_prune_ofo_queue(sk))
4466                                 return -1;
4467
4468                         if (!sk_rmem_schedule(sk, size))
4469                                 return -1;
4470                 }
4471         }
4472         return 0;
4473 }
4474
4475 /**
4476  * tcp_try_coalesce - try to merge skb to prior one
4477  * @sk: socket
4478  * @to: prior buffer
4479  * @from: buffer to add in queue
4480  *
4481  * Before queueing skb @from after @to, try to merge them
4482  * to reduce overall memory use and queue lengths, if cost is small.
4483  * Packets in ofo or receive queues can stay a long time.
4484  * Better try to coalesce them right now to avoid future collapses.
4485  * Returns true if caller should free @from instead of queueing it
4486  */
4487 static bool tcp_try_coalesce(struct sock *sk,
4488                              struct sk_buff *to,
4489                              struct sk_buff *from,
4490                              bool *fragstolen)
4491 {
4492         int delta, len = from->len;
4493
4494         *fragstolen = false;
4495         if (tcp_hdr(from)->fin)
4496                 return false;
4497         if (len <= skb_tailroom(to)) {
4498                 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4499 merge:
4500                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4501                 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4502                 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4503                 return true;
4504         }
4505
4506         if (skb_has_frag_list(to) || skb_has_frag_list(from))
4507                 return false;
4508
4509         if (skb_headlen(from) == 0 &&
4510             (skb_shinfo(to)->nr_frags +
4511              skb_shinfo(from)->nr_frags <= MAX_SKB_FRAGS)) {
4512                 WARN_ON_ONCE(from->head_frag);
4513                 delta = from->truesize - ksize(from->head) -
4514                         SKB_DATA_ALIGN(sizeof(struct sk_buff));
4515
4516                 WARN_ON_ONCE(delta < len);
4517 copyfrags:
4518                 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4519                        skb_shinfo(from)->frags,
4520                        skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4521                 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4522                 skb_shinfo(from)->nr_frags = 0;
4523                 to->truesize += delta;
4524                 atomic_add(delta, &sk->sk_rmem_alloc);
4525                 sk_mem_charge(sk, delta);
4526                 to->len += len;
4527                 to->data_len += len;
4528                 goto merge;
4529         }
4530         if (from->head_frag) {
4531                 struct page *page;
4532                 unsigned int offset;
4533
4534                 if (skb_shinfo(to)->nr_frags + skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4535                         return false;
4536                 page = virt_to_head_page(from->head);
4537                 offset = from->data - (unsigned char *)page_address(page);
4538                 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4539                                    page, offset, skb_headlen(from));
4540                 *fragstolen = true;
4541                 delta = len; /* we dont know real truesize... */
4542                 goto copyfrags;
4543         }
4544         return false;
4545 }
4546
4547 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4548 {
4549         struct tcp_sock *tp = tcp_sk(sk);
4550         struct sk_buff *skb1;
4551         u32 seq, end_seq;
4552
4553         TCP_ECN_check_ce(tp, skb);
4554
4555         if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4556                 /* TODO: should increment a counter */
4557                 __kfree_skb(skb);
4558                 return;
4559         }
4560
4561         /* Disable header prediction. */
4562         tp->pred_flags = 0;
4563         inet_csk_schedule_ack(sk);
4564
4565         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4566                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4567
4568         skb1 = skb_peek_tail(&tp->out_of_order_queue);
4569         if (!skb1) {
4570                 /* Initial out of order segment, build 1 SACK. */
4571                 if (tcp_is_sack(tp)) {
4572                         tp->rx_opt.num_sacks = 1;
4573                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4574                         tp->selective_acks[0].end_seq =
4575                                                 TCP_SKB_CB(skb)->end_seq;
4576                 }
4577                 __skb_queue_head(&tp->out_of_order_queue, skb);
4578                 goto end;
4579         }
4580
4581         seq = TCP_SKB_CB(skb)->seq;
4582         end_seq = TCP_SKB_CB(skb)->end_seq;
4583
4584         if (seq == TCP_SKB_CB(skb1)->end_seq) {
4585                 bool fragstolen;
4586
4587                 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4588                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4589                 } else {
4590                         if (fragstolen)
4591                                 kmem_cache_free(skbuff_head_cache, skb);
4592                         else
4593                                 __kfree_skb(skb);
4594                         skb = NULL;
4595                 }
4596
4597                 if (!tp->rx_opt.num_sacks ||
4598                     tp->selective_acks[0].end_seq != seq)
4599                         goto add_sack;
4600
4601                 /* Common case: data arrive in order after hole. */
4602                 tp->selective_acks[0].end_seq = end_seq;
4603                 goto end;
4604         }
4605
4606         /* Find place to insert this segment. */
4607         while (1) {
4608                 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4609                         break;
4610                 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4611                         skb1 = NULL;
4612                         break;
4613                 }
4614                 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4615         }
4616
4617         /* Do skb overlap to previous one? */
4618         if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4619                 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4620                         /* All the bits are present. Drop. */
4621                         __kfree_skb(skb);
4622                         skb = NULL;
4623                         tcp_dsack_set(sk, seq, end_seq);
4624                         goto add_sack;
4625                 }
4626                 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4627                         /* Partial overlap. */
4628                         tcp_dsack_set(sk, seq,
4629                                       TCP_SKB_CB(skb1)->end_seq);
4630                 } else {
4631                         if (skb_queue_is_first(&tp->out_of_order_queue,
4632                                                skb1))
4633                                 skb1 = NULL;
4634                         else
4635                                 skb1 = skb_queue_prev(
4636                                         &tp->out_of_order_queue,
4637                                         skb1);
4638                 }
4639         }
4640         if (!skb1)
4641                 __skb_queue_head(&tp->out_of_order_queue, skb);
4642         else
4643                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4644
4645         /* And clean segments covered by new one as whole. */
4646         while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4647                 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4648
4649                 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4650                         break;
4651                 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4652                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4653                                          end_seq);
4654                         break;
4655                 }
4656                 __skb_unlink(skb1, &tp->out_of_order_queue);
4657                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4658                                  TCP_SKB_CB(skb1)->end_seq);
4659                 __kfree_skb(skb1);
4660         }
4661
4662 add_sack:
4663         if (tcp_is_sack(tp))
4664                 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4665 end:
4666         if (skb)
4667                 skb_set_owner_r(skb, sk);
4668 }
4669
4670
4671 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4672 {
4673         const struct tcphdr *th = tcp_hdr(skb);
4674         struct tcp_sock *tp = tcp_sk(sk);
4675         int eaten = -1;
4676         bool fragstolen = false;
4677
4678         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4679                 goto drop;
4680
4681         skb_dst_drop(skb);
4682         __skb_pull(skb, th->doff * 4);
4683
4684         TCP_ECN_accept_cwr(tp, skb);
4685
4686         tp->rx_opt.dsack = 0;
4687
4688         /*  Queue data for delivery to the user.
4689          *  Packets in sequence go to the receive queue.
4690          *  Out of sequence packets to the out_of_order_queue.
4691          */
4692         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4693                 if (tcp_receive_window(tp) == 0)
4694                         goto out_of_window;
4695
4696                 /* Ok. In sequence. In window. */
4697                 if (tp->ucopy.task == current &&
4698                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4699                     sock_owned_by_user(sk) && !tp->urg_data) {
4700                         int chunk = min_t(unsigned int, skb->len,
4701                                           tp->ucopy.len);
4702
4703                         __set_current_state(TASK_RUNNING);
4704
4705                         local_bh_enable();
4706                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4707                                 tp->ucopy.len -= chunk;
4708                                 tp->copied_seq += chunk;
4709                                 eaten = (chunk == skb->len);
4710                                 tcp_rcv_space_adjust(sk);
4711                         }
4712                         local_bh_disable();
4713                 }
4714
4715                 if (eaten <= 0) {
4716                         struct sk_buff *tail;
4717 queue_and_out:
4718                         if (eaten < 0 &&
4719                             tcp_try_rmem_schedule(sk, skb->truesize))
4720                                 goto drop;
4721
4722                         tail = skb_peek_tail(&sk->sk_receive_queue);
4723                         eaten = (tail &&
4724                                  tcp_try_coalesce(sk, tail, skb,
4725                                                   &fragstolen)) ? 1 : 0;
4726                         if (eaten <= 0) {
4727                                 skb_set_owner_r(skb, sk);
4728                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4729                         }
4730                 }
4731                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4732                 if (skb->len)
4733                         tcp_event_data_recv(sk, skb);
4734                 if (th->fin)
4735                         tcp_fin(sk);
4736
4737                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4738                         tcp_ofo_queue(sk);
4739
4740                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4741                          * gap in queue is filled.
4742                          */
4743                         if (skb_queue_empty(&tp->out_of_order_queue))
4744                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4745                 }
4746
4747                 if (tp->rx_opt.num_sacks)
4748                         tcp_sack_remove(tp);
4749
4750                 tcp_fast_path_check(sk);
4751
4752                 if (eaten > 0) {
4753                         if (fragstolen)
4754                                 kmem_cache_free(skbuff_head_cache, skb);
4755                         else
4756                                 __kfree_skb(skb);
4757                 } else if (!sock_flag(sk, SOCK_DEAD))
4758                         sk->sk_data_ready(sk, 0);
4759                 return;
4760         }
4761
4762         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4763                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4764                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4765                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4766
4767 out_of_window:
4768                 tcp_enter_quickack_mode(sk);
4769                 inet_csk_schedule_ack(sk);
4770 drop:
4771                 __kfree_skb(skb);
4772                 return;
4773         }
4774
4775         /* Out of window. F.e. zero window probe. */
4776         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4777                 goto out_of_window;
4778
4779         tcp_enter_quickack_mode(sk);
4780
4781         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4782                 /* Partial packet, seq < rcv_next < end_seq */
4783                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4784                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4785                            TCP_SKB_CB(skb)->end_seq);
4786
4787                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4788
4789                 /* If window is closed, drop tail of packet. But after
4790                  * remembering D-SACK for its head made in previous line.
4791                  */
4792                 if (!tcp_receive_window(tp))
4793                         goto out_of_window;
4794                 goto queue_and_out;
4795         }
4796
4797         tcp_data_queue_ofo(sk, skb);
4798 }
4799
4800 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4801                                         struct sk_buff_head *list)
4802 {
4803         struct sk_buff *next = NULL;
4804
4805         if (!skb_queue_is_last(list, skb))
4806                 next = skb_queue_next(list, skb);
4807
4808         __skb_unlink(skb, list);
4809         __kfree_skb(skb);
4810         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4811
4812         return next;
4813 }
4814
4815 /* Collapse contiguous sequence of skbs head..tail with
4816  * sequence numbers start..end.
4817  *
4818  * If tail is NULL, this means until the end of the list.
4819  *
4820  * Segments with FIN/SYN are not collapsed (only because this
4821  * simplifies code)
4822  */
4823 static void
4824 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4825              struct sk_buff *head, struct sk_buff *tail,
4826              u32 start, u32 end)
4827 {
4828         struct sk_buff *skb, *n;
4829         bool end_of_skbs;
4830
4831         /* First, check that queue is collapsible and find
4832          * the point where collapsing can be useful. */
4833         skb = head;
4834 restart:
4835         end_of_skbs = true;
4836         skb_queue_walk_from_safe(list, skb, n) {
4837                 if (skb == tail)
4838                         break;
4839                 /* No new bits? It is possible on ofo queue. */
4840                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4841                         skb = tcp_collapse_one(sk, skb, list);
4842                         if (!skb)
4843                                 break;
4844                         goto restart;
4845                 }
4846
4847                 /* The first skb to collapse is:
4848                  * - not SYN/FIN and
4849                  * - bloated or contains data before "start" or
4850                  *   overlaps to the next one.
4851                  */
4852                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4853                     (tcp_win_from_space(skb->truesize) > skb->len ||
4854                      before(TCP_SKB_CB(skb)->seq, start))) {
4855                         end_of_skbs = false;
4856                         break;
4857                 }
4858
4859                 if (!skb_queue_is_last(list, skb)) {
4860                         struct sk_buff *next = skb_queue_next(list, skb);
4861                         if (next != tail &&
4862                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4863                                 end_of_skbs = false;
4864                                 break;
4865                         }
4866                 }
4867
4868                 /* Decided to skip this, advance start seq. */
4869                 start = TCP_SKB_CB(skb)->end_seq;
4870         }
4871         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4872                 return;
4873
4874         while (before(start, end)) {
4875                 struct sk_buff *nskb;
4876                 unsigned int header = skb_headroom(skb);
4877                 int copy = SKB_MAX_ORDER(header, 0);
4878
4879                 /* Too big header? This can happen with IPv6. */
4880                 if (copy < 0)
4881                         return;
4882                 if (end - start < copy)
4883                         copy = end - start;
4884                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4885                 if (!nskb)
4886                         return;
4887
4888                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4889                 skb_set_network_header(nskb, (skb_network_header(skb) -
4890                                               skb->head));
4891                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4892                                                 skb->head));
4893                 skb_reserve(nskb, header);
4894                 memcpy(nskb->head, skb->head, header);
4895                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4896                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4897                 __skb_queue_before(list, skb, nskb);
4898                 skb_set_owner_r(nskb, sk);
4899
4900                 /* Copy data, releasing collapsed skbs. */
4901                 while (copy > 0) {
4902                         int offset = start - TCP_SKB_CB(skb)->seq;
4903                         int size = TCP_SKB_CB(skb)->end_seq - start;
4904
4905                         BUG_ON(offset < 0);
4906                         if (size > 0) {
4907                                 size = min(copy, size);
4908                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4909                                         BUG();
4910                                 TCP_SKB_CB(nskb)->end_seq += size;
4911                                 copy -= size;
4912                                 start += size;
4913                         }
4914                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4915                                 skb = tcp_collapse_one(sk, skb, list);
4916                                 if (!skb ||
4917                                     skb == tail ||
4918                                     tcp_hdr(skb)->syn ||
4919                                     tcp_hdr(skb)->fin)
4920                                         return;
4921                         }
4922                 }
4923         }
4924 }
4925
4926 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4927  * and tcp_collapse() them until all the queue is collapsed.
4928  */
4929 static void tcp_collapse_ofo_queue(struct sock *sk)
4930 {
4931         struct tcp_sock *tp = tcp_sk(sk);
4932         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4933         struct sk_buff *head;
4934         u32 start, end;
4935
4936         if (skb == NULL)
4937                 return;
4938
4939         start = TCP_SKB_CB(skb)->seq;
4940         end = TCP_SKB_CB(skb)->end_seq;
4941         head = skb;
4942
4943         for (;;) {
4944                 struct sk_buff *next = NULL;
4945
4946                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4947                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4948                 skb = next;
4949
4950                 /* Segment is terminated when we see gap or when
4951                  * we are at the end of all the queue. */
4952                 if (!skb ||
4953                     after(TCP_SKB_CB(skb)->seq, end) ||
4954                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4955                         tcp_collapse(sk, &tp->out_of_order_queue,
4956                                      head, skb, start, end);
4957                         head = skb;
4958                         if (!skb)
4959                                 break;
4960                         /* Start new segment */
4961                         start = TCP_SKB_CB(skb)->seq;
4962                         end = TCP_SKB_CB(skb)->end_seq;
4963                 } else {
4964                         if (before(TCP_SKB_CB(skb)->seq, start))
4965                                 start = TCP_SKB_CB(skb)->seq;
4966                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4967                                 end = TCP_SKB_CB(skb)->end_seq;
4968                 }
4969         }
4970 }
4971
4972 /*
4973  * Purge the out-of-order queue.
4974  * Return true if queue was pruned.
4975  */
4976 static int tcp_prune_ofo_queue(struct sock *sk)
4977 {
4978         struct tcp_sock *tp = tcp_sk(sk);
4979         int res = 0;
4980
4981         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4982                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4983                 __skb_queue_purge(&tp->out_of_order_queue);
4984
4985                 /* Reset SACK state.  A conforming SACK implementation will
4986                  * do the same at a timeout based retransmit.  When a connection
4987                  * is in a sad state like this, we care only about integrity
4988                  * of the connection not performance.
4989                  */
4990                 if (tp->rx_opt.sack_ok)
4991                         tcp_sack_reset(&tp->rx_opt);
4992                 sk_mem_reclaim(sk);
4993                 res = 1;
4994         }
4995         return res;
4996 }
4997
4998 /* Reduce allocated memory if we can, trying to get
4999  * the socket within its memory limits again.
5000  *
5001  * Return less than zero if we should start dropping frames
5002  * until the socket owning process reads some of the data
5003  * to stabilize the situation.
5004  */
5005 static int tcp_prune_queue(struct sock *sk)
5006 {
5007         struct tcp_sock *tp = tcp_sk(sk);
5008
5009         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5010
5011         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5012
5013         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5014                 tcp_clamp_window(sk);
5015         else if (sk_under_memory_pressure(sk))
5016                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5017
5018         tcp_collapse_ofo_queue(sk);
5019         if (!skb_queue_empty(&sk->sk_receive_queue))
5020                 tcp_collapse(sk, &sk->sk_receive_queue,
5021                              skb_peek(&sk->sk_receive_queue),
5022                              NULL,
5023                              tp->copied_seq, tp->rcv_nxt);
5024         sk_mem_reclaim(sk);
5025
5026         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5027                 return 0;
5028
5029         /* Collapsing did not help, destructive actions follow.
5030          * This must not ever occur. */
5031
5032         tcp_prune_ofo_queue(sk);
5033
5034         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5035                 return 0;
5036
5037         /* If we are really being abused, tell the caller to silently
5038          * drop receive data on the floor.  It will get retransmitted
5039          * and hopefully then we'll have sufficient space.
5040          */
5041         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5042
5043         /* Massive buffer overcommit. */
5044         tp->pred_flags = 0;
5045         return -1;
5046 }
5047
5048 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5049  * As additional protections, we do not touch cwnd in retransmission phases,
5050  * and if application hit its sndbuf limit recently.
5051  */
5052 void tcp_cwnd_application_limited(struct sock *sk)
5053 {
5054         struct tcp_sock *tp = tcp_sk(sk);
5055
5056         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5057             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5058                 /* Limited by application or receiver window. */
5059                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5060                 u32 win_used = max(tp->snd_cwnd_used, init_win);
5061                 if (win_used < tp->snd_cwnd) {
5062                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
5063                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5064                 }
5065                 tp->snd_cwnd_used = 0;
5066         }
5067         tp->snd_cwnd_stamp = tcp_time_stamp;
5068 }
5069
5070 static int tcp_should_expand_sndbuf(const struct sock *sk)
5071 {
5072         const struct tcp_sock *tp = tcp_sk(sk);
5073
5074         /* If the user specified a specific send buffer setting, do
5075          * not modify it.
5076          */
5077         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5078                 return 0;
5079
5080         /* If we are under global TCP memory pressure, do not expand.  */
5081         if (sk_under_memory_pressure(sk))
5082                 return 0;
5083
5084         /* If we are under soft global TCP memory pressure, do not expand.  */
5085         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5086                 return 0;
5087
5088         /* If we filled the congestion window, do not expand.  */
5089         if (tp->packets_out >= tp->snd_cwnd)
5090                 return 0;
5091
5092         return 1;
5093 }
5094
5095 /* When incoming ACK allowed to free some skb from write_queue,
5096  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5097  * on the exit from tcp input handler.
5098  *
5099  * PROBLEM: sndbuf expansion does not work well with largesend.
5100  */
5101 static void tcp_new_space(struct sock *sk)
5102 {
5103         struct tcp_sock *tp = tcp_sk(sk);
5104
5105         if (tcp_should_expand_sndbuf(sk)) {
5106                 int sndmem = SKB_TRUESIZE(max_t(u32,
5107                                                 tp->rx_opt.mss_clamp,
5108                                                 tp->mss_cache) +
5109                                           MAX_TCP_HEADER);
5110                 int demanded = max_t(unsigned int, tp->snd_cwnd,
5111                                      tp->reordering + 1);
5112                 sndmem *= 2 * demanded;
5113                 if (sndmem > sk->sk_sndbuf)
5114                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5115                 tp->snd_cwnd_stamp = tcp_time_stamp;
5116         }
5117
5118         sk->sk_write_space(sk);
5119 }
5120
5121 static void tcp_check_space(struct sock *sk)
5122 {
5123         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5124                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5125                 if (sk->sk_socket &&
5126                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5127                         tcp_new_space(sk);
5128         }
5129 }
5130
5131 static inline void tcp_data_snd_check(struct sock *sk)
5132 {
5133         tcp_push_pending_frames(sk);
5134         tcp_check_space(sk);
5135 }
5136
5137 /*
5138  * Check if sending an ack is needed.
5139  */
5140 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5141 {
5142         struct tcp_sock *tp = tcp_sk(sk);
5143
5144             /* More than one full frame received... */
5145         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5146              /* ... and right edge of window advances far enough.
5147               * (tcp_recvmsg() will send ACK otherwise). Or...
5148               */
5149              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5150             /* We ACK each frame or... */
5151             tcp_in_quickack_mode(sk) ||
5152             /* We have out of order data. */
5153             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5154                 /* Then ack it now */
5155                 tcp_send_ack(sk);
5156         } else {
5157                 /* Else, send delayed ack. */
5158                 tcp_send_delayed_ack(sk);
5159         }
5160 }
5161
5162 static inline void tcp_ack_snd_check(struct sock *sk)
5163 {
5164         if (!inet_csk_ack_scheduled(sk)) {
5165                 /* We sent a data segment already. */
5166                 return;
5167         }
5168         __tcp_ack_snd_check(sk, 1);
5169 }
5170
5171 /*
5172  *      This routine is only called when we have urgent data
5173  *      signaled. Its the 'slow' part of tcp_urg. It could be
5174  *      moved inline now as tcp_urg is only called from one
5175  *      place. We handle URGent data wrong. We have to - as
5176  *      BSD still doesn't use the correction from RFC961.
5177  *      For 1003.1g we should support a new option TCP_STDURG to permit
5178  *      either form (or just set the sysctl tcp_stdurg).
5179  */
5180
5181 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5182 {
5183         struct tcp_sock *tp = tcp_sk(sk);
5184         u32 ptr = ntohs(th->urg_ptr);
5185
5186         if (ptr && !sysctl_tcp_stdurg)
5187                 ptr--;
5188         ptr += ntohl(th->seq);
5189
5190         /* Ignore urgent data that we've already seen and read. */
5191         if (after(tp->copied_seq, ptr))
5192                 return;
5193
5194         /* Do not replay urg ptr.
5195          *
5196          * NOTE: interesting situation not covered by specs.
5197          * Misbehaving sender may send urg ptr, pointing to segment,
5198          * which we already have in ofo queue. We are not able to fetch
5199          * such data and will stay in TCP_URG_NOTYET until will be eaten
5200          * by recvmsg(). Seems, we are not obliged to handle such wicked
5201          * situations. But it is worth to think about possibility of some
5202          * DoSes using some hypothetical application level deadlock.
5203          */
5204         if (before(ptr, tp->rcv_nxt))
5205                 return;
5206
5207         /* Do we already have a newer (or duplicate) urgent pointer? */
5208         if (tp->urg_data && !after(ptr, tp->urg_seq))
5209                 return;
5210
5211         /* Tell the world about our new urgent pointer. */
5212         sk_send_sigurg(sk);
5213
5214         /* We may be adding urgent data when the last byte read was
5215          * urgent. To do this requires some care. We cannot just ignore
5216          * tp->copied_seq since we would read the last urgent byte again
5217          * as data, nor can we alter copied_seq until this data arrives
5218          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5219          *
5220          * NOTE. Double Dutch. Rendering to plain English: author of comment
5221          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5222          * and expect that both A and B disappear from stream. This is _wrong_.
5223          * Though this happens in BSD with high probability, this is occasional.
5224          * Any application relying on this is buggy. Note also, that fix "works"
5225          * only in this artificial test. Insert some normal data between A and B and we will
5226          * decline of BSD again. Verdict: it is better to remove to trap
5227          * buggy users.
5228          */
5229         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5230             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5231                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5232                 tp->copied_seq++;
5233                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5234                         __skb_unlink(skb, &sk->sk_receive_queue);
5235                         __kfree_skb(skb);
5236                 }
5237         }
5238
5239         tp->urg_data = TCP_URG_NOTYET;
5240         tp->urg_seq = ptr;
5241
5242         /* Disable header prediction. */
5243         tp->pred_flags = 0;
5244 }
5245
5246 /* This is the 'fast' part of urgent handling. */
5247 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5248 {
5249         struct tcp_sock *tp = tcp_sk(sk);
5250
5251         /* Check if we get a new urgent pointer - normally not. */
5252         if (th->urg)
5253                 tcp_check_urg(sk, th);
5254
5255         /* Do we wait for any urgent data? - normally not... */
5256         if (tp->urg_data == TCP_URG_NOTYET) {
5257                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5258                           th->syn;
5259
5260                 /* Is the urgent pointer pointing into this packet? */
5261                 if (ptr < skb->len) {
5262                         u8 tmp;
5263                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5264                                 BUG();
5265                         tp->urg_data = TCP_URG_VALID | tmp;
5266                         if (!sock_flag(sk, SOCK_DEAD))
5267                                 sk->sk_data_ready(sk, 0);
5268                 }
5269         }
5270 }
5271
5272 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5273 {
5274         struct tcp_sock *tp = tcp_sk(sk);
5275         int chunk = skb->len - hlen;
5276         int err;
5277
5278         local_bh_enable();
5279         if (skb_csum_unnecessary(skb))
5280                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5281         else
5282                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5283                                                        tp->ucopy.iov);
5284
5285         if (!err) {
5286                 tp->ucopy.len -= chunk;
5287                 tp->copied_seq += chunk;
5288                 tcp_rcv_space_adjust(sk);
5289         }
5290
5291         local_bh_disable();
5292         return err;
5293 }
5294
5295 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5296                                             struct sk_buff *skb)
5297 {
5298         __sum16 result;
5299
5300         if (sock_owned_by_user(sk)) {
5301                 local_bh_enable();
5302                 result = __tcp_checksum_complete(skb);
5303                 local_bh_disable();
5304         } else {
5305                 result = __tcp_checksum_complete(skb);
5306         }
5307         return result;
5308 }
5309
5310 static inline int tcp_checksum_complete_user(struct sock *sk,
5311                                              struct sk_buff *skb)
5312 {
5313         return !skb_csum_unnecessary(skb) &&
5314                __tcp_checksum_complete_user(sk, skb);
5315 }
5316
5317 #ifdef CONFIG_NET_DMA
5318 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5319                                   int hlen)
5320 {
5321         struct tcp_sock *tp = tcp_sk(sk);
5322         int chunk = skb->len - hlen;
5323         int dma_cookie;
5324         int copied_early = 0;
5325
5326         if (tp->ucopy.wakeup)
5327                 return 0;
5328
5329         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5330                 tp->ucopy.dma_chan = net_dma_find_channel();
5331
5332         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5333
5334                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5335                                                          skb, hlen,
5336                                                          tp->ucopy.iov, chunk,
5337                                                          tp->ucopy.pinned_list);
5338
5339                 if (dma_cookie < 0)
5340                         goto out;
5341
5342                 tp->ucopy.dma_cookie = dma_cookie;
5343                 copied_early = 1;
5344
5345                 tp->ucopy.len -= chunk;
5346                 tp->copied_seq += chunk;
5347                 tcp_rcv_space_adjust(sk);
5348
5349                 if ((tp->ucopy.len == 0) ||
5350                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5351                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5352                         tp->ucopy.wakeup = 1;
5353                         sk->sk_data_ready(sk, 0);
5354                 }
5355         } else if (chunk > 0) {
5356                 tp->ucopy.wakeup = 1;
5357                 sk->sk_data_ready(sk, 0);
5358         }
5359 out:
5360         return copied_early;
5361 }
5362 #endif /* CONFIG_NET_DMA */
5363
5364 /* Does PAWS and seqno based validation of an incoming segment, flags will
5365  * play significant role here.
5366  */
5367 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5368                               const struct tcphdr *th, int syn_inerr)
5369 {
5370         const u8 *hash_location;
5371         struct tcp_sock *tp = tcp_sk(sk);
5372
5373         /* RFC1323: H1. Apply PAWS check first. */
5374         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5375             tp->rx_opt.saw_tstamp &&
5376             tcp_paws_discard(sk, skb)) {
5377                 if (!th->rst) {
5378                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5379                         tcp_send_dupack(sk, skb);
5380                         goto discard;
5381                 }
5382                 /* Reset is accepted even if it did not pass PAWS. */
5383         }
5384
5385         /* Step 1: check sequence number */
5386         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5387                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5388                  * (RST) segments are validated by checking their SEQ-fields."
5389                  * And page 69: "If an incoming segment is not acceptable,
5390                  * an acknowledgment should be sent in reply (unless the RST
5391                  * bit is set, if so drop the segment and return)".
5392                  */
5393                 if (!th->rst)
5394                         tcp_send_dupack(sk, skb);
5395                 goto discard;
5396         }
5397
5398         /* Step 2: check RST bit */
5399         if (th->rst) {
5400                 tcp_reset(sk);
5401                 goto discard;
5402         }
5403
5404         /* ts_recent update must be made after we are sure that the packet
5405          * is in window.
5406          */
5407         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5408
5409         /* step 3: check security and precedence [ignored] */
5410
5411         /* step 4: Check for a SYN in window. */
5412         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5413                 if (syn_inerr)
5414                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5415                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5416                 tcp_reset(sk);
5417                 return -1;
5418         }
5419
5420         return 1;
5421
5422 discard:
5423         __kfree_skb(skb);
5424         return 0;
5425 }
5426
5427 void tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen)
5428 {
5429         __skb_pull(skb, hdrlen);
5430         __skb_queue_tail(&sk->sk_receive_queue, skb);
5431         skb_set_owner_r(skb, sk);
5432         tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5433 }
5434
5435 /*
5436  *      TCP receive function for the ESTABLISHED state.
5437  *
5438  *      It is split into a fast path and a slow path. The fast path is
5439  *      disabled when:
5440  *      - A zero window was announced from us - zero window probing
5441  *        is only handled properly in the slow path.
5442  *      - Out of order segments arrived.
5443  *      - Urgent data is expected.
5444  *      - There is no buffer space left
5445  *      - Unexpected TCP flags/window values/header lengths are received
5446  *        (detected by checking the TCP header against pred_flags)
5447  *      - Data is sent in both directions. Fast path only supports pure senders
5448  *        or pure receivers (this means either the sequence number or the ack
5449  *        value must stay constant)
5450  *      - Unexpected TCP option.
5451  *
5452  *      When these conditions are not satisfied it drops into a standard
5453  *      receive procedure patterned after RFC793 to handle all cases.
5454  *      The first three cases are guaranteed by proper pred_flags setting,
5455  *      the rest is checked inline. Fast processing is turned on in
5456  *      tcp_data_queue when everything is OK.
5457  */
5458 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5459                         const struct tcphdr *th, unsigned int len)
5460 {
5461         struct tcp_sock *tp = tcp_sk(sk);
5462         int res;
5463
5464         /*
5465          *      Header prediction.
5466          *      The code loosely follows the one in the famous
5467          *      "30 instruction TCP receive" Van Jacobson mail.
5468          *
5469          *      Van's trick is to deposit buffers into socket queue
5470          *      on a device interrupt, to call tcp_recv function
5471          *      on the receive process context and checksum and copy
5472          *      the buffer to user space. smart...
5473          *
5474          *      Our current scheme is not silly either but we take the
5475          *      extra cost of the net_bh soft interrupt processing...
5476          *      We do checksum and copy also but from device to kernel.
5477          */
5478
5479         tp->rx_opt.saw_tstamp = 0;
5480
5481         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5482          *      if header_prediction is to be made
5483          *      'S' will always be tp->tcp_header_len >> 2
5484          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5485          *  turn it off (when there are holes in the receive
5486          *       space for instance)
5487          *      PSH flag is ignored.
5488          */
5489
5490         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5491             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5492             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5493                 int tcp_header_len = tp->tcp_header_len;
5494
5495                 /* Timestamp header prediction: tcp_header_len
5496                  * is automatically equal to th->doff*4 due to pred_flags
5497                  * match.
5498                  */
5499
5500                 /* Check timestamp */
5501                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5502                         /* No? Slow path! */
5503                         if (!tcp_parse_aligned_timestamp(tp, th))
5504                                 goto slow_path;
5505
5506                         /* If PAWS failed, check it more carefully in slow path */
5507                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5508                                 goto slow_path;
5509
5510                         /* DO NOT update ts_recent here, if checksum fails
5511                          * and timestamp was corrupted part, it will result
5512                          * in a hung connection since we will drop all
5513                          * future packets due to the PAWS test.
5514                          */
5515                 }
5516
5517                 if (len <= tcp_header_len) {
5518                         /* Bulk data transfer: sender */
5519                         if (len == tcp_header_len) {
5520                                 /* Predicted packet is in window by definition.
5521                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5522                                  * Hence, check seq<=rcv_wup reduces to:
5523                                  */
5524                                 if (tcp_header_len ==
5525                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5526                                     tp->rcv_nxt == tp->rcv_wup)
5527                                         tcp_store_ts_recent(tp);
5528
5529                                 /* We know that such packets are checksummed
5530                                  * on entry.
5531                                  */
5532                                 tcp_ack(sk, skb, 0);
5533                                 __kfree_skb(skb);
5534                                 tcp_data_snd_check(sk);
5535                                 return 0;
5536                         } else { /* Header too small */
5537                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5538                                 goto discard;
5539                         }
5540                 } else {
5541                         int eaten = 0;
5542                         int copied_early = 0;
5543
5544                         if (tp->copied_seq == tp->rcv_nxt &&
5545                             len - tcp_header_len <= tp->ucopy.len) {
5546 #ifdef CONFIG_NET_DMA
5547                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5548                                         copied_early = 1;
5549                                         eaten = 1;
5550                                 }
5551 #endif
5552                                 if (tp->ucopy.task == current &&
5553                                     sock_owned_by_user(sk) && !copied_early) {
5554                                         __set_current_state(TASK_RUNNING);
5555
5556                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5557                                                 eaten = 1;
5558                                 }
5559                                 if (eaten) {
5560                                         /* Predicted packet is in window by definition.
5561                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5562                                          * Hence, check seq<=rcv_wup reduces to:
5563                                          */
5564                                         if (tcp_header_len ==
5565                                             (sizeof(struct tcphdr) +
5566                                              TCPOLEN_TSTAMP_ALIGNED) &&
5567                                             tp->rcv_nxt == tp->rcv_wup)
5568                                                 tcp_store_ts_recent(tp);
5569
5570                                         tcp_rcv_rtt_measure_ts(sk, skb);
5571
5572                                         __skb_pull(skb, tcp_header_len);
5573                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5574                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5575                                 }
5576                                 if (copied_early)
5577                                         tcp_cleanup_rbuf(sk, skb->len);
5578                         }
5579                         if (!eaten) {
5580                                 if (tcp_checksum_complete_user(sk, skb))
5581                                         goto csum_error;
5582
5583                                 /* Predicted packet is in window by definition.
5584                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5585                                  * Hence, check seq<=rcv_wup reduces to:
5586                                  */
5587                                 if (tcp_header_len ==
5588                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5589                                     tp->rcv_nxt == tp->rcv_wup)
5590                                         tcp_store_ts_recent(tp);
5591
5592                                 tcp_rcv_rtt_measure_ts(sk, skb);
5593
5594                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5595                                         goto step5;
5596
5597                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5598
5599                                 /* Bulk data transfer: receiver */
5600                                 tcp_queue_rcv(sk, skb, tcp_header_len);
5601                         }
5602
5603                         tcp_event_data_recv(sk, skb);
5604
5605                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5606                                 /* Well, only one small jumplet in fast path... */
5607                                 tcp_ack(sk, skb, FLAG_DATA);
5608                                 tcp_data_snd_check(sk);
5609                                 if (!inet_csk_ack_scheduled(sk))
5610                                         goto no_ack;
5611                         }
5612
5613                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5614                                 __tcp_ack_snd_check(sk, 0);
5615 no_ack:
5616 #ifdef CONFIG_NET_DMA
5617                         if (copied_early)
5618                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5619                         else
5620 #endif
5621                         if (eaten)
5622                                 __kfree_skb(skb);
5623                         else
5624                                 sk->sk_data_ready(sk, 0);
5625                         return 0;
5626                 }
5627         }
5628
5629 slow_path:
5630         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5631                 goto csum_error;
5632
5633         /*
5634          *      Standard slow path.
5635          */
5636
5637         res = tcp_validate_incoming(sk, skb, th, 1);
5638         if (res <= 0)
5639                 return -res;
5640
5641 step5:
5642         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5643                 goto discard;
5644
5645         tcp_rcv_rtt_measure_ts(sk, skb);
5646
5647         /* Process urgent data. */
5648         tcp_urg(sk, skb, th);
5649
5650         /* step 7: process the segment text */
5651         tcp_data_queue(sk, skb);
5652
5653         tcp_data_snd_check(sk);
5654         tcp_ack_snd_check(sk);
5655         return 0;
5656
5657 csum_error:
5658         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5659
5660 discard:
5661         __kfree_skb(skb);
5662         return 0;
5663 }
5664 EXPORT_SYMBOL(tcp_rcv_established);
5665
5666 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5667 {
5668         struct tcp_sock *tp = tcp_sk(sk);
5669         struct inet_connection_sock *icsk = inet_csk(sk);
5670
5671         tcp_set_state(sk, TCP_ESTABLISHED);
5672
5673         if (skb != NULL)
5674                 security_inet_conn_established(sk, skb);
5675
5676         /* Make sure socket is routed, for correct metrics.  */
5677         icsk->icsk_af_ops->rebuild_header(sk);
5678
5679         tcp_init_metrics(sk);
5680
5681         tcp_init_congestion_control(sk);
5682
5683         /* Prevent spurious tcp_cwnd_restart() on first data
5684          * packet.
5685          */
5686         tp->lsndtime = tcp_time_stamp;
5687
5688         tcp_init_buffer_space(sk);
5689
5690         if (sock_flag(sk, SOCK_KEEPOPEN))
5691                 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5692
5693         if (!tp->rx_opt.snd_wscale)
5694                 __tcp_fast_path_on(tp, tp->snd_wnd);
5695         else
5696                 tp->pred_flags = 0;
5697
5698         if (!sock_flag(sk, SOCK_DEAD)) {
5699                 sk->sk_state_change(sk);
5700                 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5701         }
5702 }
5703
5704 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5705                                          const struct tcphdr *th, unsigned int len)
5706 {
5707         const u8 *hash_location;
5708         struct inet_connection_sock *icsk = inet_csk(sk);
5709         struct tcp_sock *tp = tcp_sk(sk);
5710         struct tcp_cookie_values *cvp = tp->cookie_values;
5711         int saved_clamp = tp->rx_opt.mss_clamp;
5712
5713         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5714
5715         if (th->ack) {
5716                 /* rfc793:
5717                  * "If the state is SYN-SENT then
5718                  *    first check the ACK bit
5719                  *      If the ACK bit is set
5720                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5721                  *        a reset (unless the RST bit is set, if so drop
5722                  *        the segment and return)"
5723                  *
5724                  *  We do not send data with SYN, so that RFC-correct
5725                  *  test reduces to:
5726                  */
5727                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5728                         goto reset_and_undo;
5729
5730                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5731                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5732                              tcp_time_stamp)) {
5733                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5734                         goto reset_and_undo;
5735                 }
5736
5737                 /* Now ACK is acceptable.
5738                  *
5739                  * "If the RST bit is set
5740                  *    If the ACK was acceptable then signal the user "error:
5741                  *    connection reset", drop the segment, enter CLOSED state,
5742                  *    delete TCB, and return."
5743                  */
5744
5745                 if (th->rst) {
5746                         tcp_reset(sk);
5747                         goto discard;
5748                 }
5749
5750                 /* rfc793:
5751                  *   "fifth, if neither of the SYN or RST bits is set then
5752                  *    drop the segment and return."
5753                  *
5754                  *    See note below!
5755                  *                                        --ANK(990513)
5756                  */
5757                 if (!th->syn)
5758                         goto discard_and_undo;
5759
5760                 /* rfc793:
5761                  *   "If the SYN bit is on ...
5762                  *    are acceptable then ...
5763                  *    (our SYN has been ACKed), change the connection
5764                  *    state to ESTABLISHED..."
5765                  */
5766
5767                 TCP_ECN_rcv_synack(tp, th);
5768
5769                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5770                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5771
5772                 /* Ok.. it's good. Set up sequence numbers and
5773                  * move to established.
5774                  */
5775                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5776                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5777
5778                 /* RFC1323: The window in SYN & SYN/ACK segments is
5779                  * never scaled.
5780                  */
5781                 tp->snd_wnd = ntohs(th->window);
5782                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5783
5784                 if (!tp->rx_opt.wscale_ok) {
5785                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5786                         tp->window_clamp = min(tp->window_clamp, 65535U);
5787                 }
5788
5789                 if (tp->rx_opt.saw_tstamp) {
5790                         tp->rx_opt.tstamp_ok       = 1;
5791                         tp->tcp_header_len =
5792                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5793                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5794                         tcp_store_ts_recent(tp);
5795                 } else {
5796                         tp->tcp_header_len = sizeof(struct tcphdr);
5797                 }
5798
5799                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5800                         tcp_enable_fack(tp);
5801
5802                 tcp_mtup_init(sk);
5803                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5804                 tcp_initialize_rcv_mss(sk);
5805
5806                 /* Remember, tcp_poll() does not lock socket!
5807                  * Change state from SYN-SENT only after copied_seq
5808                  * is initialized. */
5809                 tp->copied_seq = tp->rcv_nxt;
5810
5811                 if (cvp != NULL &&
5812                     cvp->cookie_pair_size > 0 &&
5813                     tp->rx_opt.cookie_plus > 0) {
5814                         int cookie_size = tp->rx_opt.cookie_plus
5815                                         - TCPOLEN_COOKIE_BASE;
5816                         int cookie_pair_size = cookie_size
5817                                              + cvp->cookie_desired;
5818
5819                         /* A cookie extension option was sent and returned.
5820                          * Note that each incoming SYNACK replaces the
5821                          * Responder cookie.  The initial exchange is most
5822                          * fragile, as protection against spoofing relies
5823                          * entirely upon the sequence and timestamp (above).
5824                          * This replacement strategy allows the correct pair to
5825                          * pass through, while any others will be filtered via
5826                          * Responder verification later.
5827                          */
5828                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5829                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5830                                        hash_location, cookie_size);
5831                                 cvp->cookie_pair_size = cookie_pair_size;
5832                         }
5833                 }
5834
5835                 smp_mb();
5836
5837                 tcp_finish_connect(sk, skb);
5838
5839                 if (sk->sk_write_pending ||
5840                     icsk->icsk_accept_queue.rskq_defer_accept ||
5841                     icsk->icsk_ack.pingpong) {
5842                         /* Save one ACK. Data will be ready after
5843                          * several ticks, if write_pending is set.
5844                          *
5845                          * It may be deleted, but with this feature tcpdumps
5846                          * look so _wonderfully_ clever, that I was not able
5847                          * to stand against the temptation 8)     --ANK
5848                          */
5849                         inet_csk_schedule_ack(sk);
5850                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5851                         tcp_enter_quickack_mode(sk);
5852                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5853                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5854
5855 discard:
5856                         __kfree_skb(skb);
5857                         return 0;
5858                 } else {
5859                         tcp_send_ack(sk);
5860                 }
5861                 return -1;
5862         }
5863
5864         /* No ACK in the segment */
5865
5866         if (th->rst) {
5867                 /* rfc793:
5868                  * "If the RST bit is set
5869                  *
5870                  *      Otherwise (no ACK) drop the segment and return."
5871                  */
5872
5873                 goto discard_and_undo;
5874         }
5875
5876         /* PAWS check. */
5877         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5878             tcp_paws_reject(&tp->rx_opt, 0))
5879                 goto discard_and_undo;
5880
5881         if (th->syn) {
5882                 /* We see SYN without ACK. It is attempt of
5883                  * simultaneous connect with crossed SYNs.
5884                  * Particularly, it can be connect to self.
5885                  */
5886                 tcp_set_state(sk, TCP_SYN_RECV);
5887
5888                 if (tp->rx_opt.saw_tstamp) {
5889                         tp->rx_opt.tstamp_ok = 1;
5890                         tcp_store_ts_recent(tp);
5891                         tp->tcp_header_len =
5892                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5893                 } else {
5894                         tp->tcp_header_len = sizeof(struct tcphdr);
5895                 }
5896
5897                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5898                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5899
5900                 /* RFC1323: The window in SYN & SYN/ACK segments is
5901                  * never scaled.
5902                  */
5903                 tp->snd_wnd    = ntohs(th->window);
5904                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5905                 tp->max_window = tp->snd_wnd;
5906
5907                 TCP_ECN_rcv_syn(tp, th);
5908
5909                 tcp_mtup_init(sk);
5910                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5911                 tcp_initialize_rcv_mss(sk);
5912
5913                 tcp_send_synack(sk);
5914 #if 0
5915                 /* Note, we could accept data and URG from this segment.
5916                  * There are no obstacles to make this.
5917                  *
5918                  * However, if we ignore data in ACKless segments sometimes,
5919                  * we have no reasons to accept it sometimes.
5920                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5921                  * is not flawless. So, discard packet for sanity.
5922                  * Uncomment this return to process the data.
5923                  */
5924                 return -1;
5925 #else
5926                 goto discard;
5927 #endif
5928         }
5929         /* "fifth, if neither of the SYN or RST bits is set then
5930          * drop the segment and return."
5931          */
5932
5933 discard_and_undo:
5934         tcp_clear_options(&tp->rx_opt);
5935         tp->rx_opt.mss_clamp = saved_clamp;
5936         goto discard;
5937
5938 reset_and_undo:
5939         tcp_clear_options(&tp->rx_opt);
5940         tp->rx_opt.mss_clamp = saved_clamp;
5941         return 1;
5942 }
5943
5944 /*
5945  *      This function implements the receiving procedure of RFC 793 for
5946  *      all states except ESTABLISHED and TIME_WAIT.
5947  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5948  *      address independent.
5949  */
5950
5951 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5952                           const struct tcphdr *th, unsigned int len)
5953 {
5954         struct tcp_sock *tp = tcp_sk(sk);
5955         struct inet_connection_sock *icsk = inet_csk(sk);
5956         int queued = 0;
5957         int res;
5958
5959         tp->rx_opt.saw_tstamp = 0;
5960
5961         switch (sk->sk_state) {
5962         case TCP_CLOSE:
5963                 goto discard;
5964
5965         case TCP_LISTEN:
5966                 if (th->ack)
5967                         return 1;
5968
5969                 if (th->rst)
5970                         goto discard;
5971
5972                 if (th->syn) {
5973                         if (th->fin)
5974                                 goto discard;
5975                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5976                                 return 1;
5977
5978                         /* Now we have several options: In theory there is
5979                          * nothing else in the frame. KA9Q has an option to
5980                          * send data with the syn, BSD accepts data with the
5981                          * syn up to the [to be] advertised window and
5982                          * Solaris 2.1 gives you a protocol error. For now
5983                          * we just ignore it, that fits the spec precisely
5984                          * and avoids incompatibilities. It would be nice in
5985                          * future to drop through and process the data.
5986                          *
5987                          * Now that TTCP is starting to be used we ought to
5988                          * queue this data.
5989                          * But, this leaves one open to an easy denial of
5990                          * service attack, and SYN cookies can't defend
5991                          * against this problem. So, we drop the data
5992                          * in the interest of security over speed unless
5993                          * it's still in use.
5994                          */
5995                         kfree_skb(skb);
5996                         return 0;
5997                 }
5998                 goto discard;
5999
6000         case TCP_SYN_SENT:
6001                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6002                 if (queued >= 0)
6003                         return queued;
6004
6005                 /* Do step6 onward by hand. */
6006                 tcp_urg(sk, skb, th);
6007                 __kfree_skb(skb);
6008                 tcp_data_snd_check(sk);
6009                 return 0;
6010         }
6011
6012         res = tcp_validate_incoming(sk, skb, th, 0);
6013         if (res <= 0)
6014                 return -res;
6015
6016         /* step 5: check the ACK field */
6017         if (th->ack) {
6018                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6019
6020                 switch (sk->sk_state) {
6021                 case TCP_SYN_RECV:
6022                         if (acceptable) {
6023                                 tp->copied_seq = tp->rcv_nxt;
6024                                 smp_mb();
6025                                 tcp_set_state(sk, TCP_ESTABLISHED);
6026                                 sk->sk_state_change(sk);
6027
6028                                 /* Note, that this wakeup is only for marginal
6029                                  * crossed SYN case. Passively open sockets
6030                                  * are not waked up, because sk->sk_sleep ==
6031                                  * NULL and sk->sk_socket == NULL.
6032                                  */
6033                                 if (sk->sk_socket)
6034                                         sk_wake_async(sk,
6035                                                       SOCK_WAKE_IO, POLL_OUT);
6036
6037                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6038                                 tp->snd_wnd = ntohs(th->window) <<
6039                                               tp->rx_opt.snd_wscale;
6040                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6041
6042                                 if (tp->rx_opt.tstamp_ok)
6043                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6044
6045                                 /* Make sure socket is routed, for
6046                                  * correct metrics.
6047                                  */
6048                                 icsk->icsk_af_ops->rebuild_header(sk);
6049
6050                                 tcp_init_metrics(sk);
6051
6052                                 tcp_init_congestion_control(sk);
6053
6054                                 /* Prevent spurious tcp_cwnd_restart() on
6055                                  * first data packet.
6056                                  */
6057                                 tp->lsndtime = tcp_time_stamp;
6058
6059                                 tcp_mtup_init(sk);
6060                                 tcp_initialize_rcv_mss(sk);
6061                                 tcp_init_buffer_space(sk);
6062                                 tcp_fast_path_on(tp);
6063                         } else {
6064                                 return 1;
6065                         }
6066                         break;
6067
6068                 case TCP_FIN_WAIT1:
6069                         if (tp->snd_una == tp->write_seq) {
6070                                 tcp_set_state(sk, TCP_FIN_WAIT2);
6071                                 sk->sk_shutdown |= SEND_SHUTDOWN;
6072                                 dst_confirm(__sk_dst_get(sk));
6073
6074                                 if (!sock_flag(sk, SOCK_DEAD))
6075                                         /* Wake up lingering close() */
6076                                         sk->sk_state_change(sk);
6077                                 else {
6078                                         int tmo;
6079
6080                                         if (tp->linger2 < 0 ||
6081                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6082                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6083                                                 tcp_done(sk);
6084                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6085                                                 return 1;
6086                                         }
6087
6088                                         tmo = tcp_fin_time(sk);
6089                                         if (tmo > TCP_TIMEWAIT_LEN) {
6090                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6091                                         } else if (th->fin || sock_owned_by_user(sk)) {
6092                                                 /* Bad case. We could lose such FIN otherwise.
6093                                                  * It is not a big problem, but it looks confusing
6094                                                  * and not so rare event. We still can lose it now,
6095                                                  * if it spins in bh_lock_sock(), but it is really
6096                                                  * marginal case.
6097                                                  */
6098                                                 inet_csk_reset_keepalive_timer(sk, tmo);
6099                                         } else {
6100                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6101                                                 goto discard;
6102                                         }
6103                                 }
6104                         }
6105                         break;
6106
6107                 case TCP_CLOSING:
6108                         if (tp->snd_una == tp->write_seq) {
6109                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6110                                 goto discard;
6111                         }
6112                         break;
6113
6114                 case TCP_LAST_ACK:
6115                         if (tp->snd_una == tp->write_seq) {
6116                                 tcp_update_metrics(sk);
6117                                 tcp_done(sk);
6118                                 goto discard;
6119                         }
6120                         break;
6121                 }
6122         } else
6123                 goto discard;
6124
6125         /* step 6: check the URG bit */
6126         tcp_urg(sk, skb, th);
6127
6128         /* step 7: process the segment text */
6129         switch (sk->sk_state) {
6130         case TCP_CLOSE_WAIT:
6131         case TCP_CLOSING:
6132         case TCP_LAST_ACK:
6133                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6134                         break;
6135         case TCP_FIN_WAIT1:
6136         case TCP_FIN_WAIT2:
6137                 /* RFC 793 says to queue data in these states,
6138                  * RFC 1122 says we MUST send a reset.
6139                  * BSD 4.4 also does reset.
6140                  */
6141                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6142                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6143                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6144                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6145                                 tcp_reset(sk);
6146                                 return 1;
6147                         }
6148                 }
6149                 /* Fall through */
6150         case TCP_ESTABLISHED:
6151                 tcp_data_queue(sk, skb);
6152                 queued = 1;
6153                 break;
6154         }
6155
6156         /* tcp_data could move socket to TIME-WAIT */
6157         if (sk->sk_state != TCP_CLOSE) {
6158                 tcp_data_snd_check(sk);
6159                 tcp_ack_snd_check(sk);
6160         }
6161
6162         if (!queued) {
6163 discard:
6164                 __kfree_skb(skb);
6165         }
6166         return 0;
6167 }
6168 EXPORT_SYMBOL(tcp_rcv_state_process);