]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/sched/sch_choke.c
mei: move mei_cl_irq_write_complete to client.c
[karo-tx-linux.git] / net / sched / sch_choke.c
1 /*
2  * net/sched/sch_choke.c        CHOKE scheduler
3  *
4  * Copyright (c) 2011 Stephen Hemminger <shemminger@vyatta.com>
5  * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  *
11  */
12
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/reciprocal_div.h>
18 #include <linux/vmalloc.h>
19 #include <net/pkt_sched.h>
20 #include <net/inet_ecn.h>
21 #include <net/red.h>
22 #include <net/flow_keys.h>
23
24 /*
25    CHOKe stateless AQM for fair bandwidth allocation
26    =================================================
27
28    CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for
29    unresponsive flows) is a variant of RED that penalizes misbehaving flows but
30    maintains no flow state. The difference from RED is an additional step
31    during the enqueuing process. If average queue size is over the
32    low threshold (qmin), a packet is chosen at random from the queue.
33    If both the new and chosen packet are from the same flow, both
34    are dropped. Unlike RED, CHOKe is not really a "classful" qdisc because it
35    needs to access packets in queue randomly. It has a minimal class
36    interface to allow overriding the builtin flow classifier with
37    filters.
38
39    Source:
40    R. Pan, B. Prabhakar, and K. Psounis, "CHOKe, A Stateless
41    Active Queue Management Scheme for Approximating Fair Bandwidth Allocation",
42    IEEE INFOCOM, 2000.
43
44    A. Tang, J. Wang, S. Low, "Understanding CHOKe: Throughput and Spatial
45    Characteristics", IEEE/ACM Transactions on Networking, 2004
46
47  */
48
49 /* Upper bound on size of sk_buff table (packets) */
50 #define CHOKE_MAX_QUEUE (128*1024 - 1)
51
52 struct choke_sched_data {
53 /* Parameters */
54         u32              limit;
55         unsigned char    flags;
56
57         struct red_parms parms;
58
59 /* Variables */
60         struct red_vars  vars;
61         struct tcf_proto *filter_list;
62         struct {
63                 u32     prob_drop;      /* Early probability drops */
64                 u32     prob_mark;      /* Early probability marks */
65                 u32     forced_drop;    /* Forced drops, qavg > max_thresh */
66                 u32     forced_mark;    /* Forced marks, qavg > max_thresh */
67                 u32     pdrop;          /* Drops due to queue limits */
68                 u32     other;          /* Drops due to drop() calls */
69                 u32     matched;        /* Drops to flow match */
70         } stats;
71
72         unsigned int     head;
73         unsigned int     tail;
74
75         unsigned int     tab_mask; /* size - 1 */
76
77         struct sk_buff **tab;
78 };
79
80 /* deliver a random number between 0 and N - 1 */
81 static u32 random_N(unsigned int N)
82 {
83         return reciprocal_divide(prandom_u32(), N);
84 }
85
86 /* number of elements in queue including holes */
87 static unsigned int choke_len(const struct choke_sched_data *q)
88 {
89         return (q->tail - q->head) & q->tab_mask;
90 }
91
92 /* Is ECN parameter configured */
93 static int use_ecn(const struct choke_sched_data *q)
94 {
95         return q->flags & TC_RED_ECN;
96 }
97
98 /* Should packets over max just be dropped (versus marked) */
99 static int use_harddrop(const struct choke_sched_data *q)
100 {
101         return q->flags & TC_RED_HARDDROP;
102 }
103
104 /* Move head pointer forward to skip over holes */
105 static void choke_zap_head_holes(struct choke_sched_data *q)
106 {
107         do {
108                 q->head = (q->head + 1) & q->tab_mask;
109                 if (q->head == q->tail)
110                         break;
111         } while (q->tab[q->head] == NULL);
112 }
113
114 /* Move tail pointer backwards to reuse holes */
115 static void choke_zap_tail_holes(struct choke_sched_data *q)
116 {
117         do {
118                 q->tail = (q->tail - 1) & q->tab_mask;
119                 if (q->head == q->tail)
120                         break;
121         } while (q->tab[q->tail] == NULL);
122 }
123
124 /* Drop packet from queue array by creating a "hole" */
125 static void choke_drop_by_idx(struct Qdisc *sch, unsigned int idx)
126 {
127         struct choke_sched_data *q = qdisc_priv(sch);
128         struct sk_buff *skb = q->tab[idx];
129
130         q->tab[idx] = NULL;
131
132         if (idx == q->head)
133                 choke_zap_head_holes(q);
134         if (idx == q->tail)
135                 choke_zap_tail_holes(q);
136
137         sch->qstats.backlog -= qdisc_pkt_len(skb);
138         qdisc_drop(skb, sch);
139         qdisc_tree_decrease_qlen(sch, 1);
140         --sch->q.qlen;
141 }
142
143 struct choke_skb_cb {
144         u16                     classid;
145         u8                      keys_valid;
146         struct flow_keys        keys;
147 };
148
149 static inline struct choke_skb_cb *choke_skb_cb(const struct sk_buff *skb)
150 {
151         qdisc_cb_private_validate(skb, sizeof(struct choke_skb_cb));
152         return (struct choke_skb_cb *)qdisc_skb_cb(skb)->data;
153 }
154
155 static inline void choke_set_classid(struct sk_buff *skb, u16 classid)
156 {
157         choke_skb_cb(skb)->classid = classid;
158 }
159
160 static u16 choke_get_classid(const struct sk_buff *skb)
161 {
162         return choke_skb_cb(skb)->classid;
163 }
164
165 /*
166  * Compare flow of two packets
167  *  Returns true only if source and destination address and port match.
168  *          false for special cases
169  */
170 static bool choke_match_flow(struct sk_buff *skb1,
171                              struct sk_buff *skb2)
172 {
173         if (skb1->protocol != skb2->protocol)
174                 return false;
175
176         if (!choke_skb_cb(skb1)->keys_valid) {
177                 choke_skb_cb(skb1)->keys_valid = 1;
178                 skb_flow_dissect(skb1, &choke_skb_cb(skb1)->keys);
179         }
180
181         if (!choke_skb_cb(skb2)->keys_valid) {
182                 choke_skb_cb(skb2)->keys_valid = 1;
183                 skb_flow_dissect(skb2, &choke_skb_cb(skb2)->keys);
184         }
185
186         return !memcmp(&choke_skb_cb(skb1)->keys,
187                        &choke_skb_cb(skb2)->keys,
188                        sizeof(struct flow_keys));
189 }
190
191 /*
192  * Classify flow using either:
193  *  1. pre-existing classification result in skb
194  *  2. fast internal classification
195  *  3. use TC filter based classification
196  */
197 static bool choke_classify(struct sk_buff *skb,
198                            struct Qdisc *sch, int *qerr)
199
200 {
201         struct choke_sched_data *q = qdisc_priv(sch);
202         struct tcf_result res;
203         int result;
204
205         result = tc_classify(skb, q->filter_list, &res);
206         if (result >= 0) {
207 #ifdef CONFIG_NET_CLS_ACT
208                 switch (result) {
209                 case TC_ACT_STOLEN:
210                 case TC_ACT_QUEUED:
211                         *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
212                 case TC_ACT_SHOT:
213                         return false;
214                 }
215 #endif
216                 choke_set_classid(skb, TC_H_MIN(res.classid));
217                 return true;
218         }
219
220         return false;
221 }
222
223 /*
224  * Select a packet at random from queue
225  * HACK: since queue can have holes from previous deletion; retry several
226  *   times to find a random skb but then just give up and return the head
227  * Will return NULL if queue is empty (q->head == q->tail)
228  */
229 static struct sk_buff *choke_peek_random(const struct choke_sched_data *q,
230                                          unsigned int *pidx)
231 {
232         struct sk_buff *skb;
233         int retrys = 3;
234
235         do {
236                 *pidx = (q->head + random_N(choke_len(q))) & q->tab_mask;
237                 skb = q->tab[*pidx];
238                 if (skb)
239                         return skb;
240         } while (--retrys > 0);
241
242         return q->tab[*pidx = q->head];
243 }
244
245 /*
246  * Compare new packet with random packet in queue
247  * returns true if matched and sets *pidx
248  */
249 static bool choke_match_random(const struct choke_sched_data *q,
250                                struct sk_buff *nskb,
251                                unsigned int *pidx)
252 {
253         struct sk_buff *oskb;
254
255         if (q->head == q->tail)
256                 return false;
257
258         oskb = choke_peek_random(q, pidx);
259         if (q->filter_list)
260                 return choke_get_classid(nskb) == choke_get_classid(oskb);
261
262         return choke_match_flow(oskb, nskb);
263 }
264
265 static int choke_enqueue(struct sk_buff *skb, struct Qdisc *sch)
266 {
267         struct choke_sched_data *q = qdisc_priv(sch);
268         const struct red_parms *p = &q->parms;
269         int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
270
271         if (q->filter_list) {
272                 /* If using external classifiers, get result and record it. */
273                 if (!choke_classify(skb, sch, &ret))
274                         goto other_drop;        /* Packet was eaten by filter */
275         }
276
277         choke_skb_cb(skb)->keys_valid = 0;
278         /* Compute average queue usage (see RED) */
279         q->vars.qavg = red_calc_qavg(p, &q->vars, sch->q.qlen);
280         if (red_is_idling(&q->vars))
281                 red_end_of_idle_period(&q->vars);
282
283         /* Is queue small? */
284         if (q->vars.qavg <= p->qth_min)
285                 q->vars.qcount = -1;
286         else {
287                 unsigned int idx;
288
289                 /* Draw a packet at random from queue and compare flow */
290                 if (choke_match_random(q, skb, &idx)) {
291                         q->stats.matched++;
292                         choke_drop_by_idx(sch, idx);
293                         goto congestion_drop;
294                 }
295
296                 /* Queue is large, always mark/drop */
297                 if (q->vars.qavg > p->qth_max) {
298                         q->vars.qcount = -1;
299
300                         sch->qstats.overlimits++;
301                         if (use_harddrop(q) || !use_ecn(q) ||
302                             !INET_ECN_set_ce(skb)) {
303                                 q->stats.forced_drop++;
304                                 goto congestion_drop;
305                         }
306
307                         q->stats.forced_mark++;
308                 } else if (++q->vars.qcount) {
309                         if (red_mark_probability(p, &q->vars, q->vars.qavg)) {
310                                 q->vars.qcount = 0;
311                                 q->vars.qR = red_random(p);
312
313                                 sch->qstats.overlimits++;
314                                 if (!use_ecn(q) || !INET_ECN_set_ce(skb)) {
315                                         q->stats.prob_drop++;
316                                         goto congestion_drop;
317                                 }
318
319                                 q->stats.prob_mark++;
320                         }
321                 } else
322                         q->vars.qR = red_random(p);
323         }
324
325         /* Admit new packet */
326         if (sch->q.qlen < q->limit) {
327                 q->tab[q->tail] = skb;
328                 q->tail = (q->tail + 1) & q->tab_mask;
329                 ++sch->q.qlen;
330                 sch->qstats.backlog += qdisc_pkt_len(skb);
331                 return NET_XMIT_SUCCESS;
332         }
333
334         q->stats.pdrop++;
335         return qdisc_drop(skb, sch);
336
337 congestion_drop:
338         qdisc_drop(skb, sch);
339         return NET_XMIT_CN;
340
341 other_drop:
342         if (ret & __NET_XMIT_BYPASS)
343                 sch->qstats.drops++;
344         kfree_skb(skb);
345         return ret;
346 }
347
348 static struct sk_buff *choke_dequeue(struct Qdisc *sch)
349 {
350         struct choke_sched_data *q = qdisc_priv(sch);
351         struct sk_buff *skb;
352
353         if (q->head == q->tail) {
354                 if (!red_is_idling(&q->vars))
355                         red_start_of_idle_period(&q->vars);
356                 return NULL;
357         }
358
359         skb = q->tab[q->head];
360         q->tab[q->head] = NULL;
361         choke_zap_head_holes(q);
362         --sch->q.qlen;
363         sch->qstats.backlog -= qdisc_pkt_len(skb);
364         qdisc_bstats_update(sch, skb);
365
366         return skb;
367 }
368
369 static unsigned int choke_drop(struct Qdisc *sch)
370 {
371         struct choke_sched_data *q = qdisc_priv(sch);
372         unsigned int len;
373
374         len = qdisc_queue_drop(sch);
375         if (len > 0)
376                 q->stats.other++;
377         else {
378                 if (!red_is_idling(&q->vars))
379                         red_start_of_idle_period(&q->vars);
380         }
381
382         return len;
383 }
384
385 static void choke_reset(struct Qdisc *sch)
386 {
387         struct choke_sched_data *q = qdisc_priv(sch);
388
389         red_restart(&q->vars);
390 }
391
392 static const struct nla_policy choke_policy[TCA_CHOKE_MAX + 1] = {
393         [TCA_CHOKE_PARMS]       = { .len = sizeof(struct tc_red_qopt) },
394         [TCA_CHOKE_STAB]        = { .len = RED_STAB_SIZE },
395         [TCA_CHOKE_MAX_P]       = { .type = NLA_U32 },
396 };
397
398
399 static void choke_free(void *addr)
400 {
401         if (addr) {
402                 if (is_vmalloc_addr(addr))
403                         vfree(addr);
404                 else
405                         kfree(addr);
406         }
407 }
408
409 static int choke_change(struct Qdisc *sch, struct nlattr *opt)
410 {
411         struct choke_sched_data *q = qdisc_priv(sch);
412         struct nlattr *tb[TCA_CHOKE_MAX + 1];
413         const struct tc_red_qopt *ctl;
414         int err;
415         struct sk_buff **old = NULL;
416         unsigned int mask;
417         u32 max_P;
418
419         if (opt == NULL)
420                 return -EINVAL;
421
422         err = nla_parse_nested(tb, TCA_CHOKE_MAX, opt, choke_policy);
423         if (err < 0)
424                 return err;
425
426         if (tb[TCA_CHOKE_PARMS] == NULL ||
427             tb[TCA_CHOKE_STAB] == NULL)
428                 return -EINVAL;
429
430         max_P = tb[TCA_CHOKE_MAX_P] ? nla_get_u32(tb[TCA_CHOKE_MAX_P]) : 0;
431
432         ctl = nla_data(tb[TCA_CHOKE_PARMS]);
433
434         if (ctl->limit > CHOKE_MAX_QUEUE)
435                 return -EINVAL;
436
437         mask = roundup_pow_of_two(ctl->limit + 1) - 1;
438         if (mask != q->tab_mask) {
439                 struct sk_buff **ntab;
440
441                 ntab = kcalloc(mask + 1, sizeof(struct sk_buff *), GFP_KERNEL);
442                 if (!ntab)
443                         ntab = vzalloc((mask + 1) * sizeof(struct sk_buff *));
444                 if (!ntab)
445                         return -ENOMEM;
446
447                 sch_tree_lock(sch);
448                 old = q->tab;
449                 if (old) {
450                         unsigned int oqlen = sch->q.qlen, tail = 0;
451
452                         while (q->head != q->tail) {
453                                 struct sk_buff *skb = q->tab[q->head];
454
455                                 q->head = (q->head + 1) & q->tab_mask;
456                                 if (!skb)
457                                         continue;
458                                 if (tail < mask) {
459                                         ntab[tail++] = skb;
460                                         continue;
461                                 }
462                                 sch->qstats.backlog -= qdisc_pkt_len(skb);
463                                 --sch->q.qlen;
464                                 qdisc_drop(skb, sch);
465                         }
466                         qdisc_tree_decrease_qlen(sch, oqlen - sch->q.qlen);
467                         q->head = 0;
468                         q->tail = tail;
469                 }
470
471                 q->tab_mask = mask;
472                 q->tab = ntab;
473         } else
474                 sch_tree_lock(sch);
475
476         q->flags = ctl->flags;
477         q->limit = ctl->limit;
478
479         red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
480                       ctl->Plog, ctl->Scell_log,
481                       nla_data(tb[TCA_CHOKE_STAB]),
482                       max_P);
483         red_set_vars(&q->vars);
484
485         if (q->head == q->tail)
486                 red_end_of_idle_period(&q->vars);
487
488         sch_tree_unlock(sch);
489         choke_free(old);
490         return 0;
491 }
492
493 static int choke_init(struct Qdisc *sch, struct nlattr *opt)
494 {
495         return choke_change(sch, opt);
496 }
497
498 static int choke_dump(struct Qdisc *sch, struct sk_buff *skb)
499 {
500         struct choke_sched_data *q = qdisc_priv(sch);
501         struct nlattr *opts = NULL;
502         struct tc_red_qopt opt = {
503                 .limit          = q->limit,
504                 .flags          = q->flags,
505                 .qth_min        = q->parms.qth_min >> q->parms.Wlog,
506                 .qth_max        = q->parms.qth_max >> q->parms.Wlog,
507                 .Wlog           = q->parms.Wlog,
508                 .Plog           = q->parms.Plog,
509                 .Scell_log      = q->parms.Scell_log,
510         };
511
512         opts = nla_nest_start(skb, TCA_OPTIONS);
513         if (opts == NULL)
514                 goto nla_put_failure;
515
516         if (nla_put(skb, TCA_CHOKE_PARMS, sizeof(opt), &opt) ||
517             nla_put_u32(skb, TCA_CHOKE_MAX_P, q->parms.max_P))
518                 goto nla_put_failure;
519         return nla_nest_end(skb, opts);
520
521 nla_put_failure:
522         nla_nest_cancel(skb, opts);
523         return -EMSGSIZE;
524 }
525
526 static int choke_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
527 {
528         struct choke_sched_data *q = qdisc_priv(sch);
529         struct tc_choke_xstats st = {
530                 .early  = q->stats.prob_drop + q->stats.forced_drop,
531                 .marked = q->stats.prob_mark + q->stats.forced_mark,
532                 .pdrop  = q->stats.pdrop,
533                 .other  = q->stats.other,
534                 .matched = q->stats.matched,
535         };
536
537         return gnet_stats_copy_app(d, &st, sizeof(st));
538 }
539
540 static void choke_destroy(struct Qdisc *sch)
541 {
542         struct choke_sched_data *q = qdisc_priv(sch);
543
544         tcf_destroy_chain(&q->filter_list);
545         choke_free(q->tab);
546 }
547
548 static struct Qdisc *choke_leaf(struct Qdisc *sch, unsigned long arg)
549 {
550         return NULL;
551 }
552
553 static unsigned long choke_get(struct Qdisc *sch, u32 classid)
554 {
555         return 0;
556 }
557
558 static void choke_put(struct Qdisc *q, unsigned long cl)
559 {
560 }
561
562 static unsigned long choke_bind(struct Qdisc *sch, unsigned long parent,
563                                 u32 classid)
564 {
565         return 0;
566 }
567
568 static struct tcf_proto **choke_find_tcf(struct Qdisc *sch, unsigned long cl)
569 {
570         struct choke_sched_data *q = qdisc_priv(sch);
571
572         if (cl)
573                 return NULL;
574         return &q->filter_list;
575 }
576
577 static int choke_dump_class(struct Qdisc *sch, unsigned long cl,
578                           struct sk_buff *skb, struct tcmsg *tcm)
579 {
580         tcm->tcm_handle |= TC_H_MIN(cl);
581         return 0;
582 }
583
584 static void choke_walk(struct Qdisc *sch, struct qdisc_walker *arg)
585 {
586         if (!arg->stop) {
587                 if (arg->fn(sch, 1, arg) < 0) {
588                         arg->stop = 1;
589                         return;
590                 }
591                 arg->count++;
592         }
593 }
594
595 static const struct Qdisc_class_ops choke_class_ops = {
596         .leaf           =       choke_leaf,
597         .get            =       choke_get,
598         .put            =       choke_put,
599         .tcf_chain      =       choke_find_tcf,
600         .bind_tcf       =       choke_bind,
601         .unbind_tcf     =       choke_put,
602         .dump           =       choke_dump_class,
603         .walk           =       choke_walk,
604 };
605
606 static struct sk_buff *choke_peek_head(struct Qdisc *sch)
607 {
608         struct choke_sched_data *q = qdisc_priv(sch);
609
610         return (q->head != q->tail) ? q->tab[q->head] : NULL;
611 }
612
613 static struct Qdisc_ops choke_qdisc_ops __read_mostly = {
614         .id             =       "choke",
615         .priv_size      =       sizeof(struct choke_sched_data),
616
617         .enqueue        =       choke_enqueue,
618         .dequeue        =       choke_dequeue,
619         .peek           =       choke_peek_head,
620         .drop           =       choke_drop,
621         .init           =       choke_init,
622         .destroy        =       choke_destroy,
623         .reset          =       choke_reset,
624         .change         =       choke_change,
625         .dump           =       choke_dump,
626         .dump_stats     =       choke_dump_stats,
627         .owner          =       THIS_MODULE,
628 };
629
630 static int __init choke_module_init(void)
631 {
632         return register_qdisc(&choke_qdisc_ops);
633 }
634
635 static void __exit choke_module_exit(void)
636 {
637         unregister_qdisc(&choke_qdisc_ops);
638 }
639
640 module_init(choke_module_init)
641 module_exit(choke_module_exit)
642
643 MODULE_LICENSE("GPL");