]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
kvm: x86: move assigned-dev.c and iommu.c to arch/x86/
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70  * Ordering of locks:
71  *
72  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73  */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91                            unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94                                   unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103                                     struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112         if (pfn_valid(pfn))
113                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
114
115         return true;
116 }
117
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123         int cpu;
124
125         if (mutex_lock_killable(&vcpu->mutex))
126                 return -EINTR;
127         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128                 /* The thread running this VCPU changed. */
129                 struct pid *oldpid = vcpu->pid;
130                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131                 rcu_assign_pointer(vcpu->pid, newpid);
132                 if (oldpid)
133                         synchronize_rcu();
134                 put_pid(oldpid);
135         }
136         cpu = get_cpu();
137         preempt_notifier_register(&vcpu->preempt_notifier);
138         kvm_arch_vcpu_load(vcpu, cpu);
139         put_cpu();
140         return 0;
141 }
142
143 void vcpu_put(struct kvm_vcpu *vcpu)
144 {
145         preempt_disable();
146         kvm_arch_vcpu_put(vcpu);
147         preempt_notifier_unregister(&vcpu->preempt_notifier);
148         preempt_enable();
149         mutex_unlock(&vcpu->mutex);
150 }
151
152 static void ack_flush(void *_completed)
153 {
154 }
155
156 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
157 {
158         int i, cpu, me;
159         cpumask_var_t cpus;
160         bool called = true;
161         struct kvm_vcpu *vcpu;
162
163         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
164
165         me = get_cpu();
166         kvm_for_each_vcpu(i, vcpu, kvm) {
167                 kvm_make_request(req, vcpu);
168                 cpu = vcpu->cpu;
169
170                 /* Set ->requests bit before we read ->mode */
171                 smp_mb();
172
173                 if (cpus != NULL && cpu != -1 && cpu != me &&
174                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175                         cpumask_set_cpu(cpu, cpus);
176         }
177         if (unlikely(cpus == NULL))
178                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179         else if (!cpumask_empty(cpus))
180                 smp_call_function_many(cpus, ack_flush, NULL, 1);
181         else
182                 called = false;
183         put_cpu();
184         free_cpumask_var(cpus);
185         return called;
186 }
187
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 {
190         long dirty_count = kvm->tlbs_dirty;
191
192         smp_mb();
193         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194                 ++kvm->stat.remote_tlb_flush;
195         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 }
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
198
199 void kvm_reload_remote_mmus(struct kvm *kvm)
200 {
201         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
202 }
203
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
207 }
208
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 {
211         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
212 }
213
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 {
216         struct page *page;
217         int r;
218
219         mutex_init(&vcpu->mutex);
220         vcpu->cpu = -1;
221         vcpu->kvm = kvm;
222         vcpu->vcpu_id = id;
223         vcpu->pid = NULL;
224         init_waitqueue_head(&vcpu->wq);
225         kvm_async_pf_vcpu_init(vcpu);
226
227         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228         if (!page) {
229                 r = -ENOMEM;
230                 goto fail;
231         }
232         vcpu->run = page_address(page);
233
234         kvm_vcpu_set_in_spin_loop(vcpu, false);
235         kvm_vcpu_set_dy_eligible(vcpu, false);
236         vcpu->preempted = false;
237
238         r = kvm_arch_vcpu_init(vcpu);
239         if (r < 0)
240                 goto fail_free_run;
241         return 0;
242
243 fail_free_run:
244         free_page((unsigned long)vcpu->run);
245 fail:
246         return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252         put_pid(vcpu->pid);
253         kvm_arch_vcpu_uninit(vcpu);
254         free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261         return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265                                              struct mm_struct *mm,
266                                              unsigned long address)
267 {
268         struct kvm *kvm = mmu_notifier_to_kvm(mn);
269         int need_tlb_flush, idx;
270
271         /*
272          * When ->invalidate_page runs, the linux pte has been zapped
273          * already but the page is still allocated until
274          * ->invalidate_page returns. So if we increase the sequence
275          * here the kvm page fault will notice if the spte can't be
276          * established because the page is going to be freed. If
277          * instead the kvm page fault establishes the spte before
278          * ->invalidate_page runs, kvm_unmap_hva will release it
279          * before returning.
280          *
281          * The sequence increase only need to be seen at spin_unlock
282          * time, and not at spin_lock time.
283          *
284          * Increasing the sequence after the spin_unlock would be
285          * unsafe because the kvm page fault could then establish the
286          * pte after kvm_unmap_hva returned, without noticing the page
287          * is going to be freed.
288          */
289         idx = srcu_read_lock(&kvm->srcu);
290         spin_lock(&kvm->mmu_lock);
291
292         kvm->mmu_notifier_seq++;
293         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294         /* we've to flush the tlb before the pages can be freed */
295         if (need_tlb_flush)
296                 kvm_flush_remote_tlbs(kvm);
297
298         spin_unlock(&kvm->mmu_lock);
299
300         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
301
302         srcu_read_unlock(&kvm->srcu, idx);
303 }
304
305 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
306                                         struct mm_struct *mm,
307                                         unsigned long address,
308                                         pte_t pte)
309 {
310         struct kvm *kvm = mmu_notifier_to_kvm(mn);
311         int idx;
312
313         idx = srcu_read_lock(&kvm->srcu);
314         spin_lock(&kvm->mmu_lock);
315         kvm->mmu_notifier_seq++;
316         kvm_set_spte_hva(kvm, address, pte);
317         spin_unlock(&kvm->mmu_lock);
318         srcu_read_unlock(&kvm->srcu, idx);
319 }
320
321 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
322                                                     struct mm_struct *mm,
323                                                     unsigned long start,
324                                                     unsigned long end)
325 {
326         struct kvm *kvm = mmu_notifier_to_kvm(mn);
327         int need_tlb_flush = 0, idx;
328
329         idx = srcu_read_lock(&kvm->srcu);
330         spin_lock(&kvm->mmu_lock);
331         /*
332          * The count increase must become visible at unlock time as no
333          * spte can be established without taking the mmu_lock and
334          * count is also read inside the mmu_lock critical section.
335          */
336         kvm->mmu_notifier_count++;
337         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
338         need_tlb_flush |= kvm->tlbs_dirty;
339         /* we've to flush the tlb before the pages can be freed */
340         if (need_tlb_flush)
341                 kvm_flush_remote_tlbs(kvm);
342
343         spin_unlock(&kvm->mmu_lock);
344         srcu_read_unlock(&kvm->srcu, idx);
345 }
346
347 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
348                                                   struct mm_struct *mm,
349                                                   unsigned long start,
350                                                   unsigned long end)
351 {
352         struct kvm *kvm = mmu_notifier_to_kvm(mn);
353
354         spin_lock(&kvm->mmu_lock);
355         /*
356          * This sequence increase will notify the kvm page fault that
357          * the page that is going to be mapped in the spte could have
358          * been freed.
359          */
360         kvm->mmu_notifier_seq++;
361         smp_wmb();
362         /*
363          * The above sequence increase must be visible before the
364          * below count decrease, which is ensured by the smp_wmb above
365          * in conjunction with the smp_rmb in mmu_notifier_retry().
366          */
367         kvm->mmu_notifier_count--;
368         spin_unlock(&kvm->mmu_lock);
369
370         BUG_ON(kvm->mmu_notifier_count < 0);
371 }
372
373 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
374                                               struct mm_struct *mm,
375                                               unsigned long start,
376                                               unsigned long end)
377 {
378         struct kvm *kvm = mmu_notifier_to_kvm(mn);
379         int young, idx;
380
381         idx = srcu_read_lock(&kvm->srcu);
382         spin_lock(&kvm->mmu_lock);
383
384         young = kvm_age_hva(kvm, start, end);
385         if (young)
386                 kvm_flush_remote_tlbs(kvm);
387
388         spin_unlock(&kvm->mmu_lock);
389         srcu_read_unlock(&kvm->srcu, idx);
390
391         return young;
392 }
393
394 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
395                                        struct mm_struct *mm,
396                                        unsigned long address)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403         young = kvm_test_age_hva(kvm, address);
404         spin_unlock(&kvm->mmu_lock);
405         srcu_read_unlock(&kvm->srcu, idx);
406
407         return young;
408 }
409
410 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
411                                      struct mm_struct *mm)
412 {
413         struct kvm *kvm = mmu_notifier_to_kvm(mn);
414         int idx;
415
416         idx = srcu_read_lock(&kvm->srcu);
417         kvm_arch_flush_shadow_all(kvm);
418         srcu_read_unlock(&kvm->srcu, idx);
419 }
420
421 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
422         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
423         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
424         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
425         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
426         .test_young             = kvm_mmu_notifier_test_young,
427         .change_pte             = kvm_mmu_notifier_change_pte,
428         .release                = kvm_mmu_notifier_release,
429 };
430
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 {
433         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
434         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
435 }
436
437 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
438
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 {
441         return 0;
442 }
443
444 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
445
446 static void kvm_init_memslots_id(struct kvm *kvm)
447 {
448         int i;
449         struct kvm_memslots *slots = kvm->memslots;
450
451         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
452                 slots->id_to_index[i] = slots->memslots[i].id = i;
453 }
454
455 static struct kvm *kvm_create_vm(unsigned long type)
456 {
457         int r, i;
458         struct kvm *kvm = kvm_arch_alloc_vm();
459
460         if (!kvm)
461                 return ERR_PTR(-ENOMEM);
462
463         r = kvm_arch_init_vm(kvm, type);
464         if (r)
465                 goto out_err_no_disable;
466
467         r = hardware_enable_all();
468         if (r)
469                 goto out_err_no_disable;
470
471 #ifdef CONFIG_HAVE_KVM_IRQFD
472         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
473 #endif
474
475         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
476
477         r = -ENOMEM;
478         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479         if (!kvm->memslots)
480                 goto out_err_no_srcu;
481
482         /*
483          * Init kvm generation close to the maximum to easily test the
484          * code of handling generation number wrap-around.
485          */
486         kvm->memslots->generation = -150;
487
488         kvm_init_memslots_id(kvm);
489         if (init_srcu_struct(&kvm->srcu))
490                 goto out_err_no_srcu;
491         if (init_srcu_struct(&kvm->irq_srcu))
492                 goto out_err_no_irq_srcu;
493         for (i = 0; i < KVM_NR_BUSES; i++) {
494                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
495                                         GFP_KERNEL);
496                 if (!kvm->buses[i])
497                         goto out_err;
498         }
499
500         spin_lock_init(&kvm->mmu_lock);
501         kvm->mm = current->mm;
502         atomic_inc(&kvm->mm->mm_count);
503         kvm_eventfd_init(kvm);
504         mutex_init(&kvm->lock);
505         mutex_init(&kvm->irq_lock);
506         mutex_init(&kvm->slots_lock);
507         atomic_set(&kvm->users_count, 1);
508         INIT_LIST_HEAD(&kvm->devices);
509
510         r = kvm_init_mmu_notifier(kvm);
511         if (r)
512                 goto out_err;
513
514         spin_lock(&kvm_lock);
515         list_add(&kvm->vm_list, &vm_list);
516         spin_unlock(&kvm_lock);
517
518         return kvm;
519
520 out_err:
521         cleanup_srcu_struct(&kvm->irq_srcu);
522 out_err_no_irq_srcu:
523         cleanup_srcu_struct(&kvm->srcu);
524 out_err_no_srcu:
525         hardware_disable_all();
526 out_err_no_disable:
527         for (i = 0; i < KVM_NR_BUSES; i++)
528                 kfree(kvm->buses[i]);
529         kfree(kvm->memslots);
530         kvm_arch_free_vm(kvm);
531         return ERR_PTR(r);
532 }
533
534 /*
535  * Avoid using vmalloc for a small buffer.
536  * Should not be used when the size is statically known.
537  */
538 void *kvm_kvzalloc(unsigned long size)
539 {
540         if (size > PAGE_SIZE)
541                 return vzalloc(size);
542         else
543                 return kzalloc(size, GFP_KERNEL);
544 }
545
546 void kvm_kvfree(const void *addr)
547 {
548         if (is_vmalloc_addr(addr))
549                 vfree(addr);
550         else
551                 kfree(addr);
552 }
553
554 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
555 {
556         if (!memslot->dirty_bitmap)
557                 return;
558
559         kvm_kvfree(memslot->dirty_bitmap);
560         memslot->dirty_bitmap = NULL;
561 }
562
563 /*
564  * Free any memory in @free but not in @dont.
565  */
566 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
567                                   struct kvm_memory_slot *dont)
568 {
569         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
570                 kvm_destroy_dirty_bitmap(free);
571
572         kvm_arch_free_memslot(kvm, free, dont);
573
574         free->npages = 0;
575 }
576
577 static void kvm_free_physmem(struct kvm *kvm)
578 {
579         struct kvm_memslots *slots = kvm->memslots;
580         struct kvm_memory_slot *memslot;
581
582         kvm_for_each_memslot(memslot, slots)
583                 kvm_free_physmem_slot(kvm, memslot, NULL);
584
585         kfree(kvm->memslots);
586 }
587
588 static void kvm_destroy_devices(struct kvm *kvm)
589 {
590         struct list_head *node, *tmp;
591
592         list_for_each_safe(node, tmp, &kvm->devices) {
593                 struct kvm_device *dev =
594                         list_entry(node, struct kvm_device, vm_node);
595
596                 list_del(node);
597                 dev->ops->destroy(dev);
598         }
599 }
600
601 static void kvm_destroy_vm(struct kvm *kvm)
602 {
603         int i;
604         struct mm_struct *mm = kvm->mm;
605
606         kvm_arch_sync_events(kvm);
607         spin_lock(&kvm_lock);
608         list_del(&kvm->vm_list);
609         spin_unlock(&kvm_lock);
610         kvm_free_irq_routing(kvm);
611         for (i = 0; i < KVM_NR_BUSES; i++)
612                 kvm_io_bus_destroy(kvm->buses[i]);
613         kvm_coalesced_mmio_free(kvm);
614 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
615         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
616 #else
617         kvm_arch_flush_shadow_all(kvm);
618 #endif
619         kvm_arch_destroy_vm(kvm);
620         kvm_destroy_devices(kvm);
621         kvm_free_physmem(kvm);
622         cleanup_srcu_struct(&kvm->irq_srcu);
623         cleanup_srcu_struct(&kvm->srcu);
624         kvm_arch_free_vm(kvm);
625         hardware_disable_all();
626         mmdrop(mm);
627 }
628
629 void kvm_get_kvm(struct kvm *kvm)
630 {
631         atomic_inc(&kvm->users_count);
632 }
633 EXPORT_SYMBOL_GPL(kvm_get_kvm);
634
635 void kvm_put_kvm(struct kvm *kvm)
636 {
637         if (atomic_dec_and_test(&kvm->users_count))
638                 kvm_destroy_vm(kvm);
639 }
640 EXPORT_SYMBOL_GPL(kvm_put_kvm);
641
642
643 static int kvm_vm_release(struct inode *inode, struct file *filp)
644 {
645         struct kvm *kvm = filp->private_data;
646
647         kvm_irqfd_release(kvm);
648
649         kvm_put_kvm(kvm);
650         return 0;
651 }
652
653 /*
654  * Allocation size is twice as large as the actual dirty bitmap size.
655  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
656  */
657 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
658 {
659         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
660
661         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
662         if (!memslot->dirty_bitmap)
663                 return -ENOMEM;
664
665         return 0;
666 }
667
668 /*
669  * Insert memslot and re-sort memslots based on their size,
670  * so the larger slots will get better fit. Sorting algorithm
671  * takes advantage of having initially sorted array and
672  * known changed memslot position.
673  */
674 static void update_memslots(struct kvm_memslots *slots,
675                             struct kvm_memory_slot *new)
676 {
677         int id = new->id;
678         int i = slots->id_to_index[id];
679         struct kvm_memory_slot *mslots = slots->memslots;
680
681         WARN_ON(mslots[i].id != id);
682         if (new->npages != mslots[i].npages) {
683                 if (new->npages < mslots[i].npages) {
684                         while (i < KVM_MEM_SLOTS_NUM - 1 &&
685                                new->npages < mslots[i + 1].npages) {
686                                 mslots[i] = mslots[i + 1];
687                                 slots->id_to_index[mslots[i].id] = i;
688                                 i++;
689                         }
690                 } else {
691                         while (i > 0 &&
692                                new->npages > mslots[i - 1].npages) {
693                                 mslots[i] = mslots[i - 1];
694                                 slots->id_to_index[mslots[i].id] = i;
695                                 i--;
696                         }
697                 }
698         }
699
700         mslots[i] = *new;
701         slots->id_to_index[mslots[i].id] = i;
702 }
703
704 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
705 {
706         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
707
708 #ifdef __KVM_HAVE_READONLY_MEM
709         valid_flags |= KVM_MEM_READONLY;
710 #endif
711
712         if (mem->flags & ~valid_flags)
713                 return -EINVAL;
714
715         return 0;
716 }
717
718 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
719                 struct kvm_memslots *slots)
720 {
721         struct kvm_memslots *old_memslots = kvm->memslots;
722
723         /*
724          * Set the low bit in the generation, which disables SPTE caching
725          * until the end of synchronize_srcu_expedited.
726          */
727         WARN_ON(old_memslots->generation & 1);
728         slots->generation = old_memslots->generation + 1;
729
730         rcu_assign_pointer(kvm->memslots, slots);
731         synchronize_srcu_expedited(&kvm->srcu);
732
733         /*
734          * Increment the new memslot generation a second time. This prevents
735          * vm exits that race with memslot updates from caching a memslot
736          * generation that will (potentially) be valid forever.
737          */
738         slots->generation++;
739
740         kvm_arch_memslots_updated(kvm);
741
742         return old_memslots;
743 }
744
745 /*
746  * Allocate some memory and give it an address in the guest physical address
747  * space.
748  *
749  * Discontiguous memory is allowed, mostly for framebuffers.
750  *
751  * Must be called holding kvm->slots_lock for write.
752  */
753 int __kvm_set_memory_region(struct kvm *kvm,
754                             struct kvm_userspace_memory_region *mem)
755 {
756         int r;
757         gfn_t base_gfn;
758         unsigned long npages;
759         struct kvm_memory_slot *slot;
760         struct kvm_memory_slot old, new;
761         struct kvm_memslots *slots = NULL, *old_memslots;
762         enum kvm_mr_change change;
763
764         r = check_memory_region_flags(mem);
765         if (r)
766                 goto out;
767
768         r = -EINVAL;
769         /* General sanity checks */
770         if (mem->memory_size & (PAGE_SIZE - 1))
771                 goto out;
772         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
773                 goto out;
774         /* We can read the guest memory with __xxx_user() later on. */
775         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
776             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
777              !access_ok(VERIFY_WRITE,
778                         (void __user *)(unsigned long)mem->userspace_addr,
779                         mem->memory_size)))
780                 goto out;
781         if (mem->slot >= KVM_MEM_SLOTS_NUM)
782                 goto out;
783         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
784                 goto out;
785
786         slot = id_to_memslot(kvm->memslots, mem->slot);
787         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
788         npages = mem->memory_size >> PAGE_SHIFT;
789
790         if (npages > KVM_MEM_MAX_NR_PAGES)
791                 goto out;
792
793         if (!npages)
794                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
795
796         new = old = *slot;
797
798         new.id = mem->slot;
799         new.base_gfn = base_gfn;
800         new.npages = npages;
801         new.flags = mem->flags;
802
803         if (npages) {
804                 if (!old.npages)
805                         change = KVM_MR_CREATE;
806                 else { /* Modify an existing slot. */
807                         if ((mem->userspace_addr != old.userspace_addr) ||
808                             (npages != old.npages) ||
809                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
810                                 goto out;
811
812                         if (base_gfn != old.base_gfn)
813                                 change = KVM_MR_MOVE;
814                         else if (new.flags != old.flags)
815                                 change = KVM_MR_FLAGS_ONLY;
816                         else { /* Nothing to change. */
817                                 r = 0;
818                                 goto out;
819                         }
820                 }
821         } else if (old.npages) {
822                 change = KVM_MR_DELETE;
823         } else /* Modify a non-existent slot: disallowed. */
824                 goto out;
825
826         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
827                 /* Check for overlaps */
828                 r = -EEXIST;
829                 kvm_for_each_memslot(slot, kvm->memslots) {
830                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
831                             (slot->id == mem->slot))
832                                 continue;
833                         if (!((base_gfn + npages <= slot->base_gfn) ||
834                               (base_gfn >= slot->base_gfn + slot->npages)))
835                                 goto out;
836                 }
837         }
838
839         /* Free page dirty bitmap if unneeded */
840         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
841                 new.dirty_bitmap = NULL;
842
843         r = -ENOMEM;
844         if (change == KVM_MR_CREATE) {
845                 new.userspace_addr = mem->userspace_addr;
846
847                 if (kvm_arch_create_memslot(kvm, &new, npages))
848                         goto out_free;
849         }
850
851         /* Allocate page dirty bitmap if needed */
852         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
853                 if (kvm_create_dirty_bitmap(&new) < 0)
854                         goto out_free;
855         }
856
857         slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
858                         GFP_KERNEL);
859         if (!slots)
860                 goto out_free;
861
862         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
863                 slot = id_to_memslot(slots, mem->slot);
864                 slot->flags |= KVM_MEMSLOT_INVALID;
865
866                 old_memslots = install_new_memslots(kvm, slots);
867
868                 /* slot was deleted or moved, clear iommu mapping */
869                 kvm_iommu_unmap_pages(kvm, &old);
870                 /* From this point no new shadow pages pointing to a deleted,
871                  * or moved, memslot will be created.
872                  *
873                  * validation of sp->gfn happens in:
874                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
875                  *      - kvm_is_visible_gfn (mmu_check_roots)
876                  */
877                 kvm_arch_flush_shadow_memslot(kvm, slot);
878
879                 /*
880                  * We can re-use the old_memslots from above, the only difference
881                  * from the currently installed memslots is the invalid flag.  This
882                  * will get overwritten by update_memslots anyway.
883                  */
884                 slots = old_memslots;
885         }
886
887         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
888         if (r)
889                 goto out_slots;
890
891         /* actual memory is freed via old in kvm_free_physmem_slot below */
892         if (change == KVM_MR_DELETE) {
893                 new.dirty_bitmap = NULL;
894                 memset(&new.arch, 0, sizeof(new.arch));
895         }
896
897         update_memslots(slots, &new);
898         old_memslots = install_new_memslots(kvm, slots);
899
900         kvm_arch_commit_memory_region(kvm, mem, &old, change);
901
902         kvm_free_physmem_slot(kvm, &old, &new);
903         kfree(old_memslots);
904
905         /*
906          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
907          * un-mapped and re-mapped if their base changes.  Since base change
908          * unmapping is handled above with slot deletion, mapping alone is
909          * needed here.  Anything else the iommu might care about for existing
910          * slots (size changes, userspace addr changes and read-only flag
911          * changes) is disallowed above, so any other attribute changes getting
912          * here can be skipped.
913          */
914         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
915                 r = kvm_iommu_map_pages(kvm, &new);
916                 return r;
917         }
918
919         return 0;
920
921 out_slots:
922         kfree(slots);
923 out_free:
924         kvm_free_physmem_slot(kvm, &new, &old);
925 out:
926         return r;
927 }
928 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
929
930 int kvm_set_memory_region(struct kvm *kvm,
931                           struct kvm_userspace_memory_region *mem)
932 {
933         int r;
934
935         mutex_lock(&kvm->slots_lock);
936         r = __kvm_set_memory_region(kvm, mem);
937         mutex_unlock(&kvm->slots_lock);
938         return r;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
941
942 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
943                                           struct kvm_userspace_memory_region *mem)
944 {
945         if (mem->slot >= KVM_USER_MEM_SLOTS)
946                 return -EINVAL;
947         return kvm_set_memory_region(kvm, mem);
948 }
949
950 int kvm_get_dirty_log(struct kvm *kvm,
951                         struct kvm_dirty_log *log, int *is_dirty)
952 {
953         struct kvm_memory_slot *memslot;
954         int r, i;
955         unsigned long n;
956         unsigned long any = 0;
957
958         r = -EINVAL;
959         if (log->slot >= KVM_USER_MEM_SLOTS)
960                 goto out;
961
962         memslot = id_to_memslot(kvm->memslots, log->slot);
963         r = -ENOENT;
964         if (!memslot->dirty_bitmap)
965                 goto out;
966
967         n = kvm_dirty_bitmap_bytes(memslot);
968
969         for (i = 0; !any && i < n/sizeof(long); ++i)
970                 any = memslot->dirty_bitmap[i];
971
972         r = -EFAULT;
973         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
974                 goto out;
975
976         if (any)
977                 *is_dirty = 1;
978
979         r = 0;
980 out:
981         return r;
982 }
983 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
984
985 bool kvm_largepages_enabled(void)
986 {
987         return largepages_enabled;
988 }
989
990 void kvm_disable_largepages(void)
991 {
992         largepages_enabled = false;
993 }
994 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
995
996 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
997 {
998         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
999 }
1000 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1001
1002 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1003 {
1004         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1005
1006         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1007               memslot->flags & KVM_MEMSLOT_INVALID)
1008                 return 0;
1009
1010         return 1;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1013
1014 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1015 {
1016         struct vm_area_struct *vma;
1017         unsigned long addr, size;
1018
1019         size = PAGE_SIZE;
1020
1021         addr = gfn_to_hva(kvm, gfn);
1022         if (kvm_is_error_hva(addr))
1023                 return PAGE_SIZE;
1024
1025         down_read(&current->mm->mmap_sem);
1026         vma = find_vma(current->mm, addr);
1027         if (!vma)
1028                 goto out;
1029
1030         size = vma_kernel_pagesize(vma);
1031
1032 out:
1033         up_read(&current->mm->mmap_sem);
1034
1035         return size;
1036 }
1037
1038 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1039 {
1040         return slot->flags & KVM_MEM_READONLY;
1041 }
1042
1043 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044                                        gfn_t *nr_pages, bool write)
1045 {
1046         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1047                 return KVM_HVA_ERR_BAD;
1048
1049         if (memslot_is_readonly(slot) && write)
1050                 return KVM_HVA_ERR_RO_BAD;
1051
1052         if (nr_pages)
1053                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1054
1055         return __gfn_to_hva_memslot(slot, gfn);
1056 }
1057
1058 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1059                                      gfn_t *nr_pages)
1060 {
1061         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1062 }
1063
1064 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1065                                         gfn_t gfn)
1066 {
1067         return gfn_to_hva_many(slot, gfn, NULL);
1068 }
1069 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1070
1071 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1072 {
1073         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1074 }
1075 EXPORT_SYMBOL_GPL(gfn_to_hva);
1076
1077 /*
1078  * If writable is set to false, the hva returned by this function is only
1079  * allowed to be read.
1080  */
1081 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1082                                       gfn_t gfn, bool *writable)
1083 {
1084         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1085
1086         if (!kvm_is_error_hva(hva) && writable)
1087                 *writable = !memslot_is_readonly(slot);
1088
1089         return hva;
1090 }
1091
1092 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1093 {
1094         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1095
1096         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1097 }
1098
1099 static int kvm_read_hva(void *data, void __user *hva, int len)
1100 {
1101         return __copy_from_user(data, hva, len);
1102 }
1103
1104 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1105 {
1106         return __copy_from_user_inatomic(data, hva, len);
1107 }
1108
1109 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1110         unsigned long start, int write, struct page **page)
1111 {
1112         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1113
1114         if (write)
1115                 flags |= FOLL_WRITE;
1116
1117         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1118 }
1119
1120 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1121                          unsigned long addr, bool write_fault,
1122                          struct page **pagep)
1123 {
1124         int npages;
1125         int locked = 1;
1126         int flags = FOLL_TOUCH | FOLL_HWPOISON |
1127                     (pagep ? FOLL_GET : 0) |
1128                     (write_fault ? FOLL_WRITE : 0);
1129
1130         /*
1131          * If retrying the fault, we get here *not* having allowed the filemap
1132          * to wait on the page lock. We should now allow waiting on the IO with
1133          * the mmap semaphore released.
1134          */
1135         down_read(&mm->mmap_sem);
1136         npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1137                                   &locked);
1138         if (!locked) {
1139                 VM_BUG_ON(npages);
1140
1141                 if (!pagep)
1142                         return 0;
1143
1144                 /*
1145                  * The previous call has now waited on the IO. Now we can
1146                  * retry and complete. Pass TRIED to ensure we do not re
1147                  * schedule async IO (see e.g. filemap_fault).
1148                  */
1149                 down_read(&mm->mmap_sem);
1150                 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1151                                           pagep, NULL, NULL);
1152         }
1153         up_read(&mm->mmap_sem);
1154         return npages;
1155 }
1156
1157 static inline int check_user_page_hwpoison(unsigned long addr)
1158 {
1159         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1160
1161         rc = __get_user_pages(current, current->mm, addr, 1,
1162                               flags, NULL, NULL, NULL);
1163         return rc == -EHWPOISON;
1164 }
1165
1166 /*
1167  * The atomic path to get the writable pfn which will be stored in @pfn,
1168  * true indicates success, otherwise false is returned.
1169  */
1170 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1171                             bool write_fault, bool *writable, pfn_t *pfn)
1172 {
1173         struct page *page[1];
1174         int npages;
1175
1176         if (!(async || atomic))
1177                 return false;
1178
1179         /*
1180          * Fast pin a writable pfn only if it is a write fault request
1181          * or the caller allows to map a writable pfn for a read fault
1182          * request.
1183          */
1184         if (!(write_fault || writable))
1185                 return false;
1186
1187         npages = __get_user_pages_fast(addr, 1, 1, page);
1188         if (npages == 1) {
1189                 *pfn = page_to_pfn(page[0]);
1190
1191                 if (writable)
1192                         *writable = true;
1193                 return true;
1194         }
1195
1196         return false;
1197 }
1198
1199 /*
1200  * The slow path to get the pfn of the specified host virtual address,
1201  * 1 indicates success, -errno is returned if error is detected.
1202  */
1203 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1204                            bool *writable, pfn_t *pfn)
1205 {
1206         struct page *page[1];
1207         int npages = 0;
1208
1209         might_sleep();
1210
1211         if (writable)
1212                 *writable = write_fault;
1213
1214         if (async) {
1215                 down_read(&current->mm->mmap_sem);
1216                 npages = get_user_page_nowait(current, current->mm,
1217                                               addr, write_fault, page);
1218                 up_read(&current->mm->mmap_sem);
1219         } else {
1220                 /*
1221                  * By now we have tried gup_fast, and possibly async_pf, and we
1222                  * are certainly not atomic. Time to retry the gup, allowing
1223                  * mmap semaphore to be relinquished in the case of IO.
1224                  */
1225                 npages = kvm_get_user_page_io(current, current->mm, addr,
1226                                               write_fault, page);
1227         }
1228         if (npages != 1)
1229                 return npages;
1230
1231         /* map read fault as writable if possible */
1232         if (unlikely(!write_fault) && writable) {
1233                 struct page *wpage[1];
1234
1235                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1236                 if (npages == 1) {
1237                         *writable = true;
1238                         put_page(page[0]);
1239                         page[0] = wpage[0];
1240                 }
1241
1242                 npages = 1;
1243         }
1244         *pfn = page_to_pfn(page[0]);
1245         return npages;
1246 }
1247
1248 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1249 {
1250         if (unlikely(!(vma->vm_flags & VM_READ)))
1251                 return false;
1252
1253         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1254                 return false;
1255
1256         return true;
1257 }
1258
1259 /*
1260  * Pin guest page in memory and return its pfn.
1261  * @addr: host virtual address which maps memory to the guest
1262  * @atomic: whether this function can sleep
1263  * @async: whether this function need to wait IO complete if the
1264  *         host page is not in the memory
1265  * @write_fault: whether we should get a writable host page
1266  * @writable: whether it allows to map a writable host page for !@write_fault
1267  *
1268  * The function will map a writable host page for these two cases:
1269  * 1): @write_fault = true
1270  * 2): @write_fault = false && @writable, @writable will tell the caller
1271  *     whether the mapping is writable.
1272  */
1273 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1274                         bool write_fault, bool *writable)
1275 {
1276         struct vm_area_struct *vma;
1277         pfn_t pfn = 0;
1278         int npages;
1279
1280         /* we can do it either atomically or asynchronously, not both */
1281         BUG_ON(atomic && async);
1282
1283         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1284                 return pfn;
1285
1286         if (atomic)
1287                 return KVM_PFN_ERR_FAULT;
1288
1289         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1290         if (npages == 1)
1291                 return pfn;
1292
1293         down_read(&current->mm->mmap_sem);
1294         if (npages == -EHWPOISON ||
1295               (!async && check_user_page_hwpoison(addr))) {
1296                 pfn = KVM_PFN_ERR_HWPOISON;
1297                 goto exit;
1298         }
1299
1300         vma = find_vma_intersection(current->mm, addr, addr + 1);
1301
1302         if (vma == NULL)
1303                 pfn = KVM_PFN_ERR_FAULT;
1304         else if ((vma->vm_flags & VM_PFNMAP)) {
1305                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1306                         vma->vm_pgoff;
1307                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1308         } else {
1309                 if (async && vma_is_valid(vma, write_fault))
1310                         *async = true;
1311                 pfn = KVM_PFN_ERR_FAULT;
1312         }
1313 exit:
1314         up_read(&current->mm->mmap_sem);
1315         return pfn;
1316 }
1317
1318 static pfn_t
1319 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1320                      bool *async, bool write_fault, bool *writable)
1321 {
1322         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1323
1324         if (addr == KVM_HVA_ERR_RO_BAD)
1325                 return KVM_PFN_ERR_RO_FAULT;
1326
1327         if (kvm_is_error_hva(addr))
1328                 return KVM_PFN_NOSLOT;
1329
1330         /* Do not map writable pfn in the readonly memslot. */
1331         if (writable && memslot_is_readonly(slot)) {
1332                 *writable = false;
1333                 writable = NULL;
1334         }
1335
1336         return hva_to_pfn(addr, atomic, async, write_fault,
1337                           writable);
1338 }
1339
1340 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1341                           bool write_fault, bool *writable)
1342 {
1343         struct kvm_memory_slot *slot;
1344
1345         if (async)
1346                 *async = false;
1347
1348         slot = gfn_to_memslot(kvm, gfn);
1349
1350         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1351                                     writable);
1352 }
1353
1354 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1355 {
1356         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1357 }
1358 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1359
1360 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1361                        bool write_fault, bool *writable)
1362 {
1363         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1364 }
1365 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1366
1367 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1368 {
1369         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1370 }
1371 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1372
1373 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1374                       bool *writable)
1375 {
1376         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1377 }
1378 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1379
1380 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1381 {
1382         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1383 }
1384
1385 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1386 {
1387         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1388 }
1389 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1390
1391 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1392                                                                   int nr_pages)
1393 {
1394         unsigned long addr;
1395         gfn_t entry;
1396
1397         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1398         if (kvm_is_error_hva(addr))
1399                 return -1;
1400
1401         if (entry < nr_pages)
1402                 return 0;
1403
1404         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1405 }
1406 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1407
1408 static struct page *kvm_pfn_to_page(pfn_t pfn)
1409 {
1410         if (is_error_noslot_pfn(pfn))
1411                 return KVM_ERR_PTR_BAD_PAGE;
1412
1413         if (kvm_is_mmio_pfn(pfn)) {
1414                 WARN_ON(1);
1415                 return KVM_ERR_PTR_BAD_PAGE;
1416         }
1417
1418         return pfn_to_page(pfn);
1419 }
1420
1421 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1422 {
1423         pfn_t pfn;
1424
1425         pfn = gfn_to_pfn(kvm, gfn);
1426
1427         return kvm_pfn_to_page(pfn);
1428 }
1429
1430 EXPORT_SYMBOL_GPL(gfn_to_page);
1431
1432 void kvm_release_page_clean(struct page *page)
1433 {
1434         WARN_ON(is_error_page(page));
1435
1436         kvm_release_pfn_clean(page_to_pfn(page));
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1439
1440 void kvm_release_pfn_clean(pfn_t pfn)
1441 {
1442         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1443                 put_page(pfn_to_page(pfn));
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1446
1447 void kvm_release_page_dirty(struct page *page)
1448 {
1449         WARN_ON(is_error_page(page));
1450
1451         kvm_release_pfn_dirty(page_to_pfn(page));
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1454
1455 static void kvm_release_pfn_dirty(pfn_t pfn)
1456 {
1457         kvm_set_pfn_dirty(pfn);
1458         kvm_release_pfn_clean(pfn);
1459 }
1460
1461 void kvm_set_pfn_dirty(pfn_t pfn)
1462 {
1463         if (!kvm_is_mmio_pfn(pfn)) {
1464                 struct page *page = pfn_to_page(pfn);
1465                 if (!PageReserved(page))
1466                         SetPageDirty(page);
1467         }
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1470
1471 void kvm_set_pfn_accessed(pfn_t pfn)
1472 {
1473         if (!kvm_is_mmio_pfn(pfn))
1474                 mark_page_accessed(pfn_to_page(pfn));
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1477
1478 void kvm_get_pfn(pfn_t pfn)
1479 {
1480         if (!kvm_is_mmio_pfn(pfn))
1481                 get_page(pfn_to_page(pfn));
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1484
1485 static int next_segment(unsigned long len, int offset)
1486 {
1487         if (len > PAGE_SIZE - offset)
1488                 return PAGE_SIZE - offset;
1489         else
1490                 return len;
1491 }
1492
1493 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1494                         int len)
1495 {
1496         int r;
1497         unsigned long addr;
1498
1499         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1500         if (kvm_is_error_hva(addr))
1501                 return -EFAULT;
1502         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1503         if (r)
1504                 return -EFAULT;
1505         return 0;
1506 }
1507 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1508
1509 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1510 {
1511         gfn_t gfn = gpa >> PAGE_SHIFT;
1512         int seg;
1513         int offset = offset_in_page(gpa);
1514         int ret;
1515
1516         while ((seg = next_segment(len, offset)) != 0) {
1517                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1518                 if (ret < 0)
1519                         return ret;
1520                 offset = 0;
1521                 len -= seg;
1522                 data += seg;
1523                 ++gfn;
1524         }
1525         return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(kvm_read_guest);
1528
1529 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1530                           unsigned long len)
1531 {
1532         int r;
1533         unsigned long addr;
1534         gfn_t gfn = gpa >> PAGE_SHIFT;
1535         int offset = offset_in_page(gpa);
1536
1537         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1538         if (kvm_is_error_hva(addr))
1539                 return -EFAULT;
1540         pagefault_disable();
1541         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1542         pagefault_enable();
1543         if (r)
1544                 return -EFAULT;
1545         return 0;
1546 }
1547 EXPORT_SYMBOL(kvm_read_guest_atomic);
1548
1549 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1550                          int offset, int len)
1551 {
1552         int r;
1553         unsigned long addr;
1554
1555         addr = gfn_to_hva(kvm, gfn);
1556         if (kvm_is_error_hva(addr))
1557                 return -EFAULT;
1558         r = __copy_to_user((void __user *)addr + offset, data, len);
1559         if (r)
1560                 return -EFAULT;
1561         mark_page_dirty(kvm, gfn);
1562         return 0;
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1565
1566 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1567                     unsigned long len)
1568 {
1569         gfn_t gfn = gpa >> PAGE_SHIFT;
1570         int seg;
1571         int offset = offset_in_page(gpa);
1572         int ret;
1573
1574         while ((seg = next_segment(len, offset)) != 0) {
1575                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1576                 if (ret < 0)
1577                         return ret;
1578                 offset = 0;
1579                 len -= seg;
1580                 data += seg;
1581                 ++gfn;
1582         }
1583         return 0;
1584 }
1585
1586 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1587                               gpa_t gpa, unsigned long len)
1588 {
1589         struct kvm_memslots *slots = kvm_memslots(kvm);
1590         int offset = offset_in_page(gpa);
1591         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1592         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1593         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1594         gfn_t nr_pages_avail;
1595
1596         ghc->gpa = gpa;
1597         ghc->generation = slots->generation;
1598         ghc->len = len;
1599         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1600         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1601         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1602                 ghc->hva += offset;
1603         } else {
1604                 /*
1605                  * If the requested region crosses two memslots, we still
1606                  * verify that the entire region is valid here.
1607                  */
1608                 while (start_gfn <= end_gfn) {
1609                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1610                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1611                                                    &nr_pages_avail);
1612                         if (kvm_is_error_hva(ghc->hva))
1613                                 return -EFAULT;
1614                         start_gfn += nr_pages_avail;
1615                 }
1616                 /* Use the slow path for cross page reads and writes. */
1617                 ghc->memslot = NULL;
1618         }
1619         return 0;
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1622
1623 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1624                            void *data, unsigned long len)
1625 {
1626         struct kvm_memslots *slots = kvm_memslots(kvm);
1627         int r;
1628
1629         BUG_ON(len > ghc->len);
1630
1631         if (slots->generation != ghc->generation)
1632                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1633
1634         if (unlikely(!ghc->memslot))
1635                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1636
1637         if (kvm_is_error_hva(ghc->hva))
1638                 return -EFAULT;
1639
1640         r = __copy_to_user((void __user *)ghc->hva, data, len);
1641         if (r)
1642                 return -EFAULT;
1643         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1644
1645         return 0;
1646 }
1647 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1648
1649 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1650                            void *data, unsigned long len)
1651 {
1652         struct kvm_memslots *slots = kvm_memslots(kvm);
1653         int r;
1654
1655         BUG_ON(len > ghc->len);
1656
1657         if (slots->generation != ghc->generation)
1658                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1659
1660         if (unlikely(!ghc->memslot))
1661                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1662
1663         if (kvm_is_error_hva(ghc->hva))
1664                 return -EFAULT;
1665
1666         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1667         if (r)
1668                 return -EFAULT;
1669
1670         return 0;
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1673
1674 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1675 {
1676         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1677
1678         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1679 }
1680 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1681
1682 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1683 {
1684         gfn_t gfn = gpa >> PAGE_SHIFT;
1685         int seg;
1686         int offset = offset_in_page(gpa);
1687         int ret;
1688
1689         while ((seg = next_segment(len, offset)) != 0) {
1690                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1691                 if (ret < 0)
1692                         return ret;
1693                 offset = 0;
1694                 len -= seg;
1695                 ++gfn;
1696         }
1697         return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1700
1701 static void mark_page_dirty_in_slot(struct kvm *kvm,
1702                                     struct kvm_memory_slot *memslot,
1703                                     gfn_t gfn)
1704 {
1705         if (memslot && memslot->dirty_bitmap) {
1706                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1707
1708                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1709         }
1710 }
1711
1712 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1713 {
1714         struct kvm_memory_slot *memslot;
1715
1716         memslot = gfn_to_memslot(kvm, gfn);
1717         mark_page_dirty_in_slot(kvm, memslot, gfn);
1718 }
1719 EXPORT_SYMBOL_GPL(mark_page_dirty);
1720
1721 /*
1722  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1723  */
1724 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1725 {
1726         DEFINE_WAIT(wait);
1727
1728         for (;;) {
1729                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1730
1731                 if (kvm_arch_vcpu_runnable(vcpu)) {
1732                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1733                         break;
1734                 }
1735                 if (kvm_cpu_has_pending_timer(vcpu))
1736                         break;
1737                 if (signal_pending(current))
1738                         break;
1739
1740                 schedule();
1741         }
1742
1743         finish_wait(&vcpu->wq, &wait);
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1746
1747 #ifndef CONFIG_S390
1748 /*
1749  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1750  */
1751 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1752 {
1753         int me;
1754         int cpu = vcpu->cpu;
1755         wait_queue_head_t *wqp;
1756
1757         wqp = kvm_arch_vcpu_wq(vcpu);
1758         if (waitqueue_active(wqp)) {
1759                 wake_up_interruptible(wqp);
1760                 ++vcpu->stat.halt_wakeup;
1761         }
1762
1763         me = get_cpu();
1764         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1765                 if (kvm_arch_vcpu_should_kick(vcpu))
1766                         smp_send_reschedule(cpu);
1767         put_cpu();
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1770 #endif /* !CONFIG_S390 */
1771
1772 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1773 {
1774         struct pid *pid;
1775         struct task_struct *task = NULL;
1776         int ret = 0;
1777
1778         rcu_read_lock();
1779         pid = rcu_dereference(target->pid);
1780         if (pid)
1781                 task = get_pid_task(pid, PIDTYPE_PID);
1782         rcu_read_unlock();
1783         if (!task)
1784                 return ret;
1785         if (task->flags & PF_VCPU) {
1786                 put_task_struct(task);
1787                 return ret;
1788         }
1789         ret = yield_to(task, 1);
1790         put_task_struct(task);
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1795
1796 /*
1797  * Helper that checks whether a VCPU is eligible for directed yield.
1798  * Most eligible candidate to yield is decided by following heuristics:
1799  *
1800  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1801  *  (preempted lock holder), indicated by @in_spin_loop.
1802  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1803  *
1804  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1805  *  chance last time (mostly it has become eligible now since we have probably
1806  *  yielded to lockholder in last iteration. This is done by toggling
1807  *  @dy_eligible each time a VCPU checked for eligibility.)
1808  *
1809  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1810  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1811  *  burning. Giving priority for a potential lock-holder increases lock
1812  *  progress.
1813  *
1814  *  Since algorithm is based on heuristics, accessing another VCPU data without
1815  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1816  *  and continue with next VCPU and so on.
1817  */
1818 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1819 {
1820 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1821         bool eligible;
1822
1823         eligible = !vcpu->spin_loop.in_spin_loop ||
1824                     vcpu->spin_loop.dy_eligible;
1825
1826         if (vcpu->spin_loop.in_spin_loop)
1827                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1828
1829         return eligible;
1830 #else
1831         return true;
1832 #endif
1833 }
1834
1835 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1836 {
1837         struct kvm *kvm = me->kvm;
1838         struct kvm_vcpu *vcpu;
1839         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1840         int yielded = 0;
1841         int try = 3;
1842         int pass;
1843         int i;
1844
1845         kvm_vcpu_set_in_spin_loop(me, true);
1846         /*
1847          * We boost the priority of a VCPU that is runnable but not
1848          * currently running, because it got preempted by something
1849          * else and called schedule in __vcpu_run.  Hopefully that
1850          * VCPU is holding the lock that we need and will release it.
1851          * We approximate round-robin by starting at the last boosted VCPU.
1852          */
1853         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1854                 kvm_for_each_vcpu(i, vcpu, kvm) {
1855                         if (!pass && i <= last_boosted_vcpu) {
1856                                 i = last_boosted_vcpu;
1857                                 continue;
1858                         } else if (pass && i > last_boosted_vcpu)
1859                                 break;
1860                         if (!ACCESS_ONCE(vcpu->preempted))
1861                                 continue;
1862                         if (vcpu == me)
1863                                 continue;
1864                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1865                                 continue;
1866                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1867                                 continue;
1868
1869                         yielded = kvm_vcpu_yield_to(vcpu);
1870                         if (yielded > 0) {
1871                                 kvm->last_boosted_vcpu = i;
1872                                 break;
1873                         } else if (yielded < 0) {
1874                                 try--;
1875                                 if (!try)
1876                                         break;
1877                         }
1878                 }
1879         }
1880         kvm_vcpu_set_in_spin_loop(me, false);
1881
1882         /* Ensure vcpu is not eligible during next spinloop */
1883         kvm_vcpu_set_dy_eligible(me, false);
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1886
1887 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1888 {
1889         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1890         struct page *page;
1891
1892         if (vmf->pgoff == 0)
1893                 page = virt_to_page(vcpu->run);
1894 #ifdef CONFIG_X86
1895         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1896                 page = virt_to_page(vcpu->arch.pio_data);
1897 #endif
1898 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1899         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1900                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1901 #endif
1902         else
1903                 return kvm_arch_vcpu_fault(vcpu, vmf);
1904         get_page(page);
1905         vmf->page = page;
1906         return 0;
1907 }
1908
1909 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1910         .fault = kvm_vcpu_fault,
1911 };
1912
1913 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1914 {
1915         vma->vm_ops = &kvm_vcpu_vm_ops;
1916         return 0;
1917 }
1918
1919 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1920 {
1921         struct kvm_vcpu *vcpu = filp->private_data;
1922
1923         kvm_put_kvm(vcpu->kvm);
1924         return 0;
1925 }
1926
1927 static struct file_operations kvm_vcpu_fops = {
1928         .release        = kvm_vcpu_release,
1929         .unlocked_ioctl = kvm_vcpu_ioctl,
1930 #ifdef CONFIG_COMPAT
1931         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1932 #endif
1933         .mmap           = kvm_vcpu_mmap,
1934         .llseek         = noop_llseek,
1935 };
1936
1937 /*
1938  * Allocates an inode for the vcpu.
1939  */
1940 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1941 {
1942         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1943 }
1944
1945 /*
1946  * Creates some virtual cpus.  Good luck creating more than one.
1947  */
1948 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1949 {
1950         int r;
1951         struct kvm_vcpu *vcpu, *v;
1952
1953         if (id >= KVM_MAX_VCPUS)
1954                 return -EINVAL;
1955
1956         vcpu = kvm_arch_vcpu_create(kvm, id);
1957         if (IS_ERR(vcpu))
1958                 return PTR_ERR(vcpu);
1959
1960         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1961
1962         r = kvm_arch_vcpu_setup(vcpu);
1963         if (r)
1964                 goto vcpu_destroy;
1965
1966         mutex_lock(&kvm->lock);
1967         if (!kvm_vcpu_compatible(vcpu)) {
1968                 r = -EINVAL;
1969                 goto unlock_vcpu_destroy;
1970         }
1971         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1972                 r = -EINVAL;
1973                 goto unlock_vcpu_destroy;
1974         }
1975
1976         kvm_for_each_vcpu(r, v, kvm)
1977                 if (v->vcpu_id == id) {
1978                         r = -EEXIST;
1979                         goto unlock_vcpu_destroy;
1980                 }
1981
1982         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1983
1984         /* Now it's all set up, let userspace reach it */
1985         kvm_get_kvm(kvm);
1986         r = create_vcpu_fd(vcpu);
1987         if (r < 0) {
1988                 kvm_put_kvm(kvm);
1989                 goto unlock_vcpu_destroy;
1990         }
1991
1992         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1993         smp_wmb();
1994         atomic_inc(&kvm->online_vcpus);
1995
1996         mutex_unlock(&kvm->lock);
1997         kvm_arch_vcpu_postcreate(vcpu);
1998         return r;
1999
2000 unlock_vcpu_destroy:
2001         mutex_unlock(&kvm->lock);
2002 vcpu_destroy:
2003         kvm_arch_vcpu_destroy(vcpu);
2004         return r;
2005 }
2006
2007 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2008 {
2009         if (sigset) {
2010                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2011                 vcpu->sigset_active = 1;
2012                 vcpu->sigset = *sigset;
2013         } else
2014                 vcpu->sigset_active = 0;
2015         return 0;
2016 }
2017
2018 static long kvm_vcpu_ioctl(struct file *filp,
2019                            unsigned int ioctl, unsigned long arg)
2020 {
2021         struct kvm_vcpu *vcpu = filp->private_data;
2022         void __user *argp = (void __user *)arg;
2023         int r;
2024         struct kvm_fpu *fpu = NULL;
2025         struct kvm_sregs *kvm_sregs = NULL;
2026
2027         if (vcpu->kvm->mm != current->mm)
2028                 return -EIO;
2029
2030         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2031                 return -EINVAL;
2032
2033 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2034         /*
2035          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2036          * so vcpu_load() would break it.
2037          */
2038         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2039                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2040 #endif
2041
2042
2043         r = vcpu_load(vcpu);
2044         if (r)
2045                 return r;
2046         switch (ioctl) {
2047         case KVM_RUN:
2048                 r = -EINVAL;
2049                 if (arg)
2050                         goto out;
2051                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2052                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2053                 break;
2054         case KVM_GET_REGS: {
2055                 struct kvm_regs *kvm_regs;
2056
2057                 r = -ENOMEM;
2058                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2059                 if (!kvm_regs)
2060                         goto out;
2061                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2062                 if (r)
2063                         goto out_free1;
2064                 r = -EFAULT;
2065                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2066                         goto out_free1;
2067                 r = 0;
2068 out_free1:
2069                 kfree(kvm_regs);
2070                 break;
2071         }
2072         case KVM_SET_REGS: {
2073                 struct kvm_regs *kvm_regs;
2074
2075                 r = -ENOMEM;
2076                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2077                 if (IS_ERR(kvm_regs)) {
2078                         r = PTR_ERR(kvm_regs);
2079                         goto out;
2080                 }
2081                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2082                 kfree(kvm_regs);
2083                 break;
2084         }
2085         case KVM_GET_SREGS: {
2086                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2087                 r = -ENOMEM;
2088                 if (!kvm_sregs)
2089                         goto out;
2090                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2091                 if (r)
2092                         goto out;
2093                 r = -EFAULT;
2094                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2095                         goto out;
2096                 r = 0;
2097                 break;
2098         }
2099         case KVM_SET_SREGS: {
2100                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2101                 if (IS_ERR(kvm_sregs)) {
2102                         r = PTR_ERR(kvm_sregs);
2103                         kvm_sregs = NULL;
2104                         goto out;
2105                 }
2106                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2107                 break;
2108         }
2109         case KVM_GET_MP_STATE: {
2110                 struct kvm_mp_state mp_state;
2111
2112                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2113                 if (r)
2114                         goto out;
2115                 r = -EFAULT;
2116                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2117                         goto out;
2118                 r = 0;
2119                 break;
2120         }
2121         case KVM_SET_MP_STATE: {
2122                 struct kvm_mp_state mp_state;
2123
2124                 r = -EFAULT;
2125                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2126                         goto out;
2127                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2128                 break;
2129         }
2130         case KVM_TRANSLATE: {
2131                 struct kvm_translation tr;
2132
2133                 r = -EFAULT;
2134                 if (copy_from_user(&tr, argp, sizeof tr))
2135                         goto out;
2136                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2137                 if (r)
2138                         goto out;
2139                 r = -EFAULT;
2140                 if (copy_to_user(argp, &tr, sizeof tr))
2141                         goto out;
2142                 r = 0;
2143                 break;
2144         }
2145         case KVM_SET_GUEST_DEBUG: {
2146                 struct kvm_guest_debug dbg;
2147
2148                 r = -EFAULT;
2149                 if (copy_from_user(&dbg, argp, sizeof dbg))
2150                         goto out;
2151                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2152                 break;
2153         }
2154         case KVM_SET_SIGNAL_MASK: {
2155                 struct kvm_signal_mask __user *sigmask_arg = argp;
2156                 struct kvm_signal_mask kvm_sigmask;
2157                 sigset_t sigset, *p;
2158
2159                 p = NULL;
2160                 if (argp) {
2161                         r = -EFAULT;
2162                         if (copy_from_user(&kvm_sigmask, argp,
2163                                            sizeof kvm_sigmask))
2164                                 goto out;
2165                         r = -EINVAL;
2166                         if (kvm_sigmask.len != sizeof sigset)
2167                                 goto out;
2168                         r = -EFAULT;
2169                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2170                                            sizeof sigset))
2171                                 goto out;
2172                         p = &sigset;
2173                 }
2174                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2175                 break;
2176         }
2177         case KVM_GET_FPU: {
2178                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2179                 r = -ENOMEM;
2180                 if (!fpu)
2181                         goto out;
2182                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2183                 if (r)
2184                         goto out;
2185                 r = -EFAULT;
2186                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2187                         goto out;
2188                 r = 0;
2189                 break;
2190         }
2191         case KVM_SET_FPU: {
2192                 fpu = memdup_user(argp, sizeof(*fpu));
2193                 if (IS_ERR(fpu)) {
2194                         r = PTR_ERR(fpu);
2195                         fpu = NULL;
2196                         goto out;
2197                 }
2198                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2199                 break;
2200         }
2201         default:
2202                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2203         }
2204 out:
2205         vcpu_put(vcpu);
2206         kfree(fpu);
2207         kfree(kvm_sregs);
2208         return r;
2209 }
2210
2211 #ifdef CONFIG_COMPAT
2212 static long kvm_vcpu_compat_ioctl(struct file *filp,
2213                                   unsigned int ioctl, unsigned long arg)
2214 {
2215         struct kvm_vcpu *vcpu = filp->private_data;
2216         void __user *argp = compat_ptr(arg);
2217         int r;
2218
2219         if (vcpu->kvm->mm != current->mm)
2220                 return -EIO;
2221
2222         switch (ioctl) {
2223         case KVM_SET_SIGNAL_MASK: {
2224                 struct kvm_signal_mask __user *sigmask_arg = argp;
2225                 struct kvm_signal_mask kvm_sigmask;
2226                 compat_sigset_t csigset;
2227                 sigset_t sigset;
2228
2229                 if (argp) {
2230                         r = -EFAULT;
2231                         if (copy_from_user(&kvm_sigmask, argp,
2232                                            sizeof kvm_sigmask))
2233                                 goto out;
2234                         r = -EINVAL;
2235                         if (kvm_sigmask.len != sizeof csigset)
2236                                 goto out;
2237                         r = -EFAULT;
2238                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2239                                            sizeof csigset))
2240                                 goto out;
2241                         sigset_from_compat(&sigset, &csigset);
2242                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2243                 } else
2244                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2245                 break;
2246         }
2247         default:
2248                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2249         }
2250
2251 out:
2252         return r;
2253 }
2254 #endif
2255
2256 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2257                                  int (*accessor)(struct kvm_device *dev,
2258                                                  struct kvm_device_attr *attr),
2259                                  unsigned long arg)
2260 {
2261         struct kvm_device_attr attr;
2262
2263         if (!accessor)
2264                 return -EPERM;
2265
2266         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2267                 return -EFAULT;
2268
2269         return accessor(dev, &attr);
2270 }
2271
2272 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2273                              unsigned long arg)
2274 {
2275         struct kvm_device *dev = filp->private_data;
2276
2277         switch (ioctl) {
2278         case KVM_SET_DEVICE_ATTR:
2279                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2280         case KVM_GET_DEVICE_ATTR:
2281                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2282         case KVM_HAS_DEVICE_ATTR:
2283                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2284         default:
2285                 if (dev->ops->ioctl)
2286                         return dev->ops->ioctl(dev, ioctl, arg);
2287
2288                 return -ENOTTY;
2289         }
2290 }
2291
2292 static int kvm_device_release(struct inode *inode, struct file *filp)
2293 {
2294         struct kvm_device *dev = filp->private_data;
2295         struct kvm *kvm = dev->kvm;
2296
2297         kvm_put_kvm(kvm);
2298         return 0;
2299 }
2300
2301 static const struct file_operations kvm_device_fops = {
2302         .unlocked_ioctl = kvm_device_ioctl,
2303 #ifdef CONFIG_COMPAT
2304         .compat_ioctl = kvm_device_ioctl,
2305 #endif
2306         .release = kvm_device_release,
2307 };
2308
2309 struct kvm_device *kvm_device_from_filp(struct file *filp)
2310 {
2311         if (filp->f_op != &kvm_device_fops)
2312                 return NULL;
2313
2314         return filp->private_data;
2315 }
2316
2317 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2318 #ifdef CONFIG_KVM_MPIC
2319         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2320         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2321 #endif
2322
2323 #ifdef CONFIG_KVM_XICS
2324         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2325 #endif
2326 };
2327
2328 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2329 {
2330         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2331                 return -ENOSPC;
2332
2333         if (kvm_device_ops_table[type] != NULL)
2334                 return -EEXIST;
2335
2336         kvm_device_ops_table[type] = ops;
2337         return 0;
2338 }
2339
2340 void kvm_unregister_device_ops(u32 type)
2341 {
2342         if (kvm_device_ops_table[type] != NULL)
2343                 kvm_device_ops_table[type] = NULL;
2344 }
2345
2346 static int kvm_ioctl_create_device(struct kvm *kvm,
2347                                    struct kvm_create_device *cd)
2348 {
2349         struct kvm_device_ops *ops = NULL;
2350         struct kvm_device *dev;
2351         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2352         int ret;
2353
2354         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2355                 return -ENODEV;
2356
2357         ops = kvm_device_ops_table[cd->type];
2358         if (ops == NULL)
2359                 return -ENODEV;
2360
2361         if (test)
2362                 return 0;
2363
2364         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2365         if (!dev)
2366                 return -ENOMEM;
2367
2368         dev->ops = ops;
2369         dev->kvm = kvm;
2370
2371         ret = ops->create(dev, cd->type);
2372         if (ret < 0) {
2373                 kfree(dev);
2374                 return ret;
2375         }
2376
2377         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2378         if (ret < 0) {
2379                 ops->destroy(dev);
2380                 return ret;
2381         }
2382
2383         list_add(&dev->vm_node, &kvm->devices);
2384         kvm_get_kvm(kvm);
2385         cd->fd = ret;
2386         return 0;
2387 }
2388
2389 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2390 {
2391         switch (arg) {
2392         case KVM_CAP_USER_MEMORY:
2393         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2394         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2395 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2396         case KVM_CAP_SET_BOOT_CPU_ID:
2397 #endif
2398         case KVM_CAP_INTERNAL_ERROR_DATA:
2399 #ifdef CONFIG_HAVE_KVM_MSI
2400         case KVM_CAP_SIGNAL_MSI:
2401 #endif
2402 #ifdef CONFIG_HAVE_KVM_IRQFD
2403         case KVM_CAP_IRQFD_RESAMPLE:
2404 #endif
2405         case KVM_CAP_CHECK_EXTENSION_VM:
2406                 return 1;
2407 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2408         case KVM_CAP_IRQ_ROUTING:
2409                 return KVM_MAX_IRQ_ROUTES;
2410 #endif
2411         default:
2412                 break;
2413         }
2414         return kvm_vm_ioctl_check_extension(kvm, arg);
2415 }
2416
2417 static long kvm_vm_ioctl(struct file *filp,
2418                            unsigned int ioctl, unsigned long arg)
2419 {
2420         struct kvm *kvm = filp->private_data;
2421         void __user *argp = (void __user *)arg;
2422         int r;
2423
2424         if (kvm->mm != current->mm)
2425                 return -EIO;
2426         switch (ioctl) {
2427         case KVM_CREATE_VCPU:
2428                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2429                 break;
2430         case KVM_SET_USER_MEMORY_REGION: {
2431                 struct kvm_userspace_memory_region kvm_userspace_mem;
2432
2433                 r = -EFAULT;
2434                 if (copy_from_user(&kvm_userspace_mem, argp,
2435                                                 sizeof kvm_userspace_mem))
2436                         goto out;
2437
2438                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2439                 break;
2440         }
2441         case KVM_GET_DIRTY_LOG: {
2442                 struct kvm_dirty_log log;
2443
2444                 r = -EFAULT;
2445                 if (copy_from_user(&log, argp, sizeof log))
2446                         goto out;
2447                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2448                 break;
2449         }
2450 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2451         case KVM_REGISTER_COALESCED_MMIO: {
2452                 struct kvm_coalesced_mmio_zone zone;
2453                 r = -EFAULT;
2454                 if (copy_from_user(&zone, argp, sizeof zone))
2455                         goto out;
2456                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2457                 break;
2458         }
2459         case KVM_UNREGISTER_COALESCED_MMIO: {
2460                 struct kvm_coalesced_mmio_zone zone;
2461                 r = -EFAULT;
2462                 if (copy_from_user(&zone, argp, sizeof zone))
2463                         goto out;
2464                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2465                 break;
2466         }
2467 #endif
2468         case KVM_IRQFD: {
2469                 struct kvm_irqfd data;
2470
2471                 r = -EFAULT;
2472                 if (copy_from_user(&data, argp, sizeof data))
2473                         goto out;
2474                 r = kvm_irqfd(kvm, &data);
2475                 break;
2476         }
2477         case KVM_IOEVENTFD: {
2478                 struct kvm_ioeventfd data;
2479
2480                 r = -EFAULT;
2481                 if (copy_from_user(&data, argp, sizeof data))
2482                         goto out;
2483                 r = kvm_ioeventfd(kvm, &data);
2484                 break;
2485         }
2486 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2487         case KVM_SET_BOOT_CPU_ID:
2488                 r = 0;
2489                 mutex_lock(&kvm->lock);
2490                 if (atomic_read(&kvm->online_vcpus) != 0)
2491                         r = -EBUSY;
2492                 else
2493                         kvm->bsp_vcpu_id = arg;
2494                 mutex_unlock(&kvm->lock);
2495                 break;
2496 #endif
2497 #ifdef CONFIG_HAVE_KVM_MSI
2498         case KVM_SIGNAL_MSI: {
2499                 struct kvm_msi msi;
2500
2501                 r = -EFAULT;
2502                 if (copy_from_user(&msi, argp, sizeof msi))
2503                         goto out;
2504                 r = kvm_send_userspace_msi(kvm, &msi);
2505                 break;
2506         }
2507 #endif
2508 #ifdef __KVM_HAVE_IRQ_LINE
2509         case KVM_IRQ_LINE_STATUS:
2510         case KVM_IRQ_LINE: {
2511                 struct kvm_irq_level irq_event;
2512
2513                 r = -EFAULT;
2514                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2515                         goto out;
2516
2517                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2518                                         ioctl == KVM_IRQ_LINE_STATUS);
2519                 if (r)
2520                         goto out;
2521
2522                 r = -EFAULT;
2523                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2524                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2525                                 goto out;
2526                 }
2527
2528                 r = 0;
2529                 break;
2530         }
2531 #endif
2532 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2533         case KVM_SET_GSI_ROUTING: {
2534                 struct kvm_irq_routing routing;
2535                 struct kvm_irq_routing __user *urouting;
2536                 struct kvm_irq_routing_entry *entries;
2537
2538                 r = -EFAULT;
2539                 if (copy_from_user(&routing, argp, sizeof(routing)))
2540                         goto out;
2541                 r = -EINVAL;
2542                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2543                         goto out;
2544                 if (routing.flags)
2545                         goto out;
2546                 r = -ENOMEM;
2547                 entries = vmalloc(routing.nr * sizeof(*entries));
2548                 if (!entries)
2549                         goto out;
2550                 r = -EFAULT;
2551                 urouting = argp;
2552                 if (copy_from_user(entries, urouting->entries,
2553                                    routing.nr * sizeof(*entries)))
2554                         goto out_free_irq_routing;
2555                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2556                                         routing.flags);
2557         out_free_irq_routing:
2558                 vfree(entries);
2559                 break;
2560         }
2561 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2562         case KVM_CREATE_DEVICE: {
2563                 struct kvm_create_device cd;
2564
2565                 r = -EFAULT;
2566                 if (copy_from_user(&cd, argp, sizeof(cd)))
2567                         goto out;
2568
2569                 r = kvm_ioctl_create_device(kvm, &cd);
2570                 if (r)
2571                         goto out;
2572
2573                 r = -EFAULT;
2574                 if (copy_to_user(argp, &cd, sizeof(cd)))
2575                         goto out;
2576
2577                 r = 0;
2578                 break;
2579         }
2580         case KVM_CHECK_EXTENSION:
2581                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2582                 break;
2583         default:
2584                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2585         }
2586 out:
2587         return r;
2588 }
2589
2590 #ifdef CONFIG_COMPAT
2591 struct compat_kvm_dirty_log {
2592         __u32 slot;
2593         __u32 padding1;
2594         union {
2595                 compat_uptr_t dirty_bitmap; /* one bit per page */
2596                 __u64 padding2;
2597         };
2598 };
2599
2600 static long kvm_vm_compat_ioctl(struct file *filp,
2601                            unsigned int ioctl, unsigned long arg)
2602 {
2603         struct kvm *kvm = filp->private_data;
2604         int r;
2605
2606         if (kvm->mm != current->mm)
2607                 return -EIO;
2608         switch (ioctl) {
2609         case KVM_GET_DIRTY_LOG: {
2610                 struct compat_kvm_dirty_log compat_log;
2611                 struct kvm_dirty_log log;
2612
2613                 r = -EFAULT;
2614                 if (copy_from_user(&compat_log, (void __user *)arg,
2615                                    sizeof(compat_log)))
2616                         goto out;
2617                 log.slot         = compat_log.slot;
2618                 log.padding1     = compat_log.padding1;
2619                 log.padding2     = compat_log.padding2;
2620                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2621
2622                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2623                 break;
2624         }
2625         default:
2626                 r = kvm_vm_ioctl(filp, ioctl, arg);
2627         }
2628
2629 out:
2630         return r;
2631 }
2632 #endif
2633
2634 static struct file_operations kvm_vm_fops = {
2635         .release        = kvm_vm_release,
2636         .unlocked_ioctl = kvm_vm_ioctl,
2637 #ifdef CONFIG_COMPAT
2638         .compat_ioctl   = kvm_vm_compat_ioctl,
2639 #endif
2640         .llseek         = noop_llseek,
2641 };
2642
2643 static int kvm_dev_ioctl_create_vm(unsigned long type)
2644 {
2645         int r;
2646         struct kvm *kvm;
2647
2648         kvm = kvm_create_vm(type);
2649         if (IS_ERR(kvm))
2650                 return PTR_ERR(kvm);
2651 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2652         r = kvm_coalesced_mmio_init(kvm);
2653         if (r < 0) {
2654                 kvm_put_kvm(kvm);
2655                 return r;
2656         }
2657 #endif
2658         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2659         if (r < 0)
2660                 kvm_put_kvm(kvm);
2661
2662         return r;
2663 }
2664
2665 static long kvm_dev_ioctl(struct file *filp,
2666                           unsigned int ioctl, unsigned long arg)
2667 {
2668         long r = -EINVAL;
2669
2670         switch (ioctl) {
2671         case KVM_GET_API_VERSION:
2672                 if (arg)
2673                         goto out;
2674                 r = KVM_API_VERSION;
2675                 break;
2676         case KVM_CREATE_VM:
2677                 r = kvm_dev_ioctl_create_vm(arg);
2678                 break;
2679         case KVM_CHECK_EXTENSION:
2680                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2681                 break;
2682         case KVM_GET_VCPU_MMAP_SIZE:
2683                 if (arg)
2684                         goto out;
2685                 r = PAGE_SIZE;     /* struct kvm_run */
2686 #ifdef CONFIG_X86
2687                 r += PAGE_SIZE;    /* pio data page */
2688 #endif
2689 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2690                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2691 #endif
2692                 break;
2693         case KVM_TRACE_ENABLE:
2694         case KVM_TRACE_PAUSE:
2695         case KVM_TRACE_DISABLE:
2696                 r = -EOPNOTSUPP;
2697                 break;
2698         default:
2699                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2700         }
2701 out:
2702         return r;
2703 }
2704
2705 static struct file_operations kvm_chardev_ops = {
2706         .unlocked_ioctl = kvm_dev_ioctl,
2707         .compat_ioctl   = kvm_dev_ioctl,
2708         .llseek         = noop_llseek,
2709 };
2710
2711 static struct miscdevice kvm_dev = {
2712         KVM_MINOR,
2713         "kvm",
2714         &kvm_chardev_ops,
2715 };
2716
2717 static void hardware_enable_nolock(void *junk)
2718 {
2719         int cpu = raw_smp_processor_id();
2720         int r;
2721
2722         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2723                 return;
2724
2725         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2726
2727         r = kvm_arch_hardware_enable();
2728
2729         if (r) {
2730                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2731                 atomic_inc(&hardware_enable_failed);
2732                 printk(KERN_INFO "kvm: enabling virtualization on "
2733                                  "CPU%d failed\n", cpu);
2734         }
2735 }
2736
2737 static void hardware_enable(void)
2738 {
2739         raw_spin_lock(&kvm_count_lock);
2740         if (kvm_usage_count)
2741                 hardware_enable_nolock(NULL);
2742         raw_spin_unlock(&kvm_count_lock);
2743 }
2744
2745 static void hardware_disable_nolock(void *junk)
2746 {
2747         int cpu = raw_smp_processor_id();
2748
2749         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2750                 return;
2751         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2752         kvm_arch_hardware_disable();
2753 }
2754
2755 static void hardware_disable(void)
2756 {
2757         raw_spin_lock(&kvm_count_lock);
2758         if (kvm_usage_count)
2759                 hardware_disable_nolock(NULL);
2760         raw_spin_unlock(&kvm_count_lock);
2761 }
2762
2763 static void hardware_disable_all_nolock(void)
2764 {
2765         BUG_ON(!kvm_usage_count);
2766
2767         kvm_usage_count--;
2768         if (!kvm_usage_count)
2769                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2770 }
2771
2772 static void hardware_disable_all(void)
2773 {
2774         raw_spin_lock(&kvm_count_lock);
2775         hardware_disable_all_nolock();
2776         raw_spin_unlock(&kvm_count_lock);
2777 }
2778
2779 static int hardware_enable_all(void)
2780 {
2781         int r = 0;
2782
2783         raw_spin_lock(&kvm_count_lock);
2784
2785         kvm_usage_count++;
2786         if (kvm_usage_count == 1) {
2787                 atomic_set(&hardware_enable_failed, 0);
2788                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2789
2790                 if (atomic_read(&hardware_enable_failed)) {
2791                         hardware_disable_all_nolock();
2792                         r = -EBUSY;
2793                 }
2794         }
2795
2796         raw_spin_unlock(&kvm_count_lock);
2797
2798         return r;
2799 }
2800
2801 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2802                            void *v)
2803 {
2804         int cpu = (long)v;
2805
2806         val &= ~CPU_TASKS_FROZEN;
2807         switch (val) {
2808         case CPU_DYING:
2809                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2810                        cpu);
2811                 hardware_disable();
2812                 break;
2813         case CPU_STARTING:
2814                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2815                        cpu);
2816                 hardware_enable();
2817                 break;
2818         }
2819         return NOTIFY_OK;
2820 }
2821
2822 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2823                       void *v)
2824 {
2825         /*
2826          * Some (well, at least mine) BIOSes hang on reboot if
2827          * in vmx root mode.
2828          *
2829          * And Intel TXT required VMX off for all cpu when system shutdown.
2830          */
2831         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2832         kvm_rebooting = true;
2833         on_each_cpu(hardware_disable_nolock, NULL, 1);
2834         return NOTIFY_OK;
2835 }
2836
2837 static struct notifier_block kvm_reboot_notifier = {
2838         .notifier_call = kvm_reboot,
2839         .priority = 0,
2840 };
2841
2842 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2843 {
2844         int i;
2845
2846         for (i = 0; i < bus->dev_count; i++) {
2847                 struct kvm_io_device *pos = bus->range[i].dev;
2848
2849                 kvm_iodevice_destructor(pos);
2850         }
2851         kfree(bus);
2852 }
2853
2854 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2855                                  const struct kvm_io_range *r2)
2856 {
2857         if (r1->addr < r2->addr)
2858                 return -1;
2859         if (r1->addr + r1->len > r2->addr + r2->len)
2860                 return 1;
2861         return 0;
2862 }
2863
2864 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2865 {
2866         return kvm_io_bus_cmp(p1, p2);
2867 }
2868
2869 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2870                           gpa_t addr, int len)
2871 {
2872         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2873                 .addr = addr,
2874                 .len = len,
2875                 .dev = dev,
2876         };
2877
2878         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2879                 kvm_io_bus_sort_cmp, NULL);
2880
2881         return 0;
2882 }
2883
2884 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2885                              gpa_t addr, int len)
2886 {
2887         struct kvm_io_range *range, key;
2888         int off;
2889
2890         key = (struct kvm_io_range) {
2891                 .addr = addr,
2892                 .len = len,
2893         };
2894
2895         range = bsearch(&key, bus->range, bus->dev_count,
2896                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2897         if (range == NULL)
2898                 return -ENOENT;
2899
2900         off = range - bus->range;
2901
2902         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2903                 off--;
2904
2905         return off;
2906 }
2907
2908 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2909                               struct kvm_io_range *range, const void *val)
2910 {
2911         int idx;
2912
2913         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2914         if (idx < 0)
2915                 return -EOPNOTSUPP;
2916
2917         while (idx < bus->dev_count &&
2918                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2919                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2920                                         range->len, val))
2921                         return idx;
2922                 idx++;
2923         }
2924
2925         return -EOPNOTSUPP;
2926 }
2927
2928 /* kvm_io_bus_write - called under kvm->slots_lock */
2929 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2930                      int len, const void *val)
2931 {
2932         struct kvm_io_bus *bus;
2933         struct kvm_io_range range;
2934         int r;
2935
2936         range = (struct kvm_io_range) {
2937                 .addr = addr,
2938                 .len = len,
2939         };
2940
2941         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2942         r = __kvm_io_bus_write(bus, &range, val);
2943         return r < 0 ? r : 0;
2944 }
2945
2946 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2947 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2948                             int len, const void *val, long cookie)
2949 {
2950         struct kvm_io_bus *bus;
2951         struct kvm_io_range range;
2952
2953         range = (struct kvm_io_range) {
2954                 .addr = addr,
2955                 .len = len,
2956         };
2957
2958         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2959
2960         /* First try the device referenced by cookie. */
2961         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2962             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2963                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2964                                         val))
2965                         return cookie;
2966
2967         /*
2968          * cookie contained garbage; fall back to search and return the
2969          * correct cookie value.
2970          */
2971         return __kvm_io_bus_write(bus, &range, val);
2972 }
2973
2974 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2975                              void *val)
2976 {
2977         int idx;
2978
2979         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2980         if (idx < 0)
2981                 return -EOPNOTSUPP;
2982
2983         while (idx < bus->dev_count &&
2984                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2985                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2986                                        range->len, val))
2987                         return idx;
2988                 idx++;
2989         }
2990
2991         return -EOPNOTSUPP;
2992 }
2993 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2994
2995 /* kvm_io_bus_read - called under kvm->slots_lock */
2996 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2997                     int len, void *val)
2998 {
2999         struct kvm_io_bus *bus;
3000         struct kvm_io_range range;
3001         int r;
3002
3003         range = (struct kvm_io_range) {
3004                 .addr = addr,
3005                 .len = len,
3006         };
3007
3008         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3009         r = __kvm_io_bus_read(bus, &range, val);
3010         return r < 0 ? r : 0;
3011 }
3012
3013
3014 /* Caller must hold slots_lock. */
3015 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3016                             int len, struct kvm_io_device *dev)
3017 {
3018         struct kvm_io_bus *new_bus, *bus;
3019
3020         bus = kvm->buses[bus_idx];
3021         /* exclude ioeventfd which is limited by maximum fd */
3022         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3023                 return -ENOSPC;
3024
3025         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3026                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3027         if (!new_bus)
3028                 return -ENOMEM;
3029         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3030                sizeof(struct kvm_io_range)));
3031         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3032         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3033         synchronize_srcu_expedited(&kvm->srcu);
3034         kfree(bus);
3035
3036         return 0;
3037 }
3038
3039 /* Caller must hold slots_lock. */
3040 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3041                               struct kvm_io_device *dev)
3042 {
3043         int i, r;
3044         struct kvm_io_bus *new_bus, *bus;
3045
3046         bus = kvm->buses[bus_idx];
3047         r = -ENOENT;
3048         for (i = 0; i < bus->dev_count; i++)
3049                 if (bus->range[i].dev == dev) {
3050                         r = 0;
3051                         break;
3052                 }
3053
3054         if (r)
3055                 return r;
3056
3057         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3058                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3059         if (!new_bus)
3060                 return -ENOMEM;
3061
3062         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3063         new_bus->dev_count--;
3064         memcpy(new_bus->range + i, bus->range + i + 1,
3065                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3066
3067         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3068         synchronize_srcu_expedited(&kvm->srcu);
3069         kfree(bus);
3070         return r;
3071 }
3072
3073 static struct notifier_block kvm_cpu_notifier = {
3074         .notifier_call = kvm_cpu_hotplug,
3075 };
3076
3077 static int vm_stat_get(void *_offset, u64 *val)
3078 {
3079         unsigned offset = (long)_offset;
3080         struct kvm *kvm;
3081
3082         *val = 0;
3083         spin_lock(&kvm_lock);
3084         list_for_each_entry(kvm, &vm_list, vm_list)
3085                 *val += *(u32 *)((void *)kvm + offset);
3086         spin_unlock(&kvm_lock);
3087         return 0;
3088 }
3089
3090 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3091
3092 static int vcpu_stat_get(void *_offset, u64 *val)
3093 {
3094         unsigned offset = (long)_offset;
3095         struct kvm *kvm;
3096         struct kvm_vcpu *vcpu;
3097         int i;
3098
3099         *val = 0;
3100         spin_lock(&kvm_lock);
3101         list_for_each_entry(kvm, &vm_list, vm_list)
3102                 kvm_for_each_vcpu(i, vcpu, kvm)
3103                         *val += *(u32 *)((void *)vcpu + offset);
3104
3105         spin_unlock(&kvm_lock);
3106         return 0;
3107 }
3108
3109 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3110
3111 static const struct file_operations *stat_fops[] = {
3112         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3113         [KVM_STAT_VM]   = &vm_stat_fops,
3114 };
3115
3116 static int kvm_init_debug(void)
3117 {
3118         int r = -EEXIST;
3119         struct kvm_stats_debugfs_item *p;
3120
3121         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3122         if (kvm_debugfs_dir == NULL)
3123                 goto out;
3124
3125         for (p = debugfs_entries; p->name; ++p) {
3126                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3127                                                 (void *)(long)p->offset,
3128                                                 stat_fops[p->kind]);
3129                 if (p->dentry == NULL)
3130                         goto out_dir;
3131         }
3132
3133         return 0;
3134
3135 out_dir:
3136         debugfs_remove_recursive(kvm_debugfs_dir);
3137 out:
3138         return r;
3139 }
3140
3141 static void kvm_exit_debug(void)
3142 {
3143         struct kvm_stats_debugfs_item *p;
3144
3145         for (p = debugfs_entries; p->name; ++p)
3146                 debugfs_remove(p->dentry);
3147         debugfs_remove(kvm_debugfs_dir);
3148 }
3149
3150 static int kvm_suspend(void)
3151 {
3152         if (kvm_usage_count)
3153                 hardware_disable_nolock(NULL);
3154         return 0;
3155 }
3156
3157 static void kvm_resume(void)
3158 {
3159         if (kvm_usage_count) {
3160                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3161                 hardware_enable_nolock(NULL);
3162         }
3163 }
3164
3165 static struct syscore_ops kvm_syscore_ops = {
3166         .suspend = kvm_suspend,
3167         .resume = kvm_resume,
3168 };
3169
3170 static inline
3171 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3172 {
3173         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3174 }
3175
3176 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3177 {
3178         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3179         if (vcpu->preempted)
3180                 vcpu->preempted = false;
3181
3182         kvm_arch_sched_in(vcpu, cpu);
3183
3184         kvm_arch_vcpu_load(vcpu, cpu);
3185 }
3186
3187 static void kvm_sched_out(struct preempt_notifier *pn,
3188                           struct task_struct *next)
3189 {
3190         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3191
3192         if (current->state == TASK_RUNNING)
3193                 vcpu->preempted = true;
3194         kvm_arch_vcpu_put(vcpu);
3195 }
3196
3197 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3198                   struct module *module)
3199 {
3200         int r;
3201         int cpu;
3202
3203         r = kvm_arch_init(opaque);
3204         if (r)
3205                 goto out_fail;
3206
3207         /*
3208          * kvm_arch_init makes sure there's at most one caller
3209          * for architectures that support multiple implementations,
3210          * like intel and amd on x86.
3211          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3212          * conflicts in case kvm is already setup for another implementation.
3213          */
3214         r = kvm_irqfd_init();
3215         if (r)
3216                 goto out_irqfd;
3217
3218         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3219                 r = -ENOMEM;
3220                 goto out_free_0;
3221         }
3222
3223         r = kvm_arch_hardware_setup();
3224         if (r < 0)
3225                 goto out_free_0a;
3226
3227         for_each_online_cpu(cpu) {
3228                 smp_call_function_single(cpu,
3229                                 kvm_arch_check_processor_compat,
3230                                 &r, 1);
3231                 if (r < 0)
3232                         goto out_free_1;
3233         }
3234
3235         r = register_cpu_notifier(&kvm_cpu_notifier);
3236         if (r)
3237                 goto out_free_2;
3238         register_reboot_notifier(&kvm_reboot_notifier);
3239
3240         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3241         if (!vcpu_align)
3242                 vcpu_align = __alignof__(struct kvm_vcpu);
3243         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3244                                            0, NULL);
3245         if (!kvm_vcpu_cache) {
3246                 r = -ENOMEM;
3247                 goto out_free_3;
3248         }
3249
3250         r = kvm_async_pf_init();
3251         if (r)
3252                 goto out_free;
3253
3254         kvm_chardev_ops.owner = module;
3255         kvm_vm_fops.owner = module;
3256         kvm_vcpu_fops.owner = module;
3257
3258         r = misc_register(&kvm_dev);
3259         if (r) {
3260                 printk(KERN_ERR "kvm: misc device register failed\n");
3261                 goto out_unreg;
3262         }
3263
3264         register_syscore_ops(&kvm_syscore_ops);
3265
3266         kvm_preempt_ops.sched_in = kvm_sched_in;
3267         kvm_preempt_ops.sched_out = kvm_sched_out;
3268
3269         r = kvm_init_debug();
3270         if (r) {
3271                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3272                 goto out_undebugfs;
3273         }
3274
3275         r = kvm_vfio_ops_init();
3276         WARN_ON(r);
3277
3278         return 0;
3279
3280 out_undebugfs:
3281         unregister_syscore_ops(&kvm_syscore_ops);
3282         misc_deregister(&kvm_dev);
3283 out_unreg:
3284         kvm_async_pf_deinit();
3285 out_free:
3286         kmem_cache_destroy(kvm_vcpu_cache);
3287 out_free_3:
3288         unregister_reboot_notifier(&kvm_reboot_notifier);
3289         unregister_cpu_notifier(&kvm_cpu_notifier);
3290 out_free_2:
3291 out_free_1:
3292         kvm_arch_hardware_unsetup();
3293 out_free_0a:
3294         free_cpumask_var(cpus_hardware_enabled);
3295 out_free_0:
3296         kvm_irqfd_exit();
3297 out_irqfd:
3298         kvm_arch_exit();
3299 out_fail:
3300         return r;
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_init);
3303
3304 void kvm_exit(void)
3305 {
3306         kvm_exit_debug();
3307         misc_deregister(&kvm_dev);
3308         kmem_cache_destroy(kvm_vcpu_cache);
3309         kvm_async_pf_deinit();
3310         unregister_syscore_ops(&kvm_syscore_ops);
3311         unregister_reboot_notifier(&kvm_reboot_notifier);
3312         unregister_cpu_notifier(&kvm_cpu_notifier);
3313         on_each_cpu(hardware_disable_nolock, NULL, 1);
3314         kvm_arch_hardware_unsetup();
3315         kvm_arch_exit();
3316         kvm_irqfd_exit();
3317         free_cpumask_var(cpus_hardware_enabled);
3318         kvm_vfio_ops_exit();
3319 }
3320 EXPORT_SYMBOL_GPL(kvm_exit);