]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - security/selinux/hooks.c
Merge branch 'for-linus' of git://selinuxproject.org/~jmorris/linux-security
[karo-tx-linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>    /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>           /* for Unix socket types */
70 #include <net/af_unix.h>        /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84
85 #include "avc.h"
86 #include "objsec.h"
87 #include "netif.h"
88 #include "netnode.h"
89 #include "netport.h"
90 #include "xfrm.h"
91 #include "netlabel.h"
92 #include "audit.h"
93 #include "avc_ss.h"
94
95 #define NUM_SEL_MNT_OPTS 5
96
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130 static struct kmem_cache *sel_inode_cache;
131
132 /**
133  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
134  *
135  * Description:
136  * This function checks the SECMARK reference counter to see if any SECMARK
137  * targets are currently configured, if the reference counter is greater than
138  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
139  * enabled, false (0) if SECMARK is disabled.
140  *
141  */
142 static int selinux_secmark_enabled(void)
143 {
144         return (atomic_read(&selinux_secmark_refcount) > 0);
145 }
146
147 /*
148  * initialise the security for the init task
149  */
150 static void cred_init_security(void)
151 {
152         struct cred *cred = (struct cred *) current->real_cred;
153         struct task_security_struct *tsec;
154
155         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
156         if (!tsec)
157                 panic("SELinux:  Failed to initialize initial task.\n");
158
159         tsec->osid = tsec->sid = SECINITSID_KERNEL;
160         cred->security = tsec;
161 }
162
163 /*
164  * get the security ID of a set of credentials
165  */
166 static inline u32 cred_sid(const struct cred *cred)
167 {
168         const struct task_security_struct *tsec;
169
170         tsec = cred->security;
171         return tsec->sid;
172 }
173
174 /*
175  * get the objective security ID of a task
176  */
177 static inline u32 task_sid(const struct task_struct *task)
178 {
179         u32 sid;
180
181         rcu_read_lock();
182         sid = cred_sid(__task_cred(task));
183         rcu_read_unlock();
184         return sid;
185 }
186
187 /*
188  * get the subjective security ID of the current task
189  */
190 static inline u32 current_sid(void)
191 {
192         const struct task_security_struct *tsec = current_security();
193
194         return tsec->sid;
195 }
196
197 /* Allocate and free functions for each kind of security blob. */
198
199 static int inode_alloc_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec;
202         u32 sid = current_sid();
203
204         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
205         if (!isec)
206                 return -ENOMEM;
207
208         mutex_init(&isec->lock);
209         INIT_LIST_HEAD(&isec->list);
210         isec->inode = inode;
211         isec->sid = SECINITSID_UNLABELED;
212         isec->sclass = SECCLASS_FILE;
213         isec->task_sid = sid;
214         inode->i_security = isec;
215
216         return 0;
217 }
218
219 static void inode_free_security(struct inode *inode)
220 {
221         struct inode_security_struct *isec = inode->i_security;
222         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
223
224         spin_lock(&sbsec->isec_lock);
225         if (!list_empty(&isec->list))
226                 list_del_init(&isec->list);
227         spin_unlock(&sbsec->isec_lock);
228
229         inode->i_security = NULL;
230         kmem_cache_free(sel_inode_cache, isec);
231 }
232
233 static int file_alloc_security(struct file *file)
234 {
235         struct file_security_struct *fsec;
236         u32 sid = current_sid();
237
238         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
239         if (!fsec)
240                 return -ENOMEM;
241
242         fsec->sid = sid;
243         fsec->fown_sid = sid;
244         file->f_security = fsec;
245
246         return 0;
247 }
248
249 static void file_free_security(struct file *file)
250 {
251         struct file_security_struct *fsec = file->f_security;
252         file->f_security = NULL;
253         kfree(fsec);
254 }
255
256 static int superblock_alloc_security(struct super_block *sb)
257 {
258         struct superblock_security_struct *sbsec;
259
260         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
261         if (!sbsec)
262                 return -ENOMEM;
263
264         mutex_init(&sbsec->lock);
265         INIT_LIST_HEAD(&sbsec->isec_head);
266         spin_lock_init(&sbsec->isec_lock);
267         sbsec->sb = sb;
268         sbsec->sid = SECINITSID_UNLABELED;
269         sbsec->def_sid = SECINITSID_FILE;
270         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
271         sb->s_security = sbsec;
272
273         return 0;
274 }
275
276 static void superblock_free_security(struct super_block *sb)
277 {
278         struct superblock_security_struct *sbsec = sb->s_security;
279         sb->s_security = NULL;
280         kfree(sbsec);
281 }
282
283 /* The file system's label must be initialized prior to use. */
284
285 static const char *labeling_behaviors[6] = {
286         "uses xattr",
287         "uses transition SIDs",
288         "uses task SIDs",
289         "uses genfs_contexts",
290         "not configured for labeling",
291         "uses mountpoint labeling",
292 };
293
294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
295
296 static inline int inode_doinit(struct inode *inode)
297 {
298         return inode_doinit_with_dentry(inode, NULL);
299 }
300
301 enum {
302         Opt_error = -1,
303         Opt_context = 1,
304         Opt_fscontext = 2,
305         Opt_defcontext = 3,
306         Opt_rootcontext = 4,
307         Opt_labelsupport = 5,
308 };
309
310 static const match_table_t tokens = {
311         {Opt_context, CONTEXT_STR "%s"},
312         {Opt_fscontext, FSCONTEXT_STR "%s"},
313         {Opt_defcontext, DEFCONTEXT_STR "%s"},
314         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
315         {Opt_labelsupport, LABELSUPP_STR},
316         {Opt_error, NULL},
317 };
318
319 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
320
321 static int may_context_mount_sb_relabel(u32 sid,
322                         struct superblock_security_struct *sbsec,
323                         const struct cred *cred)
324 {
325         const struct task_security_struct *tsec = cred->security;
326         int rc;
327
328         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
329                           FILESYSTEM__RELABELFROM, NULL);
330         if (rc)
331                 return rc;
332
333         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
334                           FILESYSTEM__RELABELTO, NULL);
335         return rc;
336 }
337
338 static int may_context_mount_inode_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         const struct cred *cred)
341 {
342         const struct task_security_struct *tsec = cred->security;
343         int rc;
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__ASSOCIATE, NULL);
351         return rc;
352 }
353
354 static int sb_finish_set_opts(struct super_block *sb)
355 {
356         struct superblock_security_struct *sbsec = sb->s_security;
357         struct dentry *root = sb->s_root;
358         struct inode *root_inode = root->d_inode;
359         int rc = 0;
360
361         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
362                 /* Make sure that the xattr handler exists and that no
363                    error other than -ENODATA is returned by getxattr on
364                    the root directory.  -ENODATA is ok, as this may be
365                    the first boot of the SELinux kernel before we have
366                    assigned xattr values to the filesystem. */
367                 if (!root_inode->i_op->getxattr) {
368                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
369                                "xattr support\n", sb->s_id, sb->s_type->name);
370                         rc = -EOPNOTSUPP;
371                         goto out;
372                 }
373                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
374                 if (rc < 0 && rc != -ENODATA) {
375                         if (rc == -EOPNOTSUPP)
376                                 printk(KERN_WARNING "SELinux: (dev %s, type "
377                                        "%s) has no security xattr handler\n",
378                                        sb->s_id, sb->s_type->name);
379                         else
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) getxattr errno %d\n", sb->s_id,
382                                        sb->s_type->name, -rc);
383                         goto out;
384                 }
385         }
386
387         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
388
389         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
390                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
391                        sb->s_id, sb->s_type->name);
392         else
393                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
394                        sb->s_id, sb->s_type->name,
395                        labeling_behaviors[sbsec->behavior-1]);
396
397         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
398             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
399             sbsec->behavior == SECURITY_FS_USE_NONE ||
400             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
401                 sbsec->flags &= ~SE_SBLABELSUPP;
402
403         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
404         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405                 sbsec->flags |= SE_SBLABELSUPP;
406
407         /* Initialize the root inode. */
408         rc = inode_doinit_with_dentry(root_inode, root);
409
410         /* Initialize any other inodes associated with the superblock, e.g.
411            inodes created prior to initial policy load or inodes created
412            during get_sb by a pseudo filesystem that directly
413            populates itself. */
414         spin_lock(&sbsec->isec_lock);
415 next_inode:
416         if (!list_empty(&sbsec->isec_head)) {
417                 struct inode_security_struct *isec =
418                                 list_entry(sbsec->isec_head.next,
419                                            struct inode_security_struct, list);
420                 struct inode *inode = isec->inode;
421                 spin_unlock(&sbsec->isec_lock);
422                 inode = igrab(inode);
423                 if (inode) {
424                         if (!IS_PRIVATE(inode))
425                                 inode_doinit(inode);
426                         iput(inode);
427                 }
428                 spin_lock(&sbsec->isec_lock);
429                 list_del_init(&isec->list);
430                 goto next_inode;
431         }
432         spin_unlock(&sbsec->isec_lock);
433 out:
434         return rc;
435 }
436
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443                                 struct security_mnt_opts *opts)
444 {
445         int rc = 0, i;
446         struct superblock_security_struct *sbsec = sb->s_security;
447         char *context = NULL;
448         u32 len;
449         char tmp;
450
451         security_init_mnt_opts(opts);
452
453         if (!(sbsec->flags & SE_SBINITIALIZED))
454                 return -EINVAL;
455
456         if (!ss_initialized)
457                 return -EINVAL;
458
459         tmp = sbsec->flags & SE_MNTMASK;
460         /* count the number of mount options for this sb */
461         for (i = 0; i < 8; i++) {
462                 if (tmp & 0x01)
463                         opts->num_mnt_opts++;
464                 tmp >>= 1;
465         }
466         /* Check if the Label support flag is set */
467         if (sbsec->flags & SE_SBLABELSUPP)
468                 opts->num_mnt_opts++;
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514         if (sbsec->flags & SE_SBLABELSUPP) {
515                 opts->mnt_opts[i] = NULL;
516                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
517         }
518
519         BUG_ON(i != opts->num_mnt_opts);
520
521         return 0;
522
523 out_free:
524         security_free_mnt_opts(opts);
525         return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529                       u32 old_sid, u32 new_sid)
530 {
531         char mnt_flags = sbsec->flags & SE_MNTMASK;
532
533         /* check if the old mount command had the same options */
534         if (sbsec->flags & SE_SBINITIALIZED)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!(sbsec->flags & SE_SBINITIALIZED))
543                 if (mnt_flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         const struct cred *cred = current_cred();
556         int rc = 0, i;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         goto out;
575                 }
576                 rc = -EINVAL;
577                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
578                         "before the security server is initialized\n");
579                 goto out;
580         }
581
582         /*
583          * Binary mount data FS will come through this function twice.  Once
584          * from an explicit call and once from the generic calls from the vfs.
585          * Since the generic VFS calls will not contain any security mount data
586          * we need to skip the double mount verification.
587          *
588          * This does open a hole in which we will not notice if the first
589          * mount using this sb set explict options and a second mount using
590          * this sb does not set any security options.  (The first options
591          * will be used for both mounts)
592          */
593         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
594             && (num_opts == 0))
595                 goto out;
596
597         /*
598          * parse the mount options, check if they are valid sids.
599          * also check if someone is trying to mount the same sb more
600          * than once with different security options.
601          */
602         for (i = 0; i < num_opts; i++) {
603                 u32 sid;
604
605                 if (flags[i] == SE_SBLABELSUPP)
606                         continue;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->flags & SE_SBINITIALIZED) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->flags |= SE_SBPROC;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
682                 if (rc)
683                         goto out;
684
685                 sbsec->sid = fscontext_sid;
686         }
687
688         /*
689          * Switch to using mount point labeling behavior.
690          * sets the label used on all file below the mountpoint, and will set
691          * the superblock context if not already set.
692          */
693         if (context_sid) {
694                 if (!fscontext_sid) {
695                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
696                                                           cred);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
702                                                              cred);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
715                                                      cred);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, cred);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely deal with this superblock later
765          */
766         if (!ss_initialized)
767                 return;
768
769         /* how can we clone if the old one wasn't set up?? */
770         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
771
772         /* if fs is reusing a sb, just let its options stand... */
773         if (newsbsec->flags & SE_SBINITIALIZED)
774                 return;
775
776         mutex_lock(&newsbsec->lock);
777
778         newsbsec->flags = oldsbsec->flags;
779
780         newsbsec->sid = oldsbsec->sid;
781         newsbsec->def_sid = oldsbsec->def_sid;
782         newsbsec->behavior = oldsbsec->behavior;
783
784         if (set_context) {
785                 u32 sid = oldsbsec->mntpoint_sid;
786
787                 if (!set_fscontext)
788                         newsbsec->sid = sid;
789                 if (!set_rootcontext) {
790                         struct inode *newinode = newsb->s_root->d_inode;
791                         struct inode_security_struct *newisec = newinode->i_security;
792                         newisec->sid = sid;
793                 }
794                 newsbsec->mntpoint_sid = sid;
795         }
796         if (set_rootcontext) {
797                 const struct inode *oldinode = oldsb->s_root->d_inode;
798                 const struct inode_security_struct *oldisec = oldinode->i_security;
799                 struct inode *newinode = newsb->s_root->d_inode;
800                 struct inode_security_struct *newisec = newinode->i_security;
801
802                 newisec->sid = oldisec->sid;
803         }
804
805         sb_finish_set_opts(newsb);
806         mutex_unlock(&newsbsec->lock);
807 }
808
809 static int selinux_parse_opts_str(char *options,
810                                   struct security_mnt_opts *opts)
811 {
812         char *p;
813         char *context = NULL, *defcontext = NULL;
814         char *fscontext = NULL, *rootcontext = NULL;
815         int rc, num_mnt_opts = 0;
816
817         opts->num_mnt_opts = 0;
818
819         /* Standard string-based options. */
820         while ((p = strsep(&options, "|")) != NULL) {
821                 int token;
822                 substring_t args[MAX_OPT_ARGS];
823
824                 if (!*p)
825                         continue;
826
827                 token = match_token(p, tokens, args);
828
829                 switch (token) {
830                 case Opt_context:
831                         if (context || defcontext) {
832                                 rc = -EINVAL;
833                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
834                                 goto out_err;
835                         }
836                         context = match_strdup(&args[0]);
837                         if (!context) {
838                                 rc = -ENOMEM;
839                                 goto out_err;
840                         }
841                         break;
842
843                 case Opt_fscontext:
844                         if (fscontext) {
845                                 rc = -EINVAL;
846                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
847                                 goto out_err;
848                         }
849                         fscontext = match_strdup(&args[0]);
850                         if (!fscontext) {
851                                 rc = -ENOMEM;
852                                 goto out_err;
853                         }
854                         break;
855
856                 case Opt_rootcontext:
857                         if (rootcontext) {
858                                 rc = -EINVAL;
859                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
860                                 goto out_err;
861                         }
862                         rootcontext = match_strdup(&args[0]);
863                         if (!rootcontext) {
864                                 rc = -ENOMEM;
865                                 goto out_err;
866                         }
867                         break;
868
869                 case Opt_defcontext:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         defcontext = match_strdup(&args[0]);
876                         if (!defcontext) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881                 case Opt_labelsupport:
882                         break;
883                 default:
884                         rc = -EINVAL;
885                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
886                         goto out_err;
887
888                 }
889         }
890
891         rc = -ENOMEM;
892         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
893         if (!opts->mnt_opts)
894                 goto out_err;
895
896         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
897         if (!opts->mnt_opts_flags) {
898                 kfree(opts->mnt_opts);
899                 goto out_err;
900         }
901
902         if (fscontext) {
903                 opts->mnt_opts[num_mnt_opts] = fscontext;
904                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
905         }
906         if (context) {
907                 opts->mnt_opts[num_mnt_opts] = context;
908                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
909         }
910         if (rootcontext) {
911                 opts->mnt_opts[num_mnt_opts] = rootcontext;
912                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
913         }
914         if (defcontext) {
915                 opts->mnt_opts[num_mnt_opts] = defcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
917         }
918
919         opts->num_mnt_opts = num_mnt_opts;
920         return 0;
921
922 out_err:
923         kfree(context);
924         kfree(defcontext);
925         kfree(fscontext);
926         kfree(rootcontext);
927         return rc;
928 }
929 /*
930  * string mount options parsing and call set the sbsec
931  */
932 static int superblock_doinit(struct super_block *sb, void *data)
933 {
934         int rc = 0;
935         char *options = data;
936         struct security_mnt_opts opts;
937
938         security_init_mnt_opts(&opts);
939
940         if (!data)
941                 goto out;
942
943         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
944
945         rc = selinux_parse_opts_str(options, &opts);
946         if (rc)
947                 goto out_err;
948
949 out:
950         rc = selinux_set_mnt_opts(sb, &opts);
951
952 out_err:
953         security_free_mnt_opts(&opts);
954         return rc;
955 }
956
957 static void selinux_write_opts(struct seq_file *m,
958                                struct security_mnt_opts *opts)
959 {
960         int i;
961         char *prefix;
962
963         for (i = 0; i < opts->num_mnt_opts; i++) {
964                 char *has_comma;
965
966                 if (opts->mnt_opts[i])
967                         has_comma = strchr(opts->mnt_opts[i], ',');
968                 else
969                         has_comma = NULL;
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 case SE_SBLABELSUPP:
985                         seq_putc(m, ',');
986                         seq_puts(m, LABELSUPP_STR);
987                         continue;
988                 default:
989                         BUG();
990                         return;
991                 };
992                 /* we need a comma before each option */
993                 seq_putc(m, ',');
994                 seq_puts(m, prefix);
995                 if (has_comma)
996                         seq_putc(m, '\"');
997                 seq_puts(m, opts->mnt_opts[i]);
998                 if (has_comma)
999                         seq_putc(m, '\"');
1000         }
1001 }
1002
1003 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1004 {
1005         struct security_mnt_opts opts;
1006         int rc;
1007
1008         rc = selinux_get_mnt_opts(sb, &opts);
1009         if (rc) {
1010                 /* before policy load we may get EINVAL, don't show anything */
1011                 if (rc == -EINVAL)
1012                         rc = 0;
1013                 return rc;
1014         }
1015
1016         selinux_write_opts(m, &opts);
1017
1018         security_free_mnt_opts(&opts);
1019
1020         return rc;
1021 }
1022
1023 static inline u16 inode_mode_to_security_class(umode_t mode)
1024 {
1025         switch (mode & S_IFMT) {
1026         case S_IFSOCK:
1027                 return SECCLASS_SOCK_FILE;
1028         case S_IFLNK:
1029                 return SECCLASS_LNK_FILE;
1030         case S_IFREG:
1031                 return SECCLASS_FILE;
1032         case S_IFBLK:
1033                 return SECCLASS_BLK_FILE;
1034         case S_IFDIR:
1035                 return SECCLASS_DIR;
1036         case S_IFCHR:
1037                 return SECCLASS_CHR_FILE;
1038         case S_IFIFO:
1039                 return SECCLASS_FIFO_FILE;
1040
1041         }
1042
1043         return SECCLASS_FILE;
1044 }
1045
1046 static inline int default_protocol_stream(int protocol)
1047 {
1048         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1049 }
1050
1051 static inline int default_protocol_dgram(int protocol)
1052 {
1053         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1054 }
1055
1056 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1057 {
1058         switch (family) {
1059         case PF_UNIX:
1060                 switch (type) {
1061                 case SOCK_STREAM:
1062                 case SOCK_SEQPACKET:
1063                         return SECCLASS_UNIX_STREAM_SOCKET;
1064                 case SOCK_DGRAM:
1065                         return SECCLASS_UNIX_DGRAM_SOCKET;
1066                 }
1067                 break;
1068         case PF_INET:
1069         case PF_INET6:
1070                 switch (type) {
1071                 case SOCK_STREAM:
1072                         if (default_protocol_stream(protocol))
1073                                 return SECCLASS_TCP_SOCKET;
1074                         else
1075                                 return SECCLASS_RAWIP_SOCKET;
1076                 case SOCK_DGRAM:
1077                         if (default_protocol_dgram(protocol))
1078                                 return SECCLASS_UDP_SOCKET;
1079                         else
1080                                 return SECCLASS_RAWIP_SOCKET;
1081                 case SOCK_DCCP:
1082                         return SECCLASS_DCCP_SOCKET;
1083                 default:
1084                         return SECCLASS_RAWIP_SOCKET;
1085                 }
1086                 break;
1087         case PF_NETLINK:
1088                 switch (protocol) {
1089                 case NETLINK_ROUTE:
1090                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1091                 case NETLINK_FIREWALL:
1092                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1093                 case NETLINK_SOCK_DIAG:
1094                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1095                 case NETLINK_NFLOG:
1096                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1097                 case NETLINK_XFRM:
1098                         return SECCLASS_NETLINK_XFRM_SOCKET;
1099                 case NETLINK_SELINUX:
1100                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1101                 case NETLINK_AUDIT:
1102                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1103                 case NETLINK_IP6_FW:
1104                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1105                 case NETLINK_DNRTMSG:
1106                         return SECCLASS_NETLINK_DNRT_SOCKET;
1107                 case NETLINK_KOBJECT_UEVENT:
1108                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1109                 default:
1110                         return SECCLASS_NETLINK_SOCKET;
1111                 }
1112         case PF_PACKET:
1113                 return SECCLASS_PACKET_SOCKET;
1114         case PF_KEY:
1115                 return SECCLASS_KEY_SOCKET;
1116         case PF_APPLETALK:
1117                 return SECCLASS_APPLETALK_SOCKET;
1118         }
1119
1120         return SECCLASS_SOCKET;
1121 }
1122
1123 #ifdef CONFIG_PROC_FS
1124 static int selinux_proc_get_sid(struct dentry *dentry,
1125                                 u16 tclass,
1126                                 u32 *sid)
1127 {
1128         int rc;
1129         char *buffer, *path;
1130
1131         buffer = (char *)__get_free_page(GFP_KERNEL);
1132         if (!buffer)
1133                 return -ENOMEM;
1134
1135         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1136         if (IS_ERR(path))
1137                 rc = PTR_ERR(path);
1138         else {
1139                 /* each process gets a /proc/PID/ entry. Strip off the
1140                  * PID part to get a valid selinux labeling.
1141                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1142                 while (path[1] >= '0' && path[1] <= '9') {
1143                         path[1] = '/';
1144                         path++;
1145                 }
1146                 rc = security_genfs_sid("proc", path, tclass, sid);
1147         }
1148         free_page((unsigned long)buffer);
1149         return rc;
1150 }
1151 #else
1152 static int selinux_proc_get_sid(struct dentry *dentry,
1153                                 u16 tclass,
1154                                 u32 *sid)
1155 {
1156         return -EINVAL;
1157 }
1158 #endif
1159
1160 /* The inode's security attributes must be initialized before first use. */
1161 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1162 {
1163         struct superblock_security_struct *sbsec = NULL;
1164         struct inode_security_struct *isec = inode->i_security;
1165         u32 sid;
1166         struct dentry *dentry;
1167 #define INITCONTEXTLEN 255
1168         char *context = NULL;
1169         unsigned len = 0;
1170         int rc = 0;
1171
1172         if (isec->initialized)
1173                 goto out;
1174
1175         mutex_lock(&isec->lock);
1176         if (isec->initialized)
1177                 goto out_unlock;
1178
1179         sbsec = inode->i_sb->s_security;
1180         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1181                 /* Defer initialization until selinux_complete_init,
1182                    after the initial policy is loaded and the security
1183                    server is ready to handle calls. */
1184                 spin_lock(&sbsec->isec_lock);
1185                 if (list_empty(&isec->list))
1186                         list_add(&isec->list, &sbsec->isec_head);
1187                 spin_unlock(&sbsec->isec_lock);
1188                 goto out_unlock;
1189         }
1190
1191         switch (sbsec->behavior) {
1192         case SECURITY_FS_USE_XATTR:
1193                 if (!inode->i_op->getxattr) {
1194                         isec->sid = sbsec->def_sid;
1195                         break;
1196                 }
1197
1198                 /* Need a dentry, since the xattr API requires one.
1199                    Life would be simpler if we could just pass the inode. */
1200                 if (opt_dentry) {
1201                         /* Called from d_instantiate or d_splice_alias. */
1202                         dentry = dget(opt_dentry);
1203                 } else {
1204                         /* Called from selinux_complete_init, try to find a dentry. */
1205                         dentry = d_find_alias(inode);
1206                 }
1207                 if (!dentry) {
1208                         /*
1209                          * this is can be hit on boot when a file is accessed
1210                          * before the policy is loaded.  When we load policy we
1211                          * may find inodes that have no dentry on the
1212                          * sbsec->isec_head list.  No reason to complain as these
1213                          * will get fixed up the next time we go through
1214                          * inode_doinit with a dentry, before these inodes could
1215                          * be used again by userspace.
1216                          */
1217                         goto out_unlock;
1218                 }
1219
1220                 len = INITCONTEXTLEN;
1221                 context = kmalloc(len+1, GFP_NOFS);
1222                 if (!context) {
1223                         rc = -ENOMEM;
1224                         dput(dentry);
1225                         goto out_unlock;
1226                 }
1227                 context[len] = '\0';
1228                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1229                                            context, len);
1230                 if (rc == -ERANGE) {
1231                         kfree(context);
1232
1233                         /* Need a larger buffer.  Query for the right size. */
1234                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1235                                                    NULL, 0);
1236                         if (rc < 0) {
1237                                 dput(dentry);
1238                                 goto out_unlock;
1239                         }
1240                         len = rc;
1241                         context = kmalloc(len+1, GFP_NOFS);
1242                         if (!context) {
1243                                 rc = -ENOMEM;
1244                                 dput(dentry);
1245                                 goto out_unlock;
1246                         }
1247                         context[len] = '\0';
1248                         rc = inode->i_op->getxattr(dentry,
1249                                                    XATTR_NAME_SELINUX,
1250                                                    context, len);
1251                 }
1252                 dput(dentry);
1253                 if (rc < 0) {
1254                         if (rc != -ENODATA) {
1255                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1256                                        "%d for dev=%s ino=%ld\n", __func__,
1257                                        -rc, inode->i_sb->s_id, inode->i_ino);
1258                                 kfree(context);
1259                                 goto out_unlock;
1260                         }
1261                         /* Map ENODATA to the default file SID */
1262                         sid = sbsec->def_sid;
1263                         rc = 0;
1264                 } else {
1265                         rc = security_context_to_sid_default(context, rc, &sid,
1266                                                              sbsec->def_sid,
1267                                                              GFP_NOFS);
1268                         if (rc) {
1269                                 char *dev = inode->i_sb->s_id;
1270                                 unsigned long ino = inode->i_ino;
1271
1272                                 if (rc == -EINVAL) {
1273                                         if (printk_ratelimit())
1274                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1275                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1276                                                         "filesystem in question.\n", ino, dev, context);
1277                                 } else {
1278                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1279                                                "returned %d for dev=%s ino=%ld\n",
1280                                                __func__, context, -rc, dev, ino);
1281                                 }
1282                                 kfree(context);
1283                                 /* Leave with the unlabeled SID */
1284                                 rc = 0;
1285                                 break;
1286                         }
1287                 }
1288                 kfree(context);
1289                 isec->sid = sid;
1290                 break;
1291         case SECURITY_FS_USE_TASK:
1292                 isec->sid = isec->task_sid;
1293                 break;
1294         case SECURITY_FS_USE_TRANS:
1295                 /* Default to the fs SID. */
1296                 isec->sid = sbsec->sid;
1297
1298                 /* Try to obtain a transition SID. */
1299                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1300                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1301                                              isec->sclass, NULL, &sid);
1302                 if (rc)
1303                         goto out_unlock;
1304                 isec->sid = sid;
1305                 break;
1306         case SECURITY_FS_USE_MNTPOINT:
1307                 isec->sid = sbsec->mntpoint_sid;
1308                 break;
1309         default:
1310                 /* Default to the fs superblock SID. */
1311                 isec->sid = sbsec->sid;
1312
1313                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1314                         if (opt_dentry) {
1315                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1316                                 rc = selinux_proc_get_sid(opt_dentry,
1317                                                           isec->sclass,
1318                                                           &sid);
1319                                 if (rc)
1320                                         goto out_unlock;
1321                                 isec->sid = sid;
1322                         }
1323                 }
1324                 break;
1325         }
1326
1327         isec->initialized = 1;
1328
1329 out_unlock:
1330         mutex_unlock(&isec->lock);
1331 out:
1332         if (isec->sclass == SECCLASS_FILE)
1333                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1334         return rc;
1335 }
1336
1337 /* Convert a Linux signal to an access vector. */
1338 static inline u32 signal_to_av(int sig)
1339 {
1340         u32 perm = 0;
1341
1342         switch (sig) {
1343         case SIGCHLD:
1344                 /* Commonly granted from child to parent. */
1345                 perm = PROCESS__SIGCHLD;
1346                 break;
1347         case SIGKILL:
1348                 /* Cannot be caught or ignored */
1349                 perm = PROCESS__SIGKILL;
1350                 break;
1351         case SIGSTOP:
1352                 /* Cannot be caught or ignored */
1353                 perm = PROCESS__SIGSTOP;
1354                 break;
1355         default:
1356                 /* All other signals. */
1357                 perm = PROCESS__SIGNAL;
1358                 break;
1359         }
1360
1361         return perm;
1362 }
1363
1364 /*
1365  * Check permission between a pair of credentials
1366  * fork check, ptrace check, etc.
1367  */
1368 static int cred_has_perm(const struct cred *actor,
1369                          const struct cred *target,
1370                          u32 perms)
1371 {
1372         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1373
1374         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1375 }
1376
1377 /*
1378  * Check permission between a pair of tasks, e.g. signal checks,
1379  * fork check, ptrace check, etc.
1380  * tsk1 is the actor and tsk2 is the target
1381  * - this uses the default subjective creds of tsk1
1382  */
1383 static int task_has_perm(const struct task_struct *tsk1,
1384                          const struct task_struct *tsk2,
1385                          u32 perms)
1386 {
1387         const struct task_security_struct *__tsec1, *__tsec2;
1388         u32 sid1, sid2;
1389
1390         rcu_read_lock();
1391         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1392         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1393         rcu_read_unlock();
1394         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1395 }
1396
1397 /*
1398  * Check permission between current and another task, e.g. signal checks,
1399  * fork check, ptrace check, etc.
1400  * current is the actor and tsk2 is the target
1401  * - this uses current's subjective creds
1402  */
1403 static int current_has_perm(const struct task_struct *tsk,
1404                             u32 perms)
1405 {
1406         u32 sid, tsid;
1407
1408         sid = current_sid();
1409         tsid = task_sid(tsk);
1410         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1411 }
1412
1413 #if CAP_LAST_CAP > 63
1414 #error Fix SELinux to handle capabilities > 63.
1415 #endif
1416
1417 /* Check whether a task is allowed to use a capability. */
1418 static int task_has_capability(struct task_struct *tsk,
1419                                const struct cred *cred,
1420                                int cap, int audit)
1421 {
1422         struct common_audit_data ad;
1423         struct av_decision avd;
1424         u16 sclass;
1425         u32 sid = cred_sid(cred);
1426         u32 av = CAP_TO_MASK(cap);
1427         int rc;
1428
1429         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1430         ad.tsk = tsk;
1431         ad.u.cap = cap;
1432
1433         switch (CAP_TO_INDEX(cap)) {
1434         case 0:
1435                 sclass = SECCLASS_CAPABILITY;
1436                 break;
1437         case 1:
1438                 sclass = SECCLASS_CAPABILITY2;
1439                 break;
1440         default:
1441                 printk(KERN_ERR
1442                        "SELinux:  out of range capability %d\n", cap);
1443                 BUG();
1444                 return -EINVAL;
1445         }
1446
1447         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1448         if (audit == SECURITY_CAP_AUDIT) {
1449                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1450                 if (rc2)
1451                         return rc2;
1452         }
1453         return rc;
1454 }
1455
1456 /* Check whether a task is allowed to use a system operation. */
1457 static int task_has_system(struct task_struct *tsk,
1458                            u32 perms)
1459 {
1460         u32 sid = task_sid(tsk);
1461
1462         return avc_has_perm(sid, SECINITSID_KERNEL,
1463                             SECCLASS_SYSTEM, perms, NULL);
1464 }
1465
1466 /* Check whether a task has a particular permission to an inode.
1467    The 'adp' parameter is optional and allows other audit
1468    data to be passed (e.g. the dentry). */
1469 static int inode_has_perm(const struct cred *cred,
1470                           struct inode *inode,
1471                           u32 perms,
1472                           struct common_audit_data *adp,
1473                           unsigned flags)
1474 {
1475         struct inode_security_struct *isec;
1476         u32 sid;
1477
1478         validate_creds(cred);
1479
1480         if (unlikely(IS_PRIVATE(inode)))
1481                 return 0;
1482
1483         sid = cred_sid(cred);
1484         isec = inode->i_security;
1485
1486         return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1487 }
1488
1489 static int inode_has_perm_noadp(const struct cred *cred,
1490                                 struct inode *inode,
1491                                 u32 perms,
1492                                 unsigned flags)
1493 {
1494         struct common_audit_data ad;
1495
1496         COMMON_AUDIT_DATA_INIT(&ad, INODE);
1497         ad.u.inode = inode;
1498         return inode_has_perm(cred, inode, perms, &ad, flags);
1499 }
1500
1501 /* Same as inode_has_perm, but pass explicit audit data containing
1502    the dentry to help the auditing code to more easily generate the
1503    pathname if needed. */
1504 static inline int dentry_has_perm(const struct cred *cred,
1505                                   struct dentry *dentry,
1506                                   u32 av)
1507 {
1508         struct inode *inode = dentry->d_inode;
1509         struct common_audit_data ad;
1510
1511         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1512         ad.u.dentry = dentry;
1513         return inode_has_perm(cred, inode, av, &ad, 0);
1514 }
1515
1516 /* Same as inode_has_perm, but pass explicit audit data containing
1517    the path to help the auditing code to more easily generate the
1518    pathname if needed. */
1519 static inline int path_has_perm(const struct cred *cred,
1520                                 struct path *path,
1521                                 u32 av)
1522 {
1523         struct inode *inode = path->dentry->d_inode;
1524         struct common_audit_data ad;
1525
1526         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1527         ad.u.path = *path;
1528         return inode_has_perm(cred, inode, av, &ad, 0);
1529 }
1530
1531 /* Check whether a task can use an open file descriptor to
1532    access an inode in a given way.  Check access to the
1533    descriptor itself, and then use dentry_has_perm to
1534    check a particular permission to the file.
1535    Access to the descriptor is implicitly granted if it
1536    has the same SID as the process.  If av is zero, then
1537    access to the file is not checked, e.g. for cases
1538    where only the descriptor is affected like seek. */
1539 static int file_has_perm(const struct cred *cred,
1540                          struct file *file,
1541                          u32 av)
1542 {
1543         struct file_security_struct *fsec = file->f_security;
1544         struct inode *inode = file->f_path.dentry->d_inode;
1545         struct common_audit_data ad;
1546         u32 sid = cred_sid(cred);
1547         int rc;
1548
1549         COMMON_AUDIT_DATA_INIT(&ad, PATH);
1550         ad.u.path = file->f_path;
1551
1552         if (sid != fsec->sid) {
1553                 rc = avc_has_perm(sid, fsec->sid,
1554                                   SECCLASS_FD,
1555                                   FD__USE,
1556                                   &ad);
1557                 if (rc)
1558                         goto out;
1559         }
1560
1561         /* av is zero if only checking access to the descriptor. */
1562         rc = 0;
1563         if (av)
1564                 rc = inode_has_perm(cred, inode, av, &ad, 0);
1565
1566 out:
1567         return rc;
1568 }
1569
1570 /* Check whether a task can create a file. */
1571 static int may_create(struct inode *dir,
1572                       struct dentry *dentry,
1573                       u16 tclass)
1574 {
1575         const struct task_security_struct *tsec = current_security();
1576         struct inode_security_struct *dsec;
1577         struct superblock_security_struct *sbsec;
1578         u32 sid, newsid;
1579         struct common_audit_data ad;
1580         int rc;
1581
1582         dsec = dir->i_security;
1583         sbsec = dir->i_sb->s_security;
1584
1585         sid = tsec->sid;
1586         newsid = tsec->create_sid;
1587
1588         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1589         ad.u.dentry = dentry;
1590
1591         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1592                           DIR__ADD_NAME | DIR__SEARCH,
1593                           &ad);
1594         if (rc)
1595                 return rc;
1596
1597         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1598                 rc = security_transition_sid(sid, dsec->sid, tclass,
1599                                              &dentry->d_name, &newsid);
1600                 if (rc)
1601                         return rc;
1602         }
1603
1604         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1605         if (rc)
1606                 return rc;
1607
1608         return avc_has_perm(newsid, sbsec->sid,
1609                             SECCLASS_FILESYSTEM,
1610                             FILESYSTEM__ASSOCIATE, &ad);
1611 }
1612
1613 /* Check whether a task can create a key. */
1614 static int may_create_key(u32 ksid,
1615                           struct task_struct *ctx)
1616 {
1617         u32 sid = task_sid(ctx);
1618
1619         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1620 }
1621
1622 #define MAY_LINK        0
1623 #define MAY_UNLINK      1
1624 #define MAY_RMDIR       2
1625
1626 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1627 static int may_link(struct inode *dir,
1628                     struct dentry *dentry,
1629                     int kind)
1630
1631 {
1632         struct inode_security_struct *dsec, *isec;
1633         struct common_audit_data ad;
1634         u32 sid = current_sid();
1635         u32 av;
1636         int rc;
1637
1638         dsec = dir->i_security;
1639         isec = dentry->d_inode->i_security;
1640
1641         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1642         ad.u.dentry = dentry;
1643
1644         av = DIR__SEARCH;
1645         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1646         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1647         if (rc)
1648                 return rc;
1649
1650         switch (kind) {
1651         case MAY_LINK:
1652                 av = FILE__LINK;
1653                 break;
1654         case MAY_UNLINK:
1655                 av = FILE__UNLINK;
1656                 break;
1657         case MAY_RMDIR:
1658                 av = DIR__RMDIR;
1659                 break;
1660         default:
1661                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1662                         __func__, kind);
1663                 return 0;
1664         }
1665
1666         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1667         return rc;
1668 }
1669
1670 static inline int may_rename(struct inode *old_dir,
1671                              struct dentry *old_dentry,
1672                              struct inode *new_dir,
1673                              struct dentry *new_dentry)
1674 {
1675         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1676         struct common_audit_data ad;
1677         u32 sid = current_sid();
1678         u32 av;
1679         int old_is_dir, new_is_dir;
1680         int rc;
1681
1682         old_dsec = old_dir->i_security;
1683         old_isec = old_dentry->d_inode->i_security;
1684         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1685         new_dsec = new_dir->i_security;
1686
1687         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1688
1689         ad.u.dentry = old_dentry;
1690         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1691                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1692         if (rc)
1693                 return rc;
1694         rc = avc_has_perm(sid, old_isec->sid,
1695                           old_isec->sclass, FILE__RENAME, &ad);
1696         if (rc)
1697                 return rc;
1698         if (old_is_dir && new_dir != old_dir) {
1699                 rc = avc_has_perm(sid, old_isec->sid,
1700                                   old_isec->sclass, DIR__REPARENT, &ad);
1701                 if (rc)
1702                         return rc;
1703         }
1704
1705         ad.u.dentry = new_dentry;
1706         av = DIR__ADD_NAME | DIR__SEARCH;
1707         if (new_dentry->d_inode)
1708                 av |= DIR__REMOVE_NAME;
1709         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1710         if (rc)
1711                 return rc;
1712         if (new_dentry->d_inode) {
1713                 new_isec = new_dentry->d_inode->i_security;
1714                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1715                 rc = avc_has_perm(sid, new_isec->sid,
1716                                   new_isec->sclass,
1717                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1718                 if (rc)
1719                         return rc;
1720         }
1721
1722         return 0;
1723 }
1724
1725 /* Check whether a task can perform a filesystem operation. */
1726 static int superblock_has_perm(const struct cred *cred,
1727                                struct super_block *sb,
1728                                u32 perms,
1729                                struct common_audit_data *ad)
1730 {
1731         struct superblock_security_struct *sbsec;
1732         u32 sid = cred_sid(cred);
1733
1734         sbsec = sb->s_security;
1735         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1736 }
1737
1738 /* Convert a Linux mode and permission mask to an access vector. */
1739 static inline u32 file_mask_to_av(int mode, int mask)
1740 {
1741         u32 av = 0;
1742
1743         if (!S_ISDIR(mode)) {
1744                 if (mask & MAY_EXEC)
1745                         av |= FILE__EXECUTE;
1746                 if (mask & MAY_READ)
1747                         av |= FILE__READ;
1748
1749                 if (mask & MAY_APPEND)
1750                         av |= FILE__APPEND;
1751                 else if (mask & MAY_WRITE)
1752                         av |= FILE__WRITE;
1753
1754         } else {
1755                 if (mask & MAY_EXEC)
1756                         av |= DIR__SEARCH;
1757                 if (mask & MAY_WRITE)
1758                         av |= DIR__WRITE;
1759                 if (mask & MAY_READ)
1760                         av |= DIR__READ;
1761         }
1762
1763         return av;
1764 }
1765
1766 /* Convert a Linux file to an access vector. */
1767 static inline u32 file_to_av(struct file *file)
1768 {
1769         u32 av = 0;
1770
1771         if (file->f_mode & FMODE_READ)
1772                 av |= FILE__READ;
1773         if (file->f_mode & FMODE_WRITE) {
1774                 if (file->f_flags & O_APPEND)
1775                         av |= FILE__APPEND;
1776                 else
1777                         av |= FILE__WRITE;
1778         }
1779         if (!av) {
1780                 /*
1781                  * Special file opened with flags 3 for ioctl-only use.
1782                  */
1783                 av = FILE__IOCTL;
1784         }
1785
1786         return av;
1787 }
1788
1789 /*
1790  * Convert a file to an access vector and include the correct open
1791  * open permission.
1792  */
1793 static inline u32 open_file_to_av(struct file *file)
1794 {
1795         u32 av = file_to_av(file);
1796
1797         if (selinux_policycap_openperm)
1798                 av |= FILE__OPEN;
1799
1800         return av;
1801 }
1802
1803 /* Hook functions begin here. */
1804
1805 static int selinux_ptrace_access_check(struct task_struct *child,
1806                                      unsigned int mode)
1807 {
1808         int rc;
1809
1810         rc = cap_ptrace_access_check(child, mode);
1811         if (rc)
1812                 return rc;
1813
1814         if (mode == PTRACE_MODE_READ) {
1815                 u32 sid = current_sid();
1816                 u32 csid = task_sid(child);
1817                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1818         }
1819
1820         return current_has_perm(child, PROCESS__PTRACE);
1821 }
1822
1823 static int selinux_ptrace_traceme(struct task_struct *parent)
1824 {
1825         int rc;
1826
1827         rc = cap_ptrace_traceme(parent);
1828         if (rc)
1829                 return rc;
1830
1831         return task_has_perm(parent, current, PROCESS__PTRACE);
1832 }
1833
1834 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1835                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1836 {
1837         int error;
1838
1839         error = current_has_perm(target, PROCESS__GETCAP);
1840         if (error)
1841                 return error;
1842
1843         return cap_capget(target, effective, inheritable, permitted);
1844 }
1845
1846 static int selinux_capset(struct cred *new, const struct cred *old,
1847                           const kernel_cap_t *effective,
1848                           const kernel_cap_t *inheritable,
1849                           const kernel_cap_t *permitted)
1850 {
1851         int error;
1852
1853         error = cap_capset(new, old,
1854                                       effective, inheritable, permitted);
1855         if (error)
1856                 return error;
1857
1858         return cred_has_perm(old, new, PROCESS__SETCAP);
1859 }
1860
1861 /*
1862  * (This comment used to live with the selinux_task_setuid hook,
1863  * which was removed).
1864  *
1865  * Since setuid only affects the current process, and since the SELinux
1866  * controls are not based on the Linux identity attributes, SELinux does not
1867  * need to control this operation.  However, SELinux does control the use of
1868  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1869  */
1870
1871 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1872                            struct user_namespace *ns, int cap, int audit)
1873 {
1874         int rc;
1875
1876         rc = cap_capable(tsk, cred, ns, cap, audit);
1877         if (rc)
1878                 return rc;
1879
1880         return task_has_capability(tsk, cred, cap, audit);
1881 }
1882
1883 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1884 {
1885         const struct cred *cred = current_cred();
1886         int rc = 0;
1887
1888         if (!sb)
1889                 return 0;
1890
1891         switch (cmds) {
1892         case Q_SYNC:
1893         case Q_QUOTAON:
1894         case Q_QUOTAOFF:
1895         case Q_SETINFO:
1896         case Q_SETQUOTA:
1897                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1898                 break;
1899         case Q_GETFMT:
1900         case Q_GETINFO:
1901         case Q_GETQUOTA:
1902                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1903                 break;
1904         default:
1905                 rc = 0;  /* let the kernel handle invalid cmds */
1906                 break;
1907         }
1908         return rc;
1909 }
1910
1911 static int selinux_quota_on(struct dentry *dentry)
1912 {
1913         const struct cred *cred = current_cred();
1914
1915         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1916 }
1917
1918 static int selinux_syslog(int type)
1919 {
1920         int rc;
1921
1922         switch (type) {
1923         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1924         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1925                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1926                 break;
1927         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1928         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1929         /* Set level of messages printed to console */
1930         case SYSLOG_ACTION_CONSOLE_LEVEL:
1931                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1932                 break;
1933         case SYSLOG_ACTION_CLOSE:       /* Close log */
1934         case SYSLOG_ACTION_OPEN:        /* Open log */
1935         case SYSLOG_ACTION_READ:        /* Read from log */
1936         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1937         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1938         default:
1939                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1940                 break;
1941         }
1942         return rc;
1943 }
1944
1945 /*
1946  * Check that a process has enough memory to allocate a new virtual
1947  * mapping. 0 means there is enough memory for the allocation to
1948  * succeed and -ENOMEM implies there is not.
1949  *
1950  * Do not audit the selinux permission check, as this is applied to all
1951  * processes that allocate mappings.
1952  */
1953 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1954 {
1955         int rc, cap_sys_admin = 0;
1956
1957         rc = selinux_capable(current, current_cred(),
1958                              &init_user_ns, CAP_SYS_ADMIN,
1959                              SECURITY_CAP_NOAUDIT);
1960         if (rc == 0)
1961                 cap_sys_admin = 1;
1962
1963         return __vm_enough_memory(mm, pages, cap_sys_admin);
1964 }
1965
1966 /* binprm security operations */
1967
1968 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1969 {
1970         const struct task_security_struct *old_tsec;
1971         struct task_security_struct *new_tsec;
1972         struct inode_security_struct *isec;
1973         struct common_audit_data ad;
1974         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1975         int rc;
1976
1977         rc = cap_bprm_set_creds(bprm);
1978         if (rc)
1979                 return rc;
1980
1981         /* SELinux context only depends on initial program or script and not
1982          * the script interpreter */
1983         if (bprm->cred_prepared)
1984                 return 0;
1985
1986         old_tsec = current_security();
1987         new_tsec = bprm->cred->security;
1988         isec = inode->i_security;
1989
1990         /* Default to the current task SID. */
1991         new_tsec->sid = old_tsec->sid;
1992         new_tsec->osid = old_tsec->sid;
1993
1994         /* Reset fs, key, and sock SIDs on execve. */
1995         new_tsec->create_sid = 0;
1996         new_tsec->keycreate_sid = 0;
1997         new_tsec->sockcreate_sid = 0;
1998
1999         if (old_tsec->exec_sid) {
2000                 new_tsec->sid = old_tsec->exec_sid;
2001                 /* Reset exec SID on execve. */
2002                 new_tsec->exec_sid = 0;
2003         } else {
2004                 /* Check for a default transition on this program. */
2005                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2006                                              SECCLASS_PROCESS, NULL,
2007                                              &new_tsec->sid);
2008                 if (rc)
2009                         return rc;
2010         }
2011
2012         COMMON_AUDIT_DATA_INIT(&ad, PATH);
2013         ad.u.path = bprm->file->f_path;
2014
2015         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2016                 new_tsec->sid = old_tsec->sid;
2017
2018         if (new_tsec->sid == old_tsec->sid) {
2019                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2020                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2021                 if (rc)
2022                         return rc;
2023         } else {
2024                 /* Check permissions for the transition. */
2025                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2026                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2027                 if (rc)
2028                         return rc;
2029
2030                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2031                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2032                 if (rc)
2033                         return rc;
2034
2035                 /* Check for shared state */
2036                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2037                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2038                                           SECCLASS_PROCESS, PROCESS__SHARE,
2039                                           NULL);
2040                         if (rc)
2041                                 return -EPERM;
2042                 }
2043
2044                 /* Make sure that anyone attempting to ptrace over a task that
2045                  * changes its SID has the appropriate permit */
2046                 if (bprm->unsafe &
2047                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2048                         struct task_struct *tracer;
2049                         struct task_security_struct *sec;
2050                         u32 ptsid = 0;
2051
2052                         rcu_read_lock();
2053                         tracer = ptrace_parent(current);
2054                         if (likely(tracer != NULL)) {
2055                                 sec = __task_cred(tracer)->security;
2056                                 ptsid = sec->sid;
2057                         }
2058                         rcu_read_unlock();
2059
2060                         if (ptsid != 0) {
2061                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2062                                                   SECCLASS_PROCESS,
2063                                                   PROCESS__PTRACE, NULL);
2064                                 if (rc)
2065                                         return -EPERM;
2066                         }
2067                 }
2068
2069                 /* Clear any possibly unsafe personality bits on exec: */
2070                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2077 {
2078         const struct task_security_struct *tsec = current_security();
2079         u32 sid, osid;
2080         int atsecure = 0;
2081
2082         sid = tsec->sid;
2083         osid = tsec->osid;
2084
2085         if (osid != sid) {
2086                 /* Enable secure mode for SIDs transitions unless
2087                    the noatsecure permission is granted between
2088                    the two SIDs, i.e. ahp returns 0. */
2089                 atsecure = avc_has_perm(osid, sid,
2090                                         SECCLASS_PROCESS,
2091                                         PROCESS__NOATSECURE, NULL);
2092         }
2093
2094         return (atsecure || cap_bprm_secureexec(bprm));
2095 }
2096
2097 /* Derived from fs/exec.c:flush_old_files. */
2098 static inline void flush_unauthorized_files(const struct cred *cred,
2099                                             struct files_struct *files)
2100 {
2101         struct common_audit_data ad;
2102         struct file *file, *devnull = NULL;
2103         struct tty_struct *tty;
2104         struct fdtable *fdt;
2105         long j = -1;
2106         int drop_tty = 0;
2107
2108         tty = get_current_tty();
2109         if (tty) {
2110                 spin_lock(&tty_files_lock);
2111                 if (!list_empty(&tty->tty_files)) {
2112                         struct tty_file_private *file_priv;
2113                         struct inode *inode;
2114
2115                         /* Revalidate access to controlling tty.
2116                            Use inode_has_perm on the tty inode directly rather
2117                            than using file_has_perm, as this particular open
2118                            file may belong to another process and we are only
2119                            interested in the inode-based check here. */
2120                         file_priv = list_first_entry(&tty->tty_files,
2121                                                 struct tty_file_private, list);
2122                         file = file_priv->file;
2123                         inode = file->f_path.dentry->d_inode;
2124                         if (inode_has_perm_noadp(cred, inode,
2125                                            FILE__READ | FILE__WRITE, 0)) {
2126                                 drop_tty = 1;
2127                         }
2128                 }
2129                 spin_unlock(&tty_files_lock);
2130                 tty_kref_put(tty);
2131         }
2132         /* Reset controlling tty. */
2133         if (drop_tty)
2134                 no_tty();
2135
2136         /* Revalidate access to inherited open files. */
2137
2138         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2139
2140         spin_lock(&files->file_lock);
2141         for (;;) {
2142                 unsigned long set, i;
2143                 int fd;
2144
2145                 j++;
2146                 i = j * __NFDBITS;
2147                 fdt = files_fdtable(files);
2148                 if (i >= fdt->max_fds)
2149                         break;
2150                 set = fdt->open_fds->fds_bits[j];
2151                 if (!set)
2152                         continue;
2153                 spin_unlock(&files->file_lock);
2154                 for ( ; set ; i++, set >>= 1) {
2155                         if (set & 1) {
2156                                 file = fget(i);
2157                                 if (!file)
2158                                         continue;
2159                                 if (file_has_perm(cred,
2160                                                   file,
2161                                                   file_to_av(file))) {
2162                                         sys_close(i);
2163                                         fd = get_unused_fd();
2164                                         if (fd != i) {
2165                                                 if (fd >= 0)
2166                                                         put_unused_fd(fd);
2167                                                 fput(file);
2168                                                 continue;
2169                                         }
2170                                         if (devnull) {
2171                                                 get_file(devnull);
2172                                         } else {
2173                                                 devnull = dentry_open(
2174                                                         dget(selinux_null),
2175                                                         mntget(selinuxfs_mount),
2176                                                         O_RDWR, cred);
2177                                                 if (IS_ERR(devnull)) {
2178                                                         devnull = NULL;
2179                                                         put_unused_fd(fd);
2180                                                         fput(file);
2181                                                         continue;
2182                                                 }
2183                                         }
2184                                         fd_install(fd, devnull);
2185                                 }
2186                                 fput(file);
2187                         }
2188                 }
2189                 spin_lock(&files->file_lock);
2190
2191         }
2192         spin_unlock(&files->file_lock);
2193 }
2194
2195 /*
2196  * Prepare a process for imminent new credential changes due to exec
2197  */
2198 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2199 {
2200         struct task_security_struct *new_tsec;
2201         struct rlimit *rlim, *initrlim;
2202         int rc, i;
2203
2204         new_tsec = bprm->cred->security;
2205         if (new_tsec->sid == new_tsec->osid)
2206                 return;
2207
2208         /* Close files for which the new task SID is not authorized. */
2209         flush_unauthorized_files(bprm->cred, current->files);
2210
2211         /* Always clear parent death signal on SID transitions. */
2212         current->pdeath_signal = 0;
2213
2214         /* Check whether the new SID can inherit resource limits from the old
2215          * SID.  If not, reset all soft limits to the lower of the current
2216          * task's hard limit and the init task's soft limit.
2217          *
2218          * Note that the setting of hard limits (even to lower them) can be
2219          * controlled by the setrlimit check.  The inclusion of the init task's
2220          * soft limit into the computation is to avoid resetting soft limits
2221          * higher than the default soft limit for cases where the default is
2222          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2223          */
2224         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2225                           PROCESS__RLIMITINH, NULL);
2226         if (rc) {
2227                 /* protect against do_prlimit() */
2228                 task_lock(current);
2229                 for (i = 0; i < RLIM_NLIMITS; i++) {
2230                         rlim = current->signal->rlim + i;
2231                         initrlim = init_task.signal->rlim + i;
2232                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2233                 }
2234                 task_unlock(current);
2235                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2236         }
2237 }
2238
2239 /*
2240  * Clean up the process immediately after the installation of new credentials
2241  * due to exec
2242  */
2243 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2244 {
2245         const struct task_security_struct *tsec = current_security();
2246         struct itimerval itimer;
2247         u32 osid, sid;
2248         int rc, i;
2249
2250         osid = tsec->osid;
2251         sid = tsec->sid;
2252
2253         if (sid == osid)
2254                 return;
2255
2256         /* Check whether the new SID can inherit signal state from the old SID.
2257          * If not, clear itimers to avoid subsequent signal generation and
2258          * flush and unblock signals.
2259          *
2260          * This must occur _after_ the task SID has been updated so that any
2261          * kill done after the flush will be checked against the new SID.
2262          */
2263         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2264         if (rc) {
2265                 memset(&itimer, 0, sizeof itimer);
2266                 for (i = 0; i < 3; i++)
2267                         do_setitimer(i, &itimer, NULL);
2268                 spin_lock_irq(&current->sighand->siglock);
2269                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2270                         __flush_signals(current);
2271                         flush_signal_handlers(current, 1);
2272                         sigemptyset(&current->blocked);
2273                 }
2274                 spin_unlock_irq(&current->sighand->siglock);
2275         }
2276
2277         /* Wake up the parent if it is waiting so that it can recheck
2278          * wait permission to the new task SID. */
2279         read_lock(&tasklist_lock);
2280         __wake_up_parent(current, current->real_parent);
2281         read_unlock(&tasklist_lock);
2282 }
2283
2284 /* superblock security operations */
2285
2286 static int selinux_sb_alloc_security(struct super_block *sb)
2287 {
2288         return superblock_alloc_security(sb);
2289 }
2290
2291 static void selinux_sb_free_security(struct super_block *sb)
2292 {
2293         superblock_free_security(sb);
2294 }
2295
2296 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2297 {
2298         if (plen > olen)
2299                 return 0;
2300
2301         return !memcmp(prefix, option, plen);
2302 }
2303
2304 static inline int selinux_option(char *option, int len)
2305 {
2306         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2307                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2308                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2309                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2310                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2311 }
2312
2313 static inline void take_option(char **to, char *from, int *first, int len)
2314 {
2315         if (!*first) {
2316                 **to = ',';
2317                 *to += 1;
2318         } else
2319                 *first = 0;
2320         memcpy(*to, from, len);
2321         *to += len;
2322 }
2323
2324 static inline void take_selinux_option(char **to, char *from, int *first,
2325                                        int len)
2326 {
2327         int current_size = 0;
2328
2329         if (!*first) {
2330                 **to = '|';
2331                 *to += 1;
2332         } else
2333                 *first = 0;
2334
2335         while (current_size < len) {
2336                 if (*from != '"') {
2337                         **to = *from;
2338                         *to += 1;
2339                 }
2340                 from += 1;
2341                 current_size += 1;
2342         }
2343 }
2344
2345 static int selinux_sb_copy_data(char *orig, char *copy)
2346 {
2347         int fnosec, fsec, rc = 0;
2348         char *in_save, *in_curr, *in_end;
2349         char *sec_curr, *nosec_save, *nosec;
2350         int open_quote = 0;
2351
2352         in_curr = orig;
2353         sec_curr = copy;
2354
2355         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2356         if (!nosec) {
2357                 rc = -ENOMEM;
2358                 goto out;
2359         }
2360
2361         nosec_save = nosec;
2362         fnosec = fsec = 1;
2363         in_save = in_end = orig;
2364
2365         do {
2366                 if (*in_end == '"')
2367                         open_quote = !open_quote;
2368                 if ((*in_end == ',' && open_quote == 0) ||
2369                                 *in_end == '\0') {
2370                         int len = in_end - in_curr;
2371
2372                         if (selinux_option(in_curr, len))
2373                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2374                         else
2375                                 take_option(&nosec, in_curr, &fnosec, len);
2376
2377                         in_curr = in_end + 1;
2378                 }
2379         } while (*in_end++);
2380
2381         strcpy(in_save, nosec_save);
2382         free_page((unsigned long)nosec_save);
2383 out:
2384         return rc;
2385 }
2386
2387 static int selinux_sb_remount(struct super_block *sb, void *data)
2388 {
2389         int rc, i, *flags;
2390         struct security_mnt_opts opts;
2391         char *secdata, **mount_options;
2392         struct superblock_security_struct *sbsec = sb->s_security;
2393
2394         if (!(sbsec->flags & SE_SBINITIALIZED))
2395                 return 0;
2396
2397         if (!data)
2398                 return 0;
2399
2400         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2401                 return 0;
2402
2403         security_init_mnt_opts(&opts);
2404         secdata = alloc_secdata();
2405         if (!secdata)
2406                 return -ENOMEM;
2407         rc = selinux_sb_copy_data(data, secdata);
2408         if (rc)
2409                 goto out_free_secdata;
2410
2411         rc = selinux_parse_opts_str(secdata, &opts);
2412         if (rc)
2413                 goto out_free_secdata;
2414
2415         mount_options = opts.mnt_opts;
2416         flags = opts.mnt_opts_flags;
2417
2418         for (i = 0; i < opts.num_mnt_opts; i++) {
2419                 u32 sid;
2420                 size_t len;
2421
2422                 if (flags[i] == SE_SBLABELSUPP)
2423                         continue;
2424                 len = strlen(mount_options[i]);
2425                 rc = security_context_to_sid(mount_options[i], len, &sid);
2426                 if (rc) {
2427                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2428                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2429                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2430                         goto out_free_opts;
2431                 }
2432                 rc = -EINVAL;
2433                 switch (flags[i]) {
2434                 case FSCONTEXT_MNT:
2435                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2436                                 goto out_bad_option;
2437                         break;
2438                 case CONTEXT_MNT:
2439                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2440                                 goto out_bad_option;
2441                         break;
2442                 case ROOTCONTEXT_MNT: {
2443                         struct inode_security_struct *root_isec;
2444                         root_isec = sb->s_root->d_inode->i_security;
2445
2446                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2447                                 goto out_bad_option;
2448                         break;
2449                 }
2450                 case DEFCONTEXT_MNT:
2451                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2452                                 goto out_bad_option;
2453                         break;
2454                 default:
2455                         goto out_free_opts;
2456                 }
2457         }
2458
2459         rc = 0;
2460 out_free_opts:
2461         security_free_mnt_opts(&opts);
2462 out_free_secdata:
2463         free_secdata(secdata);
2464         return rc;
2465 out_bad_option:
2466         printk(KERN_WARNING "SELinux: unable to change security options "
2467                "during remount (dev %s, type=%s)\n", sb->s_id,
2468                sb->s_type->name);
2469         goto out_free_opts;
2470 }
2471
2472 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2473 {
2474         const struct cred *cred = current_cred();
2475         struct common_audit_data ad;
2476         int rc;
2477
2478         rc = superblock_doinit(sb, data);
2479         if (rc)
2480                 return rc;
2481
2482         /* Allow all mounts performed by the kernel */
2483         if (flags & MS_KERNMOUNT)
2484                 return 0;
2485
2486         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2487         ad.u.dentry = sb->s_root;
2488         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2489 }
2490
2491 static int selinux_sb_statfs(struct dentry *dentry)
2492 {
2493         const struct cred *cred = current_cred();
2494         struct common_audit_data ad;
2495
2496         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2497         ad.u.dentry = dentry->d_sb->s_root;
2498         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2499 }
2500
2501 static int selinux_mount(char *dev_name,
2502                          struct path *path,
2503                          char *type,
2504                          unsigned long flags,
2505                          void *data)
2506 {
2507         const struct cred *cred = current_cred();
2508
2509         if (flags & MS_REMOUNT)
2510                 return superblock_has_perm(cred, path->dentry->d_sb,
2511                                            FILESYSTEM__REMOUNT, NULL);
2512         else
2513                 return path_has_perm(cred, path, FILE__MOUNTON);
2514 }
2515
2516 static int selinux_umount(struct vfsmount *mnt, int flags)
2517 {
2518         const struct cred *cred = current_cred();
2519
2520         return superblock_has_perm(cred, mnt->mnt_sb,
2521                                    FILESYSTEM__UNMOUNT, NULL);
2522 }
2523
2524 /* inode security operations */
2525
2526 static int selinux_inode_alloc_security(struct inode *inode)
2527 {
2528         return inode_alloc_security(inode);
2529 }
2530
2531 static void selinux_inode_free_security(struct inode *inode)
2532 {
2533         inode_free_security(inode);
2534 }
2535
2536 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2537                                        const struct qstr *qstr, char **name,
2538                                        void **value, size_t *len)
2539 {
2540         const struct task_security_struct *tsec = current_security();
2541         struct inode_security_struct *dsec;
2542         struct superblock_security_struct *sbsec;
2543         u32 sid, newsid, clen;
2544         int rc;
2545         char *namep = NULL, *context;
2546
2547         dsec = dir->i_security;
2548         sbsec = dir->i_sb->s_security;
2549
2550         sid = tsec->sid;
2551         newsid = tsec->create_sid;
2552
2553         if ((sbsec->flags & SE_SBINITIALIZED) &&
2554             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2555                 newsid = sbsec->mntpoint_sid;
2556         else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2557                 rc = security_transition_sid(sid, dsec->sid,
2558                                              inode_mode_to_security_class(inode->i_mode),
2559                                              qstr, &newsid);
2560                 if (rc) {
2561                         printk(KERN_WARNING "%s:  "
2562                                "security_transition_sid failed, rc=%d (dev=%s "
2563                                "ino=%ld)\n",
2564                                __func__,
2565                                -rc, inode->i_sb->s_id, inode->i_ino);
2566                         return rc;
2567                 }
2568         }
2569
2570         /* Possibly defer initialization to selinux_complete_init. */
2571         if (sbsec->flags & SE_SBINITIALIZED) {
2572                 struct inode_security_struct *isec = inode->i_security;
2573                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2574                 isec->sid = newsid;
2575                 isec->initialized = 1;
2576         }
2577
2578         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2579                 return -EOPNOTSUPP;
2580
2581         if (name) {
2582                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2583                 if (!namep)
2584                         return -ENOMEM;
2585                 *name = namep;
2586         }
2587
2588         if (value && len) {
2589                 rc = security_sid_to_context_force(newsid, &context, &clen);
2590                 if (rc) {
2591                         kfree(namep);
2592                         return rc;
2593                 }
2594                 *value = context;
2595                 *len = clen;
2596         }
2597
2598         return 0;
2599 }
2600
2601 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2602 {
2603         return may_create(dir, dentry, SECCLASS_FILE);
2604 }
2605
2606 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2607 {
2608         return may_link(dir, old_dentry, MAY_LINK);
2609 }
2610
2611 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2612 {
2613         return may_link(dir, dentry, MAY_UNLINK);
2614 }
2615
2616 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2617 {
2618         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2619 }
2620
2621 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2622 {
2623         return may_create(dir, dentry, SECCLASS_DIR);
2624 }
2625
2626 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2627 {
2628         return may_link(dir, dentry, MAY_RMDIR);
2629 }
2630
2631 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2632 {
2633         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2634 }
2635
2636 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2637                                 struct inode *new_inode, struct dentry *new_dentry)
2638 {
2639         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2640 }
2641
2642 static int selinux_inode_readlink(struct dentry *dentry)
2643 {
2644         const struct cred *cred = current_cred();
2645
2646         return dentry_has_perm(cred, dentry, FILE__READ);
2647 }
2648
2649 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2650 {
2651         const struct cred *cred = current_cred();
2652
2653         return dentry_has_perm(cred, dentry, FILE__READ);
2654 }
2655
2656 static int selinux_inode_permission(struct inode *inode, int mask)
2657 {
2658         const struct cred *cred = current_cred();
2659         struct common_audit_data ad;
2660         u32 perms;
2661         bool from_access;
2662         unsigned flags = mask & MAY_NOT_BLOCK;
2663
2664         from_access = mask & MAY_ACCESS;
2665         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2666
2667         /* No permission to check.  Existence test. */
2668         if (!mask)
2669                 return 0;
2670
2671         COMMON_AUDIT_DATA_INIT(&ad, INODE);
2672         ad.u.inode = inode;
2673
2674         if (from_access)
2675                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2676
2677         perms = file_mask_to_av(inode->i_mode, mask);
2678
2679         return inode_has_perm(cred, inode, perms, &ad, flags);
2680 }
2681
2682 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2683 {
2684         const struct cred *cred = current_cred();
2685         unsigned int ia_valid = iattr->ia_valid;
2686
2687         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2688         if (ia_valid & ATTR_FORCE) {
2689                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2690                               ATTR_FORCE);
2691                 if (!ia_valid)
2692                         return 0;
2693         }
2694
2695         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2696                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2697                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2698
2699         return dentry_has_perm(cred, dentry, FILE__WRITE);
2700 }
2701
2702 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2703 {
2704         const struct cred *cred = current_cred();
2705         struct path path;
2706
2707         path.dentry = dentry;
2708         path.mnt = mnt;
2709
2710         return path_has_perm(cred, &path, FILE__GETATTR);
2711 }
2712
2713 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2714 {
2715         const struct cred *cred = current_cred();
2716
2717         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2718                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2719                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2720                         if (!capable(CAP_SETFCAP))
2721                                 return -EPERM;
2722                 } else if (!capable(CAP_SYS_ADMIN)) {
2723                         /* A different attribute in the security namespace.
2724                            Restrict to administrator. */
2725                         return -EPERM;
2726                 }
2727         }
2728
2729         /* Not an attribute we recognize, so just check the
2730            ordinary setattr permission. */
2731         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2732 }
2733
2734 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2735                                   const void *value, size_t size, int flags)
2736 {
2737         struct inode *inode = dentry->d_inode;
2738         struct inode_security_struct *isec = inode->i_security;
2739         struct superblock_security_struct *sbsec;
2740         struct common_audit_data ad;
2741         u32 newsid, sid = current_sid();
2742         int rc = 0;
2743
2744         if (strcmp(name, XATTR_NAME_SELINUX))
2745                 return selinux_inode_setotherxattr(dentry, name);
2746
2747         sbsec = inode->i_sb->s_security;
2748         if (!(sbsec->flags & SE_SBLABELSUPP))
2749                 return -EOPNOTSUPP;
2750
2751         if (!inode_owner_or_capable(inode))
2752                 return -EPERM;
2753
2754         COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2755         ad.u.dentry = dentry;
2756
2757         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2758                           FILE__RELABELFROM, &ad);
2759         if (rc)
2760                 return rc;
2761
2762         rc = security_context_to_sid(value, size, &newsid);
2763         if (rc == -EINVAL) {
2764                 if (!capable(CAP_MAC_ADMIN))
2765                         return rc;
2766                 rc = security_context_to_sid_force(value, size, &newsid);
2767         }
2768         if (rc)
2769                 return rc;
2770
2771         rc = avc_has_perm(sid, newsid, isec->sclass,
2772                           FILE__RELABELTO, &ad);
2773         if (rc)
2774                 return rc;
2775
2776         rc = security_validate_transition(isec->sid, newsid, sid,
2777                                           isec->sclass);
2778         if (rc)
2779                 return rc;
2780
2781         return avc_has_perm(newsid,
2782                             sbsec->sid,
2783                             SECCLASS_FILESYSTEM,
2784                             FILESYSTEM__ASSOCIATE,
2785                             &ad);
2786 }
2787
2788 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2789                                         const void *value, size_t size,
2790                                         int flags)
2791 {
2792         struct inode *inode = dentry->d_inode;
2793         struct inode_security_struct *isec = inode->i_security;
2794         u32 newsid;
2795         int rc;
2796
2797         if (strcmp(name, XATTR_NAME_SELINUX)) {
2798                 /* Not an attribute we recognize, so nothing to do. */
2799                 return;
2800         }
2801
2802         rc = security_context_to_sid_force(value, size, &newsid);
2803         if (rc) {
2804                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2805                        "for (%s, %lu), rc=%d\n",
2806                        inode->i_sb->s_id, inode->i_ino, -rc);
2807                 return;
2808         }
2809
2810         isec->sid = newsid;
2811         return;
2812 }
2813
2814 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2815 {
2816         const struct cred *cred = current_cred();
2817
2818         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2819 }
2820
2821 static int selinux_inode_listxattr(struct dentry *dentry)
2822 {
2823         const struct cred *cred = current_cred();
2824
2825         return dentry_has_perm(cred, dentry, FILE__GETATTR);
2826 }
2827
2828 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2829 {
2830         if (strcmp(name, XATTR_NAME_SELINUX))
2831                 return selinux_inode_setotherxattr(dentry, name);
2832
2833         /* No one is allowed to remove a SELinux security label.
2834            You can change the label, but all data must be labeled. */
2835         return -EACCES;
2836 }
2837
2838 /*
2839  * Copy the inode security context value to the user.
2840  *
2841  * Permission check is handled by selinux_inode_getxattr hook.
2842  */
2843 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2844 {
2845         u32 size;
2846         int error;
2847         char *context = NULL;
2848         struct inode_security_struct *isec = inode->i_security;
2849
2850         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2851                 return -EOPNOTSUPP;
2852
2853         /*
2854          * If the caller has CAP_MAC_ADMIN, then get the raw context
2855          * value even if it is not defined by current policy; otherwise,
2856          * use the in-core value under current policy.
2857          * Use the non-auditing forms of the permission checks since
2858          * getxattr may be called by unprivileged processes commonly
2859          * and lack of permission just means that we fall back to the
2860          * in-core context value, not a denial.
2861          */
2862         error = selinux_capable(current, current_cred(),
2863                                 &init_user_ns, CAP_MAC_ADMIN,
2864                                 SECURITY_CAP_NOAUDIT);
2865         if (!error)
2866                 error = security_sid_to_context_force(isec->sid, &context,
2867                                                       &size);
2868         else
2869                 error = security_sid_to_context(isec->sid, &context, &size);
2870         if (error)
2871                 return error;
2872         error = size;
2873         if (alloc) {
2874                 *buffer = context;
2875                 goto out_nofree;
2876         }
2877         kfree(context);
2878 out_nofree:
2879         return error;
2880 }
2881
2882 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2883                                      const void *value, size_t size, int flags)
2884 {
2885         struct inode_security_struct *isec = inode->i_security;
2886         u32 newsid;
2887         int rc;
2888
2889         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2890                 return -EOPNOTSUPP;
2891
2892         if (!value || !size)
2893                 return -EACCES;
2894
2895         rc = security_context_to_sid((void *)value, size, &newsid);
2896         if (rc)
2897                 return rc;
2898
2899         isec->sid = newsid;
2900         isec->initialized = 1;
2901         return 0;
2902 }
2903
2904 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2905 {
2906         const int len = sizeof(XATTR_NAME_SELINUX);
2907         if (buffer && len <= buffer_size)
2908                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2909         return len;
2910 }
2911
2912 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2913 {
2914         struct inode_security_struct *isec = inode->i_security;
2915         *secid = isec->sid;
2916 }
2917
2918 /* file security operations */
2919
2920 static int selinux_revalidate_file_permission(struct file *file, int mask)
2921 {
2922         const struct cred *cred = current_cred();
2923         struct inode *inode = file->f_path.dentry->d_inode;
2924
2925         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2926         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2927                 mask |= MAY_APPEND;
2928
2929         return file_has_perm(cred, file,
2930                              file_mask_to_av(inode->i_mode, mask));
2931 }
2932
2933 static int selinux_file_permission(struct file *file, int mask)
2934 {
2935         struct inode *inode = file->f_path.dentry->d_inode;
2936         struct file_security_struct *fsec = file->f_security;
2937         struct inode_security_struct *isec = inode->i_security;
2938         u32 sid = current_sid();
2939
2940         if (!mask)
2941                 /* No permission to check.  Existence test. */
2942                 return 0;
2943
2944         if (sid == fsec->sid && fsec->isid == isec->sid &&
2945             fsec->pseqno == avc_policy_seqno())
2946                 /* No change since dentry_open check. */
2947                 return 0;
2948
2949         return selinux_revalidate_file_permission(file, mask);
2950 }
2951
2952 static int selinux_file_alloc_security(struct file *file)
2953 {
2954         return file_alloc_security(file);
2955 }
2956
2957 static void selinux_file_free_security(struct file *file)
2958 {
2959         file_free_security(file);
2960 }
2961
2962 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2963                               unsigned long arg)
2964 {
2965         const struct cred *cred = current_cred();
2966         int error = 0;
2967
2968         switch (cmd) {
2969         case FIONREAD:
2970         /* fall through */
2971         case FIBMAP:
2972         /* fall through */
2973         case FIGETBSZ:
2974         /* fall through */
2975         case EXT2_IOC_GETFLAGS:
2976         /* fall through */
2977         case EXT2_IOC_GETVERSION:
2978                 error = file_has_perm(cred, file, FILE__GETATTR);
2979                 break;
2980
2981         case EXT2_IOC_SETFLAGS:
2982         /* fall through */
2983         case EXT2_IOC_SETVERSION:
2984                 error = file_has_perm(cred, file, FILE__SETATTR);
2985                 break;
2986
2987         /* sys_ioctl() checks */
2988         case FIONBIO:
2989         /* fall through */
2990         case FIOASYNC:
2991                 error = file_has_perm(cred, file, 0);
2992                 break;
2993
2994         case KDSKBENT:
2995         case KDSKBSENT:
2996                 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
2997                                         SECURITY_CAP_AUDIT);
2998                 break;
2999
3000         /* default case assumes that the command will go
3001          * to the file's ioctl() function.
3002          */
3003         default:
3004                 error = file_has_perm(cred, file, FILE__IOCTL);
3005         }
3006         return error;
3007 }
3008
3009 static int default_noexec;
3010
3011 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3012 {
3013         const struct cred *cred = current_cred();
3014         int rc = 0;
3015
3016         if (default_noexec &&
3017             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3018                 /*
3019                  * We are making executable an anonymous mapping or a
3020                  * private file mapping that will also be writable.
3021                  * This has an additional check.
3022                  */
3023                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3024                 if (rc)
3025                         goto error;
3026         }
3027
3028         if (file) {
3029                 /* read access is always possible with a mapping */
3030                 u32 av = FILE__READ;
3031
3032                 /* write access only matters if the mapping is shared */
3033                 if (shared && (prot & PROT_WRITE))
3034                         av |= FILE__WRITE;
3035
3036                 if (prot & PROT_EXEC)
3037                         av |= FILE__EXECUTE;
3038
3039                 return file_has_perm(cred, file, av);
3040         }
3041
3042 error:
3043         return rc;
3044 }
3045
3046 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3047                              unsigned long prot, unsigned long flags,
3048                              unsigned long addr, unsigned long addr_only)
3049 {
3050         int rc = 0;
3051         u32 sid = current_sid();
3052
3053         /*
3054          * notice that we are intentionally putting the SELinux check before
3055          * the secondary cap_file_mmap check.  This is such a likely attempt
3056          * at bad behaviour/exploit that we always want to get the AVC, even
3057          * if DAC would have also denied the operation.
3058          */
3059         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3060                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3061                                   MEMPROTECT__MMAP_ZERO, NULL);
3062                 if (rc)
3063                         return rc;
3064         }
3065
3066         /* do DAC check on address space usage */
3067         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3068         if (rc || addr_only)
3069                 return rc;
3070
3071         if (selinux_checkreqprot)
3072                 prot = reqprot;
3073
3074         return file_map_prot_check(file, prot,
3075                                    (flags & MAP_TYPE) == MAP_SHARED);
3076 }
3077
3078 static int selinux_file_mprotect(struct vm_area_struct *vma,
3079                                  unsigned long reqprot,
3080                                  unsigned long prot)
3081 {
3082         const struct cred *cred = current_cred();
3083
3084         if (selinux_checkreqprot)
3085                 prot = reqprot;
3086
3087         if (default_noexec &&
3088             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3089                 int rc = 0;
3090                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3091                     vma->vm_end <= vma->vm_mm->brk) {
3092                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3093                 } else if (!vma->vm_file &&
3094                            vma->vm_start <= vma->vm_mm->start_stack &&
3095                            vma->vm_end >= vma->vm_mm->start_stack) {
3096                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3097                 } else if (vma->vm_file && vma->anon_vma) {
3098                         /*
3099                          * We are making executable a file mapping that has
3100                          * had some COW done. Since pages might have been
3101                          * written, check ability to execute the possibly
3102                          * modified content.  This typically should only
3103                          * occur for text relocations.
3104                          */
3105                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3106                 }
3107                 if (rc)
3108                         return rc;
3109         }
3110
3111         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3112 }
3113
3114 static int selinux_file_lock(struct file *file, unsigned int cmd)
3115 {
3116         const struct cred *cred = current_cred();
3117
3118         return file_has_perm(cred, file, FILE__LOCK);
3119 }
3120
3121 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3122                               unsigned long arg)
3123 {
3124         const struct cred *cred = current_cred();
3125         int err = 0;
3126
3127         switch (cmd) {
3128         case F_SETFL:
3129                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3130                         err = -EINVAL;
3131                         break;
3132                 }
3133
3134                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3135                         err = file_has_perm(cred, file, FILE__WRITE);
3136                         break;
3137                 }
3138                 /* fall through */
3139         case F_SETOWN:
3140         case F_SETSIG:
3141         case F_GETFL:
3142         case F_GETOWN:
3143         case F_GETSIG:
3144                 /* Just check FD__USE permission */
3145                 err = file_has_perm(cred, file, 0);
3146                 break;
3147         case F_GETLK:
3148         case F_SETLK:
3149         case F_SETLKW:
3150 #if BITS_PER_LONG == 32
3151         case F_GETLK64:
3152         case F_SETLK64:
3153         case F_SETLKW64:
3154 #endif
3155                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3156                         err = -EINVAL;
3157                         break;
3158                 }
3159                 err = file_has_perm(cred, file, FILE__LOCK);
3160                 break;
3161         }
3162
3163         return err;
3164 }
3165
3166 static int selinux_file_set_fowner(struct file *file)
3167 {
3168         struct file_security_struct *fsec;
3169
3170         fsec = file->f_security;
3171         fsec->fown_sid = current_sid();
3172
3173         return 0;
3174 }
3175
3176 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3177                                        struct fown_struct *fown, int signum)
3178 {
3179         struct file *file;
3180         u32 sid = task_sid(tsk);
3181         u32 perm;
3182         struct file_security_struct *fsec;
3183
3184         /* struct fown_struct is never outside the context of a struct file */
3185         file = container_of(fown, struct file, f_owner);
3186
3187         fsec = file->f_security;
3188
3189         if (!signum)
3190                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3191         else
3192                 perm = signal_to_av(signum);
3193
3194         return avc_has_perm(fsec->fown_sid, sid,
3195                             SECCLASS_PROCESS, perm, NULL);
3196 }
3197
3198 static int selinux_file_receive(struct file *file)
3199 {
3200         const struct cred *cred = current_cred();
3201
3202         return file_has_perm(cred, file, file_to_av(file));
3203 }
3204
3205 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3206 {
3207         struct file_security_struct *fsec;
3208         struct inode *inode;
3209         struct inode_security_struct *isec;
3210
3211         inode = file->f_path.dentry->d_inode;
3212         fsec = file->f_security;
3213         isec = inode->i_security;
3214         /*
3215          * Save inode label and policy sequence number
3216          * at open-time so that selinux_file_permission
3217          * can determine whether revalidation is necessary.
3218          * Task label is already saved in the file security
3219          * struct as its SID.
3220          */
3221         fsec->isid = isec->sid;
3222         fsec->pseqno = avc_policy_seqno();
3223         /*
3224          * Since the inode label or policy seqno may have changed
3225          * between the selinux_inode_permission check and the saving
3226          * of state above, recheck that access is still permitted.
3227          * Otherwise, access might never be revalidated against the
3228          * new inode label or new policy.
3229          * This check is not redundant - do not remove.
3230          */
3231         return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3232 }
3233
3234 /* task security operations */
3235
3236 static int selinux_task_create(unsigned long clone_flags)
3237 {
3238         return current_has_perm(current, PROCESS__FORK);
3239 }
3240
3241 /*
3242  * allocate the SELinux part of blank credentials
3243  */
3244 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3245 {
3246         struct task_security_struct *tsec;
3247
3248         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3249         if (!tsec)
3250                 return -ENOMEM;
3251
3252         cred->security = tsec;
3253         return 0;
3254 }
3255
3256 /*
3257  * detach and free the LSM part of a set of credentials
3258  */
3259 static void selinux_cred_free(struct cred *cred)
3260 {
3261         struct task_security_struct *tsec = cred->security;
3262
3263         /*
3264          * cred->security == NULL if security_cred_alloc_blank() or
3265          * security_prepare_creds() returned an error.
3266          */
3267         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3268         cred->security = (void *) 0x7UL;
3269         kfree(tsec);
3270 }
3271
3272 /*
3273  * prepare a new set of credentials for modification
3274  */
3275 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3276                                 gfp_t gfp)
3277 {
3278         const struct task_security_struct *old_tsec;
3279         struct task_security_struct *tsec;
3280
3281         old_tsec = old->security;
3282
3283         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3284         if (!tsec)
3285                 return -ENOMEM;
3286
3287         new->security = tsec;
3288         return 0;
3289 }
3290
3291 /*
3292  * transfer the SELinux data to a blank set of creds
3293  */
3294 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3295 {
3296         const struct task_security_struct *old_tsec = old->security;
3297         struct task_security_struct *tsec = new->security;
3298
3299         *tsec = *old_tsec;
3300 }
3301
3302 /*
3303  * set the security data for a kernel service
3304  * - all the creation contexts are set to unlabelled
3305  */
3306 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3307 {
3308         struct task_security_struct *tsec = new->security;
3309         u32 sid = current_sid();
3310         int ret;
3311
3312         ret = avc_has_perm(sid, secid,
3313                            SECCLASS_KERNEL_SERVICE,
3314                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3315                            NULL);
3316         if (ret == 0) {
3317                 tsec->sid = secid;
3318                 tsec->create_sid = 0;
3319                 tsec->keycreate_sid = 0;
3320                 tsec->sockcreate_sid = 0;
3321         }
3322         return ret;
3323 }
3324
3325 /*
3326  * set the file creation context in a security record to the same as the
3327  * objective context of the specified inode
3328  */
3329 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3330 {
3331         struct inode_security_struct *isec = inode->i_security;
3332         struct task_security_struct *tsec = new->security;
3333         u32 sid = current_sid();
3334         int ret;
3335
3336         ret = avc_has_perm(sid, isec->sid,
3337                            SECCLASS_KERNEL_SERVICE,
3338                            KERNEL_SERVICE__CREATE_FILES_AS,
3339                            NULL);
3340
3341         if (ret == 0)
3342                 tsec->create_sid = isec->sid;
3343         return ret;
3344 }
3345
3346 static int selinux_kernel_module_request(char *kmod_name)
3347 {
3348         u32 sid;
3349         struct common_audit_data ad;
3350
3351         sid = task_sid(current);
3352
3353         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3354         ad.u.kmod_name = kmod_name;
3355
3356         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3357                             SYSTEM__MODULE_REQUEST, &ad);
3358 }
3359
3360 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3361 {
3362         return current_has_perm(p, PROCESS__SETPGID);
3363 }
3364
3365 static int selinux_task_getpgid(struct task_struct *p)
3366 {
3367         return current_has_perm(p, PROCESS__GETPGID);
3368 }
3369
3370 static int selinux_task_getsid(struct task_struct *p)
3371 {
3372         return current_has_perm(p, PROCESS__GETSESSION);
3373 }
3374
3375 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3376 {
3377         *secid = task_sid(p);
3378 }
3379
3380 static int selinux_task_setnice(struct task_struct *p, int nice)
3381 {
3382         int rc;
3383
3384         rc = cap_task_setnice(p, nice);
3385         if (rc)
3386                 return rc;
3387
3388         return current_has_perm(p, PROCESS__SETSCHED);
3389 }
3390
3391 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3392 {
3393         int rc;
3394
3395         rc = cap_task_setioprio(p, ioprio);
3396         if (rc)
3397                 return rc;
3398
3399         return current_has_perm(p, PROCESS__SETSCHED);
3400 }
3401
3402 static int selinux_task_getioprio(struct task_struct *p)
3403 {
3404         return current_has_perm(p, PROCESS__GETSCHED);
3405 }
3406
3407 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3408                 struct rlimit *new_rlim)
3409 {
3410         struct rlimit *old_rlim = p->signal->rlim + resource;
3411
3412         /* Control the ability to change the hard limit (whether
3413            lowering or raising it), so that the hard limit can
3414            later be used as a safe reset point for the soft limit
3415            upon context transitions.  See selinux_bprm_committing_creds. */
3416         if (old_rlim->rlim_max != new_rlim->rlim_max)
3417                 return current_has_perm(p, PROCESS__SETRLIMIT);
3418
3419         return 0;
3420 }
3421
3422 static int selinux_task_setscheduler(struct task_struct *p)
3423 {
3424         int rc;
3425
3426         rc = cap_task_setscheduler(p);
3427         if (rc)
3428                 return rc;
3429
3430         return current_has_perm(p, PROCESS__SETSCHED);
3431 }
3432
3433 static int selinux_task_getscheduler(struct task_struct *p)
3434 {
3435         return current_has_perm(p, PROCESS__GETSCHED);
3436 }
3437
3438 static int selinux_task_movememory(struct task_struct *p)
3439 {
3440         return current_has_perm(p, PROCESS__SETSCHED);
3441 }
3442
3443 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3444                                 int sig, u32 secid)
3445 {
3446         u32 perm;
3447         int rc;
3448
3449         if (!sig)
3450                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3451         else
3452                 perm = signal_to_av(sig);
3453         if (secid)
3454                 rc = avc_has_perm(secid, task_sid(p),
3455                                   SECCLASS_PROCESS, perm, NULL);
3456         else
3457                 rc = current_has_perm(p, perm);
3458         return rc;
3459 }
3460
3461 static int selinux_task_wait(struct task_struct *p)
3462 {
3463         return task_has_perm(p, current, PROCESS__SIGCHLD);
3464 }
3465
3466 static void selinux_task_to_inode(struct task_struct *p,
3467                                   struct inode *inode)
3468 {
3469         struct inode_security_struct *isec = inode->i_security;
3470         u32 sid = task_sid(p);
3471
3472         isec->sid = sid;
3473         isec->initialized = 1;
3474 }
3475
3476 /* Returns error only if unable to parse addresses */
3477 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3478                         struct common_audit_data *ad, u8 *proto)
3479 {
3480         int offset, ihlen, ret = -EINVAL;
3481         struct iphdr _iph, *ih;
3482
3483         offset = skb_network_offset(skb);
3484         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3485         if (ih == NULL)
3486                 goto out;
3487
3488         ihlen = ih->ihl * 4;
3489         if (ihlen < sizeof(_iph))
3490                 goto out;
3491
3492         ad->u.net.v4info.saddr = ih->saddr;
3493         ad->u.net.v4info.daddr = ih->daddr;
3494         ret = 0;
3495
3496         if (proto)
3497                 *proto = ih->protocol;
3498
3499         switch (ih->protocol) {
3500         case IPPROTO_TCP: {
3501                 struct tcphdr _tcph, *th;
3502
3503                 if (ntohs(ih->frag_off) & IP_OFFSET)
3504                         break;
3505
3506                 offset += ihlen;
3507                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3508                 if (th == NULL)
3509                         break;
3510
3511                 ad->u.net.sport = th->source;
3512                 ad->u.net.dport = th->dest;
3513                 break;
3514         }
3515
3516         case IPPROTO_UDP: {
3517                 struct udphdr _udph, *uh;
3518
3519                 if (ntohs(ih->frag_off) & IP_OFFSET)
3520                         break;
3521
3522                 offset += ihlen;
3523                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3524                 if (uh == NULL)
3525                         break;
3526
3527                 ad->u.net.sport = uh->source;
3528                 ad->u.net.dport = uh->dest;
3529                 break;
3530         }
3531
3532         case IPPROTO_DCCP: {
3533                 struct dccp_hdr _dccph, *dh;
3534
3535                 if (ntohs(ih->frag_off) & IP_OFFSET)
3536                         break;
3537
3538                 offset += ihlen;
3539                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3540                 if (dh == NULL)
3541                         break;
3542
3543                 ad->u.net.sport = dh->dccph_sport;
3544                 ad->u.net.dport = dh->dccph_dport;
3545                 break;
3546         }
3547
3548         default:
3549                 break;
3550         }
3551 out:
3552         return ret;
3553 }
3554
3555 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3556
3557 /* Returns error only if unable to parse addresses */
3558 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3559                         struct common_audit_data *ad, u8 *proto)
3560 {
3561         u8 nexthdr;
3562         int ret = -EINVAL, offset;
3563         struct ipv6hdr _ipv6h, *ip6;
3564         __be16 frag_off;
3565
3566         offset = skb_network_offset(skb);
3567         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3568         if (ip6 == NULL)
3569                 goto out;
3570
3571         ad->u.net.v6info.saddr = ip6->saddr;
3572         ad->u.net.v6info.daddr = ip6->daddr;
3573         ret = 0;
3574
3575         nexthdr = ip6->nexthdr;
3576         offset += sizeof(_ipv6h);
3577         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3578         if (offset < 0)
3579                 goto out;
3580
3581         if (proto)
3582                 *proto = nexthdr;
3583
3584         switch (nexthdr) {
3585         case IPPROTO_TCP: {
3586                 struct tcphdr _tcph, *th;
3587
3588                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3589                 if (th == NULL)
3590                         break;
3591
3592                 ad->u.net.sport = th->source;
3593                 ad->u.net.dport = th->dest;
3594                 break;
3595         }
3596
3597         case IPPROTO_UDP: {
3598                 struct udphdr _udph, *uh;
3599
3600                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3601                 if (uh == NULL)
3602                         break;
3603
3604                 ad->u.net.sport = uh->source;
3605                 ad->u.net.dport = uh->dest;
3606                 break;
3607         }
3608
3609         case IPPROTO_DCCP: {
3610                 struct dccp_hdr _dccph, *dh;
3611
3612                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3613                 if (dh == NULL)
3614                         break;
3615
3616                 ad->u.net.sport = dh->dccph_sport;
3617                 ad->u.net.dport = dh->dccph_dport;
3618                 break;
3619         }
3620
3621         /* includes fragments */
3622         default:
3623                 break;
3624         }
3625 out:
3626         return ret;
3627 }
3628
3629 #endif /* IPV6 */
3630
3631 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3632                              char **_addrp, int src, u8 *proto)
3633 {
3634         char *addrp;
3635         int ret;
3636
3637         switch (ad->u.net.family) {
3638         case PF_INET:
3639                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3640                 if (ret)
3641                         goto parse_error;
3642                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3643                                        &ad->u.net.v4info.daddr);
3644                 goto okay;
3645
3646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3647         case PF_INET6:
3648                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3649                 if (ret)
3650                         goto parse_error;
3651                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3652                                        &ad->u.net.v6info.daddr);
3653                 goto okay;
3654 #endif  /* IPV6 */
3655         default:
3656                 addrp = NULL;
3657                 goto okay;
3658         }
3659
3660 parse_error:
3661         printk(KERN_WARNING
3662                "SELinux: failure in selinux_parse_skb(),"
3663                " unable to parse packet\n");
3664         return ret;
3665
3666 okay:
3667         if (_addrp)
3668                 *_addrp = addrp;
3669         return 0;
3670 }
3671
3672 /**
3673  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3674  * @skb: the packet
3675  * @family: protocol family
3676  * @sid: the packet's peer label SID
3677  *
3678  * Description:
3679  * Check the various different forms of network peer labeling and determine
3680  * the peer label/SID for the packet; most of the magic actually occurs in
3681  * the security server function security_net_peersid_cmp().  The function
3682  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3683  * or -EACCES if @sid is invalid due to inconsistencies with the different
3684  * peer labels.
3685  *
3686  */
3687 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3688 {
3689         int err;
3690         u32 xfrm_sid;
3691         u32 nlbl_sid;
3692         u32 nlbl_type;
3693
3694         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3695         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3696
3697         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3698         if (unlikely(err)) {
3699                 printk(KERN_WARNING
3700                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3701                        " unable to determine packet's peer label\n");
3702                 return -EACCES;
3703         }
3704
3705         return 0;
3706 }
3707
3708 /* socket security operations */
3709
3710 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3711                                  u16 secclass, u32 *socksid)
3712 {
3713         if (tsec->sockcreate_sid > SECSID_NULL) {
3714                 *socksid = tsec->sockcreate_sid;
3715                 return 0;
3716         }
3717
3718         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3719                                        socksid);
3720 }
3721
3722 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3723 {
3724         struct sk_security_struct *sksec = sk->sk_security;
3725         struct common_audit_data ad;
3726         u32 tsid = task_sid(task);
3727
3728         if (sksec->sid == SECINITSID_KERNEL)
3729                 return 0;
3730
3731         COMMON_AUDIT_DATA_INIT(&ad, NET);
3732         ad.u.net.sk = sk;
3733
3734         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3735 }
3736
3737 static int selinux_socket_create(int family, int type,
3738                                  int protocol, int kern)
3739 {
3740         const struct task_security_struct *tsec = current_security();
3741         u32 newsid;
3742         u16 secclass;
3743         int rc;
3744
3745         if (kern)
3746                 return 0;
3747
3748         secclass = socket_type_to_security_class(family, type, protocol);
3749         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3750         if (rc)
3751                 return rc;
3752
3753         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3754 }
3755
3756 static int selinux_socket_post_create(struct socket *sock, int family,
3757                                       int type, int protocol, int kern)
3758 {
3759         const struct task_security_struct *tsec = current_security();
3760         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3761         struct sk_security_struct *sksec;
3762         int err = 0;
3763
3764         isec->sclass = socket_type_to_security_class(family, type, protocol);
3765
3766         if (kern)
3767                 isec->sid = SECINITSID_KERNEL;
3768         else {
3769                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3770                 if (err)
3771                         return err;
3772         }
3773
3774         isec->initialized = 1;
3775
3776         if (sock->sk) {
3777                 sksec = sock->sk->sk_security;
3778                 sksec->sid = isec->sid;
3779                 sksec->sclass = isec->sclass;
3780                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3781         }
3782
3783         return err;
3784 }
3785
3786 /* Range of port numbers used to automatically bind.
3787    Need to determine whether we should perform a name_bind
3788    permission check between the socket and the port number. */
3789
3790 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3791 {
3792         struct sock *sk = sock->sk;
3793         u16 family;
3794         int err;
3795
3796         err = sock_has_perm(current, sk, SOCKET__BIND);
3797         if (err)
3798                 goto out;
3799
3800         /*
3801          * If PF_INET or PF_INET6, check name_bind permission for the port.
3802          * Multiple address binding for SCTP is not supported yet: we just
3803          * check the first address now.
3804          */
3805         family = sk->sk_family;
3806         if (family == PF_INET || family == PF_INET6) {
3807                 char *addrp;
3808                 struct sk_security_struct *sksec = sk->sk_security;
3809                 struct common_audit_data ad;
3810                 struct sockaddr_in *addr4 = NULL;
3811                 struct sockaddr_in6 *addr6 = NULL;
3812                 unsigned short snum;
3813                 u32 sid, node_perm;
3814
3815                 if (family == PF_INET) {
3816                         addr4 = (struct sockaddr_in *)address;
3817                         snum = ntohs(addr4->sin_port);
3818                         addrp = (char *)&addr4->sin_addr.s_addr;
3819                 } else {
3820                         addr6 = (struct sockaddr_in6 *)address;
3821                         snum = ntohs(addr6->sin6_port);
3822                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3823                 }
3824
3825                 if (snum) {
3826                         int low, high;
3827
3828                         inet_get_local_port_range(&low, &high);
3829
3830                         if (snum < max(PROT_SOCK, low) || snum > high) {
3831                                 err = sel_netport_sid(sk->sk_protocol,
3832                                                       snum, &sid);
3833                                 if (err)
3834                                         goto out;
3835                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3836                                 ad.u.net.sport = htons(snum);
3837                                 ad.u.net.family = family;
3838                                 err = avc_has_perm(sksec->sid, sid,
3839                                                    sksec->sclass,
3840                                                    SOCKET__NAME_BIND, &ad);
3841                                 if (err)
3842                                         goto out;
3843                         }
3844                 }
3845
3846                 switch (sksec->sclass) {
3847                 case SECCLASS_TCP_SOCKET:
3848                         node_perm = TCP_SOCKET__NODE_BIND;
3849                         break;
3850
3851                 case SECCLASS_UDP_SOCKET:
3852                         node_perm = UDP_SOCKET__NODE_BIND;
3853                         break;
3854
3855                 case SECCLASS_DCCP_SOCKET:
3856                         node_perm = DCCP_SOCKET__NODE_BIND;
3857                         break;
3858
3859                 default:
3860                         node_perm = RAWIP_SOCKET__NODE_BIND;
3861                         break;
3862                 }
3863
3864                 err = sel_netnode_sid(addrp, family, &sid);
3865                 if (err)
3866                         goto out;
3867
3868                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3869                 ad.u.net.sport = htons(snum);
3870                 ad.u.net.family = family;
3871
3872                 if (family == PF_INET)
3873                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3874                 else
3875                         ad.u.net.v6info.saddr = addr6->sin6_addr;
3876
3877                 err = avc_has_perm(sksec->sid, sid,
3878                                    sksec->sclass, node_perm, &ad);
3879                 if (err)
3880                         goto out;
3881         }
3882 out:
3883         return err;
3884 }
3885
3886 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3887 {
3888         struct sock *sk = sock->sk;
3889         struct sk_security_struct *sksec = sk->sk_security;
3890         int err;
3891
3892         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3893         if (err)
3894                 return err;
3895
3896         /*
3897          * If a TCP or DCCP socket, check name_connect permission for the port.
3898          */
3899         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3900             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3901                 struct common_audit_data ad;
3902                 struct sockaddr_in *addr4 = NULL;
3903                 struct sockaddr_in6 *addr6 = NULL;
3904                 unsigned short snum;
3905                 u32 sid, perm;
3906
3907                 if (sk->sk_family == PF_INET) {
3908                         addr4 = (struct sockaddr_in *)address;
3909                         if (addrlen < sizeof(struct sockaddr_in))
3910                                 return -EINVAL;
3911                         snum = ntohs(addr4->sin_port);
3912                 } else {
3913                         addr6 = (struct sockaddr_in6 *)address;
3914                         if (addrlen < SIN6_LEN_RFC2133)
3915                                 return -EINVAL;
3916                         snum = ntohs(addr6->sin6_port);
3917                 }
3918
3919                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3920                 if (err)
3921                         goto out;
3922
3923                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3924                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3925
3926                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3927                 ad.u.net.dport = htons(snum);
3928                 ad.u.net.family = sk->sk_family;
3929                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3930                 if (err)
3931                         goto out;
3932         }
3933
3934         err = selinux_netlbl_socket_connect(sk, address);
3935
3936 out:
3937         return err;
3938 }
3939
3940 static int selinux_socket_listen(struct socket *sock, int backlog)
3941 {
3942         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3943 }
3944
3945 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3946 {
3947         int err;
3948         struct inode_security_struct *isec;
3949         struct inode_security_struct *newisec;
3950
3951         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3952         if (err)
3953                 return err;
3954
3955         newisec = SOCK_INODE(newsock)->i_security;
3956
3957         isec = SOCK_INODE(sock)->i_security;
3958         newisec->sclass = isec->sclass;
3959         newisec->sid = isec->sid;
3960         newisec->initialized = 1;
3961
3962         return 0;
3963 }
3964
3965 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3966                                   int size)
3967 {
3968         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3969 }
3970
3971 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3972                                   int size, int flags)
3973 {
3974         return sock_has_perm(current, sock->sk, SOCKET__READ);
3975 }
3976
3977 static int selinux_socket_getsockname(struct socket *sock)
3978 {
3979         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3980 }
3981
3982 static int selinux_socket_getpeername(struct socket *sock)
3983 {
3984         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3985 }
3986
3987 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3988 {
3989         int err;
3990
3991         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3992         if (err)
3993                 return err;
3994
3995         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3996 }
3997
3998 static int selinux_socket_getsockopt(struct socket *sock, int level,
3999                                      int optname)
4000 {
4001         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4002 }
4003
4004 static int selinux_socket_shutdown(struct socket *sock, int how)
4005 {
4006         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4007 }
4008
4009 static int selinux_socket_unix_stream_connect(struct sock *sock,
4010                                               struct sock *other,
4011                                               struct sock *newsk)
4012 {
4013         struct sk_security_struct *sksec_sock = sock->sk_security;
4014         struct sk_security_struct *sksec_other = other->sk_security;
4015         struct sk_security_struct *sksec_new = newsk->sk_security;
4016         struct common_audit_data ad;
4017         int err;
4018
4019         COMMON_AUDIT_DATA_INIT(&ad, NET);
4020         ad.u.net.sk = other;
4021
4022         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4023                            sksec_other->sclass,
4024                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4025         if (err)
4026                 return err;
4027
4028         /* server child socket */
4029         sksec_new->peer_sid = sksec_sock->sid;
4030         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4031                                     &sksec_new->sid);
4032         if (err)
4033                 return err;
4034
4035         /* connecting socket */
4036         sksec_sock->peer_sid = sksec_new->sid;
4037
4038         return 0;
4039 }
4040
4041 static int selinux_socket_unix_may_send(struct socket *sock,
4042                                         struct socket *other)
4043 {
4044         struct sk_security_struct *ssec = sock->sk->sk_security;
4045         struct sk_security_struct *osec = other->sk->sk_security;
4046         struct common_audit_data ad;
4047
4048         COMMON_AUDIT_DATA_INIT(&ad, NET);
4049         ad.u.net.sk = other->sk;
4050
4051         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4052                             &ad);
4053 }
4054
4055 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4056                                     u32 peer_sid,
4057                                     struct common_audit_data *ad)
4058 {
4059         int err;
4060         u32 if_sid;
4061         u32 node_sid;
4062
4063         err = sel_netif_sid(ifindex, &if_sid);
4064         if (err)
4065                 return err;
4066         err = avc_has_perm(peer_sid, if_sid,
4067                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4068         if (err)
4069                 return err;
4070
4071         err = sel_netnode_sid(addrp, family, &node_sid);
4072         if (err)
4073                 return err;
4074         return avc_has_perm(peer_sid, node_sid,
4075                             SECCLASS_NODE, NODE__RECVFROM, ad);
4076 }
4077
4078 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4079                                        u16 family)
4080 {
4081         int err = 0;
4082         struct sk_security_struct *sksec = sk->sk_security;
4083         u32 sk_sid = sksec->sid;
4084         struct common_audit_data ad;
4085         char *addrp;
4086
4087         COMMON_AUDIT_DATA_INIT(&ad, NET);
4088         ad.u.net.netif = skb->skb_iif;
4089         ad.u.net.family = family;
4090         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4091         if (err)
4092                 return err;
4093
4094         if (selinux_secmark_enabled()) {
4095                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4096                                    PACKET__RECV, &ad);
4097                 if (err)
4098                         return err;
4099         }
4100
4101         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4102         if (err)
4103                 return err;
4104         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4105
4106         return err;
4107 }
4108
4109 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4110 {
4111         int err;
4112         struct sk_security_struct *sksec = sk->sk_security;
4113         u16 family = sk->sk_family;
4114         u32 sk_sid = sksec->sid;
4115         struct common_audit_data ad;
4116         char *addrp;
4117         u8 secmark_active;
4118         u8 peerlbl_active;
4119
4120         if (family != PF_INET && family != PF_INET6)
4121                 return 0;
4122
4123         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4124         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4125                 family = PF_INET;
4126
4127         /* If any sort of compatibility mode is enabled then handoff processing
4128          * to the selinux_sock_rcv_skb_compat() function to deal with the
4129          * special handling.  We do this in an attempt to keep this function
4130          * as fast and as clean as possible. */
4131         if (!selinux_policycap_netpeer)
4132                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4133
4134         secmark_active = selinux_secmark_enabled();
4135         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4136         if (!secmark_active && !peerlbl_active)
4137                 return 0;
4138
4139         COMMON_AUDIT_DATA_INIT(&ad, NET);
4140         ad.u.net.netif = skb->skb_iif;
4141         ad.u.net.family = family;
4142         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4143         if (err)
4144                 return err;
4145
4146         if (peerlbl_active) {
4147                 u32 peer_sid;
4148
4149                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4150                 if (err)
4151                         return err;
4152                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4153                                                peer_sid, &ad);
4154                 if (err) {
4155                         selinux_netlbl_err(skb, err, 0);
4156                         return err;
4157                 }
4158                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4159                                    PEER__RECV, &ad);
4160                 if (err)
4161                         selinux_netlbl_err(skb, err, 0);
4162         }
4163
4164         if (secmark_active) {
4165                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4166                                    PACKET__RECV, &ad);
4167                 if (err)
4168                         return err;
4169         }
4170
4171         return err;
4172 }
4173
4174 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4175                                             int __user *optlen, unsigned len)
4176 {
4177         int err = 0;
4178         char *scontext;
4179         u32 scontext_len;
4180         struct sk_security_struct *sksec = sock->sk->sk_security;
4181         u32 peer_sid = SECSID_NULL;
4182
4183         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4184             sksec->sclass == SECCLASS_TCP_SOCKET)
4185                 peer_sid = sksec->peer_sid;
4186         if (peer_sid == SECSID_NULL)
4187                 return -ENOPROTOOPT;
4188
4189         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4190         if (err)
4191                 return err;
4192
4193         if (scontext_len > len) {
4194                 err = -ERANGE;
4195                 goto out_len;
4196         }
4197
4198         if (copy_to_user(optval, scontext, scontext_len))
4199                 err = -EFAULT;
4200
4201 out_len:
4202         if (put_user(scontext_len, optlen))
4203                 err = -EFAULT;
4204         kfree(scontext);
4205         return err;
4206 }
4207
4208 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4209 {
4210         u32 peer_secid = SECSID_NULL;
4211         u16 family;
4212
4213         if (skb && skb->protocol == htons(ETH_P_IP))
4214                 family = PF_INET;
4215         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4216                 family = PF_INET6;
4217         else if (sock)
4218                 family = sock->sk->sk_family;
4219         else
4220                 goto out;
4221
4222         if (sock && family == PF_UNIX)
4223                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4224         else if (skb)
4225                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4226
4227 out:
4228         *secid = peer_secid;
4229         if (peer_secid == SECSID_NULL)
4230                 return -EINVAL;
4231         return 0;
4232 }
4233
4234 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4235 {
4236         struct sk_security_struct *sksec;
4237
4238         sksec = kzalloc(sizeof(*sksec), priority);
4239         if (!sksec)
4240                 return -ENOMEM;
4241
4242         sksec->peer_sid = SECINITSID_UNLABELED;
4243         sksec->sid = SECINITSID_UNLABELED;
4244         selinux_netlbl_sk_security_reset(sksec);
4245         sk->sk_security = sksec;
4246
4247         return 0;
4248 }
4249
4250 static void selinux_sk_free_security(struct sock *sk)
4251 {
4252         struct sk_security_struct *sksec = sk->sk_security;
4253
4254         sk->sk_security = NULL;
4255         selinux_netlbl_sk_security_free(sksec);
4256         kfree(sksec);
4257 }
4258
4259 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4260 {
4261         struct sk_security_struct *sksec = sk->sk_security;
4262         struct sk_security_struct *newsksec = newsk->sk_security;
4263
4264         newsksec->sid = sksec->sid;
4265         newsksec->peer_sid = sksec->peer_sid;
4266         newsksec->sclass = sksec->sclass;
4267
4268         selinux_netlbl_sk_security_reset(newsksec);
4269 }
4270
4271 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4272 {
4273         if (!sk)
4274                 *secid = SECINITSID_ANY_SOCKET;
4275         else {
4276                 struct sk_security_struct *sksec = sk->sk_security;
4277
4278                 *secid = sksec->sid;
4279         }
4280 }
4281
4282 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4283 {
4284         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4285         struct sk_security_struct *sksec = sk->sk_security;
4286
4287         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4288             sk->sk_family == PF_UNIX)
4289                 isec->sid = sksec->sid;
4290         sksec->sclass = isec->sclass;
4291 }
4292
4293 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4294                                      struct request_sock *req)
4295 {
4296         struct sk_security_struct *sksec = sk->sk_security;
4297         int err;
4298         u16 family = sk->sk_family;
4299         u32 newsid;
4300         u32 peersid;
4301
4302         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4303         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4304                 family = PF_INET;
4305
4306         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4307         if (err)
4308                 return err;
4309         if (peersid == SECSID_NULL) {
4310                 req->secid = sksec->sid;
4311                 req->peer_secid = SECSID_NULL;
4312         } else {
4313                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4314                 if (err)
4315                         return err;
4316                 req->secid = newsid;
4317                 req->peer_secid = peersid;
4318         }
4319
4320         return selinux_netlbl_inet_conn_request(req, family);
4321 }
4322
4323 static void selinux_inet_csk_clone(struct sock *newsk,
4324                                    const struct request_sock *req)
4325 {
4326         struct sk_security_struct *newsksec = newsk->sk_security;
4327
4328         newsksec->sid = req->secid;
4329         newsksec->peer_sid = req->peer_secid;
4330         /* NOTE: Ideally, we should also get the isec->sid for the
4331            new socket in sync, but we don't have the isec available yet.
4332            So we will wait until sock_graft to do it, by which
4333            time it will have been created and available. */
4334
4335         /* We don't need to take any sort of lock here as we are the only
4336          * thread with access to newsksec */
4337         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4338 }
4339
4340 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4341 {
4342         u16 family = sk->sk_family;
4343         struct sk_security_struct *sksec = sk->sk_security;
4344
4345         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4346         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4347                 family = PF_INET;
4348
4349         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4350 }
4351
4352 static int selinux_secmark_relabel_packet(u32 sid)
4353 {
4354         const struct task_security_struct *__tsec;
4355         u32 tsid;
4356
4357         __tsec = current_security();
4358         tsid = __tsec->sid;
4359
4360         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4361 }
4362
4363 static void selinux_secmark_refcount_inc(void)
4364 {
4365         atomic_inc(&selinux_secmark_refcount);
4366 }
4367
4368 static void selinux_secmark_refcount_dec(void)
4369 {
4370         atomic_dec(&selinux_secmark_refcount);
4371 }
4372
4373 static void selinux_req_classify_flow(const struct request_sock *req,
4374                                       struct flowi *fl)
4375 {
4376         fl->flowi_secid = req->secid;
4377 }
4378
4379 static int selinux_tun_dev_create(void)
4380 {
4381         u32 sid = current_sid();
4382
4383         /* we aren't taking into account the "sockcreate" SID since the socket
4384          * that is being created here is not a socket in the traditional sense,
4385          * instead it is a private sock, accessible only to the kernel, and
4386          * representing a wide range of network traffic spanning multiple
4387          * connections unlike traditional sockets - check the TUN driver to
4388          * get a better understanding of why this socket is special */
4389
4390         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4391                             NULL);
4392 }
4393
4394 static void selinux_tun_dev_post_create(struct sock *sk)
4395 {
4396         struct sk_security_struct *sksec = sk->sk_security;
4397
4398         /* we don't currently perform any NetLabel based labeling here and it
4399          * isn't clear that we would want to do so anyway; while we could apply
4400          * labeling without the support of the TUN user the resulting labeled
4401          * traffic from the other end of the connection would almost certainly
4402          * cause confusion to the TUN user that had no idea network labeling
4403          * protocols were being used */
4404
4405         /* see the comments in selinux_tun_dev_create() about why we don't use
4406          * the sockcreate SID here */
4407
4408         sksec->sid = current_sid();
4409         sksec->sclass = SECCLASS_TUN_SOCKET;
4410 }
4411
4412 static int selinux_tun_dev_attach(struct sock *sk)
4413 {
4414         struct sk_security_struct *sksec = sk->sk_security;
4415         u32 sid = current_sid();
4416         int err;
4417
4418         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4419                            TUN_SOCKET__RELABELFROM, NULL);
4420         if (err)
4421                 return err;
4422         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4423                            TUN_SOCKET__RELABELTO, NULL);
4424         if (err)
4425                 return err;
4426
4427         sksec->sid = sid;
4428
4429         return 0;
4430 }
4431
4432 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4433 {
4434         int err = 0;
4435         u32 perm;
4436         struct nlmsghdr *nlh;
4437         struct sk_security_struct *sksec = sk->sk_security;
4438
4439         if (skb->len < NLMSG_SPACE(0)) {
4440                 err = -EINVAL;
4441                 goto out;
4442         }
4443         nlh = nlmsg_hdr(skb);
4444
4445         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4446         if (err) {
4447                 if (err == -EINVAL) {
4448                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4449                                   "SELinux:  unrecognized netlink message"
4450                                   " type=%hu for sclass=%hu\n",
4451                                   nlh->nlmsg_type, sksec->sclass);
4452                         if (!selinux_enforcing || security_get_allow_unknown())
4453                                 err = 0;
4454                 }
4455
4456                 /* Ignore */
4457                 if (err == -ENOENT)
4458                         err = 0;
4459                 goto out;
4460         }
4461
4462         err = sock_has_perm(current, sk, perm);
4463 out:
4464         return err;
4465 }
4466
4467 #ifdef CONFIG_NETFILTER
4468
4469 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4470                                        u16 family)
4471 {
4472         int err;
4473         char *addrp;
4474         u32 peer_sid;
4475         struct common_audit_data ad;
4476         u8 secmark_active;
4477         u8 netlbl_active;
4478         u8 peerlbl_active;
4479
4480         if (!selinux_policycap_netpeer)
4481                 return NF_ACCEPT;
4482
4483         secmark_active = selinux_secmark_enabled();
4484         netlbl_active = netlbl_enabled();
4485         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4486         if (!secmark_active && !peerlbl_active)
4487                 return NF_ACCEPT;
4488
4489         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4490                 return NF_DROP;
4491
4492         COMMON_AUDIT_DATA_INIT(&ad, NET);
4493         ad.u.net.netif = ifindex;
4494         ad.u.net.family = family;
4495         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4496                 return NF_DROP;
4497
4498         if (peerlbl_active) {
4499                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4500                                                peer_sid, &ad);
4501                 if (err) {
4502                         selinux_netlbl_err(skb, err, 1);
4503                         return NF_DROP;
4504                 }
4505         }
4506
4507         if (secmark_active)
4508                 if (avc_has_perm(peer_sid, skb->secmark,
4509                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4510                         return NF_DROP;
4511
4512         if (netlbl_active)
4513                 /* we do this in the FORWARD path and not the POST_ROUTING
4514                  * path because we want to make sure we apply the necessary
4515                  * labeling before IPsec is applied so we can leverage AH
4516                  * protection */
4517                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4518                         return NF_DROP;
4519
4520         return NF_ACCEPT;
4521 }
4522
4523 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4524                                          struct sk_buff *skb,
4525                                          const struct net_device *in,
4526                                          const struct net_device *out,
4527                                          int (*okfn)(struct sk_buff *))
4528 {
4529         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4530 }
4531
4532 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4533 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4534                                          struct sk_buff *skb,
4535                                          const struct net_device *in,
4536                                          const struct net_device *out,
4537                                          int (*okfn)(struct sk_buff *))
4538 {
4539         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4540 }
4541 #endif  /* IPV6 */
4542
4543 static unsigned int selinux_ip_output(struct sk_buff *skb,
4544                                       u16 family)
4545 {
4546         u32 sid;
4547
4548         if (!netlbl_enabled())
4549                 return NF_ACCEPT;
4550
4551         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4552          * because we want to make sure we apply the necessary labeling
4553          * before IPsec is applied so we can leverage AH protection */
4554         if (skb->sk) {
4555                 struct sk_security_struct *sksec = skb->sk->sk_security;
4556                 sid = sksec->sid;
4557         } else
4558                 sid = SECINITSID_KERNEL;
4559         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4560                 return NF_DROP;
4561
4562         return NF_ACCEPT;
4563 }
4564
4565 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4566                                         struct sk_buff *skb,
4567                                         const struct net_device *in,
4568                                         const struct net_device *out,
4569                                         int (*okfn)(struct sk_buff *))
4570 {
4571         return selinux_ip_output(skb, PF_INET);
4572 }
4573
4574 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4575                                                 int ifindex,
4576                                                 u16 family)
4577 {
4578         struct sock *sk = skb->sk;
4579         struct sk_security_struct *sksec;
4580         struct common_audit_data ad;
4581         char *addrp;
4582         u8 proto;
4583
4584         if (sk == NULL)
4585                 return NF_ACCEPT;
4586         sksec = sk->sk_security;
4587
4588         COMMON_AUDIT_DATA_INIT(&ad, NET);
4589         ad.u.net.netif = ifindex;
4590         ad.u.net.family = family;
4591         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4592                 return NF_DROP;
4593
4594         if (selinux_secmark_enabled())
4595                 if (avc_has_perm(sksec->sid, skb->secmark,
4596                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4597                         return NF_DROP_ERR(-ECONNREFUSED);
4598
4599         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4600                 return NF_DROP_ERR(-ECONNREFUSED);
4601
4602         return NF_ACCEPT;
4603 }
4604
4605 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4606                                          u16 family)
4607 {
4608         u32 secmark_perm;
4609         u32 peer_sid;
4610         struct sock *sk;
4611         struct common_audit_data ad;
4612         char *addrp;
4613         u8 secmark_active;
4614         u8 peerlbl_active;
4615
4616         /* If any sort of compatibility mode is enabled then handoff processing
4617          * to the selinux_ip_postroute_compat() function to deal with the
4618          * special handling.  We do this in an attempt to keep this function
4619          * as fast and as clean as possible. */
4620         if (!selinux_policycap_netpeer)
4621                 return selinux_ip_postroute_compat(skb, ifindex, family);
4622 #ifdef CONFIG_XFRM
4623         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4624          * packet transformation so allow the packet to pass without any checks
4625          * since we'll have another chance to perform access control checks
4626          * when the packet is on it's final way out.
4627          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4628          *       is NULL, in this case go ahead and apply access control. */
4629         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4630                 return NF_ACCEPT;
4631 #endif
4632         secmark_active = selinux_secmark_enabled();
4633         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4634         if (!secmark_active && !peerlbl_active)
4635                 return NF_ACCEPT;
4636
4637         /* if the packet is being forwarded then get the peer label from the
4638          * packet itself; otherwise check to see if it is from a local
4639          * application or the kernel, if from an application get the peer label
4640          * from the sending socket, otherwise use the kernel's sid */
4641         sk = skb->sk;
4642         if (sk == NULL) {
4643                 if (skb->skb_iif) {
4644                         secmark_perm = PACKET__FORWARD_OUT;
4645                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4646                                 return NF_DROP;
4647                 } else {
4648                         secmark_perm = PACKET__SEND;
4649                         peer_sid = SECINITSID_KERNEL;
4650                 }
4651         } else {
4652                 struct sk_security_struct *sksec = sk->sk_security;
4653                 peer_sid = sksec->sid;
4654                 secmark_perm = PACKET__SEND;
4655         }
4656
4657         COMMON_AUDIT_DATA_INIT(&ad, NET);
4658         ad.u.net.netif = ifindex;
4659         ad.u.net.family = family;
4660         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4661                 return NF_DROP;
4662
4663         if (secmark_active)
4664                 if (avc_has_perm(peer_sid, skb->secmark,
4665                                  SECCLASS_PACKET, secmark_perm, &ad))
4666                         return NF_DROP_ERR(-ECONNREFUSED);
4667
4668         if (peerlbl_active) {
4669                 u32 if_sid;
4670                 u32 node_sid;
4671
4672                 if (sel_netif_sid(ifindex, &if_sid))
4673                         return NF_DROP;
4674                 if (avc_has_perm(peer_sid, if_sid,
4675                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4676                         return NF_DROP_ERR(-ECONNREFUSED);
4677
4678                 if (sel_netnode_sid(addrp, family, &node_sid))
4679                         return NF_DROP;
4680                 if (avc_has_perm(peer_sid, node_sid,
4681                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4682                         return NF_DROP_ERR(-ECONNREFUSED);
4683         }
4684
4685         return NF_ACCEPT;
4686 }
4687
4688 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4689                                            struct sk_buff *skb,
4690                                            const struct net_device *in,
4691                                            const struct net_device *out,
4692                                            int (*okfn)(struct sk_buff *))
4693 {
4694         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4695 }
4696
4697 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4698 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4699                                            struct sk_buff *skb,
4700                                            const struct net_device *in,
4701                                            const struct net_device *out,
4702                                            int (*okfn)(struct sk_buff *))
4703 {
4704         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4705 }
4706 #endif  /* IPV6 */
4707
4708 #endif  /* CONFIG_NETFILTER */
4709
4710 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4711 {
4712         int err;
4713
4714         err = cap_netlink_send(sk, skb);
4715         if (err)
4716                 return err;
4717
4718         return selinux_nlmsg_perm(sk, skb);
4719 }
4720
4721 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4722 {
4723         int err;
4724         struct common_audit_data ad;
4725         u32 sid;
4726
4727         err = cap_netlink_recv(skb, capability);
4728         if (err)
4729                 return err;
4730
4731         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4732         ad.u.cap = capability;
4733
4734         security_task_getsecid(current, &sid);
4735         return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4736                             CAP_TO_MASK(capability), &ad);
4737 }
4738
4739 static int ipc_alloc_security(struct task_struct *task,
4740                               struct kern_ipc_perm *perm,
4741                               u16 sclass)
4742 {
4743         struct ipc_security_struct *isec;
4744         u32 sid;
4745
4746         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4747         if (!isec)
4748                 return -ENOMEM;
4749
4750         sid = task_sid(task);
4751         isec->sclass = sclass;
4752         isec->sid = sid;
4753         perm->security = isec;
4754
4755         return 0;
4756 }
4757
4758 static void ipc_free_security(struct kern_ipc_perm *perm)
4759 {
4760         struct ipc_security_struct *isec = perm->security;
4761         perm->security = NULL;
4762         kfree(isec);
4763 }
4764
4765 static int msg_msg_alloc_security(struct msg_msg *msg)
4766 {
4767         struct msg_security_struct *msec;
4768
4769         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4770         if (!msec)
4771                 return -ENOMEM;
4772
4773         msec->sid = SECINITSID_UNLABELED;
4774         msg->security = msec;
4775
4776         return 0;
4777 }
4778
4779 static void msg_msg_free_security(struct msg_msg *msg)
4780 {
4781         struct msg_security_struct *msec = msg->security;
4782
4783         msg->security = NULL;
4784         kfree(msec);
4785 }
4786
4787 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4788                         u32 perms)
4789 {
4790         struct ipc_security_struct *isec;
4791         struct common_audit_data ad;
4792         u32 sid = current_sid();
4793
4794         isec = ipc_perms->security;
4795
4796         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4797         ad.u.ipc_id = ipc_perms->key;
4798
4799         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4800 }
4801
4802 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4803 {
4804         return msg_msg_alloc_security(msg);
4805 }
4806
4807 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4808 {
4809         msg_msg_free_security(msg);
4810 }
4811
4812 /* message queue security operations */
4813 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4814 {
4815         struct ipc_security_struct *isec;
4816         struct common_audit_data ad;
4817         u32 sid = current_sid();
4818         int rc;
4819
4820         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4821         if (rc)
4822                 return rc;
4823
4824         isec = msq->q_perm.security;
4825
4826         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4827         ad.u.ipc_id = msq->q_perm.key;
4828
4829         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4830                           MSGQ__CREATE, &ad);
4831         if (rc) {
4832                 ipc_free_security(&msq->q_perm);
4833                 return rc;
4834         }
4835         return 0;
4836 }
4837
4838 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4839 {
4840         ipc_free_security(&msq->q_perm);
4841 }
4842
4843 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4844 {
4845         struct ipc_security_struct *isec;
4846         struct common_audit_data ad;
4847         u32 sid = current_sid();
4848
4849         isec = msq->q_perm.security;
4850
4851         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4852         ad.u.ipc_id = msq->q_perm.key;
4853
4854         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4855                             MSGQ__ASSOCIATE, &ad);
4856 }
4857
4858 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4859 {
4860         int err;
4861         int perms;
4862
4863         switch (cmd) {
4864         case IPC_INFO:
4865         case MSG_INFO:
4866                 /* No specific object, just general system-wide information. */
4867                 return task_has_system(current, SYSTEM__IPC_INFO);
4868         case IPC_STAT:
4869         case MSG_STAT:
4870                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4871                 break;
4872         case IPC_SET:
4873                 perms = MSGQ__SETATTR;
4874                 break;
4875         case IPC_RMID:
4876                 perms = MSGQ__DESTROY;
4877                 break;
4878         default:
4879                 return 0;
4880         }
4881
4882         err = ipc_has_perm(&msq->q_perm, perms);
4883         return err;
4884 }
4885
4886 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4887 {
4888         struct ipc_security_struct *isec;
4889         struct msg_security_struct *msec;
4890         struct common_audit_data ad;
4891         u32 sid = current_sid();
4892         int rc;
4893
4894         isec = msq->q_perm.security;
4895         msec = msg->security;
4896
4897         /*
4898          * First time through, need to assign label to the message
4899          */
4900         if (msec->sid == SECINITSID_UNLABELED) {
4901                 /*
4902                  * Compute new sid based on current process and
4903                  * message queue this message will be stored in
4904                  */
4905                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4906                                              NULL, &msec->sid);
4907                 if (rc)
4908                         return rc;
4909         }
4910
4911         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4912         ad.u.ipc_id = msq->q_perm.key;
4913
4914         /* Can this process write to the queue? */
4915         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4916                           MSGQ__WRITE, &ad);
4917         if (!rc)
4918                 /* Can this process send the message */
4919                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4920                                   MSG__SEND, &ad);
4921         if (!rc)
4922                 /* Can the message be put in the queue? */
4923                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4924                                   MSGQ__ENQUEUE, &ad);
4925
4926         return rc;
4927 }
4928
4929 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4930                                     struct task_struct *target,
4931                                     long type, int mode)
4932 {
4933         struct ipc_security_struct *isec;
4934         struct msg_security_struct *msec;
4935         struct common_audit_data ad;
4936         u32 sid = task_sid(target);
4937         int rc;
4938
4939         isec = msq->q_perm.security;
4940         msec = msg->security;
4941
4942         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4943         ad.u.ipc_id = msq->q_perm.key;
4944
4945         rc = avc_has_perm(sid, isec->sid,
4946                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4947         if (!rc)
4948                 rc = avc_has_perm(sid, msec->sid,
4949                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4950         return rc;
4951 }
4952
4953 /* Shared Memory security operations */
4954 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4955 {
4956         struct ipc_security_struct *isec;
4957         struct common_audit_data ad;
4958         u32 sid = current_sid();
4959         int rc;
4960
4961         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4962         if (rc)
4963                 return rc;
4964
4965         isec = shp->shm_perm.security;
4966
4967         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4968         ad.u.ipc_id = shp->shm_perm.key;
4969
4970         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4971                           SHM__CREATE, &ad);
4972         if (rc) {
4973                 ipc_free_security(&shp->shm_perm);
4974                 return rc;
4975         }
4976         return 0;
4977 }
4978
4979 static void selinux_shm_free_security(struct shmid_kernel *shp)
4980 {
4981         ipc_free_security(&shp->shm_perm);
4982 }
4983
4984 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4985 {
4986         struct ipc_security_struct *isec;
4987         struct common_audit_data ad;
4988         u32 sid = current_sid();
4989
4990         isec = shp->shm_perm.security;
4991
4992         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4993         ad.u.ipc_id = shp->shm_perm.key;
4994
4995         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4996                             SHM__ASSOCIATE, &ad);
4997 }
4998
4999 /* Note, at this point, shp is locked down */
5000 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5001 {
5002         int perms;
5003         int err;
5004
5005         switch (cmd) {
5006         case IPC_INFO:
5007         case SHM_INFO:
5008                 /* No specific object, just general system-wide information. */
5009                 return task_has_system(current, SYSTEM__IPC_INFO);
5010         case IPC_STAT:
5011         case SHM_STAT:
5012                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5013                 break;
5014         case IPC_SET:
5015                 perms = SHM__SETATTR;
5016                 break;
5017         case SHM_LOCK:
5018         case SHM_UNLOCK:
5019                 perms = SHM__LOCK;
5020                 break;
5021         case IPC_RMID:
5022                 perms = SHM__DESTROY;
5023                 break;
5024         default:
5025                 return 0;
5026         }
5027
5028         err = ipc_has_perm(&shp->shm_perm, perms);
5029         return err;
5030 }
5031
5032 static int selinux_shm_shmat(struct shmid_kernel *shp,
5033                              char __user *shmaddr, int shmflg)
5034 {
5035         u32 perms;
5036
5037         if (shmflg & SHM_RDONLY)
5038                 perms = SHM__READ;
5039         else
5040                 perms = SHM__READ | SHM__WRITE;
5041
5042         return ipc_has_perm(&shp->shm_perm, perms);
5043 }
5044
5045 /* Semaphore security operations */
5046 static int selinux_sem_alloc_security(struct sem_array *sma)
5047 {
5048         struct ipc_security_struct *isec;
5049         struct common_audit_data ad;
5050         u32 sid = current_sid();
5051         int rc;
5052
5053         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5054         if (rc)
5055                 return rc;
5056
5057         isec = sma->sem_perm.security;
5058
5059         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5060         ad.u.ipc_id = sma->sem_perm.key;
5061
5062         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5063                           SEM__CREATE, &ad);
5064         if (rc) {
5065                 ipc_free_security(&sma->sem_perm);
5066                 return rc;
5067         }
5068         return 0;
5069 }
5070
5071 static void selinux_sem_free_security(struct sem_array *sma)
5072 {
5073         ipc_free_security(&sma->sem_perm);
5074 }
5075
5076 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5077 {
5078         struct ipc_security_struct *isec;
5079         struct common_audit_data ad;
5080         u32 sid = current_sid();
5081
5082         isec = sma->sem_perm.security;
5083
5084         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5085         ad.u.ipc_id = sma->sem_perm.key;
5086
5087         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5088                             SEM__ASSOCIATE, &ad);
5089 }
5090
5091 /* Note, at this point, sma is locked down */
5092 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5093 {
5094         int err;
5095         u32 perms;
5096
5097         switch (cmd) {
5098         case IPC_INFO:
5099         case SEM_INFO:
5100                 /* No specific object, just general system-wide information. */
5101                 return task_has_system(current, SYSTEM__IPC_INFO);
5102         case GETPID:
5103         case GETNCNT:
5104         case GETZCNT:
5105                 perms = SEM__GETATTR;
5106                 break;
5107         case GETVAL:
5108         case GETALL:
5109                 perms = SEM__READ;
5110                 break;
5111         case SETVAL:
5112         case SETALL:
5113                 perms = SEM__WRITE;
5114                 break;
5115         case IPC_RMID:
5116                 perms = SEM__DESTROY;
5117                 break;
5118         case IPC_SET:
5119                 perms = SEM__SETATTR;
5120                 break;
5121         case IPC_STAT:
5122         case SEM_STAT:
5123                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5124                 break;
5125         default:
5126                 return 0;
5127         }
5128
5129         err = ipc_has_perm(&sma->sem_perm, perms);
5130         return err;
5131 }
5132
5133 static int selinux_sem_semop(struct sem_array *sma,
5134                              struct sembuf *sops, unsigned nsops, int alter)
5135 {
5136         u32 perms;
5137
5138         if (alter)
5139                 perms = SEM__READ | SEM__WRITE;
5140         else
5141                 perms = SEM__READ;
5142
5143         return ipc_has_perm(&sma->sem_perm, perms);
5144 }
5145
5146 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5147 {
5148         u32 av = 0;
5149
5150         av = 0;
5151         if (flag & S_IRUGO)
5152                 av |= IPC__UNIX_READ;
5153         if (flag & S_IWUGO)
5154                 av |= IPC__UNIX_WRITE;
5155
5156         if (av == 0)
5157                 return 0;
5158
5159         return ipc_has_perm(ipcp, av);
5160 }
5161
5162 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5163 {
5164         struct ipc_security_struct *isec = ipcp->security;
5165         *secid = isec->sid;
5166 }
5167
5168 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5169 {
5170         if (inode)
5171                 inode_doinit_with_dentry(inode, dentry);
5172 }
5173
5174 static int selinux_getprocattr(struct task_struct *p,
5175                                char *name, char **value)
5176 {
5177         const struct task_security_struct *__tsec;
5178         u32 sid;
5179         int error;
5180         unsigned len;
5181
5182         if (current != p) {
5183                 error = current_has_perm(p, PROCESS__GETATTR);
5184                 if (error)
5185                         return error;
5186         }
5187
5188         rcu_read_lock();
5189         __tsec = __task_cred(p)->security;
5190
5191         if (!strcmp(name, "current"))
5192                 sid = __tsec->sid;
5193         else if (!strcmp(name, "prev"))
5194                 sid = __tsec->osid;
5195         else if (!strcmp(name, "exec"))
5196                 sid = __tsec->exec_sid;
5197         else if (!strcmp(name, "fscreate"))
5198                 sid = __tsec->create_sid;
5199         else if (!strcmp(name, "keycreate"))
5200                 sid = __tsec->keycreate_sid;
5201         else if (!strcmp(name, "sockcreate"))
5202                 sid = __tsec->sockcreate_sid;
5203         else
5204                 goto invalid;
5205         rcu_read_unlock();
5206
5207         if (!sid)
5208                 return 0;
5209
5210         error = security_sid_to_context(sid, value, &len);
5211         if (error)
5212                 return error;
5213         return len;
5214
5215 invalid:
5216         rcu_read_unlock();
5217         return -EINVAL;
5218 }
5219
5220 static int selinux_setprocattr(struct task_struct *p,
5221                                char *name, void *value, size_t size)
5222 {
5223         struct task_security_struct *tsec;
5224         struct task_struct *tracer;
5225         struct cred *new;
5226         u32 sid = 0, ptsid;
5227         int error;
5228         char *str = value;
5229
5230         if (current != p) {
5231                 /* SELinux only allows a process to change its own
5232                    security attributes. */
5233                 return -EACCES;
5234         }
5235
5236         /*
5237          * Basic control over ability to set these attributes at all.
5238          * current == p, but we'll pass them separately in case the
5239          * above restriction is ever removed.
5240          */
5241         if (!strcmp(name, "exec"))
5242                 error = current_has_perm(p, PROCESS__SETEXEC);
5243         else if (!strcmp(name, "fscreate"))
5244                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5245         else if (!strcmp(name, "keycreate"))
5246                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5247         else if (!strcmp(name, "sockcreate"))
5248                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5249         else if (!strcmp(name, "current"))
5250                 error = current_has_perm(p, PROCESS__SETCURRENT);
5251         else
5252                 error = -EINVAL;
5253         if (error)
5254                 return error;
5255
5256         /* Obtain a SID for the context, if one was specified. */
5257         if (size && str[1] && str[1] != '\n') {
5258                 if (str[size-1] == '\n') {
5259                         str[size-1] = 0;
5260                         size--;
5261                 }
5262                 error = security_context_to_sid(value, size, &sid);
5263                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5264                         if (!capable(CAP_MAC_ADMIN))
5265                                 return error;
5266                         error = security_context_to_sid_force(value, size,
5267                                                               &sid);
5268                 }
5269                 if (error)
5270                         return error;
5271         }
5272
5273         new = prepare_creds();
5274         if (!new)
5275                 return -ENOMEM;
5276
5277         /* Permission checking based on the specified context is
5278            performed during the actual operation (execve,
5279            open/mkdir/...), when we know the full context of the
5280            operation.  See selinux_bprm_set_creds for the execve
5281            checks and may_create for the file creation checks. The
5282            operation will then fail if the context is not permitted. */
5283         tsec = new->security;
5284         if (!strcmp(name, "exec")) {
5285                 tsec->exec_sid = sid;
5286         } else if (!strcmp(name, "fscreate")) {
5287                 tsec->create_sid = sid;
5288         } else if (!strcmp(name, "keycreate")) {
5289                 error = may_create_key(sid, p);
5290                 if (error)
5291                         goto abort_change;
5292                 tsec->keycreate_sid = sid;
5293         } else if (!strcmp(name, "sockcreate")) {
5294                 tsec->sockcreate_sid = sid;
5295         } else if (!strcmp(name, "current")) {
5296                 error = -EINVAL;
5297                 if (sid == 0)
5298                         goto abort_change;
5299
5300                 /* Only allow single threaded processes to change context */
5301                 error = -EPERM;
5302                 if (!current_is_single_threaded()) {
5303                         error = security_bounded_transition(tsec->sid, sid);
5304                         if (error)
5305                                 goto abort_change;
5306                 }
5307
5308                 /* Check permissions for the transition. */
5309                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5310                                      PROCESS__DYNTRANSITION, NULL);
5311                 if (error)
5312                         goto abort_change;
5313
5314                 /* Check for ptracing, and update the task SID if ok.
5315                    Otherwise, leave SID unchanged and fail. */
5316                 ptsid = 0;
5317                 task_lock(p);
5318                 tracer = ptrace_parent(p);
5319                 if (tracer)
5320                         ptsid = task_sid(tracer);
5321                 task_unlock(p);
5322
5323                 if (tracer) {
5324                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5325                                              PROCESS__PTRACE, NULL);
5326                         if (error)
5327                                 goto abort_change;
5328                 }
5329
5330                 tsec->sid = sid;
5331         } else {
5332                 error = -EINVAL;
5333                 goto abort_change;
5334         }
5335
5336         commit_creds(new);
5337         return size;
5338
5339 abort_change:
5340         abort_creds(new);
5341         return error;
5342 }
5343
5344 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5345 {
5346         return security_sid_to_context(secid, secdata, seclen);
5347 }
5348
5349 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5350 {
5351         return security_context_to_sid(secdata, seclen, secid);
5352 }
5353
5354 static void selinux_release_secctx(char *secdata, u32 seclen)
5355 {
5356         kfree(secdata);
5357 }
5358
5359 /*
5360  *      called with inode->i_mutex locked
5361  */
5362 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5363 {
5364         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5365 }
5366
5367 /*
5368  *      called with inode->i_mutex locked
5369  */
5370 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5371 {
5372         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5373 }
5374
5375 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5376 {
5377         int len = 0;
5378         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5379                                                 ctx, true);
5380         if (len < 0)
5381                 return len;
5382         *ctxlen = len;
5383         return 0;
5384 }
5385 #ifdef CONFIG_KEYS
5386
5387 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5388                              unsigned long flags)
5389 {
5390         const struct task_security_struct *tsec;
5391         struct key_security_struct *ksec;
5392
5393         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5394         if (!ksec)
5395                 return -ENOMEM;
5396
5397         tsec = cred->security;
5398         if (tsec->keycreate_sid)
5399                 ksec->sid = tsec->keycreate_sid;
5400         else
5401                 ksec->sid = tsec->sid;
5402
5403         k->security = ksec;
5404         return 0;
5405 }
5406
5407 static void selinux_key_free(struct key *k)
5408 {
5409         struct key_security_struct *ksec = k->security;
5410
5411         k->security = NULL;
5412         kfree(ksec);
5413 }
5414
5415 static int selinux_key_permission(key_ref_t key_ref,
5416                                   const struct cred *cred,
5417                                   key_perm_t perm)
5418 {
5419         struct key *key;
5420         struct key_security_struct *ksec;
5421         u32 sid;
5422
5423         /* if no specific permissions are requested, we skip the
5424            permission check. No serious, additional covert channels
5425            appear to be created. */
5426         if (perm == 0)
5427                 return 0;
5428
5429         sid = cred_sid(cred);
5430
5431         key = key_ref_to_ptr(key_ref);
5432         ksec = key->security;
5433
5434         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5435 }
5436
5437 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5438 {
5439         struct key_security_struct *ksec = key->security;
5440         char *context = NULL;
5441         unsigned len;
5442         int rc;
5443
5444         rc = security_sid_to_context(ksec->sid, &context, &len);
5445         if (!rc)
5446                 rc = len;
5447         *_buffer = context;
5448         return rc;
5449 }
5450
5451 #endif
5452
5453 static struct security_operations selinux_ops = {
5454         .name =                         "selinux",
5455
5456         .ptrace_access_check =          selinux_ptrace_access_check,
5457         .ptrace_traceme =               selinux_ptrace_traceme,
5458         .capget =                       selinux_capget,
5459         .capset =                       selinux_capset,
5460         .capable =                      selinux_capable,
5461         .quotactl =                     selinux_quotactl,
5462         .quota_on =                     selinux_quota_on,
5463         .syslog =                       selinux_syslog,
5464         .vm_enough_memory =             selinux_vm_enough_memory,
5465
5466         .netlink_send =                 selinux_netlink_send,
5467         .netlink_recv =                 selinux_netlink_recv,
5468
5469         .bprm_set_creds =               selinux_bprm_set_creds,
5470         .bprm_committing_creds =        selinux_bprm_committing_creds,
5471         .bprm_committed_creds =         selinux_bprm_committed_creds,
5472         .bprm_secureexec =              selinux_bprm_secureexec,
5473
5474         .sb_alloc_security =            selinux_sb_alloc_security,
5475         .sb_free_security =             selinux_sb_free_security,
5476         .sb_copy_data =                 selinux_sb_copy_data,
5477         .sb_remount =                   selinux_sb_remount,
5478         .sb_kern_mount =                selinux_sb_kern_mount,
5479         .sb_show_options =              selinux_sb_show_options,
5480         .sb_statfs =                    selinux_sb_statfs,
5481         .sb_mount =                     selinux_mount,
5482         .sb_umount =                    selinux_umount,
5483         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5484         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5485         .sb_parse_opts_str =            selinux_parse_opts_str,
5486
5487
5488         .inode_alloc_security =         selinux_inode_alloc_security,
5489         .inode_free_security =          selinux_inode_free_security,
5490         .inode_init_security =          selinux_inode_init_security,
5491         .inode_create =                 selinux_inode_create,
5492         .inode_link =                   selinux_inode_link,
5493         .inode_unlink =                 selinux_inode_unlink,
5494         .inode_symlink =                selinux_inode_symlink,
5495         .inode_mkdir =                  selinux_inode_mkdir,
5496         .inode_rmdir =                  selinux_inode_rmdir,
5497         .inode_mknod =                  selinux_inode_mknod,
5498         .inode_rename =                 selinux_inode_rename,
5499         .inode_readlink =               selinux_inode_readlink,
5500         .inode_follow_link =            selinux_inode_follow_link,
5501         .inode_permission =             selinux_inode_permission,
5502         .inode_setattr =                selinux_inode_setattr,
5503         .inode_getattr =                selinux_inode_getattr,
5504         .inode_setxattr =               selinux_inode_setxattr,
5505         .inode_post_setxattr =          selinux_inode_post_setxattr,
5506         .inode_getxattr =               selinux_inode_getxattr,
5507         .inode_listxattr =              selinux_inode_listxattr,
5508         .inode_removexattr =            selinux_inode_removexattr,
5509         .inode_getsecurity =            selinux_inode_getsecurity,
5510         .inode_setsecurity =            selinux_inode_setsecurity,
5511         .inode_listsecurity =           selinux_inode_listsecurity,
5512         .inode_getsecid =               selinux_inode_getsecid,
5513
5514         .file_permission =              selinux_file_permission,
5515         .file_alloc_security =          selinux_file_alloc_security,
5516         .file_free_security =           selinux_file_free_security,
5517         .file_ioctl =                   selinux_file_ioctl,
5518         .file_mmap =                    selinux_file_mmap,
5519         .file_mprotect =                selinux_file_mprotect,
5520         .file_lock =                    selinux_file_lock,
5521         .file_fcntl =                   selinux_file_fcntl,
5522         .file_set_fowner =              selinux_file_set_fowner,
5523         .file_send_sigiotask =          selinux_file_send_sigiotask,
5524         .file_receive =                 selinux_file_receive,
5525
5526         .dentry_open =                  selinux_dentry_open,
5527
5528         .task_create =                  selinux_task_create,
5529         .cred_alloc_blank =             selinux_cred_alloc_blank,
5530         .cred_free =                    selinux_cred_free,
5531         .cred_prepare =                 selinux_cred_prepare,
5532         .cred_transfer =                selinux_cred_transfer,
5533         .kernel_act_as =                selinux_kernel_act_as,
5534         .kernel_create_files_as =       selinux_kernel_create_files_as,
5535         .kernel_module_request =        selinux_kernel_module_request,
5536         .task_setpgid =                 selinux_task_setpgid,
5537         .task_getpgid =                 selinux_task_getpgid,
5538         .task_getsid =                  selinux_task_getsid,
5539         .task_getsecid =                selinux_task_getsecid,
5540         .task_setnice =                 selinux_task_setnice,
5541         .task_setioprio =               selinux_task_setioprio,
5542         .task_getioprio =               selinux_task_getioprio,
5543         .task_setrlimit =               selinux_task_setrlimit,
5544         .task_setscheduler =            selinux_task_setscheduler,
5545         .task_getscheduler =            selinux_task_getscheduler,
5546         .task_movememory =              selinux_task_movememory,
5547         .task_kill =                    selinux_task_kill,
5548         .task_wait =                    selinux_task_wait,
5549         .task_to_inode =                selinux_task_to_inode,
5550
5551         .ipc_permission =               selinux_ipc_permission,
5552         .ipc_getsecid =                 selinux_ipc_getsecid,
5553
5554         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5555         .msg_msg_free_security =        selinux_msg_msg_free_security,
5556
5557         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5558         .msg_queue_free_security =      selinux_msg_queue_free_security,
5559         .msg_queue_associate =          selinux_msg_queue_associate,
5560         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5561         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5562         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5563
5564         .shm_alloc_security =           selinux_shm_alloc_security,
5565         .shm_free_security =            selinux_shm_free_security,
5566         .shm_associate =                selinux_shm_associate,
5567         .shm_shmctl =                   selinux_shm_shmctl,
5568         .shm_shmat =                    selinux_shm_shmat,
5569
5570         .sem_alloc_security =           selinux_sem_alloc_security,
5571         .sem_free_security =            selinux_sem_free_security,
5572         .sem_associate =                selinux_sem_associate,
5573         .sem_semctl =                   selinux_sem_semctl,
5574         .sem_semop =                    selinux_sem_semop,
5575
5576         .d_instantiate =                selinux_d_instantiate,
5577
5578         .getprocattr =                  selinux_getprocattr,
5579         .setprocattr =                  selinux_setprocattr,
5580
5581         .secid_to_secctx =              selinux_secid_to_secctx,
5582         .secctx_to_secid =              selinux_secctx_to_secid,
5583         .release_secctx =               selinux_release_secctx,
5584         .inode_notifysecctx =           selinux_inode_notifysecctx,
5585         .inode_setsecctx =              selinux_inode_setsecctx,
5586         .inode_getsecctx =              selinux_inode_getsecctx,
5587
5588         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5589         .unix_may_send =                selinux_socket_unix_may_send,
5590
5591         .socket_create =                selinux_socket_create,
5592         .socket_post_create =           selinux_socket_post_create,
5593         .socket_bind =                  selinux_socket_bind,
5594         .socket_connect =               selinux_socket_connect,
5595         .socket_listen =                selinux_socket_listen,
5596         .socket_accept =                selinux_socket_accept,
5597         .socket_sendmsg =               selinux_socket_sendmsg,
5598         .socket_recvmsg =               selinux_socket_recvmsg,
5599         .socket_getsockname =           selinux_socket_getsockname,
5600         .socket_getpeername =           selinux_socket_getpeername,
5601         .socket_getsockopt =            selinux_socket_getsockopt,
5602         .socket_setsockopt =            selinux_socket_setsockopt,
5603         .socket_shutdown =              selinux_socket_shutdown,
5604         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5605         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5606         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5607         .sk_alloc_security =            selinux_sk_alloc_security,
5608         .sk_free_security =             selinux_sk_free_security,
5609         .sk_clone_security =            selinux_sk_clone_security,
5610         .sk_getsecid =                  selinux_sk_getsecid,
5611         .sock_graft =                   selinux_sock_graft,
5612         .inet_conn_request =            selinux_inet_conn_request,
5613         .inet_csk_clone =               selinux_inet_csk_clone,
5614         .inet_conn_established =        selinux_inet_conn_established,
5615         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5616         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5617         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5618         .req_classify_flow =            selinux_req_classify_flow,
5619         .tun_dev_create =               selinux_tun_dev_create,
5620         .tun_dev_post_create =          selinux_tun_dev_post_create,
5621         .tun_dev_attach =               selinux_tun_dev_attach,
5622
5623 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5624         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5625         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5626         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5627         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5628         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5629         .xfrm_state_free_security =     selinux_xfrm_state_free,
5630         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5631         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5632         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5633         .xfrm_decode_session =          selinux_xfrm_decode_session,
5634 #endif
5635
5636 #ifdef CONFIG_KEYS
5637         .key_alloc =                    selinux_key_alloc,
5638         .key_free =                     selinux_key_free,
5639         .key_permission =               selinux_key_permission,
5640         .key_getsecurity =              selinux_key_getsecurity,
5641 #endif
5642
5643 #ifdef CONFIG_AUDIT
5644         .audit_rule_init =              selinux_audit_rule_init,
5645         .audit_rule_known =             selinux_audit_rule_known,
5646         .audit_rule_match =             selinux_audit_rule_match,
5647         .audit_rule_free =              selinux_audit_rule_free,
5648 #endif
5649 };
5650
5651 static __init int selinux_init(void)
5652 {
5653         if (!security_module_enable(&selinux_ops)) {
5654                 selinux_enabled = 0;
5655                 return 0;
5656         }
5657
5658         if (!selinux_enabled) {
5659                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5660                 return 0;
5661         }
5662
5663         printk(KERN_INFO "SELinux:  Initializing.\n");
5664
5665         /* Set the security state for the initial task. */
5666         cred_init_security();
5667
5668         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5669
5670         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5671                                             sizeof(struct inode_security_struct),
5672                                             0, SLAB_PANIC, NULL);
5673         avc_init();
5674
5675         if (register_security(&selinux_ops))
5676                 panic("SELinux: Unable to register with kernel.\n");
5677
5678         if (selinux_enforcing)
5679                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5680         else
5681                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5682
5683         return 0;
5684 }
5685
5686 static void delayed_superblock_init(struct super_block *sb, void *unused)
5687 {
5688         superblock_doinit(sb, NULL);
5689 }
5690
5691 void selinux_complete_init(void)
5692 {
5693         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5694
5695         /* Set up any superblocks initialized prior to the policy load. */
5696         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5697         iterate_supers(delayed_superblock_init, NULL);
5698 }
5699
5700 /* SELinux requires early initialization in order to label
5701    all processes and objects when they are created. */
5702 security_initcall(selinux_init);
5703
5704 #if defined(CONFIG_NETFILTER)
5705
5706 static struct nf_hook_ops selinux_ipv4_ops[] = {
5707         {
5708                 .hook =         selinux_ipv4_postroute,
5709                 .owner =        THIS_MODULE,
5710                 .pf =           PF_INET,
5711                 .hooknum =      NF_INET_POST_ROUTING,
5712                 .priority =     NF_IP_PRI_SELINUX_LAST,
5713         },
5714         {
5715                 .hook =         selinux_ipv4_forward,
5716                 .owner =        THIS_MODULE,
5717                 .pf =           PF_INET,
5718                 .hooknum =      NF_INET_FORWARD,
5719                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5720         },
5721         {
5722                 .hook =         selinux_ipv4_output,
5723                 .owner =        THIS_MODULE,
5724                 .pf =           PF_INET,
5725                 .hooknum =      NF_INET_LOCAL_OUT,
5726                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5727         }
5728 };
5729
5730 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5731
5732 static struct nf_hook_ops selinux_ipv6_ops[] = {
5733         {
5734                 .hook =         selinux_ipv6_postroute,
5735                 .owner =        THIS_MODULE,
5736                 .pf =           PF_INET6,
5737                 .hooknum =      NF_INET_POST_ROUTING,
5738                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5739         },
5740         {
5741                 .hook =         selinux_ipv6_forward,
5742                 .owner =        THIS_MODULE,
5743                 .pf =           PF_INET6,
5744                 .hooknum =      NF_INET_FORWARD,
5745                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5746         }
5747 };
5748
5749 #endif  /* IPV6 */
5750
5751 static int __init selinux_nf_ip_init(void)
5752 {
5753         int err = 0;
5754
5755         if (!selinux_enabled)
5756                 goto out;
5757
5758         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5759
5760         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5761         if (err)
5762                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5763
5764 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5765         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5766         if (err)
5767                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5768 #endif  /* IPV6 */
5769
5770 out:
5771         return err;
5772 }
5773
5774 __initcall(selinux_nf_ip_init);
5775
5776 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5777 static void selinux_nf_ip_exit(void)
5778 {
5779         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5780
5781         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5782 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5783         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5784 #endif  /* IPV6 */
5785 }
5786 #endif
5787
5788 #else /* CONFIG_NETFILTER */
5789
5790 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5791 #define selinux_nf_ip_exit()
5792 #endif
5793
5794 #endif /* CONFIG_NETFILTER */
5795
5796 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5797 static int selinux_disabled;
5798
5799 int selinux_disable(void)
5800 {
5801         if (ss_initialized) {
5802                 /* Not permitted after initial policy load. */
5803                 return -EINVAL;
5804         }
5805
5806         if (selinux_disabled) {
5807                 /* Only do this once. */
5808                 return -EINVAL;
5809         }
5810
5811         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5812
5813         selinux_disabled = 1;
5814         selinux_enabled = 0;
5815
5816         reset_security_ops();
5817
5818         /* Try to destroy the avc node cache */
5819         avc_disable();
5820
5821         /* Unregister netfilter hooks. */
5822         selinux_nf_ip_exit();
5823
5824         /* Unregister selinuxfs. */
5825         exit_sel_fs();
5826
5827         return 0;
5828 }
5829 #endif