]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/openvswitch/flow.c
hlist: drop the node parameter from iterators
[karo-tx-linux.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2011 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45
46 static struct kmem_cache *flow_cache;
47
48 static int check_header(struct sk_buff *skb, int len)
49 {
50         if (unlikely(skb->len < len))
51                 return -EINVAL;
52         if (unlikely(!pskb_may_pull(skb, len)))
53                 return -ENOMEM;
54         return 0;
55 }
56
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59         return pskb_may_pull(skb, skb_network_offset(skb) +
60                                   sizeof(struct arp_eth_header));
61 }
62
63 static int check_iphdr(struct sk_buff *skb)
64 {
65         unsigned int nh_ofs = skb_network_offset(skb);
66         unsigned int ip_len;
67         int err;
68
69         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70         if (unlikely(err))
71                 return err;
72
73         ip_len = ip_hdrlen(skb);
74         if (unlikely(ip_len < sizeof(struct iphdr) ||
75                      skb->len < nh_ofs + ip_len))
76                 return -EINVAL;
77
78         skb_set_transport_header(skb, nh_ofs + ip_len);
79         return 0;
80 }
81
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84         int th_ofs = skb_transport_offset(skb);
85         int tcp_len;
86
87         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88                 return false;
89
90         tcp_len = tcp_hdrlen(skb);
91         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92                      skb->len < th_ofs + tcp_len))
93                 return false;
94
95         return true;
96 }
97
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100         return pskb_may_pull(skb, skb_transport_offset(skb) +
101                                   sizeof(struct udphdr));
102 }
103
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106         return pskb_may_pull(skb, skb_transport_offset(skb) +
107                                   sizeof(struct icmphdr));
108 }
109
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112         struct timespec cur_ts;
113         u64 cur_ms, idle_ms;
114
115         ktime_get_ts(&cur_ts);
116         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118                  cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120         return cur_ms - idle_ms;
121 }
122
123 #define SW_FLOW_KEY_OFFSET(field)               \
124         (offsetof(struct sw_flow_key, field) +  \
125          FIELD_SIZEOF(struct sw_flow_key, field))
126
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128                          int *key_lenp)
129 {
130         unsigned int nh_ofs = skb_network_offset(skb);
131         unsigned int nh_len;
132         int payload_ofs;
133         struct ipv6hdr *nh;
134         uint8_t nexthdr;
135         __be16 frag_off;
136         int err;
137
138         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140         err = check_header(skb, nh_ofs + sizeof(*nh));
141         if (unlikely(err))
142                 return err;
143
144         nh = ipv6_hdr(skb);
145         nexthdr = nh->nexthdr;
146         payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148         key->ip.proto = NEXTHDR_NONE;
149         key->ip.tos = ipv6_get_dsfield(nh);
150         key->ip.ttl = nh->hop_limit;
151         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152         key->ipv6.addr.src = nh->saddr;
153         key->ipv6.addr.dst = nh->daddr;
154
155         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156         if (unlikely(payload_ofs < 0))
157                 return -EINVAL;
158
159         if (frag_off) {
160                 if (frag_off & htons(~0x7))
161                         key->ip.frag = OVS_FRAG_TYPE_LATER;
162                 else
163                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
164         }
165
166         nh_len = payload_ofs - nh_ofs;
167         skb_set_transport_header(skb, nh_ofs + nh_len);
168         key->ip.proto = nexthdr;
169         return nh_len;
170 }
171
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174         return pskb_may_pull(skb, skb_transport_offset(skb) +
175                                   sizeof(struct icmp6hdr));
176 }
177
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183         u8 tcp_flags = 0;
184
185         if ((flow->key.eth.type == htons(ETH_P_IP) ||
186              flow->key.eth.type == htons(ETH_P_IPV6)) &&
187             flow->key.ip.proto == IPPROTO_TCP &&
188             likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
189                 u8 *tcp = (u8 *)tcp_hdr(skb);
190                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191         }
192
193         spin_lock(&flow->lock);
194         flow->used = jiffies;
195         flow->packet_count++;
196         flow->byte_count += skb->len;
197         flow->tcp_flags |= tcp_flags;
198         spin_unlock(&flow->lock);
199 }
200
201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
202 {
203         int actions_len = nla_len(actions);
204         struct sw_flow_actions *sfa;
205
206         if (actions_len > MAX_ACTIONS_BUFSIZE)
207                 return ERR_PTR(-EINVAL);
208
209         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
210         if (!sfa)
211                 return ERR_PTR(-ENOMEM);
212
213         sfa->actions_len = actions_len;
214         memcpy(sfa->actions, nla_data(actions), actions_len);
215         return sfa;
216 }
217
218 struct sw_flow *ovs_flow_alloc(void)
219 {
220         struct sw_flow *flow;
221
222         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
223         if (!flow)
224                 return ERR_PTR(-ENOMEM);
225
226         spin_lock_init(&flow->lock);
227         flow->sf_acts = NULL;
228
229         return flow;
230 }
231
232 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
233 {
234         hash = jhash_1word(hash, table->hash_seed);
235         return flex_array_get(table->buckets,
236                                 (hash & (table->n_buckets - 1)));
237 }
238
239 static struct flex_array *alloc_buckets(unsigned int n_buckets)
240 {
241         struct flex_array *buckets;
242         int i, err;
243
244         buckets = flex_array_alloc(sizeof(struct hlist_head *),
245                                    n_buckets, GFP_KERNEL);
246         if (!buckets)
247                 return NULL;
248
249         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
250         if (err) {
251                 flex_array_free(buckets);
252                 return NULL;
253         }
254
255         for (i = 0; i < n_buckets; i++)
256                 INIT_HLIST_HEAD((struct hlist_head *)
257                                         flex_array_get(buckets, i));
258
259         return buckets;
260 }
261
262 static void free_buckets(struct flex_array *buckets)
263 {
264         flex_array_free(buckets);
265 }
266
267 struct flow_table *ovs_flow_tbl_alloc(int new_size)
268 {
269         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
270
271         if (!table)
272                 return NULL;
273
274         table->buckets = alloc_buckets(new_size);
275
276         if (!table->buckets) {
277                 kfree(table);
278                 return NULL;
279         }
280         table->n_buckets = new_size;
281         table->count = 0;
282         table->node_ver = 0;
283         table->keep_flows = false;
284         get_random_bytes(&table->hash_seed, sizeof(u32));
285
286         return table;
287 }
288
289 void ovs_flow_tbl_destroy(struct flow_table *table)
290 {
291         int i;
292
293         if (!table)
294                 return;
295
296         if (table->keep_flows)
297                 goto skip_flows;
298
299         for (i = 0; i < table->n_buckets; i++) {
300                 struct sw_flow *flow;
301                 struct hlist_head *head = flex_array_get(table->buckets, i);
302                 struct hlist_node *n;
303                 int ver = table->node_ver;
304
305                 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
306                         hlist_del_rcu(&flow->hash_node[ver]);
307                         ovs_flow_free(flow);
308                 }
309         }
310
311 skip_flows:
312         free_buckets(table->buckets);
313         kfree(table);
314 }
315
316 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
317 {
318         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
319
320         ovs_flow_tbl_destroy(table);
321 }
322
323 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
324 {
325         if (!table)
326                 return;
327
328         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
329 }
330
331 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
332 {
333         struct sw_flow *flow;
334         struct hlist_head *head;
335         int ver;
336         int i;
337
338         ver = table->node_ver;
339         while (*bucket < table->n_buckets) {
340                 i = 0;
341                 head = flex_array_get(table->buckets, *bucket);
342                 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
343                         if (i < *last) {
344                                 i++;
345                                 continue;
346                         }
347                         *last = i + 1;
348                         return flow;
349                 }
350                 (*bucket)++;
351                 *last = 0;
352         }
353
354         return NULL;
355 }
356
357 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
358 {
359         int old_ver;
360         int i;
361
362         old_ver = old->node_ver;
363         new->node_ver = !old_ver;
364
365         /* Insert in new table. */
366         for (i = 0; i < old->n_buckets; i++) {
367                 struct sw_flow *flow;
368                 struct hlist_head *head;
369
370                 head = flex_array_get(old->buckets, i);
371
372                 hlist_for_each_entry(flow, head, hash_node[old_ver])
373                         ovs_flow_tbl_insert(new, flow);
374         }
375         old->keep_flows = true;
376 }
377
378 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
379 {
380         struct flow_table *new_table;
381
382         new_table = ovs_flow_tbl_alloc(n_buckets);
383         if (!new_table)
384                 return ERR_PTR(-ENOMEM);
385
386         flow_table_copy_flows(table, new_table);
387
388         return new_table;
389 }
390
391 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
392 {
393         return __flow_tbl_rehash(table, table->n_buckets);
394 }
395
396 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
397 {
398         return __flow_tbl_rehash(table, table->n_buckets * 2);
399 }
400
401 void ovs_flow_free(struct sw_flow *flow)
402 {
403         if (unlikely(!flow))
404                 return;
405
406         kfree((struct sf_flow_acts __force *)flow->sf_acts);
407         kmem_cache_free(flow_cache, flow);
408 }
409
410 /* RCU callback used by ovs_flow_deferred_free. */
411 static void rcu_free_flow_callback(struct rcu_head *rcu)
412 {
413         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
414
415         ovs_flow_free(flow);
416 }
417
418 /* Schedules 'flow' to be freed after the next RCU grace period.
419  * The caller must hold rcu_read_lock for this to be sensible. */
420 void ovs_flow_deferred_free(struct sw_flow *flow)
421 {
422         call_rcu(&flow->rcu, rcu_free_flow_callback);
423 }
424
425 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
426  * The caller must hold rcu_read_lock for this to be sensible. */
427 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
428 {
429         kfree_rcu(sf_acts, rcu);
430 }
431
432 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
433 {
434         struct qtag_prefix {
435                 __be16 eth_type; /* ETH_P_8021Q */
436                 __be16 tci;
437         };
438         struct qtag_prefix *qp;
439
440         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
441                 return 0;
442
443         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
444                                          sizeof(__be16))))
445                 return -ENOMEM;
446
447         qp = (struct qtag_prefix *) skb->data;
448         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
449         __skb_pull(skb, sizeof(struct qtag_prefix));
450
451         return 0;
452 }
453
454 static __be16 parse_ethertype(struct sk_buff *skb)
455 {
456         struct llc_snap_hdr {
457                 u8  dsap;  /* Always 0xAA */
458                 u8  ssap;  /* Always 0xAA */
459                 u8  ctrl;
460                 u8  oui[3];
461                 __be16 ethertype;
462         };
463         struct llc_snap_hdr *llc;
464         __be16 proto;
465
466         proto = *(__be16 *) skb->data;
467         __skb_pull(skb, sizeof(__be16));
468
469         if (ntohs(proto) >= 1536)
470                 return proto;
471
472         if (skb->len < sizeof(struct llc_snap_hdr))
473                 return htons(ETH_P_802_2);
474
475         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
476                 return htons(0);
477
478         llc = (struct llc_snap_hdr *) skb->data;
479         if (llc->dsap != LLC_SAP_SNAP ||
480             llc->ssap != LLC_SAP_SNAP ||
481             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
482                 return htons(ETH_P_802_2);
483
484         __skb_pull(skb, sizeof(struct llc_snap_hdr));
485         return llc->ethertype;
486 }
487
488 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
489                         int *key_lenp, int nh_len)
490 {
491         struct icmp6hdr *icmp = icmp6_hdr(skb);
492         int error = 0;
493         int key_len;
494
495         /* The ICMPv6 type and code fields use the 16-bit transport port
496          * fields, so we need to store them in 16-bit network byte order.
497          */
498         key->ipv6.tp.src = htons(icmp->icmp6_type);
499         key->ipv6.tp.dst = htons(icmp->icmp6_code);
500         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
501
502         if (icmp->icmp6_code == 0 &&
503             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
504              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
505                 int icmp_len = skb->len - skb_transport_offset(skb);
506                 struct nd_msg *nd;
507                 int offset;
508
509                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
510
511                 /* In order to process neighbor discovery options, we need the
512                  * entire packet.
513                  */
514                 if (unlikely(icmp_len < sizeof(*nd)))
515                         goto out;
516                 if (unlikely(skb_linearize(skb))) {
517                         error = -ENOMEM;
518                         goto out;
519                 }
520
521                 nd = (struct nd_msg *)skb_transport_header(skb);
522                 key->ipv6.nd.target = nd->target;
523                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
524
525                 icmp_len -= sizeof(*nd);
526                 offset = 0;
527                 while (icmp_len >= 8) {
528                         struct nd_opt_hdr *nd_opt =
529                                  (struct nd_opt_hdr *)(nd->opt + offset);
530                         int opt_len = nd_opt->nd_opt_len * 8;
531
532                         if (unlikely(!opt_len || opt_len > icmp_len))
533                                 goto invalid;
534
535                         /* Store the link layer address if the appropriate
536                          * option is provided.  It is considered an error if
537                          * the same link layer option is specified twice.
538                          */
539                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
540                             && opt_len == 8) {
541                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
542                                         goto invalid;
543                                 memcpy(key->ipv6.nd.sll,
544                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
545                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
546                                    && opt_len == 8) {
547                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
548                                         goto invalid;
549                                 memcpy(key->ipv6.nd.tll,
550                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
551                         }
552
553                         icmp_len -= opt_len;
554                         offset += opt_len;
555                 }
556         }
557
558         goto out;
559
560 invalid:
561         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
562         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
563         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
564
565 out:
566         *key_lenp = key_len;
567         return error;
568 }
569
570 /**
571  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
572  * @skb: sk_buff that contains the frame, with skb->data pointing to the
573  * Ethernet header
574  * @in_port: port number on which @skb was received.
575  * @key: output flow key
576  * @key_lenp: length of output flow key
577  *
578  * The caller must ensure that skb->len >= ETH_HLEN.
579  *
580  * Returns 0 if successful, otherwise a negative errno value.
581  *
582  * Initializes @skb header pointers as follows:
583  *
584  *    - skb->mac_header: the Ethernet header.
585  *
586  *    - skb->network_header: just past the Ethernet header, or just past the
587  *      VLAN header, to the first byte of the Ethernet payload.
588  *
589  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
590  *      on output, then just past the IP header, if one is present and
591  *      of a correct length, otherwise the same as skb->network_header.
592  *      For other key->dl_type values it is left untouched.
593  */
594 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
595                  int *key_lenp)
596 {
597         int error = 0;
598         int key_len = SW_FLOW_KEY_OFFSET(eth);
599         struct ethhdr *eth;
600
601         memset(key, 0, sizeof(*key));
602
603         key->phy.priority = skb->priority;
604         key->phy.in_port = in_port;
605         key->phy.skb_mark = skb->mark;
606
607         skb_reset_mac_header(skb);
608
609         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
610          * header in the linear data area.
611          */
612         eth = eth_hdr(skb);
613         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
614         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
615
616         __skb_pull(skb, 2 * ETH_ALEN);
617
618         if (vlan_tx_tag_present(skb))
619                 key->eth.tci = htons(skb->vlan_tci);
620         else if (eth->h_proto == htons(ETH_P_8021Q))
621                 if (unlikely(parse_vlan(skb, key)))
622                         return -ENOMEM;
623
624         key->eth.type = parse_ethertype(skb);
625         if (unlikely(key->eth.type == htons(0)))
626                 return -ENOMEM;
627
628         skb_reset_network_header(skb);
629         __skb_push(skb, skb->data - skb_mac_header(skb));
630
631         /* Network layer. */
632         if (key->eth.type == htons(ETH_P_IP)) {
633                 struct iphdr *nh;
634                 __be16 offset;
635
636                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
637
638                 error = check_iphdr(skb);
639                 if (unlikely(error)) {
640                         if (error == -EINVAL) {
641                                 skb->transport_header = skb->network_header;
642                                 error = 0;
643                         }
644                         goto out;
645                 }
646
647                 nh = ip_hdr(skb);
648                 key->ipv4.addr.src = nh->saddr;
649                 key->ipv4.addr.dst = nh->daddr;
650
651                 key->ip.proto = nh->protocol;
652                 key->ip.tos = nh->tos;
653                 key->ip.ttl = nh->ttl;
654
655                 offset = nh->frag_off & htons(IP_OFFSET);
656                 if (offset) {
657                         key->ip.frag = OVS_FRAG_TYPE_LATER;
658                         goto out;
659                 }
660                 if (nh->frag_off & htons(IP_MF) ||
661                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
662                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
663
664                 /* Transport layer. */
665                 if (key->ip.proto == IPPROTO_TCP) {
666                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
667                         if (tcphdr_ok(skb)) {
668                                 struct tcphdr *tcp = tcp_hdr(skb);
669                                 key->ipv4.tp.src = tcp->source;
670                                 key->ipv4.tp.dst = tcp->dest;
671                         }
672                 } else if (key->ip.proto == IPPROTO_UDP) {
673                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
674                         if (udphdr_ok(skb)) {
675                                 struct udphdr *udp = udp_hdr(skb);
676                                 key->ipv4.tp.src = udp->source;
677                                 key->ipv4.tp.dst = udp->dest;
678                         }
679                 } else if (key->ip.proto == IPPROTO_ICMP) {
680                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
681                         if (icmphdr_ok(skb)) {
682                                 struct icmphdr *icmp = icmp_hdr(skb);
683                                 /* The ICMP type and code fields use the 16-bit
684                                  * transport port fields, so we need to store
685                                  * them in 16-bit network byte order. */
686                                 key->ipv4.tp.src = htons(icmp->type);
687                                 key->ipv4.tp.dst = htons(icmp->code);
688                         }
689                 }
690
691         } else if ((key->eth.type == htons(ETH_P_ARP) ||
692                    key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
693                 struct arp_eth_header *arp;
694
695                 arp = (struct arp_eth_header *)skb_network_header(skb);
696
697                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
698                                 && arp->ar_pro == htons(ETH_P_IP)
699                                 && arp->ar_hln == ETH_ALEN
700                                 && arp->ar_pln == 4) {
701
702                         /* We only match on the lower 8 bits of the opcode. */
703                         if (ntohs(arp->ar_op) <= 0xff)
704                                 key->ip.proto = ntohs(arp->ar_op);
705                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
706                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
707                         memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
708                         memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
709                         key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
710                 }
711         } else if (key->eth.type == htons(ETH_P_IPV6)) {
712                 int nh_len;             /* IPv6 Header + Extensions */
713
714                 nh_len = parse_ipv6hdr(skb, key, &key_len);
715                 if (unlikely(nh_len < 0)) {
716                         if (nh_len == -EINVAL)
717                                 skb->transport_header = skb->network_header;
718                         else
719                                 error = nh_len;
720                         goto out;
721                 }
722
723                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
724                         goto out;
725                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
726                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
727
728                 /* Transport layer. */
729                 if (key->ip.proto == NEXTHDR_TCP) {
730                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
731                         if (tcphdr_ok(skb)) {
732                                 struct tcphdr *tcp = tcp_hdr(skb);
733                                 key->ipv6.tp.src = tcp->source;
734                                 key->ipv6.tp.dst = tcp->dest;
735                         }
736                 } else if (key->ip.proto == NEXTHDR_UDP) {
737                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
738                         if (udphdr_ok(skb)) {
739                                 struct udphdr *udp = udp_hdr(skb);
740                                 key->ipv6.tp.src = udp->source;
741                                 key->ipv6.tp.dst = udp->dest;
742                         }
743                 } else if (key->ip.proto == NEXTHDR_ICMP) {
744                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745                         if (icmp6hdr_ok(skb)) {
746                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
747                                 if (error < 0)
748                                         goto out;
749                         }
750                 }
751         }
752
753 out:
754         *key_lenp = key_len;
755         return error;
756 }
757
758 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
759 {
760         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
761 }
762
763 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
764                                 struct sw_flow_key *key, int key_len)
765 {
766         struct sw_flow *flow;
767         struct hlist_head *head;
768         u32 hash;
769
770         hash = ovs_flow_hash(key, key_len);
771
772         head = find_bucket(table, hash);
773         hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
774
775                 if (flow->hash == hash &&
776                     !memcmp(&flow->key, key, key_len)) {
777                         return flow;
778                 }
779         }
780         return NULL;
781 }
782
783 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
784 {
785         struct hlist_head *head;
786
787         head = find_bucket(table, flow->hash);
788         hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
789         table->count++;
790 }
791
792 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
793 {
794         hlist_del_rcu(&flow->hash_node[table->node_ver]);
795         table->count--;
796         BUG_ON(table->count < 0);
797 }
798
799 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
800 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
801         [OVS_KEY_ATTR_ENCAP] = -1,
802         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
803         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
804         [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
805         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
806         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
807         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
808         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
809         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
810         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
811         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
812         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
813         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
814         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
815         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
816 };
817
818 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
819                                   const struct nlattr *a[], u32 *attrs)
820 {
821         const struct ovs_key_icmp *icmp_key;
822         const struct ovs_key_tcp *tcp_key;
823         const struct ovs_key_udp *udp_key;
824
825         switch (swkey->ip.proto) {
826         case IPPROTO_TCP:
827                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
828                         return -EINVAL;
829                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
830
831                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
832                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
833                 swkey->ipv4.tp.src = tcp_key->tcp_src;
834                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
835                 break;
836
837         case IPPROTO_UDP:
838                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
839                         return -EINVAL;
840                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
841
842                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
843                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
844                 swkey->ipv4.tp.src = udp_key->udp_src;
845                 swkey->ipv4.tp.dst = udp_key->udp_dst;
846                 break;
847
848         case IPPROTO_ICMP:
849                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
850                         return -EINVAL;
851                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
852
853                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
854                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
855                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
856                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
857                 break;
858         }
859
860         return 0;
861 }
862
863 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
864                                   const struct nlattr *a[], u32 *attrs)
865 {
866         const struct ovs_key_icmpv6 *icmpv6_key;
867         const struct ovs_key_tcp *tcp_key;
868         const struct ovs_key_udp *udp_key;
869
870         switch (swkey->ip.proto) {
871         case IPPROTO_TCP:
872                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
873                         return -EINVAL;
874                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
875
876                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
877                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
878                 swkey->ipv6.tp.src = tcp_key->tcp_src;
879                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
880                 break;
881
882         case IPPROTO_UDP:
883                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
884                         return -EINVAL;
885                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
886
887                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
888                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
889                 swkey->ipv6.tp.src = udp_key->udp_src;
890                 swkey->ipv6.tp.dst = udp_key->udp_dst;
891                 break;
892
893         case IPPROTO_ICMPV6:
894                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
895                         return -EINVAL;
896                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
897
898                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
899                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
900                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
901                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
902
903                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
904                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
905                         const struct ovs_key_nd *nd_key;
906
907                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
908                                 return -EINVAL;
909                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
910
911                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
912                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
913                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
914                                sizeof(swkey->ipv6.nd.target));
915                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
916                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
917                 }
918                 break;
919         }
920
921         return 0;
922 }
923
924 static int parse_flow_nlattrs(const struct nlattr *attr,
925                               const struct nlattr *a[], u32 *attrsp)
926 {
927         const struct nlattr *nla;
928         u32 attrs;
929         int rem;
930
931         attrs = 0;
932         nla_for_each_nested(nla, attr, rem) {
933                 u16 type = nla_type(nla);
934                 int expected_len;
935
936                 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
937                         return -EINVAL;
938
939                 expected_len = ovs_key_lens[type];
940                 if (nla_len(nla) != expected_len && expected_len != -1)
941                         return -EINVAL;
942
943                 attrs |= 1 << type;
944                 a[type] = nla;
945         }
946         if (rem)
947                 return -EINVAL;
948
949         *attrsp = attrs;
950         return 0;
951 }
952
953 /**
954  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
955  * @swkey: receives the extracted flow key.
956  * @key_lenp: number of bytes used in @swkey.
957  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
958  * sequence.
959  */
960 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
961                       const struct nlattr *attr)
962 {
963         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
964         const struct ovs_key_ethernet *eth_key;
965         int key_len;
966         u32 attrs;
967         int err;
968
969         memset(swkey, 0, sizeof(struct sw_flow_key));
970         key_len = SW_FLOW_KEY_OFFSET(eth);
971
972         err = parse_flow_nlattrs(attr, a, &attrs);
973         if (err)
974                 return err;
975
976         /* Metadata attributes. */
977         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
978                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
979                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
980         }
981         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
982                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
983                 if (in_port >= DP_MAX_PORTS)
984                         return -EINVAL;
985                 swkey->phy.in_port = in_port;
986                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
987         } else {
988                 swkey->phy.in_port = DP_MAX_PORTS;
989         }
990         if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
991                 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
992                 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
993         }
994
995         /* Data attributes. */
996         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
997                 return -EINVAL;
998         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
999
1000         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1001         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1002         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1003
1004         if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1005             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1006                 const struct nlattr *encap;
1007                 __be16 tci;
1008
1009                 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1010                               (1 << OVS_KEY_ATTR_ETHERTYPE) |
1011                               (1 << OVS_KEY_ATTR_ENCAP)))
1012                         return -EINVAL;
1013
1014                 encap = a[OVS_KEY_ATTR_ENCAP];
1015                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1016                 if (tci & htons(VLAN_TAG_PRESENT)) {
1017                         swkey->eth.tci = tci;
1018
1019                         err = parse_flow_nlattrs(encap, a, &attrs);
1020                         if (err)
1021                                 return err;
1022                 } else if (!tci) {
1023                         /* Corner case for truncated 802.1Q header. */
1024                         if (nla_len(encap))
1025                                 return -EINVAL;
1026
1027                         swkey->eth.type = htons(ETH_P_8021Q);
1028                         *key_lenp = key_len;
1029                         return 0;
1030                 } else {
1031                         return -EINVAL;
1032                 }
1033         }
1034
1035         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1036                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1037                 if (ntohs(swkey->eth.type) < 1536)
1038                         return -EINVAL;
1039                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1040         } else {
1041                 swkey->eth.type = htons(ETH_P_802_2);
1042         }
1043
1044         if (swkey->eth.type == htons(ETH_P_IP)) {
1045                 const struct ovs_key_ipv4 *ipv4_key;
1046
1047                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1048                         return -EINVAL;
1049                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1050
1051                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1052                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1053                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1054                         return -EINVAL;
1055                 swkey->ip.proto = ipv4_key->ipv4_proto;
1056                 swkey->ip.tos = ipv4_key->ipv4_tos;
1057                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1058                 swkey->ip.frag = ipv4_key->ipv4_frag;
1059                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1060                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1061
1062                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1063                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1064                         if (err)
1065                                 return err;
1066                 }
1067         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1068                 const struct ovs_key_ipv6 *ipv6_key;
1069
1070                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1071                         return -EINVAL;
1072                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1073
1074                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1075                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1076                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1077                         return -EINVAL;
1078                 swkey->ipv6.label = ipv6_key->ipv6_label;
1079                 swkey->ip.proto = ipv6_key->ipv6_proto;
1080                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1081                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1082                 swkey->ip.frag = ipv6_key->ipv6_frag;
1083                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1084                        sizeof(swkey->ipv6.addr.src));
1085                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1086                        sizeof(swkey->ipv6.addr.dst));
1087
1088                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1089                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1090                         if (err)
1091                                 return err;
1092                 }
1093         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1094                    swkey->eth.type == htons(ETH_P_RARP)) {
1095                 const struct ovs_key_arp *arp_key;
1096
1097                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1098                         return -EINVAL;
1099                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1100
1101                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1102                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1103                 swkey->ipv4.addr.src = arp_key->arp_sip;
1104                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1105                 if (arp_key->arp_op & htons(0xff00))
1106                         return -EINVAL;
1107                 swkey->ip.proto = ntohs(arp_key->arp_op);
1108                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1109                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1110         }
1111
1112         if (attrs)
1113                 return -EINVAL;
1114         *key_lenp = key_len;
1115
1116         return 0;
1117 }
1118
1119 /**
1120  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1121  * @priority: receives the skb priority
1122  * @mark: receives the skb mark
1123  * @in_port: receives the extracted input port.
1124  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1125  * sequence.
1126  *
1127  * This parses a series of Netlink attributes that form a flow key, which must
1128  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1129  * get the metadata, that is, the parts of the flow key that cannot be
1130  * extracted from the packet itself.
1131  */
1132 int ovs_flow_metadata_from_nlattrs(u32 *priority, u32 *mark, u16 *in_port,
1133                                const struct nlattr *attr)
1134 {
1135         const struct nlattr *nla;
1136         int rem;
1137
1138         *in_port = DP_MAX_PORTS;
1139         *priority = 0;
1140         *mark = 0;
1141
1142         nla_for_each_nested(nla, attr, rem) {
1143                 int type = nla_type(nla);
1144
1145                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1146                         if (nla_len(nla) != ovs_key_lens[type])
1147                                 return -EINVAL;
1148
1149                         switch (type) {
1150                         case OVS_KEY_ATTR_PRIORITY:
1151                                 *priority = nla_get_u32(nla);
1152                                 break;
1153
1154                         case OVS_KEY_ATTR_IN_PORT:
1155                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1156                                         return -EINVAL;
1157                                 *in_port = nla_get_u32(nla);
1158                                 break;
1159
1160                         case OVS_KEY_ATTR_SKB_MARK:
1161                                 *mark = nla_get_u32(nla);
1162                                 break;
1163                         }
1164                 }
1165         }
1166         if (rem)
1167                 return -EINVAL;
1168         return 0;
1169 }
1170
1171 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1172 {
1173         struct ovs_key_ethernet *eth_key;
1174         struct nlattr *nla, *encap;
1175
1176         if (swkey->phy.priority &&
1177             nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1178                 goto nla_put_failure;
1179
1180         if (swkey->phy.in_port != DP_MAX_PORTS &&
1181             nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1182                 goto nla_put_failure;
1183
1184         if (swkey->phy.skb_mark &&
1185             nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark))
1186                 goto nla_put_failure;
1187
1188         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1189         if (!nla)
1190                 goto nla_put_failure;
1191         eth_key = nla_data(nla);
1192         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1193         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1194
1195         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1196                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1197                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1198                         goto nla_put_failure;
1199                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1200                 if (!swkey->eth.tci)
1201                         goto unencap;
1202         } else {
1203                 encap = NULL;
1204         }
1205
1206         if (swkey->eth.type == htons(ETH_P_802_2))
1207                 goto unencap;
1208
1209         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1210                 goto nla_put_failure;
1211
1212         if (swkey->eth.type == htons(ETH_P_IP)) {
1213                 struct ovs_key_ipv4 *ipv4_key;
1214
1215                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1216                 if (!nla)
1217                         goto nla_put_failure;
1218                 ipv4_key = nla_data(nla);
1219                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1220                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1221                 ipv4_key->ipv4_proto = swkey->ip.proto;
1222                 ipv4_key->ipv4_tos = swkey->ip.tos;
1223                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1224                 ipv4_key->ipv4_frag = swkey->ip.frag;
1225         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1226                 struct ovs_key_ipv6 *ipv6_key;
1227
1228                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1229                 if (!nla)
1230                         goto nla_put_failure;
1231                 ipv6_key = nla_data(nla);
1232                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1233                                 sizeof(ipv6_key->ipv6_src));
1234                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1235                                 sizeof(ipv6_key->ipv6_dst));
1236                 ipv6_key->ipv6_label = swkey->ipv6.label;
1237                 ipv6_key->ipv6_proto = swkey->ip.proto;
1238                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1239                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1240                 ipv6_key->ipv6_frag = swkey->ip.frag;
1241         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1242                    swkey->eth.type == htons(ETH_P_RARP)) {
1243                 struct ovs_key_arp *arp_key;
1244
1245                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1246                 if (!nla)
1247                         goto nla_put_failure;
1248                 arp_key = nla_data(nla);
1249                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1250                 arp_key->arp_sip = swkey->ipv4.addr.src;
1251                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1252                 arp_key->arp_op = htons(swkey->ip.proto);
1253                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1254                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1255         }
1256
1257         if ((swkey->eth.type == htons(ETH_P_IP) ||
1258              swkey->eth.type == htons(ETH_P_IPV6)) &&
1259              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1260
1261                 if (swkey->ip.proto == IPPROTO_TCP) {
1262                         struct ovs_key_tcp *tcp_key;
1263
1264                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1265                         if (!nla)
1266                                 goto nla_put_failure;
1267                         tcp_key = nla_data(nla);
1268                         if (swkey->eth.type == htons(ETH_P_IP)) {
1269                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1270                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1271                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1272                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1273                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1274                         }
1275                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1276                         struct ovs_key_udp *udp_key;
1277
1278                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1279                         if (!nla)
1280                                 goto nla_put_failure;
1281                         udp_key = nla_data(nla);
1282                         if (swkey->eth.type == htons(ETH_P_IP)) {
1283                                 udp_key->udp_src = swkey->ipv4.tp.src;
1284                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1285                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1286                                 udp_key->udp_src = swkey->ipv6.tp.src;
1287                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1288                         }
1289                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1290                            swkey->ip.proto == IPPROTO_ICMP) {
1291                         struct ovs_key_icmp *icmp_key;
1292
1293                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1294                         if (!nla)
1295                                 goto nla_put_failure;
1296                         icmp_key = nla_data(nla);
1297                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1298                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1299                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1300                            swkey->ip.proto == IPPROTO_ICMPV6) {
1301                         struct ovs_key_icmpv6 *icmpv6_key;
1302
1303                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1304                                                 sizeof(*icmpv6_key));
1305                         if (!nla)
1306                                 goto nla_put_failure;
1307                         icmpv6_key = nla_data(nla);
1308                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1309                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1310
1311                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1312                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1313                                 struct ovs_key_nd *nd_key;
1314
1315                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1316                                 if (!nla)
1317                                         goto nla_put_failure;
1318                                 nd_key = nla_data(nla);
1319                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1320                                                         sizeof(nd_key->nd_target));
1321                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1322                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1323                         }
1324                 }
1325         }
1326
1327 unencap:
1328         if (encap)
1329                 nla_nest_end(skb, encap);
1330
1331         return 0;
1332
1333 nla_put_failure:
1334         return -EMSGSIZE;
1335 }
1336
1337 /* Initializes the flow module.
1338  * Returns zero if successful or a negative error code. */
1339 int ovs_flow_init(void)
1340 {
1341         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1342                                         0, NULL);
1343         if (flow_cache == NULL)
1344                 return -ENOMEM;
1345
1346         return 0;
1347 }
1348
1349 /* Uninitializes the flow module. */
1350 void ovs_flow_exit(void)
1351 {
1352         kmem_cache_destroy(flow_cache);
1353 }