]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - sound/ppc/pmac.c
Merge branch 'work-fixes'
[karo-tx-linux.git] / sound / ppc / pmac.c
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <sound/core.h>
33 #include "pmac.h"
34 #include <sound/pcm_params.h>
35 #include <asm/pmac_feature.h>
36 #include <asm/pci-bridge.h>
37
38
39 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
40 static int awacs_freqs[8] = {
41         44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
42 };
43 /* fixed frequency table for tumbler */
44 static int tumbler_freqs[1] = {
45         44100
46 };
47
48 /*
49  * allocate DBDMA command arrays
50  */
51 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
52 {
53         unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
54
55         rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
56                                         &rec->dma_base, GFP_KERNEL);
57         if (rec->space == NULL)
58                 return -ENOMEM;
59         rec->size = size;
60         memset(rec->space, 0, rsize);
61         rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
62         rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
63
64         return 0;
65 }
66
67 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
68 {
69         if (rec) {
70                 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
71
72                 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
73         }
74 }
75
76
77 /*
78  * pcm stuff
79  */
80
81 /*
82  * look up frequency table
83  */
84
85 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
86 {
87         int i, ok, found;
88
89         ok = rec->cur_freqs;
90         if (rate > chip->freq_table[0])
91                 return 0;
92         found = 0;
93         for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
94                 if (! (ok & 1)) continue;
95                 found = i;
96                 if (rate >= chip->freq_table[i])
97                         break;
98         }
99         return found;
100 }
101
102 /*
103  * check whether another stream is active
104  */
105 static inline int another_stream(int stream)
106 {
107         return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
108                 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
109 }
110
111 /*
112  * allocate buffers
113  */
114 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
115                                   struct snd_pcm_hw_params *hw_params)
116 {
117         return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
118 }
119
120 /*
121  * release buffers
122  */
123 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
124 {
125         snd_pcm_lib_free_pages(subs);
126         return 0;
127 }
128
129 /*
130  * get a stream of the opposite direction
131  */
132 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
133 {
134         switch (stream) {
135         case SNDRV_PCM_STREAM_PLAYBACK:
136                 return &chip->playback;
137         case SNDRV_PCM_STREAM_CAPTURE:
138                 return &chip->capture;
139         default:
140                 snd_BUG();
141                 return NULL;
142         }
143 }
144
145 /*
146  * wait while run status is on
147  */
148 static inline void
149 snd_pmac_wait_ack(struct pmac_stream *rec)
150 {
151         int timeout = 50000;
152         while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
153                 udelay(1);
154 }
155
156 /*
157  * set the format and rate to the chip.
158  * call the lowlevel function if defined (e.g. for AWACS).
159  */
160 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
161 {
162         /* set up frequency and format */
163         out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
164         out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
165         if (chip->set_format)
166                 chip->set_format(chip);
167 }
168
169 /*
170  * stop the DMA transfer
171  */
172 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
173 {
174         out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
175         snd_pmac_wait_ack(rec);
176 }
177
178 /*
179  * set the command pointer address
180  */
181 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
182 {
183         out_le32(&rec->dma->cmdptr, cmd->addr);
184 }
185
186 /*
187  * start the DMA
188  */
189 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
190 {
191         out_le32(&rec->dma->control, status | (status << 16));
192 }
193
194
195 /*
196  * prepare playback/capture stream
197  */
198 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
199 {
200         int i;
201         volatile struct dbdma_cmd __iomem *cp;
202         struct snd_pcm_runtime *runtime = subs->runtime;
203         int rate_index;
204         long offset;
205         struct pmac_stream *astr;
206         
207         rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
208         rec->period_size = snd_pcm_lib_period_bytes(subs);
209         rec->nperiods = rec->dma_size / rec->period_size;
210         rec->cur_period = 0;
211         rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
212
213         /* set up constraints */
214         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
215         if (! astr)
216                 return -EINVAL;
217         astr->cur_freqs = 1 << rate_index;
218         astr->cur_formats = 1 << runtime->format;
219         chip->rate_index = rate_index;
220         chip->format = runtime->format;
221
222         /* We really want to execute a DMA stop command, after the AWACS
223          * is initialized.
224          * For reasons I don't understand, it stops the hissing noise
225          * common to many PowerBook G3 systems and random noise otherwise
226          * captured on iBook2's about every third time. -ReneR
227          */
228         spin_lock_irq(&chip->reg_lock);
229         snd_pmac_dma_stop(rec);
230         st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
231         snd_pmac_dma_set_command(rec, &chip->extra_dma);
232         snd_pmac_dma_run(rec, RUN);
233         spin_unlock_irq(&chip->reg_lock);
234         mdelay(5);
235         spin_lock_irq(&chip->reg_lock);
236         /* continuous DMA memory type doesn't provide the physical address,
237          * so we need to resolve the address here...
238          */
239         offset = runtime->dma_addr;
240         for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
241                 st_le32(&cp->phy_addr, offset);
242                 st_le16(&cp->req_count, rec->period_size);
243                 /*st_le16(&cp->res_count, 0);*/
244                 st_le16(&cp->xfer_status, 0);
245                 offset += rec->period_size;
246         }
247         /* make loop */
248         st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
249         st_le32(&cp->cmd_dep, rec->cmd.addr);
250
251         snd_pmac_dma_stop(rec);
252         snd_pmac_dma_set_command(rec, &rec->cmd);
253         spin_unlock_irq(&chip->reg_lock);
254
255         return 0;
256 }
257
258
259 /*
260  * PCM trigger/stop
261  */
262 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
263                                 struct snd_pcm_substream *subs, int cmd)
264 {
265         volatile struct dbdma_cmd __iomem *cp;
266         int i, command;
267
268         switch (cmd) {
269         case SNDRV_PCM_TRIGGER_START:
270         case SNDRV_PCM_TRIGGER_RESUME:
271                 if (rec->running)
272                         return -EBUSY;
273                 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
274                            OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
275                 spin_lock(&chip->reg_lock);
276                 snd_pmac_beep_stop(chip);
277                 snd_pmac_pcm_set_format(chip);
278                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
279                         out_le16(&cp->command, command);
280                 snd_pmac_dma_set_command(rec, &rec->cmd);
281                 (void)in_le32(&rec->dma->status);
282                 snd_pmac_dma_run(rec, RUN|WAKE);
283                 rec->running = 1;
284                 spin_unlock(&chip->reg_lock);
285                 break;
286
287         case SNDRV_PCM_TRIGGER_STOP:
288         case SNDRV_PCM_TRIGGER_SUSPEND:
289                 spin_lock(&chip->reg_lock);
290                 rec->running = 0;
291                 /*printk("stopped!!\n");*/
292                 snd_pmac_dma_stop(rec);
293                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
294                         out_le16(&cp->command, DBDMA_STOP);
295                 spin_unlock(&chip->reg_lock);
296                 break;
297
298         default:
299                 return -EINVAL;
300         }
301
302         return 0;
303 }
304
305 /*
306  * return the current pointer
307  */
308 inline
309 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
310                                               struct pmac_stream *rec,
311                                               struct snd_pcm_substream *subs)
312 {
313         int count = 0;
314
315 #if 1 /* hmm.. how can we get the current dma pointer?? */
316         int stat;
317         volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
318         stat = ld_le16(&cp->xfer_status);
319         if (stat & (ACTIVE|DEAD)) {
320                 count = in_le16(&cp->res_count);
321                 if (count)
322                         count = rec->period_size - count;
323         }
324 #endif
325         count += rec->cur_period * rec->period_size;
326         /*printk("pointer=%d\n", count);*/
327         return bytes_to_frames(subs->runtime, count);
328 }
329
330 /*
331  * playback
332  */
333
334 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
335 {
336         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
337         return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
338 }
339
340 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
341                                      int cmd)
342 {
343         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
344         return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
345 }
346
347 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
348 {
349         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
350         return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
351 }
352
353
354 /*
355  * capture
356  */
357
358 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
359 {
360         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361         return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
362 }
363
364 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
365                                     int cmd)
366 {
367         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
368         return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
369 }
370
371 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
372 {
373         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
374         return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
375 }
376
377
378 /*
379  * update playback/capture pointer from interrupts
380  */
381 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
382 {
383         volatile struct dbdma_cmd __iomem *cp;
384         int c;
385         int stat;
386
387         spin_lock(&chip->reg_lock);
388         if (rec->running) {
389                 cp = &rec->cmd.cmds[rec->cur_period];
390                 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
391                         stat = ld_le16(&cp->xfer_status);
392                         if (! (stat & ACTIVE))
393                                 break;
394                         /*printk("update frag %d\n", rec->cur_period);*/
395                         st_le16(&cp->xfer_status, 0);
396                         st_le16(&cp->req_count, rec->period_size);
397                         /*st_le16(&cp->res_count, 0);*/
398                         rec->cur_period++;
399                         if (rec->cur_period >= rec->nperiods) {
400                                 rec->cur_period = 0;
401                                 cp = rec->cmd.cmds;
402                         } else
403                                 cp++;
404                         spin_unlock(&chip->reg_lock);
405                         snd_pcm_period_elapsed(rec->substream);
406                         spin_lock(&chip->reg_lock);
407                 }
408         }
409         spin_unlock(&chip->reg_lock);
410 }
411
412
413 /*
414  * hw info
415  */
416
417 static struct snd_pcm_hardware snd_pmac_playback =
418 {
419         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
420                                  SNDRV_PCM_INFO_MMAP |
421                                  SNDRV_PCM_INFO_MMAP_VALID |
422                                  SNDRV_PCM_INFO_RESUME),
423         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
424         .rates =                SNDRV_PCM_RATE_8000_44100,
425         .rate_min =             7350,
426         .rate_max =             44100,
427         .channels_min =         2,
428         .channels_max =         2,
429         .buffer_bytes_max =     131072,
430         .period_bytes_min =     256,
431         .period_bytes_max =     16384,
432         .periods_min =          3,
433         .periods_max =          PMAC_MAX_FRAGS,
434 };
435
436 static struct snd_pcm_hardware snd_pmac_capture =
437 {
438         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
439                                  SNDRV_PCM_INFO_MMAP |
440                                  SNDRV_PCM_INFO_MMAP_VALID |
441                                  SNDRV_PCM_INFO_RESUME),
442         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
443         .rates =                SNDRV_PCM_RATE_8000_44100,
444         .rate_min =             7350,
445         .rate_max =             44100,
446         .channels_min =         2,
447         .channels_max =         2,
448         .buffer_bytes_max =     131072,
449         .period_bytes_min =     256,
450         .period_bytes_max =     16384,
451         .periods_min =          3,
452         .periods_max =          PMAC_MAX_FRAGS,
453 };
454
455
456 #if 0 // NYI
457 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
458                                  struct snd_pcm_hw_rule *rule)
459 {
460         struct snd_pmac *chip = rule->private;
461         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
462         int i, freq_table[8], num_freqs;
463
464         if (! rec)
465                 return -EINVAL;
466         num_freqs = 0;
467         for (i = chip->num_freqs - 1; i >= 0; i--) {
468                 if (rec->cur_freqs & (1 << i))
469                         freq_table[num_freqs++] = chip->freq_table[i];
470         }
471
472         return snd_interval_list(hw_param_interval(params, rule->var),
473                                  num_freqs, freq_table, 0);
474 }
475
476 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
477                                    struct snd_pcm_hw_rule *rule)
478 {
479         struct snd_pmac *chip = rule->private;
480         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
481
482         if (! rec)
483                 return -EINVAL;
484         return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
485                                    rec->cur_formats);
486 }
487 #endif // NYI
488
489 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
490                              struct snd_pcm_substream *subs)
491 {
492         struct snd_pcm_runtime *runtime = subs->runtime;
493         int i, j, fflags;
494         static int typical_freqs[] = {
495                 44100,
496                 22050,
497                 11025,
498                 0,
499         };
500         static int typical_freq_flags[] = {
501                 SNDRV_PCM_RATE_44100,
502                 SNDRV_PCM_RATE_22050,
503                 SNDRV_PCM_RATE_11025,
504                 0,
505         };
506
507         /* look up frequency table and fill bit mask */
508         runtime->hw.rates = 0;
509         fflags = chip->freqs_ok;
510         for (i = 0; typical_freqs[i]; i++) {
511                 for (j = 0; j < chip->num_freqs; j++) {
512                         if ((chip->freqs_ok & (1 << j)) &&
513                             chip->freq_table[j] == typical_freqs[i]) {
514                                 runtime->hw.rates |= typical_freq_flags[i];
515                                 fflags &= ~(1 << j);
516                                 break;
517                         }
518                 }
519         }
520         if (fflags) /* rest */
521                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
522
523         /* check for minimum and maximum rates */
524         for (i = 0; i < chip->num_freqs; i++) {
525                 if (chip->freqs_ok & (1 << i)) {
526                         runtime->hw.rate_max = chip->freq_table[i];
527                         break;
528                 }
529         }
530         for (i = chip->num_freqs - 1; i >= 0; i--) {
531                 if (chip->freqs_ok & (1 << i)) {
532                         runtime->hw.rate_min = chip->freq_table[i];
533                         break;
534                 }
535         }
536         runtime->hw.formats = chip->formats_ok;
537         if (chip->can_capture) {
538                 if (! chip->can_duplex)
539                         runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
540                 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
541         }
542         runtime->private_data = rec;
543         rec->substream = subs;
544
545 #if 0 /* FIXME: still under development.. */
546         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
547                             snd_pmac_hw_rule_rate, chip, rec->stream, -1);
548         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
549                             snd_pmac_hw_rule_format, chip, rec->stream, -1);
550 #endif
551
552         runtime->hw.periods_max = rec->cmd.size - 1;
553
554         if (chip->can_duplex)
555                 snd_pcm_set_sync(subs);
556
557         /* constraints to fix choppy sound */
558         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
559         return 0;
560 }
561
562 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
563                               struct snd_pcm_substream *subs)
564 {
565         struct pmac_stream *astr;
566
567         snd_pmac_dma_stop(rec);
568
569         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
570         if (! astr)
571                 return -EINVAL;
572
573         /* reset constraints */
574         astr->cur_freqs = chip->freqs_ok;
575         astr->cur_formats = chip->formats_ok;
576         
577         return 0;
578 }
579
580 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
581 {
582         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
583
584         subs->runtime->hw = snd_pmac_playback;
585         return snd_pmac_pcm_open(chip, &chip->playback, subs);
586 }
587
588 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
589 {
590         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
591
592         subs->runtime->hw = snd_pmac_capture;
593         return snd_pmac_pcm_open(chip, &chip->capture, subs);
594 }
595
596 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
597 {
598         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
599
600         return snd_pmac_pcm_close(chip, &chip->playback, subs);
601 }
602
603 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
604 {
605         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
606
607         return snd_pmac_pcm_close(chip, &chip->capture, subs);
608 }
609
610 /*
611  */
612
613 static struct snd_pcm_ops snd_pmac_playback_ops = {
614         .open =         snd_pmac_playback_open,
615         .close =        snd_pmac_playback_close,
616         .ioctl =        snd_pcm_lib_ioctl,
617         .hw_params =    snd_pmac_pcm_hw_params,
618         .hw_free =      snd_pmac_pcm_hw_free,
619         .prepare =      snd_pmac_playback_prepare,
620         .trigger =      snd_pmac_playback_trigger,
621         .pointer =      snd_pmac_playback_pointer,
622 };
623
624 static struct snd_pcm_ops snd_pmac_capture_ops = {
625         .open =         snd_pmac_capture_open,
626         .close =        snd_pmac_capture_close,
627         .ioctl =        snd_pcm_lib_ioctl,
628         .hw_params =    snd_pmac_pcm_hw_params,
629         .hw_free =      snd_pmac_pcm_hw_free,
630         .prepare =      snd_pmac_capture_prepare,
631         .trigger =      snd_pmac_capture_trigger,
632         .pointer =      snd_pmac_capture_pointer,
633 };
634
635 int __init snd_pmac_pcm_new(struct snd_pmac *chip)
636 {
637         struct snd_pcm *pcm;
638         int err;
639         int num_captures = 1;
640
641         if (! chip->can_capture)
642                 num_captures = 0;
643         err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
644         if (err < 0)
645                 return err;
646
647         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
648         if (chip->can_capture)
649                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
650
651         pcm->private_data = chip;
652         pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
653         strcpy(pcm->name, chip->card->shortname);
654         chip->pcm = pcm;
655
656         chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
657         if (chip->can_byte_swap)
658                 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
659
660         chip->playback.cur_formats = chip->formats_ok;
661         chip->capture.cur_formats = chip->formats_ok;
662         chip->playback.cur_freqs = chip->freqs_ok;
663         chip->capture.cur_freqs = chip->freqs_ok;
664
665         /* preallocate 64k buffer */
666         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
667                                               &chip->pdev->dev,
668                                               64 * 1024, 64 * 1024);
669
670         return 0;
671 }
672
673
674 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
675 {
676         out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
677         snd_pmac_wait_ack(&chip->playback);
678         out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
679         snd_pmac_wait_ack(&chip->capture);
680 }
681
682
683 /*
684  * handling beep
685  */
686 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
687 {
688         struct pmac_stream *rec = &chip->playback;
689
690         snd_pmac_dma_stop(rec);
691         st_le16(&chip->extra_dma.cmds->req_count, bytes);
692         st_le16(&chip->extra_dma.cmds->xfer_status, 0);
693         st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
694         st_le32(&chip->extra_dma.cmds->phy_addr, addr);
695         st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
696         out_le32(&chip->awacs->control,
697                  (in_le32(&chip->awacs->control) & ~0x1f00)
698                  | (speed << 8));
699         out_le32(&chip->awacs->byteswap, 0);
700         snd_pmac_dma_set_command(rec, &chip->extra_dma);
701         snd_pmac_dma_run(rec, RUN);
702 }
703
704 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
705 {
706         snd_pmac_dma_stop(&chip->playback);
707         st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
708         snd_pmac_pcm_set_format(chip); /* reset format */
709 }
710
711
712 /*
713  * interrupt handlers
714  */
715 static irqreturn_t
716 snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
717 {
718         struct snd_pmac *chip = devid;
719         snd_pmac_pcm_update(chip, &chip->playback);
720         return IRQ_HANDLED;
721 }
722
723
724 static irqreturn_t
725 snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
726 {
727         struct snd_pmac *chip = devid;
728         snd_pmac_pcm_update(chip, &chip->capture);
729         return IRQ_HANDLED;
730 }
731
732
733 static irqreturn_t
734 snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
735 {
736         struct snd_pmac *chip = devid;
737         int ctrl = in_le32(&chip->awacs->control);
738
739         /*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
740         if (ctrl & MASK_PORTCHG) {
741                 /* do something when headphone is plugged/unplugged? */
742                 if (chip->update_automute)
743                         chip->update_automute(chip, 1);
744         }
745         if (ctrl & MASK_CNTLERR) {
746                 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
747                 if (err && chip->model <= PMAC_SCREAMER)
748                         snd_printk(KERN_DEBUG "error %x\n", err);
749         }
750         /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
751         out_le32(&chip->awacs->control, ctrl);
752         return IRQ_HANDLED;
753 }
754
755
756 /*
757  * a wrapper to feature call for compatibility
758  */
759 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
760 {
761         if (ppc_md.feature_call)
762                 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
763 }
764
765 /*
766  * release resources
767  */
768
769 static int snd_pmac_free(struct snd_pmac *chip)
770 {
771         /* stop sounds */
772         if (chip->initialized) {
773                 snd_pmac_dbdma_reset(chip);
774                 /* disable interrupts from awacs interface */
775                 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
776         }
777
778         snd_pmac_sound_feature(chip, 0);
779
780         /* clean up mixer if any */
781         if (chip->mixer_free)
782                 chip->mixer_free(chip);
783
784         snd_pmac_detach_beep(chip);
785
786         /* release resources */
787         if (chip->irq >= 0)
788                 free_irq(chip->irq, (void*)chip);
789         if (chip->tx_irq >= 0)
790                 free_irq(chip->tx_irq, (void*)chip);
791         if (chip->rx_irq >= 0)
792                 free_irq(chip->rx_irq, (void*)chip);
793         snd_pmac_dbdma_free(chip, &chip->playback.cmd);
794         snd_pmac_dbdma_free(chip, &chip->capture.cmd);
795         snd_pmac_dbdma_free(chip, &chip->extra_dma);
796         if (chip->macio_base)
797                 iounmap(chip->macio_base);
798         if (chip->latch_base)
799                 iounmap(chip->latch_base);
800         if (chip->awacs)
801                 iounmap(chip->awacs);
802         if (chip->playback.dma)
803                 iounmap(chip->playback.dma);
804         if (chip->capture.dma)
805                 iounmap(chip->capture.dma);
806
807         if (chip->node) {
808                 int i;
809                 for (i = 0; i < 3; i++) {
810                         if (chip->requested & (1 << i))
811                                 release_mem_region(chip->rsrc[i].start,
812                                                    chip->rsrc[i].end -
813                                                    chip->rsrc[i].start + 1);
814                 }
815         }
816
817         if (chip->pdev)
818                 pci_dev_put(chip->pdev);
819         kfree(chip);
820         return 0;
821 }
822
823
824 /*
825  * free the device
826  */
827 static int snd_pmac_dev_free(struct snd_device *device)
828 {
829         struct snd_pmac *chip = device->device_data;
830         return snd_pmac_free(chip);
831 }
832
833
834 /*
835  * check the machine support byteswap (little-endian)
836  */
837
838 static void __init detect_byte_swap(struct snd_pmac *chip)
839 {
840         struct device_node *mio;
841
842         /* if seems that Keylargo can't byte-swap  */
843         for (mio = chip->node->parent; mio; mio = mio->parent) {
844                 if (strcmp(mio->name, "mac-io") == 0) {
845                         if (device_is_compatible(mio, "Keylargo"))
846                                 chip->can_byte_swap = 0;
847                         break;
848                 }
849         }
850
851         /* it seems the Pismo & iBook can't byte-swap in hardware. */
852         if (machine_is_compatible("PowerBook3,1") ||
853             machine_is_compatible("PowerBook2,1"))
854                 chip->can_byte_swap = 0 ;
855
856         if (machine_is_compatible("PowerBook2,1"))
857                 chip->can_duplex = 0;
858 }
859
860
861 /*
862  * detect a sound chip
863  */
864 static int __init snd_pmac_detect(struct snd_pmac *chip)
865 {
866         struct device_node *sound = NULL;
867         unsigned int *prop, l;
868         struct macio_chip* macio;
869
870         u32 layout_id = 0;
871
872         if (_machine != _MACH_Pmac)
873                 return -ENODEV;
874
875         chip->subframe = 0;
876         chip->revision = 0;
877         chip->freqs_ok = 0xff; /* all ok */
878         chip->model = PMAC_AWACS;
879         chip->can_byte_swap = 1;
880         chip->can_duplex = 1;
881         chip->can_capture = 1;
882         chip->num_freqs = ARRAY_SIZE(awacs_freqs);
883         chip->freq_table = awacs_freqs;
884
885         chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
886
887         /* check machine type */
888         if (machine_is_compatible("AAPL,3400/2400")
889             || machine_is_compatible("AAPL,3500"))
890                 chip->is_pbook_3400 = 1;
891         else if (machine_is_compatible("PowerBook1,1")
892                  || machine_is_compatible("AAPL,PowerBook1998"))
893                 chip->is_pbook_G3 = 1;
894         chip->node = find_devices("awacs");
895         if (chip->node)
896                 sound = chip->node;
897
898         /*
899          * powermac G3 models have a node called "davbus"
900          * with a child called "sound".
901          */
902         if (!chip->node)
903                 chip->node = find_devices("davbus");
904         /*
905          * if we didn't find a davbus device, try 'i2s-a' since
906          * this seems to be what iBooks have
907          */
908         if (! chip->node) {
909                 chip->node = find_devices("i2s-a");
910                 if (chip->node && chip->node->parent &&
911                     chip->node->parent->parent) {
912                         if (device_is_compatible(chip->node->parent->parent,
913                                                  "K2-Keylargo"))
914                                 chip->is_k2 = 1;
915                 }
916         }
917         if (! chip->node)
918                 return -ENODEV;
919
920         if (!sound) {
921                 sound = find_devices("sound");
922                 while (sound && sound->parent != chip->node)
923                         sound = sound->next;
924         }
925         if (! sound)
926                 return -ENODEV;
927         prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
928         if (prop && *prop < 16)
929                 chip->subframe = *prop;
930         prop = (unsigned int *) get_property(sound, "layout-id", NULL);
931         if (prop)
932                 layout_id = *prop;
933         /* This should be verified on older screamers */
934         if (device_is_compatible(sound, "screamer")) {
935                 chip->model = PMAC_SCREAMER;
936                 // chip->can_byte_swap = 0; /* FIXME: check this */
937         }
938         if (device_is_compatible(sound, "burgundy")) {
939                 chip->model = PMAC_BURGUNDY;
940                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
941         }
942         if (device_is_compatible(sound, "daca")) {
943                 chip->model = PMAC_DACA;
944                 chip->can_capture = 0;  /* no capture */
945                 chip->can_duplex = 0;
946                 // chip->can_byte_swap = 0; /* FIXME: check this */
947                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
948         }
949         if (device_is_compatible(sound, "tumbler")) {
950                 chip->model = PMAC_TUMBLER;
951                 chip->can_capture = 0;  /* no capture */
952                 chip->can_duplex = 0;
953                 // chip->can_byte_swap = 0; /* FIXME: check this */
954                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
955                 chip->freq_table = tumbler_freqs;
956                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
957         }
958         if (device_is_compatible(sound, "snapper")) {
959                 chip->model = PMAC_SNAPPER;
960                 // chip->can_byte_swap = 0; /* FIXME: check this */
961                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
962                 chip->freq_table = tumbler_freqs;
963                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
964         }
965         if (device_is_compatible(sound, "AOAKeylargo") ||
966             device_is_compatible(sound, "AOAbase") ||
967             device_is_compatible(sound, "AOAK2")) {
968                 /* For now, only support very basic TAS3004 based machines with
969                  * single frequency until proper i2s control is implemented
970                  */
971                 switch(layout_id) {
972                 case 0x24:
973                 case 0x29:
974                 case 0x33:
975                 case 0x46:
976                 case 0x48:
977                 case 0x50:
978                 case 0x5c:
979                         chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
980                         chip->model = PMAC_SNAPPER;
981                         chip->can_byte_swap = 0; /* FIXME: check this */
982                         chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
983                         break;
984                 case 0x3a:
985                         chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
986                         chip->model = PMAC_TOONIE;
987                         chip->can_byte_swap = 0; /* FIXME: check this */
988                         chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
989                         break;
990                 default:
991                         printk(KERN_ERR "snd: Unknown layout ID 0x%x\n",
992                                layout_id);
993                         return -ENODEV;
994
995                 }
996         }
997         prop = (unsigned int *)get_property(sound, "device-id", NULL);
998         if (prop)
999                 chip->device_id = *prop;
1000         chip->has_iic = (find_devices("perch") != NULL);
1001
1002         /* We need the PCI device for DMA allocations, let's use a crude method
1003          * for now ...
1004          */
1005         macio = macio_find(chip->node, macio_unknown);
1006         if (macio == NULL)
1007                 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1008         else {
1009                 struct pci_dev *pdev = NULL;
1010
1011                 for_each_pci_dev(pdev) {
1012                         struct device_node *np = pci_device_to_OF_node(pdev);
1013                         if (np && np == macio->of_node) {
1014                                 chip->pdev = pdev;
1015                                 break;
1016                         }
1017                 }
1018         }
1019         if (chip->pdev == NULL)
1020                 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1021                        " device !\n");
1022
1023         detect_byte_swap(chip);
1024
1025         /* look for a property saying what sample rates
1026            are available */
1027         prop = (unsigned int *) get_property(sound, "sample-rates", &l);
1028         if (! prop)
1029                 prop = (unsigned int *) get_property(sound,
1030                                                      "output-frame-rates", &l);
1031         if (prop) {
1032                 int i;
1033                 chip->freqs_ok = 0;
1034                 for (l /= sizeof(int); l > 0; --l) {
1035                         unsigned int r = *prop++;
1036                         /* Apple 'Fixed' format */
1037                         if (r >= 0x10000)
1038                                 r >>= 16;
1039                         for (i = 0; i < chip->num_freqs; ++i) {
1040                                 if (r == chip->freq_table[i]) {
1041                                         chip->freqs_ok |= (1 << i);
1042                                         break;
1043                                 }
1044                         }
1045                 }
1046         } else {
1047                 /* assume only 44.1khz */
1048                 chip->freqs_ok = 1;
1049         }
1050
1051         return 0;
1052 }
1053
1054 /*
1055  * exported - boolean info callbacks for ease of programming
1056  */
1057 int snd_pmac_boolean_stereo_info(struct snd_kcontrol *kcontrol,
1058                                  struct snd_ctl_elem_info *uinfo)
1059 {
1060         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1061         uinfo->count = 2;
1062         uinfo->value.integer.min = 0;
1063         uinfo->value.integer.max = 1;
1064         return 0;
1065 }
1066
1067 int snd_pmac_boolean_mono_info(struct snd_kcontrol *kcontrol,
1068                                struct snd_ctl_elem_info *uinfo)
1069 {
1070         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1071         uinfo->count = 1;
1072         uinfo->value.integer.min = 0;
1073         uinfo->value.integer.max = 1;
1074         return 0;
1075 }
1076
1077 #ifdef PMAC_SUPPORT_AUTOMUTE
1078 /*
1079  * auto-mute
1080  */
1081 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1082                               struct snd_ctl_elem_value *ucontrol)
1083 {
1084         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1085         ucontrol->value.integer.value[0] = chip->auto_mute;
1086         return 0;
1087 }
1088
1089 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1090                               struct snd_ctl_elem_value *ucontrol)
1091 {
1092         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1093         if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1094                 chip->auto_mute = ucontrol->value.integer.value[0];
1095                 if (chip->update_automute)
1096                         chip->update_automute(chip, 1);
1097                 return 1;
1098         }
1099         return 0;
1100 }
1101
1102 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1103                               struct snd_ctl_elem_value *ucontrol)
1104 {
1105         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1106         if (chip->detect_headphone)
1107                 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1108         else
1109                 ucontrol->value.integer.value[0] = 0;
1110         return 0;
1111 }
1112
1113 static struct snd_kcontrol_new auto_mute_controls[] __initdata = {
1114         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1115           .name = "Auto Mute Switch",
1116           .info = snd_pmac_boolean_mono_info,
1117           .get = pmac_auto_mute_get,
1118           .put = pmac_auto_mute_put,
1119         },
1120         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1121           .name = "Headphone Detection",
1122           .access = SNDRV_CTL_ELEM_ACCESS_READ,
1123           .info = snd_pmac_boolean_mono_info,
1124           .get = pmac_hp_detect_get,
1125         },
1126 };
1127
1128 int __init snd_pmac_add_automute(struct snd_pmac *chip)
1129 {
1130         int err;
1131         chip->auto_mute = 1;
1132         err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1133         if (err < 0) {
1134                 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1135                 return err;
1136         }
1137         chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1138         return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1139 }
1140 #endif /* PMAC_SUPPORT_AUTOMUTE */
1141
1142 /*
1143  * create and detect a pmac chip record
1144  */
1145 int __init snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1146 {
1147         struct snd_pmac *chip;
1148         struct device_node *np;
1149         int i, err;
1150         unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1151         static struct snd_device_ops ops = {
1152                 .dev_free =     snd_pmac_dev_free,
1153         };
1154
1155         *chip_return = NULL;
1156
1157         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1158         if (chip == NULL)
1159                 return -ENOMEM;
1160         chip->card = card;
1161
1162         spin_lock_init(&chip->reg_lock);
1163         chip->irq = chip->tx_irq = chip->rx_irq = -1;
1164
1165         chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1166         chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1167
1168         if ((err = snd_pmac_detect(chip)) < 0)
1169                 goto __error;
1170
1171         if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1172             snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1173             snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
1174                 err = -ENOMEM;
1175                 goto __error;
1176         }
1177
1178         np = chip->node;
1179         chip->requested = 0;
1180         if (chip->is_k2) {
1181                 static char *rnames[] = {
1182                         "Sound Control", "Sound DMA" };
1183                 if (np->n_intrs < 3) {
1184                         err = -ENODEV;
1185                         goto __error;
1186                 }
1187                 for (i = 0; i < 2; i ++) {
1188                         if (of_address_to_resource(np->parent, i,
1189                                                    &chip->rsrc[i])) {
1190                                 printk(KERN_ERR "snd: can't translate rsrc "
1191                                        " %d (%s)\n", i, rnames[i]);
1192                                 err = -ENODEV;
1193                                 goto __error;
1194                         }
1195                         if (request_mem_region(chip->rsrc[i].start,
1196                                                chip->rsrc[i].end -
1197                                                chip->rsrc[i].start + 1,
1198                                                rnames[i]) == NULL) {
1199                                 printk(KERN_ERR "snd: can't request rsrc "
1200                                        " %d (%s: 0x%08lx:%08lx)\n",
1201                                        i, rnames[i], chip->rsrc[i].start,
1202                                        chip->rsrc[i].end);
1203                                 err = -ENODEV;
1204                                 goto __error;
1205                         }
1206                         chip->requested |= (1 << i);
1207                 }
1208                 ctrl_addr = chip->rsrc[0].start;
1209                 txdma_addr = chip->rsrc[1].start;
1210                 rxdma_addr = txdma_addr + 0x100;
1211         } else {
1212                 static char *rnames[] = {
1213                         "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1214                 if (np->n_intrs < 3) {
1215                         err = -ENODEV;
1216                         goto __error;
1217                 }
1218                 for (i = 0; i < 3; i ++) {
1219                         if (of_address_to_resource(np, i,
1220                                                    &chip->rsrc[i])) {
1221                                 printk(KERN_ERR "snd: can't translate rsrc "
1222                                        " %d (%s)\n", i, rnames[i]);
1223                                 err = -ENODEV;
1224                                 goto __error;
1225                         }
1226                         if (request_mem_region(chip->rsrc[i].start,
1227                                                chip->rsrc[i].end -
1228                                                chip->rsrc[i].start + 1,
1229                                                rnames[i]) == NULL) {
1230                                 printk(KERN_ERR "snd: can't request rsrc "
1231                                        " %d (%s: 0x%08lx:%08lx)\n",
1232                                        i, rnames[i], chip->rsrc[i].start,
1233                                        chip->rsrc[i].end);
1234                                 err = -ENODEV;
1235                                 goto __error;
1236                         }
1237                         chip->requested |= (1 << i);
1238                 }
1239                 ctrl_addr = chip->rsrc[0].start;
1240                 txdma_addr = chip->rsrc[1].start;
1241                 rxdma_addr = chip->rsrc[2].start;
1242         }
1243
1244         chip->awacs = ioremap(ctrl_addr, 0x1000);
1245         chip->playback.dma = ioremap(txdma_addr, 0x100);
1246         chip->capture.dma = ioremap(rxdma_addr, 0x100);
1247         if (chip->model <= PMAC_BURGUNDY) {
1248                 if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
1249                                 "PMac", (void*)chip)) {
1250                         snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
1251                         err = -EBUSY;
1252                         goto __error;
1253                 }
1254                 chip->irq = np->intrs[0].line;
1255         }
1256         if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
1257                         "PMac Output", (void*)chip)) {
1258                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
1259                 err = -EBUSY;
1260                 goto __error;
1261         }
1262         chip->tx_irq = np->intrs[1].line;
1263         if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
1264                         "PMac Input", (void*)chip)) {
1265                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
1266                 err = -EBUSY;
1267                 goto __error;
1268         }
1269         chip->rx_irq = np->intrs[2].line;
1270
1271         snd_pmac_sound_feature(chip, 1);
1272
1273         /* reset */
1274         if (chip->model == PMAC_AWACS)
1275                 out_le32(&chip->awacs->control, 0x11);
1276
1277         /* Powerbooks have odd ways of enabling inputs such as
1278            an expansion-bay CD or sound from an internal modem
1279            or a PC-card modem. */
1280         if (chip->is_pbook_3400) {
1281                 /* Enable CD and PC-card sound inputs. */
1282                 /* This is done by reading from address
1283                  * f301a000, + 0x10 to enable the expansion-bay
1284                  * CD sound input, + 0x80 to enable the PC-card
1285                  * sound input.  The 0x100 enables the SCSI bus
1286                  * terminator power.
1287                  */
1288                 chip->latch_base = ioremap (0xf301a000, 0x1000);
1289                 in_8(chip->latch_base + 0x190);
1290         } else if (chip->is_pbook_G3) {
1291                 struct device_node* mio;
1292                 for (mio = chip->node->parent; mio; mio = mio->parent) {
1293                         if (strcmp(mio->name, "mac-io") == 0) {
1294                                 struct resource r;
1295                                 if (of_address_to_resource(mio, 0, &r) == 0)
1296                                         chip->macio_base =
1297                                                 ioremap(r.start, 0x40);
1298                                 break;
1299                         }
1300                 }
1301                 /* Enable CD sound input. */
1302                 /* The relevant bits for writing to this byte are 0x8f.
1303                  * I haven't found out what the 0x80 bit does.
1304                  * For the 0xf bits, writing 3 or 7 enables the CD
1305                  * input, any other value disables it.  Values
1306                  * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1307                  * 4, 6, 8 - f enable the input from the modem.
1308                  */
1309                 if (chip->macio_base)
1310                         out_8(chip->macio_base + 0x37, 3);
1311         }
1312
1313         /* Reset dbdma channels */
1314         snd_pmac_dbdma_reset(chip);
1315
1316         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1317                 goto __error;
1318
1319         *chip_return = chip;
1320         return 0;
1321
1322  __error:
1323         if (chip->pdev)
1324                 pci_dev_put(chip->pdev);
1325         snd_pmac_free(chip);
1326         return err;
1327 }
1328
1329
1330 /*
1331  * sleep notify for powerbook
1332  */
1333
1334 #ifdef CONFIG_PM
1335
1336 /*
1337  * Save state when going to sleep, restore it afterwards.
1338  */
1339
1340 void snd_pmac_suspend(struct snd_pmac *chip)
1341 {
1342         unsigned long flags;
1343
1344         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1345         if (chip->suspend)
1346                 chip->suspend(chip);
1347         snd_pcm_suspend_all(chip->pcm);
1348         spin_lock_irqsave(&chip->reg_lock, flags);
1349         snd_pmac_beep_stop(chip);
1350         spin_unlock_irqrestore(&chip->reg_lock, flags);
1351         if (chip->irq >= 0)
1352                 disable_irq(chip->irq);
1353         if (chip->tx_irq >= 0)
1354                 disable_irq(chip->tx_irq);
1355         if (chip->rx_irq >= 0)
1356                 disable_irq(chip->rx_irq);
1357         snd_pmac_sound_feature(chip, 0);
1358 }
1359
1360 void snd_pmac_resume(struct snd_pmac *chip)
1361 {
1362         snd_pmac_sound_feature(chip, 1);
1363         if (chip->resume)
1364                 chip->resume(chip);
1365         /* enable CD sound input */
1366         if (chip->macio_base && chip->is_pbook_G3)
1367                 out_8(chip->macio_base + 0x37, 3);
1368         else if (chip->is_pbook_3400)
1369                 in_8(chip->latch_base + 0x190);
1370
1371         snd_pmac_pcm_set_format(chip);
1372
1373         if (chip->irq >= 0)
1374                 enable_irq(chip->irq);
1375         if (chip->tx_irq >= 0)
1376                 enable_irq(chip->tx_irq);
1377         if (chip->rx_irq >= 0)
1378                 enable_irq(chip->rx_irq);
1379
1380         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1381 }
1382
1383 #endif /* CONFIG_PM */
1384