]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - sound/pci/rme9652/hdspm.c
ALSA: hdspm - Fix default value in SNDRV_HDSPM_IOCTL_GET_LTC
[karo-tx-linux.git] / sound / pci / rme9652 / hdspm.c
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *      Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41
42 /* *************    Register Documentation   *******************************************************
43  *
44  * Work in progress! Documentation is based on the code in this file.
45  *
46  * --------- HDSPM_controlRegister ---------
47  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
48  * :||||.||||:||||.||||:||||.||||:||||.||||:
49  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
50  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
51  * :||||.||||:||||.||||:||||.||||:||||.||||:
52  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
53  * :    .    :    .    :    .    :  x .    :  HDSPM_AudioInterruptEnable \_ setting both bits
54  * :    .    :    .    :    .    :    .   x:  HDSPM_Start                /  enables audio IO
55  * :    .    :    .    :    .    :   x.    :  HDSPM_ClockModeMaster - 1: Master, 0: Slave
56  * :    .    :    .    :    .    :    .210 :  HDSPM_LatencyMask - 3 Bit value for latency
57  * :    .    :    .    :    .    :    .    :      0:64, 1:128, 2:256, 3:512,
58  * :    .    :    .    :    .    :    .    :      4:1024, 5:2048, 6:4096, 7:8192
59  * :x   .    :    .    :    .   x:xx  .    :  HDSPM_FrequencyMask
60  * :    .    :    .    :    .    :10  .    :  HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=??
61  * :    .    :    .    :    .   x:    .    :  <MADI> HDSPM_DoubleSpeed
62  * :x   .    :    .    :    .    :    .    :  <MADI> HDSPM_QuadSpeed
63  * :    .  3 :    .  10:  2 .    :    .    :  HDSPM_SyncRefMask :
64  * :    .    :    .   x:    .    :    .    :  HDSPM_SyncRef0
65  * :    .    :    .  x :    .    :    .    :  HDSPM_SyncRef1
66  * :    .    :    .    :  x .    :    .    :  <AES32> HDSPM_SyncRef2
67  * :    .  x :    .    :    .    :    .    :  <AES32> HDSPM_SyncRef3
68  * :    .    :    .  10:    .    :    .    :  <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn
69  * :    .  3 :    .  10:  2 .    :    .    :  <AES32>  0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn?
70  * :    .  x :    .    :    .    :    .    :  <MADIe> HDSPe_FLOAT_FORMAT
71  * :    .    :    .    : x  .    :    .    :  <MADI> HDSPM_InputSelect0 : 0=optical,1=coax
72  * :    .    :    .    :x   .    :    .    :  <MADI> HDSPM_InputSelect1
73  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
74  * :    .    :    .    :    . x  :    .    :  <MADI> HDSPM_TX_64ch
75  * :    .    :    .    :    . x  :    .    :  <AES32> HDSPM_Emphasis
76  * :    .    :    .    :    .x   :    .    :  <MADI> HDSPM_AutoInp
77  * :    .    :    . x  :    .    :    .    :  <MADI> HDSPM_SMUX
78  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
79  * :    .    :   x.    :    .    :    .    :  <MADI> HDSPM_taxi_reset
80  * :    .   x:    .    :    .    :    .    :  <MADI> HDSPM_LineOut
81  * :    .   x:    .    :    .    :    .    :  <AES32> ??????????????????
82  * :    .    :   x.    :    .    :    .    :  <AES32> HDSPM_WCK48
83  * :    .    :    .    :    .x   :    .    :  <AES32> HDSPM_Dolby
84  * :    .    : x  .    :    .    :    .    :  HDSPM_Midi0InterruptEnable
85  * :    .    :x   .    :    .    :    .    :  HDSPM_Midi1InterruptEnable
86  * :    .    :  x .    :    .    :    .    :  HDSPM_Midi2InterruptEnable
87  * :    . x  :    .    :    .    :    .    :  <MADI> HDSPM_Midi3InterruptEnable
88  * :    . x  :    .    :    .    :    .    :  <AES32> HDSPM_DS_DoubleWire
89  * :    .x   :    .    :    .    :    .    :  <AES32> HDSPM_QS_DoubleWire
90  * :   x.    :    .    :    .    :    .    :  <AES32> HDSPM_QS_QuadWire
91  * :    .    :    .    :    .  x :    .    :  <AES32> HDSPM_Professional
92  * : x  .    :    .    :    .    :    .    :  HDSPM_wclk_sel
93  * :    .    :    .    :    .    :    .    :
94  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
95  * :||||.||||:||||.||||:||||.||||:||||.||||:
96  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
97  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
98  * :||||.||||:||||.||||:||||.||||:||||.||||:
99  * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit
100  *
101  *
102  *
103  * AIO / RayDAT only
104  *
105  * ------------ HDSPM_WR_SETTINGS ----------
106  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
107  * :1098.7654:3210.9876:5432.1098:7654.3210:
108  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
109  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
110  * :||||.||||:||||.||||:||||.||||:||||.||||:
111  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
112  * :    .    :    .    :    .    :    .   x: HDSPM_c0Master 1: Master, 0: Slave
113  * :    .    :    .    :    .    :    .  x : HDSPM_c0_SyncRef0
114  * :    .    :    .    :    .    :    . x  : HDSPM_c0_SyncRef1
115  * :    .    :    .    :    .    :    .x   : HDSPM_c0_SyncRef2
116  * :    .    :    .    :    .    :   x.    : HDSPM_c0_SyncRef3
117  * :    .    :    .    :    .    :   3.210 : HDSPM_c0_SyncRefMask:
118  * :    .    :    .    :    .    :    .    :  RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4,
119  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
120  * :    .    :    .    :    .    :    .    :  AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT,
121  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
122  * :    .    :    .    :    .    :    .    :
123  * :    .    :    .    :    .    :    .    :
124  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
125  * :1098.7654:3210.9876:5432.1098:7654.3210:
126  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
127  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
128  * :||||.||||:||||.||||:||||.||||:||||.||||:
129  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
130  *
131  */
132 #include <linux/init.h>
133 #include <linux/delay.h>
134 #include <linux/interrupt.h>
135 #include <linux/module.h>
136 #include <linux/slab.h>
137 #include <linux/pci.h>
138 #include <linux/math64.h>
139 #include <asm/io.h>
140
141 #include <sound/core.h>
142 #include <sound/control.h>
143 #include <sound/pcm.h>
144 #include <sound/pcm_params.h>
145 #include <sound/info.h>
146 #include <sound/asoundef.h>
147 #include <sound/rawmidi.h>
148 #include <sound/hwdep.h>
149 #include <sound/initval.h>
150
151 #include <sound/hdspm.h>
152
153 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;        /* Index 0-MAX */
154 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;         /* ID for this card */
155 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
156
157 module_param_array(index, int, NULL, 0444);
158 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
159
160 module_param_array(id, charp, NULL, 0444);
161 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
162
163 module_param_array(enable, bool, NULL, 0444);
164 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
165
166
167 MODULE_AUTHOR
168 (
169         "Winfried Ritsch <ritsch_AT_iem.at>, "
170         "Paul Davis <paul@linuxaudiosystems.com>, "
171         "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
172         "Remy Bruno <remy.bruno@trinnov.com>, "
173         "Florian Faber <faberman@linuxproaudio.org>, "
174         "Adrian Knoth <adi@drcomp.erfurt.thur.de>"
175 );
176 MODULE_DESCRIPTION("RME HDSPM");
177 MODULE_LICENSE("GPL");
178 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
179
180 /* --- Write registers. ---
181   These are defined as byte-offsets from the iobase value.  */
182
183 #define HDSPM_WR_SETTINGS             0
184 #define HDSPM_outputBufferAddress    32
185 #define HDSPM_inputBufferAddress     36
186 #define HDSPM_controlRegister        64
187 #define HDSPM_interruptConfirmation  96
188 #define HDSPM_control2Reg            256  /* not in specs ???????? */
189 #define HDSPM_freqReg                256  /* for setting arbitrary clock values (DDS feature) */
190 #define HDSPM_midiDataOut0           352  /* just believe in old code */
191 #define HDSPM_midiDataOut1           356
192 #define HDSPM_eeprom_wr              384  /* for AES32 */
193
194 /* DMA enable for 64 channels, only Bit 0 is relevant */
195 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
196 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
197
198 /* 16 page addresses for each of the 64 channels DMA buffer in and out
199    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
200 #define HDSPM_pageAddressBufferOut       8192
201 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
202
203 #define HDSPM_MADI_mixerBase    32768   /* 32768-65535 for 2x64x64 Fader */
204
205 #define HDSPM_MATRIX_MIXER_SIZE  8192   /* = 2*64*64 * 4 Byte => 32kB */
206
207 /* --- Read registers. ---
208    These are defined as byte-offsets from the iobase value */
209 #define HDSPM_statusRegister    0
210 /*#define HDSPM_statusRegister2  96 */
211 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
212  * offset 192, for AES32 *and* MADI
213  * => need to check that offset 192 is working on MADI */
214 #define HDSPM_statusRegister2  192
215 #define HDSPM_timecodeRegister 128
216
217 /* AIO, RayDAT */
218 #define HDSPM_RD_STATUS_0 0
219 #define HDSPM_RD_STATUS_1 64
220 #define HDSPM_RD_STATUS_2 128
221 #define HDSPM_RD_STATUS_3 192
222
223 #define HDSPM_RD_TCO           256
224 #define HDSPM_RD_PLL_FREQ      512
225 #define HDSPM_WR_TCO           128
226
227 #define HDSPM_TCO1_TCO_lock                     0x00000001
228 #define HDSPM_TCO1_WCK_Input_Range_LSB          0x00000002
229 #define HDSPM_TCO1_WCK_Input_Range_MSB          0x00000004
230 #define HDSPM_TCO1_LTC_Input_valid              0x00000008
231 #define HDSPM_TCO1_WCK_Input_valid              0x00000010
232 #define HDSPM_TCO1_Video_Input_Format_NTSC      0x00000020
233 #define HDSPM_TCO1_Video_Input_Format_PAL       0x00000040
234
235 #define HDSPM_TCO1_set_TC                       0x00000100
236 #define HDSPM_TCO1_set_drop_frame_flag          0x00000200
237 #define HDSPM_TCO1_LTC_Format_LSB               0x00000400
238 #define HDSPM_TCO1_LTC_Format_MSB               0x00000800
239
240 #define HDSPM_TCO2_TC_run                       0x00010000
241 #define HDSPM_TCO2_WCK_IO_ratio_LSB             0x00020000
242 #define HDSPM_TCO2_WCK_IO_ratio_MSB             0x00040000
243 #define HDSPM_TCO2_set_num_drop_frames_LSB      0x00080000
244 #define HDSPM_TCO2_set_num_drop_frames_MSB      0x00100000
245 #define HDSPM_TCO2_set_jam_sync                 0x00200000
246 #define HDSPM_TCO2_set_flywheel                 0x00400000
247
248 #define HDSPM_TCO2_set_01_4                     0x01000000
249 #define HDSPM_TCO2_set_pull_down                0x02000000
250 #define HDSPM_TCO2_set_pull_up                  0x04000000
251 #define HDSPM_TCO2_set_freq                     0x08000000
252 #define HDSPM_TCO2_set_term_75R                 0x10000000
253 #define HDSPM_TCO2_set_input_LSB                0x20000000
254 #define HDSPM_TCO2_set_input_MSB                0x40000000
255 #define HDSPM_TCO2_set_freq_from_app            0x80000000
256
257
258 #define HDSPM_midiDataOut0    352
259 #define HDSPM_midiDataOut1    356
260 #define HDSPM_midiDataOut2    368
261
262 #define HDSPM_midiDataIn0     360
263 #define HDSPM_midiDataIn1     364
264 #define HDSPM_midiDataIn2     372
265 #define HDSPM_midiDataIn3     376
266
267 /* status is data bytes in MIDI-FIFO (0-128) */
268 #define HDSPM_midiStatusOut0  384
269 #define HDSPM_midiStatusOut1  388
270 #define HDSPM_midiStatusOut2  400
271
272 #define HDSPM_midiStatusIn0   392
273 #define HDSPM_midiStatusIn1   396
274 #define HDSPM_midiStatusIn2   404
275 #define HDSPM_midiStatusIn3   408
276
277
278 /* the meters are regular i/o-mapped registers, but offset
279    considerably from the rest. the peak registers are reset
280    when read; the least-significant 4 bits are full-scale counters;
281    the actual peak value is in the most-significant 24 bits.
282 */
283
284 #define HDSPM_MADI_INPUT_PEAK           4096
285 #define HDSPM_MADI_PLAYBACK_PEAK        4352
286 #define HDSPM_MADI_OUTPUT_PEAK          4608
287
288 #define HDSPM_MADI_INPUT_RMS_L          6144
289 #define HDSPM_MADI_PLAYBACK_RMS_L       6400
290 #define HDSPM_MADI_OUTPUT_RMS_L         6656
291
292 #define HDSPM_MADI_INPUT_RMS_H          7168
293 #define HDSPM_MADI_PLAYBACK_RMS_H       7424
294 #define HDSPM_MADI_OUTPUT_RMS_H         7680
295
296 /* --- Control Register bits --------- */
297 #define HDSPM_Start                (1<<0) /* start engine */
298
299 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
300 #define HDSPM_Latency1             (1<<2) /* where n is defined */
301 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
302
303 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
304 #define HDSPM_c0Master          0x1    /* Master clock bit in settings
305                                           register [RayDAT, AIO] */
306
307 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
308
309 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
310 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
311 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
312 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
313
314 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
315 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
316                                      56channelMODE=0 */ /* MADI ONLY*/
317 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
318
319 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
320                                      0=off, 1=on  */ /* MADI ONLY */
321 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
322
323 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
324                                     * -- MADI ONLY
325                                     */
326 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
327
328 #define HDSPM_SyncRef2     (1<<13)
329 #define HDSPM_SyncRef3     (1<<25)
330
331 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
332 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
333                                       AES additional bits in
334                                       lower 5 Audiodatabits ??? */
335 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
336 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
337
338 #define HDSPM_Midi0InterruptEnable 0x0400000
339 #define HDSPM_Midi1InterruptEnable 0x0800000
340 #define HDSPM_Midi2InterruptEnable 0x0200000
341 #define HDSPM_Midi3InterruptEnable 0x4000000
342
343 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
344 #define HDSPe_FLOAT_FORMAT         0x2000000
345
346 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
347 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
348 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
349
350 #define HDSPM_wclk_sel (1<<30)
351
352 /* additional control register bits for AIO*/
353 #define HDSPM_c0_Wck48                          0x20 /* also RayDAT */
354 #define HDSPM_c0_Input0                         0x1000
355 #define HDSPM_c0_Input1                         0x2000
356 #define HDSPM_c0_Spdif_Opt                      0x4000
357 #define HDSPM_c0_Pro                            0x8000
358 #define HDSPM_c0_clr_tms                        0x10000
359 #define HDSPM_c0_AEB1                           0x20000
360 #define HDSPM_c0_AEB2                           0x40000
361 #define HDSPM_c0_LineOut                        0x80000
362 #define HDSPM_c0_AD_GAIN0                       0x100000
363 #define HDSPM_c0_AD_GAIN1                       0x200000
364 #define HDSPM_c0_DA_GAIN0                       0x400000
365 #define HDSPM_c0_DA_GAIN1                       0x800000
366 #define HDSPM_c0_PH_GAIN0                       0x1000000
367 #define HDSPM_c0_PH_GAIN1                       0x2000000
368 #define HDSPM_c0_Sym6db                         0x4000000
369
370
371 /* --- bit helper defines */
372 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
373 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
374                               HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
375 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
376 #define HDSPM_InputOptical   0
377 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
378 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
379                               HDSPM_SyncRef2|HDSPM_SyncRef3)
380
381 #define HDSPM_c0_SyncRef0      0x2
382 #define HDSPM_c0_SyncRef1      0x4
383 #define HDSPM_c0_SyncRef2      0x8
384 #define HDSPM_c0_SyncRef3      0x10
385 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
386                                 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
387
388 #define HDSPM_SYNC_FROM_WORD    0       /* Preferred sync reference */
389 #define HDSPM_SYNC_FROM_MADI    1       /* choices - used by "pref_sync_ref" */
390 #define HDSPM_SYNC_FROM_TCO     2
391 #define HDSPM_SYNC_FROM_SYNC_IN 3
392
393 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
394 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
395 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
396 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
397 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
398 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
399                                 HDSPM_Frequency0)
400 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
401 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
402 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
403                                  HDSPM_Frequency0)
404
405
406 /* Synccheck Status */
407 #define HDSPM_SYNC_CHECK_NO_LOCK 0
408 #define HDSPM_SYNC_CHECK_LOCK    1
409 #define HDSPM_SYNC_CHECK_SYNC    2
410
411 /* AutoSync References - used by "autosync_ref" control switch */
412 #define HDSPM_AUTOSYNC_FROM_WORD      0
413 #define HDSPM_AUTOSYNC_FROM_MADI      1
414 #define HDSPM_AUTOSYNC_FROM_TCO       2
415 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
416 #define HDSPM_AUTOSYNC_FROM_NONE      4
417
418 /* Possible sources of MADI input */
419 #define HDSPM_OPTICAL 0         /* optical   */
420 #define HDSPM_COAXIAL 1         /* BNC */
421
422 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
423 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
424
425 #define hdspm_encode_in(x) (((x)&0x3)<<14)
426 #define hdspm_decode_in(x) (((x)>>14)&0x3)
427
428 /* --- control2 register bits --- */
429 #define HDSPM_TMS             (1<<0)
430 #define HDSPM_TCK             (1<<1)
431 #define HDSPM_TDI             (1<<2)
432 #define HDSPM_JTAG            (1<<3)
433 #define HDSPM_PWDN            (1<<4)
434 #define HDSPM_PROGRAM         (1<<5)
435 #define HDSPM_CONFIG_MODE_0   (1<<6)
436 #define HDSPM_CONFIG_MODE_1   (1<<7)
437 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
438 #define HDSPM_BIGENDIAN_MODE  (1<<9)
439 #define HDSPM_RD_MULTIPLE     (1<<10)
440
441 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
442      that do not conflict with specific bits for AES32 seem to be valid also
443      for the AES32
444  */
445 #define HDSPM_audioIRQPending    (1<<0) /* IRQ is high and pending */
446 #define HDSPM_RX_64ch            (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */
447 #define HDSPM_AB_int             (1<<2) /* InputChannel Opt=0, Coax=1
448                                          * (like inp0)
449                                          */
450
451 #define HDSPM_madiLock           (1<<3) /* MADI Locked =1, no=0 */
452 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
453
454 #define HDSPM_tcoLockMadi    0x00000020 /* Optional TCO locked status for HDSPe MADI*/
455 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/
456
457 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */
458 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */
459
460 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
461                         /* since 64byte accurate, last 6 bits are not used */
462
463
464
465 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
466
467 #define HDSPM_madiFreq0         (1<<22) /* system freq 0=error */
468 #define HDSPM_madiFreq1         (1<<23) /* 1=32, 2=44.1 3=48 */
469 #define HDSPM_madiFreq2         (1<<24) /* 4=64, 5=88.2 6=96 */
470 #define HDSPM_madiFreq3         (1<<25) /* 7=128, 8=176.4 9=192 */
471
472 #define HDSPM_BufferID          (1<<26) /* (Double)Buffer ID toggles with
473                                          * Interrupt
474                                          */
475 #define HDSPM_tco_detect         0x08000000
476 #define HDSPM_tcoLockAes         0x20000000 /* Optional TCO locked status for HDSPe AES */
477
478 #define HDSPM_s2_tco_detect      0x00000040
479 #define HDSPM_s2_AEBO_D          0x00000080
480 #define HDSPM_s2_AEBI_D          0x00000100
481
482
483 #define HDSPM_midi0IRQPending    0x40000000
484 #define HDSPM_midi1IRQPending    0x80000000
485 #define HDSPM_midi2IRQPending    0x20000000
486 #define HDSPM_midi2IRQPendingAES 0x00000020
487 #define HDSPM_midi3IRQPending    0x00200000
488
489 /* --- status bit helpers */
490 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
491                              HDSPM_madiFreq2|HDSPM_madiFreq3)
492 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
493 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
494 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
495 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
496 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
497 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
498 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
499 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
500 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
501
502 /* Status2 Register bits */ /* MADI ONLY */
503
504 #define HDSPM_version0 (1<<0)   /* not really defined but I guess */
505 #define HDSPM_version1 (1<<1)   /* in former cards it was ??? */
506 #define HDSPM_version2 (1<<2)
507
508 #define HDSPM_wcLock (1<<3)     /* Wordclock is detected and locked */
509 #define HDSPM_wcSync (1<<4)     /* Wordclock is in sync with systemclock */
510
511 #define HDSPM_wc_freq0 (1<<5)   /* input freq detected via autosync  */
512 #define HDSPM_wc_freq1 (1<<6)   /* 001=32, 010==44.1, 011=48, */
513 #define HDSPM_wc_freq2 (1<<7)   /* 100=64, 101=88.2, 110=96, 111=128 */
514 #define HDSPM_wc_freq3 0x800    /* 1000=176.4, 1001=192 */
515
516 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
517 #define HDSPM_SyncRef1 0x20000
518
519 #define HDSPM_SelSyncRef0 (1<<8)        /* AutoSync Source */
520 #define HDSPM_SelSyncRef1 (1<<9)        /* 000=word, 001=MADI, */
521 #define HDSPM_SelSyncRef2 (1<<10)       /* 111=no valid signal */
522
523 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
524
525 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\
526                             HDSPM_wc_freq3)
527 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
528 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
529 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
530 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
531 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
532 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
533 #define HDSPM_wcFreq128   (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
534 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3)
535 #define HDSPM_wcFreq192   (HDSPM_wc_freq0|HDSPM_wc_freq3)
536
537 #define HDSPM_status1_F_0 0x0400000
538 #define HDSPM_status1_F_1 0x0800000
539 #define HDSPM_status1_F_2 0x1000000
540 #define HDSPM_status1_F_3 0x2000000
541 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
542
543
544 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
545                                     HDSPM_SelSyncRef2)
546 #define HDSPM_SelSyncRef_WORD      0
547 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
548 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
549 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
550 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
551                                     HDSPM_SelSyncRef2)
552
553 /*
554    For AES32, bits for status, status2 and timecode are different
555 */
556 /* status */
557 #define HDSPM_AES32_wcLock      0x0200000
558 #define HDSPM_AES32_wcSync      0x0100000
559 #define HDSPM_AES32_wcFreq_bit  22
560 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
561   HDSPM_bit2freq */
562 #define HDSPM_AES32_syncref_bit  16
563 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
564
565 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
566 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
567 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
568 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
569 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
570 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
571 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
572 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
573 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
574 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9
575 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10
576 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11
577
578 /*  status2 */
579 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
580 #define HDSPM_LockAES   0x80
581 #define HDSPM_LockAES1  0x80
582 #define HDSPM_LockAES2  0x40
583 #define HDSPM_LockAES3  0x20
584 #define HDSPM_LockAES4  0x10
585 #define HDSPM_LockAES5  0x8
586 #define HDSPM_LockAES6  0x4
587 #define HDSPM_LockAES7  0x2
588 #define HDSPM_LockAES8  0x1
589 /*
590    Timecode
591    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
592    AES i+1
593  bits 3210
594       0001  32kHz
595       0010  44.1kHz
596       0011  48kHz
597       0100  64kHz
598       0101  88.2kHz
599       0110  96kHz
600       0111  128kHz
601       1000  176.4kHz
602       1001  192kHz
603   NB: Timecode register doesn't seem to work on AES32 card revision 230
604 */
605
606 /* Mixer Values */
607 #define UNITY_GAIN          32768       /* = 65536/2 */
608 #define MINUS_INFINITY_GAIN 0
609
610 /* Number of channels for different Speed Modes */
611 #define MADI_SS_CHANNELS       64
612 #define MADI_DS_CHANNELS       32
613 #define MADI_QS_CHANNELS       16
614
615 #define RAYDAT_SS_CHANNELS     36
616 #define RAYDAT_DS_CHANNELS     20
617 #define RAYDAT_QS_CHANNELS     12
618
619 #define AIO_IN_SS_CHANNELS        14
620 #define AIO_IN_DS_CHANNELS        10
621 #define AIO_IN_QS_CHANNELS        8
622 #define AIO_OUT_SS_CHANNELS        16
623 #define AIO_OUT_DS_CHANNELS        12
624 #define AIO_OUT_QS_CHANNELS        10
625
626 #define AES32_CHANNELS          16
627
628 /* the size of a substream (1 mono data stream) */
629 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
630 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
631
632 /* the size of the area we need to allocate for DMA transfers. the
633    size is the same regardless of the number of channels, and
634    also the latency to use.
635    for one direction !!!
636 */
637 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
638 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
639
640 #define HDSPM_RAYDAT_REV        211
641 #define HDSPM_AIO_REV           212
642 #define HDSPM_MADIFACE_REV      213
643
644 /* speed factor modes */
645 #define HDSPM_SPEED_SINGLE 0
646 #define HDSPM_SPEED_DOUBLE 1
647 #define HDSPM_SPEED_QUAD   2
648
649 /* names for speed modes */
650 static char *hdspm_speed_names[] = { "single", "double", "quad" };
651
652 static const char *const texts_autosync_aes_tco[] = { "Word Clock",
653                                           "AES1", "AES2", "AES3", "AES4",
654                                           "AES5", "AES6", "AES7", "AES8",
655                                           "TCO", "Sync In"
656 };
657 static const char *const texts_autosync_aes[] = { "Word Clock",
658                                       "AES1", "AES2", "AES3", "AES4",
659                                       "AES5", "AES6", "AES7", "AES8",
660                                       "Sync In"
661 };
662 static const char *const texts_autosync_madi_tco[] = { "Word Clock",
663                                            "MADI", "TCO", "Sync In" };
664 static const char *const texts_autosync_madi[] = { "Word Clock",
665                                        "MADI", "Sync In" };
666
667 static const char *const texts_autosync_raydat_tco[] = {
668         "Word Clock",
669         "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
670         "AES", "SPDIF", "TCO", "Sync In"
671 };
672 static const char *const texts_autosync_raydat[] = {
673         "Word Clock",
674         "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
675         "AES", "SPDIF", "Sync In"
676 };
677 static const char *const texts_autosync_aio_tco[] = {
678         "Word Clock",
679         "ADAT", "AES", "SPDIF", "TCO", "Sync In"
680 };
681 static const char *const texts_autosync_aio[] = { "Word Clock",
682                                       "ADAT", "AES", "SPDIF", "Sync In" };
683
684 static const char *const texts_freq[] = {
685         "No Lock",
686         "32 kHz",
687         "44.1 kHz",
688         "48 kHz",
689         "64 kHz",
690         "88.2 kHz",
691         "96 kHz",
692         "128 kHz",
693         "176.4 kHz",
694         "192 kHz"
695 };
696
697 static char *texts_ports_madi[] = {
698         "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
699         "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
700         "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
701         "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
702         "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
703         "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
704         "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
705         "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
706         "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
707         "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
708         "MADI.61", "MADI.62", "MADI.63", "MADI.64",
709 };
710
711
712 static char *texts_ports_raydat_ss[] = {
713         "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
714         "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
715         "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
716         "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
717         "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
718         "ADAT4.7", "ADAT4.8",
719         "AES.L", "AES.R",
720         "SPDIF.L", "SPDIF.R"
721 };
722
723 static char *texts_ports_raydat_ds[] = {
724         "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
725         "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
726         "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
727         "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
728         "AES.L", "AES.R",
729         "SPDIF.L", "SPDIF.R"
730 };
731
732 static char *texts_ports_raydat_qs[] = {
733         "ADAT1.1", "ADAT1.2",
734         "ADAT2.1", "ADAT2.2",
735         "ADAT3.1", "ADAT3.2",
736         "ADAT4.1", "ADAT4.2",
737         "AES.L", "AES.R",
738         "SPDIF.L", "SPDIF.R"
739 };
740
741
742 static char *texts_ports_aio_in_ss[] = {
743         "Analogue.L", "Analogue.R",
744         "AES.L", "AES.R",
745         "SPDIF.L", "SPDIF.R",
746         "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
747         "ADAT.7", "ADAT.8",
748         "AEB.1", "AEB.2", "AEB.3", "AEB.4"
749 };
750
751 static char *texts_ports_aio_out_ss[] = {
752         "Analogue.L", "Analogue.R",
753         "AES.L", "AES.R",
754         "SPDIF.L", "SPDIF.R",
755         "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
756         "ADAT.7", "ADAT.8",
757         "Phone.L", "Phone.R",
758         "AEB.1", "AEB.2", "AEB.3", "AEB.4"
759 };
760
761 static char *texts_ports_aio_in_ds[] = {
762         "Analogue.L", "Analogue.R",
763         "AES.L", "AES.R",
764         "SPDIF.L", "SPDIF.R",
765         "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
766         "AEB.1", "AEB.2", "AEB.3", "AEB.4"
767 };
768
769 static char *texts_ports_aio_out_ds[] = {
770         "Analogue.L", "Analogue.R",
771         "AES.L", "AES.R",
772         "SPDIF.L", "SPDIF.R",
773         "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
774         "Phone.L", "Phone.R",
775         "AEB.1", "AEB.2", "AEB.3", "AEB.4"
776 };
777
778 static char *texts_ports_aio_in_qs[] = {
779         "Analogue.L", "Analogue.R",
780         "AES.L", "AES.R",
781         "SPDIF.L", "SPDIF.R",
782         "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
783         "AEB.1", "AEB.2", "AEB.3", "AEB.4"
784 };
785
786 static char *texts_ports_aio_out_qs[] = {
787         "Analogue.L", "Analogue.R",
788         "AES.L", "AES.R",
789         "SPDIF.L", "SPDIF.R",
790         "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
791         "Phone.L", "Phone.R",
792         "AEB.1", "AEB.2", "AEB.3", "AEB.4"
793 };
794
795 static char *texts_ports_aes32[] = {
796         "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
797         "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
798         "AES.15", "AES.16"
799 };
800
801 /* These tables map the ALSA channels 1..N to the channels that we
802    need to use in order to find the relevant channel buffer. RME
803    refers to this kind of mapping as between "the ADAT channel and
804    the DMA channel." We index it using the logical audio channel,
805    and the value is the DMA channel (i.e. channel buffer number)
806    where the data for that channel can be read/written from/to.
807 */
808
809 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
810         0, 1, 2, 3, 4, 5, 6, 7,
811         8, 9, 10, 11, 12, 13, 14, 15,
812         16, 17, 18, 19, 20, 21, 22, 23,
813         24, 25, 26, 27, 28, 29, 30, 31,
814         32, 33, 34, 35, 36, 37, 38, 39,
815         40, 41, 42, 43, 44, 45, 46, 47,
816         48, 49, 50, 51, 52, 53, 54, 55,
817         56, 57, 58, 59, 60, 61, 62, 63
818 };
819
820 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
821         4, 5, 6, 7, 8, 9, 10, 11,       /* ADAT 1 */
822         12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */
823         20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */
824         28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */
825         0, 1,                   /* AES */
826         2, 3,                   /* SPDIF */
827         -1, -1, -1, -1,
828         -1, -1, -1, -1, -1, -1, -1, -1,
829         -1, -1, -1, -1, -1, -1, -1, -1,
830         -1, -1, -1, -1, -1, -1, -1, -1,
831 };
832
833 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
834         4, 5, 6, 7,             /* ADAT 1 */
835         8, 9, 10, 11,           /* ADAT 2 */
836         12, 13, 14, 15,         /* ADAT 3 */
837         16, 17, 18, 19,         /* ADAT 4 */
838         0, 1,                   /* AES */
839         2, 3,                   /* SPDIF */
840         -1, -1, -1, -1,
841         -1, -1, -1, -1, -1, -1, -1, -1,
842         -1, -1, -1, -1, -1, -1, -1, -1,
843         -1, -1, -1, -1, -1, -1, -1, -1,
844         -1, -1, -1, -1, -1, -1, -1, -1,
845         -1, -1, -1, -1, -1, -1, -1, -1,
846 };
847
848 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
849         4, 5,                   /* ADAT 1 */
850         6, 7,                   /* ADAT 2 */
851         8, 9,                   /* ADAT 3 */
852         10, 11,                 /* ADAT 4 */
853         0, 1,                   /* AES */
854         2, 3,                   /* SPDIF */
855         -1, -1, -1, -1,
856         -1, -1, -1, -1, -1, -1, -1, -1,
857         -1, -1, -1, -1, -1, -1, -1, -1,
858         -1, -1, -1, -1, -1, -1, -1, -1,
859         -1, -1, -1, -1, -1, -1, -1, -1,
860         -1, -1, -1, -1, -1, -1, -1, -1,
861         -1, -1, -1, -1, -1, -1, -1, -1,
862 };
863
864 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
865         0, 1,                   /* line in */
866         8, 9,                   /* aes in, */
867         10, 11,                 /* spdif in */
868         12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */
869         2, 3, 4, 5,             /* AEB */
870         -1, -1, -1, -1, -1, -1,
871         -1, -1, -1, -1, -1, -1, -1, -1,
872         -1, -1, -1, -1, -1, -1, -1, -1,
873         -1, -1, -1, -1, -1, -1, -1, -1,
874         -1, -1, -1, -1, -1, -1, -1, -1,
875         -1, -1, -1, -1, -1, -1, -1, -1,
876 };
877
878 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
879         0, 1,                   /* line out */
880         8, 9,                   /* aes out */
881         10, 11,                 /* spdif out */
882         12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */
883         6, 7,                   /* phone out */
884         2, 3, 4, 5,             /* AEB */
885         -1, -1, -1, -1,
886         -1, -1, -1, -1, -1, -1, -1, -1,
887         -1, -1, -1, -1, -1, -1, -1, -1,
888         -1, -1, -1, -1, -1, -1, -1, -1,
889         -1, -1, -1, -1, -1, -1, -1, -1,
890         -1, -1, -1, -1, -1, -1, -1, -1,
891 };
892
893 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
894         0, 1,                   /* line in */
895         8, 9,                   /* aes in */
896         10, 11,                 /* spdif in */
897         12, 14, 16, 18,         /* adat in */
898         2, 3, 4, 5,             /* AEB */
899         -1, -1,
900         -1, -1, -1, -1, -1, -1, -1, -1,
901         -1, -1, -1, -1, -1, -1, -1, -1,
902         -1, -1, -1, -1, -1, -1, -1, -1,
903         -1, -1, -1, -1, -1, -1, -1, -1,
904         -1, -1, -1, -1, -1, -1, -1, -1,
905         -1, -1, -1, -1, -1, -1, -1, -1
906 };
907
908 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
909         0, 1,                   /* line out */
910         8, 9,                   /* aes out */
911         10, 11,                 /* spdif out */
912         12, 14, 16, 18,         /* adat out */
913         6, 7,                   /* phone out */
914         2, 3, 4, 5,             /* AEB */
915         -1, -1, -1, -1, -1, -1, -1, -1,
916         -1, -1, -1, -1, -1, -1, -1, -1,
917         -1, -1, -1, -1, -1, -1, -1, -1,
918         -1, -1, -1, -1, -1, -1, -1, -1,
919         -1, -1, -1, -1, -1, -1, -1, -1,
920         -1, -1, -1, -1, -1, -1, -1, -1
921 };
922
923 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
924         0, 1,                   /* line in */
925         8, 9,                   /* aes in */
926         10, 11,                 /* spdif in */
927         12, 16,                 /* adat in */
928         2, 3, 4, 5,             /* AEB */
929         -1, -1, -1, -1,
930         -1, -1, -1, -1, -1, -1, -1, -1,
931         -1, -1, -1, -1, -1, -1, -1, -1,
932         -1, -1, -1, -1, -1, -1, -1, -1,
933         -1, -1, -1, -1, -1, -1, -1, -1,
934         -1, -1, -1, -1, -1, -1, -1, -1,
935         -1, -1, -1, -1, -1, -1, -1, -1
936 };
937
938 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
939         0, 1,                   /* line out */
940         8, 9,                   /* aes out */
941         10, 11,                 /* spdif out */
942         12, 16,                 /* adat out */
943         6, 7,                   /* phone out */
944         2, 3, 4, 5,             /* AEB */
945         -1, -1,
946         -1, -1, -1, -1, -1, -1, -1, -1,
947         -1, -1, -1, -1, -1, -1, -1, -1,
948         -1, -1, -1, -1, -1, -1, -1, -1,
949         -1, -1, -1, -1, -1, -1, -1, -1,
950         -1, -1, -1, -1, -1, -1, -1, -1,
951         -1, -1, -1, -1, -1, -1, -1, -1
952 };
953
954 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
955         0, 1, 2, 3, 4, 5, 6, 7,
956         8, 9, 10, 11, 12, 13, 14, 15,
957         -1, -1, -1, -1, -1, -1, -1, -1,
958         -1, -1, -1, -1, -1, -1, -1, -1,
959         -1, -1, -1, -1, -1, -1, -1, -1,
960         -1, -1, -1, -1, -1, -1, -1, -1,
961         -1, -1, -1, -1, -1, -1, -1, -1,
962         -1, -1, -1, -1, -1, -1, -1, -1
963 };
964
965 struct hdspm_midi {
966         struct hdspm *hdspm;
967         int id;
968         struct snd_rawmidi *rmidi;
969         struct snd_rawmidi_substream *input;
970         struct snd_rawmidi_substream *output;
971         char istimer;           /* timer in use */
972         struct timer_list timer;
973         spinlock_t lock;
974         int pending;
975         int dataIn;
976         int statusIn;
977         int dataOut;
978         int statusOut;
979         int ie;
980         int irq;
981 };
982
983 struct hdspm_tco {
984         int input; /* 0: LTC, 1:Video, 2: WC*/
985         int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */
986         int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */
987         int samplerate; /* 0=44.1, 1=48, 2= freq from app */
988         int pull; /*   0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/
989         int term; /* 0 = off, 1 = on */
990 };
991
992 struct hdspm {
993         spinlock_t lock;
994         /* only one playback and/or capture stream */
995         struct snd_pcm_substream *capture_substream;
996         struct snd_pcm_substream *playback_substream;
997
998         char *card_name;             /* for procinfo */
999         unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
1000
1001         uint8_t io_type;
1002
1003         int monitor_outs;       /* set up monitoring outs init flag */
1004
1005         u32 control_register;   /* cached value */
1006         u32 control2_register;  /* cached value */
1007         u32 settings_register;  /* cached value for AIO / RayDat (sync reference, master/slave) */
1008
1009         struct hdspm_midi midi[4];
1010         struct tasklet_struct midi_tasklet;
1011
1012         size_t period_bytes;
1013         unsigned char ss_in_channels;
1014         unsigned char ds_in_channels;
1015         unsigned char qs_in_channels;
1016         unsigned char ss_out_channels;
1017         unsigned char ds_out_channels;
1018         unsigned char qs_out_channels;
1019
1020         unsigned char max_channels_in;
1021         unsigned char max_channels_out;
1022
1023         signed char *channel_map_in;
1024         signed char *channel_map_out;
1025
1026         signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
1027         signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
1028
1029         char **port_names_in;
1030         char **port_names_out;
1031
1032         char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
1033         char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
1034
1035         unsigned char *playback_buffer; /* suitably aligned address */
1036         unsigned char *capture_buffer;  /* suitably aligned address */
1037
1038         pid_t capture_pid;      /* process id which uses capture */
1039         pid_t playback_pid;     /* process id which uses capture */
1040         int running;            /* running status */
1041
1042         int last_external_sample_rate;  /* samplerate mystic ... */
1043         int last_internal_sample_rate;
1044         int system_sample_rate;
1045
1046         int dev;                /* Hardware vars... */
1047         int irq;
1048         unsigned long port;
1049         void __iomem *iobase;
1050
1051         int irq_count;          /* for debug */
1052         int midiPorts;
1053
1054         struct snd_card *card;  /* one card */
1055         struct snd_pcm *pcm;            /* has one pcm */
1056         struct snd_hwdep *hwdep;        /* and a hwdep for additional ioctl */
1057         struct pci_dev *pci;    /* and an pci info */
1058
1059         /* Mixer vars */
1060         /* fast alsa mixer */
1061         struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
1062         /* but input to much, so not used */
1063         struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
1064         /* full mixer accessible over mixer ioctl or hwdep-device */
1065         struct hdspm_mixer *mixer;
1066
1067         struct hdspm_tco *tco;  /* NULL if no TCO detected */
1068
1069         const char *const *texts_autosync;
1070         int texts_autosync_items;
1071
1072         cycles_t last_interrupt;
1073
1074         unsigned int serial;
1075
1076         struct hdspm_peak_rms peak_rms;
1077 };
1078
1079
1080 static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
1081         {
1082          .vendor = PCI_VENDOR_ID_XILINX,
1083          .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
1084          .subvendor = PCI_ANY_ID,
1085          .subdevice = PCI_ANY_ID,
1086          .class = 0,
1087          .class_mask = 0,
1088          .driver_data = 0},
1089         {0,}
1090 };
1091
1092 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
1093
1094 /* prototypes */
1095 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
1096                                          struct hdspm *hdspm);
1097 static int snd_hdspm_create_pcm(struct snd_card *card,
1098                                 struct hdspm *hdspm);
1099
1100 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
1101 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
1102 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
1103 static int hdspm_autosync_ref(struct hdspm *hdspm);
1104 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out);
1105 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
1106 static int hdspm_system_clock_mode(struct hdspm *hdspm);
1107 static void hdspm_set_sgbuf(struct hdspm *hdspm,
1108                             struct snd_pcm_substream *substream,
1109                              unsigned int reg, int channels);
1110
1111 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx);
1112 static int hdspm_wc_sync_check(struct hdspm *hdspm);
1113 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1114 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1115
1116 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index);
1117 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm);
1118 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm);
1119
1120
1121
1122 static inline int HDSPM_bit2freq(int n)
1123 {
1124         static const int bit2freq_tab[] = {
1125                 0, 32000, 44100, 48000, 64000, 88200,
1126                 96000, 128000, 176400, 192000 };
1127         if (n < 1 || n > 9)
1128                 return 0;
1129         return bit2freq_tab[n];
1130 }
1131
1132 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm)
1133 {
1134         return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type));
1135 }
1136
1137
1138 /* Write/read to/from HDSPM with Adresses in Bytes
1139    not words but only 32Bit writes are allowed */
1140
1141 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
1142                                unsigned int val)
1143 {
1144         writel(val, hdspm->iobase + reg);
1145 }
1146
1147 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1148 {
1149         return readl(hdspm->iobase + reg);
1150 }
1151
1152 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1153    mixer is write only on hardware so we have to cache him for read
1154    each fader is a u32, but uses only the first 16 bit */
1155
1156 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1157                                      unsigned int in)
1158 {
1159         if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1160                 return 0;
1161
1162         return hdspm->mixer->ch[chan].in[in];
1163 }
1164
1165 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1166                                      unsigned int pb)
1167 {
1168         if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1169                 return 0;
1170         return hdspm->mixer->ch[chan].pb[pb];
1171 }
1172
1173 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1174                                       unsigned int in, unsigned short data)
1175 {
1176         if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1177                 return -1;
1178
1179         hdspm_write(hdspm,
1180                     HDSPM_MADI_mixerBase +
1181                     ((in + 128 * chan) * sizeof(u32)),
1182                     (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1183         return 0;
1184 }
1185
1186 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1187                                       unsigned int pb, unsigned short data)
1188 {
1189         if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1190                 return -1;
1191
1192         hdspm_write(hdspm,
1193                     HDSPM_MADI_mixerBase +
1194                     ((64 + pb + 128 * chan) * sizeof(u32)),
1195                     (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1196         return 0;
1197 }
1198
1199
1200 /* enable DMA for specific channels, now available for DSP-MADI */
1201 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1202 {
1203         hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1204 }
1205
1206 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1207 {
1208         hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1209 }
1210
1211 /* check if same process is writing and reading */
1212 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1213 {
1214         unsigned long flags;
1215         int ret = 1;
1216
1217         spin_lock_irqsave(&hdspm->lock, flags);
1218         if ((hdspm->playback_pid != hdspm->capture_pid) &&
1219             (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1220                 ret = 0;
1221         }
1222         spin_unlock_irqrestore(&hdspm->lock, flags);
1223         return ret;
1224 }
1225
1226 /* round arbitary sample rates to commonly known rates */
1227 static int hdspm_round_frequency(int rate)
1228 {
1229         if (rate < 38050)
1230                 return 32000;
1231         if (rate < 46008)
1232                 return 44100;
1233         else
1234                 return 48000;
1235 }
1236
1237 /* QS and DS rates normally can not be detected
1238  * automatically by the card. Only exception is MADI
1239  * in 96k frame mode.
1240  *
1241  * So if we read SS values (32 .. 48k), check for
1242  * user-provided DS/QS bits in the control register
1243  * and multiply the base frequency accordingly.
1244  */
1245 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate)
1246 {
1247         if (rate <= 48000) {
1248                 if (hdspm->control_register & HDSPM_QuadSpeed)
1249                         return rate * 4;
1250                 else if (hdspm->control_register &
1251                                 HDSPM_DoubleSpeed)
1252                         return rate * 2;
1253         }
1254         return rate;
1255 }
1256
1257 /* check for external sample rate, returns the sample rate in Hz*/
1258 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1259 {
1260         unsigned int status, status2, timecode;
1261         int syncref, rate = 0, rate_bits;
1262
1263         switch (hdspm->io_type) {
1264         case AES32:
1265                 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1266                 status = hdspm_read(hdspm, HDSPM_statusRegister);
1267                 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
1268
1269                 syncref = hdspm_autosync_ref(hdspm);
1270                 switch (syncref) {
1271                 case HDSPM_AES32_AUTOSYNC_FROM_WORD:
1272                 /* Check WC sync and get sample rate */
1273                         if (hdspm_wc_sync_check(hdspm))
1274                                 return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm));
1275                         break;
1276
1277                 case HDSPM_AES32_AUTOSYNC_FROM_AES1:
1278                 case HDSPM_AES32_AUTOSYNC_FROM_AES2:
1279                 case HDSPM_AES32_AUTOSYNC_FROM_AES3:
1280                 case HDSPM_AES32_AUTOSYNC_FROM_AES4:
1281                 case HDSPM_AES32_AUTOSYNC_FROM_AES5:
1282                 case HDSPM_AES32_AUTOSYNC_FROM_AES6:
1283                 case HDSPM_AES32_AUTOSYNC_FROM_AES7:
1284                 case HDSPM_AES32_AUTOSYNC_FROM_AES8:
1285                 /* Check AES sync and get sample rate */
1286                         if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))
1287                                 return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm,
1288                                                         syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1));
1289                         break;
1290
1291
1292                 case HDSPM_AES32_AUTOSYNC_FROM_TCO:
1293                 /* Check TCO sync and get sample rate */
1294                         if (hdspm_tco_sync_check(hdspm))
1295                                 return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm));
1296                         break;
1297                 default:
1298                         return 0;
1299                 } /* end switch(syncref) */
1300                 break;
1301
1302         case MADIface:
1303                 status = hdspm_read(hdspm, HDSPM_statusRegister);
1304
1305                 if (!(status & HDSPM_madiLock)) {
1306                         rate = 0;  /* no lock */
1307                 } else {
1308                         switch (status & (HDSPM_status1_freqMask)) {
1309                         case HDSPM_status1_F_0*1:
1310                                 rate = 32000; break;
1311                         case HDSPM_status1_F_0*2:
1312                                 rate = 44100; break;
1313                         case HDSPM_status1_F_0*3:
1314                                 rate = 48000; break;
1315                         case HDSPM_status1_F_0*4:
1316                                 rate = 64000; break;
1317                         case HDSPM_status1_F_0*5:
1318                                 rate = 88200; break;
1319                         case HDSPM_status1_F_0*6:
1320                                 rate = 96000; break;
1321                         case HDSPM_status1_F_0*7:
1322                                 rate = 128000; break;
1323                         case HDSPM_status1_F_0*8:
1324                                 rate = 176400; break;
1325                         case HDSPM_status1_F_0*9:
1326                                 rate = 192000; break;
1327                         default:
1328                                 rate = 0; break;
1329                         }
1330                 }
1331
1332                 break;
1333
1334         case MADI:
1335         case AIO:
1336         case RayDAT:
1337                 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1338                 status = hdspm_read(hdspm, HDSPM_statusRegister);
1339                 rate = 0;
1340
1341                 /* if wordclock has synced freq and wordclock is valid */
1342                 if ((status2 & HDSPM_wcLock) != 0 &&
1343                                 (status2 & HDSPM_SelSyncRef0) == 0) {
1344
1345                         rate_bits = status2 & HDSPM_wcFreqMask;
1346
1347
1348                         switch (rate_bits) {
1349                         case HDSPM_wcFreq32:
1350                                 rate = 32000;
1351                                 break;
1352                         case HDSPM_wcFreq44_1:
1353                                 rate = 44100;
1354                                 break;
1355                         case HDSPM_wcFreq48:
1356                                 rate = 48000;
1357                                 break;
1358                         case HDSPM_wcFreq64:
1359                                 rate = 64000;
1360                                 break;
1361                         case HDSPM_wcFreq88_2:
1362                                 rate = 88200;
1363                                 break;
1364                         case HDSPM_wcFreq96:
1365                                 rate = 96000;
1366                                 break;
1367                         case HDSPM_wcFreq128:
1368                                 rate = 128000;
1369                                 break;
1370                         case HDSPM_wcFreq176_4:
1371                                 rate = 176400;
1372                                 break;
1373                         case HDSPM_wcFreq192:
1374                                 rate = 192000;
1375                                 break;
1376                         default:
1377                                 rate = 0;
1378                                 break;
1379                         }
1380                 }
1381
1382                 /* if rate detected and Syncref is Word than have it,
1383                  * word has priority to MADI
1384                  */
1385                 if (rate != 0 &&
1386                 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1387                         return hdspm_rate_multiplier(hdspm, rate);
1388
1389                 /* maybe a madi input (which is taken if sel sync is madi) */
1390                 if (status & HDSPM_madiLock) {
1391                         rate_bits = status & HDSPM_madiFreqMask;
1392
1393                         switch (rate_bits) {
1394                         case HDSPM_madiFreq32:
1395                                 rate = 32000;
1396                                 break;
1397                         case HDSPM_madiFreq44_1:
1398                                 rate = 44100;
1399                                 break;
1400                         case HDSPM_madiFreq48:
1401                                 rate = 48000;
1402                                 break;
1403                         case HDSPM_madiFreq64:
1404                                 rate = 64000;
1405                                 break;
1406                         case HDSPM_madiFreq88_2:
1407                                 rate = 88200;
1408                                 break;
1409                         case HDSPM_madiFreq96:
1410                                 rate = 96000;
1411                                 break;
1412                         case HDSPM_madiFreq128:
1413                                 rate = 128000;
1414                                 break;
1415                         case HDSPM_madiFreq176_4:
1416                                 rate = 176400;
1417                                 break;
1418                         case HDSPM_madiFreq192:
1419                                 rate = 192000;
1420                                 break;
1421                         default:
1422                                 rate = 0;
1423                                 break;
1424                         }
1425
1426                 } /* endif HDSPM_madiLock */
1427
1428                 /* check sample rate from TCO or SYNC_IN */
1429                 {
1430                         bool is_valid_input = 0;
1431                         bool has_sync = 0;
1432
1433                         syncref = hdspm_autosync_ref(hdspm);
1434                         if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1435                                 is_valid_input = 1;
1436                                 has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1437                                         hdspm_tco_sync_check(hdspm));
1438                         } else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1439                                 is_valid_input = 1;
1440                                 has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1441                                         hdspm_sync_in_sync_check(hdspm));
1442                         }
1443
1444                         if (is_valid_input && has_sync) {
1445                                 rate = hdspm_round_frequency(
1446                                         hdspm_get_pll_freq(hdspm));
1447                         }
1448                 }
1449
1450                 rate = hdspm_rate_multiplier(hdspm, rate);
1451
1452                 break;
1453         }
1454
1455         return rate;
1456 }
1457
1458 /* return latency in samples per period */
1459 static int hdspm_get_latency(struct hdspm *hdspm)
1460 {
1461         int n;
1462
1463         n = hdspm_decode_latency(hdspm->control_register);
1464
1465         /* Special case for new RME cards with 32 samples period size.
1466          * The three latency bits in the control register
1467          * (HDSP_LatencyMask) encode latency values of 64 samples as
1468          * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1469          * denotes 8192 samples, but on new cards like RayDAT or AIO,
1470          * it corresponds to 32 samples.
1471          */
1472         if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1473                 n = -1;
1474
1475         return 1 << (n + 6);
1476 }
1477
1478 /* Latency function */
1479 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1480 {
1481         hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1482 }
1483
1484
1485 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1486 {
1487         int position;
1488
1489         position = hdspm_read(hdspm, HDSPM_statusRegister);
1490
1491         switch (hdspm->io_type) {
1492         case RayDAT:
1493         case AIO:
1494                 position &= HDSPM_BufferPositionMask;
1495                 position /= 4; /* Bytes per sample */
1496                 break;
1497         default:
1498                 position = (position & HDSPM_BufferID) ?
1499                         (hdspm->period_bytes / 4) : 0;
1500         }
1501
1502         return position;
1503 }
1504
1505
1506 static inline void hdspm_start_audio(struct hdspm * s)
1507 {
1508         s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1509         hdspm_write(s, HDSPM_controlRegister, s->control_register);
1510 }
1511
1512 static inline void hdspm_stop_audio(struct hdspm * s)
1513 {
1514         s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1515         hdspm_write(s, HDSPM_controlRegister, s->control_register);
1516 }
1517
1518 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1519 static void hdspm_silence_playback(struct hdspm *hdspm)
1520 {
1521         int i;
1522         int n = hdspm->period_bytes;
1523         void *buf = hdspm->playback_buffer;
1524
1525         if (buf == NULL)
1526                 return;
1527
1528         for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1529                 memset(buf, 0, n);
1530                 buf += HDSPM_CHANNEL_BUFFER_BYTES;
1531         }
1532 }
1533
1534 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1535 {
1536         int n;
1537
1538         spin_lock_irq(&s->lock);
1539
1540         if (32 == frames) {
1541                 /* Special case for new RME cards like RayDAT/AIO which
1542                  * support period sizes of 32 samples. Since latency is
1543                  * encoded in the three bits of HDSP_LatencyMask, we can only
1544                  * have values from 0 .. 7. While 0 still means 64 samples and
1545                  * 6 represents 4096 samples on all cards, 7 represents 8192
1546                  * on older cards and 32 samples on new cards.
1547                  *
1548                  * In other words, period size in samples is calculated by
1549                  * 2^(n+6) with n ranging from 0 .. 7.
1550                  */
1551                 n = 7;
1552         } else {
1553                 frames >>= 7;
1554                 n = 0;
1555                 while (frames) {
1556                         n++;
1557                         frames >>= 1;
1558                 }
1559         }
1560
1561         s->control_register &= ~HDSPM_LatencyMask;
1562         s->control_register |= hdspm_encode_latency(n);
1563
1564         hdspm_write(s, HDSPM_controlRegister, s->control_register);
1565
1566         hdspm_compute_period_size(s);
1567
1568         spin_unlock_irq(&s->lock);
1569
1570         return 0;
1571 }
1572
1573 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1574 {
1575         u64 freq_const;
1576
1577         if (period == 0)
1578                 return 0;
1579
1580         switch (hdspm->io_type) {
1581         case MADI:
1582         case AES32:
1583                 freq_const = 110069313433624ULL;
1584                 break;
1585         case RayDAT:
1586         case AIO:
1587                 freq_const = 104857600000000ULL;
1588                 break;
1589         case MADIface:
1590                 freq_const = 131072000000000ULL;
1591                 break;
1592         default:
1593                 snd_BUG();
1594                 return 0;
1595         }
1596
1597         return div_u64(freq_const, period);
1598 }
1599
1600
1601 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1602 {
1603         u64 n;
1604
1605         if (rate >= 112000)
1606                 rate /= 4;
1607         else if (rate >= 56000)
1608                 rate /= 2;
1609
1610         switch (hdspm->io_type) {
1611         case MADIface:
1612                 n = 131072000000000ULL;  /* 125 MHz */
1613                 break;
1614         case MADI:
1615         case AES32:
1616                 n = 110069313433624ULL;  /* 105 MHz */
1617                 break;
1618         case RayDAT:
1619         case AIO:
1620                 n = 104857600000000ULL;  /* 100 MHz */
1621                 break;
1622         default:
1623                 snd_BUG();
1624                 return;
1625         }
1626
1627         n = div_u64(n, rate);
1628         /* n should be less than 2^32 for being written to FREQ register */
1629         snd_BUG_ON(n >> 32);
1630         hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1631 }
1632
1633 /* dummy set rate lets see what happens */
1634 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1635 {
1636         int current_rate;
1637         int rate_bits;
1638         int not_set = 0;
1639         int current_speed, target_speed;
1640
1641         /* ASSUMPTION: hdspm->lock is either set, or there is no need for
1642            it (e.g. during module initialization).
1643          */
1644
1645         if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1646
1647                 /* SLAVE --- */
1648                 if (called_internally) {
1649
1650                         /* request from ctl or card initialization
1651                            just make a warning an remember setting
1652                            for future master mode switching */
1653
1654                         snd_printk(KERN_WARNING "HDSPM: "
1655                                    "Warning: device is not running "
1656                                    "as a clock master.\n");
1657                         not_set = 1;
1658                 } else {
1659
1660                         /* hw_param request while in AutoSync mode */
1661                         int external_freq =
1662                             hdspm_external_sample_rate(hdspm);
1663
1664                         if (hdspm_autosync_ref(hdspm) ==
1665                             HDSPM_AUTOSYNC_FROM_NONE) {
1666
1667                                 snd_printk(KERN_WARNING "HDSPM: "
1668                                            "Detected no Externel Sync \n");
1669                                 not_set = 1;
1670
1671                         } else if (rate != external_freq) {
1672
1673                                 snd_printk(KERN_WARNING "HDSPM: "
1674                                            "Warning: No AutoSync source for "
1675                                            "requested rate\n");
1676                                 not_set = 1;
1677                         }
1678                 }
1679         }
1680
1681         current_rate = hdspm->system_sample_rate;
1682
1683         /* Changing between Singe, Double and Quad speed is not
1684            allowed if any substreams are open. This is because such a change
1685            causes a shift in the location of the DMA buffers and a reduction
1686            in the number of available buffers.
1687
1688            Note that a similar but essentially insoluble problem exists for
1689            externally-driven rate changes. All we can do is to flag rate
1690            changes in the read/write routines.
1691          */
1692
1693         if (current_rate <= 48000)
1694                 current_speed = HDSPM_SPEED_SINGLE;
1695         else if (current_rate <= 96000)
1696                 current_speed = HDSPM_SPEED_DOUBLE;
1697         else
1698                 current_speed = HDSPM_SPEED_QUAD;
1699
1700         if (rate <= 48000)
1701                 target_speed = HDSPM_SPEED_SINGLE;
1702         else if (rate <= 96000)
1703                 target_speed = HDSPM_SPEED_DOUBLE;
1704         else
1705                 target_speed = HDSPM_SPEED_QUAD;
1706
1707         switch (rate) {
1708         case 32000:
1709                 rate_bits = HDSPM_Frequency32KHz;
1710                 break;
1711         case 44100:
1712                 rate_bits = HDSPM_Frequency44_1KHz;
1713                 break;
1714         case 48000:
1715                 rate_bits = HDSPM_Frequency48KHz;
1716                 break;
1717         case 64000:
1718                 rate_bits = HDSPM_Frequency64KHz;
1719                 break;
1720         case 88200:
1721                 rate_bits = HDSPM_Frequency88_2KHz;
1722                 break;
1723         case 96000:
1724                 rate_bits = HDSPM_Frequency96KHz;
1725                 break;
1726         case 128000:
1727                 rate_bits = HDSPM_Frequency128KHz;
1728                 break;
1729         case 176400:
1730                 rate_bits = HDSPM_Frequency176_4KHz;
1731                 break;
1732         case 192000:
1733                 rate_bits = HDSPM_Frequency192KHz;
1734                 break;
1735         default:
1736                 return -EINVAL;
1737         }
1738
1739         if (current_speed != target_speed
1740             && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1741                 snd_printk
1742                     (KERN_ERR "HDSPM: "
1743                      "cannot change from %s speed to %s speed mode "
1744                      "(capture PID = %d, playback PID = %d)\n",
1745                      hdspm_speed_names[current_speed],
1746                      hdspm_speed_names[target_speed],
1747                      hdspm->capture_pid, hdspm->playback_pid);
1748                 return -EBUSY;
1749         }
1750
1751         hdspm->control_register &= ~HDSPM_FrequencyMask;
1752         hdspm->control_register |= rate_bits;
1753         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1754
1755         /* For AES32, need to set DDS value in FREQ register
1756            For MADI, also apparently */
1757         hdspm_set_dds_value(hdspm, rate);
1758
1759         if (AES32 == hdspm->io_type && rate != current_rate)
1760                 hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1761
1762         hdspm->system_sample_rate = rate;
1763
1764         if (rate <= 48000) {
1765                 hdspm->channel_map_in = hdspm->channel_map_in_ss;
1766                 hdspm->channel_map_out = hdspm->channel_map_out_ss;
1767                 hdspm->max_channels_in = hdspm->ss_in_channels;
1768                 hdspm->max_channels_out = hdspm->ss_out_channels;
1769                 hdspm->port_names_in = hdspm->port_names_in_ss;
1770                 hdspm->port_names_out = hdspm->port_names_out_ss;
1771         } else if (rate <= 96000) {
1772                 hdspm->channel_map_in = hdspm->channel_map_in_ds;
1773                 hdspm->channel_map_out = hdspm->channel_map_out_ds;
1774                 hdspm->max_channels_in = hdspm->ds_in_channels;
1775                 hdspm->max_channels_out = hdspm->ds_out_channels;
1776                 hdspm->port_names_in = hdspm->port_names_in_ds;
1777                 hdspm->port_names_out = hdspm->port_names_out_ds;
1778         } else {
1779                 hdspm->channel_map_in = hdspm->channel_map_in_qs;
1780                 hdspm->channel_map_out = hdspm->channel_map_out_qs;
1781                 hdspm->max_channels_in = hdspm->qs_in_channels;
1782                 hdspm->max_channels_out = hdspm->qs_out_channels;
1783                 hdspm->port_names_in = hdspm->port_names_in_qs;
1784                 hdspm->port_names_out = hdspm->port_names_out_qs;
1785         }
1786
1787         if (not_set != 0)
1788                 return -1;
1789
1790         return 0;
1791 }
1792
1793 /* mainly for init to 0 on load */
1794 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1795 {
1796         int i, j;
1797         unsigned int gain;
1798
1799         if (sgain > UNITY_GAIN)
1800                 gain = UNITY_GAIN;
1801         else if (sgain < 0)
1802                 gain = 0;
1803         else
1804                 gain = sgain;
1805
1806         for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1807                 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1808                         hdspm_write_in_gain(hdspm, i, j, gain);
1809                         hdspm_write_pb_gain(hdspm, i, j, gain);
1810                 }
1811 }
1812
1813 /*----------------------------------------------------------------------------
1814    MIDI
1815   ----------------------------------------------------------------------------*/
1816
1817 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1818                                                       int id)
1819 {
1820         /* the hardware already does the relevant bit-mask with 0xff */
1821         return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1822 }
1823
1824 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1825                                               int val)
1826 {
1827         /* the hardware already does the relevant bit-mask with 0xff */
1828         return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1829 }
1830
1831 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1832 {
1833         return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1834 }
1835
1836 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1837 {
1838         int fifo_bytes_used;
1839
1840         fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1841
1842         if (fifo_bytes_used < 128)
1843                 return  128 - fifo_bytes_used;
1844         else
1845                 return 0;
1846 }
1847
1848 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1849 {
1850         while (snd_hdspm_midi_input_available (hdspm, id))
1851                 snd_hdspm_midi_read_byte (hdspm, id);
1852 }
1853
1854 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1855 {
1856         unsigned long flags;
1857         int n_pending;
1858         int to_write;
1859         int i;
1860         unsigned char buf[128];
1861
1862         /* Output is not interrupt driven */
1863
1864         spin_lock_irqsave (&hmidi->lock, flags);
1865         if (hmidi->output &&
1866             !snd_rawmidi_transmit_empty (hmidi->output)) {
1867                 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1868                                                             hmidi->id);
1869                 if (n_pending > 0) {
1870                         if (n_pending > (int)sizeof (buf))
1871                                 n_pending = sizeof (buf);
1872
1873                         to_write = snd_rawmidi_transmit (hmidi->output, buf,
1874                                                          n_pending);
1875                         if (to_write > 0) {
1876                                 for (i = 0; i < to_write; ++i)
1877                                         snd_hdspm_midi_write_byte (hmidi->hdspm,
1878                                                                    hmidi->id,
1879                                                                    buf[i]);
1880                         }
1881                 }
1882         }
1883         spin_unlock_irqrestore (&hmidi->lock, flags);
1884         return 0;
1885 }
1886
1887 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1888 {
1889         unsigned char buf[128]; /* this buffer is designed to match the MIDI
1890                                  * input FIFO size
1891                                  */
1892         unsigned long flags;
1893         int n_pending;
1894         int i;
1895
1896         spin_lock_irqsave (&hmidi->lock, flags);
1897         n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1898         if (n_pending > 0) {
1899                 if (hmidi->input) {
1900                         if (n_pending > (int)sizeof (buf))
1901                                 n_pending = sizeof (buf);
1902                         for (i = 0; i < n_pending; ++i)
1903                                 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1904                                                                    hmidi->id);
1905                         if (n_pending)
1906                                 snd_rawmidi_receive (hmidi->input, buf,
1907                                                      n_pending);
1908                 } else {
1909                         /* flush the MIDI input FIFO */
1910                         while (n_pending--)
1911                                 snd_hdspm_midi_read_byte (hmidi->hdspm,
1912                                                           hmidi->id);
1913                 }
1914         }
1915         hmidi->pending = 0;
1916         spin_unlock_irqrestore(&hmidi->lock, flags);
1917
1918         spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1919         hmidi->hdspm->control_register |= hmidi->ie;
1920         hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1921                     hmidi->hdspm->control_register);
1922         spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1923
1924         return snd_hdspm_midi_output_write (hmidi);
1925 }
1926
1927 static void
1928 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1929 {
1930         struct hdspm *hdspm;
1931         struct hdspm_midi *hmidi;
1932         unsigned long flags;
1933
1934         hmidi = substream->rmidi->private_data;
1935         hdspm = hmidi->hdspm;
1936
1937         spin_lock_irqsave (&hdspm->lock, flags);
1938         if (up) {
1939                 if (!(hdspm->control_register & hmidi->ie)) {
1940                         snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1941                         hdspm->control_register |= hmidi->ie;
1942                 }
1943         } else {
1944                 hdspm->control_register &= ~hmidi->ie;
1945         }
1946
1947         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1948         spin_unlock_irqrestore (&hdspm->lock, flags);
1949 }
1950
1951 static void snd_hdspm_midi_output_timer(unsigned long data)
1952 {
1953         struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1954         unsigned long flags;
1955
1956         snd_hdspm_midi_output_write(hmidi);
1957         spin_lock_irqsave (&hmidi->lock, flags);
1958
1959         /* this does not bump hmidi->istimer, because the
1960            kernel automatically removed the timer when it
1961            expired, and we are now adding it back, thus
1962            leaving istimer wherever it was set before.
1963         */
1964
1965         if (hmidi->istimer) {
1966                 hmidi->timer.expires = 1 + jiffies;
1967                 add_timer(&hmidi->timer);
1968         }
1969
1970         spin_unlock_irqrestore (&hmidi->lock, flags);
1971 }
1972
1973 static void
1974 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1975 {
1976         struct hdspm_midi *hmidi;
1977         unsigned long flags;
1978
1979         hmidi = substream->rmidi->private_data;
1980         spin_lock_irqsave (&hmidi->lock, flags);
1981         if (up) {
1982                 if (!hmidi->istimer) {
1983                         init_timer(&hmidi->timer);
1984                         hmidi->timer.function = snd_hdspm_midi_output_timer;
1985                         hmidi->timer.data = (unsigned long) hmidi;
1986                         hmidi->timer.expires = 1 + jiffies;
1987                         add_timer(&hmidi->timer);
1988                         hmidi->istimer++;
1989                 }
1990         } else {
1991                 if (hmidi->istimer && --hmidi->istimer <= 0)
1992                         del_timer (&hmidi->timer);
1993         }
1994         spin_unlock_irqrestore (&hmidi->lock, flags);
1995         if (up)
1996                 snd_hdspm_midi_output_write(hmidi);
1997 }
1998
1999 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
2000 {
2001         struct hdspm_midi *hmidi;
2002
2003         hmidi = substream->rmidi->private_data;
2004         spin_lock_irq (&hmidi->lock);
2005         snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
2006         hmidi->input = substream;
2007         spin_unlock_irq (&hmidi->lock);
2008
2009         return 0;
2010 }
2011
2012 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
2013 {
2014         struct hdspm_midi *hmidi;
2015
2016         hmidi = substream->rmidi->private_data;
2017         spin_lock_irq (&hmidi->lock);
2018         hmidi->output = substream;
2019         spin_unlock_irq (&hmidi->lock);
2020
2021         return 0;
2022 }
2023
2024 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
2025 {
2026         struct hdspm_midi *hmidi;
2027
2028         snd_hdspm_midi_input_trigger (substream, 0);
2029
2030         hmidi = substream->rmidi->private_data;
2031         spin_lock_irq (&hmidi->lock);
2032         hmidi->input = NULL;
2033         spin_unlock_irq (&hmidi->lock);
2034
2035         return 0;
2036 }
2037
2038 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
2039 {
2040         struct hdspm_midi *hmidi;
2041
2042         snd_hdspm_midi_output_trigger (substream, 0);
2043
2044         hmidi = substream->rmidi->private_data;
2045         spin_lock_irq (&hmidi->lock);
2046         hmidi->output = NULL;
2047         spin_unlock_irq (&hmidi->lock);
2048
2049         return 0;
2050 }
2051
2052 static struct snd_rawmidi_ops snd_hdspm_midi_output =
2053 {
2054         .open =         snd_hdspm_midi_output_open,
2055         .close =        snd_hdspm_midi_output_close,
2056         .trigger =      snd_hdspm_midi_output_trigger,
2057 };
2058
2059 static struct snd_rawmidi_ops snd_hdspm_midi_input =
2060 {
2061         .open =         snd_hdspm_midi_input_open,
2062         .close =        snd_hdspm_midi_input_close,
2063         .trigger =      snd_hdspm_midi_input_trigger,
2064 };
2065
2066 static int snd_hdspm_create_midi(struct snd_card *card,
2067                                  struct hdspm *hdspm, int id)
2068 {
2069         int err;
2070         char buf[32];
2071
2072         hdspm->midi[id].id = id;
2073         hdspm->midi[id].hdspm = hdspm;
2074         spin_lock_init (&hdspm->midi[id].lock);
2075
2076         if (0 == id) {
2077                 if (MADIface == hdspm->io_type) {
2078                         /* MIDI-over-MADI on HDSPe MADIface */
2079                         hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
2080                         hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
2081                         hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
2082                         hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
2083                         hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
2084                         hdspm->midi[0].irq = HDSPM_midi2IRQPending;
2085                 } else {
2086                         hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
2087                         hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
2088                         hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
2089                         hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
2090                         hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
2091                         hdspm->midi[0].irq = HDSPM_midi0IRQPending;
2092                 }
2093         } else if (1 == id) {
2094                 hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
2095                 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
2096                 hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
2097                 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
2098                 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
2099                 hdspm->midi[1].irq = HDSPM_midi1IRQPending;
2100         } else if ((2 == id) && (MADI == hdspm->io_type)) {
2101                 /* MIDI-over-MADI on HDSPe MADI */
2102                 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2103                 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2104                 hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
2105                 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
2106                 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2107                 hdspm->midi[2].irq = HDSPM_midi2IRQPending;
2108         } else if (2 == id) {
2109                 /* TCO MTC, read only */
2110                 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2111                 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2112                 hdspm->midi[2].dataOut = -1;
2113                 hdspm->midi[2].statusOut = -1;
2114                 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2115                 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
2116         } else if (3 == id) {
2117                 /* TCO MTC on HDSPe MADI */
2118                 hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
2119                 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
2120                 hdspm->midi[3].dataOut = -1;
2121                 hdspm->midi[3].statusOut = -1;
2122                 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
2123                 hdspm->midi[3].irq = HDSPM_midi3IRQPending;
2124         }
2125
2126         if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
2127                                         (MADIface == hdspm->io_type)))) {
2128                 if ((id == 0) && (MADIface == hdspm->io_type)) {
2129                         sprintf(buf, "%s MIDIoverMADI", card->shortname);
2130                 } else if ((id == 2) && (MADI == hdspm->io_type)) {
2131                         sprintf(buf, "%s MIDIoverMADI", card->shortname);
2132                 } else {
2133                         sprintf(buf, "%s MIDI %d", card->shortname, id+1);
2134                 }
2135                 err = snd_rawmidi_new(card, buf, id, 1, 1,
2136                                 &hdspm->midi[id].rmidi);
2137                 if (err < 0)
2138                         return err;
2139
2140                 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
2141                                 card->id, id+1);
2142                 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2143
2144                 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2145                                 SNDRV_RAWMIDI_STREAM_OUTPUT,
2146                                 &snd_hdspm_midi_output);
2147                 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2148                                 SNDRV_RAWMIDI_STREAM_INPUT,
2149                                 &snd_hdspm_midi_input);
2150
2151                 hdspm->midi[id].rmidi->info_flags |=
2152                         SNDRV_RAWMIDI_INFO_OUTPUT |
2153                         SNDRV_RAWMIDI_INFO_INPUT |
2154                         SNDRV_RAWMIDI_INFO_DUPLEX;
2155         } else {
2156                 /* TCO MTC, read only */
2157                 sprintf(buf, "%s MTC %d", card->shortname, id+1);
2158                 err = snd_rawmidi_new(card, buf, id, 1, 1,
2159                                 &hdspm->midi[id].rmidi);
2160                 if (err < 0)
2161                         return err;
2162
2163                 sprintf(hdspm->midi[id].rmidi->name,
2164                                 "%s MTC %d", card->id, id+1);
2165                 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2166
2167                 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2168                                 SNDRV_RAWMIDI_STREAM_INPUT,
2169                                 &snd_hdspm_midi_input);
2170
2171                 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
2172         }
2173
2174         return 0;
2175 }
2176
2177
2178 static void hdspm_midi_tasklet(unsigned long arg)
2179 {
2180         struct hdspm *hdspm = (struct hdspm *)arg;
2181         int i = 0;
2182
2183         while (i < hdspm->midiPorts) {
2184                 if (hdspm->midi[i].pending)
2185                         snd_hdspm_midi_input_read(&hdspm->midi[i]);
2186
2187                 i++;
2188         }
2189 }
2190
2191
2192 /*-----------------------------------------------------------------------------
2193   Status Interface
2194   ----------------------------------------------------------------------------*/
2195
2196 /* get the system sample rate which is set */
2197
2198
2199 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2200 {
2201         unsigned int period, rate;
2202
2203         period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2204         rate = hdspm_calc_dds_value(hdspm, period);
2205
2206         return rate;
2207 }
2208
2209 /**
2210  * Calculate the real sample rate from the
2211  * current DDS value.
2212  **/
2213 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2214 {
2215         unsigned int rate;
2216
2217         rate = hdspm_get_pll_freq(hdspm);
2218
2219         if (rate > 207000) {
2220                 /* Unreasonable high sample rate as seen on PCI MADI cards. */
2221                 if (0 == hdspm_system_clock_mode(hdspm)) {
2222                         /* master mode, return internal sample rate */
2223                         rate = hdspm->system_sample_rate;
2224                 } else {
2225                         /* slave mode, return external sample rate */
2226                         rate = hdspm_external_sample_rate(hdspm);
2227                 }
2228         }
2229
2230         return rate;
2231 }
2232
2233
2234 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2235 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2236         .name = xname, \
2237         .index = xindex, \
2238         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2239                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2240         .info = snd_hdspm_info_system_sample_rate, \
2241         .put = snd_hdspm_put_system_sample_rate, \
2242         .get = snd_hdspm_get_system_sample_rate \
2243 }
2244
2245 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2246                                              struct snd_ctl_elem_info *uinfo)
2247 {
2248         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2249         uinfo->count = 1;
2250         uinfo->value.integer.min = 27000;
2251         uinfo->value.integer.max = 207000;
2252         uinfo->value.integer.step = 1;
2253         return 0;
2254 }
2255
2256
2257 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2258                                             struct snd_ctl_elem_value *
2259                                             ucontrol)
2260 {
2261         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2262
2263         ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2264         return 0;
2265 }
2266
2267 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2268                                             struct snd_ctl_elem_value *
2269                                             ucontrol)
2270 {
2271         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2272
2273         hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]);
2274         return 0;
2275 }
2276
2277
2278 /**
2279  * Returns the WordClock sample rate class for the given card.
2280  **/
2281 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2282 {
2283         int status;
2284
2285         switch (hdspm->io_type) {
2286         case RayDAT:
2287         case AIO:
2288                 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2289                 return (status >> 16) & 0xF;
2290                 break;
2291         case AES32:
2292                 status = hdspm_read(hdspm, HDSPM_statusRegister);
2293                 return (status >> HDSPM_AES32_wcFreq_bit) & 0xF;
2294         default:
2295                 break;
2296         }
2297
2298
2299         return 0;
2300 }
2301
2302
2303 /**
2304  * Returns the TCO sample rate class for the given card.
2305  **/
2306 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2307 {
2308         int status;
2309
2310         if (hdspm->tco) {
2311                 switch (hdspm->io_type) {
2312                 case RayDAT:
2313                 case AIO:
2314                         status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2315                         return (status >> 20) & 0xF;
2316                         break;
2317                 case AES32:
2318                         status = hdspm_read(hdspm, HDSPM_statusRegister);
2319                         return (status >> 1) & 0xF;
2320                 default:
2321                         break;
2322                 }
2323         }
2324
2325         return 0;
2326 }
2327
2328
2329 /**
2330  * Returns the SYNC_IN sample rate class for the given card.
2331  **/
2332 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2333 {
2334         int status;
2335
2336         if (hdspm->tco) {
2337                 switch (hdspm->io_type) {
2338                 case RayDAT:
2339                 case AIO:
2340                         status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2341                         return (status >> 12) & 0xF;
2342                         break;
2343                 default:
2344                         break;
2345                 }
2346         }
2347
2348         return 0;
2349 }
2350
2351 /**
2352  * Returns the AES sample rate class for the given card.
2353  **/
2354 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index)
2355 {
2356         int timecode;
2357
2358         switch (hdspm->io_type) {
2359         case AES32:
2360                 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
2361                 return (timecode >> (4*index)) & 0xF;
2362                 break;
2363         default:
2364                 break;
2365         }
2366         return 0;
2367 }
2368
2369 /**
2370  * Returns the sample rate class for input source <idx> for
2371  * 'new style' cards like the AIO and RayDAT.
2372  **/
2373 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2374 {
2375         int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2376
2377         return (status >> (idx*4)) & 0xF;
2378 }
2379
2380 #define ENUMERATED_CTL_INFO(info, texts) \
2381         snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts)
2382
2383
2384 /* Helper function to query the external sample rate and return the
2385  * corresponding enum to be returned to userspace.
2386  */
2387 static int hdspm_external_rate_to_enum(struct hdspm *hdspm)
2388 {
2389         int rate = hdspm_external_sample_rate(hdspm);
2390         int i, selected_rate = 0;
2391         for (i = 1; i < 10; i++)
2392                 if (HDSPM_bit2freq(i) == rate) {
2393                         selected_rate = i;
2394                         break;
2395                 }
2396         return selected_rate;
2397 }
2398
2399
2400 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2401 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2402         .name = xname, \
2403         .private_value = xindex, \
2404         .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2405         .info = snd_hdspm_info_autosync_sample_rate, \
2406         .get = snd_hdspm_get_autosync_sample_rate \
2407 }
2408
2409
2410 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2411                                                struct snd_ctl_elem_info *uinfo)
2412 {
2413         ENUMERATED_CTL_INFO(uinfo, texts_freq);
2414         return 0;
2415 }
2416
2417
2418 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2419                                               struct snd_ctl_elem_value *
2420                                               ucontrol)
2421 {
2422         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2423
2424         switch (hdspm->io_type) {
2425         case RayDAT:
2426                 switch (kcontrol->private_value) {
2427                 case 0:
2428                         ucontrol->value.enumerated.item[0] =
2429                                 hdspm_get_wc_sample_rate(hdspm);
2430                         break;
2431                 case 7:
2432                         ucontrol->value.enumerated.item[0] =
2433                                 hdspm_get_tco_sample_rate(hdspm);
2434                         break;
2435                 case 8:
2436                         ucontrol->value.enumerated.item[0] =
2437                                 hdspm_get_sync_in_sample_rate(hdspm);
2438                         break;
2439                 default:
2440                         ucontrol->value.enumerated.item[0] =
2441                                 hdspm_get_s1_sample_rate(hdspm,
2442                                                 kcontrol->private_value-1);
2443                 }
2444                 break;
2445
2446         case AIO:
2447                 switch (kcontrol->private_value) {
2448                 case 0: /* WC */
2449                         ucontrol->value.enumerated.item[0] =
2450                                 hdspm_get_wc_sample_rate(hdspm);
2451                         break;
2452                 case 4: /* TCO */
2453                         ucontrol->value.enumerated.item[0] =
2454                                 hdspm_get_tco_sample_rate(hdspm);
2455                         break;
2456                 case 5: /* SYNC_IN */
2457                         ucontrol->value.enumerated.item[0] =
2458                                 hdspm_get_sync_in_sample_rate(hdspm);
2459                         break;
2460                 default:
2461                         ucontrol->value.enumerated.item[0] =
2462                                 hdspm_get_s1_sample_rate(hdspm,
2463                                                 kcontrol->private_value-1);
2464                 }
2465                 break;
2466
2467         case AES32:
2468
2469                 switch (kcontrol->private_value) {
2470                 case 0: /* WC */
2471                         ucontrol->value.enumerated.item[0] =
2472                                 hdspm_get_wc_sample_rate(hdspm);
2473                         break;
2474                 case 9: /* TCO */
2475                         ucontrol->value.enumerated.item[0] =
2476                                 hdspm_get_tco_sample_rate(hdspm);
2477                         break;
2478                 case 10: /* SYNC_IN */
2479                         ucontrol->value.enumerated.item[0] =
2480                                 hdspm_get_sync_in_sample_rate(hdspm);
2481                         break;
2482                 case 11: /* External Rate */
2483                         ucontrol->value.enumerated.item[0] =
2484                                 hdspm_external_rate_to_enum(hdspm);
2485                         break;
2486                 default: /* AES1 to AES8 */
2487                         ucontrol->value.enumerated.item[0] =
2488                                 hdspm_get_aes_sample_rate(hdspm,
2489                                                 kcontrol->private_value -
2490                                                 HDSPM_AES32_AUTOSYNC_FROM_AES1);
2491                         break;
2492                 }
2493                 break;
2494
2495         case MADI:
2496         case MADIface:
2497                 ucontrol->value.enumerated.item[0] =
2498                         hdspm_external_rate_to_enum(hdspm);
2499                 break;
2500         default:
2501                 break;
2502         }
2503
2504         return 0;
2505 }
2506
2507
2508 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2509 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2510         .name = xname, \
2511         .index = xindex, \
2512         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2513                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2514         .info = snd_hdspm_info_system_clock_mode, \
2515         .get = snd_hdspm_get_system_clock_mode, \
2516         .put = snd_hdspm_put_system_clock_mode, \
2517 }
2518
2519
2520 /**
2521  * Returns the system clock mode for the given card.
2522  * @returns 0 - master, 1 - slave
2523  **/
2524 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2525 {
2526         switch (hdspm->io_type) {
2527         case AIO:
2528         case RayDAT:
2529                 if (hdspm->settings_register & HDSPM_c0Master)
2530                         return 0;
2531                 break;
2532
2533         default:
2534                 if (hdspm->control_register & HDSPM_ClockModeMaster)
2535                         return 0;
2536         }
2537
2538         return 1;
2539 }
2540
2541
2542 /**
2543  * Sets the system clock mode.
2544  * @param mode 0 - master, 1 - slave
2545  **/
2546 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2547 {
2548         hdspm_set_toggle_setting(hdspm,
2549                         (hdspm_is_raydat_or_aio(hdspm)) ?
2550                         HDSPM_c0Master : HDSPM_ClockModeMaster,
2551                         (0 == mode));
2552 }
2553
2554
2555 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2556                                             struct snd_ctl_elem_info *uinfo)
2557 {
2558         static const char *const texts[] = { "Master", "AutoSync" };
2559         ENUMERATED_CTL_INFO(uinfo, texts);
2560         return 0;
2561 }
2562
2563 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2564                                            struct snd_ctl_elem_value *ucontrol)
2565 {
2566         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2567
2568         ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2569         return 0;
2570 }
2571
2572 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2573                                            struct snd_ctl_elem_value *ucontrol)
2574 {
2575         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2576         int val;
2577
2578         if (!snd_hdspm_use_is_exclusive(hdspm))
2579                 return -EBUSY;
2580
2581         val = ucontrol->value.enumerated.item[0];
2582         if (val < 0)
2583                 val = 0;
2584         else if (val > 1)
2585                 val = 1;
2586
2587         hdspm_set_system_clock_mode(hdspm, val);
2588
2589         return 0;
2590 }
2591
2592
2593 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2594 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2595         .name = xname, \
2596         .index = xindex, \
2597         .info = snd_hdspm_info_clock_source, \
2598         .get = snd_hdspm_get_clock_source, \
2599         .put = snd_hdspm_put_clock_source \
2600 }
2601
2602
2603 static int hdspm_clock_source(struct hdspm * hdspm)
2604 {
2605         switch (hdspm->system_sample_rate) {
2606         case 32000: return 0;
2607         case 44100: return 1;
2608         case 48000: return 2;
2609         case 64000: return 3;
2610         case 88200: return 4;
2611         case 96000: return 5;
2612         case 128000: return 6;
2613         case 176400: return 7;
2614         case 192000: return 8;
2615         }
2616
2617         return -1;
2618 }
2619
2620 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2621 {
2622         int rate;
2623         switch (mode) {
2624         case 0:
2625                 rate = 32000; break;
2626         case 1:
2627                 rate = 44100; break;
2628         case 2:
2629                 rate = 48000; break;
2630         case 3:
2631                 rate = 64000; break;
2632         case 4:
2633                 rate = 88200; break;
2634         case 5:
2635                 rate = 96000; break;
2636         case 6:
2637                 rate = 128000; break;
2638         case 7:
2639                 rate = 176400; break;
2640         case 8:
2641                 rate = 192000; break;
2642         default:
2643                 rate = 48000;
2644         }
2645         hdspm_set_rate(hdspm, rate, 1);
2646         return 0;
2647 }
2648
2649 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2650                                        struct snd_ctl_elem_info *uinfo)
2651 {
2652         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2653         uinfo->count = 1;
2654         uinfo->value.enumerated.items = 9;
2655
2656         if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2657                 uinfo->value.enumerated.item =
2658                     uinfo->value.enumerated.items - 1;
2659
2660         strcpy(uinfo->value.enumerated.name,
2661                texts_freq[uinfo->value.enumerated.item+1]);
2662
2663         return 0;
2664 }
2665
2666 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2667                                       struct snd_ctl_elem_value *ucontrol)
2668 {
2669         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2670
2671         ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2672         return 0;
2673 }
2674
2675 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2676                                       struct snd_ctl_elem_value *ucontrol)
2677 {
2678         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2679         int change;
2680         int val;
2681
2682         if (!snd_hdspm_use_is_exclusive(hdspm))
2683                 return -EBUSY;
2684         val = ucontrol->value.enumerated.item[0];
2685         if (val < 0)
2686                 val = 0;
2687         if (val > 9)
2688                 val = 9;
2689         spin_lock_irq(&hdspm->lock);
2690         if (val != hdspm_clock_source(hdspm))
2691                 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2692         else
2693                 change = 0;
2694         spin_unlock_irq(&hdspm->lock);
2695         return change;
2696 }
2697
2698
2699 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2700 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2701         .name = xname, \
2702         .index = xindex, \
2703         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2704                         SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2705         .info = snd_hdspm_info_pref_sync_ref, \
2706         .get = snd_hdspm_get_pref_sync_ref, \
2707         .put = snd_hdspm_put_pref_sync_ref \
2708 }
2709
2710
2711 /**
2712  * Returns the current preferred sync reference setting.
2713  * The semantics of the return value are depending on the
2714  * card, please see the comments for clarification.
2715  **/
2716 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2717 {
2718         switch (hdspm->io_type) {
2719         case AES32:
2720                 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2721                 case 0: return 0;  /* WC */
2722                 case HDSPM_SyncRef0: return 1; /* AES 1 */
2723                 case HDSPM_SyncRef1: return 2; /* AES 2 */
2724                 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2725                 case HDSPM_SyncRef2: return 4; /* AES 4 */
2726                 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2727                 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2728                 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2729                                                     return 7; /* AES 7 */
2730                 case HDSPM_SyncRef3: return 8; /* AES 8 */
2731                 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2732                 }
2733                 break;
2734
2735         case MADI:
2736         case MADIface:
2737                 if (hdspm->tco) {
2738                         switch (hdspm->control_register & HDSPM_SyncRefMask) {
2739                         case 0: return 0;  /* WC */
2740                         case HDSPM_SyncRef0: return 1;  /* MADI */
2741                         case HDSPM_SyncRef1: return 2;  /* TCO */
2742                         case HDSPM_SyncRef1+HDSPM_SyncRef0:
2743                                              return 3;  /* SYNC_IN */
2744                         }
2745                 } else {
2746                         switch (hdspm->control_register & HDSPM_SyncRefMask) {
2747                         case 0: return 0;  /* WC */
2748                         case HDSPM_SyncRef0: return 1;  /* MADI */
2749                         case HDSPM_SyncRef1+HDSPM_SyncRef0:
2750                                              return 2;  /* SYNC_IN */
2751                         }
2752                 }
2753                 break;
2754
2755         case RayDAT:
2756                 if (hdspm->tco) {
2757                         switch ((hdspm->settings_register &
2758                                 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2759                         case 0: return 0;  /* WC */
2760                         case 3: return 1;  /* ADAT 1 */
2761                         case 4: return 2;  /* ADAT 2 */
2762                         case 5: return 3;  /* ADAT 3 */
2763                         case 6: return 4;  /* ADAT 4 */
2764                         case 1: return 5;  /* AES */
2765                         case 2: return 6;  /* SPDIF */
2766                         case 9: return 7;  /* TCO */
2767                         case 10: return 8; /* SYNC_IN */
2768                         }
2769                 } else {
2770                         switch ((hdspm->settings_register &
2771                                 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2772                         case 0: return 0;  /* WC */
2773                         case 3: return 1;  /* ADAT 1 */
2774                         case 4: return 2;  /* ADAT 2 */
2775                         case 5: return 3;  /* ADAT 3 */
2776                         case 6: return 4;  /* ADAT 4 */
2777                         case 1: return 5;  /* AES */
2778                         case 2: return 6;  /* SPDIF */
2779                         case 10: return 7; /* SYNC_IN */
2780                         }
2781                 }
2782
2783                 break;
2784
2785         case AIO:
2786                 if (hdspm->tco) {
2787                         switch ((hdspm->settings_register &
2788                                 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2789                         case 0: return 0;  /* WC */
2790                         case 3: return 1;  /* ADAT */
2791                         case 1: return 2;  /* AES */
2792                         case 2: return 3;  /* SPDIF */
2793                         case 9: return 4;  /* TCO */
2794                         case 10: return 5; /* SYNC_IN */
2795                         }
2796                 } else {
2797                         switch ((hdspm->settings_register &
2798                                 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2799                         case 0: return 0;  /* WC */
2800                         case 3: return 1;  /* ADAT */
2801                         case 1: return 2;  /* AES */
2802                         case 2: return 3;  /* SPDIF */
2803                         case 10: return 4; /* SYNC_IN */
2804                         }
2805                 }
2806
2807                 break;
2808         }
2809
2810         return -1;
2811 }
2812
2813
2814 /**
2815  * Set the preferred sync reference to <pref>. The semantics
2816  * of <pref> are depending on the card type, see the comments
2817  * for clarification.
2818  **/
2819 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2820 {
2821         int p = 0;
2822
2823         switch (hdspm->io_type) {
2824         case AES32:
2825                 hdspm->control_register &= ~HDSPM_SyncRefMask;
2826                 switch (pref) {
2827                 case 0: /* WC  */
2828                         break;
2829                 case 1: /* AES 1 */
2830                         hdspm->control_register |= HDSPM_SyncRef0;
2831                         break;
2832                 case 2: /* AES 2 */
2833                         hdspm->control_register |= HDSPM_SyncRef1;
2834                         break;
2835                 case 3: /* AES 3 */
2836                         hdspm->control_register |=
2837                                 HDSPM_SyncRef1+HDSPM_SyncRef0;
2838                         break;
2839                 case 4: /* AES 4 */
2840                         hdspm->control_register |= HDSPM_SyncRef2;
2841                         break;
2842                 case 5: /* AES 5 */
2843                         hdspm->control_register |=
2844                                 HDSPM_SyncRef2+HDSPM_SyncRef0;
2845                         break;
2846                 case 6: /* AES 6 */
2847                         hdspm->control_register |=
2848                                 HDSPM_SyncRef2+HDSPM_SyncRef1;
2849                         break;
2850                 case 7: /* AES 7 */
2851                         hdspm->control_register |=
2852                                 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2853                         break;
2854                 case 8: /* AES 8 */
2855                         hdspm->control_register |= HDSPM_SyncRef3;
2856                         break;
2857                 case 9: /* TCO */
2858                         hdspm->control_register |=
2859                                 HDSPM_SyncRef3+HDSPM_SyncRef0;
2860                         break;
2861                 default:
2862                         return -1;
2863                 }
2864
2865                 break;
2866
2867         case MADI:
2868         case MADIface:
2869                 hdspm->control_register &= ~HDSPM_SyncRefMask;
2870                 if (hdspm->tco) {
2871                         switch (pref) {
2872                         case 0: /* WC */
2873                                 break;
2874                         case 1: /* MADI */
2875                                 hdspm->control_register |= HDSPM_SyncRef0;
2876                                 break;
2877                         case 2: /* TCO */
2878                                 hdspm->control_register |= HDSPM_SyncRef1;
2879                                 break;
2880                         case 3: /* SYNC_IN */
2881                                 hdspm->control_register |=
2882                                         HDSPM_SyncRef0+HDSPM_SyncRef1;
2883                                 break;
2884                         default:
2885                                 return -1;
2886                         }
2887                 } else {
2888                         switch (pref) {
2889                         case 0: /* WC */
2890                                 break;
2891                         case 1: /* MADI */
2892                                 hdspm->control_register |= HDSPM_SyncRef0;
2893                                 break;
2894                         case 2: /* SYNC_IN */
2895                                 hdspm->control_register |=
2896                                         HDSPM_SyncRef0+HDSPM_SyncRef1;
2897                                 break;
2898                         default:
2899                                 return -1;
2900                         }
2901                 }
2902
2903                 break;
2904
2905         case RayDAT:
2906                 if (hdspm->tco) {
2907                         switch (pref) {
2908                         case 0: p = 0; break;  /* WC */
2909                         case 1: p = 3; break;  /* ADAT 1 */
2910                         case 2: p = 4; break;  /* ADAT 2 */
2911                         case 3: p = 5; break;  /* ADAT 3 */
2912                         case 4: p = 6; break;  /* ADAT 4 */
2913                         case 5: p = 1; break;  /* AES */
2914                         case 6: p = 2; break;  /* SPDIF */
2915                         case 7: p = 9; break;  /* TCO */
2916                         case 8: p = 10; break; /* SYNC_IN */
2917                         default: return -1;
2918                         }
2919                 } else {
2920                         switch (pref) {
2921                         case 0: p = 0; break;  /* WC */
2922                         case 1: p = 3; break;  /* ADAT 1 */
2923                         case 2: p = 4; break;  /* ADAT 2 */
2924                         case 3: p = 5; break;  /* ADAT 3 */
2925                         case 4: p = 6; break;  /* ADAT 4 */
2926                         case 5: p = 1; break;  /* AES */
2927                         case 6: p = 2; break;  /* SPDIF */
2928                         case 7: p = 10; break; /* SYNC_IN */
2929                         default: return -1;
2930                         }
2931                 }
2932                 break;
2933
2934         case AIO:
2935                 if (hdspm->tco) {
2936                         switch (pref) {
2937                         case 0: p = 0; break;  /* WC */
2938                         case 1: p = 3; break;  /* ADAT */
2939                         case 2: p = 1; break;  /* AES */
2940                         case 3: p = 2; break;  /* SPDIF */
2941                         case 4: p = 9; break;  /* TCO */
2942                         case 5: p = 10; break; /* SYNC_IN */
2943                         default: return -1;
2944                         }
2945                 } else {
2946                         switch (pref) {
2947                         case 0: p = 0; break;  /* WC */
2948                         case 1: p = 3; break;  /* ADAT */
2949                         case 2: p = 1; break;  /* AES */
2950                         case 3: p = 2; break;  /* SPDIF */
2951                         case 4: p = 10; break; /* SYNC_IN */
2952                         default: return -1;
2953                         }
2954                 }
2955                 break;
2956         }
2957
2958         switch (hdspm->io_type) {
2959         case RayDAT:
2960         case AIO:
2961                 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2962                 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2963                 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2964                 break;
2965
2966         case MADI:
2967         case MADIface:
2968         case AES32:
2969                 hdspm_write(hdspm, HDSPM_controlRegister,
2970                                 hdspm->control_register);
2971         }
2972
2973         return 0;
2974 }
2975
2976
2977 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2978                                         struct snd_ctl_elem_info *uinfo)
2979 {
2980         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2981
2982         snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync);
2983
2984         return 0;
2985 }
2986
2987 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2988                                        struct snd_ctl_elem_value *ucontrol)
2989 {
2990         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2991         int psf = hdspm_pref_sync_ref(hdspm);
2992
2993         if (psf >= 0) {
2994                 ucontrol->value.enumerated.item[0] = psf;
2995                 return 0;
2996         }
2997
2998         return -1;
2999 }
3000
3001 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
3002                                        struct snd_ctl_elem_value *ucontrol)
3003 {
3004         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3005         int val, change = 0;
3006
3007         if (!snd_hdspm_use_is_exclusive(hdspm))
3008                 return -EBUSY;
3009
3010         val = ucontrol->value.enumerated.item[0];
3011
3012         if (val < 0)
3013                 val = 0;
3014         else if (val >= hdspm->texts_autosync_items)
3015                 val = hdspm->texts_autosync_items-1;
3016
3017         spin_lock_irq(&hdspm->lock);
3018         if (val != hdspm_pref_sync_ref(hdspm))
3019                 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
3020
3021         spin_unlock_irq(&hdspm->lock);
3022         return change;
3023 }
3024
3025
3026 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
3027 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3028         .name = xname, \
3029         .index = xindex, \
3030         .access = SNDRV_CTL_ELEM_ACCESS_READ, \
3031         .info = snd_hdspm_info_autosync_ref, \
3032         .get = snd_hdspm_get_autosync_ref, \
3033 }
3034
3035 static int hdspm_autosync_ref(struct hdspm *hdspm)
3036 {
3037         /* This looks at the autosync selected sync reference */
3038         if (AES32 == hdspm->io_type) {
3039
3040                 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
3041                 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
3042                 if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) &&
3043                                 (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) {
3044                         return syncref;
3045                 }
3046                 return HDSPM_AES32_AUTOSYNC_FROM_NONE;
3047
3048         } else if (MADI == hdspm->io_type) {
3049
3050                 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3051                 switch (status2 & HDSPM_SelSyncRefMask) {
3052                 case HDSPM_SelSyncRef_WORD:
3053                         return HDSPM_AUTOSYNC_FROM_WORD;
3054                 case HDSPM_SelSyncRef_MADI:
3055                         return HDSPM_AUTOSYNC_FROM_MADI;
3056                 case HDSPM_SelSyncRef_TCO:
3057                         return HDSPM_AUTOSYNC_FROM_TCO;
3058                 case HDSPM_SelSyncRef_SyncIn:
3059                         return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3060                 case HDSPM_SelSyncRef_NVALID:
3061                         return HDSPM_AUTOSYNC_FROM_NONE;
3062                 default:
3063                         return HDSPM_AUTOSYNC_FROM_NONE;
3064                 }
3065
3066         }
3067         return 0;
3068 }
3069
3070
3071 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
3072                                        struct snd_ctl_elem_info *uinfo)
3073 {
3074         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3075
3076         if (AES32 == hdspm->io_type) {
3077                 static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3",
3078                         "AES4", "AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"};
3079
3080                 ENUMERATED_CTL_INFO(uinfo, texts);
3081         } else if (MADI == hdspm->io_type) {
3082                 static const char *const texts[] = {"Word Clock", "MADI", "TCO",
3083                         "Sync In", "None" };
3084
3085                 ENUMERATED_CTL_INFO(uinfo, texts);
3086         }
3087         return 0;
3088 }
3089
3090 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
3091                                       struct snd_ctl_elem_value *ucontrol)
3092 {
3093         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3094
3095         ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
3096         return 0;
3097 }
3098
3099
3100
3101 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \
3102 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3103         .name = xname, \
3104         .access = SNDRV_CTL_ELEM_ACCESS_READ |\
3105                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3106         .info = snd_hdspm_info_tco_video_input_format, \
3107         .get = snd_hdspm_get_tco_video_input_format, \
3108 }
3109
3110 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol,
3111                                        struct snd_ctl_elem_info *uinfo)
3112 {
3113         static const char *const texts[] = {"No video", "NTSC", "PAL"};
3114         ENUMERATED_CTL_INFO(uinfo, texts);
3115         return 0;
3116 }
3117
3118 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol,
3119                                       struct snd_ctl_elem_value *ucontrol)
3120 {
3121         u32 status;
3122         int ret = 0;
3123
3124         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3125         status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3126         switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC |
3127                         HDSPM_TCO1_Video_Input_Format_PAL)) {
3128         case HDSPM_TCO1_Video_Input_Format_NTSC:
3129                 /* ntsc */
3130                 ret = 1;
3131                 break;
3132         case HDSPM_TCO1_Video_Input_Format_PAL:
3133                 /* pal */
3134                 ret = 2;
3135                 break;
3136         default:
3137                 /* no video */
3138                 ret = 0;
3139                 break;
3140         }
3141         ucontrol->value.enumerated.item[0] = ret;
3142         return 0;
3143 }
3144
3145
3146
3147 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \
3148 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3149         .name = xname, \
3150         .access = SNDRV_CTL_ELEM_ACCESS_READ |\
3151                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3152         .info = snd_hdspm_info_tco_ltc_frames, \
3153         .get = snd_hdspm_get_tco_ltc_frames, \
3154 }
3155
3156 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3157                                        struct snd_ctl_elem_info *uinfo)
3158 {
3159         static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps",
3160                                 "30 fps"};
3161         ENUMERATED_CTL_INFO(uinfo, texts);
3162         return 0;
3163 }
3164
3165 static int hdspm_tco_ltc_frames(struct hdspm *hdspm)
3166 {
3167         u32 status;
3168         int ret = 0;
3169
3170         status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3171         if (status & HDSPM_TCO1_LTC_Input_valid) {
3172                 switch (status & (HDSPM_TCO1_LTC_Format_LSB |
3173                                         HDSPM_TCO1_LTC_Format_MSB)) {
3174                 case 0:
3175                         /* 24 fps */
3176                         ret = 1;
3177                         break;
3178                 case HDSPM_TCO1_LTC_Format_LSB:
3179                         /* 25 fps */
3180                         ret = 2;
3181                         break;
3182                 case HDSPM_TCO1_LTC_Format_MSB:
3183                         /* 25 fps */
3184                         ret = 3;
3185                         break;
3186                 default:
3187                         /* 30 fps */
3188                         ret = 4;
3189                         break;
3190                 }
3191         }
3192
3193         return ret;
3194 }
3195
3196 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3197                                       struct snd_ctl_elem_value *ucontrol)
3198 {
3199         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3200
3201         ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm);
3202         return 0;
3203 }
3204
3205 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
3206 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3207         .name = xname, \
3208         .private_value = xindex, \
3209         .info = snd_hdspm_info_toggle_setting, \
3210         .get = snd_hdspm_get_toggle_setting, \
3211         .put = snd_hdspm_put_toggle_setting \
3212 }
3213
3214 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
3215 {
3216         u32 reg;
3217
3218         if (hdspm_is_raydat_or_aio(hdspm))
3219                 reg = hdspm->settings_register;
3220         else
3221                 reg = hdspm->control_register;
3222
3223         return (reg & regmask) ? 1 : 0;
3224 }
3225
3226 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
3227 {
3228         u32 *reg;
3229         u32 target_reg;
3230
3231         if (hdspm_is_raydat_or_aio(hdspm)) {
3232                 reg = &(hdspm->settings_register);
3233                 target_reg = HDSPM_WR_SETTINGS;
3234         } else {
3235                 reg = &(hdspm->control_register);
3236                 target_reg = HDSPM_controlRegister;
3237         }
3238
3239         if (out)
3240                 *reg |= regmask;
3241         else
3242                 *reg &= ~regmask;
3243
3244         hdspm_write(hdspm, target_reg, *reg);
3245
3246         return 0;
3247 }
3248
3249 #define snd_hdspm_info_toggle_setting           snd_ctl_boolean_mono_info
3250
3251 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
3252                                struct snd_ctl_elem_value *ucontrol)
3253 {
3254         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3255         u32 regmask = kcontrol->private_value;
3256
3257         spin_lock_irq(&hdspm->lock);
3258         ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
3259         spin_unlock_irq(&hdspm->lock);
3260         return 0;
3261 }
3262
3263 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
3264                                struct snd_ctl_elem_value *ucontrol)
3265 {
3266         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3267         u32 regmask = kcontrol->private_value;
3268         int change;
3269         unsigned int val;
3270
3271         if (!snd_hdspm_use_is_exclusive(hdspm))
3272                 return -EBUSY;
3273         val = ucontrol->value.integer.value[0] & 1;
3274         spin_lock_irq(&hdspm->lock);
3275         change = (int) val != hdspm_toggle_setting(hdspm, regmask);
3276         hdspm_set_toggle_setting(hdspm, regmask, val);
3277         spin_unlock_irq(&hdspm->lock);
3278         return change;
3279 }
3280
3281 #define HDSPM_INPUT_SELECT(xname, xindex) \
3282 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3283         .name = xname, \
3284         .index = xindex, \
3285         .info = snd_hdspm_info_input_select, \
3286         .get = snd_hdspm_get_input_select, \
3287         .put = snd_hdspm_put_input_select \
3288 }
3289
3290 static int hdspm_input_select(struct hdspm * hdspm)
3291 {
3292         return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3293 }
3294
3295 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3296 {
3297         if (out)
3298                 hdspm->control_register |= HDSPM_InputSelect0;
3299         else
3300                 hdspm->control_register &= ~HDSPM_InputSelect0;
3301         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3302
3303         return 0;
3304 }
3305
3306 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3307                                        struct snd_ctl_elem_info *uinfo)
3308 {
3309         static const char *const texts[] = { "optical", "coaxial" };
3310         ENUMERATED_CTL_INFO(uinfo, texts);
3311         return 0;
3312 }
3313
3314 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3315                                       struct snd_ctl_elem_value *ucontrol)
3316 {
3317         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3318
3319         spin_lock_irq(&hdspm->lock);
3320         ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3321         spin_unlock_irq(&hdspm->lock);
3322         return 0;
3323 }
3324
3325 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3326                                       struct snd_ctl_elem_value *ucontrol)
3327 {
3328         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3329         int change;
3330         unsigned int val;
3331
3332         if (!snd_hdspm_use_is_exclusive(hdspm))
3333                 return -EBUSY;
3334         val = ucontrol->value.integer.value[0] & 1;
3335         spin_lock_irq(&hdspm->lock);
3336         change = (int) val != hdspm_input_select(hdspm);
3337         hdspm_set_input_select(hdspm, val);
3338         spin_unlock_irq(&hdspm->lock);
3339         return change;
3340 }
3341
3342
3343 #define HDSPM_DS_WIRE(xname, xindex) \
3344 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3345         .name = xname, \
3346         .index = xindex, \
3347         .info = snd_hdspm_info_ds_wire, \
3348         .get = snd_hdspm_get_ds_wire, \
3349         .put = snd_hdspm_put_ds_wire \
3350 }
3351
3352 static int hdspm_ds_wire(struct hdspm * hdspm)
3353 {
3354         return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3355 }
3356
3357 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3358 {
3359         if (ds)
3360                 hdspm->control_register |= HDSPM_DS_DoubleWire;
3361         else
3362                 hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3363         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3364
3365         return 0;
3366 }
3367
3368 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3369                                   struct snd_ctl_elem_info *uinfo)
3370 {
3371         static const char *const texts[] = { "Single", "Double" };
3372         ENUMERATED_CTL_INFO(uinfo, texts);
3373         return 0;
3374 }
3375
3376 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3377                                  struct snd_ctl_elem_value *ucontrol)
3378 {
3379         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3380
3381         spin_lock_irq(&hdspm->lock);
3382         ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3383         spin_unlock_irq(&hdspm->lock);
3384         return 0;
3385 }
3386
3387 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3388                                  struct snd_ctl_elem_value *ucontrol)
3389 {
3390         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3391         int change;
3392         unsigned int val;
3393
3394         if (!snd_hdspm_use_is_exclusive(hdspm))
3395                 return -EBUSY;
3396         val = ucontrol->value.integer.value[0] & 1;
3397         spin_lock_irq(&hdspm->lock);
3398         change = (int) val != hdspm_ds_wire(hdspm);
3399         hdspm_set_ds_wire(hdspm, val);
3400         spin_unlock_irq(&hdspm->lock);
3401         return change;
3402 }
3403
3404
3405 #define HDSPM_QS_WIRE(xname, xindex) \
3406 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3407         .name = xname, \
3408         .index = xindex, \
3409         .info = snd_hdspm_info_qs_wire, \
3410         .get = snd_hdspm_get_qs_wire, \
3411         .put = snd_hdspm_put_qs_wire \
3412 }
3413
3414 static int hdspm_qs_wire(struct hdspm * hdspm)
3415 {
3416         if (hdspm->control_register & HDSPM_QS_DoubleWire)
3417                 return 1;
3418         if (hdspm->control_register & HDSPM_QS_QuadWire)
3419                 return 2;
3420         return 0;
3421 }
3422
3423 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3424 {
3425         hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3426         switch (mode) {
3427         case 0:
3428                 break;
3429         case 1:
3430                 hdspm->control_register |= HDSPM_QS_DoubleWire;
3431                 break;
3432         case 2:
3433                 hdspm->control_register |= HDSPM_QS_QuadWire;
3434                 break;
3435         }
3436         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3437
3438         return 0;
3439 }
3440
3441 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3442                                        struct snd_ctl_elem_info *uinfo)
3443 {
3444         static const char *const texts[] = { "Single", "Double", "Quad" };
3445         ENUMERATED_CTL_INFO(uinfo, texts);
3446         return 0;
3447 }
3448
3449 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3450                                       struct snd_ctl_elem_value *ucontrol)
3451 {
3452         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3453
3454         spin_lock_irq(&hdspm->lock);
3455         ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3456         spin_unlock_irq(&hdspm->lock);
3457         return 0;
3458 }
3459
3460 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3461                                       struct snd_ctl_elem_value *ucontrol)
3462 {
3463         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3464         int change;
3465         int val;
3466
3467         if (!snd_hdspm_use_is_exclusive(hdspm))
3468                 return -EBUSY;
3469         val = ucontrol->value.integer.value[0];
3470         if (val < 0)
3471                 val = 0;
3472         if (val > 2)
3473                 val = 2;
3474         spin_lock_irq(&hdspm->lock);
3475         change = val != hdspm_qs_wire(hdspm);
3476         hdspm_set_qs_wire(hdspm, val);
3477         spin_unlock_irq(&hdspm->lock);
3478         return change;
3479 }
3480
3481 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \
3482 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3483         .name = xname, \
3484         .private_value = xindex, \
3485         .info = snd_hdspm_info_tristate, \
3486         .get = snd_hdspm_get_tristate, \
3487         .put = snd_hdspm_put_tristate \
3488 }
3489
3490 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask)
3491 {
3492         u32 reg = hdspm->settings_register & (regmask * 3);
3493         return reg / regmask;
3494 }
3495
3496 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask)
3497 {
3498         hdspm->settings_register &= ~(regmask * 3);
3499         hdspm->settings_register |= (regmask * mode);
3500         hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
3501
3502         return 0;
3503 }
3504
3505 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol,
3506                                        struct snd_ctl_elem_info *uinfo)
3507 {
3508         u32 regmask = kcontrol->private_value;
3509
3510         static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" };
3511         static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" };
3512
3513         switch (regmask) {
3514         case HDSPM_c0_Input0:
3515                 ENUMERATED_CTL_INFO(uinfo, texts_spdif);
3516                 break;
3517         default:
3518                 ENUMERATED_CTL_INFO(uinfo, texts_levels);
3519                 break;
3520         }
3521         return 0;
3522 }
3523
3524 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol,
3525                                       struct snd_ctl_elem_value *ucontrol)
3526 {
3527         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3528         u32 regmask = kcontrol->private_value;
3529
3530         spin_lock_irq(&hdspm->lock);
3531         ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask);
3532         spin_unlock_irq(&hdspm->lock);
3533         return 0;
3534 }
3535
3536 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol,
3537                                       struct snd_ctl_elem_value *ucontrol)
3538 {
3539         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3540         u32 regmask = kcontrol->private_value;
3541         int change;
3542         int val;
3543
3544         if (!snd_hdspm_use_is_exclusive(hdspm))
3545                 return -EBUSY;
3546         val = ucontrol->value.integer.value[0];
3547         if (val < 0)
3548                 val = 0;
3549         if (val > 2)
3550                 val = 2;
3551
3552         spin_lock_irq(&hdspm->lock);
3553         change = val != hdspm_tristate(hdspm, regmask);
3554         hdspm_set_tristate(hdspm, val, regmask);
3555         spin_unlock_irq(&hdspm->lock);
3556         return change;
3557 }
3558
3559 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3560 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3561         .name = xname, \
3562         .index = xindex, \
3563         .info = snd_hdspm_info_madi_speedmode, \
3564         .get = snd_hdspm_get_madi_speedmode, \
3565         .put = snd_hdspm_put_madi_speedmode \
3566 }
3567
3568 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3569 {
3570         if (hdspm->control_register & HDSPM_QuadSpeed)
3571                 return 2;
3572         if (hdspm->control_register & HDSPM_DoubleSpeed)
3573                 return 1;
3574         return 0;
3575 }
3576
3577 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3578 {
3579         hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3580         switch (mode) {
3581         case 0:
3582                 break;
3583         case 1:
3584                 hdspm->control_register |= HDSPM_DoubleSpeed;
3585                 break;
3586         case 2:
3587                 hdspm->control_register |= HDSPM_QuadSpeed;
3588                 break;
3589         }
3590         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3591
3592         return 0;
3593 }
3594
3595 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3596                                        struct snd_ctl_elem_info *uinfo)
3597 {
3598         static const char *const texts[] = { "Single", "Double", "Quad" };
3599         ENUMERATED_CTL_INFO(uinfo, texts);
3600         return 0;
3601 }
3602
3603 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3604                                       struct snd_ctl_elem_value *ucontrol)
3605 {
3606         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3607
3608         spin_lock_irq(&hdspm->lock);
3609         ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3610         spin_unlock_irq(&hdspm->lock);
3611         return 0;
3612 }
3613
3614 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3615                                       struct snd_ctl_elem_value *ucontrol)
3616 {
3617         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3618         int change;
3619         int val;
3620
3621         if (!snd_hdspm_use_is_exclusive(hdspm))
3622                 return -EBUSY;
3623         val = ucontrol->value.integer.value[0];
3624         if (val < 0)
3625                 val = 0;
3626         if (val > 2)
3627                 val = 2;
3628         spin_lock_irq(&hdspm->lock);
3629         change = val != hdspm_madi_speedmode(hdspm);
3630         hdspm_set_madi_speedmode(hdspm, val);
3631         spin_unlock_irq(&hdspm->lock);
3632         return change;
3633 }
3634
3635 #define HDSPM_MIXER(xname, xindex) \
3636 {       .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3637         .name = xname, \
3638         .index = xindex, \
3639         .device = 0, \
3640         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3641                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3642         .info = snd_hdspm_info_mixer, \
3643         .get = snd_hdspm_get_mixer, \
3644         .put = snd_hdspm_put_mixer \
3645 }
3646
3647 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3648                                 struct snd_ctl_elem_info *uinfo)
3649 {
3650         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3651         uinfo->count = 3;
3652         uinfo->value.integer.min = 0;
3653         uinfo->value.integer.max = 65535;
3654         uinfo->value.integer.step = 1;
3655         return 0;
3656 }
3657
3658 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3659                                struct snd_ctl_elem_value *ucontrol)
3660 {
3661         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3662         int source;
3663         int destination;
3664
3665         source = ucontrol->value.integer.value[0];
3666         if (source < 0)
3667                 source = 0;
3668         else if (source >= 2 * HDSPM_MAX_CHANNELS)
3669                 source = 2 * HDSPM_MAX_CHANNELS - 1;
3670
3671         destination = ucontrol->value.integer.value[1];
3672         if (destination < 0)
3673                 destination = 0;
3674         else if (destination >= HDSPM_MAX_CHANNELS)
3675                 destination = HDSPM_MAX_CHANNELS - 1;
3676
3677         spin_lock_irq(&hdspm->lock);
3678         if (source >= HDSPM_MAX_CHANNELS)
3679                 ucontrol->value.integer.value[2] =
3680                     hdspm_read_pb_gain(hdspm, destination,
3681                                        source - HDSPM_MAX_CHANNELS);
3682         else
3683                 ucontrol->value.integer.value[2] =
3684                     hdspm_read_in_gain(hdspm, destination, source);
3685
3686         spin_unlock_irq(&hdspm->lock);
3687
3688         return 0;
3689 }
3690
3691 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3692                                struct snd_ctl_elem_value *ucontrol)
3693 {
3694         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3695         int change;
3696         int source;
3697         int destination;
3698         int gain;
3699
3700         if (!snd_hdspm_use_is_exclusive(hdspm))
3701                 return -EBUSY;
3702
3703         source = ucontrol->value.integer.value[0];
3704         destination = ucontrol->value.integer.value[1];
3705
3706         if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3707                 return -1;
3708         if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3709                 return -1;
3710
3711         gain = ucontrol->value.integer.value[2];
3712
3713         spin_lock_irq(&hdspm->lock);
3714
3715         if (source >= HDSPM_MAX_CHANNELS)
3716                 change = gain != hdspm_read_pb_gain(hdspm, destination,
3717                                                     source -
3718                                                     HDSPM_MAX_CHANNELS);
3719         else
3720                 change = gain != hdspm_read_in_gain(hdspm, destination,
3721                                                     source);
3722
3723         if (change) {
3724                 if (source >= HDSPM_MAX_CHANNELS)
3725                         hdspm_write_pb_gain(hdspm, destination,
3726                                             source - HDSPM_MAX_CHANNELS,
3727                                             gain);
3728                 else
3729                         hdspm_write_in_gain(hdspm, destination, source,
3730                                             gain);
3731         }
3732         spin_unlock_irq(&hdspm->lock);
3733
3734         return change;
3735 }
3736
3737 /* The simple mixer control(s) provide gain control for the
3738    basic 1:1 mappings of playback streams to output
3739    streams.
3740 */
3741
3742 #define HDSPM_PLAYBACK_MIXER \
3743 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3744         .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3745                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3746         .info = snd_hdspm_info_playback_mixer, \
3747         .get = snd_hdspm_get_playback_mixer, \
3748         .put = snd_hdspm_put_playback_mixer \
3749 }
3750
3751 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3752                                          struct snd_ctl_elem_info *uinfo)
3753 {
3754         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3755         uinfo->count = 1;
3756         uinfo->value.integer.min = 0;
3757         uinfo->value.integer.max = 64;
3758         uinfo->value.integer.step = 1;
3759         return 0;
3760 }
3761
3762 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3763                                         struct snd_ctl_elem_value *ucontrol)
3764 {
3765         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3766         int channel;
3767
3768         channel = ucontrol->id.index - 1;
3769
3770         if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3771                 return -EINVAL;
3772
3773         spin_lock_irq(&hdspm->lock);
3774         ucontrol->value.integer.value[0] =
3775           (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3776         spin_unlock_irq(&hdspm->lock);
3777
3778         return 0;
3779 }
3780
3781 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3782                                         struct snd_ctl_elem_value *ucontrol)
3783 {
3784         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3785         int change;
3786         int channel;
3787         int gain;
3788
3789         if (!snd_hdspm_use_is_exclusive(hdspm))
3790                 return -EBUSY;
3791
3792         channel = ucontrol->id.index - 1;
3793
3794         if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3795                 return -EINVAL;
3796
3797         gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3798
3799         spin_lock_irq(&hdspm->lock);
3800         change =
3801             gain != hdspm_read_pb_gain(hdspm, channel,
3802                                        channel);
3803         if (change)
3804                 hdspm_write_pb_gain(hdspm, channel, channel,
3805                                     gain);
3806         spin_unlock_irq(&hdspm->lock);
3807         return change;
3808 }
3809
3810 #define HDSPM_SYNC_CHECK(xname, xindex) \
3811 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3812         .name = xname, \
3813         .private_value = xindex, \
3814         .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3815         .info = snd_hdspm_info_sync_check, \
3816         .get = snd_hdspm_get_sync_check \
3817 }
3818
3819 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3820 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3821         .name = xname, \
3822         .private_value = xindex, \
3823         .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3824         .info = snd_hdspm_tco_info_lock_check, \
3825         .get = snd_hdspm_get_sync_check \
3826 }
3827
3828
3829
3830 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3831                                      struct snd_ctl_elem_info *uinfo)
3832 {
3833         static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3834         ENUMERATED_CTL_INFO(uinfo, texts);
3835         return 0;
3836 }
3837
3838 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3839                                      struct snd_ctl_elem_info *uinfo)
3840 {
3841         static const char *const texts[] = { "No Lock", "Lock" };
3842         ENUMERATED_CTL_INFO(uinfo, texts);
3843         return 0;
3844 }
3845
3846 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3847 {
3848         int status, status2;
3849
3850         switch (hdspm->io_type) {
3851         case AES32:
3852                 status = hdspm_read(hdspm, HDSPM_statusRegister);
3853                 if (status & HDSPM_AES32_wcLock) {
3854                         if (status & HDSPM_AES32_wcSync)
3855                                 return 2;
3856                         else
3857                                 return 1;
3858                 }
3859                 return 0;
3860                 break;
3861
3862         case MADI:
3863                 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3864                 if (status2 & HDSPM_wcLock) {
3865                         if (status2 & HDSPM_wcSync)
3866                                 return 2;
3867                         else
3868                                 return 1;
3869                 }
3870                 return 0;
3871                 break;
3872
3873         case RayDAT:
3874         case AIO:
3875                 status = hdspm_read(hdspm, HDSPM_statusRegister);
3876
3877                 if (status & 0x2000000)
3878                         return 2;
3879                 else if (status & 0x1000000)
3880                         return 1;
3881                 return 0;
3882
3883                 break;
3884
3885         case MADIface:
3886                 break;
3887         }
3888
3889
3890         return 3;
3891 }
3892
3893
3894 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3895 {
3896         int status = hdspm_read(hdspm, HDSPM_statusRegister);
3897         if (status & HDSPM_madiLock) {
3898                 if (status & HDSPM_madiSync)
3899                         return 2;
3900                 else
3901                         return 1;
3902         }
3903         return 0;
3904 }
3905
3906
3907 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3908 {
3909         int status, lock, sync;
3910
3911         status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3912
3913         lock = (status & (0x1<<idx)) ? 1 : 0;
3914         sync = (status & (0x100<<idx)) ? 1 : 0;
3915
3916         if (lock && sync)
3917                 return 2;
3918         else if (lock)
3919                 return 1;
3920         return 0;
3921 }
3922
3923
3924 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3925 {
3926         int status, lock = 0, sync = 0;
3927
3928         switch (hdspm->io_type) {
3929         case RayDAT:
3930         case AIO:
3931                 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3932                 lock = (status & 0x400) ? 1 : 0;
3933                 sync = (status & 0x800) ? 1 : 0;
3934                 break;
3935
3936         case MADI:
3937                 status = hdspm_read(hdspm, HDSPM_statusRegister);
3938                 lock = (status & HDSPM_syncInLock) ? 1 : 0;
3939                 sync = (status & HDSPM_syncInSync) ? 1 : 0;
3940                 break;
3941
3942         case AES32:
3943                 status = hdspm_read(hdspm, HDSPM_statusRegister2);
3944                 lock = (status & 0x100000) ? 1 : 0;
3945                 sync = (status & 0x200000) ? 1 : 0;
3946                 break;
3947
3948         case MADIface:
3949                 break;
3950         }
3951
3952         if (lock && sync)
3953                 return 2;
3954         else if (lock)
3955                 return 1;
3956
3957         return 0;
3958 }
3959
3960 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3961 {
3962         int status2, lock, sync;
3963         status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3964
3965         lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3966         sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3967
3968         if (sync)
3969                 return 2;
3970         else if (lock)
3971                 return 1;
3972         return 0;
3973 }
3974
3975 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3976 {
3977         u32 status;
3978         status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3979
3980         return (status & mask) ? 1 : 0;
3981 }
3982
3983
3984 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3985 {
3986         int status;
3987
3988         if (hdspm->tco) {
3989                 switch (hdspm->io_type) {
3990                 case MADI:
3991                         status = hdspm_read(hdspm, HDSPM_statusRegister);
3992                         if (status & HDSPM_tcoLockMadi) {
3993                                 if (status & HDSPM_tcoSync)
3994                                         return 2;
3995                                 else
3996                                         return 1;
3997                         }
3998                         return 0;
3999                         break;
4000                 case AES32:
4001                         status = hdspm_read(hdspm, HDSPM_statusRegister);
4002                         if (status & HDSPM_tcoLockAes) {
4003                                 if (status & HDSPM_tcoSync)
4004                                         return 2;
4005                                 else
4006                                         return 1;
4007                         }
4008                         return 0;
4009
4010                         break;
4011
4012                 case RayDAT:
4013                 case AIO:
4014                         status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
4015
4016                         if (status & 0x8000000)
4017                                 return 2; /* Sync */
4018                         if (status & 0x4000000)
4019                                 return 1; /* Lock */
4020                         return 0; /* No signal */
4021                         break;
4022
4023                 default:
4024                         break;
4025                 }
4026         }
4027
4028         return 3; /* N/A */
4029 }
4030
4031
4032 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
4033                                     struct snd_ctl_elem_value *ucontrol)
4034 {
4035         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4036         int val = -1;
4037
4038         switch (hdspm->io_type) {
4039         case RayDAT:
4040                 switch (kcontrol->private_value) {
4041                 case 0: /* WC */
4042                         val = hdspm_wc_sync_check(hdspm); break;
4043                 case 7: /* TCO */
4044                         val = hdspm_tco_sync_check(hdspm); break;
4045                 case 8: /* SYNC IN */
4046                         val = hdspm_sync_in_sync_check(hdspm); break;
4047                 default:
4048                         val = hdspm_s1_sync_check(hdspm,
4049                                         kcontrol->private_value-1);
4050                 }
4051                 break;
4052
4053         case AIO:
4054                 switch (kcontrol->private_value) {
4055                 case 0: /* WC */
4056                         val = hdspm_wc_sync_check(hdspm); break;
4057                 case 4: /* TCO */
4058                         val = hdspm_tco_sync_check(hdspm); break;
4059                 case 5: /* SYNC IN */
4060                         val = hdspm_sync_in_sync_check(hdspm); break;
4061                 default:
4062                         val = hdspm_s1_sync_check(hdspm,
4063                                         kcontrol->private_value-1);
4064                 }
4065                 break;
4066
4067         case MADI:
4068                 switch (kcontrol->private_value) {
4069                 case 0: /* WC */
4070                         val = hdspm_wc_sync_check(hdspm); break;
4071                 case 1: /* MADI */
4072                         val = hdspm_madi_sync_check(hdspm); break;
4073                 case 2: /* TCO */
4074                         val = hdspm_tco_sync_check(hdspm); break;
4075                 case 3: /* SYNC_IN */
4076                         val = hdspm_sync_in_sync_check(hdspm); break;
4077                 }
4078                 break;
4079
4080         case MADIface:
4081                 val = hdspm_madi_sync_check(hdspm); /* MADI */
4082                 break;
4083
4084         case AES32:
4085                 switch (kcontrol->private_value) {
4086                 case 0: /* WC */
4087                         val = hdspm_wc_sync_check(hdspm); break;
4088                 case 9: /* TCO */
4089                         val = hdspm_tco_sync_check(hdspm); break;
4090                 case 10 /* SYNC IN */:
4091                         val = hdspm_sync_in_sync_check(hdspm); break;
4092                 default: /* AES1 to AES8 */
4093                          val = hdspm_aes_sync_check(hdspm,
4094                                          kcontrol->private_value-1);
4095                 }
4096                 break;
4097
4098         }
4099
4100         if (hdspm->tco) {
4101                 switch (kcontrol->private_value) {
4102                 case 11:
4103                         /* Check TCO for lock state of its current input */
4104                         val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
4105                         break;
4106                 case 12:
4107                         /* Check TCO for valid time code on LTC input. */
4108                         val = hdspm_tco_input_check(hdspm,
4109                                 HDSPM_TCO1_LTC_Input_valid);
4110                         break;
4111                 default:
4112                         break;
4113                 }
4114         }
4115
4116         if (-1 == val)
4117                 val = 3;
4118
4119         ucontrol->value.enumerated.item[0] = val;
4120         return 0;
4121 }
4122
4123
4124
4125 /**
4126  * TCO controls
4127  **/
4128 static void hdspm_tco_write(struct hdspm *hdspm)
4129 {
4130         unsigned int tc[4] = { 0, 0, 0, 0};
4131
4132         switch (hdspm->tco->input) {
4133         case 0:
4134                 tc[2] |= HDSPM_TCO2_set_input_MSB;
4135                 break;
4136         case 1:
4137                 tc[2] |= HDSPM_TCO2_set_input_LSB;
4138                 break;
4139         default:
4140                 break;
4141         }
4142
4143         switch (hdspm->tco->framerate) {
4144         case 1:
4145                 tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4146                 break;
4147         case 2:
4148                 tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4149                 break;
4150         case 3:
4151                 tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4152                         HDSPM_TCO1_set_drop_frame_flag;
4153                 break;
4154         case 4:
4155                 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4156                         HDSPM_TCO1_LTC_Format_MSB;
4157                 break;
4158         case 5:
4159                 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4160                         HDSPM_TCO1_LTC_Format_MSB +
4161                         HDSPM_TCO1_set_drop_frame_flag;
4162                 break;
4163         default:
4164                 break;
4165         }
4166
4167         switch (hdspm->tco->wordclock) {
4168         case 1:
4169                 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4170                 break;
4171         case 2:
4172                 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4173                 break;
4174         default:
4175                 break;
4176         }
4177
4178         switch (hdspm->tco->samplerate) {
4179         case 1:
4180                 tc[2] |= HDSPM_TCO2_set_freq;
4181                 break;
4182         case 2:
4183                 tc[2] |= HDSPM_TCO2_set_freq_from_app;
4184                 break;
4185         default:
4186                 break;
4187         }
4188
4189         switch (hdspm->tco->pull) {
4190         case 1:
4191                 tc[2] |= HDSPM_TCO2_set_pull_up;
4192                 break;
4193         case 2:
4194                 tc[2] |= HDSPM_TCO2_set_pull_down;
4195                 break;
4196         case 3:
4197                 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4198                 break;
4199         case 4:
4200                 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4201                 break;
4202         default:
4203                 break;
4204         }
4205
4206         if (1 == hdspm->tco->term) {
4207                 tc[2] |= HDSPM_TCO2_set_term_75R;
4208         }
4209
4210         hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4211         hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4212         hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4213         hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4214 }
4215
4216
4217 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4218 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4219         .name = xname, \
4220         .index = xindex, \
4221         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4222                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4223         .info = snd_hdspm_info_tco_sample_rate, \
4224         .get = snd_hdspm_get_tco_sample_rate, \
4225         .put = snd_hdspm_put_tco_sample_rate \
4226 }
4227
4228 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4229                                           struct snd_ctl_elem_info *uinfo)
4230 {
4231         /* TODO freq from app could be supported here, see tco->samplerate */
4232         static const char *const texts[] = { "44.1 kHz", "48 kHz" };
4233         ENUMERATED_CTL_INFO(uinfo, texts);
4234         return 0;
4235 }
4236
4237 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4238                                       struct snd_ctl_elem_value *ucontrol)
4239 {
4240         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4241
4242         ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4243
4244         return 0;
4245 }
4246
4247 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4248                                          struct snd_ctl_elem_value *ucontrol)
4249 {
4250         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4251
4252         if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4253                 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4254
4255                 hdspm_tco_write(hdspm);
4256
4257                 return 1;
4258         }
4259
4260         return 0;
4261 }
4262
4263
4264 #define HDSPM_TCO_PULL(xname, xindex) \
4265 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4266         .name = xname, \
4267         .index = xindex, \
4268         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4269                 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4270         .info = snd_hdspm_info_tco_pull, \
4271         .get = snd_hdspm_get_tco_pull, \
4272         .put = snd_hdspm_put_tco_pull \
4273 }
4274
4275 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4276                                    struct snd_ctl_elem_info *uinfo)
4277 {
4278         static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %",
4279                 "+ 4 %", "- 4 %" };
4280         ENUMERATED_CTL_INFO(uinfo, texts);
4281         return 0;
4282 }
4283
4284 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4285                                   struct snd_ctl_elem_value *ucontrol)
4286 {
4287         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4288
4289         ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4290
4291         return 0;
4292 }
4293
4294 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4295                                   struct snd_ctl_elem_value *ucontrol)
4296 {
4297         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4298
4299         if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4300                 hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4301
4302                 hdspm_tco_write(hdspm);
4303
4304                 return 1;
4305         }
4306
4307         return 0;
4308 }
4309
4310 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4311 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4312         .name = xname, \
4313         .index = xindex, \
4314         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4315                         SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4316         .info = snd_hdspm_info_tco_wck_conversion, \
4317         .get = snd_hdspm_get_tco_wck_conversion, \
4318         .put = snd_hdspm_put_tco_wck_conversion \
4319 }
4320
4321 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4322                                              struct snd_ctl_elem_info *uinfo)
4323 {
4324         static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4325         ENUMERATED_CTL_INFO(uinfo, texts);
4326         return 0;
4327 }
4328
4329 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4330                                             struct snd_ctl_elem_value *ucontrol)
4331 {
4332         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4333
4334         ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4335
4336         return 0;
4337 }
4338
4339 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4340                                             struct snd_ctl_elem_value *ucontrol)
4341 {
4342         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4343
4344         if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4345                 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4346
4347                 hdspm_tco_write(hdspm);
4348
4349                 return 1;
4350         }
4351
4352         return 0;
4353 }
4354
4355
4356 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4357 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4358         .name = xname, \
4359         .index = xindex, \
4360         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4361                         SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4362         .info = snd_hdspm_info_tco_frame_rate, \
4363         .get = snd_hdspm_get_tco_frame_rate, \
4364         .put = snd_hdspm_put_tco_frame_rate \
4365 }
4366
4367 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4368                                           struct snd_ctl_elem_info *uinfo)
4369 {
4370         static const char *const texts[] = { "24 fps", "25 fps", "29.97fps",
4371                 "29.97 dfps", "30 fps", "30 dfps" };
4372         ENUMERATED_CTL_INFO(uinfo, texts);
4373         return 0;
4374 }
4375
4376 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4377                                         struct snd_ctl_elem_value *ucontrol)
4378 {
4379         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4380
4381         ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4382
4383         return 0;
4384 }
4385
4386 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4387                                         struct snd_ctl_elem_value *ucontrol)
4388 {
4389         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4390
4391         if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4392                 hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4393
4394                 hdspm_tco_write(hdspm);
4395
4396                 return 1;
4397         }
4398
4399         return 0;
4400 }
4401
4402
4403 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4404 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4405         .name = xname, \
4406         .index = xindex, \
4407         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4408                         SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4409         .info = snd_hdspm_info_tco_sync_source, \
4410         .get = snd_hdspm_get_tco_sync_source, \
4411         .put = snd_hdspm_put_tco_sync_source \
4412 }
4413
4414 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4415                                           struct snd_ctl_elem_info *uinfo)
4416 {
4417         static const char *const texts[] = { "LTC", "Video", "WCK" };
4418         ENUMERATED_CTL_INFO(uinfo, texts);
4419         return 0;
4420 }
4421
4422 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4423                                          struct snd_ctl_elem_value *ucontrol)
4424 {
4425         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4426
4427         ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4428
4429         return 0;
4430 }
4431
4432 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4433                                          struct snd_ctl_elem_value *ucontrol)
4434 {
4435         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4436
4437         if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4438                 hdspm->tco->input = ucontrol->value.enumerated.item[0];
4439
4440                 hdspm_tco_write(hdspm);
4441
4442                 return 1;
4443         }
4444
4445         return 0;
4446 }
4447
4448
4449 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4450 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4451         .name = xname, \
4452         .index = xindex, \
4453         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4454                         SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4455         .info = snd_hdspm_info_tco_word_term, \
4456         .get = snd_hdspm_get_tco_word_term, \
4457         .put = snd_hdspm_put_tco_word_term \
4458 }
4459
4460 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4461                                         struct snd_ctl_elem_info *uinfo)
4462 {
4463         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4464         uinfo->count = 1;
4465         uinfo->value.integer.min = 0;
4466         uinfo->value.integer.max = 1;
4467
4468         return 0;
4469 }
4470
4471
4472 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4473                                        struct snd_ctl_elem_value *ucontrol)
4474 {
4475         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4476
4477         ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4478
4479         return 0;
4480 }
4481
4482
4483 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4484                                        struct snd_ctl_elem_value *ucontrol)
4485 {
4486         struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4487
4488         if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4489                 hdspm->tco->term = ucontrol->value.enumerated.item[0];
4490
4491                 hdspm_tco_write(hdspm);
4492
4493                 return 1;
4494         }
4495
4496         return 0;
4497 }
4498
4499
4500
4501
4502 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4503         HDSPM_MIXER("Mixer", 0),
4504         HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4505         HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4506         HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4507         HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4508         HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4509         HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4510         HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4511         HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4512         HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4513         HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4514         HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4515         HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4516         HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4517         HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4518         HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4519         HDSPM_INPUT_SELECT("Input Select", 0),
4520         HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4521 };
4522
4523
4524 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4525         HDSPM_MIXER("Mixer", 0),
4526         HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4527         HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4528         HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4529         HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4530         HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4531         HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4532         HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4533         HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4534         HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4535 };
4536
4537 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4538         HDSPM_MIXER("Mixer", 0),
4539         HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4540         HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4541         HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4542         HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4543         HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4544         HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4545         HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4546         HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4547         HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4548         HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4549         HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4550         HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4551         HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4552         HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4553         HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4554         HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4555         HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5),
4556         HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0),
4557         HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt),
4558         HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4559         HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1),
4560         HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db),
4561         HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48),
4562         HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0),
4563         HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0),
4564         HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0)
4565
4566                 /*
4567                    HDSPM_INPUT_SELECT("Input Select", 0),
4568                    HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4569                    HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4570                    HDSPM_SPDIF_IN("SPDIF In", 0);
4571                    HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4572                    HDSPM_INPUT_LEVEL("Input Level", 0);
4573                    HDSPM_OUTPUT_LEVEL("Output Level", 0);
4574                    HDSPM_PHONES("Phones", 0);
4575                    */
4576 };
4577
4578 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4579         HDSPM_MIXER("Mixer", 0),
4580         HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4581         HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4582         HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4583         HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4584         HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4585         HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4586         HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4587         HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4588         HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4589         HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4590         HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4591         HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4592         HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4593         HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4594         HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4595         HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4596         HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4597         HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4598         HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4599         HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4600         HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4601         HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8),
4602         HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4603         HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48)
4604 };
4605
4606 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4607         HDSPM_MIXER("Mixer", 0),
4608         HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4609         HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4610         HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4611         HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4612         HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4613         HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11),
4614         HDSPM_SYNC_CHECK("WC Sync Check", 0),
4615         HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4616         HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4617         HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4618         HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4619         HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4620         HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4621         HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4622         HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4623         HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4624         HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4625         HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4626         HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4627         HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4628         HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4629         HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4630         HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4631         HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4632         HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4633         HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4634         HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4635         HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4636         HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4637         HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4638         HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4639         HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4640         HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4641         HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4642         HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4643 };
4644
4645
4646
4647 /* Control elements for the optional TCO module */
4648 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4649         HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4650         HDSPM_TCO_PULL("TCO Pull", 0),
4651         HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4652         HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4653         HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4654         HDSPM_TCO_WORD_TERM("TCO Word Term", 0),
4655         HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11),
4656         HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12),
4657         HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0),
4658         HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0)
4659 };
4660
4661
4662 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4663
4664
4665 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4666 {
4667         int i;
4668
4669         for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4670                 if (hdspm->system_sample_rate > 48000) {
4671                         hdspm->playback_mixer_ctls[i]->vd[0].access =
4672                                 SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4673                                 SNDRV_CTL_ELEM_ACCESS_READ |
4674                                 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4675                 } else {
4676                         hdspm->playback_mixer_ctls[i]->vd[0].access =
4677                                 SNDRV_CTL_ELEM_ACCESS_READWRITE |
4678                                 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4679                 }
4680                 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4681                                 SNDRV_CTL_EVENT_MASK_INFO,
4682                                 &hdspm->playback_mixer_ctls[i]->id);
4683         }
4684
4685         return 0;
4686 }
4687
4688
4689 static int snd_hdspm_create_controls(struct snd_card *card,
4690                                         struct hdspm *hdspm)
4691 {
4692         unsigned int idx, limit;
4693         int err;
4694         struct snd_kcontrol *kctl;
4695         struct snd_kcontrol_new *list = NULL;
4696
4697         switch (hdspm->io_type) {
4698         case MADI:
4699                 list = snd_hdspm_controls_madi;
4700                 limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4701                 break;
4702         case MADIface:
4703                 list = snd_hdspm_controls_madiface;
4704                 limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4705                 break;
4706         case AIO:
4707                 list = snd_hdspm_controls_aio;
4708                 limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4709                 break;
4710         case RayDAT:
4711                 list = snd_hdspm_controls_raydat;
4712                 limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4713                 break;
4714         case AES32:
4715                 list = snd_hdspm_controls_aes32;
4716                 limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4717                 break;
4718         }
4719
4720         if (NULL != list) {
4721                 for (idx = 0; idx < limit; idx++) {
4722                         err = snd_ctl_add(card,
4723                                         snd_ctl_new1(&list[idx], hdspm));
4724                         if (err < 0)
4725                                 return err;
4726                 }
4727         }
4728
4729
4730         /* create simple 1:1 playback mixer controls */
4731         snd_hdspm_playback_mixer.name = "Chn";
4732         if (hdspm->system_sample_rate >= 128000) {
4733                 limit = hdspm->qs_out_channels;
4734         } else if (hdspm->system_sample_rate >= 64000) {
4735                 limit = hdspm->ds_out_channels;
4736         } else {
4737                 limit = hdspm->ss_out_channels;
4738         }
4739         for (idx = 0; idx < limit; ++idx) {
4740                 snd_hdspm_playback_mixer.index = idx + 1;
4741                 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4742                 err = snd_ctl_add(card, kctl);
4743                 if (err < 0)
4744                         return err;
4745                 hdspm->playback_mixer_ctls[idx] = kctl;
4746         }
4747
4748
4749         if (hdspm->tco) {
4750                 /* add tco control elements */
4751                 list = snd_hdspm_controls_tco;
4752                 limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4753                 for (idx = 0; idx < limit; idx++) {
4754                         err = snd_ctl_add(card,
4755                                         snd_ctl_new1(&list[idx], hdspm));
4756                         if (err < 0)
4757                                 return err;
4758                 }
4759         }
4760
4761         return 0;
4762 }
4763
4764 /*------------------------------------------------------------
4765    /proc interface
4766  ------------------------------------------------------------*/
4767
4768 static void
4769 snd_hdspm_proc_read_tco(struct snd_info_entry *entry,
4770                                         struct snd_info_buffer *buffer)
4771 {
4772         struct hdspm *hdspm = entry->private_data;
4773         unsigned int status, control;
4774         int a, ltc, frames, seconds, minutes, hours;
4775         unsigned int period;
4776         u64 freq_const = 0;
4777         u32 rate;
4778
4779         snd_iprintf(buffer, "--- TCO ---\n");
4780
4781         status = hdspm_read(hdspm, HDSPM_statusRegister);
4782         control = hdspm->control_register;
4783
4784
4785         if (status & HDSPM_tco_detect) {
4786                 snd_iprintf(buffer, "TCO module detected.\n");
4787                 a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4788                 if (a & HDSPM_TCO1_LTC_Input_valid) {
4789                         snd_iprintf(buffer, "  LTC valid, ");
4790                         switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4791                                                 HDSPM_TCO1_LTC_Format_MSB)) {
4792                         case 0:
4793                                 snd_iprintf(buffer, "24 fps, ");
4794                                 break;
4795                         case HDSPM_TCO1_LTC_Format_LSB:
4796                                 snd_iprintf(buffer, "25 fps, ");
4797                                 break;
4798                         case HDSPM_TCO1_LTC_Format_MSB:
4799                                 snd_iprintf(buffer, "29.97 fps, ");
4800                                 break;
4801                         default:
4802                                 snd_iprintf(buffer, "30 fps, ");
4803                                 break;
4804                         }
4805                         if (a & HDSPM_TCO1_set_drop_frame_flag) {
4806                                 snd_iprintf(buffer, "drop frame\n");
4807                         } else {
4808                                 snd_iprintf(buffer, "full frame\n");
4809                         }
4810                 } else {
4811                         snd_iprintf(buffer, "  no LTC\n");
4812                 }
4813                 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4814                         snd_iprintf(buffer, "  Video: NTSC\n");
4815                 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4816                         snd_iprintf(buffer, "  Video: PAL\n");
4817                 } else {
4818                         snd_iprintf(buffer, "  No video\n");
4819                 }
4820                 if (a & HDSPM_TCO1_TCO_lock) {
4821                         snd_iprintf(buffer, "  Sync: lock\n");
4822                 } else {
4823                         snd_iprintf(buffer, "  Sync: no lock\n");
4824                 }
4825
4826                 switch (hdspm->io_type) {
4827                 case MADI:
4828                 case AES32:
4829                         freq_const = 110069313433624ULL;
4830                         break;
4831                 case RayDAT:
4832                 case AIO:
4833                         freq_const = 104857600000000ULL;
4834                         break;
4835                 case MADIface:
4836                         break; /* no TCO possible */
4837                 }
4838
4839                 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4840                 snd_iprintf(buffer, "    period: %u\n", period);
4841
4842
4843                 /* rate = freq_const/period; */
4844                 rate = div_u64(freq_const, period);
4845
4846                 if (control & HDSPM_QuadSpeed) {
4847                         rate *= 4;
4848                 } else if (control & HDSPM_DoubleSpeed) {
4849                         rate *= 2;
4850                 }
4851
4852                 snd_iprintf(buffer, "  Frequency: %u Hz\n",
4853                                 (unsigned int) rate);
4854
4855                 ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4856                 frames = ltc & 0xF;
4857                 ltc >>= 4;
4858                 frames += (ltc & 0x3) * 10;
4859                 ltc >>= 4;
4860                 seconds = ltc & 0xF;
4861                 ltc >>= 4;
4862                 seconds += (ltc & 0x7) * 10;
4863                 ltc >>= 4;
4864                 minutes = ltc & 0xF;
4865                 ltc >>= 4;
4866                 minutes += (ltc & 0x7) * 10;
4867                 ltc >>= 4;
4868                 hours = ltc & 0xF;
4869                 ltc >>= 4;
4870                 hours += (ltc & 0x3) * 10;
4871                 snd_iprintf(buffer,
4872                         "  LTC In: %02d:%02d:%02d:%02d\n",
4873                         hours, minutes, seconds, frames);
4874
4875         } else {
4876                 snd_iprintf(buffer, "No TCO module detected.\n");
4877         }
4878 }
4879
4880 static void
4881 snd_hdspm_proc_read_madi(struct snd_info_entry *entry,
4882                          struct snd_info_buffer *buffer)
4883 {
4884         struct hdspm *hdspm = entry->private_data;
4885         unsigned int status, status2, control, freq;
4886
4887         char *pref_sync_ref;
4888         char *autosync_ref;
4889         char *system_clock_mode;
4890         char *insel;
4891         int x, x2;
4892
4893         status = hdspm_read(hdspm, HDSPM_statusRegister);
4894         status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4895         control = hdspm->control_register;
4896         freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
4897
4898         snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4899                         hdspm->card_name, hdspm->card->number + 1,
4900                         hdspm->firmware_rev,
4901                         (status2 & HDSPM_version0) |
4902                         (status2 & HDSPM_version1) | (status2 &
4903                                 HDSPM_version2));
4904
4905         snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4906                         (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4907                         hdspm->serial);
4908
4909         snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4910                         hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4911
4912         snd_iprintf(buffer, "--- System ---\n");
4913
4914         snd_iprintf(buffer,
4915                 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4916                 status & HDSPM_audioIRQPending,
4917                 (status & HDSPM_midi0IRQPending) ? 1 : 0,
4918                 (status & HDSPM_midi1IRQPending) ? 1 : 0,
4919                 hdspm->irq_count);
4920         snd_iprintf(buffer,
4921                 "HW pointer: id = %d, rawptr = %d (%d->%d) "
4922                 "estimated= %ld (bytes)\n",
4923                 ((status & HDSPM_BufferID) ? 1 : 0),
4924                 (status & HDSPM_BufferPositionMask),
4925                 (status & HDSPM_BufferPositionMask) %
4926                 (2 * (int)hdspm->period_bytes),
4927                 ((status & HDSPM_BufferPositionMask) - 64) %
4928                 (2 * (int)hdspm->period_bytes),
4929                 (long) hdspm_hw_pointer(hdspm) * 4);
4930
4931         snd_iprintf(buffer,
4932                 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4933                 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4934                 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4935                 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4936                 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4937         snd_iprintf(buffer,
4938                 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4939                 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4940                 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4941         snd_iprintf(buffer,
4942                 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4943                 "status2=0x%x\n",
4944                 hdspm->control_register, hdspm->control2_register,
4945                 status, status2);
4946
4947
4948         snd_iprintf(buffer, "--- Settings ---\n");
4949
4950         x = hdspm_get_latency(hdspm);
4951
4952         snd_iprintf(buffer,
4953                 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4954                 x, (unsigned long) hdspm->period_bytes);
4955
4956         snd_iprintf(buffer, "Line out: %s\n",
4957                 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4958
4959         switch (hdspm->control_register & HDSPM_InputMask) {
4960         case HDSPM_InputOptical:
4961                 insel = "Optical";
4962                 break;
4963         case HDSPM_InputCoaxial:
4964                 insel = "Coaxial";
4965                 break;
4966         default:
4967                 insel = "Unknown";
4968         }
4969
4970         snd_iprintf(buffer,
4971                 "ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4972                 "Auto Input %s\n",
4973                 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4974                 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4975                 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4976
4977
4978         if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4979                 system_clock_mode = "AutoSync";
4980         else
4981                 system_clock_mode = "Master";
4982         snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4983
4984         switch (hdspm_pref_sync_ref(hdspm)) {
4985         case HDSPM_SYNC_FROM_WORD:
4986                 pref_sync_ref = "Word Clock";
4987                 break;
4988         case HDSPM_SYNC_FROM_MADI:
4989                 pref_sync_ref = "MADI Sync";
4990                 break;
4991         case HDSPM_SYNC_FROM_TCO:
4992                 pref_sync_ref = "TCO";
4993                 break;
4994         case HDSPM_SYNC_FROM_SYNC_IN:
4995                 pref_sync_ref = "Sync In";
4996                 break;
4997         default:
4998                 pref_sync_ref = "XXXX Clock";
4999                 break;
5000         }
5001         snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
5002                         pref_sync_ref);
5003
5004         snd_iprintf(buffer, "System Clock Frequency: %d\n",
5005                         hdspm->system_sample_rate);
5006
5007
5008         snd_iprintf(buffer, "--- Status:\n");
5009
5010         x = status & HDSPM_madiSync;
5011         x2 = status2 & HDSPM_wcSync;
5012
5013         snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
5014                         (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
5015                         "NoLock",
5016                         (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
5017                         "NoLock");
5018
5019         switch (hdspm_autosync_ref(hdspm)) {
5020         case HDSPM_AUTOSYNC_FROM_SYNC_IN:
5021                 autosync_ref = "Sync In";
5022                 break;
5023         case HDSPM_AUTOSYNC_FROM_TCO:
5024                 autosync_ref = "TCO";
5025                 break;
5026         case HDSPM_AUTOSYNC_FROM_WORD:
5027                 autosync_ref = "Word Clock";
5028                 break;
5029         case HDSPM_AUTOSYNC_FROM_MADI:
5030                 autosync_ref = "MADI Sync";
5031                 break;
5032         case HDSPM_AUTOSYNC_FROM_NONE:
5033                 autosync_ref = "Input not valid";
5034                 break;
5035         default:
5036                 autosync_ref = "---";
5037                 break;
5038         }
5039         snd_iprintf(buffer,
5040                 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
5041                 autosync_ref, hdspm_external_sample_rate(hdspm),
5042                 (status & HDSPM_madiFreqMask) >> 22,
5043                 (status2 & HDSPM_wcFreqMask) >> 5);
5044
5045         snd_iprintf(buffer, "Input: %s, Mode=%s\n",
5046                 (status & HDSPM_AB_int) ? "Coax" : "Optical",
5047                 (status & HDSPM_RX_64ch) ? "64 channels" :
5048                 "56 channels");
5049
5050         /* call readout function for TCO specific status */
5051         snd_hdspm_proc_read_tco(entry, buffer);
5052
5053         snd_iprintf(buffer, "\n");
5054 }
5055
5056 static void
5057 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
5058                           struct snd_info_buffer *buffer)
5059 {
5060         struct hdspm *hdspm = entry->private_data;
5061         unsigned int status;
5062         unsigned int status2;
5063         unsigned int timecode;
5064         unsigned int wcLock, wcSync;
5065         int pref_syncref;
5066         char *autosync_ref;
5067         int x;
5068
5069         status = hdspm_read(hdspm, HDSPM_statusRegister);
5070         status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5071         timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
5072
5073         snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
5074                     hdspm->card_name, hdspm->card->number + 1,
5075                     hdspm->firmware_rev);
5076
5077         snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
5078                     hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
5079
5080         snd_iprintf(buffer, "--- System ---\n");
5081
5082         snd_iprintf(buffer,
5083                     "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
5084                     status & HDSPM_audioIRQPending,
5085                     (status & HDSPM_midi0IRQPending) ? 1 : 0,
5086                     (status & HDSPM_midi1IRQPending) ? 1 : 0,
5087                     hdspm->irq_count);
5088         snd_iprintf(buffer,
5089                     "HW pointer: id = %d, rawptr = %d (%d->%d) "
5090                     "estimated= %ld (bytes)\n",
5091                     ((status & HDSPM_BufferID) ? 1 : 0),
5092                     (status & HDSPM_BufferPositionMask),
5093                     (status & HDSPM_BufferPositionMask) %
5094                     (2 * (int)hdspm->period_bytes),
5095                     ((status & HDSPM_BufferPositionMask) - 64) %
5096                     (2 * (int)hdspm->period_bytes),
5097                     (long) hdspm_hw_pointer(hdspm) * 4);
5098
5099         snd_iprintf(buffer,
5100                     "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
5101                     hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
5102                     hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
5103                     hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
5104                     hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
5105         snd_iprintf(buffer,
5106                     "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
5107                     hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
5108                     hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
5109         snd_iprintf(buffer,
5110                     "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
5111                     "status2=0x%x\n",
5112                     hdspm->control_register, hdspm->control2_register,
5113                     status, status2);
5114
5115         snd_iprintf(buffer, "--- Settings ---\n");
5116
5117         x = hdspm_get_latency(hdspm);
5118
5119         snd_iprintf(buffer,
5120                     "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5121                     x, (unsigned long) hdspm->period_bytes);
5122
5123         snd_iprintf(buffer, "Line out: %s\n",
5124                     (hdspm->
5125                      control_register & HDSPM_LineOut) ? "on " : "off");
5126
5127         snd_iprintf(buffer,
5128                     "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5129                     (hdspm->
5130                      control_register & HDSPM_clr_tms) ? "on" : "off",
5131                     (hdspm->
5132                      control_register & HDSPM_Emphasis) ? "on" : "off",
5133                     (hdspm->
5134                      control_register & HDSPM_Dolby) ? "on" : "off");
5135
5136
5137         pref_syncref = hdspm_pref_sync_ref(hdspm);
5138         if (pref_syncref == 0)
5139                 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5140         else
5141                 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5142                                 pref_syncref);
5143
5144         snd_iprintf(buffer, "System Clock Frequency: %d\n",
5145                     hdspm->system_sample_rate);
5146
5147         snd_iprintf(buffer, "Double speed: %s\n",
5148                         hdspm->control_register & HDSPM_DS_DoubleWire?
5149                         "Double wire" : "Single wire");
5150         snd_iprintf(buffer, "Quad speed: %s\n",
5151                         hdspm->control_register & HDSPM_QS_DoubleWire?
5152                         "Double wire" :
5153                         hdspm->control_register & HDSPM_QS_QuadWire?
5154                         "Quad wire" : "Single wire");
5155
5156         snd_iprintf(buffer, "--- Status:\n");
5157
5158         wcLock = status & HDSPM_AES32_wcLock;
5159         wcSync = wcLock && (status & HDSPM_AES32_wcSync);
5160
5161         snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
5162                     (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
5163                     HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
5164
5165         for (x = 0; x < 8; x++) {
5166                 snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
5167                             x+1,
5168                             (status2 & (HDSPM_LockAES >> x)) ?
5169                             "Sync   " : "No Lock",
5170                             HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
5171         }
5172
5173         switch (hdspm_autosync_ref(hdspm)) {
5174         case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5175                 autosync_ref = "None"; break;
5176         case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5177                 autosync_ref = "Word Clock"; break;
5178         case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5179                 autosync_ref = "AES1"; break;
5180         case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5181                 autosync_ref = "AES2"; break;
5182         case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5183                 autosync_ref = "AES3"; break;
5184         case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5185                 autosync_ref = "AES4"; break;
5186         case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5187                 autosync_ref = "AES5"; break;
5188         case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5189                 autosync_ref = "AES6"; break;
5190         case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5191                 autosync_ref = "AES7"; break;
5192         case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5193                 autosync_ref = "AES8"; break;
5194         case HDSPM_AES32_AUTOSYNC_FROM_TCO:
5195                 autosync_ref = "TCO"; break;
5196         case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN:
5197                 autosync_ref = "Sync In"; break;
5198         default:
5199                 autosync_ref = "---"; break;
5200         }
5201         snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5202
5203         /* call readout function for TCO specific status */
5204         snd_hdspm_proc_read_tco(entry, buffer);
5205
5206         snd_iprintf(buffer, "\n");
5207 }
5208
5209 static void
5210 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5211                          struct snd_info_buffer *buffer)
5212 {
5213         struct hdspm *hdspm = entry->private_data;
5214         unsigned int status1, status2, status3, control, i;
5215         unsigned int lock, sync;
5216
5217         status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5218         status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5219         status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5220
5221         control = hdspm->control_register;
5222
5223         snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5224         snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5225         snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5226
5227
5228         snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5229
5230         snd_iprintf(buffer, "Clock mode      : %s\n",
5231                 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5232         snd_iprintf(buffer, "System frequency: %d Hz\n",
5233                 hdspm_get_system_sample_rate(hdspm));
5234
5235         snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5236
5237         lock = 0x1;
5238         sync = 0x100;
5239
5240         for (i = 0; i < 8; i++) {
5241                 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5242                                 i,
5243                                 (status1 & lock) ? 1 : 0,
5244                                 (status1 & sync) ? 1 : 0,
5245                                 texts_freq[(status2 >> (i * 4)) & 0xF]);
5246
5247                 lock = lock<<1;
5248                 sync = sync<<1;
5249         }
5250
5251         snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5252                         (status1 & 0x1000000) ? 1 : 0,
5253                         (status1 & 0x2000000) ? 1 : 0,
5254                         texts_freq[(status1 >> 16) & 0xF]);
5255
5256         snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5257                         (status1 & 0x4000000) ? 1 : 0,
5258                         (status1 & 0x8000000) ? 1 : 0,
5259                         texts_freq[(status1 >> 20) & 0xF]);
5260
5261         snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5262                         (status3 & 0x400) ? 1 : 0,
5263                         (status3 & 0x800) ? 1 : 0,
5264                         texts_freq[(status2 >> 12) & 0xF]);
5265
5266 }
5267
5268 #ifdef CONFIG_SND_DEBUG
5269 static void
5270 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5271                           struct snd_info_buffer *buffer)
5272 {
5273         struct hdspm *hdspm = entry->private_data;
5274
5275         int j,i;
5276
5277         for (i = 0; i < 256 /* 1024*64 */; i += j) {
5278                 snd_iprintf(buffer, "0x%08X: ", i);
5279                 for (j = 0; j < 16; j += 4)
5280                         snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5281                 snd_iprintf(buffer, "\n");
5282         }
5283 }
5284 #endif
5285
5286
5287 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5288                           struct snd_info_buffer *buffer)
5289 {
5290         struct hdspm *hdspm = entry->private_data;
5291         int i;
5292
5293         snd_iprintf(buffer, "# generated by hdspm\n");
5294
5295         for (i = 0; i < hdspm->max_channels_in; i++) {
5296                 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5297         }
5298 }
5299
5300 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5301                           struct snd_info_buffer *buffer)
5302 {
5303         struct hdspm *hdspm = entry->private_data;
5304         int i;
5305
5306         snd_iprintf(buffer, "# generated by hdspm\n");
5307
5308         for (i = 0; i < hdspm->max_channels_out; i++) {
5309                 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5310         }
5311 }
5312
5313
5314 static void snd_hdspm_proc_init(struct hdspm *hdspm)
5315 {
5316         struct snd_info_entry *entry;
5317
5318         if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5319                 switch (hdspm->io_type) {
5320                 case AES32:
5321                         snd_info_set_text_ops(entry, hdspm,
5322                                         snd_hdspm_proc_read_aes32);
5323                         break;
5324                 case MADI:
5325                         snd_info_set_text_ops(entry, hdspm,
5326                                         snd_hdspm_proc_read_madi);
5327                         break;
5328                 case MADIface:
5329                         /* snd_info_set_text_ops(entry, hdspm,
5330                          snd_hdspm_proc_read_madiface); */
5331                         break;
5332                 case RayDAT:
5333                         snd_info_set_text_ops(entry, hdspm,
5334                                         snd_hdspm_proc_read_raydat);
5335                         break;
5336                 case AIO:
5337                         break;
5338                 }
5339         }
5340
5341         if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5342                 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5343         }
5344
5345         if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5346                 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5347         }
5348
5349 #ifdef CONFIG_SND_DEBUG
5350         /* debug file to read all hdspm registers */
5351         if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5352                 snd_info_set_text_ops(entry, hdspm,
5353                                 snd_hdspm_proc_read_debug);
5354 #endif
5355 }
5356
5357 /*------------------------------------------------------------
5358    hdspm intitialize
5359  ------------------------------------------------------------*/
5360
5361 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5362 {
5363         /* ASSUMPTION: hdspm->lock is either held, or there is no need to
5364            hold it (e.g. during module initialization).
5365            */
5366
5367         /* set defaults:       */
5368
5369         hdspm->settings_register = 0;
5370
5371         switch (hdspm->io_type) {
5372         case MADI:
5373         case MADIface:
5374                 hdspm->control_register =
5375                         0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5376                 break;
5377
5378         case RayDAT:
5379         case AIO:
5380                 hdspm->settings_register = 0x1 + 0x1000;
5381                 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5382                  * line_out */
5383                 hdspm->control_register =
5384                         0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5385                 break;
5386
5387         case AES32:
5388                 hdspm->control_register =
5389                         HDSPM_ClockModeMaster | /* Master Clock Mode on */
5390                         hdspm_encode_latency(7) | /* latency max=8192samples */
5391                         HDSPM_SyncRef0 |        /* AES1 is syncclock */
5392                         HDSPM_LineOut | /* Analog output in */
5393                         HDSPM_Professional;  /* Professional mode */
5394                 break;
5395         }
5396
5397         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5398
5399         if (AES32 == hdspm->io_type) {
5400                 /* No control2 register for AES32 */
5401 #ifdef SNDRV_BIG_ENDIAN
5402                 hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5403 #else
5404                 hdspm->control2_register = 0;
5405 #endif
5406
5407                 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5408         }
5409         hdspm_compute_period_size(hdspm);
5410
5411         /* silence everything */
5412
5413         all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5414
5415         if (hdspm_is_raydat_or_aio(hdspm))
5416                 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5417
5418         /* set a default rate so that the channel map is set up. */
5419         hdspm_set_rate(hdspm, 48000, 1);
5420
5421         return 0;
5422 }
5423
5424
5425 /*------------------------------------------------------------
5426    interrupt
5427  ------------------------------------------------------------*/
5428
5429 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5430 {
5431         struct hdspm *hdspm = (struct hdspm *) dev_id;
5432         unsigned int status;
5433         int i, audio, midi, schedule = 0;
5434         /* cycles_t now; */
5435
5436         status = hdspm_read(hdspm, HDSPM_statusRegister);
5437
5438         audio = status & HDSPM_audioIRQPending;
5439         midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5440                         HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5441
5442         /* now = get_cycles(); */
5443         /**
5444          *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5445          *          6       4096   ~256053425     ~514672358
5446          *          5       2048   ~128024983     ~257373821
5447          *          4       1024    ~64023706     ~128718089
5448          *          3        512    ~32005945      ~64385999
5449          *          2        256    ~16003039      ~32260176
5450          *          1        128     ~7998738      ~16194507
5451          *          0         64     ~3998231       ~8191558
5452          **/
5453         /*
5454            snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
5455            now-hdspm->last_interrupt, status & 0xFFC0);
5456            hdspm->last_interrupt = now;
5457         */
5458
5459         if (!audio && !midi)
5460                 return IRQ_NONE;
5461
5462         hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5463         hdspm->irq_count++;
5464
5465
5466         if (audio) {
5467                 if (hdspm->capture_substream)
5468                         snd_pcm_period_elapsed(hdspm->capture_substream);
5469
5470                 if (hdspm->playback_substream)
5471                         snd_pcm_period_elapsed(hdspm->playback_substream);
5472         }
5473
5474         if (midi) {
5475                 i = 0;
5476                 while (i < hdspm->midiPorts) {
5477                         if ((hdspm_read(hdspm,
5478                                 hdspm->midi[i].statusIn) & 0xff) &&
5479                                         (status & hdspm->midi[i].irq)) {
5480                                 /* we disable interrupts for this input until
5481                                  * processing is done
5482                                  */
5483                                 hdspm->control_register &= ~hdspm->midi[i].ie;
5484                                 hdspm_write(hdspm, HDSPM_controlRegister,
5485                                                 hdspm->control_register);
5486                                 hdspm->midi[i].pending = 1;
5487                                 schedule = 1;
5488                         }
5489
5490                         i++;
5491                 }
5492
5493                 if (schedule)
5494                         tasklet_hi_schedule(&hdspm->midi_tasklet);
5495         }
5496
5497         return IRQ_HANDLED;
5498 }
5499
5500 /*------------------------------------------------------------
5501    pcm interface
5502   ------------------------------------------------------------*/
5503
5504
5505 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5506                                               *substream)
5507 {
5508         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5509         return hdspm_hw_pointer(hdspm);
5510 }
5511
5512
5513 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5514 {
5515         struct snd_pcm_runtime *runtime = substream->runtime;
5516         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5517         struct snd_pcm_substream *other;
5518
5519         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5520                 other = hdspm->capture_substream;
5521         else
5522                 other = hdspm->playback_substream;
5523
5524         if (hdspm->running)
5525                 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5526         else
5527                 runtime->status->hw_ptr = 0;
5528         if (other) {
5529                 struct snd_pcm_substream *s;
5530                 struct snd_pcm_runtime *oruntime = other->runtime;
5531                 snd_pcm_group_for_each_entry(s, substream) {
5532                         if (s == other) {
5533                                 oruntime->status->hw_ptr =
5534                                         runtime->status->hw_ptr;
5535                                 break;
5536                         }
5537                 }
5538         }
5539         return 0;
5540 }
5541
5542 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5543                                struct snd_pcm_hw_params *params)
5544 {
5545         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5546         int err;
5547         int i;
5548         pid_t this_pid;
5549         pid_t other_pid;
5550
5551         spin_lock_irq(&hdspm->lock);
5552
5553         if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5554                 this_pid = hdspm->playback_pid;
5555                 other_pid = hdspm->capture_pid;
5556         } else {
5557                 this_pid = hdspm->capture_pid;
5558                 other_pid = hdspm->playback_pid;
5559         }
5560
5561         if (other_pid > 0 && this_pid != other_pid) {
5562
5563                 /* The other stream is open, and not by the same
5564                    task as this one. Make sure that the parameters
5565                    that matter are the same.
5566                    */
5567
5568                 if (params_rate(params) != hdspm->system_sample_rate) {
5569                         spin_unlock_irq(&hdspm->lock);
5570                         _snd_pcm_hw_param_setempty(params,
5571                                         SNDRV_PCM_HW_PARAM_RATE);
5572                         return -EBUSY;
5573                 }
5574
5575                 if (params_period_size(params) != hdspm->period_bytes / 4) {
5576                         spin_unlock_irq(&hdspm->lock);
5577                         _snd_pcm_hw_param_setempty(params,
5578                                         SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5579                         return -EBUSY;
5580                 }
5581
5582         }
5583         /* We're fine. */
5584         spin_unlock_irq(&hdspm->lock);
5585
5586         /* how to make sure that the rate matches an externally-set one ?   */
5587
5588         spin_lock_irq(&hdspm->lock);
5589         err = hdspm_set_rate(hdspm, params_rate(params), 0);
5590         if (err < 0) {
5591                 snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
5592                 spin_unlock_irq(&hdspm->lock);
5593                 _snd_pcm_hw_param_setempty(params,
5594                                 SNDRV_PCM_HW_PARAM_RATE);
5595                 return err;
5596         }
5597         spin_unlock_irq(&hdspm->lock);
5598
5599         err = hdspm_set_interrupt_interval(hdspm,
5600                         params_period_size(params));
5601         if (err < 0) {
5602                 snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
5603                 _snd_pcm_hw_param_setempty(params,
5604                                 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5605                 return err;
5606         }
5607
5608         /* Memory allocation, takashi's method, dont know if we should
5609          * spinlock
5610          */
5611         /* malloc all buffer even if not enabled to get sure */
5612         /* Update for MADI rev 204: we need to allocate for all channels,
5613          * otherwise it doesn't work at 96kHz */
5614
5615         err =
5616                 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5617         if (err < 0) {
5618                 snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
5619                 return err;
5620         }
5621
5622         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5623
5624                 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5625                                 params_channels(params));
5626
5627                 for (i = 0; i < params_channels(params); ++i)
5628                         snd_hdspm_enable_out(hdspm, i, 1);
5629
5630                 hdspm->playback_buffer =
5631                         (unsigned char *) substream->runtime->dma_area;
5632                 snd_printdd("Allocated sample buffer for playback at %p\n",
5633                                 hdspm->playback_buffer);
5634         } else {
5635                 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5636                                 params_channels(params));
5637
5638                 for (i = 0; i < params_channels(params); ++i)
5639                         snd_hdspm_enable_in(hdspm, i, 1);
5640
5641                 hdspm->capture_buffer =
5642                         (unsigned char *) substream->runtime->dma_area;
5643                 snd_printdd("Allocated sample buffer for capture at %p\n",
5644                                 hdspm->capture_buffer);
5645         }
5646
5647         /*
5648            snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5649            substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5650            "playback" : "capture",
5651            snd_pcm_sgbuf_get_addr(substream, 0));
5652            */
5653         /*
5654            snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5655            substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5656            "playback" : "capture",
5657            params_rate(params), params_channels(params),
5658            params_buffer_size(params));
5659            */
5660
5661
5662         /*  For AES cards, the float format bit is the same as the
5663          *  preferred sync reference. Since we don't want to break
5664          *  sync settings, we have to skip the remaining part of this
5665          *  function.
5666          */
5667         if (hdspm->io_type == AES32) {
5668                 return 0;
5669         }
5670
5671
5672         /* Switch to native float format if requested */
5673         if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5674                 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5675                         snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5676
5677                 hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5678         } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5679                 if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5680                         snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5681
5682                 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5683         }
5684         hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5685
5686         return 0;
5687 }
5688
5689 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5690 {
5691         int i;
5692         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5693
5694         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5695
5696                 /* params_channels(params) should be enough,
5697                    but to get sure in case of error */
5698                 for (i = 0; i < hdspm->max_channels_out; ++i)
5699                         snd_hdspm_enable_out(hdspm, i, 0);
5700
5701                 hdspm->playback_buffer = NULL;
5702         } else {
5703                 for (i = 0; i < hdspm->max_channels_in; ++i)
5704                         snd_hdspm_enable_in(hdspm, i, 0);
5705
5706                 hdspm->capture_buffer = NULL;
5707
5708         }
5709
5710         snd_pcm_lib_free_pages(substream);
5711
5712         return 0;
5713 }
5714
5715
5716 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5717                 struct snd_pcm_channel_info *info)
5718 {
5719         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5720
5721         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5722                 if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5723                         snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5724                         return -EINVAL;
5725                 }
5726
5727                 if (hdspm->channel_map_out[info->channel] < 0) {
5728                         snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5729                         return -EINVAL;
5730                 }
5731
5732                 info->offset = hdspm->channel_map_out[info->channel] *
5733                         HDSPM_CHANNEL_BUFFER_BYTES;
5734         } else {
5735                 if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5736                         snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5737                         return -EINVAL;
5738                 }
5739
5740                 if (hdspm->channel_map_in[info->channel] < 0) {
5741                         snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5742                         return -EINVAL;
5743                 }
5744
5745                 info->offset = hdspm->channel_map_in[info->channel] *
5746                         HDSPM_CHANNEL_BUFFER_BYTES;
5747         }
5748
5749         info->first = 0;
5750         info->step = 32;
5751         return 0;
5752 }
5753
5754
5755 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5756                 unsigned int cmd, void *arg)
5757 {
5758         switch (cmd) {
5759         case SNDRV_PCM_IOCTL1_RESET:
5760                 return snd_hdspm_reset(substream);
5761
5762         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5763                 {
5764                         struct snd_pcm_channel_info *info = arg;
5765                         return snd_hdspm_channel_info(substream, info);
5766                 }
5767         default:
5768                 break;
5769         }
5770
5771         return snd_pcm_lib_ioctl(substream, cmd, arg);
5772 }
5773
5774 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5775 {
5776         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5777         struct snd_pcm_substream *other;
5778         int running;
5779
5780         spin_lock(&hdspm->lock);
5781         running = hdspm->running;
5782         switch (cmd) {
5783         case SNDRV_PCM_TRIGGER_START:
5784                 running |= 1 << substream->stream;
5785                 break;
5786         case SNDRV_PCM_TRIGGER_STOP:
5787                 running &= ~(1 << substream->stream);
5788                 break;
5789         default:
5790                 snd_BUG();
5791                 spin_unlock(&hdspm->lock);
5792                 return -EINVAL;
5793         }
5794         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5795                 other = hdspm->capture_substream;
5796         else
5797                 other = hdspm->playback_substream;
5798
5799         if (other) {
5800                 struct snd_pcm_substream *s;
5801                 snd_pcm_group_for_each_entry(s, substream) {
5802                         if (s == other) {
5803                                 snd_pcm_trigger_done(s, substream);
5804                                 if (cmd == SNDRV_PCM_TRIGGER_START)
5805                                         running |= 1 << s->stream;
5806                                 else
5807                                         running &= ~(1 << s->stream);
5808                                 goto _ok;
5809                         }
5810                 }
5811                 if (cmd == SNDRV_PCM_TRIGGER_START) {
5812                         if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5813                                         && substream->stream ==
5814                                         SNDRV_PCM_STREAM_CAPTURE)
5815                                 hdspm_silence_playback(hdspm);
5816                 } else {
5817                         if (running &&
5818                                 substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5819                                 hdspm_silence_playback(hdspm);
5820                 }
5821         } else {
5822                 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5823                         hdspm_silence_playback(hdspm);
5824         }
5825 _ok:
5826         snd_pcm_trigger_done(substream, substream);
5827         if (!hdspm->running && running)
5828                 hdspm_start_audio(hdspm);
5829         else if (hdspm->running && !running)
5830                 hdspm_stop_audio(hdspm);
5831         hdspm->running = running;
5832         spin_unlock(&hdspm->lock);
5833
5834         return 0;
5835 }
5836
5837 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5838 {
5839         return 0;
5840 }
5841
5842 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5843         .info = (SNDRV_PCM_INFO_MMAP |
5844                  SNDRV_PCM_INFO_MMAP_VALID |
5845                  SNDRV_PCM_INFO_NONINTERLEAVED |
5846                  SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5847         .formats = SNDRV_PCM_FMTBIT_S32_LE,
5848         .rates = (SNDRV_PCM_RATE_32000 |
5849                   SNDRV_PCM_RATE_44100 |
5850                   SNDRV_PCM_RATE_48000 |
5851                   SNDRV_PCM_RATE_64000 |
5852                   SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5853                   SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5854         .rate_min = 32000,
5855         .rate_max = 192000,
5856         .channels_min = 1,
5857         .channels_max = HDSPM_MAX_CHANNELS,
5858         .buffer_bytes_max =
5859             HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5860         .period_bytes_min = (32 * 4),
5861         .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5862         .periods_min = 2,
5863         .periods_max = 512,
5864         .fifo_size = 0
5865 };
5866
5867 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5868         .info = (SNDRV_PCM_INFO_MMAP |
5869                  SNDRV_PCM_INFO_MMAP_VALID |
5870                  SNDRV_PCM_INFO_NONINTERLEAVED |
5871                  SNDRV_PCM_INFO_SYNC_START),
5872         .formats = SNDRV_PCM_FMTBIT_S32_LE,
5873         .rates = (SNDRV_PCM_RATE_32000 |
5874                   SNDRV_PCM_RATE_44100 |
5875                   SNDRV_PCM_RATE_48000 |
5876                   SNDRV_PCM_RATE_64000 |
5877                   SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5878                   SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5879         .rate_min = 32000,
5880         .rate_max = 192000,
5881         .channels_min = 1,
5882         .channels_max = HDSPM_MAX_CHANNELS,
5883         .buffer_bytes_max =
5884             HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5885         .period_bytes_min = (32 * 4),
5886         .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5887         .periods_min = 2,
5888         .periods_max = 512,
5889         .fifo_size = 0
5890 };
5891
5892 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5893                                            struct snd_pcm_hw_rule *rule)
5894 {
5895         struct hdspm *hdspm = rule->private;
5896         struct snd_interval *c =
5897             hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5898         struct snd_interval *r =
5899             hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5900
5901         if (r->min > 96000 && r->max <= 192000) {
5902                 struct snd_interval t = {
5903                         .min = hdspm->qs_in_channels,
5904                         .max = hdspm->qs_in_channels,
5905                         .integer = 1,
5906                 };
5907                 return snd_interval_refine(c, &t);
5908         } else if (r->min > 48000 && r->max <= 96000) {
5909                 struct snd_interval t = {
5910                         .min = hdspm->ds_in_channels,
5911                         .max = hdspm->ds_in_channels,
5912                         .integer = 1,
5913                 };
5914                 return snd_interval_refine(c, &t);
5915         } else if (r->max < 64000) {
5916                 struct snd_interval t = {
5917                         .min = hdspm->ss_in_channels,
5918                         .max = hdspm->ss_in_channels,
5919                         .integer = 1,
5920                 };
5921                 return snd_interval_refine(c, &t);
5922         }
5923
5924         return 0;
5925 }
5926
5927 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5928                                            struct snd_pcm_hw_rule * rule)
5929 {
5930         struct hdspm *hdspm = rule->private;
5931         struct snd_interval *c =
5932             hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5933         struct snd_interval *r =
5934             hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5935
5936         if (r->min > 96000 && r->max <= 192000) {
5937                 struct snd_interval t = {
5938                         .min = hdspm->qs_out_channels,
5939                         .max = hdspm->qs_out_channels,
5940                         .integer = 1,
5941                 };
5942                 return snd_interval_refine(c, &t);
5943         } else if (r->min > 48000 && r->max <= 96000) {
5944                 struct snd_interval t = {
5945                         .min = hdspm->ds_out_channels,
5946                         .max = hdspm->ds_out_channels,
5947                         .integer = 1,
5948                 };
5949                 return snd_interval_refine(c, &t);
5950         } else if (r->max < 64000) {
5951                 struct snd_interval t = {
5952                         .min = hdspm->ss_out_channels,
5953                         .max = hdspm->ss_out_channels,
5954                         .integer = 1,
5955                 };
5956                 return snd_interval_refine(c, &t);
5957         } else {
5958         }
5959         return 0;
5960 }
5961
5962 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5963                                            struct snd_pcm_hw_rule * rule)
5964 {
5965         struct hdspm *hdspm = rule->private;
5966         struct snd_interval *c =
5967             hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5968         struct snd_interval *r =
5969             hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5970
5971         if (c->min >= hdspm->ss_in_channels) {
5972                 struct snd_interval t = {
5973                         .min = 32000,
5974                         .max = 48000,
5975                         .integer = 1,
5976                 };
5977                 return snd_interval_refine(r, &t);
5978         } else if (c->max <= hdspm->qs_in_channels) {
5979                 struct snd_interval t = {
5980                         .min = 128000,
5981                         .max = 192000,
5982                         .integer = 1,
5983                 };
5984                 return snd_interval_refine(r, &t);
5985         } else if (c->max <= hdspm->ds_in_channels) {
5986                 struct snd_interval t = {
5987                         .min = 64000,
5988                         .max = 96000,
5989                         .integer = 1,
5990                 };
5991                 return snd_interval_refine(r, &t);
5992         }
5993
5994         return 0;
5995 }
5996 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5997                                            struct snd_pcm_hw_rule *rule)
5998 {
5999         struct hdspm *hdspm = rule->private;
6000         struct snd_interval *c =
6001             hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
6002         struct snd_interval *r =
6003             hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
6004
6005         if (c->min >= hdspm->ss_out_channels) {
6006                 struct snd_interval t = {
6007                         .min = 32000,
6008                         .max = 48000,
6009                         .integer = 1,
6010                 };
6011                 return snd_interval_refine(r, &t);
6012         } else if (c->max <= hdspm->qs_out_channels) {
6013                 struct snd_interval t = {
6014                         .min = 128000,
6015                         .max = 192000,
6016                         .integer = 1,
6017                 };
6018                 return snd_interval_refine(r, &t);
6019         } else if (c->max <= hdspm->ds_out_channels) {
6020                 struct snd_interval t = {
6021                         .min = 64000,
6022                         .max = 96000,
6023                         .integer = 1,
6024                 };
6025                 return snd_interval_refine(r, &t);
6026         }
6027
6028         return 0;
6029 }
6030
6031 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
6032                                       struct snd_pcm_hw_rule *rule)
6033 {
6034         unsigned int list[3];
6035         struct hdspm *hdspm = rule->private;
6036         struct snd_interval *c = hw_param_interval(params,
6037                         SNDRV_PCM_HW_PARAM_CHANNELS);
6038
6039         list[0] = hdspm->qs_in_channels;
6040         list[1] = hdspm->ds_in_channels;
6041         list[2] = hdspm->ss_in_channels;
6042         return snd_interval_list(c, 3, list, 0);
6043 }
6044
6045 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
6046                                       struct snd_pcm_hw_rule *rule)
6047 {
6048         unsigned int list[3];
6049         struct hdspm *hdspm = rule->private;
6050         struct snd_interval *c = hw_param_interval(params,
6051                         SNDRV_PCM_HW_PARAM_CHANNELS);
6052
6053         list[0] = hdspm->qs_out_channels;
6054         list[1] = hdspm->ds_out_channels;
6055         list[2] = hdspm->ss_out_channels;
6056         return snd_interval_list(c, 3, list, 0);
6057 }
6058
6059
6060 static unsigned int hdspm_aes32_sample_rates[] = {
6061         32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
6062 };
6063
6064 static struct snd_pcm_hw_constraint_list
6065 hdspm_hw_constraints_aes32_sample_rates = {
6066         .count = ARRAY_SIZE(hdspm_aes32_sample_rates),
6067         .list = hdspm_aes32_sample_rates,
6068         .mask = 0
6069 };
6070
6071 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
6072 {
6073         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6074         struct snd_pcm_runtime *runtime = substream->runtime;
6075
6076         spin_lock_irq(&hdspm->lock);
6077
6078         snd_pcm_set_sync(substream);
6079
6080
6081         runtime->hw = snd_hdspm_playback_subinfo;
6082
6083         if (hdspm->capture_substream == NULL)
6084                 hdspm_stop_audio(hdspm);
6085
6086         hdspm->playback_pid = current->pid;
6087         hdspm->playback_substream = substream;
6088
6089         spin_unlock_irq(&hdspm->lock);
6090
6091         snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6092         snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6093
6094         switch (hdspm->io_type) {
6095         case AIO:
6096         case RayDAT:
6097                 snd_pcm_hw_constraint_minmax(runtime,
6098                                              SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6099                                              32, 4096);
6100                 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
6101                 snd_pcm_hw_constraint_minmax(runtime,
6102                                              SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6103                                              16384, 16384);
6104                 break;
6105
6106         default:
6107                 snd_pcm_hw_constraint_minmax(runtime,
6108                                              SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6109                                              64, 8192);
6110                 break;
6111         }
6112
6113         if (AES32 == hdspm->io_type) {
6114                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6115                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6116                                 &hdspm_hw_constraints_aes32_sample_rates);
6117         } else {
6118                 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6119                                 snd_hdspm_hw_rule_rate_out_channels, hdspm,
6120                                 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6121         }
6122
6123         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6124                         snd_hdspm_hw_rule_out_channels, hdspm,
6125                         SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6126
6127         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6128                         snd_hdspm_hw_rule_out_channels_rate, hdspm,
6129                         SNDRV_PCM_HW_PARAM_RATE, -1);
6130
6131         return 0;
6132 }
6133
6134 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
6135 {
6136         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6137
6138         spin_lock_irq(&hdspm->lock);
6139
6140         hdspm->playback_pid = -1;
6141         hdspm->playback_substream = NULL;
6142
6143         spin_unlock_irq(&hdspm->lock);
6144
6145         return 0;
6146 }
6147
6148
6149 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
6150 {
6151         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6152         struct snd_pcm_runtime *runtime = substream->runtime;
6153
6154         spin_lock_irq(&hdspm->lock);
6155         snd_pcm_set_sync(substream);
6156         runtime->hw = snd_hdspm_capture_subinfo;
6157
6158         if (hdspm->playback_substream == NULL)
6159                 hdspm_stop_audio(hdspm);
6160
6161         hdspm->capture_pid = current->pid;
6162         hdspm->capture_substream = substream;
6163
6164         spin_unlock_irq(&hdspm->lock);
6165
6166         snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6167         snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6168
6169         switch (hdspm->io_type) {
6170         case AIO:
6171         case RayDAT:
6172                 snd_pcm_hw_constraint_minmax(runtime,
6173                                              SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6174                                              32, 4096);
6175                 snd_pcm_hw_constraint_minmax(runtime,
6176                                              SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6177                                              16384, 16384);
6178                 break;
6179
6180         default:
6181                 snd_pcm_hw_constraint_minmax(runtime,
6182                                              SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6183                                              64, 8192);
6184                 break;
6185         }
6186
6187         if (AES32 == hdspm->io_type) {
6188                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6189                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6190                                 &hdspm_hw_constraints_aes32_sample_rates);
6191         } else {
6192                 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6193                                 snd_hdspm_hw_rule_rate_in_channels, hdspm,
6194                                 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6195         }
6196
6197         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6198                         snd_hdspm_hw_rule_in_channels, hdspm,
6199                         SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6200
6201         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6202                         snd_hdspm_hw_rule_in_channels_rate, hdspm,
6203                         SNDRV_PCM_HW_PARAM_RATE, -1);
6204
6205         return 0;
6206 }
6207
6208 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
6209 {
6210         struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6211
6212         spin_lock_irq(&hdspm->lock);
6213
6214         hdspm->capture_pid = -1;
6215         hdspm->capture_substream = NULL;
6216
6217         spin_unlock_irq(&hdspm->lock);
6218         return 0;
6219 }
6220
6221 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6222 {
6223         /* we have nothing to initialize but the call is required */
6224         return 0;
6225 }
6226
6227 static inline int copy_u32_le(void __user *dest, void __iomem *src)
6228 {
6229         u32 val = readl(src);
6230         return copy_to_user(dest, &val, 4);
6231 }
6232
6233 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
6234                 unsigned int cmd, unsigned long arg)
6235 {
6236         void __user *argp = (void __user *)arg;
6237         struct hdspm *hdspm = hw->private_data;
6238         struct hdspm_mixer_ioctl mixer;
6239         struct hdspm_config info;
6240         struct hdspm_status status;
6241         struct hdspm_version hdspm_version;
6242         struct hdspm_peak_rms *levels;
6243         struct hdspm_ltc ltc;
6244         unsigned int statusregister;
6245         long unsigned int s;
6246         int i = 0;
6247
6248         switch (cmd) {
6249
6250         case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
6251                 levels = &hdspm->peak_rms;
6252                 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
6253                         levels->input_peaks[i] =
6254                                 readl(hdspm->iobase +
6255                                                 HDSPM_MADI_INPUT_PEAK + i*4);
6256                         levels->playback_peaks[i] =
6257                                 readl(hdspm->iobase +
6258                                                 HDSPM_MADI_PLAYBACK_PEAK + i*4);
6259                         levels->output_peaks[i] =
6260                                 readl(hdspm->iobase +
6261                                                 HDSPM_MADI_OUTPUT_PEAK + i*4);
6262
6263                         levels->input_rms[i] =
6264                                 ((uint64_t) readl(hdspm->iobase +
6265                                         HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6266                                 (uint64_t) readl(hdspm->iobase +
6267                                                 HDSPM_MADI_INPUT_RMS_L + i*4);
6268                         levels->playback_rms[i] =
6269                                 ((uint64_t)readl(hdspm->iobase +
6270                                         HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6271                                 (uint64_t)readl(hdspm->iobase +
6272                                         HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6273                         levels->output_rms[i] =
6274                                 ((uint64_t)readl(hdspm->iobase +
6275                                         HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6276                                 (uint64_t)readl(hdspm->iobase +
6277                                                 HDSPM_MADI_OUTPUT_RMS_L + i*4);
6278                 }
6279
6280                 if (hdspm->system_sample_rate > 96000) {
6281                         levels->speed = qs;
6282                 } else if (hdspm->system_sample_rate > 48000) {
6283                         levels->speed = ds;
6284                 } else {
6285                         levels->speed = ss;
6286                 }
6287                 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6288
6289                 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
6290                 if (0 != s) {
6291                         /* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
6292                          [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6293                          */
6294                         return -EFAULT;
6295                 }
6296                 break;
6297
6298         case SNDRV_HDSPM_IOCTL_GET_LTC:
6299                 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6300                 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6301                 if (i & HDSPM_TCO1_LTC_Input_valid) {
6302                         switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6303                                 HDSPM_TCO1_LTC_Format_MSB)) {
6304                         case 0:
6305                                 ltc.format = fps_24;
6306                                 break;
6307                         case HDSPM_TCO1_LTC_Format_LSB:
6308                                 ltc.format = fps_25;
6309                                 break;
6310                         case HDSPM_TCO1_LTC_Format_MSB:
6311                                 ltc.format = fps_2997;
6312                                 break;
6313                         default:
6314                                 ltc.format = fps_30;
6315                                 break;
6316                         }
6317                         if (i & HDSPM_TCO1_set_drop_frame_flag) {
6318                                 ltc.frame = drop_frame;
6319                         } else {
6320                                 ltc.frame = full_frame;
6321                         }
6322                 } else {
6323                         ltc.format = format_invalid;
6324                         ltc.frame = frame_invalid;
6325                 }
6326                 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6327                         ltc.input_format = ntsc;
6328                 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6329                         ltc.input_format = pal;
6330                 } else {
6331                         ltc.input_format = no_video;
6332                 }
6333
6334                 s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6335                 if (0 != s) {
6336                         /*
6337                          snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6338                         return -EFAULT;
6339                 }
6340
6341                 break;
6342
6343         case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6344
6345                 memset(&info, 0, sizeof(info));
6346                 spin_lock_irq(&hdspm->lock);
6347                 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6348                 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6349
6350                 info.system_sample_rate = hdspm->system_sample_rate;
6351                 info.autosync_sample_rate =
6352                         hdspm_external_sample_rate(hdspm);
6353                 info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6354                 info.clock_source = hdspm_clock_source(hdspm);
6355                 info.autosync_ref = hdspm_autosync_ref(hdspm);
6356                 info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
6357                 info.passthru = 0;
6358                 spin_unlock_irq(&hdspm->lock);
6359                 if (copy_to_user(argp, &info, sizeof(info)))
6360                         return -EFAULT;
6361                 break;
6362
6363         case SNDRV_HDSPM_IOCTL_GET_STATUS:
6364                 memset(&status, 0, sizeof(status));
6365
6366                 status.card_type = hdspm->io_type;
6367
6368                 status.autosync_source = hdspm_autosync_ref(hdspm);
6369
6370                 status.card_clock = 110069313433624ULL;
6371                 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6372
6373                 switch (hdspm->io_type) {
6374                 case MADI:
6375                 case MADIface:
6376                         status.card_specific.madi.sync_wc =
6377                                 hdspm_wc_sync_check(hdspm);
6378                         status.card_specific.madi.sync_madi =
6379                                 hdspm_madi_sync_check(hdspm);
6380                         status.card_specific.madi.sync_tco =
6381                                 hdspm_tco_sync_check(hdspm);
6382                         status.card_specific.madi.sync_in =
6383                                 hdspm_sync_in_sync_check(hdspm);
6384
6385                         statusregister =
6386                                 hdspm_read(hdspm, HDSPM_statusRegister);
6387                         status.card_specific.madi.madi_input =
6388                                 (statusregister & HDSPM_AB_int) ? 1 : 0;
6389                         status.card_specific.madi.channel_format =
6390                                 (statusregister & HDSPM_RX_64ch) ? 1 : 0;
6391                         /* TODO: Mac driver sets it when f_s>48kHz */
6392                         status.card_specific.madi.frame_format = 0;
6393
6394                 default:
6395                         break;
6396                 }
6397
6398                 if (copy_to_user(argp, &status, sizeof(status)))
6399                         return -EFAULT;
6400
6401
6402                 break;
6403
6404         case SNDRV_HDSPM_IOCTL_GET_VERSION:
6405                 memset(&hdspm_version, 0, sizeof(hdspm_version));
6406
6407                 hdspm_version.card_type = hdspm->io_type;
6408                 strncpy(hdspm_version.cardname, hdspm->card_name,
6409                                 sizeof(hdspm_version.cardname));
6410                 hdspm_version.serial = hdspm->serial;
6411                 hdspm_version.firmware_rev = hdspm->firmware_rev;
6412                 hdspm_version.addons = 0;
6413                 if (hdspm->tco)
6414                         hdspm_version.addons |= HDSPM_ADDON_TCO;
6415
6416                 if (copy_to_user(argp, &hdspm_version,
6417                                         sizeof(hdspm_version)))
6418                         return -EFAULT;
6419                 break;
6420
6421         case SNDRV_HDSPM_IOCTL_GET_MIXER:
6422                 if (copy_from_user(&mixer, argp, sizeof(mixer)))
6423                         return -EFAULT;
6424                 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6425                                         sizeof(struct hdspm_mixer)))
6426                         return -EFAULT;
6427                 break;
6428
6429         default:
6430                 return -EINVAL;
6431         }
6432         return 0;
6433 }
6434
6435 static struct snd_pcm_ops snd_hdspm_playback_ops = {
6436         .open = snd_hdspm_playback_open,
6437         .close = snd_hdspm_playback_release,
6438         .ioctl = snd_hdspm_ioctl,
6439         .hw_params = snd_hdspm_hw_params,
6440         .hw_free = snd_hdspm_hw_free,
6441         .prepare = snd_hdspm_prepare,
6442         .trigger = snd_hdspm_trigger,
6443         .pointer = snd_hdspm_hw_pointer,
6444         .page = snd_pcm_sgbuf_ops_page,
6445 };
6446
6447 static struct snd_pcm_ops snd_hdspm_capture_ops = {
6448         .open = snd_hdspm_capture_open,
6449         .close = snd_hdspm_capture_release,
6450         .ioctl = snd_hdspm_ioctl,
6451         .hw_params = snd_hdspm_hw_params,
6452         .hw_free = snd_hdspm_hw_free,
6453         .prepare = snd_hdspm_prepare,
6454         .trigger = snd_hdspm_trigger,
6455         .pointer = snd_hdspm_hw_pointer,
6456         .page = snd_pcm_sgbuf_ops_page,
6457 };
6458
6459 static int snd_hdspm_create_hwdep(struct snd_card *card,
6460                                   struct hdspm *hdspm)
6461 {
6462         struct snd_hwdep *hw;
6463         int err;
6464
6465         err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6466         if (err < 0)
6467                 return err;
6468
6469         hdspm->hwdep = hw;
6470         hw->private_data = hdspm;
6471         strcpy(hw->name, "HDSPM hwdep interface");
6472
6473         hw->ops.open = snd_hdspm_hwdep_dummy_op;
6474         hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6475         hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6476         hw->ops.release = snd_hdspm_hwdep_dummy_op;
6477
6478         return 0;
6479 }
6480
6481
6482 /*------------------------------------------------------------
6483    memory interface
6484  ------------------------------------------------------------*/
6485 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6486 {
6487         int err;
6488         struct snd_pcm *pcm;
6489         size_t wanted;
6490
6491         pcm = hdspm->pcm;
6492
6493         wanted = HDSPM_DMA_AREA_BYTES;
6494
6495         err =
6496              snd_pcm_lib_preallocate_pages_for_all(pcm,
6497                                                    SNDRV_DMA_TYPE_DEV_SG,
6498                                                    snd_dma_pci_data(hdspm->pci),
6499                                                    wanted,
6500                                                    wanted);
6501         if (err < 0) {
6502                 snd_printdd("Could not preallocate %zd Bytes\n", wanted);
6503
6504                 return err;
6505         } else
6506                 snd_printdd(" Preallocated %zd Bytes\n", wanted);
6507
6508         return 0;
6509 }
6510
6511
6512 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6513                             struct snd_pcm_substream *substream,
6514                              unsigned int reg, int channels)
6515 {
6516         int i;
6517
6518         /* continuous memory segment */
6519         for (i = 0; i < (channels * 16); i++)
6520                 hdspm_write(hdspm, reg + 4 * i,
6521                                 snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6522 }
6523
6524
6525 /* ------------- ALSA Devices ---------------------------- */
6526 static int snd_hdspm_create_pcm(struct snd_card *card,
6527                                 struct hdspm *hdspm)
6528 {
6529         struct snd_pcm *pcm;
6530         int err;
6531
6532         err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6533         if (err < 0)
6534                 return err;
6535
6536         hdspm->pcm = pcm;
6537         pcm->private_data = hdspm;
6538         strcpy(pcm->name, hdspm->card_name);
6539
6540         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6541                         &snd_hdspm_playback_ops);
6542         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6543                         &snd_hdspm_capture_ops);
6544
6545         pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6546
6547         err = snd_hdspm_preallocate_memory(hdspm);
6548         if (err < 0)
6549                 return err;
6550
6551         return 0;
6552 }
6553
6554 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6555 {
6556         int i;
6557
6558         for (i = 0; i < hdspm->midiPorts; i++)
6559                 snd_hdspm_flush_midi_input(hdspm, i);
6560 }
6561
6562 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6563                                          struct hdspm *hdspm)
6564 {
6565         int err, i;
6566
6567         snd_printdd("Create card...\n");
6568         err = snd_hdspm_create_pcm(card, hdspm);
6569         if (err < 0)
6570                 return err;
6571
6572         i = 0;
6573         while (i < hdspm->midiPorts) {
6574                 err = snd_hdspm_create_midi(card, hdspm, i);
6575                 if (err < 0) {
6576                         return err;
6577                 }
6578                 i++;
6579         }
6580
6581         err = snd_hdspm_create_controls(card, hdspm);
6582         if (err < 0)
6583                 return err;
6584
6585         err = snd_hdspm_create_hwdep(card, hdspm);
6586         if (err < 0)
6587                 return err;
6588
6589         snd_printdd("proc init...\n");
6590         snd_hdspm_proc_init(hdspm);
6591
6592         hdspm->system_sample_rate = -1;
6593         hdspm->last_external_sample_rate = -1;
6594         hdspm->last_internal_sample_rate = -1;
6595         hdspm->playback_pid = -1;
6596         hdspm->capture_pid = -1;
6597         hdspm->capture_substream = NULL;
6598         hdspm->playback_substream = NULL;
6599
6600         snd_printdd("Set defaults...\n");
6601         err = snd_hdspm_set_defaults(hdspm);
6602         if (err < 0)
6603                 return err;
6604
6605         snd_printdd("Update mixer controls...\n");
6606         hdspm_update_simple_mixer_controls(hdspm);
6607
6608         snd_printdd("Initializeing complete ???\n");
6609
6610         err = snd_card_register(card);
6611         if (err < 0) {
6612                 snd_printk(KERN_ERR "HDSPM: error registering card\n");
6613                 return err;
6614         }
6615
6616         snd_printdd("... yes now\n");
6617
6618         return 0;
6619 }
6620
6621 static int snd_hdspm_create(struct snd_card *card,
6622                             struct hdspm *hdspm)
6623 {
6624
6625         struct pci_dev *pci = hdspm->pci;
6626         int err;
6627         unsigned long io_extent;
6628
6629         hdspm->irq = -1;
6630         hdspm->card = card;
6631
6632         spin_lock_init(&hdspm->lock);
6633
6634         pci_read_config_word(hdspm->pci,
6635                         PCI_CLASS_REVISION, &hdspm->firmware_rev);
6636
6637         strcpy(card->mixername, "Xilinx FPGA");
6638         strcpy(card->driver, "HDSPM");
6639
6640         switch (hdspm->firmware_rev) {
6641         case HDSPM_RAYDAT_REV:
6642                 hdspm->io_type = RayDAT;
6643                 hdspm->card_name = "RME RayDAT";
6644                 hdspm->midiPorts = 2;
6645                 break;
6646         case HDSPM_AIO_REV:
6647                 hdspm->io_type = AIO;
6648                 hdspm->card_name = "RME AIO";
6649                 hdspm->midiPorts = 1;
6650                 break;
6651         case HDSPM_MADIFACE_REV:
6652                 hdspm->io_type = MADIface;
6653                 hdspm->card_name = "RME MADIface";
6654                 hdspm->midiPorts = 1;
6655                 break;
6656         default:
6657                 if ((hdspm->firmware_rev == 0xf0) ||
6658                         ((hdspm->firmware_rev >= 0xe6) &&
6659                                         (hdspm->firmware_rev <= 0xea))) {
6660                         hdspm->io_type = AES32;
6661                         hdspm->card_name = "RME AES32";
6662                         hdspm->midiPorts = 2;
6663                 } else if ((hdspm->firmware_rev == 0xd2) ||
6664                         ((hdspm->firmware_rev >= 0xc8)  &&
6665                                 (hdspm->firmware_rev <= 0xcf))) {
6666                         hdspm->io_type = MADI;
6667                         hdspm->card_name = "RME MADI";
6668                         hdspm->midiPorts = 3;
6669                 } else {
6670                         snd_printk(KERN_ERR
6671                                 "HDSPM: unknown firmware revision %x\n",
6672                                 hdspm->firmware_rev);
6673                         return -ENODEV;
6674                 }
6675         }
6676
6677         err = pci_enable_device(pci);
6678         if (err < 0)
6679                 return err;
6680
6681         pci_set_master(hdspm->pci);
6682
6683         err = pci_request_regions(pci, "hdspm");
6684         if (err < 0)
6685                 return err;
6686
6687         hdspm->port = pci_resource_start(pci, 0);
6688         io_extent = pci_resource_len(pci, 0);
6689
6690         snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
6691                         hdspm->port, hdspm->port + io_extent - 1);
6692
6693         hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6694         if (!hdspm->iobase) {
6695                 snd_printk(KERN_ERR "HDSPM: "
6696                                 "unable to remap region 0x%lx-0x%lx\n",
6697                                 hdspm->port, hdspm->port + io_extent - 1);
6698                 return -EBUSY;
6699         }
6700         snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
6701                         (unsigned long)hdspm->iobase, hdspm->port,
6702                         hdspm->port + io_extent - 1);
6703
6704         if (request_irq(pci->irq, snd_hdspm_interrupt,
6705                         IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6706                 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6707                 return -EBUSY;
6708         }
6709
6710         snd_printdd("use IRQ %d\n", pci->irq);
6711
6712         hdspm->irq = pci->irq;
6713
6714         snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
6715                         sizeof(struct hdspm_mixer));
6716         hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6717         if (!hdspm->mixer) {
6718                 snd_printk(KERN_ERR "HDSPM: "
6719                                 "unable to kmalloc Mixer memory of %d Bytes\n",
6720                                 (int)sizeof(struct hdspm_mixer));
6721                 return -ENOMEM;
6722         }
6723
6724         hdspm->port_names_in = NULL;
6725         hdspm->port_names_out = NULL;
6726
6727         switch (hdspm->io_type) {
6728         case AES32:
6729                 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6730                 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6731                 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6732
6733                 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6734                         channel_map_aes32;
6735                 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6736                         channel_map_aes32;
6737                 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6738                         channel_map_aes32;
6739                 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6740                         texts_ports_aes32;
6741                 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6742                         texts_ports_aes32;
6743                 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6744                         texts_ports_aes32;
6745
6746                 hdspm->max_channels_out = hdspm->max_channels_in =
6747                         AES32_CHANNELS;
6748                 hdspm->port_names_in = hdspm->port_names_out =
6749                         texts_ports_aes32;
6750                 hdspm->channel_map_in = hdspm->channel_map_out =
6751                         channel_map_aes32;
6752
6753                 break;
6754
6755         case MADI:
6756         case MADIface:
6757                 hdspm->ss_in_channels = hdspm->ss_out_channels =
6758                         MADI_SS_CHANNELS;
6759                 hdspm->ds_in_channels = hdspm->ds_out_channels =
6760                         MADI_DS_CHANNELS;
6761                 hdspm->qs_in_channels = hdspm->qs_out_channels =
6762                         MADI_QS_CHANNELS;
6763
6764                 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6765                         channel_map_unity_ss;
6766                 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6767                         channel_map_unity_ss;
6768                 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6769                         channel_map_unity_ss;
6770
6771                 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6772                         texts_ports_madi;
6773                 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6774                         texts_ports_madi;
6775                 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6776                         texts_ports_madi;
6777                 break;
6778
6779         case AIO:
6780                 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6781                 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6782                 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6783                 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6784                 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6785                 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6786
6787                 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6788                         snd_printk(KERN_INFO "HDSPM: AEB input board found\n");
6789                         hdspm->ss_in_channels += 4;
6790                         hdspm->ds_in_channels += 4;
6791                         hdspm->qs_in_channels += 4;
6792                 }
6793
6794                 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) {
6795                         snd_printk(KERN_INFO "HDSPM: AEB output board found\n");
6796                         hdspm->ss_out_channels += 4;
6797                         hdspm->ds_out_channels += 4;
6798                         hdspm->qs_out_channels += 4;
6799                 }
6800
6801                 hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6802                 hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6803                 hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6804
6805                 hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6806                 hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6807                 hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6808
6809                 hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6810                 hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6811                 hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6812                 hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6813                 hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6814                 hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6815
6816                 break;
6817
6818         case RayDAT:
6819                 hdspm->ss_in_channels = hdspm->ss_out_channels =
6820                         RAYDAT_SS_CHANNELS;
6821                 hdspm->ds_in_channels = hdspm->ds_out_channels =
6822                         RAYDAT_DS_CHANNELS;
6823                 hdspm->qs_in_channels = hdspm->qs_out_channels =
6824                         RAYDAT_QS_CHANNELS;
6825
6826                 hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6827                 hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6828
6829                 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6830                         channel_map_raydat_ss;
6831                 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6832                         channel_map_raydat_ds;
6833                 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6834                         channel_map_raydat_qs;
6835                 hdspm->channel_map_in = hdspm->channel_map_out =
6836                         channel_map_raydat_ss;
6837
6838                 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6839                         texts_ports_raydat_ss;
6840                 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6841                         texts_ports_raydat_ds;
6842                 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6843                         texts_ports_raydat_qs;
6844
6845
6846                 break;
6847
6848         }
6849
6850         /* TCO detection */
6851         switch (hdspm->io_type) {
6852         case AIO:
6853         case RayDAT:
6854                 if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6855                                 HDSPM_s2_tco_detect) {
6856                         hdspm->midiPorts++;
6857                         hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6858                                         GFP_KERNEL);
6859                         if (NULL != hdspm->tco) {
6860                                 hdspm_tco_write(hdspm);
6861                         }
6862                         snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6863                 } else {
6864                         hdspm->tco = NULL;
6865                 }
6866                 break;
6867
6868         case MADI:
6869         case AES32:
6870                 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6871                         hdspm->midiPorts++;
6872                         hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6873                                         GFP_KERNEL);
6874                         if (NULL != hdspm->tco) {
6875                                 hdspm_tco_write(hdspm);
6876                         }
6877                         snd_printk(KERN_INFO "HDSPM: MADI/AES TCO module found\n");
6878                 } else {
6879                         hdspm->tco = NULL;
6880                 }
6881                 break;
6882
6883         default:
6884                 hdspm->tco = NULL;
6885         }
6886
6887         /* texts */
6888         switch (hdspm->io_type) {
6889         case AES32:
6890                 if (hdspm->tco) {
6891                         hdspm->texts_autosync = texts_autosync_aes_tco;
6892                         hdspm->texts_autosync_items =
6893                                 ARRAY_SIZE(texts_autosync_aes_tco);
6894                 } else {
6895                         hdspm->texts_autosync = texts_autosync_aes;
6896                         hdspm->texts_autosync_items =
6897                                 ARRAY_SIZE(texts_autosync_aes);
6898                 }
6899                 break;
6900
6901         case MADI:
6902                 if (hdspm->tco) {
6903                         hdspm->texts_autosync = texts_autosync_madi_tco;
6904                         hdspm->texts_autosync_items = 4;
6905                 } else {
6906                         hdspm->texts_autosync = texts_autosync_madi;
6907                         hdspm->texts_autosync_items = 3;
6908                 }
6909                 break;
6910
6911         case MADIface:
6912
6913                 break;
6914
6915         case RayDAT:
6916                 if (hdspm->tco) {
6917                         hdspm->texts_autosync = texts_autosync_raydat_tco;
6918                         hdspm->texts_autosync_items = 9;
6919                 } else {
6920                         hdspm->texts_autosync = texts_autosync_raydat;
6921                         hdspm->texts_autosync_items = 8;
6922                 }
6923                 break;
6924
6925         case AIO:
6926                 if (hdspm->tco) {
6927                         hdspm->texts_autosync = texts_autosync_aio_tco;
6928                         hdspm->texts_autosync_items = 6;
6929                 } else {
6930                         hdspm->texts_autosync = texts_autosync_aio;
6931                         hdspm->texts_autosync_items = 5;
6932                 }
6933                 break;
6934
6935         }
6936
6937         tasklet_init(&hdspm->midi_tasklet,
6938                         hdspm_midi_tasklet, (unsigned long) hdspm);
6939
6940
6941         if (hdspm->io_type != MADIface) {
6942                 hdspm->serial = (hdspm_read(hdspm,
6943                                 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6944                 /* id contains either a user-provided value or the default
6945                  * NULL. If it's the default, we're safe to
6946                  * fill card->id with the serial number.
6947                  *
6948                  * If the serial number is 0xFFFFFF, then we're dealing with
6949                  * an old PCI revision that comes without a sane number. In
6950                  * this case, we don't set card->id to avoid collisions
6951                  * when running with multiple cards.
6952                  */
6953                 if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6954                         sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6955                         snd_card_set_id(card, card->id);
6956                 }
6957         }
6958
6959         snd_printdd("create alsa devices.\n");
6960         err = snd_hdspm_create_alsa_devices(card, hdspm);
6961         if (err < 0)
6962                 return err;
6963
6964         snd_hdspm_initialize_midi_flush(hdspm);
6965
6966         return 0;
6967 }
6968
6969
6970 static int snd_hdspm_free(struct hdspm * hdspm)
6971 {
6972
6973         if (hdspm->port) {
6974
6975                 /* stop th audio, and cancel all interrupts */
6976                 hdspm->control_register &=
6977                     ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6978                       HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6979                       HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6980                 hdspm_write(hdspm, HDSPM_controlRegister,
6981                             hdspm->control_register);
6982         }
6983
6984         if (hdspm->irq >= 0)
6985                 free_irq(hdspm->irq, (void *) hdspm);
6986
6987         kfree(hdspm->mixer);
6988
6989         if (hdspm->iobase)
6990                 iounmap(hdspm->iobase);
6991
6992         if (hdspm->port)
6993                 pci_release_regions(hdspm->pci);
6994
6995         pci_disable_device(hdspm->pci);
6996         return 0;
6997 }
6998
6999
7000 static void snd_hdspm_card_free(struct snd_card *card)
7001 {
7002         struct hdspm *hdspm = card->private_data;
7003
7004         if (hdspm)
7005                 snd_hdspm_free(hdspm);
7006 }
7007
7008
7009 static int snd_hdspm_probe(struct pci_dev *pci,
7010                            const struct pci_device_id *pci_id)
7011 {
7012         static int dev;
7013         struct hdspm *hdspm;
7014         struct snd_card *card;
7015         int err;
7016
7017         if (dev >= SNDRV_CARDS)
7018                 return -ENODEV;
7019         if (!enable[dev]) {
7020                 dev++;
7021                 return -ENOENT;
7022         }
7023
7024         err = snd_card_create(index[dev], id[dev],
7025                         THIS_MODULE, sizeof(struct hdspm), &card);
7026         if (err < 0)
7027                 return err;
7028
7029         hdspm = card->private_data;
7030         card->private_free = snd_hdspm_card_free;
7031         hdspm->dev = dev;
7032         hdspm->pci = pci;
7033
7034         snd_card_set_dev(card, &pci->dev);
7035
7036         err = snd_hdspm_create(card, hdspm);
7037         if (err < 0) {
7038                 snd_card_free(card);
7039                 return err;
7040         }
7041
7042         if (hdspm->io_type != MADIface) {
7043                 sprintf(card->shortname, "%s_%x",
7044                         hdspm->card_name,
7045                         hdspm->serial);
7046                 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
7047                         hdspm->card_name,
7048                         hdspm->serial,
7049                         hdspm->port, hdspm->irq);
7050         } else {
7051                 sprintf(card->shortname, "%s", hdspm->card_name);
7052                 sprintf(card->longname, "%s at 0x%lx, irq %d",
7053                                 hdspm->card_name, hdspm->port, hdspm->irq);
7054         }
7055
7056         err = snd_card_register(card);
7057         if (err < 0) {
7058                 snd_card_free(card);
7059                 return err;
7060         }
7061
7062         pci_set_drvdata(pci, card);
7063
7064         dev++;
7065         return 0;
7066 }
7067
7068 static void snd_hdspm_remove(struct pci_dev *pci)
7069 {
7070         snd_card_free(pci_get_drvdata(pci));
7071 }
7072
7073 static struct pci_driver hdspm_driver = {
7074         .name = KBUILD_MODNAME,
7075         .id_table = snd_hdspm_ids,
7076         .probe = snd_hdspm_probe,
7077         .remove = snd_hdspm_remove,
7078 };
7079
7080 module_pci_driver(hdspm_driver);