]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - security/selinux/hooks.c
CRED: Fix BUG() upon security_cred_alloc_blank() failure
[karo-tx-linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define XATTR_SELINUX_SUFFIX "selinux"
91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129 static struct kmem_cache *sel_inode_cache;
130
131 /**
132  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133  *
134  * Description:
135  * This function checks the SECMARK reference counter to see if any SECMARK
136  * targets are currently configured, if the reference counter is greater than
137  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
138  * enabled, false (0) if SECMARK is disabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143         return (atomic_read(&selinux_secmark_refcount) > 0);
144 }
145
146 /*
147  * initialise the security for the init task
148  */
149 static void cred_init_security(void)
150 {
151         struct cred *cred = (struct cred *) current->real_cred;
152         struct task_security_struct *tsec;
153
154         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155         if (!tsec)
156                 panic("SELinux:  Failed to initialize initial task.\n");
157
158         tsec->osid = tsec->sid = SECINITSID_KERNEL;
159         cred->security = tsec;
160 }
161
162 /*
163  * get the security ID of a set of credentials
164  */
165 static inline u32 cred_sid(const struct cred *cred)
166 {
167         const struct task_security_struct *tsec;
168
169         tsec = cred->security;
170         return tsec->sid;
171 }
172
173 /*
174  * get the objective security ID of a task
175  */
176 static inline u32 task_sid(const struct task_struct *task)
177 {
178         u32 sid;
179
180         rcu_read_lock();
181         sid = cred_sid(__task_cred(task));
182         rcu_read_unlock();
183         return sid;
184 }
185
186 /*
187  * get the subjective security ID of the current task
188  */
189 static inline u32 current_sid(void)
190 {
191         const struct task_security_struct *tsec = current_cred()->security;
192
193         return tsec->sid;
194 }
195
196 /* Allocate and free functions for each kind of security blob. */
197
198 static int inode_alloc_security(struct inode *inode)
199 {
200         struct inode_security_struct *isec;
201         u32 sid = current_sid();
202
203         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204         if (!isec)
205                 return -ENOMEM;
206
207         mutex_init(&isec->lock);
208         INIT_LIST_HEAD(&isec->list);
209         isec->inode = inode;
210         isec->sid = SECINITSID_UNLABELED;
211         isec->sclass = SECCLASS_FILE;
212         isec->task_sid = sid;
213         inode->i_security = isec;
214
215         return 0;
216 }
217
218 static void inode_free_security(struct inode *inode)
219 {
220         struct inode_security_struct *isec = inode->i_security;
221         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223         spin_lock(&sbsec->isec_lock);
224         if (!list_empty(&isec->list))
225                 list_del_init(&isec->list);
226         spin_unlock(&sbsec->isec_lock);
227
228         inode->i_security = NULL;
229         kmem_cache_free(sel_inode_cache, isec);
230 }
231
232 static int file_alloc_security(struct file *file)
233 {
234         struct file_security_struct *fsec;
235         u32 sid = current_sid();
236
237         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238         if (!fsec)
239                 return -ENOMEM;
240
241         fsec->sid = sid;
242         fsec->fown_sid = sid;
243         file->f_security = fsec;
244
245         return 0;
246 }
247
248 static void file_free_security(struct file *file)
249 {
250         struct file_security_struct *fsec = file->f_security;
251         file->f_security = NULL;
252         kfree(fsec);
253 }
254
255 static int superblock_alloc_security(struct super_block *sb)
256 {
257         struct superblock_security_struct *sbsec;
258
259         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260         if (!sbsec)
261                 return -ENOMEM;
262
263         mutex_init(&sbsec->lock);
264         INIT_LIST_HEAD(&sbsec->isec_head);
265         spin_lock_init(&sbsec->isec_lock);
266         sbsec->sb = sb;
267         sbsec->sid = SECINITSID_UNLABELED;
268         sbsec->def_sid = SECINITSID_FILE;
269         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270         sb->s_security = sbsec;
271
272         return 0;
273 }
274
275 static void superblock_free_security(struct super_block *sb)
276 {
277         struct superblock_security_struct *sbsec = sb->s_security;
278         sb->s_security = NULL;
279         kfree(sbsec);
280 }
281
282 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
283 {
284         struct sk_security_struct *sksec;
285
286         sksec = kzalloc(sizeof(*sksec), priority);
287         if (!sksec)
288                 return -ENOMEM;
289
290         sksec->peer_sid = SECINITSID_UNLABELED;
291         sksec->sid = SECINITSID_UNLABELED;
292         sk->sk_security = sksec;
293
294         selinux_netlbl_sk_security_reset(sksec);
295
296         return 0;
297 }
298
299 static void sk_free_security(struct sock *sk)
300 {
301         struct sk_security_struct *sksec = sk->sk_security;
302
303         sk->sk_security = NULL;
304         selinux_netlbl_sk_security_free(sksec);
305         kfree(sksec);
306 }
307
308 /* The security server must be initialized before
309    any labeling or access decisions can be provided. */
310 extern int ss_initialized;
311
312 /* The file system's label must be initialized prior to use. */
313
314 static const char *labeling_behaviors[6] = {
315         "uses xattr",
316         "uses transition SIDs",
317         "uses task SIDs",
318         "uses genfs_contexts",
319         "not configured for labeling",
320         "uses mountpoint labeling",
321 };
322
323 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
324
325 static inline int inode_doinit(struct inode *inode)
326 {
327         return inode_doinit_with_dentry(inode, NULL);
328 }
329
330 enum {
331         Opt_error = -1,
332         Opt_context = 1,
333         Opt_fscontext = 2,
334         Opt_defcontext = 3,
335         Opt_rootcontext = 4,
336         Opt_labelsupport = 5,
337 };
338
339 static const match_table_t tokens = {
340         {Opt_context, CONTEXT_STR "%s"},
341         {Opt_fscontext, FSCONTEXT_STR "%s"},
342         {Opt_defcontext, DEFCONTEXT_STR "%s"},
343         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
344         {Opt_labelsupport, LABELSUPP_STR},
345         {Opt_error, NULL},
346 };
347
348 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
349
350 static int may_context_mount_sb_relabel(u32 sid,
351                         struct superblock_security_struct *sbsec,
352                         const struct cred *cred)
353 {
354         const struct task_security_struct *tsec = cred->security;
355         int rc;
356
357         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358                           FILESYSTEM__RELABELFROM, NULL);
359         if (rc)
360                 return rc;
361
362         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
363                           FILESYSTEM__RELABELTO, NULL);
364         return rc;
365 }
366
367 static int may_context_mount_inode_relabel(u32 sid,
368                         struct superblock_security_struct *sbsec,
369                         const struct cred *cred)
370 {
371         const struct task_security_struct *tsec = cred->security;
372         int rc;
373         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374                           FILESYSTEM__RELABELFROM, NULL);
375         if (rc)
376                 return rc;
377
378         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
379                           FILESYSTEM__ASSOCIATE, NULL);
380         return rc;
381 }
382
383 static int sb_finish_set_opts(struct super_block *sb)
384 {
385         struct superblock_security_struct *sbsec = sb->s_security;
386         struct dentry *root = sb->s_root;
387         struct inode *root_inode = root->d_inode;
388         int rc = 0;
389
390         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
391                 /* Make sure that the xattr handler exists and that no
392                    error other than -ENODATA is returned by getxattr on
393                    the root directory.  -ENODATA is ok, as this may be
394                    the first boot of the SELinux kernel before we have
395                    assigned xattr values to the filesystem. */
396                 if (!root_inode->i_op->getxattr) {
397                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
398                                "xattr support\n", sb->s_id, sb->s_type->name);
399                         rc = -EOPNOTSUPP;
400                         goto out;
401                 }
402                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
403                 if (rc < 0 && rc != -ENODATA) {
404                         if (rc == -EOPNOTSUPP)
405                                 printk(KERN_WARNING "SELinux: (dev %s, type "
406                                        "%s) has no security xattr handler\n",
407                                        sb->s_id, sb->s_type->name);
408                         else
409                                 printk(KERN_WARNING "SELinux: (dev %s, type "
410                                        "%s) getxattr errno %d\n", sb->s_id,
411                                        sb->s_type->name, -rc);
412                         goto out;
413                 }
414         }
415
416         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
417
418         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
419                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
420                        sb->s_id, sb->s_type->name);
421         else
422                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
423                        sb->s_id, sb->s_type->name,
424                        labeling_behaviors[sbsec->behavior-1]);
425
426         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
427             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
428             sbsec->behavior == SECURITY_FS_USE_NONE ||
429             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
430                 sbsec->flags &= ~SE_SBLABELSUPP;
431
432         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
433         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
434                 sbsec->flags |= SE_SBLABELSUPP;
435
436         /* Initialize the root inode. */
437         rc = inode_doinit_with_dentry(root_inode, root);
438
439         /* Initialize any other inodes associated with the superblock, e.g.
440            inodes created prior to initial policy load or inodes created
441            during get_sb by a pseudo filesystem that directly
442            populates itself. */
443         spin_lock(&sbsec->isec_lock);
444 next_inode:
445         if (!list_empty(&sbsec->isec_head)) {
446                 struct inode_security_struct *isec =
447                                 list_entry(sbsec->isec_head.next,
448                                            struct inode_security_struct, list);
449                 struct inode *inode = isec->inode;
450                 spin_unlock(&sbsec->isec_lock);
451                 inode = igrab(inode);
452                 if (inode) {
453                         if (!IS_PRIVATE(inode))
454                                 inode_doinit(inode);
455                         iput(inode);
456                 }
457                 spin_lock(&sbsec->isec_lock);
458                 list_del_init(&isec->list);
459                 goto next_inode;
460         }
461         spin_unlock(&sbsec->isec_lock);
462 out:
463         return rc;
464 }
465
466 /*
467  * This function should allow an FS to ask what it's mount security
468  * options were so it can use those later for submounts, displaying
469  * mount options, or whatever.
470  */
471 static int selinux_get_mnt_opts(const struct super_block *sb,
472                                 struct security_mnt_opts *opts)
473 {
474         int rc = 0, i;
475         struct superblock_security_struct *sbsec = sb->s_security;
476         char *context = NULL;
477         u32 len;
478         char tmp;
479
480         security_init_mnt_opts(opts);
481
482         if (!(sbsec->flags & SE_SBINITIALIZED))
483                 return -EINVAL;
484
485         if (!ss_initialized)
486                 return -EINVAL;
487
488         tmp = sbsec->flags & SE_MNTMASK;
489         /* count the number of mount options for this sb */
490         for (i = 0; i < 8; i++) {
491                 if (tmp & 0x01)
492                         opts->num_mnt_opts++;
493                 tmp >>= 1;
494         }
495         /* Check if the Label support flag is set */
496         if (sbsec->flags & SE_SBLABELSUPP)
497                 opts->num_mnt_opts++;
498
499         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
500         if (!opts->mnt_opts) {
501                 rc = -ENOMEM;
502                 goto out_free;
503         }
504
505         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
506         if (!opts->mnt_opts_flags) {
507                 rc = -ENOMEM;
508                 goto out_free;
509         }
510
511         i = 0;
512         if (sbsec->flags & FSCONTEXT_MNT) {
513                 rc = security_sid_to_context(sbsec->sid, &context, &len);
514                 if (rc)
515                         goto out_free;
516                 opts->mnt_opts[i] = context;
517                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
518         }
519         if (sbsec->flags & CONTEXT_MNT) {
520                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
521                 if (rc)
522                         goto out_free;
523                 opts->mnt_opts[i] = context;
524                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
525         }
526         if (sbsec->flags & DEFCONTEXT_MNT) {
527                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
528                 if (rc)
529                         goto out_free;
530                 opts->mnt_opts[i] = context;
531                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
532         }
533         if (sbsec->flags & ROOTCONTEXT_MNT) {
534                 struct inode *root = sbsec->sb->s_root->d_inode;
535                 struct inode_security_struct *isec = root->i_security;
536
537                 rc = security_sid_to_context(isec->sid, &context, &len);
538                 if (rc)
539                         goto out_free;
540                 opts->mnt_opts[i] = context;
541                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
542         }
543         if (sbsec->flags & SE_SBLABELSUPP) {
544                 opts->mnt_opts[i] = NULL;
545                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
546         }
547
548         BUG_ON(i != opts->num_mnt_opts);
549
550         return 0;
551
552 out_free:
553         security_free_mnt_opts(opts);
554         return rc;
555 }
556
557 static int bad_option(struct superblock_security_struct *sbsec, char flag,
558                       u32 old_sid, u32 new_sid)
559 {
560         char mnt_flags = sbsec->flags & SE_MNTMASK;
561
562         /* check if the old mount command had the same options */
563         if (sbsec->flags & SE_SBINITIALIZED)
564                 if (!(sbsec->flags & flag) ||
565                     (old_sid != new_sid))
566                         return 1;
567
568         /* check if we were passed the same options twice,
569          * aka someone passed context=a,context=b
570          */
571         if (!(sbsec->flags & SE_SBINITIALIZED))
572                 if (mnt_flags & flag)
573                         return 1;
574         return 0;
575 }
576
577 /*
578  * Allow filesystems with binary mount data to explicitly set mount point
579  * labeling information.
580  */
581 static int selinux_set_mnt_opts(struct super_block *sb,
582                                 struct security_mnt_opts *opts)
583 {
584         const struct cred *cred = current_cred();
585         int rc = 0, i;
586         struct superblock_security_struct *sbsec = sb->s_security;
587         const char *name = sb->s_type->name;
588         struct inode *inode = sbsec->sb->s_root->d_inode;
589         struct inode_security_struct *root_isec = inode->i_security;
590         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
591         u32 defcontext_sid = 0;
592         char **mount_options = opts->mnt_opts;
593         int *flags = opts->mnt_opts_flags;
594         int num_opts = opts->num_mnt_opts;
595
596         mutex_lock(&sbsec->lock);
597
598         if (!ss_initialized) {
599                 if (!num_opts) {
600                         /* Defer initialization until selinux_complete_init,
601                            after the initial policy is loaded and the security
602                            server is ready to handle calls. */
603                         goto out;
604                 }
605                 rc = -EINVAL;
606                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
607                         "before the security server is initialized\n");
608                 goto out;
609         }
610
611         /*
612          * Binary mount data FS will come through this function twice.  Once
613          * from an explicit call and once from the generic calls from the vfs.
614          * Since the generic VFS calls will not contain any security mount data
615          * we need to skip the double mount verification.
616          *
617          * This does open a hole in which we will not notice if the first
618          * mount using this sb set explict options and a second mount using
619          * this sb does not set any security options.  (The first options
620          * will be used for both mounts)
621          */
622         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
623             && (num_opts == 0))
624                 goto out;
625
626         /*
627          * parse the mount options, check if they are valid sids.
628          * also check if someone is trying to mount the same sb more
629          * than once with different security options.
630          */
631         for (i = 0; i < num_opts; i++) {
632                 u32 sid;
633
634                 if (flags[i] == SE_SBLABELSUPP)
635                         continue;
636                 rc = security_context_to_sid(mount_options[i],
637                                              strlen(mount_options[i]), &sid);
638                 if (rc) {
639                         printk(KERN_WARNING "SELinux: security_context_to_sid"
640                                "(%s) failed for (dev %s, type %s) errno=%d\n",
641                                mount_options[i], sb->s_id, name, rc);
642                         goto out;
643                 }
644                 switch (flags[i]) {
645                 case FSCONTEXT_MNT:
646                         fscontext_sid = sid;
647
648                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
649                                         fscontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= FSCONTEXT_MNT;
653                         break;
654                 case CONTEXT_MNT:
655                         context_sid = sid;
656
657                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
658                                         context_sid))
659                                 goto out_double_mount;
660
661                         sbsec->flags |= CONTEXT_MNT;
662                         break;
663                 case ROOTCONTEXT_MNT:
664                         rootcontext_sid = sid;
665
666                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
667                                         rootcontext_sid))
668                                 goto out_double_mount;
669
670                         sbsec->flags |= ROOTCONTEXT_MNT;
671
672                         break;
673                 case DEFCONTEXT_MNT:
674                         defcontext_sid = sid;
675
676                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
677                                         defcontext_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= DEFCONTEXT_MNT;
681
682                         break;
683                 default:
684                         rc = -EINVAL;
685                         goto out;
686                 }
687         }
688
689         if (sbsec->flags & SE_SBINITIALIZED) {
690                 /* previously mounted with options, but not on this attempt? */
691                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
692                         goto out_double_mount;
693                 rc = 0;
694                 goto out;
695         }
696
697         if (strcmp(sb->s_type->name, "proc") == 0)
698                 sbsec->flags |= SE_SBPROC;
699
700         /* Determine the labeling behavior to use for this filesystem type. */
701         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
702         if (rc) {
703                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
704                        __func__, sb->s_type->name, rc);
705                 goto out;
706         }
707
708         /* sets the context of the superblock for the fs being mounted. */
709         if (fscontext_sid) {
710                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
711                 if (rc)
712                         goto out;
713
714                 sbsec->sid = fscontext_sid;
715         }
716
717         /*
718          * Switch to using mount point labeling behavior.
719          * sets the label used on all file below the mountpoint, and will set
720          * the superblock context if not already set.
721          */
722         if (context_sid) {
723                 if (!fscontext_sid) {
724                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
725                                                           cred);
726                         if (rc)
727                                 goto out;
728                         sbsec->sid = context_sid;
729                 } else {
730                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
731                                                              cred);
732                         if (rc)
733                                 goto out;
734                 }
735                 if (!rootcontext_sid)
736                         rootcontext_sid = context_sid;
737
738                 sbsec->mntpoint_sid = context_sid;
739                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
740         }
741
742         if (rootcontext_sid) {
743                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
744                                                      cred);
745                 if (rc)
746                         goto out;
747
748                 root_isec->sid = rootcontext_sid;
749                 root_isec->initialized = 1;
750         }
751
752         if (defcontext_sid) {
753                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
754                         rc = -EINVAL;
755                         printk(KERN_WARNING "SELinux: defcontext option is "
756                                "invalid for this filesystem type\n");
757                         goto out;
758                 }
759
760                 if (defcontext_sid != sbsec->def_sid) {
761                         rc = may_context_mount_inode_relabel(defcontext_sid,
762                                                              sbsec, cred);
763                         if (rc)
764                                 goto out;
765                 }
766
767                 sbsec->def_sid = defcontext_sid;
768         }
769
770         rc = sb_finish_set_opts(sb);
771 out:
772         mutex_unlock(&sbsec->lock);
773         return rc;
774 out_double_mount:
775         rc = -EINVAL;
776         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
777                "security settings for (dev %s, type %s)\n", sb->s_id, name);
778         goto out;
779 }
780
781 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
782                                         struct super_block *newsb)
783 {
784         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
785         struct superblock_security_struct *newsbsec = newsb->s_security;
786
787         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
788         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
789         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
790
791         /*
792          * if the parent was able to be mounted it clearly had no special lsm
793          * mount options.  thus we can safely deal with this superblock later
794          */
795         if (!ss_initialized)
796                 return;
797
798         /* how can we clone if the old one wasn't set up?? */
799         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
800
801         /* if fs is reusing a sb, just let its options stand... */
802         if (newsbsec->flags & SE_SBINITIALIZED)
803                 return;
804
805         mutex_lock(&newsbsec->lock);
806
807         newsbsec->flags = oldsbsec->flags;
808
809         newsbsec->sid = oldsbsec->sid;
810         newsbsec->def_sid = oldsbsec->def_sid;
811         newsbsec->behavior = oldsbsec->behavior;
812
813         if (set_context) {
814                 u32 sid = oldsbsec->mntpoint_sid;
815
816                 if (!set_fscontext)
817                         newsbsec->sid = sid;
818                 if (!set_rootcontext) {
819                         struct inode *newinode = newsb->s_root->d_inode;
820                         struct inode_security_struct *newisec = newinode->i_security;
821                         newisec->sid = sid;
822                 }
823                 newsbsec->mntpoint_sid = sid;
824         }
825         if (set_rootcontext) {
826                 const struct inode *oldinode = oldsb->s_root->d_inode;
827                 const struct inode_security_struct *oldisec = oldinode->i_security;
828                 struct inode *newinode = newsb->s_root->d_inode;
829                 struct inode_security_struct *newisec = newinode->i_security;
830
831                 newisec->sid = oldisec->sid;
832         }
833
834         sb_finish_set_opts(newsb);
835         mutex_unlock(&newsbsec->lock);
836 }
837
838 static int selinux_parse_opts_str(char *options,
839                                   struct security_mnt_opts *opts)
840 {
841         char *p;
842         char *context = NULL, *defcontext = NULL;
843         char *fscontext = NULL, *rootcontext = NULL;
844         int rc, num_mnt_opts = 0;
845
846         opts->num_mnt_opts = 0;
847
848         /* Standard string-based options. */
849         while ((p = strsep(&options, "|")) != NULL) {
850                 int token;
851                 substring_t args[MAX_OPT_ARGS];
852
853                 if (!*p)
854                         continue;
855
856                 token = match_token(p, tokens, args);
857
858                 switch (token) {
859                 case Opt_context:
860                         if (context || defcontext) {
861                                 rc = -EINVAL;
862                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863                                 goto out_err;
864                         }
865                         context = match_strdup(&args[0]);
866                         if (!context) {
867                                 rc = -ENOMEM;
868                                 goto out_err;
869                         }
870                         break;
871
872                 case Opt_fscontext:
873                         if (fscontext) {
874                                 rc = -EINVAL;
875                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876                                 goto out_err;
877                         }
878                         fscontext = match_strdup(&args[0]);
879                         if (!fscontext) {
880                                 rc = -ENOMEM;
881                                 goto out_err;
882                         }
883                         break;
884
885                 case Opt_rootcontext:
886                         if (rootcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         rootcontext = match_strdup(&args[0]);
892                         if (!rootcontext) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_defcontext:
899                         if (context || defcontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         defcontext = match_strdup(&args[0]);
905                         if (!defcontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910                 case Opt_labelsupport:
911                         break;
912                 default:
913                         rc = -EINVAL;
914                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
915                         goto out_err;
916
917                 }
918         }
919
920         rc = -ENOMEM;
921         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
922         if (!opts->mnt_opts)
923                 goto out_err;
924
925         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
926         if (!opts->mnt_opts_flags) {
927                 kfree(opts->mnt_opts);
928                 goto out_err;
929         }
930
931         if (fscontext) {
932                 opts->mnt_opts[num_mnt_opts] = fscontext;
933                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
934         }
935         if (context) {
936                 opts->mnt_opts[num_mnt_opts] = context;
937                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
938         }
939         if (rootcontext) {
940                 opts->mnt_opts[num_mnt_opts] = rootcontext;
941                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
942         }
943         if (defcontext) {
944                 opts->mnt_opts[num_mnt_opts] = defcontext;
945                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
946         }
947
948         opts->num_mnt_opts = num_mnt_opts;
949         return 0;
950
951 out_err:
952         kfree(context);
953         kfree(defcontext);
954         kfree(fscontext);
955         kfree(rootcontext);
956         return rc;
957 }
958 /*
959  * string mount options parsing and call set the sbsec
960  */
961 static int superblock_doinit(struct super_block *sb, void *data)
962 {
963         int rc = 0;
964         char *options = data;
965         struct security_mnt_opts opts;
966
967         security_init_mnt_opts(&opts);
968
969         if (!data)
970                 goto out;
971
972         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
973
974         rc = selinux_parse_opts_str(options, &opts);
975         if (rc)
976                 goto out_err;
977
978 out:
979         rc = selinux_set_mnt_opts(sb, &opts);
980
981 out_err:
982         security_free_mnt_opts(&opts);
983         return rc;
984 }
985
986 static void selinux_write_opts(struct seq_file *m,
987                                struct security_mnt_opts *opts)
988 {
989         int i;
990         char *prefix;
991
992         for (i = 0; i < opts->num_mnt_opts; i++) {
993                 char *has_comma;
994
995                 if (opts->mnt_opts[i])
996                         has_comma = strchr(opts->mnt_opts[i], ',');
997                 else
998                         has_comma = NULL;
999
1000                 switch (opts->mnt_opts_flags[i]) {
1001                 case CONTEXT_MNT:
1002                         prefix = CONTEXT_STR;
1003                         break;
1004                 case FSCONTEXT_MNT:
1005                         prefix = FSCONTEXT_STR;
1006                         break;
1007                 case ROOTCONTEXT_MNT:
1008                         prefix = ROOTCONTEXT_STR;
1009                         break;
1010                 case DEFCONTEXT_MNT:
1011                         prefix = DEFCONTEXT_STR;
1012                         break;
1013                 case SE_SBLABELSUPP:
1014                         seq_putc(m, ',');
1015                         seq_puts(m, LABELSUPP_STR);
1016                         continue;
1017                 default:
1018                         BUG();
1019                 };
1020                 /* we need a comma before each option */
1021                 seq_putc(m, ',');
1022                 seq_puts(m, prefix);
1023                 if (has_comma)
1024                         seq_putc(m, '\"');
1025                 seq_puts(m, opts->mnt_opts[i]);
1026                 if (has_comma)
1027                         seq_putc(m, '\"');
1028         }
1029 }
1030
1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1032 {
1033         struct security_mnt_opts opts;
1034         int rc;
1035
1036         rc = selinux_get_mnt_opts(sb, &opts);
1037         if (rc) {
1038                 /* before policy load we may get EINVAL, don't show anything */
1039                 if (rc == -EINVAL)
1040                         rc = 0;
1041                 return rc;
1042         }
1043
1044         selinux_write_opts(m, &opts);
1045
1046         security_free_mnt_opts(&opts);
1047
1048         return rc;
1049 }
1050
1051 static inline u16 inode_mode_to_security_class(umode_t mode)
1052 {
1053         switch (mode & S_IFMT) {
1054         case S_IFSOCK:
1055                 return SECCLASS_SOCK_FILE;
1056         case S_IFLNK:
1057                 return SECCLASS_LNK_FILE;
1058         case S_IFREG:
1059                 return SECCLASS_FILE;
1060         case S_IFBLK:
1061                 return SECCLASS_BLK_FILE;
1062         case S_IFDIR:
1063                 return SECCLASS_DIR;
1064         case S_IFCHR:
1065                 return SECCLASS_CHR_FILE;
1066         case S_IFIFO:
1067                 return SECCLASS_FIFO_FILE;
1068
1069         }
1070
1071         return SECCLASS_FILE;
1072 }
1073
1074 static inline int default_protocol_stream(int protocol)
1075 {
1076         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1077 }
1078
1079 static inline int default_protocol_dgram(int protocol)
1080 {
1081         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1082 }
1083
1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1085 {
1086         switch (family) {
1087         case PF_UNIX:
1088                 switch (type) {
1089                 case SOCK_STREAM:
1090                 case SOCK_SEQPACKET:
1091                         return SECCLASS_UNIX_STREAM_SOCKET;
1092                 case SOCK_DGRAM:
1093                         return SECCLASS_UNIX_DGRAM_SOCKET;
1094                 }
1095                 break;
1096         case PF_INET:
1097         case PF_INET6:
1098                 switch (type) {
1099                 case SOCK_STREAM:
1100                         if (default_protocol_stream(protocol))
1101                                 return SECCLASS_TCP_SOCKET;
1102                         else
1103                                 return SECCLASS_RAWIP_SOCKET;
1104                 case SOCK_DGRAM:
1105                         if (default_protocol_dgram(protocol))
1106                                 return SECCLASS_UDP_SOCKET;
1107                         else
1108                                 return SECCLASS_RAWIP_SOCKET;
1109                 case SOCK_DCCP:
1110                         return SECCLASS_DCCP_SOCKET;
1111                 default:
1112                         return SECCLASS_RAWIP_SOCKET;
1113                 }
1114                 break;
1115         case PF_NETLINK:
1116                 switch (protocol) {
1117                 case NETLINK_ROUTE:
1118                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1119                 case NETLINK_FIREWALL:
1120                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1121                 case NETLINK_INET_DIAG:
1122                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1123                 case NETLINK_NFLOG:
1124                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1125                 case NETLINK_XFRM:
1126                         return SECCLASS_NETLINK_XFRM_SOCKET;
1127                 case NETLINK_SELINUX:
1128                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1129                 case NETLINK_AUDIT:
1130                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1131                 case NETLINK_IP6_FW:
1132                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1133                 case NETLINK_DNRTMSG:
1134                         return SECCLASS_NETLINK_DNRT_SOCKET;
1135                 case NETLINK_KOBJECT_UEVENT:
1136                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1137                 default:
1138                         return SECCLASS_NETLINK_SOCKET;
1139                 }
1140         case PF_PACKET:
1141                 return SECCLASS_PACKET_SOCKET;
1142         case PF_KEY:
1143                 return SECCLASS_KEY_SOCKET;
1144         case PF_APPLETALK:
1145                 return SECCLASS_APPLETALK_SOCKET;
1146         }
1147
1148         return SECCLASS_SOCKET;
1149 }
1150
1151 #ifdef CONFIG_PROC_FS
1152 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1153                                 u16 tclass,
1154                                 u32 *sid)
1155 {
1156         int buflen, rc;
1157         char *buffer, *path, *end;
1158
1159         buffer = (char *)__get_free_page(GFP_KERNEL);
1160         if (!buffer)
1161                 return -ENOMEM;
1162
1163         buflen = PAGE_SIZE;
1164         end = buffer+buflen;
1165         *--end = '\0';
1166         buflen--;
1167         path = end-1;
1168         *path = '/';
1169         while (de && de != de->parent) {
1170                 buflen -= de->namelen + 1;
1171                 if (buflen < 0)
1172                         break;
1173                 end -= de->namelen;
1174                 memcpy(end, de->name, de->namelen);
1175                 *--end = '/';
1176                 path = end;
1177                 de = de->parent;
1178         }
1179         rc = security_genfs_sid("proc", path, tclass, sid);
1180         free_page((unsigned long)buffer);
1181         return rc;
1182 }
1183 #else
1184 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1185                                 u16 tclass,
1186                                 u32 *sid)
1187 {
1188         return -EINVAL;
1189 }
1190 #endif
1191
1192 /* The inode's security attributes must be initialized before first use. */
1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1194 {
1195         struct superblock_security_struct *sbsec = NULL;
1196         struct inode_security_struct *isec = inode->i_security;
1197         u32 sid;
1198         struct dentry *dentry;
1199 #define INITCONTEXTLEN 255
1200         char *context = NULL;
1201         unsigned len = 0;
1202         int rc = 0;
1203
1204         if (isec->initialized)
1205                 goto out;
1206
1207         mutex_lock(&isec->lock);
1208         if (isec->initialized)
1209                 goto out_unlock;
1210
1211         sbsec = inode->i_sb->s_security;
1212         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1213                 /* Defer initialization until selinux_complete_init,
1214                    after the initial policy is loaded and the security
1215                    server is ready to handle calls. */
1216                 spin_lock(&sbsec->isec_lock);
1217                 if (list_empty(&isec->list))
1218                         list_add(&isec->list, &sbsec->isec_head);
1219                 spin_unlock(&sbsec->isec_lock);
1220                 goto out_unlock;
1221         }
1222
1223         switch (sbsec->behavior) {
1224         case SECURITY_FS_USE_XATTR:
1225                 if (!inode->i_op->getxattr) {
1226                         isec->sid = sbsec->def_sid;
1227                         break;
1228                 }
1229
1230                 /* Need a dentry, since the xattr API requires one.
1231                    Life would be simpler if we could just pass the inode. */
1232                 if (opt_dentry) {
1233                         /* Called from d_instantiate or d_splice_alias. */
1234                         dentry = dget(opt_dentry);
1235                 } else {
1236                         /* Called from selinux_complete_init, try to find a dentry. */
1237                         dentry = d_find_alias(inode);
1238                 }
1239                 if (!dentry) {
1240                         /*
1241                          * this is can be hit on boot when a file is accessed
1242                          * before the policy is loaded.  When we load policy we
1243                          * may find inodes that have no dentry on the
1244                          * sbsec->isec_head list.  No reason to complain as these
1245                          * will get fixed up the next time we go through
1246                          * inode_doinit with a dentry, before these inodes could
1247                          * be used again by userspace.
1248                          */
1249                         goto out_unlock;
1250                 }
1251
1252                 len = INITCONTEXTLEN;
1253                 context = kmalloc(len+1, GFP_NOFS);
1254                 if (!context) {
1255                         rc = -ENOMEM;
1256                         dput(dentry);
1257                         goto out_unlock;
1258                 }
1259                 context[len] = '\0';
1260                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1261                                            context, len);
1262                 if (rc == -ERANGE) {
1263                         kfree(context);
1264
1265                         /* Need a larger buffer.  Query for the right size. */
1266                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1267                                                    NULL, 0);
1268                         if (rc < 0) {
1269                                 dput(dentry);
1270                                 goto out_unlock;
1271                         }
1272                         len = rc;
1273                         context = kmalloc(len+1, GFP_NOFS);
1274                         if (!context) {
1275                                 rc = -ENOMEM;
1276                                 dput(dentry);
1277                                 goto out_unlock;
1278                         }
1279                         context[len] = '\0';
1280                         rc = inode->i_op->getxattr(dentry,
1281                                                    XATTR_NAME_SELINUX,
1282                                                    context, len);
1283                 }
1284                 dput(dentry);
1285                 if (rc < 0) {
1286                         if (rc != -ENODATA) {
1287                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1288                                        "%d for dev=%s ino=%ld\n", __func__,
1289                                        -rc, inode->i_sb->s_id, inode->i_ino);
1290                                 kfree(context);
1291                                 goto out_unlock;
1292                         }
1293                         /* Map ENODATA to the default file SID */
1294                         sid = sbsec->def_sid;
1295                         rc = 0;
1296                 } else {
1297                         rc = security_context_to_sid_default(context, rc, &sid,
1298                                                              sbsec->def_sid,
1299                                                              GFP_NOFS);
1300                         if (rc) {
1301                                 char *dev = inode->i_sb->s_id;
1302                                 unsigned long ino = inode->i_ino;
1303
1304                                 if (rc == -EINVAL) {
1305                                         if (printk_ratelimit())
1306                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1307                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1308                                                         "filesystem in question.\n", ino, dev, context);
1309                                 } else {
1310                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1311                                                "returned %d for dev=%s ino=%ld\n",
1312                                                __func__, context, -rc, dev, ino);
1313                                 }
1314                                 kfree(context);
1315                                 /* Leave with the unlabeled SID */
1316                                 rc = 0;
1317                                 break;
1318                         }
1319                 }
1320                 kfree(context);
1321                 isec->sid = sid;
1322                 break;
1323         case SECURITY_FS_USE_TASK:
1324                 isec->sid = isec->task_sid;
1325                 break;
1326         case SECURITY_FS_USE_TRANS:
1327                 /* Default to the fs SID. */
1328                 isec->sid = sbsec->sid;
1329
1330                 /* Try to obtain a transition SID. */
1331                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1332                 rc = security_transition_sid(isec->task_sid,
1333                                              sbsec->sid,
1334                                              isec->sclass,
1335                                              &sid);
1336                 if (rc)
1337                         goto out_unlock;
1338                 isec->sid = sid;
1339                 break;
1340         case SECURITY_FS_USE_MNTPOINT:
1341                 isec->sid = sbsec->mntpoint_sid;
1342                 break;
1343         default:
1344                 /* Default to the fs superblock SID. */
1345                 isec->sid = sbsec->sid;
1346
1347                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1348                         struct proc_inode *proci = PROC_I(inode);
1349                         if (proci->pde) {
1350                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1351                                 rc = selinux_proc_get_sid(proci->pde,
1352                                                           isec->sclass,
1353                                                           &sid);
1354                                 if (rc)
1355                                         goto out_unlock;
1356                                 isec->sid = sid;
1357                         }
1358                 }
1359                 break;
1360         }
1361
1362         isec->initialized = 1;
1363
1364 out_unlock:
1365         mutex_unlock(&isec->lock);
1366 out:
1367         if (isec->sclass == SECCLASS_FILE)
1368                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1369         return rc;
1370 }
1371
1372 /* Convert a Linux signal to an access vector. */
1373 static inline u32 signal_to_av(int sig)
1374 {
1375         u32 perm = 0;
1376
1377         switch (sig) {
1378         case SIGCHLD:
1379                 /* Commonly granted from child to parent. */
1380                 perm = PROCESS__SIGCHLD;
1381                 break;
1382         case SIGKILL:
1383                 /* Cannot be caught or ignored */
1384                 perm = PROCESS__SIGKILL;
1385                 break;
1386         case SIGSTOP:
1387                 /* Cannot be caught or ignored */
1388                 perm = PROCESS__SIGSTOP;
1389                 break;
1390         default:
1391                 /* All other signals. */
1392                 perm = PROCESS__SIGNAL;
1393                 break;
1394         }
1395
1396         return perm;
1397 }
1398
1399 /*
1400  * Check permission between a pair of credentials
1401  * fork check, ptrace check, etc.
1402  */
1403 static int cred_has_perm(const struct cred *actor,
1404                          const struct cred *target,
1405                          u32 perms)
1406 {
1407         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1408
1409         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1410 }
1411
1412 /*
1413  * Check permission between a pair of tasks, e.g. signal checks,
1414  * fork check, ptrace check, etc.
1415  * tsk1 is the actor and tsk2 is the target
1416  * - this uses the default subjective creds of tsk1
1417  */
1418 static int task_has_perm(const struct task_struct *tsk1,
1419                          const struct task_struct *tsk2,
1420                          u32 perms)
1421 {
1422         const struct task_security_struct *__tsec1, *__tsec2;
1423         u32 sid1, sid2;
1424
1425         rcu_read_lock();
1426         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1427         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1428         rcu_read_unlock();
1429         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1430 }
1431
1432 /*
1433  * Check permission between current and another task, e.g. signal checks,
1434  * fork check, ptrace check, etc.
1435  * current is the actor and tsk2 is the target
1436  * - this uses current's subjective creds
1437  */
1438 static int current_has_perm(const struct task_struct *tsk,
1439                             u32 perms)
1440 {
1441         u32 sid, tsid;
1442
1443         sid = current_sid();
1444         tsid = task_sid(tsk);
1445         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1446 }
1447
1448 #if CAP_LAST_CAP > 63
1449 #error Fix SELinux to handle capabilities > 63.
1450 #endif
1451
1452 /* Check whether a task is allowed to use a capability. */
1453 static int task_has_capability(struct task_struct *tsk,
1454                                const struct cred *cred,
1455                                int cap, int audit)
1456 {
1457         struct common_audit_data ad;
1458         struct av_decision avd;
1459         u16 sclass;
1460         u32 sid = cred_sid(cred);
1461         u32 av = CAP_TO_MASK(cap);
1462         int rc;
1463
1464         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1465         ad.tsk = tsk;
1466         ad.u.cap = cap;
1467
1468         switch (CAP_TO_INDEX(cap)) {
1469         case 0:
1470                 sclass = SECCLASS_CAPABILITY;
1471                 break;
1472         case 1:
1473                 sclass = SECCLASS_CAPABILITY2;
1474                 break;
1475         default:
1476                 printk(KERN_ERR
1477                        "SELinux:  out of range capability %d\n", cap);
1478                 BUG();
1479         }
1480
1481         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1482         if (audit == SECURITY_CAP_AUDIT)
1483                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1484         return rc;
1485 }
1486
1487 /* Check whether a task is allowed to use a system operation. */
1488 static int task_has_system(struct task_struct *tsk,
1489                            u32 perms)
1490 {
1491         u32 sid = task_sid(tsk);
1492
1493         return avc_has_perm(sid, SECINITSID_KERNEL,
1494                             SECCLASS_SYSTEM, perms, NULL);
1495 }
1496
1497 /* Check whether a task has a particular permission to an inode.
1498    The 'adp' parameter is optional and allows other audit
1499    data to be passed (e.g. the dentry). */
1500 static int inode_has_perm(const struct cred *cred,
1501                           struct inode *inode,
1502                           u32 perms,
1503                           struct common_audit_data *adp)
1504 {
1505         struct inode_security_struct *isec;
1506         struct common_audit_data ad;
1507         u32 sid;
1508
1509         validate_creds(cred);
1510
1511         if (unlikely(IS_PRIVATE(inode)))
1512                 return 0;
1513
1514         sid = cred_sid(cred);
1515         isec = inode->i_security;
1516
1517         if (!adp) {
1518                 adp = &ad;
1519                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1520                 ad.u.fs.inode = inode;
1521         }
1522
1523         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1524 }
1525
1526 /* Same as inode_has_perm, but pass explicit audit data containing
1527    the dentry to help the auditing code to more easily generate the
1528    pathname if needed. */
1529 static inline int dentry_has_perm(const struct cred *cred,
1530                                   struct vfsmount *mnt,
1531                                   struct dentry *dentry,
1532                                   u32 av)
1533 {
1534         struct inode *inode = dentry->d_inode;
1535         struct common_audit_data ad;
1536
1537         COMMON_AUDIT_DATA_INIT(&ad, FS);
1538         ad.u.fs.path.mnt = mnt;
1539         ad.u.fs.path.dentry = dentry;
1540         return inode_has_perm(cred, inode, av, &ad);
1541 }
1542
1543 /* Check whether a task can use an open file descriptor to
1544    access an inode in a given way.  Check access to the
1545    descriptor itself, and then use dentry_has_perm to
1546    check a particular permission to the file.
1547    Access to the descriptor is implicitly granted if it
1548    has the same SID as the process.  If av is zero, then
1549    access to the file is not checked, e.g. for cases
1550    where only the descriptor is affected like seek. */
1551 static int file_has_perm(const struct cred *cred,
1552                          struct file *file,
1553                          u32 av)
1554 {
1555         struct file_security_struct *fsec = file->f_security;
1556         struct inode *inode = file->f_path.dentry->d_inode;
1557         struct common_audit_data ad;
1558         u32 sid = cred_sid(cred);
1559         int rc;
1560
1561         COMMON_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path = file->f_path;
1563
1564         if (sid != fsec->sid) {
1565                 rc = avc_has_perm(sid, fsec->sid,
1566                                   SECCLASS_FD,
1567                                   FD__USE,
1568                                   &ad);
1569                 if (rc)
1570                         goto out;
1571         }
1572
1573         /* av is zero if only checking access to the descriptor. */
1574         rc = 0;
1575         if (av)
1576                 rc = inode_has_perm(cred, inode, av, &ad);
1577
1578 out:
1579         return rc;
1580 }
1581
1582 /* Check whether a task can create a file. */
1583 static int may_create(struct inode *dir,
1584                       struct dentry *dentry,
1585                       u16 tclass)
1586 {
1587         const struct cred *cred = current_cred();
1588         const struct task_security_struct *tsec = cred->security;
1589         struct inode_security_struct *dsec;
1590         struct superblock_security_struct *sbsec;
1591         u32 sid, newsid;
1592         struct common_audit_data ad;
1593         int rc;
1594
1595         dsec = dir->i_security;
1596         sbsec = dir->i_sb->s_security;
1597
1598         sid = tsec->sid;
1599         newsid = tsec->create_sid;
1600
1601         COMMON_AUDIT_DATA_INIT(&ad, FS);
1602         ad.u.fs.path.dentry = dentry;
1603
1604         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1605                           DIR__ADD_NAME | DIR__SEARCH,
1606                           &ad);
1607         if (rc)
1608                 return rc;
1609
1610         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1611                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1612                 if (rc)
1613                         return rc;
1614         }
1615
1616         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1617         if (rc)
1618                 return rc;
1619
1620         return avc_has_perm(newsid, sbsec->sid,
1621                             SECCLASS_FILESYSTEM,
1622                             FILESYSTEM__ASSOCIATE, &ad);
1623 }
1624
1625 /* Check whether a task can create a key. */
1626 static int may_create_key(u32 ksid,
1627                           struct task_struct *ctx)
1628 {
1629         u32 sid = task_sid(ctx);
1630
1631         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1632 }
1633
1634 #define MAY_LINK        0
1635 #define MAY_UNLINK      1
1636 #define MAY_RMDIR       2
1637
1638 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1639 static int may_link(struct inode *dir,
1640                     struct dentry *dentry,
1641                     int kind)
1642
1643 {
1644         struct inode_security_struct *dsec, *isec;
1645         struct common_audit_data ad;
1646         u32 sid = current_sid();
1647         u32 av;
1648         int rc;
1649
1650         dsec = dir->i_security;
1651         isec = dentry->d_inode->i_security;
1652
1653         COMMON_AUDIT_DATA_INIT(&ad, FS);
1654         ad.u.fs.path.dentry = dentry;
1655
1656         av = DIR__SEARCH;
1657         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1658         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1659         if (rc)
1660                 return rc;
1661
1662         switch (kind) {
1663         case MAY_LINK:
1664                 av = FILE__LINK;
1665                 break;
1666         case MAY_UNLINK:
1667                 av = FILE__UNLINK;
1668                 break;
1669         case MAY_RMDIR:
1670                 av = DIR__RMDIR;
1671                 break;
1672         default:
1673                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1674                         __func__, kind);
1675                 return 0;
1676         }
1677
1678         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1679         return rc;
1680 }
1681
1682 static inline int may_rename(struct inode *old_dir,
1683                              struct dentry *old_dentry,
1684                              struct inode *new_dir,
1685                              struct dentry *new_dentry)
1686 {
1687         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1688         struct common_audit_data ad;
1689         u32 sid = current_sid();
1690         u32 av;
1691         int old_is_dir, new_is_dir;
1692         int rc;
1693
1694         old_dsec = old_dir->i_security;
1695         old_isec = old_dentry->d_inode->i_security;
1696         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1697         new_dsec = new_dir->i_security;
1698
1699         COMMON_AUDIT_DATA_INIT(&ad, FS);
1700
1701         ad.u.fs.path.dentry = old_dentry;
1702         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1703                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1704         if (rc)
1705                 return rc;
1706         rc = avc_has_perm(sid, old_isec->sid,
1707                           old_isec->sclass, FILE__RENAME, &ad);
1708         if (rc)
1709                 return rc;
1710         if (old_is_dir && new_dir != old_dir) {
1711                 rc = avc_has_perm(sid, old_isec->sid,
1712                                   old_isec->sclass, DIR__REPARENT, &ad);
1713                 if (rc)
1714                         return rc;
1715         }
1716
1717         ad.u.fs.path.dentry = new_dentry;
1718         av = DIR__ADD_NAME | DIR__SEARCH;
1719         if (new_dentry->d_inode)
1720                 av |= DIR__REMOVE_NAME;
1721         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1722         if (rc)
1723                 return rc;
1724         if (new_dentry->d_inode) {
1725                 new_isec = new_dentry->d_inode->i_security;
1726                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1727                 rc = avc_has_perm(sid, new_isec->sid,
1728                                   new_isec->sclass,
1729                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1730                 if (rc)
1731                         return rc;
1732         }
1733
1734         return 0;
1735 }
1736
1737 /* Check whether a task can perform a filesystem operation. */
1738 static int superblock_has_perm(const struct cred *cred,
1739                                struct super_block *sb,
1740                                u32 perms,
1741                                struct common_audit_data *ad)
1742 {
1743         struct superblock_security_struct *sbsec;
1744         u32 sid = cred_sid(cred);
1745
1746         sbsec = sb->s_security;
1747         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1748 }
1749
1750 /* Convert a Linux mode and permission mask to an access vector. */
1751 static inline u32 file_mask_to_av(int mode, int mask)
1752 {
1753         u32 av = 0;
1754
1755         if ((mode & S_IFMT) != S_IFDIR) {
1756                 if (mask & MAY_EXEC)
1757                         av |= FILE__EXECUTE;
1758                 if (mask & MAY_READ)
1759                         av |= FILE__READ;
1760
1761                 if (mask & MAY_APPEND)
1762                         av |= FILE__APPEND;
1763                 else if (mask & MAY_WRITE)
1764                         av |= FILE__WRITE;
1765
1766         } else {
1767                 if (mask & MAY_EXEC)
1768                         av |= DIR__SEARCH;
1769                 if (mask & MAY_WRITE)
1770                         av |= DIR__WRITE;
1771                 if (mask & MAY_READ)
1772                         av |= DIR__READ;
1773         }
1774
1775         return av;
1776 }
1777
1778 /* Convert a Linux file to an access vector. */
1779 static inline u32 file_to_av(struct file *file)
1780 {
1781         u32 av = 0;
1782
1783         if (file->f_mode & FMODE_READ)
1784                 av |= FILE__READ;
1785         if (file->f_mode & FMODE_WRITE) {
1786                 if (file->f_flags & O_APPEND)
1787                         av |= FILE__APPEND;
1788                 else
1789                         av |= FILE__WRITE;
1790         }
1791         if (!av) {
1792                 /*
1793                  * Special file opened with flags 3 for ioctl-only use.
1794                  */
1795                 av = FILE__IOCTL;
1796         }
1797
1798         return av;
1799 }
1800
1801 /*
1802  * Convert a file to an access vector and include the correct open
1803  * open permission.
1804  */
1805 static inline u32 open_file_to_av(struct file *file)
1806 {
1807         u32 av = file_to_av(file);
1808
1809         if (selinux_policycap_openperm) {
1810                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1811                 /*
1812                  * lnk files and socks do not really have an 'open'
1813                  */
1814                 if (S_ISREG(mode))
1815                         av |= FILE__OPEN;
1816                 else if (S_ISCHR(mode))
1817                         av |= CHR_FILE__OPEN;
1818                 else if (S_ISBLK(mode))
1819                         av |= BLK_FILE__OPEN;
1820                 else if (S_ISFIFO(mode))
1821                         av |= FIFO_FILE__OPEN;
1822                 else if (S_ISDIR(mode))
1823                         av |= DIR__OPEN;
1824                 else if (S_ISSOCK(mode))
1825                         av |= SOCK_FILE__OPEN;
1826                 else
1827                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1828                                 "unknown mode:%o\n", __func__, mode);
1829         }
1830         return av;
1831 }
1832
1833 /* Hook functions begin here. */
1834
1835 static int selinux_ptrace_access_check(struct task_struct *child,
1836                                      unsigned int mode)
1837 {
1838         int rc;
1839
1840         rc = cap_ptrace_access_check(child, mode);
1841         if (rc)
1842                 return rc;
1843
1844         if (mode == PTRACE_MODE_READ) {
1845                 u32 sid = current_sid();
1846                 u32 csid = task_sid(child);
1847                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1848         }
1849
1850         return current_has_perm(child, PROCESS__PTRACE);
1851 }
1852
1853 static int selinux_ptrace_traceme(struct task_struct *parent)
1854 {
1855         int rc;
1856
1857         rc = cap_ptrace_traceme(parent);
1858         if (rc)
1859                 return rc;
1860
1861         return task_has_perm(parent, current, PROCESS__PTRACE);
1862 }
1863
1864 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1865                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1866 {
1867         int error;
1868
1869         error = current_has_perm(target, PROCESS__GETCAP);
1870         if (error)
1871                 return error;
1872
1873         return cap_capget(target, effective, inheritable, permitted);
1874 }
1875
1876 static int selinux_capset(struct cred *new, const struct cred *old,
1877                           const kernel_cap_t *effective,
1878                           const kernel_cap_t *inheritable,
1879                           const kernel_cap_t *permitted)
1880 {
1881         int error;
1882
1883         error = cap_capset(new, old,
1884                                       effective, inheritable, permitted);
1885         if (error)
1886                 return error;
1887
1888         return cred_has_perm(old, new, PROCESS__SETCAP);
1889 }
1890
1891 /*
1892  * (This comment used to live with the selinux_task_setuid hook,
1893  * which was removed).
1894  *
1895  * Since setuid only affects the current process, and since the SELinux
1896  * controls are not based on the Linux identity attributes, SELinux does not
1897  * need to control this operation.  However, SELinux does control the use of
1898  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1899  */
1900
1901 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1902                            int cap, int audit)
1903 {
1904         int rc;
1905
1906         rc = cap_capable(tsk, cred, cap, audit);
1907         if (rc)
1908                 return rc;
1909
1910         return task_has_capability(tsk, cred, cap, audit);
1911 }
1912
1913 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1914 {
1915         int buflen, rc;
1916         char *buffer, *path, *end;
1917
1918         rc = -ENOMEM;
1919         buffer = (char *)__get_free_page(GFP_KERNEL);
1920         if (!buffer)
1921                 goto out;
1922
1923         buflen = PAGE_SIZE;
1924         end = buffer+buflen;
1925         *--end = '\0';
1926         buflen--;
1927         path = end-1;
1928         *path = '/';
1929         while (table) {
1930                 const char *name = table->procname;
1931                 size_t namelen = strlen(name);
1932                 buflen -= namelen + 1;
1933                 if (buflen < 0)
1934                         goto out_free;
1935                 end -= namelen;
1936                 memcpy(end, name, namelen);
1937                 *--end = '/';
1938                 path = end;
1939                 table = table->parent;
1940         }
1941         buflen -= 4;
1942         if (buflen < 0)
1943                 goto out_free;
1944         end -= 4;
1945         memcpy(end, "/sys", 4);
1946         path = end;
1947         rc = security_genfs_sid("proc", path, tclass, sid);
1948 out_free:
1949         free_page((unsigned long)buffer);
1950 out:
1951         return rc;
1952 }
1953
1954 static int selinux_sysctl(ctl_table *table, int op)
1955 {
1956         int error = 0;
1957         u32 av;
1958         u32 tsid, sid;
1959         int rc;
1960
1961         sid = current_sid();
1962
1963         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1964                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1965         if (rc) {
1966                 /* Default to the well-defined sysctl SID. */
1967                 tsid = SECINITSID_SYSCTL;
1968         }
1969
1970         /* The op values are "defined" in sysctl.c, thereby creating
1971          * a bad coupling between this module and sysctl.c */
1972         if (op == 001) {
1973                 error = avc_has_perm(sid, tsid,
1974                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1975         } else {
1976                 av = 0;
1977                 if (op & 004)
1978                         av |= FILE__READ;
1979                 if (op & 002)
1980                         av |= FILE__WRITE;
1981                 if (av)
1982                         error = avc_has_perm(sid, tsid,
1983                                              SECCLASS_FILE, av, NULL);
1984         }
1985
1986         return error;
1987 }
1988
1989 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1990 {
1991         const struct cred *cred = current_cred();
1992         int rc = 0;
1993
1994         if (!sb)
1995                 return 0;
1996
1997         switch (cmds) {
1998         case Q_SYNC:
1999         case Q_QUOTAON:
2000         case Q_QUOTAOFF:
2001         case Q_SETINFO:
2002         case Q_SETQUOTA:
2003                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2004                 break;
2005         case Q_GETFMT:
2006         case Q_GETINFO:
2007         case Q_GETQUOTA:
2008                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2009                 break;
2010         default:
2011                 rc = 0;  /* let the kernel handle invalid cmds */
2012                 break;
2013         }
2014         return rc;
2015 }
2016
2017 static int selinux_quota_on(struct dentry *dentry)
2018 {
2019         const struct cred *cred = current_cred();
2020
2021         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2022 }
2023
2024 static int selinux_syslog(int type, bool from_file)
2025 {
2026         int rc;
2027
2028         rc = cap_syslog(type, from_file);
2029         if (rc)
2030                 return rc;
2031
2032         switch (type) {
2033         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2034         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2035                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2036                 break;
2037         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2038         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2039         /* Set level of messages printed to console */
2040         case SYSLOG_ACTION_CONSOLE_LEVEL:
2041                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2042                 break;
2043         case SYSLOG_ACTION_CLOSE:       /* Close log */
2044         case SYSLOG_ACTION_OPEN:        /* Open log */
2045         case SYSLOG_ACTION_READ:        /* Read from log */
2046         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2047         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2048         default:
2049                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2050                 break;
2051         }
2052         return rc;
2053 }
2054
2055 /*
2056  * Check that a process has enough memory to allocate a new virtual
2057  * mapping. 0 means there is enough memory for the allocation to
2058  * succeed and -ENOMEM implies there is not.
2059  *
2060  * Do not audit the selinux permission check, as this is applied to all
2061  * processes that allocate mappings.
2062  */
2063 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2064 {
2065         int rc, cap_sys_admin = 0;
2066
2067         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2068                              SECURITY_CAP_NOAUDIT);
2069         if (rc == 0)
2070                 cap_sys_admin = 1;
2071
2072         return __vm_enough_memory(mm, pages, cap_sys_admin);
2073 }
2074
2075 /* binprm security operations */
2076
2077 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2078 {
2079         const struct task_security_struct *old_tsec;
2080         struct task_security_struct *new_tsec;
2081         struct inode_security_struct *isec;
2082         struct common_audit_data ad;
2083         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2084         int rc;
2085
2086         rc = cap_bprm_set_creds(bprm);
2087         if (rc)
2088                 return rc;
2089
2090         /* SELinux context only depends on initial program or script and not
2091          * the script interpreter */
2092         if (bprm->cred_prepared)
2093                 return 0;
2094
2095         old_tsec = current_security();
2096         new_tsec = bprm->cred->security;
2097         isec = inode->i_security;
2098
2099         /* Default to the current task SID. */
2100         new_tsec->sid = old_tsec->sid;
2101         new_tsec->osid = old_tsec->sid;
2102
2103         /* Reset fs, key, and sock SIDs on execve. */
2104         new_tsec->create_sid = 0;
2105         new_tsec->keycreate_sid = 0;
2106         new_tsec->sockcreate_sid = 0;
2107
2108         if (old_tsec->exec_sid) {
2109                 new_tsec->sid = old_tsec->exec_sid;
2110                 /* Reset exec SID on execve. */
2111                 new_tsec->exec_sid = 0;
2112         } else {
2113                 /* Check for a default transition on this program. */
2114                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2115                                              SECCLASS_PROCESS, &new_tsec->sid);
2116                 if (rc)
2117                         return rc;
2118         }
2119
2120         COMMON_AUDIT_DATA_INIT(&ad, FS);
2121         ad.u.fs.path = bprm->file->f_path;
2122
2123         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2124                 new_tsec->sid = old_tsec->sid;
2125
2126         if (new_tsec->sid == old_tsec->sid) {
2127                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2128                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2129                 if (rc)
2130                         return rc;
2131         } else {
2132                 /* Check permissions for the transition. */
2133                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2134                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2135                 if (rc)
2136                         return rc;
2137
2138                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2139                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2140                 if (rc)
2141                         return rc;
2142
2143                 /* Check for shared state */
2144                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2145                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2146                                           SECCLASS_PROCESS, PROCESS__SHARE,
2147                                           NULL);
2148                         if (rc)
2149                                 return -EPERM;
2150                 }
2151
2152                 /* Make sure that anyone attempting to ptrace over a task that
2153                  * changes its SID has the appropriate permit */
2154                 if (bprm->unsafe &
2155                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2156                         struct task_struct *tracer;
2157                         struct task_security_struct *sec;
2158                         u32 ptsid = 0;
2159
2160                         rcu_read_lock();
2161                         tracer = tracehook_tracer_task(current);
2162                         if (likely(tracer != NULL)) {
2163                                 sec = __task_cred(tracer)->security;
2164                                 ptsid = sec->sid;
2165                         }
2166                         rcu_read_unlock();
2167
2168                         if (ptsid != 0) {
2169                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2170                                                   SECCLASS_PROCESS,
2171                                                   PROCESS__PTRACE, NULL);
2172                                 if (rc)
2173                                         return -EPERM;
2174                         }
2175                 }
2176
2177                 /* Clear any possibly unsafe personality bits on exec: */
2178                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2185 {
2186         const struct cred *cred = current_cred();
2187         const struct task_security_struct *tsec = cred->security;
2188         u32 sid, osid;
2189         int atsecure = 0;
2190
2191         sid = tsec->sid;
2192         osid = tsec->osid;
2193
2194         if (osid != sid) {
2195                 /* Enable secure mode for SIDs transitions unless
2196                    the noatsecure permission is granted between
2197                    the two SIDs, i.e. ahp returns 0. */
2198                 atsecure = avc_has_perm(osid, sid,
2199                                         SECCLASS_PROCESS,
2200                                         PROCESS__NOATSECURE, NULL);
2201         }
2202
2203         return (atsecure || cap_bprm_secureexec(bprm));
2204 }
2205
2206 extern struct vfsmount *selinuxfs_mount;
2207 extern struct dentry *selinux_null;
2208
2209 /* Derived from fs/exec.c:flush_old_files. */
2210 static inline void flush_unauthorized_files(const struct cred *cred,
2211                                             struct files_struct *files)
2212 {
2213         struct common_audit_data ad;
2214         struct file *file, *devnull = NULL;
2215         struct tty_struct *tty;
2216         struct fdtable *fdt;
2217         long j = -1;
2218         int drop_tty = 0;
2219
2220         tty = get_current_tty();
2221         if (tty) {
2222                 file_list_lock();
2223                 if (!list_empty(&tty->tty_files)) {
2224                         struct inode *inode;
2225
2226                         /* Revalidate access to controlling tty.
2227                            Use inode_has_perm on the tty inode directly rather
2228                            than using file_has_perm, as this particular open
2229                            file may belong to another process and we are only
2230                            interested in the inode-based check here. */
2231                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2232                         inode = file->f_path.dentry->d_inode;
2233                         if (inode_has_perm(cred, inode,
2234                                            FILE__READ | FILE__WRITE, NULL)) {
2235                                 drop_tty = 1;
2236                         }
2237                 }
2238                 file_list_unlock();
2239                 tty_kref_put(tty);
2240         }
2241         /* Reset controlling tty. */
2242         if (drop_tty)
2243                 no_tty();
2244
2245         /* Revalidate access to inherited open files. */
2246
2247         COMMON_AUDIT_DATA_INIT(&ad, FS);
2248
2249         spin_lock(&files->file_lock);
2250         for (;;) {
2251                 unsigned long set, i;
2252                 int fd;
2253
2254                 j++;
2255                 i = j * __NFDBITS;
2256                 fdt = files_fdtable(files);
2257                 if (i >= fdt->max_fds)
2258                         break;
2259                 set = fdt->open_fds->fds_bits[j];
2260                 if (!set)
2261                         continue;
2262                 spin_unlock(&files->file_lock);
2263                 for ( ; set ; i++, set >>= 1) {
2264                         if (set & 1) {
2265                                 file = fget(i);
2266                                 if (!file)
2267                                         continue;
2268                                 if (file_has_perm(cred,
2269                                                   file,
2270                                                   file_to_av(file))) {
2271                                         sys_close(i);
2272                                         fd = get_unused_fd();
2273                                         if (fd != i) {
2274                                                 if (fd >= 0)
2275                                                         put_unused_fd(fd);
2276                                                 fput(file);
2277                                                 continue;
2278                                         }
2279                                         if (devnull) {
2280                                                 get_file(devnull);
2281                                         } else {
2282                                                 devnull = dentry_open(
2283                                                         dget(selinux_null),
2284                                                         mntget(selinuxfs_mount),
2285                                                         O_RDWR, cred);
2286                                                 if (IS_ERR(devnull)) {
2287                                                         devnull = NULL;
2288                                                         put_unused_fd(fd);
2289                                                         fput(file);
2290                                                         continue;
2291                                                 }
2292                                         }
2293                                         fd_install(fd, devnull);
2294                                 }
2295                                 fput(file);
2296                         }
2297                 }
2298                 spin_lock(&files->file_lock);
2299
2300         }
2301         spin_unlock(&files->file_lock);
2302 }
2303
2304 /*
2305  * Prepare a process for imminent new credential changes due to exec
2306  */
2307 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2308 {
2309         struct task_security_struct *new_tsec;
2310         struct rlimit *rlim, *initrlim;
2311         int rc, i;
2312
2313         new_tsec = bprm->cred->security;
2314         if (new_tsec->sid == new_tsec->osid)
2315                 return;
2316
2317         /* Close files for which the new task SID is not authorized. */
2318         flush_unauthorized_files(bprm->cred, current->files);
2319
2320         /* Always clear parent death signal on SID transitions. */
2321         current->pdeath_signal = 0;
2322
2323         /* Check whether the new SID can inherit resource limits from the old
2324          * SID.  If not, reset all soft limits to the lower of the current
2325          * task's hard limit and the init task's soft limit.
2326          *
2327          * Note that the setting of hard limits (even to lower them) can be
2328          * controlled by the setrlimit check.  The inclusion of the init task's
2329          * soft limit into the computation is to avoid resetting soft limits
2330          * higher than the default soft limit for cases where the default is
2331          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2332          */
2333         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2334                           PROCESS__RLIMITINH, NULL);
2335         if (rc) {
2336                 for (i = 0; i < RLIM_NLIMITS; i++) {
2337                         rlim = current->signal->rlim + i;
2338                         initrlim = init_task.signal->rlim + i;
2339                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2340                 }
2341                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2342         }
2343 }
2344
2345 /*
2346  * Clean up the process immediately after the installation of new credentials
2347  * due to exec
2348  */
2349 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2350 {
2351         const struct task_security_struct *tsec = current_security();
2352         struct itimerval itimer;
2353         u32 osid, sid;
2354         int rc, i;
2355
2356         osid = tsec->osid;
2357         sid = tsec->sid;
2358
2359         if (sid == osid)
2360                 return;
2361
2362         /* Check whether the new SID can inherit signal state from the old SID.
2363          * If not, clear itimers to avoid subsequent signal generation and
2364          * flush and unblock signals.
2365          *
2366          * This must occur _after_ the task SID has been updated so that any
2367          * kill done after the flush will be checked against the new SID.
2368          */
2369         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2370         if (rc) {
2371                 memset(&itimer, 0, sizeof itimer);
2372                 for (i = 0; i < 3; i++)
2373                         do_setitimer(i, &itimer, NULL);
2374                 spin_lock_irq(&current->sighand->siglock);
2375                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2376                         __flush_signals(current);
2377                         flush_signal_handlers(current, 1);
2378                         sigemptyset(&current->blocked);
2379                 }
2380                 spin_unlock_irq(&current->sighand->siglock);
2381         }
2382
2383         /* Wake up the parent if it is waiting so that it can recheck
2384          * wait permission to the new task SID. */
2385         read_lock(&tasklist_lock);
2386         __wake_up_parent(current, current->real_parent);
2387         read_unlock(&tasklist_lock);
2388 }
2389
2390 /* superblock security operations */
2391
2392 static int selinux_sb_alloc_security(struct super_block *sb)
2393 {
2394         return superblock_alloc_security(sb);
2395 }
2396
2397 static void selinux_sb_free_security(struct super_block *sb)
2398 {
2399         superblock_free_security(sb);
2400 }
2401
2402 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2403 {
2404         if (plen > olen)
2405                 return 0;
2406
2407         return !memcmp(prefix, option, plen);
2408 }
2409
2410 static inline int selinux_option(char *option, int len)
2411 {
2412         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2413                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2414                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2415                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2416                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2417 }
2418
2419 static inline void take_option(char **to, char *from, int *first, int len)
2420 {
2421         if (!*first) {
2422                 **to = ',';
2423                 *to += 1;
2424         } else
2425                 *first = 0;
2426         memcpy(*to, from, len);
2427         *to += len;
2428 }
2429
2430 static inline void take_selinux_option(char **to, char *from, int *first,
2431                                        int len)
2432 {
2433         int current_size = 0;
2434
2435         if (!*first) {
2436                 **to = '|';
2437                 *to += 1;
2438         } else
2439                 *first = 0;
2440
2441         while (current_size < len) {
2442                 if (*from != '"') {
2443                         **to = *from;
2444                         *to += 1;
2445                 }
2446                 from += 1;
2447                 current_size += 1;
2448         }
2449 }
2450
2451 static int selinux_sb_copy_data(char *orig, char *copy)
2452 {
2453         int fnosec, fsec, rc = 0;
2454         char *in_save, *in_curr, *in_end;
2455         char *sec_curr, *nosec_save, *nosec;
2456         int open_quote = 0;
2457
2458         in_curr = orig;
2459         sec_curr = copy;
2460
2461         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2462         if (!nosec) {
2463                 rc = -ENOMEM;
2464                 goto out;
2465         }
2466
2467         nosec_save = nosec;
2468         fnosec = fsec = 1;
2469         in_save = in_end = orig;
2470
2471         do {
2472                 if (*in_end == '"')
2473                         open_quote = !open_quote;
2474                 if ((*in_end == ',' && open_quote == 0) ||
2475                                 *in_end == '\0') {
2476                         int len = in_end - in_curr;
2477
2478                         if (selinux_option(in_curr, len))
2479                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2480                         else
2481                                 take_option(&nosec, in_curr, &fnosec, len);
2482
2483                         in_curr = in_end + 1;
2484                 }
2485         } while (*in_end++);
2486
2487         strcpy(in_save, nosec_save);
2488         free_page((unsigned long)nosec_save);
2489 out:
2490         return rc;
2491 }
2492
2493 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2494 {
2495         const struct cred *cred = current_cred();
2496         struct common_audit_data ad;
2497         int rc;
2498
2499         rc = superblock_doinit(sb, data);
2500         if (rc)
2501                 return rc;
2502
2503         /* Allow all mounts performed by the kernel */
2504         if (flags & MS_KERNMOUNT)
2505                 return 0;
2506
2507         COMMON_AUDIT_DATA_INIT(&ad, FS);
2508         ad.u.fs.path.dentry = sb->s_root;
2509         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2510 }
2511
2512 static int selinux_sb_statfs(struct dentry *dentry)
2513 {
2514         const struct cred *cred = current_cred();
2515         struct common_audit_data ad;
2516
2517         COMMON_AUDIT_DATA_INIT(&ad, FS);
2518         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2519         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2520 }
2521
2522 static int selinux_mount(char *dev_name,
2523                          struct path *path,
2524                          char *type,
2525                          unsigned long flags,
2526                          void *data)
2527 {
2528         const struct cred *cred = current_cred();
2529
2530         if (flags & MS_REMOUNT)
2531                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2532                                            FILESYSTEM__REMOUNT, NULL);
2533         else
2534                 return dentry_has_perm(cred, path->mnt, path->dentry,
2535                                        FILE__MOUNTON);
2536 }
2537
2538 static int selinux_umount(struct vfsmount *mnt, int flags)
2539 {
2540         const struct cred *cred = current_cred();
2541
2542         return superblock_has_perm(cred, mnt->mnt_sb,
2543                                    FILESYSTEM__UNMOUNT, NULL);
2544 }
2545
2546 /* inode security operations */
2547
2548 static int selinux_inode_alloc_security(struct inode *inode)
2549 {
2550         return inode_alloc_security(inode);
2551 }
2552
2553 static void selinux_inode_free_security(struct inode *inode)
2554 {
2555         inode_free_security(inode);
2556 }
2557
2558 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2559                                        char **name, void **value,
2560                                        size_t *len)
2561 {
2562         const struct cred *cred = current_cred();
2563         const struct task_security_struct *tsec = cred->security;
2564         struct inode_security_struct *dsec;
2565         struct superblock_security_struct *sbsec;
2566         u32 sid, newsid, clen;
2567         int rc;
2568         char *namep = NULL, *context;
2569
2570         dsec = dir->i_security;
2571         sbsec = dir->i_sb->s_security;
2572
2573         sid = tsec->sid;
2574         newsid = tsec->create_sid;
2575
2576         if ((sbsec->flags & SE_SBINITIALIZED) &&
2577             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2578                 newsid = sbsec->mntpoint_sid;
2579         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2580                 rc = security_transition_sid(sid, dsec->sid,
2581                                              inode_mode_to_security_class(inode->i_mode),
2582                                              &newsid);
2583                 if (rc) {
2584                         printk(KERN_WARNING "%s:  "
2585                                "security_transition_sid failed, rc=%d (dev=%s "
2586                                "ino=%ld)\n",
2587                                __func__,
2588                                -rc, inode->i_sb->s_id, inode->i_ino);
2589                         return rc;
2590                 }
2591         }
2592
2593         /* Possibly defer initialization to selinux_complete_init. */
2594         if (sbsec->flags & SE_SBINITIALIZED) {
2595                 struct inode_security_struct *isec = inode->i_security;
2596                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2597                 isec->sid = newsid;
2598                 isec->initialized = 1;
2599         }
2600
2601         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2602                 return -EOPNOTSUPP;
2603
2604         if (name) {
2605                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2606                 if (!namep)
2607                         return -ENOMEM;
2608                 *name = namep;
2609         }
2610
2611         if (value && len) {
2612                 rc = security_sid_to_context_force(newsid, &context, &clen);
2613                 if (rc) {
2614                         kfree(namep);
2615                         return rc;
2616                 }
2617                 *value = context;
2618                 *len = clen;
2619         }
2620
2621         return 0;
2622 }
2623
2624 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2625 {
2626         return may_create(dir, dentry, SECCLASS_FILE);
2627 }
2628
2629 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2630 {
2631         return may_link(dir, old_dentry, MAY_LINK);
2632 }
2633
2634 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2635 {
2636         return may_link(dir, dentry, MAY_UNLINK);
2637 }
2638
2639 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2640 {
2641         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2642 }
2643
2644 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2645 {
2646         return may_create(dir, dentry, SECCLASS_DIR);
2647 }
2648
2649 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2650 {
2651         return may_link(dir, dentry, MAY_RMDIR);
2652 }
2653
2654 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2655 {
2656         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2657 }
2658
2659 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2660                                 struct inode *new_inode, struct dentry *new_dentry)
2661 {
2662         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2663 }
2664
2665 static int selinux_inode_readlink(struct dentry *dentry)
2666 {
2667         const struct cred *cred = current_cred();
2668
2669         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2670 }
2671
2672 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2673 {
2674         const struct cred *cred = current_cred();
2675
2676         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2677 }
2678
2679 static int selinux_inode_permission(struct inode *inode, int mask)
2680 {
2681         const struct cred *cred = current_cred();
2682
2683         if (!mask) {
2684                 /* No permission to check.  Existence test. */
2685                 return 0;
2686         }
2687
2688         return inode_has_perm(cred, inode,
2689                               file_mask_to_av(inode->i_mode, mask), NULL);
2690 }
2691
2692 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2693 {
2694         const struct cred *cred = current_cred();
2695         unsigned int ia_valid = iattr->ia_valid;
2696
2697         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2698         if (ia_valid & ATTR_FORCE) {
2699                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2700                               ATTR_FORCE);
2701                 if (!ia_valid)
2702                         return 0;
2703         }
2704
2705         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2706                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2707                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2708
2709         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2710 }
2711
2712 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2713 {
2714         const struct cred *cred = current_cred();
2715
2716         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2717 }
2718
2719 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2720 {
2721         const struct cred *cred = current_cred();
2722
2723         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2724                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2725                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2726                         if (!capable(CAP_SETFCAP))
2727                                 return -EPERM;
2728                 } else if (!capable(CAP_SYS_ADMIN)) {
2729                         /* A different attribute in the security namespace.
2730                            Restrict to administrator. */
2731                         return -EPERM;
2732                 }
2733         }
2734
2735         /* Not an attribute we recognize, so just check the
2736            ordinary setattr permission. */
2737         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2738 }
2739
2740 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2741                                   const void *value, size_t size, int flags)
2742 {
2743         struct inode *inode = dentry->d_inode;
2744         struct inode_security_struct *isec = inode->i_security;
2745         struct superblock_security_struct *sbsec;
2746         struct common_audit_data ad;
2747         u32 newsid, sid = current_sid();
2748         int rc = 0;
2749
2750         if (strcmp(name, XATTR_NAME_SELINUX))
2751                 return selinux_inode_setotherxattr(dentry, name);
2752
2753         sbsec = inode->i_sb->s_security;
2754         if (!(sbsec->flags & SE_SBLABELSUPP))
2755                 return -EOPNOTSUPP;
2756
2757         if (!is_owner_or_cap(inode))
2758                 return -EPERM;
2759
2760         COMMON_AUDIT_DATA_INIT(&ad, FS);
2761         ad.u.fs.path.dentry = dentry;
2762
2763         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2764                           FILE__RELABELFROM, &ad);
2765         if (rc)
2766                 return rc;
2767
2768         rc = security_context_to_sid(value, size, &newsid);
2769         if (rc == -EINVAL) {
2770                 if (!capable(CAP_MAC_ADMIN))
2771                         return rc;
2772                 rc = security_context_to_sid_force(value, size, &newsid);
2773         }
2774         if (rc)
2775                 return rc;
2776
2777         rc = avc_has_perm(sid, newsid, isec->sclass,
2778                           FILE__RELABELTO, &ad);
2779         if (rc)
2780                 return rc;
2781
2782         rc = security_validate_transition(isec->sid, newsid, sid,
2783                                           isec->sclass);
2784         if (rc)
2785                 return rc;
2786
2787         return avc_has_perm(newsid,
2788                             sbsec->sid,
2789                             SECCLASS_FILESYSTEM,
2790                             FILESYSTEM__ASSOCIATE,
2791                             &ad);
2792 }
2793
2794 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2795                                         const void *value, size_t size,
2796                                         int flags)
2797 {
2798         struct inode *inode = dentry->d_inode;
2799         struct inode_security_struct *isec = inode->i_security;
2800         u32 newsid;
2801         int rc;
2802
2803         if (strcmp(name, XATTR_NAME_SELINUX)) {
2804                 /* Not an attribute we recognize, so nothing to do. */
2805                 return;
2806         }
2807
2808         rc = security_context_to_sid_force(value, size, &newsid);
2809         if (rc) {
2810                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2811                        "for (%s, %lu), rc=%d\n",
2812                        inode->i_sb->s_id, inode->i_ino, -rc);
2813                 return;
2814         }
2815
2816         isec->sid = newsid;
2817         return;
2818 }
2819
2820 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2821 {
2822         const struct cred *cred = current_cred();
2823
2824         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2825 }
2826
2827 static int selinux_inode_listxattr(struct dentry *dentry)
2828 {
2829         const struct cred *cred = current_cred();
2830
2831         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2832 }
2833
2834 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2835 {
2836         if (strcmp(name, XATTR_NAME_SELINUX))
2837                 return selinux_inode_setotherxattr(dentry, name);
2838
2839         /* No one is allowed to remove a SELinux security label.
2840            You can change the label, but all data must be labeled. */
2841         return -EACCES;
2842 }
2843
2844 /*
2845  * Copy the inode security context value to the user.
2846  *
2847  * Permission check is handled by selinux_inode_getxattr hook.
2848  */
2849 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2850 {
2851         u32 size;
2852         int error;
2853         char *context = NULL;
2854         struct inode_security_struct *isec = inode->i_security;
2855
2856         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2857                 return -EOPNOTSUPP;
2858
2859         /*
2860          * If the caller has CAP_MAC_ADMIN, then get the raw context
2861          * value even if it is not defined by current policy; otherwise,
2862          * use the in-core value under current policy.
2863          * Use the non-auditing forms of the permission checks since
2864          * getxattr may be called by unprivileged processes commonly
2865          * and lack of permission just means that we fall back to the
2866          * in-core context value, not a denial.
2867          */
2868         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2869                                 SECURITY_CAP_NOAUDIT);
2870         if (!error)
2871                 error = security_sid_to_context_force(isec->sid, &context,
2872                                                       &size);
2873         else
2874                 error = security_sid_to_context(isec->sid, &context, &size);
2875         if (error)
2876                 return error;
2877         error = size;
2878         if (alloc) {
2879                 *buffer = context;
2880                 goto out_nofree;
2881         }
2882         kfree(context);
2883 out_nofree:
2884         return error;
2885 }
2886
2887 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2888                                      const void *value, size_t size, int flags)
2889 {
2890         struct inode_security_struct *isec = inode->i_security;
2891         u32 newsid;
2892         int rc;
2893
2894         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2895                 return -EOPNOTSUPP;
2896
2897         if (!value || !size)
2898                 return -EACCES;
2899
2900         rc = security_context_to_sid((void *)value, size, &newsid);
2901         if (rc)
2902                 return rc;
2903
2904         isec->sid = newsid;
2905         isec->initialized = 1;
2906         return 0;
2907 }
2908
2909 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2910 {
2911         const int len = sizeof(XATTR_NAME_SELINUX);
2912         if (buffer && len <= buffer_size)
2913                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2914         return len;
2915 }
2916
2917 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2918 {
2919         struct inode_security_struct *isec = inode->i_security;
2920         *secid = isec->sid;
2921 }
2922
2923 /* file security operations */
2924
2925 static int selinux_revalidate_file_permission(struct file *file, int mask)
2926 {
2927         const struct cred *cred = current_cred();
2928         struct inode *inode = file->f_path.dentry->d_inode;
2929
2930         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2931         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2932                 mask |= MAY_APPEND;
2933
2934         return file_has_perm(cred, file,
2935                              file_mask_to_av(inode->i_mode, mask));
2936 }
2937
2938 static int selinux_file_permission(struct file *file, int mask)
2939 {
2940         struct inode *inode = file->f_path.dentry->d_inode;
2941         struct file_security_struct *fsec = file->f_security;
2942         struct inode_security_struct *isec = inode->i_security;
2943         u32 sid = current_sid();
2944
2945         if (!mask)
2946                 /* No permission to check.  Existence test. */
2947                 return 0;
2948
2949         if (sid == fsec->sid && fsec->isid == isec->sid &&
2950             fsec->pseqno == avc_policy_seqno())
2951                 /* No change since dentry_open check. */
2952                 return 0;
2953
2954         return selinux_revalidate_file_permission(file, mask);
2955 }
2956
2957 static int selinux_file_alloc_security(struct file *file)
2958 {
2959         return file_alloc_security(file);
2960 }
2961
2962 static void selinux_file_free_security(struct file *file)
2963 {
2964         file_free_security(file);
2965 }
2966
2967 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2968                               unsigned long arg)
2969 {
2970         const struct cred *cred = current_cred();
2971         u32 av = 0;
2972
2973         if (_IOC_DIR(cmd) & _IOC_WRITE)
2974                 av |= FILE__WRITE;
2975         if (_IOC_DIR(cmd) & _IOC_READ)
2976                 av |= FILE__READ;
2977         if (!av)
2978                 av = FILE__IOCTL;
2979
2980         return file_has_perm(cred, file, av);
2981 }
2982
2983 static int default_noexec;
2984
2985 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2986 {
2987         const struct cred *cred = current_cred();
2988         int rc = 0;
2989
2990         if (default_noexec &&
2991             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2992                 /*
2993                  * We are making executable an anonymous mapping or a
2994                  * private file mapping that will also be writable.
2995                  * This has an additional check.
2996                  */
2997                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2998                 if (rc)
2999                         goto error;
3000         }
3001
3002         if (file) {
3003                 /* read access is always possible with a mapping */
3004                 u32 av = FILE__READ;
3005
3006                 /* write access only matters if the mapping is shared */
3007                 if (shared && (prot & PROT_WRITE))
3008                         av |= FILE__WRITE;
3009
3010                 if (prot & PROT_EXEC)
3011                         av |= FILE__EXECUTE;
3012
3013                 return file_has_perm(cred, file, av);
3014         }
3015
3016 error:
3017         return rc;
3018 }
3019
3020 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3021                              unsigned long prot, unsigned long flags,
3022                              unsigned long addr, unsigned long addr_only)
3023 {
3024         int rc = 0;
3025         u32 sid = current_sid();
3026
3027         /*
3028          * notice that we are intentionally putting the SELinux check before
3029          * the secondary cap_file_mmap check.  This is such a likely attempt
3030          * at bad behaviour/exploit that we always want to get the AVC, even
3031          * if DAC would have also denied the operation.
3032          */
3033         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3034                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3035                                   MEMPROTECT__MMAP_ZERO, NULL);
3036                 if (rc)
3037                         return rc;
3038         }
3039
3040         /* do DAC check on address space usage */
3041         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3042         if (rc || addr_only)
3043                 return rc;
3044
3045         if (selinux_checkreqprot)
3046                 prot = reqprot;
3047
3048         return file_map_prot_check(file, prot,
3049                                    (flags & MAP_TYPE) == MAP_SHARED);
3050 }
3051
3052 static int selinux_file_mprotect(struct vm_area_struct *vma,
3053                                  unsigned long reqprot,
3054                                  unsigned long prot)
3055 {
3056         const struct cred *cred = current_cred();
3057
3058         if (selinux_checkreqprot)
3059                 prot = reqprot;
3060
3061         if (default_noexec &&
3062             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3063                 int rc = 0;
3064                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3065                     vma->vm_end <= vma->vm_mm->brk) {
3066                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3067                 } else if (!vma->vm_file &&
3068                            vma->vm_start <= vma->vm_mm->start_stack &&
3069                            vma->vm_end >= vma->vm_mm->start_stack) {
3070                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3071                 } else if (vma->vm_file && vma->anon_vma) {
3072                         /*
3073                          * We are making executable a file mapping that has
3074                          * had some COW done. Since pages might have been
3075                          * written, check ability to execute the possibly
3076                          * modified content.  This typically should only
3077                          * occur for text relocations.
3078                          */
3079                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3080                 }
3081                 if (rc)
3082                         return rc;
3083         }
3084
3085         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3086 }
3087
3088 static int selinux_file_lock(struct file *file, unsigned int cmd)
3089 {
3090         const struct cred *cred = current_cred();
3091
3092         return file_has_perm(cred, file, FILE__LOCK);
3093 }
3094
3095 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3096                               unsigned long arg)
3097 {
3098         const struct cred *cred = current_cred();
3099         int err = 0;
3100
3101         switch (cmd) {
3102         case F_SETFL:
3103                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3104                         err = -EINVAL;
3105                         break;
3106                 }
3107
3108                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3109                         err = file_has_perm(cred, file, FILE__WRITE);
3110                         break;
3111                 }
3112                 /* fall through */
3113         case F_SETOWN:
3114         case F_SETSIG:
3115         case F_GETFL:
3116         case F_GETOWN:
3117         case F_GETSIG:
3118                 /* Just check FD__USE permission */
3119                 err = file_has_perm(cred, file, 0);
3120                 break;
3121         case F_GETLK:
3122         case F_SETLK:
3123         case F_SETLKW:
3124 #if BITS_PER_LONG == 32
3125         case F_GETLK64:
3126         case F_SETLK64:
3127         case F_SETLKW64:
3128 #endif
3129                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3130                         err = -EINVAL;
3131                         break;
3132                 }
3133                 err = file_has_perm(cred, file, FILE__LOCK);
3134                 break;
3135         }
3136
3137         return err;
3138 }
3139
3140 static int selinux_file_set_fowner(struct file *file)
3141 {
3142         struct file_security_struct *fsec;
3143
3144         fsec = file->f_security;
3145         fsec->fown_sid = current_sid();
3146
3147         return 0;
3148 }
3149
3150 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3151                                        struct fown_struct *fown, int signum)
3152 {
3153         struct file *file;
3154         u32 sid = task_sid(tsk);
3155         u32 perm;
3156         struct file_security_struct *fsec;
3157
3158         /* struct fown_struct is never outside the context of a struct file */
3159         file = container_of(fown, struct file, f_owner);
3160
3161         fsec = file->f_security;
3162
3163         if (!signum)
3164                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3165         else
3166                 perm = signal_to_av(signum);
3167
3168         return avc_has_perm(fsec->fown_sid, sid,
3169                             SECCLASS_PROCESS, perm, NULL);
3170 }
3171
3172 static int selinux_file_receive(struct file *file)
3173 {
3174         const struct cred *cred = current_cred();
3175
3176         return file_has_perm(cred, file, file_to_av(file));
3177 }
3178
3179 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3180 {
3181         struct file_security_struct *fsec;
3182         struct inode *inode;
3183         struct inode_security_struct *isec;
3184
3185         inode = file->f_path.dentry->d_inode;
3186         fsec = file->f_security;
3187         isec = inode->i_security;
3188         /*
3189          * Save inode label and policy sequence number
3190          * at open-time so that selinux_file_permission
3191          * can determine whether revalidation is necessary.
3192          * Task label is already saved in the file security
3193          * struct as its SID.
3194          */
3195         fsec->isid = isec->sid;
3196         fsec->pseqno = avc_policy_seqno();
3197         /*
3198          * Since the inode label or policy seqno may have changed
3199          * between the selinux_inode_permission check and the saving
3200          * of state above, recheck that access is still permitted.
3201          * Otherwise, access might never be revalidated against the
3202          * new inode label or new policy.
3203          * This check is not redundant - do not remove.
3204          */
3205         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3206 }
3207
3208 /* task security operations */
3209
3210 static int selinux_task_create(unsigned long clone_flags)
3211 {
3212         return current_has_perm(current, PROCESS__FORK);
3213 }
3214
3215 /*
3216  * allocate the SELinux part of blank credentials
3217  */
3218 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3219 {
3220         struct task_security_struct *tsec;
3221
3222         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3223         if (!tsec)
3224                 return -ENOMEM;
3225
3226         cred->security = tsec;
3227         return 0;
3228 }
3229
3230 /*
3231  * detach and free the LSM part of a set of credentials
3232  */
3233 static void selinux_cred_free(struct cred *cred)
3234 {
3235         struct task_security_struct *tsec = cred->security;
3236
3237         /*
3238          * cred->security == NULL if security_cred_alloc_blank() or
3239          * security_prepare_creds() returned an error.
3240          */
3241         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3242         cred->security = (void *) 0x7UL;
3243         kfree(tsec);
3244 }
3245
3246 /*
3247  * prepare a new set of credentials for modification
3248  */
3249 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3250                                 gfp_t gfp)
3251 {
3252         const struct task_security_struct *old_tsec;
3253         struct task_security_struct *tsec;
3254
3255         old_tsec = old->security;
3256
3257         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3258         if (!tsec)
3259                 return -ENOMEM;
3260
3261         new->security = tsec;
3262         return 0;
3263 }
3264
3265 /*
3266  * transfer the SELinux data to a blank set of creds
3267  */
3268 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3269 {
3270         const struct task_security_struct *old_tsec = old->security;
3271         struct task_security_struct *tsec = new->security;
3272
3273         *tsec = *old_tsec;
3274 }
3275
3276 /*
3277  * set the security data for a kernel service
3278  * - all the creation contexts are set to unlabelled
3279  */
3280 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3281 {
3282         struct task_security_struct *tsec = new->security;
3283         u32 sid = current_sid();
3284         int ret;
3285
3286         ret = avc_has_perm(sid, secid,
3287                            SECCLASS_KERNEL_SERVICE,
3288                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3289                            NULL);
3290         if (ret == 0) {
3291                 tsec->sid = secid;
3292                 tsec->create_sid = 0;
3293                 tsec->keycreate_sid = 0;
3294                 tsec->sockcreate_sid = 0;
3295         }
3296         return ret;
3297 }
3298
3299 /*
3300  * set the file creation context in a security record to the same as the
3301  * objective context of the specified inode
3302  */
3303 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3304 {
3305         struct inode_security_struct *isec = inode->i_security;
3306         struct task_security_struct *tsec = new->security;
3307         u32 sid = current_sid();
3308         int ret;
3309
3310         ret = avc_has_perm(sid, isec->sid,
3311                            SECCLASS_KERNEL_SERVICE,
3312                            KERNEL_SERVICE__CREATE_FILES_AS,
3313                            NULL);
3314
3315         if (ret == 0)
3316                 tsec->create_sid = isec->sid;
3317         return ret;
3318 }
3319
3320 static int selinux_kernel_module_request(char *kmod_name)
3321 {
3322         u32 sid;
3323         struct common_audit_data ad;
3324
3325         sid = task_sid(current);
3326
3327         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3328         ad.u.kmod_name = kmod_name;
3329
3330         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3331                             SYSTEM__MODULE_REQUEST, &ad);
3332 }
3333
3334 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3335 {
3336         return current_has_perm(p, PROCESS__SETPGID);
3337 }
3338
3339 static int selinux_task_getpgid(struct task_struct *p)
3340 {
3341         return current_has_perm(p, PROCESS__GETPGID);
3342 }
3343
3344 static int selinux_task_getsid(struct task_struct *p)
3345 {
3346         return current_has_perm(p, PROCESS__GETSESSION);
3347 }
3348
3349 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3350 {
3351         *secid = task_sid(p);
3352 }
3353
3354 static int selinux_task_setnice(struct task_struct *p, int nice)
3355 {
3356         int rc;
3357
3358         rc = cap_task_setnice(p, nice);
3359         if (rc)
3360                 return rc;
3361
3362         return current_has_perm(p, PROCESS__SETSCHED);
3363 }
3364
3365 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3366 {
3367         int rc;
3368
3369         rc = cap_task_setioprio(p, ioprio);
3370         if (rc)
3371                 return rc;
3372
3373         return current_has_perm(p, PROCESS__SETSCHED);
3374 }
3375
3376 static int selinux_task_getioprio(struct task_struct *p)
3377 {
3378         return current_has_perm(p, PROCESS__GETSCHED);
3379 }
3380
3381 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3382 {
3383         struct rlimit *old_rlim = current->signal->rlim + resource;
3384
3385         /* Control the ability to change the hard limit (whether
3386            lowering or raising it), so that the hard limit can
3387            later be used as a safe reset point for the soft limit
3388            upon context transitions.  See selinux_bprm_committing_creds. */
3389         if (old_rlim->rlim_max != new_rlim->rlim_max)
3390                 return current_has_perm(current, PROCESS__SETRLIMIT);
3391
3392         return 0;
3393 }
3394
3395 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3396 {
3397         int rc;
3398
3399         rc = cap_task_setscheduler(p, policy, lp);
3400         if (rc)
3401                 return rc;
3402
3403         return current_has_perm(p, PROCESS__SETSCHED);
3404 }
3405
3406 static int selinux_task_getscheduler(struct task_struct *p)
3407 {
3408         return current_has_perm(p, PROCESS__GETSCHED);
3409 }
3410
3411 static int selinux_task_movememory(struct task_struct *p)
3412 {
3413         return current_has_perm(p, PROCESS__SETSCHED);
3414 }
3415
3416 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3417                                 int sig, u32 secid)
3418 {
3419         u32 perm;
3420         int rc;
3421
3422         if (!sig)
3423                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3424         else
3425                 perm = signal_to_av(sig);
3426         if (secid)
3427                 rc = avc_has_perm(secid, task_sid(p),
3428                                   SECCLASS_PROCESS, perm, NULL);
3429         else
3430                 rc = current_has_perm(p, perm);
3431         return rc;
3432 }
3433
3434 static int selinux_task_wait(struct task_struct *p)
3435 {
3436         return task_has_perm(p, current, PROCESS__SIGCHLD);
3437 }
3438
3439 static void selinux_task_to_inode(struct task_struct *p,
3440                                   struct inode *inode)
3441 {
3442         struct inode_security_struct *isec = inode->i_security;
3443         u32 sid = task_sid(p);
3444
3445         isec->sid = sid;
3446         isec->initialized = 1;
3447 }
3448
3449 /* Returns error only if unable to parse addresses */
3450 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3451                         struct common_audit_data *ad, u8 *proto)
3452 {
3453         int offset, ihlen, ret = -EINVAL;
3454         struct iphdr _iph, *ih;
3455
3456         offset = skb_network_offset(skb);
3457         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3458         if (ih == NULL)
3459                 goto out;
3460
3461         ihlen = ih->ihl * 4;
3462         if (ihlen < sizeof(_iph))
3463                 goto out;
3464
3465         ad->u.net.v4info.saddr = ih->saddr;
3466         ad->u.net.v4info.daddr = ih->daddr;
3467         ret = 0;
3468
3469         if (proto)
3470                 *proto = ih->protocol;
3471
3472         switch (ih->protocol) {
3473         case IPPROTO_TCP: {
3474                 struct tcphdr _tcph, *th;
3475
3476                 if (ntohs(ih->frag_off) & IP_OFFSET)
3477                         break;
3478
3479                 offset += ihlen;
3480                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3481                 if (th == NULL)
3482                         break;
3483
3484                 ad->u.net.sport = th->source;
3485                 ad->u.net.dport = th->dest;
3486                 break;
3487         }
3488
3489         case IPPROTO_UDP: {
3490                 struct udphdr _udph, *uh;
3491
3492                 if (ntohs(ih->frag_off) & IP_OFFSET)
3493                         break;
3494
3495                 offset += ihlen;
3496                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3497                 if (uh == NULL)
3498                         break;
3499
3500                 ad->u.net.sport = uh->source;
3501                 ad->u.net.dport = uh->dest;
3502                 break;
3503         }
3504
3505         case IPPROTO_DCCP: {
3506                 struct dccp_hdr _dccph, *dh;
3507
3508                 if (ntohs(ih->frag_off) & IP_OFFSET)
3509                         break;
3510
3511                 offset += ihlen;
3512                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3513                 if (dh == NULL)
3514                         break;
3515
3516                 ad->u.net.sport = dh->dccph_sport;
3517                 ad->u.net.dport = dh->dccph_dport;
3518                 break;
3519         }
3520
3521         default:
3522                 break;
3523         }
3524 out:
3525         return ret;
3526 }
3527
3528 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3529
3530 /* Returns error only if unable to parse addresses */
3531 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3532                         struct common_audit_data *ad, u8 *proto)
3533 {
3534         u8 nexthdr;
3535         int ret = -EINVAL, offset;
3536         struct ipv6hdr _ipv6h, *ip6;
3537
3538         offset = skb_network_offset(skb);
3539         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3540         if (ip6 == NULL)
3541                 goto out;
3542
3543         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3544         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3545         ret = 0;
3546
3547         nexthdr = ip6->nexthdr;
3548         offset += sizeof(_ipv6h);
3549         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3550         if (offset < 0)
3551                 goto out;
3552
3553         if (proto)
3554                 *proto = nexthdr;
3555
3556         switch (nexthdr) {
3557         case IPPROTO_TCP: {
3558                 struct tcphdr _tcph, *th;
3559
3560                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3561                 if (th == NULL)
3562                         break;
3563
3564                 ad->u.net.sport = th->source;
3565                 ad->u.net.dport = th->dest;
3566                 break;
3567         }
3568
3569         case IPPROTO_UDP: {
3570                 struct udphdr _udph, *uh;
3571
3572                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3573                 if (uh == NULL)
3574                         break;
3575
3576                 ad->u.net.sport = uh->source;
3577                 ad->u.net.dport = uh->dest;
3578                 break;
3579         }
3580
3581         case IPPROTO_DCCP: {
3582                 struct dccp_hdr _dccph, *dh;
3583
3584                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3585                 if (dh == NULL)
3586                         break;
3587
3588                 ad->u.net.sport = dh->dccph_sport;
3589                 ad->u.net.dport = dh->dccph_dport;
3590                 break;
3591         }
3592
3593         /* includes fragments */
3594         default:
3595                 break;
3596         }
3597 out:
3598         return ret;
3599 }
3600
3601 #endif /* IPV6 */
3602
3603 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3604                              char **_addrp, int src, u8 *proto)
3605 {
3606         char *addrp;
3607         int ret;
3608
3609         switch (ad->u.net.family) {
3610         case PF_INET:
3611                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3612                 if (ret)
3613                         goto parse_error;
3614                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3615                                        &ad->u.net.v4info.daddr);
3616                 goto okay;
3617
3618 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3619         case PF_INET6:
3620                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3621                 if (ret)
3622                         goto parse_error;
3623                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3624                                        &ad->u.net.v6info.daddr);
3625                 goto okay;
3626 #endif  /* IPV6 */
3627         default:
3628                 addrp = NULL;
3629                 goto okay;
3630         }
3631
3632 parse_error:
3633         printk(KERN_WARNING
3634                "SELinux: failure in selinux_parse_skb(),"
3635                " unable to parse packet\n");
3636         return ret;
3637
3638 okay:
3639         if (_addrp)
3640                 *_addrp = addrp;
3641         return 0;
3642 }
3643
3644 /**
3645  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3646  * @skb: the packet
3647  * @family: protocol family
3648  * @sid: the packet's peer label SID
3649  *
3650  * Description:
3651  * Check the various different forms of network peer labeling and determine
3652  * the peer label/SID for the packet; most of the magic actually occurs in
3653  * the security server function security_net_peersid_cmp().  The function
3654  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3655  * or -EACCES if @sid is invalid due to inconsistencies with the different
3656  * peer labels.
3657  *
3658  */
3659 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3660 {
3661         int err;
3662         u32 xfrm_sid;
3663         u32 nlbl_sid;
3664         u32 nlbl_type;
3665
3666         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3667         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3668
3669         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3670         if (unlikely(err)) {
3671                 printk(KERN_WARNING
3672                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3673                        " unable to determine packet's peer label\n");
3674                 return -EACCES;
3675         }
3676
3677         return 0;
3678 }
3679
3680 /* socket security operations */
3681 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3682                            u32 perms)
3683 {
3684         struct inode_security_struct *isec;
3685         struct common_audit_data ad;
3686         u32 sid;
3687         int err = 0;
3688
3689         isec = SOCK_INODE(sock)->i_security;
3690
3691         if (isec->sid == SECINITSID_KERNEL)
3692                 goto out;
3693         sid = task_sid(task);
3694
3695         COMMON_AUDIT_DATA_INIT(&ad, NET);
3696         ad.u.net.sk = sock->sk;
3697         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3698
3699 out:
3700         return err;
3701 }
3702
3703 static int selinux_socket_create(int family, int type,
3704                                  int protocol, int kern)
3705 {
3706         const struct cred *cred = current_cred();
3707         const struct task_security_struct *tsec = cred->security;
3708         u32 sid, newsid;
3709         u16 secclass;
3710         int err = 0;
3711
3712         if (kern)
3713                 goto out;
3714
3715         sid = tsec->sid;
3716         newsid = tsec->sockcreate_sid ?: sid;
3717
3718         secclass = socket_type_to_security_class(family, type, protocol);
3719         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3720
3721 out:
3722         return err;
3723 }
3724
3725 static int selinux_socket_post_create(struct socket *sock, int family,
3726                                       int type, int protocol, int kern)
3727 {
3728         const struct cred *cred = current_cred();
3729         const struct task_security_struct *tsec = cred->security;
3730         struct inode_security_struct *isec;
3731         struct sk_security_struct *sksec;
3732         u32 sid, newsid;
3733         int err = 0;
3734
3735         sid = tsec->sid;
3736         newsid = tsec->sockcreate_sid;
3737
3738         isec = SOCK_INODE(sock)->i_security;
3739
3740         if (kern)
3741                 isec->sid = SECINITSID_KERNEL;
3742         else if (newsid)
3743                 isec->sid = newsid;
3744         else
3745                 isec->sid = sid;
3746
3747         isec->sclass = socket_type_to_security_class(family, type, protocol);
3748         isec->initialized = 1;
3749
3750         if (sock->sk) {
3751                 sksec = sock->sk->sk_security;
3752                 sksec->sid = isec->sid;
3753                 sksec->sclass = isec->sclass;
3754                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3755         }
3756
3757         return err;
3758 }
3759
3760 /* Range of port numbers used to automatically bind.
3761    Need to determine whether we should perform a name_bind
3762    permission check between the socket and the port number. */
3763
3764 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3765 {
3766         u16 family;
3767         int err;
3768
3769         err = socket_has_perm(current, sock, SOCKET__BIND);
3770         if (err)
3771                 goto out;
3772
3773         /*
3774          * If PF_INET or PF_INET6, check name_bind permission for the port.
3775          * Multiple address binding for SCTP is not supported yet: we just
3776          * check the first address now.
3777          */
3778         family = sock->sk->sk_family;
3779         if (family == PF_INET || family == PF_INET6) {
3780                 char *addrp;
3781                 struct inode_security_struct *isec;
3782                 struct common_audit_data ad;
3783                 struct sockaddr_in *addr4 = NULL;
3784                 struct sockaddr_in6 *addr6 = NULL;
3785                 unsigned short snum;
3786                 struct sock *sk = sock->sk;
3787                 u32 sid, node_perm;
3788
3789                 isec = SOCK_INODE(sock)->i_security;
3790
3791                 if (family == PF_INET) {
3792                         addr4 = (struct sockaddr_in *)address;
3793                         snum = ntohs(addr4->sin_port);
3794                         addrp = (char *)&addr4->sin_addr.s_addr;
3795                 } else {
3796                         addr6 = (struct sockaddr_in6 *)address;
3797                         snum = ntohs(addr6->sin6_port);
3798                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3799                 }
3800
3801                 if (snum) {
3802                         int low, high;
3803
3804                         inet_get_local_port_range(&low, &high);
3805
3806                         if (snum < max(PROT_SOCK, low) || snum > high) {
3807                                 err = sel_netport_sid(sk->sk_protocol,
3808                                                       snum, &sid);
3809                                 if (err)
3810                                         goto out;
3811                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3812                                 ad.u.net.sport = htons(snum);
3813                                 ad.u.net.family = family;
3814                                 err = avc_has_perm(isec->sid, sid,
3815                                                    isec->sclass,
3816                                                    SOCKET__NAME_BIND, &ad);
3817                                 if (err)
3818                                         goto out;
3819                         }
3820                 }
3821
3822                 switch (isec->sclass) {
3823                 case SECCLASS_TCP_SOCKET:
3824                         node_perm = TCP_SOCKET__NODE_BIND;
3825                         break;
3826
3827                 case SECCLASS_UDP_SOCKET:
3828                         node_perm = UDP_SOCKET__NODE_BIND;
3829                         break;
3830
3831                 case SECCLASS_DCCP_SOCKET:
3832                         node_perm = DCCP_SOCKET__NODE_BIND;
3833                         break;
3834
3835                 default:
3836                         node_perm = RAWIP_SOCKET__NODE_BIND;
3837                         break;
3838                 }
3839
3840                 err = sel_netnode_sid(addrp, family, &sid);
3841                 if (err)
3842                         goto out;
3843
3844                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3845                 ad.u.net.sport = htons(snum);
3846                 ad.u.net.family = family;
3847
3848                 if (family == PF_INET)
3849                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3850                 else
3851                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3852
3853                 err = avc_has_perm(isec->sid, sid,
3854                                    isec->sclass, node_perm, &ad);
3855                 if (err)
3856                         goto out;
3857         }
3858 out:
3859         return err;
3860 }
3861
3862 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3863 {
3864         struct sock *sk = sock->sk;
3865         struct inode_security_struct *isec;
3866         int err;
3867
3868         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3869         if (err)
3870                 return err;
3871
3872         /*
3873          * If a TCP or DCCP socket, check name_connect permission for the port.
3874          */
3875         isec = SOCK_INODE(sock)->i_security;
3876         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3877             isec->sclass == SECCLASS_DCCP_SOCKET) {
3878                 struct common_audit_data ad;
3879                 struct sockaddr_in *addr4 = NULL;
3880                 struct sockaddr_in6 *addr6 = NULL;
3881                 unsigned short snum;
3882                 u32 sid, perm;
3883
3884                 if (sk->sk_family == PF_INET) {
3885                         addr4 = (struct sockaddr_in *)address;
3886                         if (addrlen < sizeof(struct sockaddr_in))
3887                                 return -EINVAL;
3888                         snum = ntohs(addr4->sin_port);
3889                 } else {
3890                         addr6 = (struct sockaddr_in6 *)address;
3891                         if (addrlen < SIN6_LEN_RFC2133)
3892                                 return -EINVAL;
3893                         snum = ntohs(addr6->sin6_port);
3894                 }
3895
3896                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3897                 if (err)
3898                         goto out;
3899
3900                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3901                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3902
3903                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3904                 ad.u.net.dport = htons(snum);
3905                 ad.u.net.family = sk->sk_family;
3906                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3907                 if (err)
3908                         goto out;
3909         }
3910
3911         err = selinux_netlbl_socket_connect(sk, address);
3912
3913 out:
3914         return err;
3915 }
3916
3917 static int selinux_socket_listen(struct socket *sock, int backlog)
3918 {
3919         return socket_has_perm(current, sock, SOCKET__LISTEN);
3920 }
3921
3922 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3923 {
3924         int err;
3925         struct inode_security_struct *isec;
3926         struct inode_security_struct *newisec;
3927
3928         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3929         if (err)
3930                 return err;
3931
3932         newisec = SOCK_INODE(newsock)->i_security;
3933
3934         isec = SOCK_INODE(sock)->i_security;
3935         newisec->sclass = isec->sclass;
3936         newisec->sid = isec->sid;
3937         newisec->initialized = 1;
3938
3939         return 0;
3940 }
3941
3942 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3943                                   int size)
3944 {
3945         return socket_has_perm(current, sock, SOCKET__WRITE);
3946 }
3947
3948 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3949                                   int size, int flags)
3950 {
3951         return socket_has_perm(current, sock, SOCKET__READ);
3952 }
3953
3954 static int selinux_socket_getsockname(struct socket *sock)
3955 {
3956         return socket_has_perm(current, sock, SOCKET__GETATTR);
3957 }
3958
3959 static int selinux_socket_getpeername(struct socket *sock)
3960 {
3961         return socket_has_perm(current, sock, SOCKET__GETATTR);
3962 }
3963
3964 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3965 {
3966         int err;
3967
3968         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3969         if (err)
3970                 return err;
3971
3972         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3973 }
3974
3975 static int selinux_socket_getsockopt(struct socket *sock, int level,
3976                                      int optname)
3977 {
3978         return socket_has_perm(current, sock, SOCKET__GETOPT);
3979 }
3980
3981 static int selinux_socket_shutdown(struct socket *sock, int how)
3982 {
3983         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3984 }
3985
3986 static int selinux_socket_unix_stream_connect(struct socket *sock,
3987                                               struct socket *other,
3988                                               struct sock *newsk)
3989 {
3990         struct sk_security_struct *sksec;
3991         struct inode_security_struct *isec;
3992         struct inode_security_struct *other_isec;
3993         struct common_audit_data ad;
3994         int err;
3995
3996         isec = SOCK_INODE(sock)->i_security;
3997         other_isec = SOCK_INODE(other)->i_security;
3998
3999         COMMON_AUDIT_DATA_INIT(&ad, NET);
4000         ad.u.net.sk = other->sk;
4001
4002         err = avc_has_perm(isec->sid, other_isec->sid,
4003                            isec->sclass,
4004                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4005         if (err)
4006                 return err;
4007
4008         /* connecting socket */
4009         sksec = sock->sk->sk_security;
4010         sksec->peer_sid = other_isec->sid;
4011
4012         /* server child socket */
4013         sksec = newsk->sk_security;
4014         sksec->peer_sid = isec->sid;
4015         err = security_sid_mls_copy(other_isec->sid, sksec->peer_sid, &sksec->sid);
4016
4017         return err;
4018 }
4019
4020 static int selinux_socket_unix_may_send(struct socket *sock,
4021                                         struct socket *other)
4022 {
4023         struct inode_security_struct *isec;
4024         struct inode_security_struct *other_isec;
4025         struct common_audit_data ad;
4026         int err;
4027
4028         isec = SOCK_INODE(sock)->i_security;
4029         other_isec = SOCK_INODE(other)->i_security;
4030
4031         COMMON_AUDIT_DATA_INIT(&ad, NET);
4032         ad.u.net.sk = other->sk;
4033
4034         err = avc_has_perm(isec->sid, other_isec->sid,
4035                            isec->sclass, SOCKET__SENDTO, &ad);
4036         if (err)
4037                 return err;
4038
4039         return 0;
4040 }
4041
4042 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4043                                     u32 peer_sid,
4044                                     struct common_audit_data *ad)
4045 {
4046         int err;
4047         u32 if_sid;
4048         u32 node_sid;
4049
4050         err = sel_netif_sid(ifindex, &if_sid);
4051         if (err)
4052                 return err;
4053         err = avc_has_perm(peer_sid, if_sid,
4054                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4055         if (err)
4056                 return err;
4057
4058         err = sel_netnode_sid(addrp, family, &node_sid);
4059         if (err)
4060                 return err;
4061         return avc_has_perm(peer_sid, node_sid,
4062                             SECCLASS_NODE, NODE__RECVFROM, ad);
4063 }
4064
4065 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4066                                        u16 family)
4067 {
4068         int err = 0;
4069         struct sk_security_struct *sksec = sk->sk_security;
4070         u32 peer_sid;
4071         u32 sk_sid = sksec->sid;
4072         struct common_audit_data ad;
4073         char *addrp;
4074
4075         COMMON_AUDIT_DATA_INIT(&ad, NET);
4076         ad.u.net.netif = skb->skb_iif;
4077         ad.u.net.family = family;
4078         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4079         if (err)
4080                 return err;
4081
4082         if (selinux_secmark_enabled()) {
4083                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4084                                    PACKET__RECV, &ad);
4085                 if (err)
4086                         return err;
4087         }
4088
4089         if (selinux_policycap_netpeer) {
4090                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4091                 if (err)
4092                         return err;
4093                 err = avc_has_perm(sk_sid, peer_sid,
4094                                    SECCLASS_PEER, PEER__RECV, &ad);
4095                 if (err)
4096                         selinux_netlbl_err(skb, err, 0);
4097         } else {
4098                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4099                 if (err)
4100                         return err;
4101                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4102         }
4103
4104         return err;
4105 }
4106
4107 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4108 {
4109         int err;
4110         struct sk_security_struct *sksec = sk->sk_security;
4111         u16 family = sk->sk_family;
4112         u32 sk_sid = sksec->sid;
4113         struct common_audit_data ad;
4114         char *addrp;
4115         u8 secmark_active;
4116         u8 peerlbl_active;
4117
4118         if (family != PF_INET && family != PF_INET6)
4119                 return 0;
4120
4121         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4122         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4123                 family = PF_INET;
4124
4125         /* If any sort of compatibility mode is enabled then handoff processing
4126          * to the selinux_sock_rcv_skb_compat() function to deal with the
4127          * special handling.  We do this in an attempt to keep this function
4128          * as fast and as clean as possible. */
4129         if (!selinux_policycap_netpeer)
4130                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4131
4132         secmark_active = selinux_secmark_enabled();
4133         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4134         if (!secmark_active && !peerlbl_active)
4135                 return 0;
4136
4137         COMMON_AUDIT_DATA_INIT(&ad, NET);
4138         ad.u.net.netif = skb->skb_iif;
4139         ad.u.net.family = family;
4140         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4141         if (err)
4142                 return err;
4143
4144         if (peerlbl_active) {
4145                 u32 peer_sid;
4146
4147                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4148                 if (err)
4149                         return err;
4150                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4151                                                peer_sid, &ad);
4152                 if (err) {
4153                         selinux_netlbl_err(skb, err, 0);
4154                         return err;
4155                 }
4156                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4157                                    PEER__RECV, &ad);
4158                 if (err)
4159                         selinux_netlbl_err(skb, err, 0);
4160         }
4161
4162         if (secmark_active) {
4163                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4164                                    PACKET__RECV, &ad);
4165                 if (err)
4166                         return err;
4167         }
4168
4169         return err;
4170 }
4171
4172 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4173                                             int __user *optlen, unsigned len)
4174 {
4175         int err = 0;
4176         char *scontext;
4177         u32 scontext_len;
4178         struct sk_security_struct *sksec;
4179         struct inode_security_struct *isec;
4180         u32 peer_sid = SECSID_NULL;
4181
4182         isec = SOCK_INODE(sock)->i_security;
4183
4184         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4185             isec->sclass == SECCLASS_TCP_SOCKET) {
4186                 sksec = sock->sk->sk_security;
4187                 peer_sid = sksec->peer_sid;
4188         }
4189         if (peer_sid == SECSID_NULL) {
4190                 err = -ENOPROTOOPT;
4191                 goto out;
4192         }
4193
4194         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4195
4196         if (err)
4197                 goto out;
4198
4199         if (scontext_len > len) {
4200                 err = -ERANGE;
4201                 goto out_len;
4202         }
4203
4204         if (copy_to_user(optval, scontext, scontext_len))
4205                 err = -EFAULT;
4206
4207 out_len:
4208         if (put_user(scontext_len, optlen))
4209                 err = -EFAULT;
4210
4211         kfree(scontext);
4212 out:
4213         return err;
4214 }
4215
4216 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4217 {
4218         u32 peer_secid = SECSID_NULL;
4219         u16 family;
4220
4221         if (skb && skb->protocol == htons(ETH_P_IP))
4222                 family = PF_INET;
4223         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4224                 family = PF_INET6;
4225         else if (sock)
4226                 family = sock->sk->sk_family;
4227         else
4228                 goto out;
4229
4230         if (sock && family == PF_UNIX)
4231                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4232         else if (skb)
4233                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4234
4235 out:
4236         *secid = peer_secid;
4237         if (peer_secid == SECSID_NULL)
4238                 return -EINVAL;
4239         return 0;
4240 }
4241
4242 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4243 {
4244         return sk_alloc_security(sk, family, priority);
4245 }
4246
4247 static void selinux_sk_free_security(struct sock *sk)
4248 {
4249         sk_free_security(sk);
4250 }
4251
4252 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4253 {
4254         struct sk_security_struct *sksec = sk->sk_security;
4255         struct sk_security_struct *newsksec = newsk->sk_security;
4256
4257         newsksec->sid = sksec->sid;
4258         newsksec->peer_sid = sksec->peer_sid;
4259         newsksec->sclass = sksec->sclass;
4260
4261         selinux_netlbl_sk_security_reset(newsksec);
4262 }
4263
4264 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4265 {
4266         if (!sk)
4267                 *secid = SECINITSID_ANY_SOCKET;
4268         else {
4269                 struct sk_security_struct *sksec = sk->sk_security;
4270
4271                 *secid = sksec->sid;
4272         }
4273 }
4274
4275 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4276 {
4277         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4278         struct sk_security_struct *sksec = sk->sk_security;
4279
4280         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4281             sk->sk_family == PF_UNIX)
4282                 isec->sid = sksec->sid;
4283         sksec->sclass = isec->sclass;
4284 }
4285
4286 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4287                                      struct request_sock *req)
4288 {
4289         struct sk_security_struct *sksec = sk->sk_security;
4290         int err;
4291         u16 family = sk->sk_family;
4292         u32 newsid;
4293         u32 peersid;
4294
4295         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4296         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4297                 family = PF_INET;
4298
4299         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4300         if (err)
4301                 return err;
4302         if (peersid == SECSID_NULL) {
4303                 req->secid = sksec->sid;
4304                 req->peer_secid = SECSID_NULL;
4305         } else {
4306                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4307                 if (err)
4308                         return err;
4309                 req->secid = newsid;
4310                 req->peer_secid = peersid;
4311         }
4312
4313         return selinux_netlbl_inet_conn_request(req, family);
4314 }
4315
4316 static void selinux_inet_csk_clone(struct sock *newsk,
4317                                    const struct request_sock *req)
4318 {
4319         struct sk_security_struct *newsksec = newsk->sk_security;
4320
4321         newsksec->sid = req->secid;
4322         newsksec->peer_sid = req->peer_secid;
4323         /* NOTE: Ideally, we should also get the isec->sid for the
4324            new socket in sync, but we don't have the isec available yet.
4325            So we will wait until sock_graft to do it, by which
4326            time it will have been created and available. */
4327
4328         /* We don't need to take any sort of lock here as we are the only
4329          * thread with access to newsksec */
4330         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4331 }
4332
4333 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4334 {
4335         u16 family = sk->sk_family;
4336         struct sk_security_struct *sksec = sk->sk_security;
4337
4338         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4339         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4340                 family = PF_INET;
4341
4342         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4343 }
4344
4345 static void selinux_req_classify_flow(const struct request_sock *req,
4346                                       struct flowi *fl)
4347 {
4348         fl->secid = req->secid;
4349 }
4350
4351 static int selinux_tun_dev_create(void)
4352 {
4353         u32 sid = current_sid();
4354
4355         /* we aren't taking into account the "sockcreate" SID since the socket
4356          * that is being created here is not a socket in the traditional sense,
4357          * instead it is a private sock, accessible only to the kernel, and
4358          * representing a wide range of network traffic spanning multiple
4359          * connections unlike traditional sockets - check the TUN driver to
4360          * get a better understanding of why this socket is special */
4361
4362         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4363                             NULL);
4364 }
4365
4366 static void selinux_tun_dev_post_create(struct sock *sk)
4367 {
4368         struct sk_security_struct *sksec = sk->sk_security;
4369
4370         /* we don't currently perform any NetLabel based labeling here and it
4371          * isn't clear that we would want to do so anyway; while we could apply
4372          * labeling without the support of the TUN user the resulting labeled
4373          * traffic from the other end of the connection would almost certainly
4374          * cause confusion to the TUN user that had no idea network labeling
4375          * protocols were being used */
4376
4377         /* see the comments in selinux_tun_dev_create() about why we don't use
4378          * the sockcreate SID here */
4379
4380         sksec->sid = current_sid();
4381         sksec->sclass = SECCLASS_TUN_SOCKET;
4382 }
4383
4384 static int selinux_tun_dev_attach(struct sock *sk)
4385 {
4386         struct sk_security_struct *sksec = sk->sk_security;
4387         u32 sid = current_sid();
4388         int err;
4389
4390         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4391                            TUN_SOCKET__RELABELFROM, NULL);
4392         if (err)
4393                 return err;
4394         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4395                            TUN_SOCKET__RELABELTO, NULL);
4396         if (err)
4397                 return err;
4398
4399         sksec->sid = sid;
4400
4401         return 0;
4402 }
4403
4404 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4405 {
4406         int err = 0;
4407         u32 perm;
4408         struct nlmsghdr *nlh;
4409         struct socket *sock = sk->sk_socket;
4410         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4411
4412         if (skb->len < NLMSG_SPACE(0)) {
4413                 err = -EINVAL;
4414                 goto out;
4415         }
4416         nlh = nlmsg_hdr(skb);
4417
4418         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4419         if (err) {
4420                 if (err == -EINVAL) {
4421                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4422                                   "SELinux:  unrecognized netlink message"
4423                                   " type=%hu for sclass=%hu\n",
4424                                   nlh->nlmsg_type, isec->sclass);
4425                         if (!selinux_enforcing || security_get_allow_unknown())
4426                                 err = 0;
4427                 }
4428
4429                 /* Ignore */
4430                 if (err == -ENOENT)
4431                         err = 0;
4432                 goto out;
4433         }
4434
4435         err = socket_has_perm(current, sock, perm);
4436 out:
4437         return err;
4438 }
4439
4440 #ifdef CONFIG_NETFILTER
4441
4442 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4443                                        u16 family)
4444 {
4445         int err;
4446         char *addrp;
4447         u32 peer_sid;
4448         struct common_audit_data ad;
4449         u8 secmark_active;
4450         u8 netlbl_active;
4451         u8 peerlbl_active;
4452
4453         if (!selinux_policycap_netpeer)
4454                 return NF_ACCEPT;
4455
4456         secmark_active = selinux_secmark_enabled();
4457         netlbl_active = netlbl_enabled();
4458         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4459         if (!secmark_active && !peerlbl_active)
4460                 return NF_ACCEPT;
4461
4462         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4463                 return NF_DROP;
4464
4465         COMMON_AUDIT_DATA_INIT(&ad, NET);
4466         ad.u.net.netif = ifindex;
4467         ad.u.net.family = family;
4468         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4469                 return NF_DROP;
4470
4471         if (peerlbl_active) {
4472                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4473                                                peer_sid, &ad);
4474                 if (err) {
4475                         selinux_netlbl_err(skb, err, 1);
4476                         return NF_DROP;
4477                 }
4478         }
4479
4480         if (secmark_active)
4481                 if (avc_has_perm(peer_sid, skb->secmark,
4482                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4483                         return NF_DROP;
4484
4485         if (netlbl_active)
4486                 /* we do this in the FORWARD path and not the POST_ROUTING
4487                  * path because we want to make sure we apply the necessary
4488                  * labeling before IPsec is applied so we can leverage AH
4489                  * protection */
4490                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4491                         return NF_DROP;
4492
4493         return NF_ACCEPT;
4494 }
4495
4496 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4497                                          struct sk_buff *skb,
4498                                          const struct net_device *in,
4499                                          const struct net_device *out,
4500                                          int (*okfn)(struct sk_buff *))
4501 {
4502         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4503 }
4504
4505 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4506 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4507                                          struct sk_buff *skb,
4508                                          const struct net_device *in,
4509                                          const struct net_device *out,
4510                                          int (*okfn)(struct sk_buff *))
4511 {
4512         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4513 }
4514 #endif  /* IPV6 */
4515
4516 static unsigned int selinux_ip_output(struct sk_buff *skb,
4517                                       u16 family)
4518 {
4519         u32 sid;
4520
4521         if (!netlbl_enabled())
4522                 return NF_ACCEPT;
4523
4524         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4525          * because we want to make sure we apply the necessary labeling
4526          * before IPsec is applied so we can leverage AH protection */
4527         if (skb->sk) {
4528                 struct sk_security_struct *sksec = skb->sk->sk_security;
4529                 sid = sksec->sid;
4530         } else
4531                 sid = SECINITSID_KERNEL;
4532         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4533                 return NF_DROP;
4534
4535         return NF_ACCEPT;
4536 }
4537
4538 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4539                                         struct sk_buff *skb,
4540                                         const struct net_device *in,
4541                                         const struct net_device *out,
4542                                         int (*okfn)(struct sk_buff *))
4543 {
4544         return selinux_ip_output(skb, PF_INET);
4545 }
4546
4547 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4548                                                 int ifindex,
4549                                                 u16 family)
4550 {
4551         struct sock *sk = skb->sk;
4552         struct sk_security_struct *sksec;
4553         struct common_audit_data ad;
4554         char *addrp;
4555         u8 proto;
4556
4557         if (sk == NULL)
4558                 return NF_ACCEPT;
4559         sksec = sk->sk_security;
4560
4561         COMMON_AUDIT_DATA_INIT(&ad, NET);
4562         ad.u.net.netif = ifindex;
4563         ad.u.net.family = family;
4564         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4565                 return NF_DROP;
4566
4567         if (selinux_secmark_enabled())
4568                 if (avc_has_perm(sksec->sid, skb->secmark,
4569                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4570                         return NF_DROP;
4571
4572         if (selinux_policycap_netpeer)
4573                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4574                         return NF_DROP;
4575
4576         return NF_ACCEPT;
4577 }
4578
4579 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4580                                          u16 family)
4581 {
4582         u32 secmark_perm;
4583         u32 peer_sid;
4584         struct sock *sk;
4585         struct common_audit_data ad;
4586         char *addrp;
4587         u8 secmark_active;
4588         u8 peerlbl_active;
4589
4590         /* If any sort of compatibility mode is enabled then handoff processing
4591          * to the selinux_ip_postroute_compat() function to deal with the
4592          * special handling.  We do this in an attempt to keep this function
4593          * as fast and as clean as possible. */
4594         if (!selinux_policycap_netpeer)
4595                 return selinux_ip_postroute_compat(skb, ifindex, family);
4596 #ifdef CONFIG_XFRM
4597         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4598          * packet transformation so allow the packet to pass without any checks
4599          * since we'll have another chance to perform access control checks
4600          * when the packet is on it's final way out.
4601          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4602          *       is NULL, in this case go ahead and apply access control. */
4603         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4604                 return NF_ACCEPT;
4605 #endif
4606         secmark_active = selinux_secmark_enabled();
4607         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4608         if (!secmark_active && !peerlbl_active)
4609                 return NF_ACCEPT;
4610
4611         /* if the packet is being forwarded then get the peer label from the
4612          * packet itself; otherwise check to see if it is from a local
4613          * application or the kernel, if from an application get the peer label
4614          * from the sending socket, otherwise use the kernel's sid */
4615         sk = skb->sk;
4616         if (sk == NULL) {
4617                 switch (family) {
4618                 case PF_INET:
4619                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4620                                 secmark_perm = PACKET__FORWARD_OUT;
4621                         else
4622                                 secmark_perm = PACKET__SEND;
4623                         break;
4624                 case PF_INET6:
4625                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4626                                 secmark_perm = PACKET__FORWARD_OUT;
4627                         else
4628                                 secmark_perm = PACKET__SEND;
4629                         break;
4630                 default:
4631                         return NF_DROP;
4632                 }
4633                 if (secmark_perm == PACKET__FORWARD_OUT) {
4634                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4635                                 return NF_DROP;
4636                 } else
4637                         peer_sid = SECINITSID_KERNEL;
4638         } else {
4639                 struct sk_security_struct *sksec = sk->sk_security;
4640                 peer_sid = sksec->sid;
4641                 secmark_perm = PACKET__SEND;
4642         }
4643
4644         COMMON_AUDIT_DATA_INIT(&ad, NET);
4645         ad.u.net.netif = ifindex;
4646         ad.u.net.family = family;
4647         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4648                 return NF_DROP;
4649
4650         if (secmark_active)
4651                 if (avc_has_perm(peer_sid, skb->secmark,
4652                                  SECCLASS_PACKET, secmark_perm, &ad))
4653                         return NF_DROP;
4654
4655         if (peerlbl_active) {
4656                 u32 if_sid;
4657                 u32 node_sid;
4658
4659                 if (sel_netif_sid(ifindex, &if_sid))
4660                         return NF_DROP;
4661                 if (avc_has_perm(peer_sid, if_sid,
4662                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4663                         return NF_DROP;
4664
4665                 if (sel_netnode_sid(addrp, family, &node_sid))
4666                         return NF_DROP;
4667                 if (avc_has_perm(peer_sid, node_sid,
4668                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4669                         return NF_DROP;
4670         }
4671
4672         return NF_ACCEPT;
4673 }
4674
4675 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4676                                            struct sk_buff *skb,
4677                                            const struct net_device *in,
4678                                            const struct net_device *out,
4679                                            int (*okfn)(struct sk_buff *))
4680 {
4681         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4682 }
4683
4684 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4685 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4686                                            struct sk_buff *skb,
4687                                            const struct net_device *in,
4688                                            const struct net_device *out,
4689                                            int (*okfn)(struct sk_buff *))
4690 {
4691         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4692 }
4693 #endif  /* IPV6 */
4694
4695 #endif  /* CONFIG_NETFILTER */
4696
4697 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4698 {
4699         int err;
4700
4701         err = cap_netlink_send(sk, skb);
4702         if (err)
4703                 return err;
4704
4705         return selinux_nlmsg_perm(sk, skb);
4706 }
4707
4708 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4709 {
4710         int err;
4711         struct common_audit_data ad;
4712
4713         err = cap_netlink_recv(skb, capability);
4714         if (err)
4715                 return err;
4716
4717         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4718         ad.u.cap = capability;
4719
4720         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4721                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4722 }
4723
4724 static int ipc_alloc_security(struct task_struct *task,
4725                               struct kern_ipc_perm *perm,
4726                               u16 sclass)
4727 {
4728         struct ipc_security_struct *isec;
4729         u32 sid;
4730
4731         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4732         if (!isec)
4733                 return -ENOMEM;
4734
4735         sid = task_sid(task);
4736         isec->sclass = sclass;
4737         isec->sid = sid;
4738         perm->security = isec;
4739
4740         return 0;
4741 }
4742
4743 static void ipc_free_security(struct kern_ipc_perm *perm)
4744 {
4745         struct ipc_security_struct *isec = perm->security;
4746         perm->security = NULL;
4747         kfree(isec);
4748 }
4749
4750 static int msg_msg_alloc_security(struct msg_msg *msg)
4751 {
4752         struct msg_security_struct *msec;
4753
4754         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4755         if (!msec)
4756                 return -ENOMEM;
4757
4758         msec->sid = SECINITSID_UNLABELED;
4759         msg->security = msec;
4760
4761         return 0;
4762 }
4763
4764 static void msg_msg_free_security(struct msg_msg *msg)
4765 {
4766         struct msg_security_struct *msec = msg->security;
4767
4768         msg->security = NULL;
4769         kfree(msec);
4770 }
4771
4772 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4773                         u32 perms)
4774 {
4775         struct ipc_security_struct *isec;
4776         struct common_audit_data ad;
4777         u32 sid = current_sid();
4778
4779         isec = ipc_perms->security;
4780
4781         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4782         ad.u.ipc_id = ipc_perms->key;
4783
4784         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4785 }
4786
4787 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4788 {
4789         return msg_msg_alloc_security(msg);
4790 }
4791
4792 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4793 {
4794         msg_msg_free_security(msg);
4795 }
4796
4797 /* message queue security operations */
4798 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4799 {
4800         struct ipc_security_struct *isec;
4801         struct common_audit_data ad;
4802         u32 sid = current_sid();
4803         int rc;
4804
4805         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4806         if (rc)
4807                 return rc;
4808
4809         isec = msq->q_perm.security;
4810
4811         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4812         ad.u.ipc_id = msq->q_perm.key;
4813
4814         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4815                           MSGQ__CREATE, &ad);
4816         if (rc) {
4817                 ipc_free_security(&msq->q_perm);
4818                 return rc;
4819         }
4820         return 0;
4821 }
4822
4823 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4824 {
4825         ipc_free_security(&msq->q_perm);
4826 }
4827
4828 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4829 {
4830         struct ipc_security_struct *isec;
4831         struct common_audit_data ad;
4832         u32 sid = current_sid();
4833
4834         isec = msq->q_perm.security;
4835
4836         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4837         ad.u.ipc_id = msq->q_perm.key;
4838
4839         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4840                             MSGQ__ASSOCIATE, &ad);
4841 }
4842
4843 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4844 {
4845         int err;
4846         int perms;
4847
4848         switch (cmd) {
4849         case IPC_INFO:
4850         case MSG_INFO:
4851                 /* No specific object, just general system-wide information. */
4852                 return task_has_system(current, SYSTEM__IPC_INFO);
4853         case IPC_STAT:
4854         case MSG_STAT:
4855                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4856                 break;
4857         case IPC_SET:
4858                 perms = MSGQ__SETATTR;
4859                 break;
4860         case IPC_RMID:
4861                 perms = MSGQ__DESTROY;
4862                 break;
4863         default:
4864                 return 0;
4865         }
4866
4867         err = ipc_has_perm(&msq->q_perm, perms);
4868         return err;
4869 }
4870
4871 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4872 {
4873         struct ipc_security_struct *isec;
4874         struct msg_security_struct *msec;
4875         struct common_audit_data ad;
4876         u32 sid = current_sid();
4877         int rc;
4878
4879         isec = msq->q_perm.security;
4880         msec = msg->security;
4881
4882         /*
4883          * First time through, need to assign label to the message
4884          */
4885         if (msec->sid == SECINITSID_UNLABELED) {
4886                 /*
4887                  * Compute new sid based on current process and
4888                  * message queue this message will be stored in
4889                  */
4890                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4891                                              &msec->sid);
4892                 if (rc)
4893                         return rc;
4894         }
4895
4896         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4897         ad.u.ipc_id = msq->q_perm.key;
4898
4899         /* Can this process write to the queue? */
4900         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901                           MSGQ__WRITE, &ad);
4902         if (!rc)
4903                 /* Can this process send the message */
4904                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4905                                   MSG__SEND, &ad);
4906         if (!rc)
4907                 /* Can the message be put in the queue? */
4908                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4909                                   MSGQ__ENQUEUE, &ad);
4910
4911         return rc;
4912 }
4913
4914 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4915                                     struct task_struct *target,
4916                                     long type, int mode)
4917 {
4918         struct ipc_security_struct *isec;
4919         struct msg_security_struct *msec;
4920         struct common_audit_data ad;
4921         u32 sid = task_sid(target);
4922         int rc;
4923
4924         isec = msq->q_perm.security;
4925         msec = msg->security;
4926
4927         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4928         ad.u.ipc_id = msq->q_perm.key;
4929
4930         rc = avc_has_perm(sid, isec->sid,
4931                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4932         if (!rc)
4933                 rc = avc_has_perm(sid, msec->sid,
4934                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4935         return rc;
4936 }
4937
4938 /* Shared Memory security operations */
4939 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4940 {
4941         struct ipc_security_struct *isec;
4942         struct common_audit_data ad;
4943         u32 sid = current_sid();
4944         int rc;
4945
4946         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4947         if (rc)
4948                 return rc;
4949
4950         isec = shp->shm_perm.security;
4951
4952         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4953         ad.u.ipc_id = shp->shm_perm.key;
4954
4955         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4956                           SHM__CREATE, &ad);
4957         if (rc) {
4958                 ipc_free_security(&shp->shm_perm);
4959                 return rc;
4960         }
4961         return 0;
4962 }
4963
4964 static void selinux_shm_free_security(struct shmid_kernel *shp)
4965 {
4966         ipc_free_security(&shp->shm_perm);
4967 }
4968
4969 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4970 {
4971         struct ipc_security_struct *isec;
4972         struct common_audit_data ad;
4973         u32 sid = current_sid();
4974
4975         isec = shp->shm_perm.security;
4976
4977         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4978         ad.u.ipc_id = shp->shm_perm.key;
4979
4980         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4981                             SHM__ASSOCIATE, &ad);
4982 }
4983
4984 /* Note, at this point, shp is locked down */
4985 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4986 {
4987         int perms;
4988         int err;
4989
4990         switch (cmd) {
4991         case IPC_INFO:
4992         case SHM_INFO:
4993                 /* No specific object, just general system-wide information. */
4994                 return task_has_system(current, SYSTEM__IPC_INFO);
4995         case IPC_STAT:
4996         case SHM_STAT:
4997                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4998                 break;
4999         case IPC_SET:
5000                 perms = SHM__SETATTR;
5001                 break;
5002         case SHM_LOCK:
5003         case SHM_UNLOCK:
5004                 perms = SHM__LOCK;
5005                 break;
5006         case IPC_RMID:
5007                 perms = SHM__DESTROY;
5008                 break;
5009         default:
5010                 return 0;
5011         }
5012
5013         err = ipc_has_perm(&shp->shm_perm, perms);
5014         return err;
5015 }
5016
5017 static int selinux_shm_shmat(struct shmid_kernel *shp,
5018                              char __user *shmaddr, int shmflg)
5019 {
5020         u32 perms;
5021
5022         if (shmflg & SHM_RDONLY)
5023                 perms = SHM__READ;
5024         else
5025                 perms = SHM__READ | SHM__WRITE;
5026
5027         return ipc_has_perm(&shp->shm_perm, perms);
5028 }
5029
5030 /* Semaphore security operations */
5031 static int selinux_sem_alloc_security(struct sem_array *sma)
5032 {
5033         struct ipc_security_struct *isec;
5034         struct common_audit_data ad;
5035         u32 sid = current_sid();
5036         int rc;
5037
5038         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5039         if (rc)
5040                 return rc;
5041
5042         isec = sma->sem_perm.security;
5043
5044         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5045         ad.u.ipc_id = sma->sem_perm.key;
5046
5047         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5048                           SEM__CREATE, &ad);
5049         if (rc) {
5050                 ipc_free_security(&sma->sem_perm);
5051                 return rc;
5052         }
5053         return 0;
5054 }
5055
5056 static void selinux_sem_free_security(struct sem_array *sma)
5057 {
5058         ipc_free_security(&sma->sem_perm);
5059 }
5060
5061 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5062 {
5063         struct ipc_security_struct *isec;
5064         struct common_audit_data ad;
5065         u32 sid = current_sid();
5066
5067         isec = sma->sem_perm.security;
5068
5069         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5070         ad.u.ipc_id = sma->sem_perm.key;
5071
5072         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5073                             SEM__ASSOCIATE, &ad);
5074 }
5075
5076 /* Note, at this point, sma is locked down */
5077 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5078 {
5079         int err;
5080         u32 perms;
5081
5082         switch (cmd) {
5083         case IPC_INFO:
5084         case SEM_INFO:
5085                 /* No specific object, just general system-wide information. */
5086                 return task_has_system(current, SYSTEM__IPC_INFO);
5087         case GETPID:
5088         case GETNCNT:
5089         case GETZCNT:
5090                 perms = SEM__GETATTR;
5091                 break;
5092         case GETVAL:
5093         case GETALL:
5094                 perms = SEM__READ;
5095                 break;
5096         case SETVAL:
5097         case SETALL:
5098                 perms = SEM__WRITE;
5099                 break;
5100         case IPC_RMID:
5101                 perms = SEM__DESTROY;
5102                 break;
5103         case IPC_SET:
5104                 perms = SEM__SETATTR;
5105                 break;
5106         case IPC_STAT:
5107         case SEM_STAT:
5108                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5109                 break;
5110         default:
5111                 return 0;
5112         }
5113
5114         err = ipc_has_perm(&sma->sem_perm, perms);
5115         return err;
5116 }
5117
5118 static int selinux_sem_semop(struct sem_array *sma,
5119                              struct sembuf *sops, unsigned nsops, int alter)
5120 {
5121         u32 perms;
5122
5123         if (alter)
5124                 perms = SEM__READ | SEM__WRITE;
5125         else
5126                 perms = SEM__READ;
5127
5128         return ipc_has_perm(&sma->sem_perm, perms);
5129 }
5130
5131 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5132 {
5133         u32 av = 0;
5134
5135         av = 0;
5136         if (flag & S_IRUGO)
5137                 av |= IPC__UNIX_READ;
5138         if (flag & S_IWUGO)
5139                 av |= IPC__UNIX_WRITE;
5140
5141         if (av == 0)
5142                 return 0;
5143
5144         return ipc_has_perm(ipcp, av);
5145 }
5146
5147 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5148 {
5149         struct ipc_security_struct *isec = ipcp->security;
5150         *secid = isec->sid;
5151 }
5152
5153 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5154 {
5155         if (inode)
5156                 inode_doinit_with_dentry(inode, dentry);
5157 }
5158
5159 static int selinux_getprocattr(struct task_struct *p,
5160                                char *name, char **value)
5161 {
5162         const struct task_security_struct *__tsec;
5163         u32 sid;
5164         int error;
5165         unsigned len;
5166
5167         if (current != p) {
5168                 error = current_has_perm(p, PROCESS__GETATTR);
5169                 if (error)
5170                         return error;
5171         }
5172
5173         rcu_read_lock();
5174         __tsec = __task_cred(p)->security;
5175
5176         if (!strcmp(name, "current"))
5177                 sid = __tsec->sid;
5178         else if (!strcmp(name, "prev"))
5179                 sid = __tsec->osid;
5180         else if (!strcmp(name, "exec"))
5181                 sid = __tsec->exec_sid;
5182         else if (!strcmp(name, "fscreate"))
5183                 sid = __tsec->create_sid;
5184         else if (!strcmp(name, "keycreate"))
5185                 sid = __tsec->keycreate_sid;
5186         else if (!strcmp(name, "sockcreate"))
5187                 sid = __tsec->sockcreate_sid;
5188         else
5189                 goto invalid;
5190         rcu_read_unlock();
5191
5192         if (!sid)
5193                 return 0;
5194
5195         error = security_sid_to_context(sid, value, &len);
5196         if (error)
5197                 return error;
5198         return len;
5199
5200 invalid:
5201         rcu_read_unlock();
5202         return -EINVAL;
5203 }
5204
5205 static int selinux_setprocattr(struct task_struct *p,
5206                                char *name, void *value, size_t size)
5207 {
5208         struct task_security_struct *tsec;
5209         struct task_struct *tracer;
5210         struct cred *new;
5211         u32 sid = 0, ptsid;
5212         int error;
5213         char *str = value;
5214
5215         if (current != p) {
5216                 /* SELinux only allows a process to change its own
5217                    security attributes. */
5218                 return -EACCES;
5219         }
5220
5221         /*
5222          * Basic control over ability to set these attributes at all.
5223          * current == p, but we'll pass them separately in case the
5224          * above restriction is ever removed.
5225          */
5226         if (!strcmp(name, "exec"))
5227                 error = current_has_perm(p, PROCESS__SETEXEC);
5228         else if (!strcmp(name, "fscreate"))
5229                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5230         else if (!strcmp(name, "keycreate"))
5231                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5232         else if (!strcmp(name, "sockcreate"))
5233                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5234         else if (!strcmp(name, "current"))
5235                 error = current_has_perm(p, PROCESS__SETCURRENT);
5236         else
5237                 error = -EINVAL;
5238         if (error)
5239                 return error;
5240
5241         /* Obtain a SID for the context, if one was specified. */
5242         if (size && str[1] && str[1] != '\n') {
5243                 if (str[size-1] == '\n') {
5244                         str[size-1] = 0;
5245                         size--;
5246                 }
5247                 error = security_context_to_sid(value, size, &sid);
5248                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5249                         if (!capable(CAP_MAC_ADMIN))
5250                                 return error;
5251                         error = security_context_to_sid_force(value, size,
5252                                                               &sid);
5253                 }
5254                 if (error)
5255                         return error;
5256         }
5257
5258         new = prepare_creds();
5259         if (!new)
5260                 return -ENOMEM;
5261
5262         /* Permission checking based on the specified context is
5263            performed during the actual operation (execve,
5264            open/mkdir/...), when we know the full context of the
5265            operation.  See selinux_bprm_set_creds for the execve
5266            checks and may_create for the file creation checks. The
5267            operation will then fail if the context is not permitted. */
5268         tsec = new->security;
5269         if (!strcmp(name, "exec")) {
5270                 tsec->exec_sid = sid;
5271         } else if (!strcmp(name, "fscreate")) {
5272                 tsec->create_sid = sid;
5273         } else if (!strcmp(name, "keycreate")) {
5274                 error = may_create_key(sid, p);
5275                 if (error)
5276                         goto abort_change;
5277                 tsec->keycreate_sid = sid;
5278         } else if (!strcmp(name, "sockcreate")) {
5279                 tsec->sockcreate_sid = sid;
5280         } else if (!strcmp(name, "current")) {
5281                 error = -EINVAL;
5282                 if (sid == 0)
5283                         goto abort_change;
5284
5285                 /* Only allow single threaded processes to change context */
5286                 error = -EPERM;
5287                 if (!current_is_single_threaded()) {
5288                         error = security_bounded_transition(tsec->sid, sid);
5289                         if (error)
5290                                 goto abort_change;
5291                 }
5292
5293                 /* Check permissions for the transition. */
5294                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5295                                      PROCESS__DYNTRANSITION, NULL);
5296                 if (error)
5297                         goto abort_change;
5298
5299                 /* Check for ptracing, and update the task SID if ok.
5300                    Otherwise, leave SID unchanged and fail. */
5301                 ptsid = 0;
5302                 task_lock(p);
5303                 tracer = tracehook_tracer_task(p);
5304                 if (tracer)
5305                         ptsid = task_sid(tracer);
5306                 task_unlock(p);
5307
5308                 if (tracer) {
5309                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5310                                              PROCESS__PTRACE, NULL);
5311                         if (error)
5312                                 goto abort_change;
5313                 }
5314
5315                 tsec->sid = sid;
5316         } else {
5317                 error = -EINVAL;
5318                 goto abort_change;
5319         }
5320
5321         commit_creds(new);
5322         return size;
5323
5324 abort_change:
5325         abort_creds(new);
5326         return error;
5327 }
5328
5329 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5330 {
5331         return security_sid_to_context(secid, secdata, seclen);
5332 }
5333
5334 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5335 {
5336         return security_context_to_sid(secdata, seclen, secid);
5337 }
5338
5339 static void selinux_release_secctx(char *secdata, u32 seclen)
5340 {
5341         kfree(secdata);
5342 }
5343
5344 /*
5345  *      called with inode->i_mutex locked
5346  */
5347 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5348 {
5349         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5350 }
5351
5352 /*
5353  *      called with inode->i_mutex locked
5354  */
5355 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5356 {
5357         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5358 }
5359
5360 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5361 {
5362         int len = 0;
5363         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5364                                                 ctx, true);
5365         if (len < 0)
5366                 return len;
5367         *ctxlen = len;
5368         return 0;
5369 }
5370 #ifdef CONFIG_KEYS
5371
5372 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5373                              unsigned long flags)
5374 {
5375         const struct task_security_struct *tsec;
5376         struct key_security_struct *ksec;
5377
5378         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5379         if (!ksec)
5380                 return -ENOMEM;
5381
5382         tsec = cred->security;
5383         if (tsec->keycreate_sid)
5384                 ksec->sid = tsec->keycreate_sid;
5385         else
5386                 ksec->sid = tsec->sid;
5387
5388         k->security = ksec;
5389         return 0;
5390 }
5391
5392 static void selinux_key_free(struct key *k)
5393 {
5394         struct key_security_struct *ksec = k->security;
5395
5396         k->security = NULL;
5397         kfree(ksec);
5398 }
5399
5400 static int selinux_key_permission(key_ref_t key_ref,
5401                                   const struct cred *cred,
5402                                   key_perm_t perm)
5403 {
5404         struct key *key;
5405         struct key_security_struct *ksec;
5406         u32 sid;
5407
5408         /* if no specific permissions are requested, we skip the
5409            permission check. No serious, additional covert channels
5410            appear to be created. */
5411         if (perm == 0)
5412                 return 0;
5413
5414         sid = cred_sid(cred);
5415
5416         key = key_ref_to_ptr(key_ref);
5417         ksec = key->security;
5418
5419         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5420 }
5421
5422 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5423 {
5424         struct key_security_struct *ksec = key->security;
5425         char *context = NULL;
5426         unsigned len;
5427         int rc;
5428
5429         rc = security_sid_to_context(ksec->sid, &context, &len);
5430         if (!rc)
5431                 rc = len;
5432         *_buffer = context;
5433         return rc;
5434 }
5435
5436 #endif
5437
5438 static struct security_operations selinux_ops = {
5439         .name =                         "selinux",
5440
5441         .ptrace_access_check =          selinux_ptrace_access_check,
5442         .ptrace_traceme =               selinux_ptrace_traceme,
5443         .capget =                       selinux_capget,
5444         .capset =                       selinux_capset,
5445         .sysctl =                       selinux_sysctl,
5446         .capable =                      selinux_capable,
5447         .quotactl =                     selinux_quotactl,
5448         .quota_on =                     selinux_quota_on,
5449         .syslog =                       selinux_syslog,
5450         .vm_enough_memory =             selinux_vm_enough_memory,
5451
5452         .netlink_send =                 selinux_netlink_send,
5453         .netlink_recv =                 selinux_netlink_recv,
5454
5455         .bprm_set_creds =               selinux_bprm_set_creds,
5456         .bprm_committing_creds =        selinux_bprm_committing_creds,
5457         .bprm_committed_creds =         selinux_bprm_committed_creds,
5458         .bprm_secureexec =              selinux_bprm_secureexec,
5459
5460         .sb_alloc_security =            selinux_sb_alloc_security,
5461         .sb_free_security =             selinux_sb_free_security,
5462         .sb_copy_data =                 selinux_sb_copy_data,
5463         .sb_kern_mount =                selinux_sb_kern_mount,
5464         .sb_show_options =              selinux_sb_show_options,
5465         .sb_statfs =                    selinux_sb_statfs,
5466         .sb_mount =                     selinux_mount,
5467         .sb_umount =                    selinux_umount,
5468         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5469         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5470         .sb_parse_opts_str =            selinux_parse_opts_str,
5471
5472
5473         .inode_alloc_security =         selinux_inode_alloc_security,
5474         .inode_free_security =          selinux_inode_free_security,
5475         .inode_init_security =          selinux_inode_init_security,
5476         .inode_create =                 selinux_inode_create,
5477         .inode_link =                   selinux_inode_link,
5478         .inode_unlink =                 selinux_inode_unlink,
5479         .inode_symlink =                selinux_inode_symlink,
5480         .inode_mkdir =                  selinux_inode_mkdir,
5481         .inode_rmdir =                  selinux_inode_rmdir,
5482         .inode_mknod =                  selinux_inode_mknod,
5483         .inode_rename =                 selinux_inode_rename,
5484         .inode_readlink =               selinux_inode_readlink,
5485         .inode_follow_link =            selinux_inode_follow_link,
5486         .inode_permission =             selinux_inode_permission,
5487         .inode_setattr =                selinux_inode_setattr,
5488         .inode_getattr =                selinux_inode_getattr,
5489         .inode_setxattr =               selinux_inode_setxattr,
5490         .inode_post_setxattr =          selinux_inode_post_setxattr,
5491         .inode_getxattr =               selinux_inode_getxattr,
5492         .inode_listxattr =              selinux_inode_listxattr,
5493         .inode_removexattr =            selinux_inode_removexattr,
5494         .inode_getsecurity =            selinux_inode_getsecurity,
5495         .inode_setsecurity =            selinux_inode_setsecurity,
5496         .inode_listsecurity =           selinux_inode_listsecurity,
5497         .inode_getsecid =               selinux_inode_getsecid,
5498
5499         .file_permission =              selinux_file_permission,
5500         .file_alloc_security =          selinux_file_alloc_security,
5501         .file_free_security =           selinux_file_free_security,
5502         .file_ioctl =                   selinux_file_ioctl,
5503         .file_mmap =                    selinux_file_mmap,
5504         .file_mprotect =                selinux_file_mprotect,
5505         .file_lock =                    selinux_file_lock,
5506         .file_fcntl =                   selinux_file_fcntl,
5507         .file_set_fowner =              selinux_file_set_fowner,
5508         .file_send_sigiotask =          selinux_file_send_sigiotask,
5509         .file_receive =                 selinux_file_receive,
5510
5511         .dentry_open =                  selinux_dentry_open,
5512
5513         .task_create =                  selinux_task_create,
5514         .cred_alloc_blank =             selinux_cred_alloc_blank,
5515         .cred_free =                    selinux_cred_free,
5516         .cred_prepare =                 selinux_cred_prepare,
5517         .cred_transfer =                selinux_cred_transfer,
5518         .kernel_act_as =                selinux_kernel_act_as,
5519         .kernel_create_files_as =       selinux_kernel_create_files_as,
5520         .kernel_module_request =        selinux_kernel_module_request,
5521         .task_setpgid =                 selinux_task_setpgid,
5522         .task_getpgid =                 selinux_task_getpgid,
5523         .task_getsid =                  selinux_task_getsid,
5524         .task_getsecid =                selinux_task_getsecid,
5525         .task_setnice =                 selinux_task_setnice,
5526         .task_setioprio =               selinux_task_setioprio,
5527         .task_getioprio =               selinux_task_getioprio,
5528         .task_setrlimit =               selinux_task_setrlimit,
5529         .task_setscheduler =            selinux_task_setscheduler,
5530         .task_getscheduler =            selinux_task_getscheduler,
5531         .task_movememory =              selinux_task_movememory,
5532         .task_kill =                    selinux_task_kill,
5533         .task_wait =                    selinux_task_wait,
5534         .task_to_inode =                selinux_task_to_inode,
5535
5536         .ipc_permission =               selinux_ipc_permission,
5537         .ipc_getsecid =                 selinux_ipc_getsecid,
5538
5539         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5540         .msg_msg_free_security =        selinux_msg_msg_free_security,
5541
5542         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5543         .msg_queue_free_security =      selinux_msg_queue_free_security,
5544         .msg_queue_associate =          selinux_msg_queue_associate,
5545         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5546         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5547         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5548
5549         .shm_alloc_security =           selinux_shm_alloc_security,
5550         .shm_free_security =            selinux_shm_free_security,
5551         .shm_associate =                selinux_shm_associate,
5552         .shm_shmctl =                   selinux_shm_shmctl,
5553         .shm_shmat =                    selinux_shm_shmat,
5554
5555         .sem_alloc_security =           selinux_sem_alloc_security,
5556         .sem_free_security =            selinux_sem_free_security,
5557         .sem_associate =                selinux_sem_associate,
5558         .sem_semctl =                   selinux_sem_semctl,
5559         .sem_semop =                    selinux_sem_semop,
5560
5561         .d_instantiate =                selinux_d_instantiate,
5562
5563         .getprocattr =                  selinux_getprocattr,
5564         .setprocattr =                  selinux_setprocattr,
5565
5566         .secid_to_secctx =              selinux_secid_to_secctx,
5567         .secctx_to_secid =              selinux_secctx_to_secid,
5568         .release_secctx =               selinux_release_secctx,
5569         .inode_notifysecctx =           selinux_inode_notifysecctx,
5570         .inode_setsecctx =              selinux_inode_setsecctx,
5571         .inode_getsecctx =              selinux_inode_getsecctx,
5572
5573         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5574         .unix_may_send =                selinux_socket_unix_may_send,
5575
5576         .socket_create =                selinux_socket_create,
5577         .socket_post_create =           selinux_socket_post_create,
5578         .socket_bind =                  selinux_socket_bind,
5579         .socket_connect =               selinux_socket_connect,
5580         .socket_listen =                selinux_socket_listen,
5581         .socket_accept =                selinux_socket_accept,
5582         .socket_sendmsg =               selinux_socket_sendmsg,
5583         .socket_recvmsg =               selinux_socket_recvmsg,
5584         .socket_getsockname =           selinux_socket_getsockname,
5585         .socket_getpeername =           selinux_socket_getpeername,
5586         .socket_getsockopt =            selinux_socket_getsockopt,
5587         .socket_setsockopt =            selinux_socket_setsockopt,
5588         .socket_shutdown =              selinux_socket_shutdown,
5589         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5590         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5591         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5592         .sk_alloc_security =            selinux_sk_alloc_security,
5593         .sk_free_security =             selinux_sk_free_security,
5594         .sk_clone_security =            selinux_sk_clone_security,
5595         .sk_getsecid =                  selinux_sk_getsecid,
5596         .sock_graft =                   selinux_sock_graft,
5597         .inet_conn_request =            selinux_inet_conn_request,
5598         .inet_csk_clone =               selinux_inet_csk_clone,
5599         .inet_conn_established =        selinux_inet_conn_established,
5600         .req_classify_flow =            selinux_req_classify_flow,
5601         .tun_dev_create =               selinux_tun_dev_create,
5602         .tun_dev_post_create =          selinux_tun_dev_post_create,
5603         .tun_dev_attach =               selinux_tun_dev_attach,
5604
5605 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5606         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5607         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5608         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5609         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5610         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5611         .xfrm_state_free_security =     selinux_xfrm_state_free,
5612         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5613         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5614         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5615         .xfrm_decode_session =          selinux_xfrm_decode_session,
5616 #endif
5617
5618 #ifdef CONFIG_KEYS
5619         .key_alloc =                    selinux_key_alloc,
5620         .key_free =                     selinux_key_free,
5621         .key_permission =               selinux_key_permission,
5622         .key_getsecurity =              selinux_key_getsecurity,
5623 #endif
5624
5625 #ifdef CONFIG_AUDIT
5626         .audit_rule_init =              selinux_audit_rule_init,
5627         .audit_rule_known =             selinux_audit_rule_known,
5628         .audit_rule_match =             selinux_audit_rule_match,
5629         .audit_rule_free =              selinux_audit_rule_free,
5630 #endif
5631 };
5632
5633 static __init int selinux_init(void)
5634 {
5635         if (!security_module_enable(&selinux_ops)) {
5636                 selinux_enabled = 0;
5637                 return 0;
5638         }
5639
5640         if (!selinux_enabled) {
5641                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5642                 return 0;
5643         }
5644
5645         printk(KERN_INFO "SELinux:  Initializing.\n");
5646
5647         /* Set the security state for the initial task. */
5648         cred_init_security();
5649
5650         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5651
5652         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5653                                             sizeof(struct inode_security_struct),
5654                                             0, SLAB_PANIC, NULL);
5655         avc_init();
5656
5657         if (register_security(&selinux_ops))
5658                 panic("SELinux: Unable to register with kernel.\n");
5659
5660         if (selinux_enforcing)
5661                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5662         else
5663                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5664
5665         return 0;
5666 }
5667
5668 static void delayed_superblock_init(struct super_block *sb, void *unused)
5669 {
5670         superblock_doinit(sb, NULL);
5671 }
5672
5673 void selinux_complete_init(void)
5674 {
5675         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5676
5677         /* Set up any superblocks initialized prior to the policy load. */
5678         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5679         iterate_supers(delayed_superblock_init, NULL);
5680 }
5681
5682 /* SELinux requires early initialization in order to label
5683    all processes and objects when they are created. */
5684 security_initcall(selinux_init);
5685
5686 #if defined(CONFIG_NETFILTER)
5687
5688 static struct nf_hook_ops selinux_ipv4_ops[] = {
5689         {
5690                 .hook =         selinux_ipv4_postroute,
5691                 .owner =        THIS_MODULE,
5692                 .pf =           PF_INET,
5693                 .hooknum =      NF_INET_POST_ROUTING,
5694                 .priority =     NF_IP_PRI_SELINUX_LAST,
5695         },
5696         {
5697                 .hook =         selinux_ipv4_forward,
5698                 .owner =        THIS_MODULE,
5699                 .pf =           PF_INET,
5700                 .hooknum =      NF_INET_FORWARD,
5701                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5702         },
5703         {
5704                 .hook =         selinux_ipv4_output,
5705                 .owner =        THIS_MODULE,
5706                 .pf =           PF_INET,
5707                 .hooknum =      NF_INET_LOCAL_OUT,
5708                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5709         }
5710 };
5711
5712 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5713
5714 static struct nf_hook_ops selinux_ipv6_ops[] = {
5715         {
5716                 .hook =         selinux_ipv6_postroute,
5717                 .owner =        THIS_MODULE,
5718                 .pf =           PF_INET6,
5719                 .hooknum =      NF_INET_POST_ROUTING,
5720                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5721         },
5722         {
5723                 .hook =         selinux_ipv6_forward,
5724                 .owner =        THIS_MODULE,
5725                 .pf =           PF_INET6,
5726                 .hooknum =      NF_INET_FORWARD,
5727                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5728         }
5729 };
5730
5731 #endif  /* IPV6 */
5732
5733 static int __init selinux_nf_ip_init(void)
5734 {
5735         int err = 0;
5736
5737         if (!selinux_enabled)
5738                 goto out;
5739
5740         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5741
5742         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5743         if (err)
5744                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5745
5746 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5747         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5748         if (err)
5749                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5750 #endif  /* IPV6 */
5751
5752 out:
5753         return err;
5754 }
5755
5756 __initcall(selinux_nf_ip_init);
5757
5758 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5759 static void selinux_nf_ip_exit(void)
5760 {
5761         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5762
5763         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5764 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5765         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5766 #endif  /* IPV6 */
5767 }
5768 #endif
5769
5770 #else /* CONFIG_NETFILTER */
5771
5772 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5773 #define selinux_nf_ip_exit()
5774 #endif
5775
5776 #endif /* CONFIG_NETFILTER */
5777
5778 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5779 static int selinux_disabled;
5780
5781 int selinux_disable(void)
5782 {
5783         extern void exit_sel_fs(void);
5784
5785         if (ss_initialized) {
5786                 /* Not permitted after initial policy load. */
5787                 return -EINVAL;
5788         }
5789
5790         if (selinux_disabled) {
5791                 /* Only do this once. */
5792                 return -EINVAL;
5793         }
5794
5795         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5796
5797         selinux_disabled = 1;
5798         selinux_enabled = 0;
5799
5800         reset_security_ops();
5801
5802         /* Try to destroy the avc node cache */
5803         avc_disable();
5804
5805         /* Unregister netfilter hooks. */
5806         selinux_nf_ip_exit();
5807
5808         /* Unregister selinuxfs. */
5809         exit_sel_fs();
5810
5811         return 0;
5812 }
5813 #endif