]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
Merge branch 'annotations' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeg...
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135         if (pfn_valid(pfn))
136                 return PageReserved(pfn_to_page(pfn));
137
138         return true;
139 }
140
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146         int cpu;
147
148         if (mutex_lock_killable(&vcpu->mutex))
149                 return -EINTR;
150         cpu = get_cpu();
151         preempt_notifier_register(&vcpu->preempt_notifier);
152         kvm_arch_vcpu_load(vcpu, cpu);
153         put_cpu();
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160         preempt_disable();
161         kvm_arch_vcpu_put(vcpu);
162         preempt_notifier_unregister(&vcpu->preempt_notifier);
163         preempt_enable();
164         mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
170 {
171         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
172
173         /*
174          * We need to wait for the VCPU to reenable interrupts and get out of
175          * READING_SHADOW_PAGE_TABLES mode.
176          */
177         if (req & KVM_REQUEST_WAIT)
178                 return mode != OUTSIDE_GUEST_MODE;
179
180         /*
181          * Need to kick a running VCPU, but otherwise there is nothing to do.
182          */
183         return mode == IN_GUEST_MODE;
184 }
185
186 static void ack_flush(void *_completed)
187 {
188 }
189
190 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
191 {
192         if (unlikely(!cpus))
193                 cpus = cpu_online_mask;
194
195         if (cpumask_empty(cpus))
196                 return false;
197
198         smp_call_function_many(cpus, ack_flush, NULL, wait);
199         return true;
200 }
201
202 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
203 {
204         int i, cpu, me;
205         cpumask_var_t cpus;
206         bool called;
207         struct kvm_vcpu *vcpu;
208
209         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
210
211         me = get_cpu();
212         kvm_for_each_vcpu(i, vcpu, kvm) {
213                 kvm_make_request(req, vcpu);
214                 cpu = vcpu->cpu;
215
216                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
217                         continue;
218
219                 if (cpus != NULL && cpu != -1 && cpu != me &&
220                     kvm_request_needs_ipi(vcpu, req))
221                         __cpumask_set_cpu(cpu, cpus);
222         }
223         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
224         put_cpu();
225         free_cpumask_var(cpus);
226         return called;
227 }
228
229 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
230 void kvm_flush_remote_tlbs(struct kvm *kvm)
231 {
232         /*
233          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
234          * kvm_make_all_cpus_request.
235          */
236         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
237
238         /*
239          * We want to publish modifications to the page tables before reading
240          * mode. Pairs with a memory barrier in arch-specific code.
241          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
242          * and smp_mb in walk_shadow_page_lockless_begin/end.
243          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
244          *
245          * There is already an smp_mb__after_atomic() before
246          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
247          * barrier here.
248          */
249         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
250                 ++kvm->stat.remote_tlb_flush;
251         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
252 }
253 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
254 #endif
255
256 void kvm_reload_remote_mmus(struct kvm *kvm)
257 {
258         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
259 }
260
261 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
262 {
263         struct page *page;
264         int r;
265
266         mutex_init(&vcpu->mutex);
267         vcpu->cpu = -1;
268         vcpu->kvm = kvm;
269         vcpu->vcpu_id = id;
270         vcpu->pid = NULL;
271         init_swait_queue_head(&vcpu->wq);
272         kvm_async_pf_vcpu_init(vcpu);
273
274         vcpu->pre_pcpu = -1;
275         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
276
277         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
278         if (!page) {
279                 r = -ENOMEM;
280                 goto fail;
281         }
282         vcpu->run = page_address(page);
283
284         kvm_vcpu_set_in_spin_loop(vcpu, false);
285         kvm_vcpu_set_dy_eligible(vcpu, false);
286         vcpu->preempted = false;
287
288         r = kvm_arch_vcpu_init(vcpu);
289         if (r < 0)
290                 goto fail_free_run;
291         return 0;
292
293 fail_free_run:
294         free_page((unsigned long)vcpu->run);
295 fail:
296         return r;
297 }
298 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
299
300 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
301 {
302         /*
303          * no need for rcu_read_lock as VCPU_RUN is the only place that
304          * will change the vcpu->pid pointer and on uninit all file
305          * descriptors are already gone.
306          */
307         put_pid(rcu_dereference_protected(vcpu->pid, 1));
308         kvm_arch_vcpu_uninit(vcpu);
309         free_page((unsigned long)vcpu->run);
310 }
311 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
312
313 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
314 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
315 {
316         return container_of(mn, struct kvm, mmu_notifier);
317 }
318
319 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
320                                              struct mm_struct *mm,
321                                              unsigned long address)
322 {
323         struct kvm *kvm = mmu_notifier_to_kvm(mn);
324         int need_tlb_flush, idx;
325
326         /*
327          * When ->invalidate_page runs, the linux pte has been zapped
328          * already but the page is still allocated until
329          * ->invalidate_page returns. So if we increase the sequence
330          * here the kvm page fault will notice if the spte can't be
331          * established because the page is going to be freed. If
332          * instead the kvm page fault establishes the spte before
333          * ->invalidate_page runs, kvm_unmap_hva will release it
334          * before returning.
335          *
336          * The sequence increase only need to be seen at spin_unlock
337          * time, and not at spin_lock time.
338          *
339          * Increasing the sequence after the spin_unlock would be
340          * unsafe because the kvm page fault could then establish the
341          * pte after kvm_unmap_hva returned, without noticing the page
342          * is going to be freed.
343          */
344         idx = srcu_read_lock(&kvm->srcu);
345         spin_lock(&kvm->mmu_lock);
346
347         kvm->mmu_notifier_seq++;
348         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
349         /* we've to flush the tlb before the pages can be freed */
350         if (need_tlb_flush)
351                 kvm_flush_remote_tlbs(kvm);
352
353         spin_unlock(&kvm->mmu_lock);
354
355         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
356
357         srcu_read_unlock(&kvm->srcu, idx);
358 }
359
360 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
361                                         struct mm_struct *mm,
362                                         unsigned long address,
363                                         pte_t pte)
364 {
365         struct kvm *kvm = mmu_notifier_to_kvm(mn);
366         int idx;
367
368         idx = srcu_read_lock(&kvm->srcu);
369         spin_lock(&kvm->mmu_lock);
370         kvm->mmu_notifier_seq++;
371         kvm_set_spte_hva(kvm, address, pte);
372         spin_unlock(&kvm->mmu_lock);
373         srcu_read_unlock(&kvm->srcu, idx);
374 }
375
376 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
377                                                     struct mm_struct *mm,
378                                                     unsigned long start,
379                                                     unsigned long end)
380 {
381         struct kvm *kvm = mmu_notifier_to_kvm(mn);
382         int need_tlb_flush = 0, idx;
383
384         idx = srcu_read_lock(&kvm->srcu);
385         spin_lock(&kvm->mmu_lock);
386         /*
387          * The count increase must become visible at unlock time as no
388          * spte can be established without taking the mmu_lock and
389          * count is also read inside the mmu_lock critical section.
390          */
391         kvm->mmu_notifier_count++;
392         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
393         need_tlb_flush |= kvm->tlbs_dirty;
394         /* we've to flush the tlb before the pages can be freed */
395         if (need_tlb_flush)
396                 kvm_flush_remote_tlbs(kvm);
397
398         spin_unlock(&kvm->mmu_lock);
399         srcu_read_unlock(&kvm->srcu, idx);
400 }
401
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403                                                   struct mm_struct *mm,
404                                                   unsigned long start,
405                                                   unsigned long end)
406 {
407         struct kvm *kvm = mmu_notifier_to_kvm(mn);
408
409         spin_lock(&kvm->mmu_lock);
410         /*
411          * This sequence increase will notify the kvm page fault that
412          * the page that is going to be mapped in the spte could have
413          * been freed.
414          */
415         kvm->mmu_notifier_seq++;
416         smp_wmb();
417         /*
418          * The above sequence increase must be visible before the
419          * below count decrease, which is ensured by the smp_wmb above
420          * in conjunction with the smp_rmb in mmu_notifier_retry().
421          */
422         kvm->mmu_notifier_count--;
423         spin_unlock(&kvm->mmu_lock);
424
425         BUG_ON(kvm->mmu_notifier_count < 0);
426 }
427
428 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
429                                               struct mm_struct *mm,
430                                               unsigned long start,
431                                               unsigned long end)
432 {
433         struct kvm *kvm = mmu_notifier_to_kvm(mn);
434         int young, idx;
435
436         idx = srcu_read_lock(&kvm->srcu);
437         spin_lock(&kvm->mmu_lock);
438
439         young = kvm_age_hva(kvm, start, end);
440         if (young)
441                 kvm_flush_remote_tlbs(kvm);
442
443         spin_unlock(&kvm->mmu_lock);
444         srcu_read_unlock(&kvm->srcu, idx);
445
446         return young;
447 }
448
449 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
450                                         struct mm_struct *mm,
451                                         unsigned long start,
452                                         unsigned long end)
453 {
454         struct kvm *kvm = mmu_notifier_to_kvm(mn);
455         int young, idx;
456
457         idx = srcu_read_lock(&kvm->srcu);
458         spin_lock(&kvm->mmu_lock);
459         /*
460          * Even though we do not flush TLB, this will still adversely
461          * affect performance on pre-Haswell Intel EPT, where there is
462          * no EPT Access Bit to clear so that we have to tear down EPT
463          * tables instead. If we find this unacceptable, we can always
464          * add a parameter to kvm_age_hva so that it effectively doesn't
465          * do anything on clear_young.
466          *
467          * Also note that currently we never issue secondary TLB flushes
468          * from clear_young, leaving this job up to the regular system
469          * cadence. If we find this inaccurate, we might come up with a
470          * more sophisticated heuristic later.
471          */
472         young = kvm_age_hva(kvm, start, end);
473         spin_unlock(&kvm->mmu_lock);
474         srcu_read_unlock(&kvm->srcu, idx);
475
476         return young;
477 }
478
479 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
480                                        struct mm_struct *mm,
481                                        unsigned long address)
482 {
483         struct kvm *kvm = mmu_notifier_to_kvm(mn);
484         int young, idx;
485
486         idx = srcu_read_lock(&kvm->srcu);
487         spin_lock(&kvm->mmu_lock);
488         young = kvm_test_age_hva(kvm, address);
489         spin_unlock(&kvm->mmu_lock);
490         srcu_read_unlock(&kvm->srcu, idx);
491
492         return young;
493 }
494
495 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
496                                      struct mm_struct *mm)
497 {
498         struct kvm *kvm = mmu_notifier_to_kvm(mn);
499         int idx;
500
501         idx = srcu_read_lock(&kvm->srcu);
502         kvm_arch_flush_shadow_all(kvm);
503         srcu_read_unlock(&kvm->srcu, idx);
504 }
505
506 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
507         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
508         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
509         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
510         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
511         .clear_young            = kvm_mmu_notifier_clear_young,
512         .test_young             = kvm_mmu_notifier_test_young,
513         .change_pte             = kvm_mmu_notifier_change_pte,
514         .release                = kvm_mmu_notifier_release,
515 };
516
517 static int kvm_init_mmu_notifier(struct kvm *kvm)
518 {
519         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
520         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
521 }
522
523 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
524
525 static int kvm_init_mmu_notifier(struct kvm *kvm)
526 {
527         return 0;
528 }
529
530 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
531
532 static struct kvm_memslots *kvm_alloc_memslots(void)
533 {
534         int i;
535         struct kvm_memslots *slots;
536
537         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
538         if (!slots)
539                 return NULL;
540
541         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
542                 slots->id_to_index[i] = slots->memslots[i].id = i;
543
544         return slots;
545 }
546
547 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
548 {
549         if (!memslot->dirty_bitmap)
550                 return;
551
552         kvfree(memslot->dirty_bitmap);
553         memslot->dirty_bitmap = NULL;
554 }
555
556 /*
557  * Free any memory in @free but not in @dont.
558  */
559 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
560                               struct kvm_memory_slot *dont)
561 {
562         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
563                 kvm_destroy_dirty_bitmap(free);
564
565         kvm_arch_free_memslot(kvm, free, dont);
566
567         free->npages = 0;
568 }
569
570 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
571 {
572         struct kvm_memory_slot *memslot;
573
574         if (!slots)
575                 return;
576
577         kvm_for_each_memslot(memslot, slots)
578                 kvm_free_memslot(kvm, memslot, NULL);
579
580         kvfree(slots);
581 }
582
583 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
584 {
585         int i;
586
587         if (!kvm->debugfs_dentry)
588                 return;
589
590         debugfs_remove_recursive(kvm->debugfs_dentry);
591
592         if (kvm->debugfs_stat_data) {
593                 for (i = 0; i < kvm_debugfs_num_entries; i++)
594                         kfree(kvm->debugfs_stat_data[i]);
595                 kfree(kvm->debugfs_stat_data);
596         }
597 }
598
599 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
600 {
601         char dir_name[ITOA_MAX_LEN * 2];
602         struct kvm_stat_data *stat_data;
603         struct kvm_stats_debugfs_item *p;
604
605         if (!debugfs_initialized())
606                 return 0;
607
608         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
609         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
610                                                  kvm_debugfs_dir);
611         if (!kvm->debugfs_dentry)
612                 return -ENOMEM;
613
614         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
615                                          sizeof(*kvm->debugfs_stat_data),
616                                          GFP_KERNEL);
617         if (!kvm->debugfs_stat_data)
618                 return -ENOMEM;
619
620         for (p = debugfs_entries; p->name; p++) {
621                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
622                 if (!stat_data)
623                         return -ENOMEM;
624
625                 stat_data->kvm = kvm;
626                 stat_data->offset = p->offset;
627                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
628                 if (!debugfs_create_file(p->name, 0644,
629                                          kvm->debugfs_dentry,
630                                          stat_data,
631                                          stat_fops_per_vm[p->kind]))
632                         return -ENOMEM;
633         }
634         return 0;
635 }
636
637 static struct kvm *kvm_create_vm(unsigned long type)
638 {
639         int r, i;
640         struct kvm *kvm = kvm_arch_alloc_vm();
641
642         if (!kvm)
643                 return ERR_PTR(-ENOMEM);
644
645         spin_lock_init(&kvm->mmu_lock);
646         mmgrab(current->mm);
647         kvm->mm = current->mm;
648         kvm_eventfd_init(kvm);
649         mutex_init(&kvm->lock);
650         mutex_init(&kvm->irq_lock);
651         mutex_init(&kvm->slots_lock);
652         refcount_set(&kvm->users_count, 1);
653         INIT_LIST_HEAD(&kvm->devices);
654
655         r = kvm_arch_init_vm(kvm, type);
656         if (r)
657                 goto out_err_no_disable;
658
659         r = hardware_enable_all();
660         if (r)
661                 goto out_err_no_disable;
662
663 #ifdef CONFIG_HAVE_KVM_IRQFD
664         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
665 #endif
666
667         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
668
669         r = -ENOMEM;
670         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
671                 struct kvm_memslots *slots = kvm_alloc_memslots();
672                 if (!slots)
673                         goto out_err_no_srcu;
674                 /*
675                  * Generations must be different for each address space.
676                  * Init kvm generation close to the maximum to easily test the
677                  * code of handling generation number wrap-around.
678                  */
679                 slots->generation = i * 2 - 150;
680                 rcu_assign_pointer(kvm->memslots[i], slots);
681         }
682
683         if (init_srcu_struct(&kvm->srcu))
684                 goto out_err_no_srcu;
685         if (init_srcu_struct(&kvm->irq_srcu))
686                 goto out_err_no_irq_srcu;
687         for (i = 0; i < KVM_NR_BUSES; i++) {
688                 rcu_assign_pointer(kvm->buses[i],
689                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
690                 if (!kvm->buses[i])
691                         goto out_err;
692         }
693
694         r = kvm_init_mmu_notifier(kvm);
695         if (r)
696                 goto out_err;
697
698         spin_lock(&kvm_lock);
699         list_add(&kvm->vm_list, &vm_list);
700         spin_unlock(&kvm_lock);
701
702         preempt_notifier_inc();
703
704         return kvm;
705
706 out_err:
707         cleanup_srcu_struct(&kvm->irq_srcu);
708 out_err_no_irq_srcu:
709         cleanup_srcu_struct(&kvm->srcu);
710 out_err_no_srcu:
711         hardware_disable_all();
712 out_err_no_disable:
713         for (i = 0; i < KVM_NR_BUSES; i++)
714                 kfree(rcu_access_pointer(kvm->buses[i]));
715         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
716                 kvm_free_memslots(kvm,
717                         rcu_dereference_protected(kvm->memslots[i], 1));
718         kvm_arch_free_vm(kvm);
719         mmdrop(current->mm);
720         return ERR_PTR(r);
721 }
722
723 static void kvm_destroy_devices(struct kvm *kvm)
724 {
725         struct kvm_device *dev, *tmp;
726
727         /*
728          * We do not need to take the kvm->lock here, because nobody else
729          * has a reference to the struct kvm at this point and therefore
730          * cannot access the devices list anyhow.
731          */
732         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
733                 list_del(&dev->vm_node);
734                 dev->ops->destroy(dev);
735         }
736 }
737
738 static void kvm_destroy_vm(struct kvm *kvm)
739 {
740         int i;
741         struct mm_struct *mm = kvm->mm;
742
743         kvm_destroy_vm_debugfs(kvm);
744         kvm_arch_sync_events(kvm);
745         spin_lock(&kvm_lock);
746         list_del(&kvm->vm_list);
747         spin_unlock(&kvm_lock);
748         kvm_free_irq_routing(kvm);
749         for (i = 0; i < KVM_NR_BUSES; i++) {
750                 struct kvm_io_bus *bus;
751
752                 bus = rcu_dereference_protected(kvm->buses[i], 1);
753                 if (bus)
754                         kvm_io_bus_destroy(bus);
755                 kvm->buses[i] = NULL;
756         }
757         kvm_coalesced_mmio_free(kvm);
758 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
759         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
760 #else
761         kvm_arch_flush_shadow_all(kvm);
762 #endif
763         kvm_arch_destroy_vm(kvm);
764         kvm_destroy_devices(kvm);
765         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
766                 kvm_free_memslots(kvm,
767                         rcu_dereference_protected(kvm->memslots[i], 1));
768         cleanup_srcu_struct(&kvm->irq_srcu);
769         cleanup_srcu_struct(&kvm->srcu);
770         kvm_arch_free_vm(kvm);
771         preempt_notifier_dec();
772         hardware_disable_all();
773         mmdrop(mm);
774 }
775
776 void kvm_get_kvm(struct kvm *kvm)
777 {
778         refcount_inc(&kvm->users_count);
779 }
780 EXPORT_SYMBOL_GPL(kvm_get_kvm);
781
782 void kvm_put_kvm(struct kvm *kvm)
783 {
784         if (refcount_dec_and_test(&kvm->users_count))
785                 kvm_destroy_vm(kvm);
786 }
787 EXPORT_SYMBOL_GPL(kvm_put_kvm);
788
789
790 static int kvm_vm_release(struct inode *inode, struct file *filp)
791 {
792         struct kvm *kvm = filp->private_data;
793
794         kvm_irqfd_release(kvm);
795
796         kvm_put_kvm(kvm);
797         return 0;
798 }
799
800 /*
801  * Allocation size is twice as large as the actual dirty bitmap size.
802  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
803  */
804 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
805 {
806         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
807
808         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
809         if (!memslot->dirty_bitmap)
810                 return -ENOMEM;
811
812         return 0;
813 }
814
815 /*
816  * Insert memslot and re-sort memslots based on their GFN,
817  * so binary search could be used to lookup GFN.
818  * Sorting algorithm takes advantage of having initially
819  * sorted array and known changed memslot position.
820  */
821 static void update_memslots(struct kvm_memslots *slots,
822                             struct kvm_memory_slot *new)
823 {
824         int id = new->id;
825         int i = slots->id_to_index[id];
826         struct kvm_memory_slot *mslots = slots->memslots;
827
828         WARN_ON(mslots[i].id != id);
829         if (!new->npages) {
830                 WARN_ON(!mslots[i].npages);
831                 if (mslots[i].npages)
832                         slots->used_slots--;
833         } else {
834                 if (!mslots[i].npages)
835                         slots->used_slots++;
836         }
837
838         while (i < KVM_MEM_SLOTS_NUM - 1 &&
839                new->base_gfn <= mslots[i + 1].base_gfn) {
840                 if (!mslots[i + 1].npages)
841                         break;
842                 mslots[i] = mslots[i + 1];
843                 slots->id_to_index[mslots[i].id] = i;
844                 i++;
845         }
846
847         /*
848          * The ">=" is needed when creating a slot with base_gfn == 0,
849          * so that it moves before all those with base_gfn == npages == 0.
850          *
851          * On the other hand, if new->npages is zero, the above loop has
852          * already left i pointing to the beginning of the empty part of
853          * mslots, and the ">=" would move the hole backwards in this
854          * case---which is wrong.  So skip the loop when deleting a slot.
855          */
856         if (new->npages) {
857                 while (i > 0 &&
858                        new->base_gfn >= mslots[i - 1].base_gfn) {
859                         mslots[i] = mslots[i - 1];
860                         slots->id_to_index[mslots[i].id] = i;
861                         i--;
862                 }
863         } else
864                 WARN_ON_ONCE(i != slots->used_slots);
865
866         mslots[i] = *new;
867         slots->id_to_index[mslots[i].id] = i;
868 }
869
870 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
871 {
872         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
873
874 #ifdef __KVM_HAVE_READONLY_MEM
875         valid_flags |= KVM_MEM_READONLY;
876 #endif
877
878         if (mem->flags & ~valid_flags)
879                 return -EINVAL;
880
881         return 0;
882 }
883
884 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
885                 int as_id, struct kvm_memslots *slots)
886 {
887         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
888
889         /*
890          * Set the low bit in the generation, which disables SPTE caching
891          * until the end of synchronize_srcu_expedited.
892          */
893         WARN_ON(old_memslots->generation & 1);
894         slots->generation = old_memslots->generation + 1;
895
896         rcu_assign_pointer(kvm->memslots[as_id], slots);
897         synchronize_srcu_expedited(&kvm->srcu);
898
899         /*
900          * Increment the new memslot generation a second time. This prevents
901          * vm exits that race with memslot updates from caching a memslot
902          * generation that will (potentially) be valid forever.
903          *
904          * Generations must be unique even across address spaces.  We do not need
905          * a global counter for that, instead the generation space is evenly split
906          * across address spaces.  For example, with two address spaces, address
907          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
908          * use generations 2, 6, 10, 14, ...
909          */
910         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
911
912         kvm_arch_memslots_updated(kvm, slots);
913
914         return old_memslots;
915 }
916
917 /*
918  * Allocate some memory and give it an address in the guest physical address
919  * space.
920  *
921  * Discontiguous memory is allowed, mostly for framebuffers.
922  *
923  * Must be called holding kvm->slots_lock for write.
924  */
925 int __kvm_set_memory_region(struct kvm *kvm,
926                             const struct kvm_userspace_memory_region *mem)
927 {
928         int r;
929         gfn_t base_gfn;
930         unsigned long npages;
931         struct kvm_memory_slot *slot;
932         struct kvm_memory_slot old, new;
933         struct kvm_memslots *slots = NULL, *old_memslots;
934         int as_id, id;
935         enum kvm_mr_change change;
936
937         r = check_memory_region_flags(mem);
938         if (r)
939                 goto out;
940
941         r = -EINVAL;
942         as_id = mem->slot >> 16;
943         id = (u16)mem->slot;
944
945         /* General sanity checks */
946         if (mem->memory_size & (PAGE_SIZE - 1))
947                 goto out;
948         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
949                 goto out;
950         /* We can read the guest memory with __xxx_user() later on. */
951         if ((id < KVM_USER_MEM_SLOTS) &&
952             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
953              !access_ok(VERIFY_WRITE,
954                         (void __user *)(unsigned long)mem->userspace_addr,
955                         mem->memory_size)))
956                 goto out;
957         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
958                 goto out;
959         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
960                 goto out;
961
962         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
963         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
964         npages = mem->memory_size >> PAGE_SHIFT;
965
966         if (npages > KVM_MEM_MAX_NR_PAGES)
967                 goto out;
968
969         new = old = *slot;
970
971         new.id = id;
972         new.base_gfn = base_gfn;
973         new.npages = npages;
974         new.flags = mem->flags;
975
976         if (npages) {
977                 if (!old.npages)
978                         change = KVM_MR_CREATE;
979                 else { /* Modify an existing slot. */
980                         if ((mem->userspace_addr != old.userspace_addr) ||
981                             (npages != old.npages) ||
982                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
983                                 goto out;
984
985                         if (base_gfn != old.base_gfn)
986                                 change = KVM_MR_MOVE;
987                         else if (new.flags != old.flags)
988                                 change = KVM_MR_FLAGS_ONLY;
989                         else { /* Nothing to change. */
990                                 r = 0;
991                                 goto out;
992                         }
993                 }
994         } else {
995                 if (!old.npages)
996                         goto out;
997
998                 change = KVM_MR_DELETE;
999                 new.base_gfn = 0;
1000                 new.flags = 0;
1001         }
1002
1003         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1004                 /* Check for overlaps */
1005                 r = -EEXIST;
1006                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1007                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1008                             (slot->id == id))
1009                                 continue;
1010                         if (!((base_gfn + npages <= slot->base_gfn) ||
1011                               (base_gfn >= slot->base_gfn + slot->npages)))
1012                                 goto out;
1013                 }
1014         }
1015
1016         /* Free page dirty bitmap if unneeded */
1017         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1018                 new.dirty_bitmap = NULL;
1019
1020         r = -ENOMEM;
1021         if (change == KVM_MR_CREATE) {
1022                 new.userspace_addr = mem->userspace_addr;
1023
1024                 if (kvm_arch_create_memslot(kvm, &new, npages))
1025                         goto out_free;
1026         }
1027
1028         /* Allocate page dirty bitmap if needed */
1029         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1030                 if (kvm_create_dirty_bitmap(&new) < 0)
1031                         goto out_free;
1032         }
1033
1034         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1035         if (!slots)
1036                 goto out_free;
1037         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1038
1039         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1040                 slot = id_to_memslot(slots, id);
1041                 slot->flags |= KVM_MEMSLOT_INVALID;
1042
1043                 old_memslots = install_new_memslots(kvm, as_id, slots);
1044
1045                 /* From this point no new shadow pages pointing to a deleted,
1046                  * or moved, memslot will be created.
1047                  *
1048                  * validation of sp->gfn happens in:
1049                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1050                  *      - kvm_is_visible_gfn (mmu_check_roots)
1051                  */
1052                 kvm_arch_flush_shadow_memslot(kvm, slot);
1053
1054                 /*
1055                  * We can re-use the old_memslots from above, the only difference
1056                  * from the currently installed memslots is the invalid flag.  This
1057                  * will get overwritten by update_memslots anyway.
1058                  */
1059                 slots = old_memslots;
1060         }
1061
1062         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1063         if (r)
1064                 goto out_slots;
1065
1066         /* actual memory is freed via old in kvm_free_memslot below */
1067         if (change == KVM_MR_DELETE) {
1068                 new.dirty_bitmap = NULL;
1069                 memset(&new.arch, 0, sizeof(new.arch));
1070         }
1071
1072         update_memslots(slots, &new);
1073         old_memslots = install_new_memslots(kvm, as_id, slots);
1074
1075         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1076
1077         kvm_free_memslot(kvm, &old, &new);
1078         kvfree(old_memslots);
1079         return 0;
1080
1081 out_slots:
1082         kvfree(slots);
1083 out_free:
1084         kvm_free_memslot(kvm, &new, &old);
1085 out:
1086         return r;
1087 }
1088 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1089
1090 int kvm_set_memory_region(struct kvm *kvm,
1091                           const struct kvm_userspace_memory_region *mem)
1092 {
1093         int r;
1094
1095         mutex_lock(&kvm->slots_lock);
1096         r = __kvm_set_memory_region(kvm, mem);
1097         mutex_unlock(&kvm->slots_lock);
1098         return r;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1101
1102 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1103                                           struct kvm_userspace_memory_region *mem)
1104 {
1105         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1106                 return -EINVAL;
1107
1108         return kvm_set_memory_region(kvm, mem);
1109 }
1110
1111 int kvm_get_dirty_log(struct kvm *kvm,
1112                         struct kvm_dirty_log *log, int *is_dirty)
1113 {
1114         struct kvm_memslots *slots;
1115         struct kvm_memory_slot *memslot;
1116         int i, as_id, id;
1117         unsigned long n;
1118         unsigned long any = 0;
1119
1120         as_id = log->slot >> 16;
1121         id = (u16)log->slot;
1122         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1123                 return -EINVAL;
1124
1125         slots = __kvm_memslots(kvm, as_id);
1126         memslot = id_to_memslot(slots, id);
1127         if (!memslot->dirty_bitmap)
1128                 return -ENOENT;
1129
1130         n = kvm_dirty_bitmap_bytes(memslot);
1131
1132         for (i = 0; !any && i < n/sizeof(long); ++i)
1133                 any = memslot->dirty_bitmap[i];
1134
1135         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1136                 return -EFAULT;
1137
1138         if (any)
1139                 *is_dirty = 1;
1140         return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1143
1144 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1145 /**
1146  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1147  *      are dirty write protect them for next write.
1148  * @kvm:        pointer to kvm instance
1149  * @log:        slot id and address to which we copy the log
1150  * @is_dirty:   flag set if any page is dirty
1151  *
1152  * We need to keep it in mind that VCPU threads can write to the bitmap
1153  * concurrently. So, to avoid losing track of dirty pages we keep the
1154  * following order:
1155  *
1156  *    1. Take a snapshot of the bit and clear it if needed.
1157  *    2. Write protect the corresponding page.
1158  *    3. Copy the snapshot to the userspace.
1159  *    4. Upon return caller flushes TLB's if needed.
1160  *
1161  * Between 2 and 4, the guest may write to the page using the remaining TLB
1162  * entry.  This is not a problem because the page is reported dirty using
1163  * the snapshot taken before and step 4 ensures that writes done after
1164  * exiting to userspace will be logged for the next call.
1165  *
1166  */
1167 int kvm_get_dirty_log_protect(struct kvm *kvm,
1168                         struct kvm_dirty_log *log, bool *is_dirty)
1169 {
1170         struct kvm_memslots *slots;
1171         struct kvm_memory_slot *memslot;
1172         int i, as_id, id;
1173         unsigned long n;
1174         unsigned long *dirty_bitmap;
1175         unsigned long *dirty_bitmap_buffer;
1176
1177         as_id = log->slot >> 16;
1178         id = (u16)log->slot;
1179         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1180                 return -EINVAL;
1181
1182         slots = __kvm_memslots(kvm, as_id);
1183         memslot = id_to_memslot(slots, id);
1184
1185         dirty_bitmap = memslot->dirty_bitmap;
1186         if (!dirty_bitmap)
1187                 return -ENOENT;
1188
1189         n = kvm_dirty_bitmap_bytes(memslot);
1190
1191         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1192         memset(dirty_bitmap_buffer, 0, n);
1193
1194         spin_lock(&kvm->mmu_lock);
1195         *is_dirty = false;
1196         for (i = 0; i < n / sizeof(long); i++) {
1197                 unsigned long mask;
1198                 gfn_t offset;
1199
1200                 if (!dirty_bitmap[i])
1201                         continue;
1202
1203                 *is_dirty = true;
1204
1205                 mask = xchg(&dirty_bitmap[i], 0);
1206                 dirty_bitmap_buffer[i] = mask;
1207
1208                 if (mask) {
1209                         offset = i * BITS_PER_LONG;
1210                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211                                                                 offset, mask);
1212                 }
1213         }
1214
1215         spin_unlock(&kvm->mmu_lock);
1216         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217                 return -EFAULT;
1218         return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221 #endif
1222
1223 bool kvm_largepages_enabled(void)
1224 {
1225         return largepages_enabled;
1226 }
1227
1228 void kvm_disable_largepages(void)
1229 {
1230         largepages_enabled = false;
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1233
1234 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1235 {
1236         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1237 }
1238 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1239
1240 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1241 {
1242         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1243 }
1244
1245 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1246 {
1247         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1248
1249         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1250               memslot->flags & KVM_MEMSLOT_INVALID)
1251                 return false;
1252
1253         return true;
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1256
1257 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1258 {
1259         struct vm_area_struct *vma;
1260         unsigned long addr, size;
1261
1262         size = PAGE_SIZE;
1263
1264         addr = gfn_to_hva(kvm, gfn);
1265         if (kvm_is_error_hva(addr))
1266                 return PAGE_SIZE;
1267
1268         down_read(&current->mm->mmap_sem);
1269         vma = find_vma(current->mm, addr);
1270         if (!vma)
1271                 goto out;
1272
1273         size = vma_kernel_pagesize(vma);
1274
1275 out:
1276         up_read(&current->mm->mmap_sem);
1277
1278         return size;
1279 }
1280
1281 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1282 {
1283         return slot->flags & KVM_MEM_READONLY;
1284 }
1285
1286 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1287                                        gfn_t *nr_pages, bool write)
1288 {
1289         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1290                 return KVM_HVA_ERR_BAD;
1291
1292         if (memslot_is_readonly(slot) && write)
1293                 return KVM_HVA_ERR_RO_BAD;
1294
1295         if (nr_pages)
1296                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1297
1298         return __gfn_to_hva_memslot(slot, gfn);
1299 }
1300
1301 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1302                                      gfn_t *nr_pages)
1303 {
1304         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1305 }
1306
1307 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1308                                         gfn_t gfn)
1309 {
1310         return gfn_to_hva_many(slot, gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1313
1314 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1315 {
1316         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(gfn_to_hva);
1319
1320 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1321 {
1322         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1325
1326 /*
1327  * If writable is set to false, the hva returned by this function is only
1328  * allowed to be read.
1329  */
1330 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1331                                       gfn_t gfn, bool *writable)
1332 {
1333         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1334
1335         if (!kvm_is_error_hva(hva) && writable)
1336                 *writable = !memslot_is_readonly(slot);
1337
1338         return hva;
1339 }
1340
1341 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1342 {
1343         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1344
1345         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1346 }
1347
1348 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1349 {
1350         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1351
1352         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1353 }
1354
1355 static int get_user_page_nowait(unsigned long start, int write,
1356                 struct page **page)
1357 {
1358         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1359
1360         if (write)
1361                 flags |= FOLL_WRITE;
1362
1363         return get_user_pages(start, 1, flags, page, NULL);
1364 }
1365
1366 static inline int check_user_page_hwpoison(unsigned long addr)
1367 {
1368         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1369
1370         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1371         return rc == -EHWPOISON;
1372 }
1373
1374 /*
1375  * The atomic path to get the writable pfn which will be stored in @pfn,
1376  * true indicates success, otherwise false is returned.
1377  */
1378 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1379                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1380 {
1381         struct page *page[1];
1382         int npages;
1383
1384         if (!(async || atomic))
1385                 return false;
1386
1387         /*
1388          * Fast pin a writable pfn only if it is a write fault request
1389          * or the caller allows to map a writable pfn for a read fault
1390          * request.
1391          */
1392         if (!(write_fault || writable))
1393                 return false;
1394
1395         npages = __get_user_pages_fast(addr, 1, 1, page);
1396         if (npages == 1) {
1397                 *pfn = page_to_pfn(page[0]);
1398
1399                 if (writable)
1400                         *writable = true;
1401                 return true;
1402         }
1403
1404         return false;
1405 }
1406
1407 /*
1408  * The slow path to get the pfn of the specified host virtual address,
1409  * 1 indicates success, -errno is returned if error is detected.
1410  */
1411 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1412                            bool *writable, kvm_pfn_t *pfn)
1413 {
1414         struct page *page[1];
1415         int npages = 0;
1416
1417         might_sleep();
1418
1419         if (writable)
1420                 *writable = write_fault;
1421
1422         if (async) {
1423                 down_read(&current->mm->mmap_sem);
1424                 npages = get_user_page_nowait(addr, write_fault, page);
1425                 up_read(&current->mm->mmap_sem);
1426         } else {
1427                 unsigned int flags = FOLL_HWPOISON;
1428
1429                 if (write_fault)
1430                         flags |= FOLL_WRITE;
1431
1432                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1433         }
1434         if (npages != 1)
1435                 return npages;
1436
1437         /* map read fault as writable if possible */
1438         if (unlikely(!write_fault) && writable) {
1439                 struct page *wpage[1];
1440
1441                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1442                 if (npages == 1) {
1443                         *writable = true;
1444                         put_page(page[0]);
1445                         page[0] = wpage[0];
1446                 }
1447
1448                 npages = 1;
1449         }
1450         *pfn = page_to_pfn(page[0]);
1451         return npages;
1452 }
1453
1454 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1455 {
1456         if (unlikely(!(vma->vm_flags & VM_READ)))
1457                 return false;
1458
1459         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1460                 return false;
1461
1462         return true;
1463 }
1464
1465 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1466                                unsigned long addr, bool *async,
1467                                bool write_fault, kvm_pfn_t *p_pfn)
1468 {
1469         unsigned long pfn;
1470         int r;
1471
1472         r = follow_pfn(vma, addr, &pfn);
1473         if (r) {
1474                 /*
1475                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1476                  * not call the fault handler, so do it here.
1477                  */
1478                 bool unlocked = false;
1479                 r = fixup_user_fault(current, current->mm, addr,
1480                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1481                                      &unlocked);
1482                 if (unlocked)
1483                         return -EAGAIN;
1484                 if (r)
1485                         return r;
1486
1487                 r = follow_pfn(vma, addr, &pfn);
1488                 if (r)
1489                         return r;
1490
1491         }
1492
1493
1494         /*
1495          * Get a reference here because callers of *hva_to_pfn* and
1496          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1497          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1498          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1499          * simply do nothing for reserved pfns.
1500          *
1501          * Whoever called remap_pfn_range is also going to call e.g.
1502          * unmap_mapping_range before the underlying pages are freed,
1503          * causing a call to our MMU notifier.
1504          */ 
1505         kvm_get_pfn(pfn);
1506
1507         *p_pfn = pfn;
1508         return 0;
1509 }
1510
1511 /*
1512  * Pin guest page in memory and return its pfn.
1513  * @addr: host virtual address which maps memory to the guest
1514  * @atomic: whether this function can sleep
1515  * @async: whether this function need to wait IO complete if the
1516  *         host page is not in the memory
1517  * @write_fault: whether we should get a writable host page
1518  * @writable: whether it allows to map a writable host page for !@write_fault
1519  *
1520  * The function will map a writable host page for these two cases:
1521  * 1): @write_fault = true
1522  * 2): @write_fault = false && @writable, @writable will tell the caller
1523  *     whether the mapping is writable.
1524  */
1525 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1526                         bool write_fault, bool *writable)
1527 {
1528         struct vm_area_struct *vma;
1529         kvm_pfn_t pfn = 0;
1530         int npages, r;
1531
1532         /* we can do it either atomically or asynchronously, not both */
1533         BUG_ON(atomic && async);
1534
1535         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1536                 return pfn;
1537
1538         if (atomic)
1539                 return KVM_PFN_ERR_FAULT;
1540
1541         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1542         if (npages == 1)
1543                 return pfn;
1544
1545         down_read(&current->mm->mmap_sem);
1546         if (npages == -EHWPOISON ||
1547               (!async && check_user_page_hwpoison(addr))) {
1548                 pfn = KVM_PFN_ERR_HWPOISON;
1549                 goto exit;
1550         }
1551
1552 retry:
1553         vma = find_vma_intersection(current->mm, addr, addr + 1);
1554
1555         if (vma == NULL)
1556                 pfn = KVM_PFN_ERR_FAULT;
1557         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1558                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1559                 if (r == -EAGAIN)
1560                         goto retry;
1561                 if (r < 0)
1562                         pfn = KVM_PFN_ERR_FAULT;
1563         } else {
1564                 if (async && vma_is_valid(vma, write_fault))
1565                         *async = true;
1566                 pfn = KVM_PFN_ERR_FAULT;
1567         }
1568 exit:
1569         up_read(&current->mm->mmap_sem);
1570         return pfn;
1571 }
1572
1573 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1574                                bool atomic, bool *async, bool write_fault,
1575                                bool *writable)
1576 {
1577         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1578
1579         if (addr == KVM_HVA_ERR_RO_BAD) {
1580                 if (writable)
1581                         *writable = false;
1582                 return KVM_PFN_ERR_RO_FAULT;
1583         }
1584
1585         if (kvm_is_error_hva(addr)) {
1586                 if (writable)
1587                         *writable = false;
1588                 return KVM_PFN_NOSLOT;
1589         }
1590
1591         /* Do not map writable pfn in the readonly memslot. */
1592         if (writable && memslot_is_readonly(slot)) {
1593                 *writable = false;
1594                 writable = NULL;
1595         }
1596
1597         return hva_to_pfn(addr, atomic, async, write_fault,
1598                           writable);
1599 }
1600 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1601
1602 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1603                       bool *writable)
1604 {
1605         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1606                                     write_fault, writable);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1609
1610 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1615
1616 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1617 {
1618         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1621
1622 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1623 {
1624         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1627
1628 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1629 {
1630         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1633
1634 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1635 {
1636         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1639
1640 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1641 {
1642         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1645
1646 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1647                             struct page **pages, int nr_pages)
1648 {
1649         unsigned long addr;
1650         gfn_t entry;
1651
1652         addr = gfn_to_hva_many(slot, gfn, &entry);
1653         if (kvm_is_error_hva(addr))
1654                 return -1;
1655
1656         if (entry < nr_pages)
1657                 return 0;
1658
1659         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1660 }
1661 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1662
1663 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1664 {
1665         if (is_error_noslot_pfn(pfn))
1666                 return KVM_ERR_PTR_BAD_PAGE;
1667
1668         if (kvm_is_reserved_pfn(pfn)) {
1669                 WARN_ON(1);
1670                 return KVM_ERR_PTR_BAD_PAGE;
1671         }
1672
1673         return pfn_to_page(pfn);
1674 }
1675
1676 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1677 {
1678         kvm_pfn_t pfn;
1679
1680         pfn = gfn_to_pfn(kvm, gfn);
1681
1682         return kvm_pfn_to_page(pfn);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_page);
1685
1686 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688         kvm_pfn_t pfn;
1689
1690         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1691
1692         return kvm_pfn_to_page(pfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1695
1696 void kvm_release_page_clean(struct page *page)
1697 {
1698         WARN_ON(is_error_page(page));
1699
1700         kvm_release_pfn_clean(page_to_pfn(page));
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1703
1704 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1705 {
1706         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1707                 put_page(pfn_to_page(pfn));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1710
1711 void kvm_release_page_dirty(struct page *page)
1712 {
1713         WARN_ON(is_error_page(page));
1714
1715         kvm_release_pfn_dirty(page_to_pfn(page));
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1718
1719 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721         kvm_set_pfn_dirty(pfn);
1722         kvm_release_pfn_clean(pfn);
1723 }
1724
1725 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1726 {
1727         if (!kvm_is_reserved_pfn(pfn)) {
1728                 struct page *page = pfn_to_page(pfn);
1729
1730                 if (!PageReserved(page))
1731                         SetPageDirty(page);
1732         }
1733 }
1734 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1735
1736 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1737 {
1738         if (!kvm_is_reserved_pfn(pfn))
1739                 mark_page_accessed(pfn_to_page(pfn));
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1742
1743 void kvm_get_pfn(kvm_pfn_t pfn)
1744 {
1745         if (!kvm_is_reserved_pfn(pfn))
1746                 get_page(pfn_to_page(pfn));
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1749
1750 static int next_segment(unsigned long len, int offset)
1751 {
1752         if (len > PAGE_SIZE - offset)
1753                 return PAGE_SIZE - offset;
1754         else
1755                 return len;
1756 }
1757
1758 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1759                                  void *data, int offset, int len)
1760 {
1761         int r;
1762         unsigned long addr;
1763
1764         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1765         if (kvm_is_error_hva(addr))
1766                 return -EFAULT;
1767         r = __copy_from_user(data, (void __user *)addr + offset, len);
1768         if (r)
1769                 return -EFAULT;
1770         return 0;
1771 }
1772
1773 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1774                         int len)
1775 {
1776         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1777
1778         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1781
1782 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1783                              int offset, int len)
1784 {
1785         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1786
1787         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1790
1791 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1792 {
1793         gfn_t gfn = gpa >> PAGE_SHIFT;
1794         int seg;
1795         int offset = offset_in_page(gpa);
1796         int ret;
1797
1798         while ((seg = next_segment(len, offset)) != 0) {
1799                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1800                 if (ret < 0)
1801                         return ret;
1802                 offset = 0;
1803                 len -= seg;
1804                 data += seg;
1805                 ++gfn;
1806         }
1807         return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_read_guest);
1810
1811 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1812 {
1813         gfn_t gfn = gpa >> PAGE_SHIFT;
1814         int seg;
1815         int offset = offset_in_page(gpa);
1816         int ret;
1817
1818         while ((seg = next_segment(len, offset)) != 0) {
1819                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1820                 if (ret < 0)
1821                         return ret;
1822                 offset = 0;
1823                 len -= seg;
1824                 data += seg;
1825                 ++gfn;
1826         }
1827         return 0;
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1830
1831 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1832                                    void *data, int offset, unsigned long len)
1833 {
1834         int r;
1835         unsigned long addr;
1836
1837         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1838         if (kvm_is_error_hva(addr))
1839                 return -EFAULT;
1840         pagefault_disable();
1841         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1842         pagefault_enable();
1843         if (r)
1844                 return -EFAULT;
1845         return 0;
1846 }
1847
1848 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1849                           unsigned long len)
1850 {
1851         gfn_t gfn = gpa >> PAGE_SHIFT;
1852         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853         int offset = offset_in_page(gpa);
1854
1855         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1858
1859 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1860                                void *data, unsigned long len)
1861 {
1862         gfn_t gfn = gpa >> PAGE_SHIFT;
1863         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1864         int offset = offset_in_page(gpa);
1865
1866         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1869
1870 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1871                                   const void *data, int offset, int len)
1872 {
1873         int r;
1874         unsigned long addr;
1875
1876         addr = gfn_to_hva_memslot(memslot, gfn);
1877         if (kvm_is_error_hva(addr))
1878                 return -EFAULT;
1879         r = __copy_to_user((void __user *)addr + offset, data, len);
1880         if (r)
1881                 return -EFAULT;
1882         mark_page_dirty_in_slot(memslot, gfn);
1883         return 0;
1884 }
1885
1886 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1887                          const void *data, int offset, int len)
1888 {
1889         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1890
1891         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1894
1895 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1896                               const void *data, int offset, int len)
1897 {
1898         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1899
1900         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1903
1904 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1905                     unsigned long len)
1906 {
1907         gfn_t gfn = gpa >> PAGE_SHIFT;
1908         int seg;
1909         int offset = offset_in_page(gpa);
1910         int ret;
1911
1912         while ((seg = next_segment(len, offset)) != 0) {
1913                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1914                 if (ret < 0)
1915                         return ret;
1916                 offset = 0;
1917                 len -= seg;
1918                 data += seg;
1919                 ++gfn;
1920         }
1921         return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_write_guest);
1924
1925 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1926                          unsigned long len)
1927 {
1928         gfn_t gfn = gpa >> PAGE_SHIFT;
1929         int seg;
1930         int offset = offset_in_page(gpa);
1931         int ret;
1932
1933         while ((seg = next_segment(len, offset)) != 0) {
1934                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1935                 if (ret < 0)
1936                         return ret;
1937                 offset = 0;
1938                 len -= seg;
1939                 data += seg;
1940                 ++gfn;
1941         }
1942         return 0;
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1945
1946 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1947                                        struct gfn_to_hva_cache *ghc,
1948                                        gpa_t gpa, unsigned long len)
1949 {
1950         int offset = offset_in_page(gpa);
1951         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1952         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1953         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1954         gfn_t nr_pages_avail;
1955
1956         ghc->gpa = gpa;
1957         ghc->generation = slots->generation;
1958         ghc->len = len;
1959         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1960         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1961         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1962                 ghc->hva += offset;
1963         } else {
1964                 /*
1965                  * If the requested region crosses two memslots, we still
1966                  * verify that the entire region is valid here.
1967                  */
1968                 while (start_gfn <= end_gfn) {
1969                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1970                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1971                                                    &nr_pages_avail);
1972                         if (kvm_is_error_hva(ghc->hva))
1973                                 return -EFAULT;
1974                         start_gfn += nr_pages_avail;
1975                 }
1976                 /* Use the slow path for cross page reads and writes. */
1977                 ghc->memslot = NULL;
1978         }
1979         return 0;
1980 }
1981
1982 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1983                               gpa_t gpa, unsigned long len)
1984 {
1985         struct kvm_memslots *slots = kvm_memslots(kvm);
1986         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1989
1990 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1991                            void *data, int offset, unsigned long len)
1992 {
1993         struct kvm_memslots *slots = kvm_memslots(kvm);
1994         int r;
1995         gpa_t gpa = ghc->gpa + offset;
1996
1997         BUG_ON(len + offset > ghc->len);
1998
1999         if (slots->generation != ghc->generation)
2000                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2001
2002         if (unlikely(!ghc->memslot))
2003                 return kvm_write_guest(kvm, gpa, data, len);
2004
2005         if (kvm_is_error_hva(ghc->hva))
2006                 return -EFAULT;
2007
2008         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2009         if (r)
2010                 return -EFAULT;
2011         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2012
2013         return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2016
2017 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2018                            void *data, unsigned long len)
2019 {
2020         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2023
2024 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2025                            void *data, unsigned long len)
2026 {
2027         struct kvm_memslots *slots = kvm_memslots(kvm);
2028         int r;
2029
2030         BUG_ON(len > ghc->len);
2031
2032         if (slots->generation != ghc->generation)
2033                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2034
2035         if (unlikely(!ghc->memslot))
2036                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2037
2038         if (kvm_is_error_hva(ghc->hva))
2039                 return -EFAULT;
2040
2041         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2042         if (r)
2043                 return -EFAULT;
2044
2045         return 0;
2046 }
2047 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2048
2049 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2050 {
2051         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2052
2053         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2056
2057 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2058 {
2059         gfn_t gfn = gpa >> PAGE_SHIFT;
2060         int seg;
2061         int offset = offset_in_page(gpa);
2062         int ret;
2063
2064         while ((seg = next_segment(len, offset)) != 0) {
2065                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2066                 if (ret < 0)
2067                         return ret;
2068                 offset = 0;
2069                 len -= seg;
2070                 ++gfn;
2071         }
2072         return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2075
2076 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2077                                     gfn_t gfn)
2078 {
2079         if (memslot && memslot->dirty_bitmap) {
2080                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2081
2082                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2083         }
2084 }
2085
2086 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2087 {
2088         struct kvm_memory_slot *memslot;
2089
2090         memslot = gfn_to_memslot(kvm, gfn);
2091         mark_page_dirty_in_slot(memslot, gfn);
2092 }
2093 EXPORT_SYMBOL_GPL(mark_page_dirty);
2094
2095 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2096 {
2097         struct kvm_memory_slot *memslot;
2098
2099         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2100         mark_page_dirty_in_slot(memslot, gfn);
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2103
2104 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2105 {
2106         unsigned int old, val, grow;
2107
2108         old = val = vcpu->halt_poll_ns;
2109         grow = READ_ONCE(halt_poll_ns_grow);
2110         /* 10us base */
2111         if (val == 0 && grow)
2112                 val = 10000;
2113         else
2114                 val *= grow;
2115
2116         if (val > halt_poll_ns)
2117                 val = halt_poll_ns;
2118
2119         vcpu->halt_poll_ns = val;
2120         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2121 }
2122
2123 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2124 {
2125         unsigned int old, val, shrink;
2126
2127         old = val = vcpu->halt_poll_ns;
2128         shrink = READ_ONCE(halt_poll_ns_shrink);
2129         if (shrink == 0)
2130                 val = 0;
2131         else
2132                 val /= shrink;
2133
2134         vcpu->halt_poll_ns = val;
2135         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2136 }
2137
2138 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2139 {
2140         if (kvm_arch_vcpu_runnable(vcpu)) {
2141                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2142                 return -EINTR;
2143         }
2144         if (kvm_cpu_has_pending_timer(vcpu))
2145                 return -EINTR;
2146         if (signal_pending(current))
2147                 return -EINTR;
2148
2149         return 0;
2150 }
2151
2152 /*
2153  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2154  */
2155 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2156 {
2157         ktime_t start, cur;
2158         DECLARE_SWAITQUEUE(wait);
2159         bool waited = false;
2160         u64 block_ns;
2161
2162         start = cur = ktime_get();
2163         if (vcpu->halt_poll_ns) {
2164                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2165
2166                 ++vcpu->stat.halt_attempted_poll;
2167                 do {
2168                         /*
2169                          * This sets KVM_REQ_UNHALT if an interrupt
2170                          * arrives.
2171                          */
2172                         if (kvm_vcpu_check_block(vcpu) < 0) {
2173                                 ++vcpu->stat.halt_successful_poll;
2174                                 if (!vcpu_valid_wakeup(vcpu))
2175                                         ++vcpu->stat.halt_poll_invalid;
2176                                 goto out;
2177                         }
2178                         cur = ktime_get();
2179                 } while (single_task_running() && ktime_before(cur, stop));
2180         }
2181
2182         kvm_arch_vcpu_blocking(vcpu);
2183
2184         for (;;) {
2185                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2186
2187                 if (kvm_vcpu_check_block(vcpu) < 0)
2188                         break;
2189
2190                 waited = true;
2191                 schedule();
2192         }
2193
2194         finish_swait(&vcpu->wq, &wait);
2195         cur = ktime_get();
2196
2197         kvm_arch_vcpu_unblocking(vcpu);
2198 out:
2199         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2200
2201         if (!vcpu_valid_wakeup(vcpu))
2202                 shrink_halt_poll_ns(vcpu);
2203         else if (halt_poll_ns) {
2204                 if (block_ns <= vcpu->halt_poll_ns)
2205                         ;
2206                 /* we had a long block, shrink polling */
2207                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2208                         shrink_halt_poll_ns(vcpu);
2209                 /* we had a short halt and our poll time is too small */
2210                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2211                         block_ns < halt_poll_ns)
2212                         grow_halt_poll_ns(vcpu);
2213         } else
2214                 vcpu->halt_poll_ns = 0;
2215
2216         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2217         kvm_arch_vcpu_block_finish(vcpu);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2220
2221 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2222 {
2223         struct swait_queue_head *wqp;
2224
2225         wqp = kvm_arch_vcpu_wq(vcpu);
2226         if (swait_active(wqp)) {
2227                 swake_up(wqp);
2228                 ++vcpu->stat.halt_wakeup;
2229                 return true;
2230         }
2231
2232         return false;
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2235
2236 #ifndef CONFIG_S390
2237 /*
2238  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2239  */
2240 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2241 {
2242         int me;
2243         int cpu = vcpu->cpu;
2244
2245         if (kvm_vcpu_wake_up(vcpu))
2246                 return;
2247
2248         me = get_cpu();
2249         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2250                 if (kvm_arch_vcpu_should_kick(vcpu))
2251                         smp_send_reschedule(cpu);
2252         put_cpu();
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2255 #endif /* !CONFIG_S390 */
2256
2257 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2258 {
2259         struct pid *pid;
2260         struct task_struct *task = NULL;
2261         int ret = 0;
2262
2263         rcu_read_lock();
2264         pid = rcu_dereference(target->pid);
2265         if (pid)
2266                 task = get_pid_task(pid, PIDTYPE_PID);
2267         rcu_read_unlock();
2268         if (!task)
2269                 return ret;
2270         ret = yield_to(task, 1);
2271         put_task_struct(task);
2272
2273         return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2276
2277 /*
2278  * Helper that checks whether a VCPU is eligible for directed yield.
2279  * Most eligible candidate to yield is decided by following heuristics:
2280  *
2281  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2282  *  (preempted lock holder), indicated by @in_spin_loop.
2283  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2284  *
2285  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2286  *  chance last time (mostly it has become eligible now since we have probably
2287  *  yielded to lockholder in last iteration. This is done by toggling
2288  *  @dy_eligible each time a VCPU checked for eligibility.)
2289  *
2290  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2291  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2292  *  burning. Giving priority for a potential lock-holder increases lock
2293  *  progress.
2294  *
2295  *  Since algorithm is based on heuristics, accessing another VCPU data without
2296  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2297  *  and continue with next VCPU and so on.
2298  */
2299 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2300 {
2301 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2302         bool eligible;
2303
2304         eligible = !vcpu->spin_loop.in_spin_loop ||
2305                     vcpu->spin_loop.dy_eligible;
2306
2307         if (vcpu->spin_loop.in_spin_loop)
2308                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2309
2310         return eligible;
2311 #else
2312         return true;
2313 #endif
2314 }
2315
2316 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2317 {
2318         struct kvm *kvm = me->kvm;
2319         struct kvm_vcpu *vcpu;
2320         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2321         int yielded = 0;
2322         int try = 3;
2323         int pass;
2324         int i;
2325
2326         kvm_vcpu_set_in_spin_loop(me, true);
2327         /*
2328          * We boost the priority of a VCPU that is runnable but not
2329          * currently running, because it got preempted by something
2330          * else and called schedule in __vcpu_run.  Hopefully that
2331          * VCPU is holding the lock that we need and will release it.
2332          * We approximate round-robin by starting at the last boosted VCPU.
2333          */
2334         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2335                 kvm_for_each_vcpu(i, vcpu, kvm) {
2336                         if (!pass && i <= last_boosted_vcpu) {
2337                                 i = last_boosted_vcpu;
2338                                 continue;
2339                         } else if (pass && i > last_boosted_vcpu)
2340                                 break;
2341                         if (!ACCESS_ONCE(vcpu->preempted))
2342                                 continue;
2343                         if (vcpu == me)
2344                                 continue;
2345                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2346                                 continue;
2347                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2348                                 continue;
2349
2350                         yielded = kvm_vcpu_yield_to(vcpu);
2351                         if (yielded > 0) {
2352                                 kvm->last_boosted_vcpu = i;
2353                                 break;
2354                         } else if (yielded < 0) {
2355                                 try--;
2356                                 if (!try)
2357                                         break;
2358                         }
2359                 }
2360         }
2361         kvm_vcpu_set_in_spin_loop(me, false);
2362
2363         /* Ensure vcpu is not eligible during next spinloop */
2364         kvm_vcpu_set_dy_eligible(me, false);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2367
2368 static int kvm_vcpu_fault(struct vm_fault *vmf)
2369 {
2370         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2371         struct page *page;
2372
2373         if (vmf->pgoff == 0)
2374                 page = virt_to_page(vcpu->run);
2375 #ifdef CONFIG_X86
2376         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2377                 page = virt_to_page(vcpu->arch.pio_data);
2378 #endif
2379 #ifdef CONFIG_KVM_MMIO
2380         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2381                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2382 #endif
2383         else
2384                 return kvm_arch_vcpu_fault(vcpu, vmf);
2385         get_page(page);
2386         vmf->page = page;
2387         return 0;
2388 }
2389
2390 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2391         .fault = kvm_vcpu_fault,
2392 };
2393
2394 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2395 {
2396         vma->vm_ops = &kvm_vcpu_vm_ops;
2397         return 0;
2398 }
2399
2400 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2401 {
2402         struct kvm_vcpu *vcpu = filp->private_data;
2403
2404         debugfs_remove_recursive(vcpu->debugfs_dentry);
2405         kvm_put_kvm(vcpu->kvm);
2406         return 0;
2407 }
2408
2409 static struct file_operations kvm_vcpu_fops = {
2410         .release        = kvm_vcpu_release,
2411         .unlocked_ioctl = kvm_vcpu_ioctl,
2412 #ifdef CONFIG_KVM_COMPAT
2413         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2414 #endif
2415         .mmap           = kvm_vcpu_mmap,
2416         .llseek         = noop_llseek,
2417 };
2418
2419 /*
2420  * Allocates an inode for the vcpu.
2421  */
2422 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2423 {
2424         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2425 }
2426
2427 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2428 {
2429         char dir_name[ITOA_MAX_LEN * 2];
2430         int ret;
2431
2432         if (!kvm_arch_has_vcpu_debugfs())
2433                 return 0;
2434
2435         if (!debugfs_initialized())
2436                 return 0;
2437
2438         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2439         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2440                                                                 vcpu->kvm->debugfs_dentry);
2441         if (!vcpu->debugfs_dentry)
2442                 return -ENOMEM;
2443
2444         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2445         if (ret < 0) {
2446                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2447                 return ret;
2448         }
2449
2450         return 0;
2451 }
2452
2453 /*
2454  * Creates some virtual cpus.  Good luck creating more than one.
2455  */
2456 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2457 {
2458         int r;
2459         struct kvm_vcpu *vcpu;
2460
2461         if (id >= KVM_MAX_VCPU_ID)
2462                 return -EINVAL;
2463
2464         mutex_lock(&kvm->lock);
2465         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2466                 mutex_unlock(&kvm->lock);
2467                 return -EINVAL;
2468         }
2469
2470         kvm->created_vcpus++;
2471         mutex_unlock(&kvm->lock);
2472
2473         vcpu = kvm_arch_vcpu_create(kvm, id);
2474         if (IS_ERR(vcpu)) {
2475                 r = PTR_ERR(vcpu);
2476                 goto vcpu_decrement;
2477         }
2478
2479         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2480
2481         r = kvm_arch_vcpu_setup(vcpu);
2482         if (r)
2483                 goto vcpu_destroy;
2484
2485         r = kvm_create_vcpu_debugfs(vcpu);
2486         if (r)
2487                 goto vcpu_destroy;
2488
2489         mutex_lock(&kvm->lock);
2490         if (kvm_get_vcpu_by_id(kvm, id)) {
2491                 r = -EEXIST;
2492                 goto unlock_vcpu_destroy;
2493         }
2494
2495         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2496
2497         /* Now it's all set up, let userspace reach it */
2498         kvm_get_kvm(kvm);
2499         r = create_vcpu_fd(vcpu);
2500         if (r < 0) {
2501                 kvm_put_kvm(kvm);
2502                 goto unlock_vcpu_destroy;
2503         }
2504
2505         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2506
2507         /*
2508          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2509          * before kvm->online_vcpu's incremented value.
2510          */
2511         smp_wmb();
2512         atomic_inc(&kvm->online_vcpus);
2513
2514         mutex_unlock(&kvm->lock);
2515         kvm_arch_vcpu_postcreate(vcpu);
2516         return r;
2517
2518 unlock_vcpu_destroy:
2519         mutex_unlock(&kvm->lock);
2520         debugfs_remove_recursive(vcpu->debugfs_dentry);
2521 vcpu_destroy:
2522         kvm_arch_vcpu_destroy(vcpu);
2523 vcpu_decrement:
2524         mutex_lock(&kvm->lock);
2525         kvm->created_vcpus--;
2526         mutex_unlock(&kvm->lock);
2527         return r;
2528 }
2529
2530 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2531 {
2532         if (sigset) {
2533                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2534                 vcpu->sigset_active = 1;
2535                 vcpu->sigset = *sigset;
2536         } else
2537                 vcpu->sigset_active = 0;
2538         return 0;
2539 }
2540
2541 static long kvm_vcpu_ioctl(struct file *filp,
2542                            unsigned int ioctl, unsigned long arg)
2543 {
2544         struct kvm_vcpu *vcpu = filp->private_data;
2545         void __user *argp = (void __user *)arg;
2546         int r;
2547         struct kvm_fpu *fpu = NULL;
2548         struct kvm_sregs *kvm_sregs = NULL;
2549
2550         if (vcpu->kvm->mm != current->mm)
2551                 return -EIO;
2552
2553         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2554                 return -EINVAL;
2555
2556 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2557         /*
2558          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2559          * so vcpu_load() would break it.
2560          */
2561         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2562                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2563 #endif
2564
2565
2566         r = vcpu_load(vcpu);
2567         if (r)
2568                 return r;
2569         switch (ioctl) {
2570         case KVM_RUN: {
2571                 struct pid *oldpid;
2572                 r = -EINVAL;
2573                 if (arg)
2574                         goto out;
2575                 oldpid = rcu_access_pointer(vcpu->pid);
2576                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2577                         /* The thread running this VCPU changed. */
2578                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2579
2580                         rcu_assign_pointer(vcpu->pid, newpid);
2581                         if (oldpid)
2582                                 synchronize_rcu();
2583                         put_pid(oldpid);
2584                 }
2585                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2586                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2587                 break;
2588         }
2589         case KVM_GET_REGS: {
2590                 struct kvm_regs *kvm_regs;
2591
2592                 r = -ENOMEM;
2593                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2594                 if (!kvm_regs)
2595                         goto out;
2596                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2597                 if (r)
2598                         goto out_free1;
2599                 r = -EFAULT;
2600                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2601                         goto out_free1;
2602                 r = 0;
2603 out_free1:
2604                 kfree(kvm_regs);
2605                 break;
2606         }
2607         case KVM_SET_REGS: {
2608                 struct kvm_regs *kvm_regs;
2609
2610                 r = -ENOMEM;
2611                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2612                 if (IS_ERR(kvm_regs)) {
2613                         r = PTR_ERR(kvm_regs);
2614                         goto out;
2615                 }
2616                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2617                 kfree(kvm_regs);
2618                 break;
2619         }
2620         case KVM_GET_SREGS: {
2621                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2622                 r = -ENOMEM;
2623                 if (!kvm_sregs)
2624                         goto out;
2625                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2626                 if (r)
2627                         goto out;
2628                 r = -EFAULT;
2629                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2630                         goto out;
2631                 r = 0;
2632                 break;
2633         }
2634         case KVM_SET_SREGS: {
2635                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2636                 if (IS_ERR(kvm_sregs)) {
2637                         r = PTR_ERR(kvm_sregs);
2638                         kvm_sregs = NULL;
2639                         goto out;
2640                 }
2641                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2642                 break;
2643         }
2644         case KVM_GET_MP_STATE: {
2645                 struct kvm_mp_state mp_state;
2646
2647                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2648                 if (r)
2649                         goto out;
2650                 r = -EFAULT;
2651                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2652                         goto out;
2653                 r = 0;
2654                 break;
2655         }
2656         case KVM_SET_MP_STATE: {
2657                 struct kvm_mp_state mp_state;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2661                         goto out;
2662                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2663                 break;
2664         }
2665         case KVM_TRANSLATE: {
2666                 struct kvm_translation tr;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&tr, argp, sizeof(tr)))
2670                         goto out;
2671                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2672                 if (r)
2673                         goto out;
2674                 r = -EFAULT;
2675                 if (copy_to_user(argp, &tr, sizeof(tr)))
2676                         goto out;
2677                 r = 0;
2678                 break;
2679         }
2680         case KVM_SET_GUEST_DEBUG: {
2681                 struct kvm_guest_debug dbg;
2682
2683                 r = -EFAULT;
2684                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2685                         goto out;
2686                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2687                 break;
2688         }
2689         case KVM_SET_SIGNAL_MASK: {
2690                 struct kvm_signal_mask __user *sigmask_arg = argp;
2691                 struct kvm_signal_mask kvm_sigmask;
2692                 sigset_t sigset, *p;
2693
2694                 p = NULL;
2695                 if (argp) {
2696                         r = -EFAULT;
2697                         if (copy_from_user(&kvm_sigmask, argp,
2698                                            sizeof(kvm_sigmask)))
2699                                 goto out;
2700                         r = -EINVAL;
2701                         if (kvm_sigmask.len != sizeof(sigset))
2702                                 goto out;
2703                         r = -EFAULT;
2704                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2705                                            sizeof(sigset)))
2706                                 goto out;
2707                         p = &sigset;
2708                 }
2709                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2710                 break;
2711         }
2712         case KVM_GET_FPU: {
2713                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2714                 r = -ENOMEM;
2715                 if (!fpu)
2716                         goto out;
2717                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2718                 if (r)
2719                         goto out;
2720                 r = -EFAULT;
2721                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2722                         goto out;
2723                 r = 0;
2724                 break;
2725         }
2726         case KVM_SET_FPU: {
2727                 fpu = memdup_user(argp, sizeof(*fpu));
2728                 if (IS_ERR(fpu)) {
2729                         r = PTR_ERR(fpu);
2730                         fpu = NULL;
2731                         goto out;
2732                 }
2733                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2734                 break;
2735         }
2736         default:
2737                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2738         }
2739 out:
2740         vcpu_put(vcpu);
2741         kfree(fpu);
2742         kfree(kvm_sregs);
2743         return r;
2744 }
2745
2746 #ifdef CONFIG_KVM_COMPAT
2747 static long kvm_vcpu_compat_ioctl(struct file *filp,
2748                                   unsigned int ioctl, unsigned long arg)
2749 {
2750         struct kvm_vcpu *vcpu = filp->private_data;
2751         void __user *argp = compat_ptr(arg);
2752         int r;
2753
2754         if (vcpu->kvm->mm != current->mm)
2755                 return -EIO;
2756
2757         switch (ioctl) {
2758         case KVM_SET_SIGNAL_MASK: {
2759                 struct kvm_signal_mask __user *sigmask_arg = argp;
2760                 struct kvm_signal_mask kvm_sigmask;
2761                 compat_sigset_t csigset;
2762                 sigset_t sigset;
2763
2764                 if (argp) {
2765                         r = -EFAULT;
2766                         if (copy_from_user(&kvm_sigmask, argp,
2767                                            sizeof(kvm_sigmask)))
2768                                 goto out;
2769                         r = -EINVAL;
2770                         if (kvm_sigmask.len != sizeof(csigset))
2771                                 goto out;
2772                         r = -EFAULT;
2773                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2774                                            sizeof(csigset)))
2775                                 goto out;
2776                         sigset_from_compat(&sigset, &csigset);
2777                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2778                 } else
2779                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2780                 break;
2781         }
2782         default:
2783                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2784         }
2785
2786 out:
2787         return r;
2788 }
2789 #endif
2790
2791 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2792                                  int (*accessor)(struct kvm_device *dev,
2793                                                  struct kvm_device_attr *attr),
2794                                  unsigned long arg)
2795 {
2796         struct kvm_device_attr attr;
2797
2798         if (!accessor)
2799                 return -EPERM;
2800
2801         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2802                 return -EFAULT;
2803
2804         return accessor(dev, &attr);
2805 }
2806
2807 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2808                              unsigned long arg)
2809 {
2810         struct kvm_device *dev = filp->private_data;
2811
2812         switch (ioctl) {
2813         case KVM_SET_DEVICE_ATTR:
2814                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2815         case KVM_GET_DEVICE_ATTR:
2816                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2817         case KVM_HAS_DEVICE_ATTR:
2818                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2819         default:
2820                 if (dev->ops->ioctl)
2821                         return dev->ops->ioctl(dev, ioctl, arg);
2822
2823                 return -ENOTTY;
2824         }
2825 }
2826
2827 static int kvm_device_release(struct inode *inode, struct file *filp)
2828 {
2829         struct kvm_device *dev = filp->private_data;
2830         struct kvm *kvm = dev->kvm;
2831
2832         kvm_put_kvm(kvm);
2833         return 0;
2834 }
2835
2836 static const struct file_operations kvm_device_fops = {
2837         .unlocked_ioctl = kvm_device_ioctl,
2838 #ifdef CONFIG_KVM_COMPAT
2839         .compat_ioctl = kvm_device_ioctl,
2840 #endif
2841         .release = kvm_device_release,
2842 };
2843
2844 struct kvm_device *kvm_device_from_filp(struct file *filp)
2845 {
2846         if (filp->f_op != &kvm_device_fops)
2847                 return NULL;
2848
2849         return filp->private_data;
2850 }
2851
2852 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2853 #ifdef CONFIG_KVM_MPIC
2854         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2855         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2856 #endif
2857 };
2858
2859 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2860 {
2861         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2862                 return -ENOSPC;
2863
2864         if (kvm_device_ops_table[type] != NULL)
2865                 return -EEXIST;
2866
2867         kvm_device_ops_table[type] = ops;
2868         return 0;
2869 }
2870
2871 void kvm_unregister_device_ops(u32 type)
2872 {
2873         if (kvm_device_ops_table[type] != NULL)
2874                 kvm_device_ops_table[type] = NULL;
2875 }
2876
2877 static int kvm_ioctl_create_device(struct kvm *kvm,
2878                                    struct kvm_create_device *cd)
2879 {
2880         struct kvm_device_ops *ops = NULL;
2881         struct kvm_device *dev;
2882         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2883         int ret;
2884
2885         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2886                 return -ENODEV;
2887
2888         ops = kvm_device_ops_table[cd->type];
2889         if (ops == NULL)
2890                 return -ENODEV;
2891
2892         if (test)
2893                 return 0;
2894
2895         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2896         if (!dev)
2897                 return -ENOMEM;
2898
2899         dev->ops = ops;
2900         dev->kvm = kvm;
2901
2902         mutex_lock(&kvm->lock);
2903         ret = ops->create(dev, cd->type);
2904         if (ret < 0) {
2905                 mutex_unlock(&kvm->lock);
2906                 kfree(dev);
2907                 return ret;
2908         }
2909         list_add(&dev->vm_node, &kvm->devices);
2910         mutex_unlock(&kvm->lock);
2911
2912         if (ops->init)
2913                 ops->init(dev);
2914
2915         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2916         if (ret < 0) {
2917                 mutex_lock(&kvm->lock);
2918                 list_del(&dev->vm_node);
2919                 mutex_unlock(&kvm->lock);
2920                 ops->destroy(dev);
2921                 return ret;
2922         }
2923
2924         kvm_get_kvm(kvm);
2925         cd->fd = ret;
2926         return 0;
2927 }
2928
2929 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2930 {
2931         switch (arg) {
2932         case KVM_CAP_USER_MEMORY:
2933         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2934         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2935         case KVM_CAP_INTERNAL_ERROR_DATA:
2936 #ifdef CONFIG_HAVE_KVM_MSI
2937         case KVM_CAP_SIGNAL_MSI:
2938 #endif
2939 #ifdef CONFIG_HAVE_KVM_IRQFD
2940         case KVM_CAP_IRQFD:
2941         case KVM_CAP_IRQFD_RESAMPLE:
2942 #endif
2943         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2944         case KVM_CAP_CHECK_EXTENSION_VM:
2945                 return 1;
2946 #ifdef CONFIG_KVM_MMIO
2947         case KVM_CAP_COALESCED_MMIO:
2948                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2949 #endif
2950 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2951         case KVM_CAP_IRQ_ROUTING:
2952                 return KVM_MAX_IRQ_ROUTES;
2953 #endif
2954 #if KVM_ADDRESS_SPACE_NUM > 1
2955         case KVM_CAP_MULTI_ADDRESS_SPACE:
2956                 return KVM_ADDRESS_SPACE_NUM;
2957 #endif
2958         case KVM_CAP_MAX_VCPU_ID:
2959                 return KVM_MAX_VCPU_ID;
2960         default:
2961                 break;
2962         }
2963         return kvm_vm_ioctl_check_extension(kvm, arg);
2964 }
2965
2966 static long kvm_vm_ioctl(struct file *filp,
2967                            unsigned int ioctl, unsigned long arg)
2968 {
2969         struct kvm *kvm = filp->private_data;
2970         void __user *argp = (void __user *)arg;
2971         int r;
2972
2973         if (kvm->mm != current->mm)
2974                 return -EIO;
2975         switch (ioctl) {
2976         case KVM_CREATE_VCPU:
2977                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2978                 break;
2979         case KVM_SET_USER_MEMORY_REGION: {
2980                 struct kvm_userspace_memory_region kvm_userspace_mem;
2981
2982                 r = -EFAULT;
2983                 if (copy_from_user(&kvm_userspace_mem, argp,
2984                                                 sizeof(kvm_userspace_mem)))
2985                         goto out;
2986
2987                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2988                 break;
2989         }
2990         case KVM_GET_DIRTY_LOG: {
2991                 struct kvm_dirty_log log;
2992
2993                 r = -EFAULT;
2994                 if (copy_from_user(&log, argp, sizeof(log)))
2995                         goto out;
2996                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2997                 break;
2998         }
2999 #ifdef CONFIG_KVM_MMIO
3000         case KVM_REGISTER_COALESCED_MMIO: {
3001                 struct kvm_coalesced_mmio_zone zone;
3002
3003                 r = -EFAULT;
3004                 if (copy_from_user(&zone, argp, sizeof(zone)))
3005                         goto out;
3006                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3007                 break;
3008         }
3009         case KVM_UNREGISTER_COALESCED_MMIO: {
3010                 struct kvm_coalesced_mmio_zone zone;
3011
3012                 r = -EFAULT;
3013                 if (copy_from_user(&zone, argp, sizeof(zone)))
3014                         goto out;
3015                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3016                 break;
3017         }
3018 #endif
3019         case KVM_IRQFD: {
3020                 struct kvm_irqfd data;
3021
3022                 r = -EFAULT;
3023                 if (copy_from_user(&data, argp, sizeof(data)))
3024                         goto out;
3025                 r = kvm_irqfd(kvm, &data);
3026                 break;
3027         }
3028         case KVM_IOEVENTFD: {
3029                 struct kvm_ioeventfd data;
3030
3031                 r = -EFAULT;
3032                 if (copy_from_user(&data, argp, sizeof(data)))
3033                         goto out;
3034                 r = kvm_ioeventfd(kvm, &data);
3035                 break;
3036         }
3037 #ifdef CONFIG_HAVE_KVM_MSI
3038         case KVM_SIGNAL_MSI: {
3039                 struct kvm_msi msi;
3040
3041                 r = -EFAULT;
3042                 if (copy_from_user(&msi, argp, sizeof(msi)))
3043                         goto out;
3044                 r = kvm_send_userspace_msi(kvm, &msi);
3045                 break;
3046         }
3047 #endif
3048 #ifdef __KVM_HAVE_IRQ_LINE
3049         case KVM_IRQ_LINE_STATUS:
3050         case KVM_IRQ_LINE: {
3051                 struct kvm_irq_level irq_event;
3052
3053                 r = -EFAULT;
3054                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3055                         goto out;
3056
3057                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3058                                         ioctl == KVM_IRQ_LINE_STATUS);
3059                 if (r)
3060                         goto out;
3061
3062                 r = -EFAULT;
3063                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3064                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3065                                 goto out;
3066                 }
3067
3068                 r = 0;
3069                 break;
3070         }
3071 #endif
3072 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3073         case KVM_SET_GSI_ROUTING: {
3074                 struct kvm_irq_routing routing;
3075                 struct kvm_irq_routing __user *urouting;
3076                 struct kvm_irq_routing_entry *entries = NULL;
3077
3078                 r = -EFAULT;
3079                 if (copy_from_user(&routing, argp, sizeof(routing)))
3080                         goto out;
3081                 r = -EINVAL;
3082                 if (!kvm_arch_can_set_irq_routing(kvm))
3083                         goto out;
3084                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3085                         goto out;
3086                 if (routing.flags)
3087                         goto out;
3088                 if (routing.nr) {
3089                         r = -ENOMEM;
3090                         entries = vmalloc(routing.nr * sizeof(*entries));
3091                         if (!entries)
3092                                 goto out;
3093                         r = -EFAULT;
3094                         urouting = argp;
3095                         if (copy_from_user(entries, urouting->entries,
3096                                            routing.nr * sizeof(*entries)))
3097                                 goto out_free_irq_routing;
3098                 }
3099                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3100                                         routing.flags);
3101 out_free_irq_routing:
3102                 vfree(entries);
3103                 break;
3104         }
3105 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3106         case KVM_CREATE_DEVICE: {
3107                 struct kvm_create_device cd;
3108
3109                 r = -EFAULT;
3110                 if (copy_from_user(&cd, argp, sizeof(cd)))
3111                         goto out;
3112
3113                 r = kvm_ioctl_create_device(kvm, &cd);
3114                 if (r)
3115                         goto out;
3116
3117                 r = -EFAULT;
3118                 if (copy_to_user(argp, &cd, sizeof(cd)))
3119                         goto out;
3120
3121                 r = 0;
3122                 break;
3123         }
3124         case KVM_CHECK_EXTENSION:
3125                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3126                 break;
3127         default:
3128                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3129         }
3130 out:
3131         return r;
3132 }
3133
3134 #ifdef CONFIG_KVM_COMPAT
3135 struct compat_kvm_dirty_log {
3136         __u32 slot;
3137         __u32 padding1;
3138         union {
3139                 compat_uptr_t dirty_bitmap; /* one bit per page */
3140                 __u64 padding2;
3141         };
3142 };
3143
3144 static long kvm_vm_compat_ioctl(struct file *filp,
3145                            unsigned int ioctl, unsigned long arg)
3146 {
3147         struct kvm *kvm = filp->private_data;
3148         int r;
3149
3150         if (kvm->mm != current->mm)
3151                 return -EIO;
3152         switch (ioctl) {
3153         case KVM_GET_DIRTY_LOG: {
3154                 struct compat_kvm_dirty_log compat_log;
3155                 struct kvm_dirty_log log;
3156
3157                 if (copy_from_user(&compat_log, (void __user *)arg,
3158                                    sizeof(compat_log)))
3159                         return -EFAULT;
3160                 log.slot         = compat_log.slot;
3161                 log.padding1     = compat_log.padding1;
3162                 log.padding2     = compat_log.padding2;
3163                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3164
3165                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3166                 break;
3167         }
3168         default:
3169                 r = kvm_vm_ioctl(filp, ioctl, arg);
3170         }
3171         return r;
3172 }
3173 #endif
3174
3175 static struct file_operations kvm_vm_fops = {
3176         .release        = kvm_vm_release,
3177         .unlocked_ioctl = kvm_vm_ioctl,
3178 #ifdef CONFIG_KVM_COMPAT
3179         .compat_ioctl   = kvm_vm_compat_ioctl,
3180 #endif
3181         .llseek         = noop_llseek,
3182 };
3183
3184 static int kvm_dev_ioctl_create_vm(unsigned long type)
3185 {
3186         int r;
3187         struct kvm *kvm;
3188         struct file *file;
3189
3190         kvm = kvm_create_vm(type);
3191         if (IS_ERR(kvm))
3192                 return PTR_ERR(kvm);
3193 #ifdef CONFIG_KVM_MMIO
3194         r = kvm_coalesced_mmio_init(kvm);
3195         if (r < 0) {
3196                 kvm_put_kvm(kvm);
3197                 return r;
3198         }
3199 #endif
3200         r = get_unused_fd_flags(O_CLOEXEC);
3201         if (r < 0) {
3202                 kvm_put_kvm(kvm);
3203                 return r;
3204         }
3205         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3206         if (IS_ERR(file)) {
3207                 put_unused_fd(r);
3208                 kvm_put_kvm(kvm);
3209                 return PTR_ERR(file);
3210         }
3211
3212         /*
3213          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3214          * already set, with ->release() being kvm_vm_release().  In error
3215          * cases it will be called by the final fput(file) and will take
3216          * care of doing kvm_put_kvm(kvm).
3217          */
3218         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3219                 put_unused_fd(r);
3220                 fput(file);
3221                 return -ENOMEM;
3222         }
3223
3224         fd_install(r, file);
3225         return r;
3226 }
3227
3228 static long kvm_dev_ioctl(struct file *filp,
3229                           unsigned int ioctl, unsigned long arg)
3230 {
3231         long r = -EINVAL;
3232
3233         switch (ioctl) {
3234         case KVM_GET_API_VERSION:
3235                 if (arg)
3236                         goto out;
3237                 r = KVM_API_VERSION;
3238                 break;
3239         case KVM_CREATE_VM:
3240                 r = kvm_dev_ioctl_create_vm(arg);
3241                 break;
3242         case KVM_CHECK_EXTENSION:
3243                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3244                 break;
3245         case KVM_GET_VCPU_MMAP_SIZE:
3246                 if (arg)
3247                         goto out;
3248                 r = PAGE_SIZE;     /* struct kvm_run */
3249 #ifdef CONFIG_X86
3250                 r += PAGE_SIZE;    /* pio data page */
3251 #endif
3252 #ifdef CONFIG_KVM_MMIO
3253                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3254 #endif
3255                 break;
3256         case KVM_TRACE_ENABLE:
3257         case KVM_TRACE_PAUSE:
3258         case KVM_TRACE_DISABLE:
3259                 r = -EOPNOTSUPP;
3260                 break;
3261         default:
3262                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3263         }
3264 out:
3265         return r;
3266 }
3267
3268 static struct file_operations kvm_chardev_ops = {
3269         .unlocked_ioctl = kvm_dev_ioctl,
3270         .compat_ioctl   = kvm_dev_ioctl,
3271         .llseek         = noop_llseek,
3272 };
3273
3274 static struct miscdevice kvm_dev = {
3275         KVM_MINOR,
3276         "kvm",
3277         &kvm_chardev_ops,
3278 };
3279
3280 static void hardware_enable_nolock(void *junk)
3281 {
3282         int cpu = raw_smp_processor_id();
3283         int r;
3284
3285         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3286                 return;
3287
3288         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3289
3290         r = kvm_arch_hardware_enable();
3291
3292         if (r) {
3293                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3294                 atomic_inc(&hardware_enable_failed);
3295                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3296         }
3297 }
3298
3299 static int kvm_starting_cpu(unsigned int cpu)
3300 {
3301         raw_spin_lock(&kvm_count_lock);
3302         if (kvm_usage_count)
3303                 hardware_enable_nolock(NULL);
3304         raw_spin_unlock(&kvm_count_lock);
3305         return 0;
3306 }
3307
3308 static void hardware_disable_nolock(void *junk)
3309 {
3310         int cpu = raw_smp_processor_id();
3311
3312         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3313                 return;
3314         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3315         kvm_arch_hardware_disable();
3316 }
3317
3318 static int kvm_dying_cpu(unsigned int cpu)
3319 {
3320         raw_spin_lock(&kvm_count_lock);
3321         if (kvm_usage_count)
3322                 hardware_disable_nolock(NULL);
3323         raw_spin_unlock(&kvm_count_lock);
3324         return 0;
3325 }
3326
3327 static void hardware_disable_all_nolock(void)
3328 {
3329         BUG_ON(!kvm_usage_count);
3330
3331         kvm_usage_count--;
3332         if (!kvm_usage_count)
3333                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3334 }
3335
3336 static void hardware_disable_all(void)
3337 {
3338         raw_spin_lock(&kvm_count_lock);
3339         hardware_disable_all_nolock();
3340         raw_spin_unlock(&kvm_count_lock);
3341 }
3342
3343 static int hardware_enable_all(void)
3344 {
3345         int r = 0;
3346
3347         raw_spin_lock(&kvm_count_lock);
3348
3349         kvm_usage_count++;
3350         if (kvm_usage_count == 1) {
3351                 atomic_set(&hardware_enable_failed, 0);
3352                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3353
3354                 if (atomic_read(&hardware_enable_failed)) {
3355                         hardware_disable_all_nolock();
3356                         r = -EBUSY;
3357                 }
3358         }
3359
3360         raw_spin_unlock(&kvm_count_lock);
3361
3362         return r;
3363 }
3364
3365 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3366                       void *v)
3367 {
3368         /*
3369          * Some (well, at least mine) BIOSes hang on reboot if
3370          * in vmx root mode.
3371          *
3372          * And Intel TXT required VMX off for all cpu when system shutdown.
3373          */
3374         pr_info("kvm: exiting hardware virtualization\n");
3375         kvm_rebooting = true;
3376         on_each_cpu(hardware_disable_nolock, NULL, 1);
3377         return NOTIFY_OK;
3378 }
3379
3380 static struct notifier_block kvm_reboot_notifier = {
3381         .notifier_call = kvm_reboot,
3382         .priority = 0,
3383 };
3384
3385 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3386 {
3387         int i;
3388
3389         for (i = 0; i < bus->dev_count; i++) {
3390                 struct kvm_io_device *pos = bus->range[i].dev;
3391
3392                 kvm_iodevice_destructor(pos);
3393         }
3394         kfree(bus);
3395 }
3396
3397 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3398                                  const struct kvm_io_range *r2)
3399 {
3400         gpa_t addr1 = r1->addr;
3401         gpa_t addr2 = r2->addr;
3402
3403         if (addr1 < addr2)
3404                 return -1;
3405
3406         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3407          * accept any overlapping write.  Any order is acceptable for
3408          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3409          * we process all of them.
3410          */
3411         if (r2->len) {
3412                 addr1 += r1->len;
3413                 addr2 += r2->len;
3414         }
3415
3416         if (addr1 > addr2)
3417                 return 1;
3418
3419         return 0;
3420 }
3421
3422 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3423 {
3424         return kvm_io_bus_cmp(p1, p2);
3425 }
3426
3427 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3428                           gpa_t addr, int len)
3429 {
3430         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3431                 .addr = addr,
3432                 .len = len,
3433                 .dev = dev,
3434         };
3435
3436         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3437                 kvm_io_bus_sort_cmp, NULL);
3438
3439         return 0;
3440 }
3441
3442 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3443                              gpa_t addr, int len)
3444 {
3445         struct kvm_io_range *range, key;
3446         int off;
3447
3448         key = (struct kvm_io_range) {
3449                 .addr = addr,
3450                 .len = len,
3451         };
3452
3453         range = bsearch(&key, bus->range, bus->dev_count,
3454                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3455         if (range == NULL)
3456                 return -ENOENT;
3457
3458         off = range - bus->range;
3459
3460         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3461                 off--;
3462
3463         return off;
3464 }
3465
3466 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3467                               struct kvm_io_range *range, const void *val)
3468 {
3469         int idx;
3470
3471         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3472         if (idx < 0)
3473                 return -EOPNOTSUPP;
3474
3475         while (idx < bus->dev_count &&
3476                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3477                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3478                                         range->len, val))
3479                         return idx;
3480                 idx++;
3481         }
3482
3483         return -EOPNOTSUPP;
3484 }
3485
3486 /* kvm_io_bus_write - called under kvm->slots_lock */
3487 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3488                      int len, const void *val)
3489 {
3490         struct kvm_io_bus *bus;
3491         struct kvm_io_range range;
3492         int r;
3493
3494         range = (struct kvm_io_range) {
3495                 .addr = addr,
3496                 .len = len,
3497         };
3498
3499         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3500         if (!bus)
3501                 return -ENOMEM;
3502         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3503         return r < 0 ? r : 0;
3504 }
3505
3506 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3507 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3508                             gpa_t addr, int len, const void *val, long cookie)
3509 {
3510         struct kvm_io_bus *bus;
3511         struct kvm_io_range range;
3512
3513         range = (struct kvm_io_range) {
3514                 .addr = addr,
3515                 .len = len,
3516         };
3517
3518         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3519         if (!bus)
3520                 return -ENOMEM;
3521
3522         /* First try the device referenced by cookie. */
3523         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3524             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3525                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3526                                         val))
3527                         return cookie;
3528
3529         /*
3530          * cookie contained garbage; fall back to search and return the
3531          * correct cookie value.
3532          */
3533         return __kvm_io_bus_write(vcpu, bus, &range, val);
3534 }
3535
3536 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3537                              struct kvm_io_range *range, void *val)
3538 {
3539         int idx;
3540
3541         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3542         if (idx < 0)
3543                 return -EOPNOTSUPP;
3544
3545         while (idx < bus->dev_count &&
3546                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3547                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3548                                        range->len, val))
3549                         return idx;
3550                 idx++;
3551         }
3552
3553         return -EOPNOTSUPP;
3554 }
3555 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3556
3557 /* kvm_io_bus_read - called under kvm->slots_lock */
3558 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3559                     int len, void *val)
3560 {
3561         struct kvm_io_bus *bus;
3562         struct kvm_io_range range;
3563         int r;
3564
3565         range = (struct kvm_io_range) {
3566                 .addr = addr,
3567                 .len = len,
3568         };
3569
3570         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3571         if (!bus)
3572                 return -ENOMEM;
3573         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3574         return r < 0 ? r : 0;
3575 }
3576
3577
3578 /* Caller must hold slots_lock. */
3579 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3580                             int len, struct kvm_io_device *dev)
3581 {
3582         struct kvm_io_bus *new_bus, *bus;
3583
3584         bus = kvm_get_bus(kvm, bus_idx);
3585         if (!bus)
3586                 return -ENOMEM;
3587
3588         /* exclude ioeventfd which is limited by maximum fd */
3589         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3590                 return -ENOSPC;
3591
3592         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3593                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3594         if (!new_bus)
3595                 return -ENOMEM;
3596         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3597                sizeof(struct kvm_io_range)));
3598         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3599         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3600         synchronize_srcu_expedited(&kvm->srcu);
3601         kfree(bus);
3602
3603         return 0;
3604 }
3605
3606 /* Caller must hold slots_lock. */
3607 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608                                struct kvm_io_device *dev)
3609 {
3610         int i;
3611         struct kvm_io_bus *new_bus, *bus;
3612
3613         bus = kvm_get_bus(kvm, bus_idx);
3614         if (!bus)
3615                 return;
3616
3617         for (i = 0; i < bus->dev_count; i++)
3618                 if (bus->range[i].dev == dev) {
3619                         break;
3620                 }
3621
3622         if (i == bus->dev_count)
3623                 return;
3624
3625         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3626                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3627         if (!new_bus)  {
3628                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3629                 goto broken;
3630         }
3631
3632         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3633         new_bus->dev_count--;
3634         memcpy(new_bus->range + i, bus->range + i + 1,
3635                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3636
3637 broken:
3638         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3639         synchronize_srcu_expedited(&kvm->srcu);
3640         kfree(bus);
3641         return;
3642 }
3643
3644 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3645                                          gpa_t addr)
3646 {
3647         struct kvm_io_bus *bus;
3648         int dev_idx, srcu_idx;
3649         struct kvm_io_device *iodev = NULL;
3650
3651         srcu_idx = srcu_read_lock(&kvm->srcu);
3652
3653         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3654         if (!bus)
3655                 goto out_unlock;
3656
3657         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3658         if (dev_idx < 0)
3659                 goto out_unlock;
3660
3661         iodev = bus->range[dev_idx].dev;
3662
3663 out_unlock:
3664         srcu_read_unlock(&kvm->srcu, srcu_idx);
3665
3666         return iodev;
3667 }
3668 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3669
3670 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3671                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3672                            const char *fmt)
3673 {
3674         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3675                                           inode->i_private;
3676
3677         /* The debugfs files are a reference to the kvm struct which
3678          * is still valid when kvm_destroy_vm is called.
3679          * To avoid the race between open and the removal of the debugfs
3680          * directory we test against the users count.
3681          */
3682         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3683                 return -ENOENT;
3684
3685         if (simple_attr_open(inode, file, get, set, fmt)) {
3686                 kvm_put_kvm(stat_data->kvm);
3687                 return -ENOMEM;
3688         }
3689
3690         return 0;
3691 }
3692
3693 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3694 {
3695         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3696                                           inode->i_private;
3697
3698         simple_attr_release(inode, file);
3699         kvm_put_kvm(stat_data->kvm);
3700
3701         return 0;
3702 }
3703
3704 static int vm_stat_get_per_vm(void *data, u64 *val)
3705 {
3706         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707
3708         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3709
3710         return 0;
3711 }
3712
3713 static int vm_stat_clear_per_vm(void *data, u64 val)
3714 {
3715         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3716
3717         if (val)
3718                 return -EINVAL;
3719
3720         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3721
3722         return 0;
3723 }
3724
3725 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3726 {
3727         __simple_attr_check_format("%llu\n", 0ull);
3728         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3729                                 vm_stat_clear_per_vm, "%llu\n");
3730 }
3731
3732 static const struct file_operations vm_stat_get_per_vm_fops = {
3733         .owner   = THIS_MODULE,
3734         .open    = vm_stat_get_per_vm_open,
3735         .release = kvm_debugfs_release,
3736         .read    = simple_attr_read,
3737         .write   = simple_attr_write,
3738         .llseek  = no_llseek,
3739 };
3740
3741 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3742 {
3743         int i;
3744         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3745         struct kvm_vcpu *vcpu;
3746
3747         *val = 0;
3748
3749         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3750                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3751
3752         return 0;
3753 }
3754
3755 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3756 {
3757         int i;
3758         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3759         struct kvm_vcpu *vcpu;
3760
3761         if (val)
3762                 return -EINVAL;
3763
3764         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3765                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3766
3767         return 0;
3768 }
3769
3770 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3771 {
3772         __simple_attr_check_format("%llu\n", 0ull);
3773         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3774                                  vcpu_stat_clear_per_vm, "%llu\n");
3775 }
3776
3777 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3778         .owner   = THIS_MODULE,
3779         .open    = vcpu_stat_get_per_vm_open,
3780         .release = kvm_debugfs_release,
3781         .read    = simple_attr_read,
3782         .write   = simple_attr_write,
3783         .llseek  = no_llseek,
3784 };
3785
3786 static const struct file_operations *stat_fops_per_vm[] = {
3787         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3788         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3789 };
3790
3791 static int vm_stat_get(void *_offset, u64 *val)
3792 {
3793         unsigned offset = (long)_offset;
3794         struct kvm *kvm;
3795         struct kvm_stat_data stat_tmp = {.offset = offset};
3796         u64 tmp_val;
3797
3798         *val = 0;
3799         spin_lock(&kvm_lock);
3800         list_for_each_entry(kvm, &vm_list, vm_list) {
3801                 stat_tmp.kvm = kvm;
3802                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803                 *val += tmp_val;
3804         }
3805         spin_unlock(&kvm_lock);
3806         return 0;
3807 }
3808
3809 static int vm_stat_clear(void *_offset, u64 val)
3810 {
3811         unsigned offset = (long)_offset;
3812         struct kvm *kvm;
3813         struct kvm_stat_data stat_tmp = {.offset = offset};
3814
3815         if (val)
3816                 return -EINVAL;
3817
3818         spin_lock(&kvm_lock);
3819         list_for_each_entry(kvm, &vm_list, vm_list) {
3820                 stat_tmp.kvm = kvm;
3821                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3822         }
3823         spin_unlock(&kvm_lock);
3824
3825         return 0;
3826 }
3827
3828 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3829
3830 static int vcpu_stat_get(void *_offset, u64 *val)
3831 {
3832         unsigned offset = (long)_offset;
3833         struct kvm *kvm;
3834         struct kvm_stat_data stat_tmp = {.offset = offset};
3835         u64 tmp_val;
3836
3837         *val = 0;
3838         spin_lock(&kvm_lock);
3839         list_for_each_entry(kvm, &vm_list, vm_list) {
3840                 stat_tmp.kvm = kvm;
3841                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3842                 *val += tmp_val;
3843         }
3844         spin_unlock(&kvm_lock);
3845         return 0;
3846 }
3847
3848 static int vcpu_stat_clear(void *_offset, u64 val)
3849 {
3850         unsigned offset = (long)_offset;
3851         struct kvm *kvm;
3852         struct kvm_stat_data stat_tmp = {.offset = offset};
3853
3854         if (val)
3855                 return -EINVAL;
3856
3857         spin_lock(&kvm_lock);
3858         list_for_each_entry(kvm, &vm_list, vm_list) {
3859                 stat_tmp.kvm = kvm;
3860                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3861         }
3862         spin_unlock(&kvm_lock);
3863
3864         return 0;
3865 }
3866
3867 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3868                         "%llu\n");
3869
3870 static const struct file_operations *stat_fops[] = {
3871         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3872         [KVM_STAT_VM]   = &vm_stat_fops,
3873 };
3874
3875 static int kvm_init_debug(void)
3876 {
3877         int r = -EEXIST;
3878         struct kvm_stats_debugfs_item *p;
3879
3880         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3881         if (kvm_debugfs_dir == NULL)
3882                 goto out;
3883
3884         kvm_debugfs_num_entries = 0;
3885         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3886                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3887                                          (void *)(long)p->offset,
3888                                          stat_fops[p->kind]))
3889                         goto out_dir;
3890         }
3891
3892         return 0;
3893
3894 out_dir:
3895         debugfs_remove_recursive(kvm_debugfs_dir);
3896 out:
3897         return r;
3898 }
3899
3900 static int kvm_suspend(void)
3901 {
3902         if (kvm_usage_count)
3903                 hardware_disable_nolock(NULL);
3904         return 0;
3905 }
3906
3907 static void kvm_resume(void)
3908 {
3909         if (kvm_usage_count) {
3910                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3911                 hardware_enable_nolock(NULL);
3912         }
3913 }
3914
3915 static struct syscore_ops kvm_syscore_ops = {
3916         .suspend = kvm_suspend,
3917         .resume = kvm_resume,
3918 };
3919
3920 static inline
3921 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3922 {
3923         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3924 }
3925
3926 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3927 {
3928         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3929
3930         if (vcpu->preempted)
3931                 vcpu->preempted = false;
3932
3933         kvm_arch_sched_in(vcpu, cpu);
3934
3935         kvm_arch_vcpu_load(vcpu, cpu);
3936 }
3937
3938 static void kvm_sched_out(struct preempt_notifier *pn,
3939                           struct task_struct *next)
3940 {
3941         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3942
3943         if (current->state == TASK_RUNNING)
3944                 vcpu->preempted = true;
3945         kvm_arch_vcpu_put(vcpu);
3946 }
3947
3948 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3949                   struct module *module)
3950 {
3951         int r;
3952         int cpu;
3953
3954         r = kvm_arch_init(opaque);
3955         if (r)
3956                 goto out_fail;
3957
3958         /*
3959          * kvm_arch_init makes sure there's at most one caller
3960          * for architectures that support multiple implementations,
3961          * like intel and amd on x86.
3962          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3963          * conflicts in case kvm is already setup for another implementation.
3964          */
3965         r = kvm_irqfd_init();
3966         if (r)
3967                 goto out_irqfd;
3968
3969         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3970                 r = -ENOMEM;
3971                 goto out_free_0;
3972         }
3973
3974         r = kvm_arch_hardware_setup();
3975         if (r < 0)
3976                 goto out_free_0a;
3977
3978         for_each_online_cpu(cpu) {
3979                 smp_call_function_single(cpu,
3980                                 kvm_arch_check_processor_compat,
3981                                 &r, 1);
3982                 if (r < 0)
3983                         goto out_free_1;
3984         }
3985
3986         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3987                                       kvm_starting_cpu, kvm_dying_cpu);
3988         if (r)
3989                 goto out_free_2;
3990         register_reboot_notifier(&kvm_reboot_notifier);
3991
3992         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3993         if (!vcpu_align)
3994                 vcpu_align = __alignof__(struct kvm_vcpu);
3995         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3996                                            0, NULL);
3997         if (!kvm_vcpu_cache) {
3998                 r = -ENOMEM;
3999                 goto out_free_3;
4000         }
4001
4002         r = kvm_async_pf_init();
4003         if (r)
4004                 goto out_free;
4005
4006         kvm_chardev_ops.owner = module;
4007         kvm_vm_fops.owner = module;
4008         kvm_vcpu_fops.owner = module;
4009
4010         r = misc_register(&kvm_dev);
4011         if (r) {
4012                 pr_err("kvm: misc device register failed\n");
4013                 goto out_unreg;
4014         }
4015
4016         register_syscore_ops(&kvm_syscore_ops);
4017
4018         kvm_preempt_ops.sched_in = kvm_sched_in;
4019         kvm_preempt_ops.sched_out = kvm_sched_out;
4020
4021         r = kvm_init_debug();
4022         if (r) {
4023                 pr_err("kvm: create debugfs files failed\n");
4024                 goto out_undebugfs;
4025         }
4026
4027         r = kvm_vfio_ops_init();
4028         WARN_ON(r);
4029
4030         return 0;
4031
4032 out_undebugfs:
4033         unregister_syscore_ops(&kvm_syscore_ops);
4034         misc_deregister(&kvm_dev);
4035 out_unreg:
4036         kvm_async_pf_deinit();
4037 out_free:
4038         kmem_cache_destroy(kvm_vcpu_cache);
4039 out_free_3:
4040         unregister_reboot_notifier(&kvm_reboot_notifier);
4041         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4042 out_free_2:
4043 out_free_1:
4044         kvm_arch_hardware_unsetup();
4045 out_free_0a:
4046         free_cpumask_var(cpus_hardware_enabled);
4047 out_free_0:
4048         kvm_irqfd_exit();
4049 out_irqfd:
4050         kvm_arch_exit();
4051 out_fail:
4052         return r;
4053 }
4054 EXPORT_SYMBOL_GPL(kvm_init);
4055
4056 void kvm_exit(void)
4057 {
4058         debugfs_remove_recursive(kvm_debugfs_dir);
4059         misc_deregister(&kvm_dev);
4060         kmem_cache_destroy(kvm_vcpu_cache);
4061         kvm_async_pf_deinit();
4062         unregister_syscore_ops(&kvm_syscore_ops);
4063         unregister_reboot_notifier(&kvm_reboot_notifier);
4064         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4065         on_each_cpu(hardware_disable_nolock, NULL, 1);
4066         kvm_arch_hardware_unsetup();
4067         kvm_arch_exit();
4068         kvm_irqfd_exit();
4069         free_cpumask_var(cpus_hardware_enabled);
4070         kvm_vfio_ops_exit();
4071 }
4072 EXPORT_SYMBOL_GPL(kvm_exit);