]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
cc4d6e0dd2a2333b260947f54dfadec3f23edcf8
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86
87 /*
88  * Ordering of locks:
89  *
90  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91  */
92
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113                            unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116                                   unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128
129 static bool largepages_enabled = true;
130
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133         if (pfn_valid(pfn))
134                 return PageReserved(pfn_to_page(pfn));
135
136         return true;
137 }
138
139 /*
140  * Switches to specified vcpu, until a matching vcpu_put()
141  */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144         int cpu;
145
146         if (mutex_lock_killable(&vcpu->mutex))
147                 return -EINTR;
148         cpu = get_cpu();
149         preempt_notifier_register(&vcpu->preempt_notifier);
150         kvm_arch_vcpu_load(vcpu, cpu);
151         put_cpu();
152         return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158         preempt_disable();
159         kvm_arch_vcpu_put(vcpu);
160         preempt_notifier_unregister(&vcpu->preempt_notifier);
161         preempt_enable();
162         mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172         int i, cpu, me;
173         cpumask_var_t cpus;
174         bool called = true;
175         struct kvm_vcpu *vcpu;
176
177         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179         me = get_cpu();
180         kvm_for_each_vcpu(i, vcpu, kvm) {
181                 kvm_make_request(req, vcpu);
182                 cpu = vcpu->cpu;
183
184                 /* Set ->requests bit before we read ->mode. */
185                 smp_mb__after_atomic();
186
187                 if (cpus != NULL && cpu != -1 && cpu != me &&
188                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189                         cpumask_set_cpu(cpu, cpus);
190         }
191         if (unlikely(cpus == NULL))
192                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193         else if (!cpumask_empty(cpus))
194                 smp_call_function_many(cpus, ack_flush, NULL, 1);
195         else
196                 called = false;
197         put_cpu();
198         free_cpumask_var(cpus);
199         return called;
200 }
201
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205         /*
206          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207          * kvm_make_all_cpus_request.
208          */
209         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210
211         /*
212          * We want to publish modifications to the page tables before reading
213          * mode. Pairs with a memory barrier in arch-specific code.
214          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215          * and smp_mb in walk_shadow_page_lockless_begin/end.
216          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217          *
218          * There is already an smp_mb__after_atomic() before
219          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220          * barrier here.
221          */
222         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223                 ++kvm->stat.remote_tlb_flush;
224         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236         struct page *page;
237         int r;
238
239         mutex_init(&vcpu->mutex);
240         vcpu->cpu = -1;
241         vcpu->kvm = kvm;
242         vcpu->vcpu_id = id;
243         vcpu->pid = NULL;
244         init_swait_queue_head(&vcpu->wq);
245         kvm_async_pf_vcpu_init(vcpu);
246
247         vcpu->pre_pcpu = -1;
248         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249
250         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251         if (!page) {
252                 r = -ENOMEM;
253                 goto fail;
254         }
255         vcpu->run = page_address(page);
256
257         kvm_vcpu_set_in_spin_loop(vcpu, false);
258         kvm_vcpu_set_dy_eligible(vcpu, false);
259         vcpu->preempted = false;
260
261         r = kvm_arch_vcpu_init(vcpu);
262         if (r < 0)
263                 goto fail_free_run;
264         return 0;
265
266 fail_free_run:
267         free_page((unsigned long)vcpu->run);
268 fail:
269         return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275         put_pid(vcpu->pid);
276         kvm_arch_vcpu_uninit(vcpu);
277         free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284         return container_of(mn, struct kvm, mmu_notifier);
285 }
286
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288                                              struct mm_struct *mm,
289                                              unsigned long address)
290 {
291         struct kvm *kvm = mmu_notifier_to_kvm(mn);
292         int need_tlb_flush, idx;
293
294         /*
295          * When ->invalidate_page runs, the linux pte has been zapped
296          * already but the page is still allocated until
297          * ->invalidate_page returns. So if we increase the sequence
298          * here the kvm page fault will notice if the spte can't be
299          * established because the page is going to be freed. If
300          * instead the kvm page fault establishes the spte before
301          * ->invalidate_page runs, kvm_unmap_hva will release it
302          * before returning.
303          *
304          * The sequence increase only need to be seen at spin_unlock
305          * time, and not at spin_lock time.
306          *
307          * Increasing the sequence after the spin_unlock would be
308          * unsafe because the kvm page fault could then establish the
309          * pte after kvm_unmap_hva returned, without noticing the page
310          * is going to be freed.
311          */
312         idx = srcu_read_lock(&kvm->srcu);
313         spin_lock(&kvm->mmu_lock);
314
315         kvm->mmu_notifier_seq++;
316         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317         /* we've to flush the tlb before the pages can be freed */
318         if (need_tlb_flush)
319                 kvm_flush_remote_tlbs(kvm);
320
321         spin_unlock(&kvm->mmu_lock);
322
323         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324
325         srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329                                         struct mm_struct *mm,
330                                         unsigned long address,
331                                         pte_t pte)
332 {
333         struct kvm *kvm = mmu_notifier_to_kvm(mn);
334         int idx;
335
336         idx = srcu_read_lock(&kvm->srcu);
337         spin_lock(&kvm->mmu_lock);
338         kvm->mmu_notifier_seq++;
339         kvm_set_spte_hva(kvm, address, pte);
340         spin_unlock(&kvm->mmu_lock);
341         srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345                                                     struct mm_struct *mm,
346                                                     unsigned long start,
347                                                     unsigned long end)
348 {
349         struct kvm *kvm = mmu_notifier_to_kvm(mn);
350         int need_tlb_flush = 0, idx;
351
352         idx = srcu_read_lock(&kvm->srcu);
353         spin_lock(&kvm->mmu_lock);
354         /*
355          * The count increase must become visible at unlock time as no
356          * spte can be established without taking the mmu_lock and
357          * count is also read inside the mmu_lock critical section.
358          */
359         kvm->mmu_notifier_count++;
360         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361         need_tlb_flush |= kvm->tlbs_dirty;
362         /* we've to flush the tlb before the pages can be freed */
363         if (need_tlb_flush)
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371                                                   struct mm_struct *mm,
372                                                   unsigned long start,
373                                                   unsigned long end)
374 {
375         struct kvm *kvm = mmu_notifier_to_kvm(mn);
376
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * This sequence increase will notify the kvm page fault that
380          * the page that is going to be mapped in the spte could have
381          * been freed.
382          */
383         kvm->mmu_notifier_seq++;
384         smp_wmb();
385         /*
386          * The above sequence increase must be visible before the
387          * below count decrease, which is ensured by the smp_wmb above
388          * in conjunction with the smp_rmb in mmu_notifier_retry().
389          */
390         kvm->mmu_notifier_count--;
391         spin_unlock(&kvm->mmu_lock);
392
393         BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397                                               struct mm_struct *mm,
398                                               unsigned long start,
399                                               unsigned long end)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int young, idx;
403
404         idx = srcu_read_lock(&kvm->srcu);
405         spin_lock(&kvm->mmu_lock);
406
407         young = kvm_age_hva(kvm, start, end);
408         if (young)
409                 kvm_flush_remote_tlbs(kvm);
410
411         spin_unlock(&kvm->mmu_lock);
412         srcu_read_unlock(&kvm->srcu, idx);
413
414         return young;
415 }
416
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418                                         struct mm_struct *mm,
419                                         unsigned long start,
420                                         unsigned long end)
421 {
422         struct kvm *kvm = mmu_notifier_to_kvm(mn);
423         int young, idx;
424
425         idx = srcu_read_lock(&kvm->srcu);
426         spin_lock(&kvm->mmu_lock);
427         /*
428          * Even though we do not flush TLB, this will still adversely
429          * affect performance on pre-Haswell Intel EPT, where there is
430          * no EPT Access Bit to clear so that we have to tear down EPT
431          * tables instead. If we find this unacceptable, we can always
432          * add a parameter to kvm_age_hva so that it effectively doesn't
433          * do anything on clear_young.
434          *
435          * Also note that currently we never issue secondary TLB flushes
436          * from clear_young, leaving this job up to the regular system
437          * cadence. If we find this inaccurate, we might come up with a
438          * more sophisticated heuristic later.
439          */
440         young = kvm_age_hva(kvm, start, end);
441         spin_unlock(&kvm->mmu_lock);
442         srcu_read_unlock(&kvm->srcu, idx);
443
444         return young;
445 }
446
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448                                        struct mm_struct *mm,
449                                        unsigned long address)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         young = kvm_test_age_hva(kvm, address);
457         spin_unlock(&kvm->mmu_lock);
458         srcu_read_unlock(&kvm->srcu, idx);
459
460         return young;
461 }
462
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464                                      struct mm_struct *mm)
465 {
466         struct kvm *kvm = mmu_notifier_to_kvm(mn);
467         int idx;
468
469         idx = srcu_read_lock(&kvm->srcu);
470         kvm_arch_flush_shadow_all(kvm);
471         srcu_read_unlock(&kvm->srcu, idx);
472 }
473
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
476         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
477         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
478         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
479         .clear_young            = kvm_mmu_notifier_clear_young,
480         .test_young             = kvm_mmu_notifier_test_young,
481         .change_pte             = kvm_mmu_notifier_change_pte,
482         .release                = kvm_mmu_notifier_release,
483 };
484
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490
491 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495         return 0;
496 }
497
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502         int i;
503         struct kvm_memslots *slots;
504
505         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506         if (!slots)
507                 return NULL;
508
509         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
510                 slots->id_to_index[i] = slots->memslots[i].id = i;
511
512         return slots;
513 }
514
515 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
516 {
517         if (!memslot->dirty_bitmap)
518                 return;
519
520         kvfree(memslot->dirty_bitmap);
521         memslot->dirty_bitmap = NULL;
522 }
523
524 /*
525  * Free any memory in @free but not in @dont.
526  */
527 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
528                               struct kvm_memory_slot *dont)
529 {
530         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
531                 kvm_destroy_dirty_bitmap(free);
532
533         kvm_arch_free_memslot(kvm, free, dont);
534
535         free->npages = 0;
536 }
537
538 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
539 {
540         struct kvm_memory_slot *memslot;
541
542         if (!slots)
543                 return;
544
545         kvm_for_each_memslot(memslot, slots)
546                 kvm_free_memslot(kvm, memslot, NULL);
547
548         kvfree(slots);
549 }
550
551 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
552 {
553         int i;
554
555         if (!kvm->debugfs_dentry)
556                 return;
557
558         debugfs_remove_recursive(kvm->debugfs_dentry);
559
560         if (kvm->debugfs_stat_data) {
561                 for (i = 0; i < kvm_debugfs_num_entries; i++)
562                         kfree(kvm->debugfs_stat_data[i]);
563                 kfree(kvm->debugfs_stat_data);
564         }
565 }
566
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569         char dir_name[ITOA_MAX_LEN * 2];
570         struct kvm_stat_data *stat_data;
571         struct kvm_stats_debugfs_item *p;
572
573         if (!debugfs_initialized())
574                 return 0;
575
576         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578                                                  kvm_debugfs_dir);
579         if (!kvm->debugfs_dentry)
580                 return -ENOMEM;
581
582         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583                                          sizeof(*kvm->debugfs_stat_data),
584                                          GFP_KERNEL);
585         if (!kvm->debugfs_stat_data)
586                 return -ENOMEM;
587
588         for (p = debugfs_entries; p->name; p++) {
589                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590                 if (!stat_data)
591                         return -ENOMEM;
592
593                 stat_data->kvm = kvm;
594                 stat_data->offset = p->offset;
595                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596                 if (!debugfs_create_file(p->name, 0644,
597                                          kvm->debugfs_dentry,
598                                          stat_data,
599                                          stat_fops_per_vm[p->kind]))
600                         return -ENOMEM;
601         }
602         return 0;
603 }
604
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607         int r, i;
608         struct kvm *kvm = kvm_arch_alloc_vm();
609
610         if (!kvm)
611                 return ERR_PTR(-ENOMEM);
612
613         spin_lock_init(&kvm->mmu_lock);
614         atomic_inc(&current->mm->mm_count);
615         kvm->mm = current->mm;
616         kvm_eventfd_init(kvm);
617         mutex_init(&kvm->lock);
618         mutex_init(&kvm->irq_lock);
619         mutex_init(&kvm->slots_lock);
620         atomic_set(&kvm->users_count, 1);
621         INIT_LIST_HEAD(&kvm->devices);
622
623         r = kvm_arch_init_vm(kvm, type);
624         if (r)
625                 goto out_err_no_disable;
626
627         r = hardware_enable_all();
628         if (r)
629                 goto out_err_no_disable;
630
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634
635         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636
637         r = -ENOMEM;
638         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639                 struct kvm_memslots *slots = kvm_alloc_memslots();
640                 if (!slots)
641                         goto out_err_no_srcu;
642                 /*
643                  * Generations must be different for each address space.
644                  * Init kvm generation close to the maximum to easily test the
645                  * code of handling generation number wrap-around.
646                  */
647                 slots->generation = i * 2 - 150;
648                 rcu_assign_pointer(kvm->memslots[i], slots);
649         }
650
651         if (init_srcu_struct(&kvm->srcu))
652                 goto out_err_no_srcu;
653         if (init_srcu_struct(&kvm->irq_srcu))
654                 goto out_err_no_irq_srcu;
655         for (i = 0; i < KVM_NR_BUSES; i++) {
656                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
657                                         GFP_KERNEL);
658                 if (!kvm->buses[i])
659                         goto out_err;
660         }
661
662         r = kvm_init_mmu_notifier(kvm);
663         if (r)
664                 goto out_err;
665
666         spin_lock(&kvm_lock);
667         list_add(&kvm->vm_list, &vm_list);
668         spin_unlock(&kvm_lock);
669
670         preempt_notifier_inc();
671
672         return kvm;
673
674 out_err:
675         cleanup_srcu_struct(&kvm->irq_srcu);
676 out_err_no_irq_srcu:
677         cleanup_srcu_struct(&kvm->srcu);
678 out_err_no_srcu:
679         hardware_disable_all();
680 out_err_no_disable:
681         for (i = 0; i < KVM_NR_BUSES; i++)
682                 kfree(kvm->buses[i]);
683         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
684                 kvm_free_memslots(kvm, kvm->memslots[i]);
685         kvm_arch_free_vm(kvm);
686         mmdrop(current->mm);
687         return ERR_PTR(r);
688 }
689
690 /*
691  * Avoid using vmalloc for a small buffer.
692  * Should not be used when the size is statically known.
693  */
694 void *kvm_kvzalloc(unsigned long size)
695 {
696         if (size > PAGE_SIZE)
697                 return vzalloc(size);
698         else
699                 return kzalloc(size, GFP_KERNEL);
700 }
701
702 static void kvm_destroy_devices(struct kvm *kvm)
703 {
704         struct kvm_device *dev, *tmp;
705
706         /*
707          * We do not need to take the kvm->lock here, because nobody else
708          * has a reference to the struct kvm at this point and therefore
709          * cannot access the devices list anyhow.
710          */
711         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
712                 list_del(&dev->vm_node);
713                 dev->ops->destroy(dev);
714         }
715 }
716
717 static void kvm_destroy_vm(struct kvm *kvm)
718 {
719         int i;
720         struct mm_struct *mm = kvm->mm;
721
722         kvm_destroy_vm_debugfs(kvm);
723         kvm_arch_sync_events(kvm);
724         spin_lock(&kvm_lock);
725         list_del(&kvm->vm_list);
726         spin_unlock(&kvm_lock);
727         kvm_free_irq_routing(kvm);
728         for (i = 0; i < KVM_NR_BUSES; i++)
729                 kvm_io_bus_destroy(kvm->buses[i]);
730         kvm_coalesced_mmio_free(kvm);
731 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
732         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
733 #else
734         kvm_arch_flush_shadow_all(kvm);
735 #endif
736         kvm_arch_destroy_vm(kvm);
737         kvm_destroy_devices(kvm);
738         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
739                 kvm_free_memslots(kvm, kvm->memslots[i]);
740         cleanup_srcu_struct(&kvm->irq_srcu);
741         cleanup_srcu_struct(&kvm->srcu);
742         kvm_arch_free_vm(kvm);
743         preempt_notifier_dec();
744         hardware_disable_all();
745         mmdrop(mm);
746 }
747
748 void kvm_get_kvm(struct kvm *kvm)
749 {
750         atomic_inc(&kvm->users_count);
751 }
752 EXPORT_SYMBOL_GPL(kvm_get_kvm);
753
754 void kvm_put_kvm(struct kvm *kvm)
755 {
756         if (atomic_dec_and_test(&kvm->users_count))
757                 kvm_destroy_vm(kvm);
758 }
759 EXPORT_SYMBOL_GPL(kvm_put_kvm);
760
761
762 static int kvm_vm_release(struct inode *inode, struct file *filp)
763 {
764         struct kvm *kvm = filp->private_data;
765
766         kvm_irqfd_release(kvm);
767
768         kvm_put_kvm(kvm);
769         return 0;
770 }
771
772 /*
773  * Allocation size is twice as large as the actual dirty bitmap size.
774  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
775  */
776 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
777 {
778         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
779
780         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
781         if (!memslot->dirty_bitmap)
782                 return -ENOMEM;
783
784         return 0;
785 }
786
787 /*
788  * Insert memslot and re-sort memslots based on their GFN,
789  * so binary search could be used to lookup GFN.
790  * Sorting algorithm takes advantage of having initially
791  * sorted array and known changed memslot position.
792  */
793 static void update_memslots(struct kvm_memslots *slots,
794                             struct kvm_memory_slot *new)
795 {
796         int id = new->id;
797         int i = slots->id_to_index[id];
798         struct kvm_memory_slot *mslots = slots->memslots;
799
800         WARN_ON(mslots[i].id != id);
801         if (!new->npages) {
802                 WARN_ON(!mslots[i].npages);
803                 if (mslots[i].npages)
804                         slots->used_slots--;
805         } else {
806                 if (!mslots[i].npages)
807                         slots->used_slots++;
808         }
809
810         while (i < KVM_MEM_SLOTS_NUM - 1 &&
811                new->base_gfn <= mslots[i + 1].base_gfn) {
812                 if (!mslots[i + 1].npages)
813                         break;
814                 mslots[i] = mslots[i + 1];
815                 slots->id_to_index[mslots[i].id] = i;
816                 i++;
817         }
818
819         /*
820          * The ">=" is needed when creating a slot with base_gfn == 0,
821          * so that it moves before all those with base_gfn == npages == 0.
822          *
823          * On the other hand, if new->npages is zero, the above loop has
824          * already left i pointing to the beginning of the empty part of
825          * mslots, and the ">=" would move the hole backwards in this
826          * case---which is wrong.  So skip the loop when deleting a slot.
827          */
828         if (new->npages) {
829                 while (i > 0 &&
830                        new->base_gfn >= mslots[i - 1].base_gfn) {
831                         mslots[i] = mslots[i - 1];
832                         slots->id_to_index[mslots[i].id] = i;
833                         i--;
834                 }
835         } else
836                 WARN_ON_ONCE(i != slots->used_slots);
837
838         mslots[i] = *new;
839         slots->id_to_index[mslots[i].id] = i;
840 }
841
842 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
843 {
844         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
845
846 #ifdef __KVM_HAVE_READONLY_MEM
847         valid_flags |= KVM_MEM_READONLY;
848 #endif
849
850         if (mem->flags & ~valid_flags)
851                 return -EINVAL;
852
853         return 0;
854 }
855
856 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
857                 int as_id, struct kvm_memslots *slots)
858 {
859         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
860
861         /*
862          * Set the low bit in the generation, which disables SPTE caching
863          * until the end of synchronize_srcu_expedited.
864          */
865         WARN_ON(old_memslots->generation & 1);
866         slots->generation = old_memslots->generation + 1;
867
868         rcu_assign_pointer(kvm->memslots[as_id], slots);
869         synchronize_srcu_expedited(&kvm->srcu);
870
871         /*
872          * Increment the new memslot generation a second time. This prevents
873          * vm exits that race with memslot updates from caching a memslot
874          * generation that will (potentially) be valid forever.
875          *
876          * Generations must be unique even across address spaces.  We do not need
877          * a global counter for that, instead the generation space is evenly split
878          * across address spaces.  For example, with two address spaces, address
879          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
880          * use generations 2, 6, 10, 14, ...
881          */
882         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
883
884         kvm_arch_memslots_updated(kvm, slots);
885
886         return old_memslots;
887 }
888
889 /*
890  * Allocate some memory and give it an address in the guest physical address
891  * space.
892  *
893  * Discontiguous memory is allowed, mostly for framebuffers.
894  *
895  * Must be called holding kvm->slots_lock for write.
896  */
897 int __kvm_set_memory_region(struct kvm *kvm,
898                             const struct kvm_userspace_memory_region *mem)
899 {
900         int r;
901         gfn_t base_gfn;
902         unsigned long npages;
903         struct kvm_memory_slot *slot;
904         struct kvm_memory_slot old, new;
905         struct kvm_memslots *slots = NULL, *old_memslots;
906         int as_id, id;
907         enum kvm_mr_change change;
908
909         r = check_memory_region_flags(mem);
910         if (r)
911                 goto out;
912
913         r = -EINVAL;
914         as_id = mem->slot >> 16;
915         id = (u16)mem->slot;
916
917         /* General sanity checks */
918         if (mem->memory_size & (PAGE_SIZE - 1))
919                 goto out;
920         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
921                 goto out;
922         /* We can read the guest memory with __xxx_user() later on. */
923         if ((id < KVM_USER_MEM_SLOTS) &&
924             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
925              !access_ok(VERIFY_WRITE,
926                         (void __user *)(unsigned long)mem->userspace_addr,
927                         mem->memory_size)))
928                 goto out;
929         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
930                 goto out;
931         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
932                 goto out;
933
934         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
935         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
936         npages = mem->memory_size >> PAGE_SHIFT;
937
938         if (npages > KVM_MEM_MAX_NR_PAGES)
939                 goto out;
940
941         new = old = *slot;
942
943         new.id = id;
944         new.base_gfn = base_gfn;
945         new.npages = npages;
946         new.flags = mem->flags;
947
948         if (npages) {
949                 if (!old.npages)
950                         change = KVM_MR_CREATE;
951                 else { /* Modify an existing slot. */
952                         if ((mem->userspace_addr != old.userspace_addr) ||
953                             (npages != old.npages) ||
954                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
955                                 goto out;
956
957                         if (base_gfn != old.base_gfn)
958                                 change = KVM_MR_MOVE;
959                         else if (new.flags != old.flags)
960                                 change = KVM_MR_FLAGS_ONLY;
961                         else { /* Nothing to change. */
962                                 r = 0;
963                                 goto out;
964                         }
965                 }
966         } else {
967                 if (!old.npages)
968                         goto out;
969
970                 change = KVM_MR_DELETE;
971                 new.base_gfn = 0;
972                 new.flags = 0;
973         }
974
975         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
976                 /* Check for overlaps */
977                 r = -EEXIST;
978                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
979                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
980                             (slot->id == id))
981                                 continue;
982                         if (!((base_gfn + npages <= slot->base_gfn) ||
983                               (base_gfn >= slot->base_gfn + slot->npages)))
984                                 goto out;
985                 }
986         }
987
988         /* Free page dirty bitmap if unneeded */
989         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
990                 new.dirty_bitmap = NULL;
991
992         r = -ENOMEM;
993         if (change == KVM_MR_CREATE) {
994                 new.userspace_addr = mem->userspace_addr;
995
996                 if (kvm_arch_create_memslot(kvm, &new, npages))
997                         goto out_free;
998         }
999
1000         /* Allocate page dirty bitmap if needed */
1001         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1002                 if (kvm_create_dirty_bitmap(&new) < 0)
1003                         goto out_free;
1004         }
1005
1006         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1007         if (!slots)
1008                 goto out_free;
1009         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1010
1011         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1012                 slot = id_to_memslot(slots, id);
1013                 slot->flags |= KVM_MEMSLOT_INVALID;
1014
1015                 old_memslots = install_new_memslots(kvm, as_id, slots);
1016
1017                 /* slot was deleted or moved, clear iommu mapping */
1018                 kvm_iommu_unmap_pages(kvm, &old);
1019                 /* From this point no new shadow pages pointing to a deleted,
1020                  * or moved, memslot will be created.
1021                  *
1022                  * validation of sp->gfn happens in:
1023                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1024                  *      - kvm_is_visible_gfn (mmu_check_roots)
1025                  */
1026                 kvm_arch_flush_shadow_memslot(kvm, slot);
1027
1028                 /*
1029                  * We can re-use the old_memslots from above, the only difference
1030                  * from the currently installed memslots is the invalid flag.  This
1031                  * will get overwritten by update_memslots anyway.
1032                  */
1033                 slots = old_memslots;
1034         }
1035
1036         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1037         if (r)
1038                 goto out_slots;
1039
1040         /* actual memory is freed via old in kvm_free_memslot below */
1041         if (change == KVM_MR_DELETE) {
1042                 new.dirty_bitmap = NULL;
1043                 memset(&new.arch, 0, sizeof(new.arch));
1044         }
1045
1046         update_memslots(slots, &new);
1047         old_memslots = install_new_memslots(kvm, as_id, slots);
1048
1049         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1050
1051         kvm_free_memslot(kvm, &old, &new);
1052         kvfree(old_memslots);
1053
1054         /*
1055          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1056          * un-mapped and re-mapped if their base changes.  Since base change
1057          * unmapping is handled above with slot deletion, mapping alone is
1058          * needed here.  Anything else the iommu might care about for existing
1059          * slots (size changes, userspace addr changes and read-only flag
1060          * changes) is disallowed above, so any other attribute changes getting
1061          * here can be skipped.
1062          */
1063         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1064                 r = kvm_iommu_map_pages(kvm, &new);
1065                 return r;
1066         }
1067
1068         return 0;
1069
1070 out_slots:
1071         kvfree(slots);
1072 out_free:
1073         kvm_free_memslot(kvm, &new, &old);
1074 out:
1075         return r;
1076 }
1077 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1078
1079 int kvm_set_memory_region(struct kvm *kvm,
1080                           const struct kvm_userspace_memory_region *mem)
1081 {
1082         int r;
1083
1084         mutex_lock(&kvm->slots_lock);
1085         r = __kvm_set_memory_region(kvm, mem);
1086         mutex_unlock(&kvm->slots_lock);
1087         return r;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1090
1091 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1092                                           struct kvm_userspace_memory_region *mem)
1093 {
1094         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1095                 return -EINVAL;
1096
1097         return kvm_set_memory_region(kvm, mem);
1098 }
1099
1100 int kvm_get_dirty_log(struct kvm *kvm,
1101                         struct kvm_dirty_log *log, int *is_dirty)
1102 {
1103         struct kvm_memslots *slots;
1104         struct kvm_memory_slot *memslot;
1105         int i, as_id, id;
1106         unsigned long n;
1107         unsigned long any = 0;
1108
1109         as_id = log->slot >> 16;
1110         id = (u16)log->slot;
1111         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1112                 return -EINVAL;
1113
1114         slots = __kvm_memslots(kvm, as_id);
1115         memslot = id_to_memslot(slots, id);
1116         if (!memslot->dirty_bitmap)
1117                 return -ENOENT;
1118
1119         n = kvm_dirty_bitmap_bytes(memslot);
1120
1121         for (i = 0; !any && i < n/sizeof(long); ++i)
1122                 any = memslot->dirty_bitmap[i];
1123
1124         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1125                 return -EFAULT;
1126
1127         if (any)
1128                 *is_dirty = 1;
1129         return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1132
1133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1134 /**
1135  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1136  *      are dirty write protect them for next write.
1137  * @kvm:        pointer to kvm instance
1138  * @log:        slot id and address to which we copy the log
1139  * @is_dirty:   flag set if any page is dirty
1140  *
1141  * We need to keep it in mind that VCPU threads can write to the bitmap
1142  * concurrently. So, to avoid losing track of dirty pages we keep the
1143  * following order:
1144  *
1145  *    1. Take a snapshot of the bit and clear it if needed.
1146  *    2. Write protect the corresponding page.
1147  *    3. Copy the snapshot to the userspace.
1148  *    4. Upon return caller flushes TLB's if needed.
1149  *
1150  * Between 2 and 4, the guest may write to the page using the remaining TLB
1151  * entry.  This is not a problem because the page is reported dirty using
1152  * the snapshot taken before and step 4 ensures that writes done after
1153  * exiting to userspace will be logged for the next call.
1154  *
1155  */
1156 int kvm_get_dirty_log_protect(struct kvm *kvm,
1157                         struct kvm_dirty_log *log, bool *is_dirty)
1158 {
1159         struct kvm_memslots *slots;
1160         struct kvm_memory_slot *memslot;
1161         int i, as_id, id;
1162         unsigned long n;
1163         unsigned long *dirty_bitmap;
1164         unsigned long *dirty_bitmap_buffer;
1165
1166         as_id = log->slot >> 16;
1167         id = (u16)log->slot;
1168         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1169                 return -EINVAL;
1170
1171         slots = __kvm_memslots(kvm, as_id);
1172         memslot = id_to_memslot(slots, id);
1173
1174         dirty_bitmap = memslot->dirty_bitmap;
1175         if (!dirty_bitmap)
1176                 return -ENOENT;
1177
1178         n = kvm_dirty_bitmap_bytes(memslot);
1179
1180         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181         memset(dirty_bitmap_buffer, 0, n);
1182
1183         spin_lock(&kvm->mmu_lock);
1184         *is_dirty = false;
1185         for (i = 0; i < n / sizeof(long); i++) {
1186                 unsigned long mask;
1187                 gfn_t offset;
1188
1189                 if (!dirty_bitmap[i])
1190                         continue;
1191
1192                 *is_dirty = true;
1193
1194                 mask = xchg(&dirty_bitmap[i], 0);
1195                 dirty_bitmap_buffer[i] = mask;
1196
1197                 if (mask) {
1198                         offset = i * BITS_PER_LONG;
1199                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200                                                                 offset, mask);
1201                 }
1202         }
1203
1204         spin_unlock(&kvm->mmu_lock);
1205         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1206                 return -EFAULT;
1207         return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210 #endif
1211
1212 bool kvm_largepages_enabled(void)
1213 {
1214         return largepages_enabled;
1215 }
1216
1217 void kvm_disable_largepages(void)
1218 {
1219         largepages_enabled = false;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224 {
1225         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232 }
1233
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237
1238         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239               memslot->flags & KVM_MEMSLOT_INVALID)
1240                 return false;
1241
1242         return true;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247 {
1248         struct vm_area_struct *vma;
1249         unsigned long addr, size;
1250
1251         size = PAGE_SIZE;
1252
1253         addr = gfn_to_hva(kvm, gfn);
1254         if (kvm_is_error_hva(addr))
1255                 return PAGE_SIZE;
1256
1257         down_read(&current->mm->mmap_sem);
1258         vma = find_vma(current->mm, addr);
1259         if (!vma)
1260                 goto out;
1261
1262         size = vma_kernel_pagesize(vma);
1263
1264 out:
1265         up_read(&current->mm->mmap_sem);
1266
1267         return size;
1268 }
1269
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271 {
1272         return slot->flags & KVM_MEM_READONLY;
1273 }
1274
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276                                        gfn_t *nr_pages, bool write)
1277 {
1278         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279                 return KVM_HVA_ERR_BAD;
1280
1281         if (memslot_is_readonly(slot) && write)
1282                 return KVM_HVA_ERR_RO_BAD;
1283
1284         if (nr_pages)
1285                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1286
1287         return __gfn_to_hva_memslot(slot, gfn);
1288 }
1289
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291                                      gfn_t *nr_pages)
1292 {
1293         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294 }
1295
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297                                         gfn_t gfn)
1298 {
1299         return gfn_to_hva_many(slot, gfn, NULL);
1300 }
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304 {
1305         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1308
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314
1315 /*
1316  * If writable is set to false, the hva returned by this function is only
1317  * allowed to be read.
1318  */
1319 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1320                                       gfn_t gfn, bool *writable)
1321 {
1322         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1323
1324         if (!kvm_is_error_hva(hva) && writable)
1325                 *writable = !memslot_is_readonly(slot);
1326
1327         return hva;
1328 }
1329
1330 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1331 {
1332         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1333
1334         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336
1337 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1338 {
1339         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1340
1341         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342 }
1343
1344 static int get_user_page_nowait(unsigned long start, int write,
1345                 struct page **page)
1346 {
1347         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1348
1349         if (write)
1350                 flags |= FOLL_WRITE;
1351
1352         return get_user_pages(start, 1, flags, page, NULL);
1353 }
1354
1355 static inline int check_user_page_hwpoison(unsigned long addr)
1356 {
1357         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1358
1359         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1360         return rc == -EHWPOISON;
1361 }
1362
1363 /*
1364  * The atomic path to get the writable pfn which will be stored in @pfn,
1365  * true indicates success, otherwise false is returned.
1366  */
1367 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1368                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1369 {
1370         struct page *page[1];
1371         int npages;
1372
1373         if (!(async || atomic))
1374                 return false;
1375
1376         /*
1377          * Fast pin a writable pfn only if it is a write fault request
1378          * or the caller allows to map a writable pfn for a read fault
1379          * request.
1380          */
1381         if (!(write_fault || writable))
1382                 return false;
1383
1384         npages = __get_user_pages_fast(addr, 1, 1, page);
1385         if (npages == 1) {
1386                 *pfn = page_to_pfn(page[0]);
1387
1388                 if (writable)
1389                         *writable = true;
1390                 return true;
1391         }
1392
1393         return false;
1394 }
1395
1396 /*
1397  * The slow path to get the pfn of the specified host virtual address,
1398  * 1 indicates success, -errno is returned if error is detected.
1399  */
1400 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1401                            bool *writable, kvm_pfn_t *pfn)
1402 {
1403         struct page *page[1];
1404         int npages = 0;
1405
1406         might_sleep();
1407
1408         if (writable)
1409                 *writable = write_fault;
1410
1411         if (async) {
1412                 down_read(&current->mm->mmap_sem);
1413                 npages = get_user_page_nowait(addr, write_fault, page);
1414                 up_read(&current->mm->mmap_sem);
1415         } else {
1416                 unsigned int flags = FOLL_HWPOISON;
1417
1418                 if (write_fault)
1419                         flags |= FOLL_WRITE;
1420
1421                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1422         }
1423         if (npages != 1)
1424                 return npages;
1425
1426         /* map read fault as writable if possible */
1427         if (unlikely(!write_fault) && writable) {
1428                 struct page *wpage[1];
1429
1430                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1431                 if (npages == 1) {
1432                         *writable = true;
1433                         put_page(page[0]);
1434                         page[0] = wpage[0];
1435                 }
1436
1437                 npages = 1;
1438         }
1439         *pfn = page_to_pfn(page[0]);
1440         return npages;
1441 }
1442
1443 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1444 {
1445         if (unlikely(!(vma->vm_flags & VM_READ)))
1446                 return false;
1447
1448         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1449                 return false;
1450
1451         return true;
1452 }
1453
1454 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1455                                unsigned long addr, bool *async,
1456                                bool write_fault, kvm_pfn_t *p_pfn)
1457 {
1458         unsigned long pfn;
1459         int r;
1460
1461         r = follow_pfn(vma, addr, &pfn);
1462         if (r) {
1463                 /*
1464                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1465                  * not call the fault handler, so do it here.
1466                  */
1467                 bool unlocked = false;
1468                 r = fixup_user_fault(current, current->mm, addr,
1469                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1470                                      &unlocked);
1471                 if (unlocked)
1472                         return -EAGAIN;
1473                 if (r)
1474                         return r;
1475
1476                 r = follow_pfn(vma, addr, &pfn);
1477                 if (r)
1478                         return r;
1479
1480         }
1481
1482
1483         /*
1484          * Get a reference here because callers of *hva_to_pfn* and
1485          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1486          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1487          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1488          * simply do nothing for reserved pfns.
1489          *
1490          * Whoever called remap_pfn_range is also going to call e.g.
1491          * unmap_mapping_range before the underlying pages are freed,
1492          * causing a call to our MMU notifier.
1493          */ 
1494         kvm_get_pfn(pfn);
1495
1496         *p_pfn = pfn;
1497         return 0;
1498 }
1499
1500 /*
1501  * Pin guest page in memory and return its pfn.
1502  * @addr: host virtual address which maps memory to the guest
1503  * @atomic: whether this function can sleep
1504  * @async: whether this function need to wait IO complete if the
1505  *         host page is not in the memory
1506  * @write_fault: whether we should get a writable host page
1507  * @writable: whether it allows to map a writable host page for !@write_fault
1508  *
1509  * The function will map a writable host page for these two cases:
1510  * 1): @write_fault = true
1511  * 2): @write_fault = false && @writable, @writable will tell the caller
1512  *     whether the mapping is writable.
1513  */
1514 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1515                         bool write_fault, bool *writable)
1516 {
1517         struct vm_area_struct *vma;
1518         kvm_pfn_t pfn = 0;
1519         int npages, r;
1520
1521         /* we can do it either atomically or asynchronously, not both */
1522         BUG_ON(atomic && async);
1523
1524         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1525                 return pfn;
1526
1527         if (atomic)
1528                 return KVM_PFN_ERR_FAULT;
1529
1530         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1531         if (npages == 1)
1532                 return pfn;
1533
1534         down_read(&current->mm->mmap_sem);
1535         if (npages == -EHWPOISON ||
1536               (!async && check_user_page_hwpoison(addr))) {
1537                 pfn = KVM_PFN_ERR_HWPOISON;
1538                 goto exit;
1539         }
1540
1541 retry:
1542         vma = find_vma_intersection(current->mm, addr, addr + 1);
1543
1544         if (vma == NULL)
1545                 pfn = KVM_PFN_ERR_FAULT;
1546         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1547                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1548                 if (r == -EAGAIN)
1549                         goto retry;
1550                 if (r < 0)
1551                         pfn = KVM_PFN_ERR_FAULT;
1552         } else {
1553                 if (async && vma_is_valid(vma, write_fault))
1554                         *async = true;
1555                 pfn = KVM_PFN_ERR_FAULT;
1556         }
1557 exit:
1558         up_read(&current->mm->mmap_sem);
1559         return pfn;
1560 }
1561
1562 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1563                                bool atomic, bool *async, bool write_fault,
1564                                bool *writable)
1565 {
1566         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1567
1568         if (addr == KVM_HVA_ERR_RO_BAD) {
1569                 if (writable)
1570                         *writable = false;
1571                 return KVM_PFN_ERR_RO_FAULT;
1572         }
1573
1574         if (kvm_is_error_hva(addr)) {
1575                 if (writable)
1576                         *writable = false;
1577                 return KVM_PFN_NOSLOT;
1578         }
1579
1580         /* Do not map writable pfn in the readonly memslot. */
1581         if (writable && memslot_is_readonly(slot)) {
1582                 *writable = false;
1583                 writable = NULL;
1584         }
1585
1586         return hva_to_pfn(addr, atomic, async, write_fault,
1587                           writable);
1588 }
1589 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1590
1591 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1592                       bool *writable)
1593 {
1594         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1595                                     write_fault, writable);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1598
1599 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1600 {
1601         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1604
1605 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1610
1611 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1612 {
1613         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1616
1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1622
1623 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1624 {
1625         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1628
1629 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1634
1635 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1636                             struct page **pages, int nr_pages)
1637 {
1638         unsigned long addr;
1639         gfn_t entry;
1640
1641         addr = gfn_to_hva_many(slot, gfn, &entry);
1642         if (kvm_is_error_hva(addr))
1643                 return -1;
1644
1645         if (entry < nr_pages)
1646                 return 0;
1647
1648         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1649 }
1650 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1651
1652 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1653 {
1654         if (is_error_noslot_pfn(pfn))
1655                 return KVM_ERR_PTR_BAD_PAGE;
1656
1657         if (kvm_is_reserved_pfn(pfn)) {
1658                 WARN_ON(1);
1659                 return KVM_ERR_PTR_BAD_PAGE;
1660         }
1661
1662         return pfn_to_page(pfn);
1663 }
1664
1665 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1666 {
1667         kvm_pfn_t pfn;
1668
1669         pfn = gfn_to_pfn(kvm, gfn);
1670
1671         return kvm_pfn_to_page(pfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_page);
1674
1675 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677         kvm_pfn_t pfn;
1678
1679         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1680
1681         return kvm_pfn_to_page(pfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1684
1685 void kvm_release_page_clean(struct page *page)
1686 {
1687         WARN_ON(is_error_page(page));
1688
1689         kvm_release_pfn_clean(page_to_pfn(page));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1692
1693 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1694 {
1695         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1696                 put_page(pfn_to_page(pfn));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1699
1700 void kvm_release_page_dirty(struct page *page)
1701 {
1702         WARN_ON(is_error_page(page));
1703
1704         kvm_release_pfn_dirty(page_to_pfn(page));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1707
1708 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1709 {
1710         kvm_set_pfn_dirty(pfn);
1711         kvm_release_pfn_clean(pfn);
1712 }
1713
1714 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716         if (!kvm_is_reserved_pfn(pfn)) {
1717                 struct page *page = pfn_to_page(pfn);
1718
1719                 if (!PageReserved(page))
1720                         SetPageDirty(page);
1721         }
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1724
1725 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1726 {
1727         if (!kvm_is_reserved_pfn(pfn))
1728                 mark_page_accessed(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1731
1732 void kvm_get_pfn(kvm_pfn_t pfn)
1733 {
1734         if (!kvm_is_reserved_pfn(pfn))
1735                 get_page(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1738
1739 static int next_segment(unsigned long len, int offset)
1740 {
1741         if (len > PAGE_SIZE - offset)
1742                 return PAGE_SIZE - offset;
1743         else
1744                 return len;
1745 }
1746
1747 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1748                                  void *data, int offset, int len)
1749 {
1750         int r;
1751         unsigned long addr;
1752
1753         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1754         if (kvm_is_error_hva(addr))
1755                 return -EFAULT;
1756         r = __copy_from_user(data, (void __user *)addr + offset, len);
1757         if (r)
1758                 return -EFAULT;
1759         return 0;
1760 }
1761
1762 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1763                         int len)
1764 {
1765         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1766
1767         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1770
1771 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1772                              int offset, int len)
1773 {
1774         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775
1776         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1779
1780 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1781 {
1782         gfn_t gfn = gpa >> PAGE_SHIFT;
1783         int seg;
1784         int offset = offset_in_page(gpa);
1785         int ret;
1786
1787         while ((seg = next_segment(len, offset)) != 0) {
1788                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1789                 if (ret < 0)
1790                         return ret;
1791                 offset = 0;
1792                 len -= seg;
1793                 data += seg;
1794                 ++gfn;
1795         }
1796         return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_read_guest);
1799
1800 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1801 {
1802         gfn_t gfn = gpa >> PAGE_SHIFT;
1803         int seg;
1804         int offset = offset_in_page(gpa);
1805         int ret;
1806
1807         while ((seg = next_segment(len, offset)) != 0) {
1808                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1809                 if (ret < 0)
1810                         return ret;
1811                 offset = 0;
1812                 len -= seg;
1813                 data += seg;
1814                 ++gfn;
1815         }
1816         return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1819
1820 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1821                                    void *data, int offset, unsigned long len)
1822 {
1823         int r;
1824         unsigned long addr;
1825
1826         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1827         if (kvm_is_error_hva(addr))
1828                 return -EFAULT;
1829         pagefault_disable();
1830         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1831         pagefault_enable();
1832         if (r)
1833                 return -EFAULT;
1834         return 0;
1835 }
1836
1837 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1838                           unsigned long len)
1839 {
1840         gfn_t gfn = gpa >> PAGE_SHIFT;
1841         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1842         int offset = offset_in_page(gpa);
1843
1844         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1847
1848 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1849                                void *data, unsigned long len)
1850 {
1851         gfn_t gfn = gpa >> PAGE_SHIFT;
1852         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1853         int offset = offset_in_page(gpa);
1854
1855         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1858
1859 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1860                                   const void *data, int offset, int len)
1861 {
1862         int r;
1863         unsigned long addr;
1864
1865         addr = gfn_to_hva_memslot(memslot, gfn);
1866         if (kvm_is_error_hva(addr))
1867                 return -EFAULT;
1868         r = __copy_to_user((void __user *)addr + offset, data, len);
1869         if (r)
1870                 return -EFAULT;
1871         mark_page_dirty_in_slot(memslot, gfn);
1872         return 0;
1873 }
1874
1875 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1876                          const void *data, int offset, int len)
1877 {
1878         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1879
1880         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1883
1884 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1885                               const void *data, int offset, int len)
1886 {
1887         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1888
1889         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1892
1893 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1894                     unsigned long len)
1895 {
1896         gfn_t gfn = gpa >> PAGE_SHIFT;
1897         int seg;
1898         int offset = offset_in_page(gpa);
1899         int ret;
1900
1901         while ((seg = next_segment(len, offset)) != 0) {
1902                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1903                 if (ret < 0)
1904                         return ret;
1905                 offset = 0;
1906                 len -= seg;
1907                 data += seg;
1908                 ++gfn;
1909         }
1910         return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_write_guest);
1913
1914 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1915                          unsigned long len)
1916 {
1917         gfn_t gfn = gpa >> PAGE_SHIFT;
1918         int seg;
1919         int offset = offset_in_page(gpa);
1920         int ret;
1921
1922         while ((seg = next_segment(len, offset)) != 0) {
1923                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1924                 if (ret < 0)
1925                         return ret;
1926                 offset = 0;
1927                 len -= seg;
1928                 data += seg;
1929                 ++gfn;
1930         }
1931         return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1934
1935 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1936                                        struct gfn_to_hva_cache *ghc,
1937                                        gpa_t gpa, unsigned long len)
1938 {
1939         int offset = offset_in_page(gpa);
1940         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1941         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1942         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1943         gfn_t nr_pages_avail;
1944
1945         ghc->gpa = gpa;
1946         ghc->generation = slots->generation;
1947         ghc->len = len;
1948         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1949         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1950         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1951                 ghc->hva += offset;
1952         } else {
1953                 /*
1954                  * If the requested region crosses two memslots, we still
1955                  * verify that the entire region is valid here.
1956                  */
1957                 while (start_gfn <= end_gfn) {
1958                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1959                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1960                                                    &nr_pages_avail);
1961                         if (kvm_is_error_hva(ghc->hva))
1962                                 return -EFAULT;
1963                         start_gfn += nr_pages_avail;
1964                 }
1965                 /* Use the slow path for cross page reads and writes. */
1966                 ghc->memslot = NULL;
1967         }
1968         return 0;
1969 }
1970
1971 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1972                               gpa_t gpa, unsigned long len)
1973 {
1974         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1975         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1978
1979 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1980                                        void *data, int offset, unsigned long len)
1981 {
1982         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1983         int r;
1984         gpa_t gpa = ghc->gpa + offset;
1985
1986         BUG_ON(len + offset > ghc->len);
1987
1988         if (slots->generation != ghc->generation)
1989                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1990
1991         if (unlikely(!ghc->memslot))
1992                 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1993
1994         if (kvm_is_error_hva(ghc->hva))
1995                 return -EFAULT;
1996
1997         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1998         if (r)
1999                 return -EFAULT;
2000         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2001
2002         return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2005
2006 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2007                                void *data, unsigned long len)
2008 {
2009         return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2012
2013 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2014                                void *data, unsigned long len)
2015 {
2016         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2017         int r;
2018
2019         BUG_ON(len > ghc->len);
2020
2021         if (slots->generation != ghc->generation)
2022                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2023
2024         if (unlikely(!ghc->memslot))
2025                 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2026
2027         if (kvm_is_error_hva(ghc->hva))
2028                 return -EFAULT;
2029
2030         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2031         if (r)
2032                 return -EFAULT;
2033
2034         return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2037
2038 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2039 {
2040         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2041
2042         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2043 }
2044 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2045
2046 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2047 {
2048         gfn_t gfn = gpa >> PAGE_SHIFT;
2049         int seg;
2050         int offset = offset_in_page(gpa);
2051         int ret;
2052
2053         while ((seg = next_segment(len, offset)) != 0) {
2054                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2055                 if (ret < 0)
2056                         return ret;
2057                 offset = 0;
2058                 len -= seg;
2059                 ++gfn;
2060         }
2061         return 0;
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2064
2065 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2066                                     gfn_t gfn)
2067 {
2068         if (memslot && memslot->dirty_bitmap) {
2069                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2070
2071                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2072         }
2073 }
2074
2075 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2076 {
2077         struct kvm_memory_slot *memslot;
2078
2079         memslot = gfn_to_memslot(kvm, gfn);
2080         mark_page_dirty_in_slot(memslot, gfn);
2081 }
2082 EXPORT_SYMBOL_GPL(mark_page_dirty);
2083
2084 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2085 {
2086         struct kvm_memory_slot *memslot;
2087
2088         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2089         mark_page_dirty_in_slot(memslot, gfn);
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2092
2093 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2094 {
2095         unsigned int old, val, grow;
2096
2097         old = val = vcpu->halt_poll_ns;
2098         grow = READ_ONCE(halt_poll_ns_grow);
2099         /* 10us base */
2100         if (val == 0 && grow)
2101                 val = 10000;
2102         else
2103                 val *= grow;
2104
2105         if (val > halt_poll_ns)
2106                 val = halt_poll_ns;
2107
2108         vcpu->halt_poll_ns = val;
2109         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2110 }
2111
2112 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2113 {
2114         unsigned int old, val, shrink;
2115
2116         old = val = vcpu->halt_poll_ns;
2117         shrink = READ_ONCE(halt_poll_ns_shrink);
2118         if (shrink == 0)
2119                 val = 0;
2120         else
2121                 val /= shrink;
2122
2123         vcpu->halt_poll_ns = val;
2124         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2125 }
2126
2127 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2128 {
2129         if (kvm_arch_vcpu_runnable(vcpu)) {
2130                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2131                 return -EINTR;
2132         }
2133         if (kvm_cpu_has_pending_timer(vcpu))
2134                 return -EINTR;
2135         if (signal_pending(current))
2136                 return -EINTR;
2137
2138         return 0;
2139 }
2140
2141 /*
2142  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2143  */
2144 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2145 {
2146         ktime_t start, cur;
2147         DECLARE_SWAITQUEUE(wait);
2148         bool waited = false;
2149         u64 block_ns;
2150
2151         start = cur = ktime_get();
2152         if (vcpu->halt_poll_ns) {
2153                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2154
2155                 ++vcpu->stat.halt_attempted_poll;
2156                 do {
2157                         /*
2158                          * This sets KVM_REQ_UNHALT if an interrupt
2159                          * arrives.
2160                          */
2161                         if (kvm_vcpu_check_block(vcpu) < 0) {
2162                                 ++vcpu->stat.halt_successful_poll;
2163                                 if (!vcpu_valid_wakeup(vcpu))
2164                                         ++vcpu->stat.halt_poll_invalid;
2165                                 goto out;
2166                         }
2167                         cur = ktime_get();
2168                 } while (single_task_running() && ktime_before(cur, stop));
2169         }
2170
2171         kvm_arch_vcpu_blocking(vcpu);
2172
2173         for (;;) {
2174                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2175
2176                 if (kvm_vcpu_check_block(vcpu) < 0)
2177                         break;
2178
2179                 waited = true;
2180                 schedule();
2181         }
2182
2183         finish_swait(&vcpu->wq, &wait);
2184         cur = ktime_get();
2185
2186         kvm_arch_vcpu_unblocking(vcpu);
2187 out:
2188         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2189
2190         if (!vcpu_valid_wakeup(vcpu))
2191                 shrink_halt_poll_ns(vcpu);
2192         else if (halt_poll_ns) {
2193                 if (block_ns <= vcpu->halt_poll_ns)
2194                         ;
2195                 /* we had a long block, shrink polling */
2196                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2197                         shrink_halt_poll_ns(vcpu);
2198                 /* we had a short halt and our poll time is too small */
2199                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2200                         block_ns < halt_poll_ns)
2201                         grow_halt_poll_ns(vcpu);
2202         } else
2203                 vcpu->halt_poll_ns = 0;
2204
2205         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2206         kvm_arch_vcpu_block_finish(vcpu);
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2209
2210 #ifndef CONFIG_S390
2211 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2212 {
2213         struct swait_queue_head *wqp;
2214
2215         wqp = kvm_arch_vcpu_wq(vcpu);
2216         if (swait_active(wqp)) {
2217                 swake_up(wqp);
2218                 ++vcpu->stat.halt_wakeup;
2219         }
2220
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2223
2224 /*
2225  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2226  */
2227 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2228 {
2229         int me;
2230         int cpu = vcpu->cpu;
2231
2232         kvm_vcpu_wake_up(vcpu);
2233         me = get_cpu();
2234         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2235                 if (kvm_arch_vcpu_should_kick(vcpu))
2236                         smp_send_reschedule(cpu);
2237         put_cpu();
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2240 #endif /* !CONFIG_S390 */
2241
2242 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2243 {
2244         struct pid *pid;
2245         struct task_struct *task = NULL;
2246         int ret = 0;
2247
2248         rcu_read_lock();
2249         pid = rcu_dereference(target->pid);
2250         if (pid)
2251                 task = get_pid_task(pid, PIDTYPE_PID);
2252         rcu_read_unlock();
2253         if (!task)
2254                 return ret;
2255         ret = yield_to(task, 1);
2256         put_task_struct(task);
2257
2258         return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2261
2262 /*
2263  * Helper that checks whether a VCPU is eligible for directed yield.
2264  * Most eligible candidate to yield is decided by following heuristics:
2265  *
2266  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2267  *  (preempted lock holder), indicated by @in_spin_loop.
2268  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2269  *
2270  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2271  *  chance last time (mostly it has become eligible now since we have probably
2272  *  yielded to lockholder in last iteration. This is done by toggling
2273  *  @dy_eligible each time a VCPU checked for eligibility.)
2274  *
2275  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2276  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2277  *  burning. Giving priority for a potential lock-holder increases lock
2278  *  progress.
2279  *
2280  *  Since algorithm is based on heuristics, accessing another VCPU data without
2281  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2282  *  and continue with next VCPU and so on.
2283  */
2284 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2285 {
2286 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2287         bool eligible;
2288
2289         eligible = !vcpu->spin_loop.in_spin_loop ||
2290                     vcpu->spin_loop.dy_eligible;
2291
2292         if (vcpu->spin_loop.in_spin_loop)
2293                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2294
2295         return eligible;
2296 #else
2297         return true;
2298 #endif
2299 }
2300
2301 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2302 {
2303         struct kvm *kvm = me->kvm;
2304         struct kvm_vcpu *vcpu;
2305         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2306         int yielded = 0;
2307         int try = 3;
2308         int pass;
2309         int i;
2310
2311         kvm_vcpu_set_in_spin_loop(me, true);
2312         /*
2313          * We boost the priority of a VCPU that is runnable but not
2314          * currently running, because it got preempted by something
2315          * else and called schedule in __vcpu_run.  Hopefully that
2316          * VCPU is holding the lock that we need and will release it.
2317          * We approximate round-robin by starting at the last boosted VCPU.
2318          */
2319         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2320                 kvm_for_each_vcpu(i, vcpu, kvm) {
2321                         if (!pass && i <= last_boosted_vcpu) {
2322                                 i = last_boosted_vcpu;
2323                                 continue;
2324                         } else if (pass && i > last_boosted_vcpu)
2325                                 break;
2326                         if (!ACCESS_ONCE(vcpu->preempted))
2327                                 continue;
2328                         if (vcpu == me)
2329                                 continue;
2330                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2331                                 continue;
2332                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2333                                 continue;
2334
2335                         yielded = kvm_vcpu_yield_to(vcpu);
2336                         if (yielded > 0) {
2337                                 kvm->last_boosted_vcpu = i;
2338                                 break;
2339                         } else if (yielded < 0) {
2340                                 try--;
2341                                 if (!try)
2342                                         break;
2343                         }
2344                 }
2345         }
2346         kvm_vcpu_set_in_spin_loop(me, false);
2347
2348         /* Ensure vcpu is not eligible during next spinloop */
2349         kvm_vcpu_set_dy_eligible(me, false);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2352
2353 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2354 {
2355         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2356         struct page *page;
2357
2358         if (vmf->pgoff == 0)
2359                 page = virt_to_page(vcpu->run);
2360 #ifdef CONFIG_X86
2361         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2362                 page = virt_to_page(vcpu->arch.pio_data);
2363 #endif
2364 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2365         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2366                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2367 #endif
2368         else
2369                 return kvm_arch_vcpu_fault(vcpu, vmf);
2370         get_page(page);
2371         vmf->page = page;
2372         return 0;
2373 }
2374
2375 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2376         .fault = kvm_vcpu_fault,
2377 };
2378
2379 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2380 {
2381         vma->vm_ops = &kvm_vcpu_vm_ops;
2382         return 0;
2383 }
2384
2385 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2386 {
2387         struct kvm_vcpu *vcpu = filp->private_data;
2388
2389         debugfs_remove_recursive(vcpu->debugfs_dentry);
2390         kvm_put_kvm(vcpu->kvm);
2391         return 0;
2392 }
2393
2394 static struct file_operations kvm_vcpu_fops = {
2395         .release        = kvm_vcpu_release,
2396         .unlocked_ioctl = kvm_vcpu_ioctl,
2397 #ifdef CONFIG_KVM_COMPAT
2398         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2399 #endif
2400         .mmap           = kvm_vcpu_mmap,
2401         .llseek         = noop_llseek,
2402 };
2403
2404 /*
2405  * Allocates an inode for the vcpu.
2406  */
2407 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2408 {
2409         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2410 }
2411
2412 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2413 {
2414         char dir_name[ITOA_MAX_LEN * 2];
2415         int ret;
2416
2417         if (!kvm_arch_has_vcpu_debugfs())
2418                 return 0;
2419
2420         if (!debugfs_initialized())
2421                 return 0;
2422
2423         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2424         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2425                                                                 vcpu->kvm->debugfs_dentry);
2426         if (!vcpu->debugfs_dentry)
2427                 return -ENOMEM;
2428
2429         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2430         if (ret < 0) {
2431                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2432                 return ret;
2433         }
2434
2435         return 0;
2436 }
2437
2438 /*
2439  * Creates some virtual cpus.  Good luck creating more than one.
2440  */
2441 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2442 {
2443         int r;
2444         struct kvm_vcpu *vcpu;
2445
2446         if (id >= KVM_MAX_VCPU_ID)
2447                 return -EINVAL;
2448
2449         mutex_lock(&kvm->lock);
2450         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2451                 mutex_unlock(&kvm->lock);
2452                 return -EINVAL;
2453         }
2454
2455         kvm->created_vcpus++;
2456         mutex_unlock(&kvm->lock);
2457
2458         vcpu = kvm_arch_vcpu_create(kvm, id);
2459         if (IS_ERR(vcpu)) {
2460                 r = PTR_ERR(vcpu);
2461                 goto vcpu_decrement;
2462         }
2463
2464         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2465
2466         r = kvm_arch_vcpu_setup(vcpu);
2467         if (r)
2468                 goto vcpu_destroy;
2469
2470         r = kvm_create_vcpu_debugfs(vcpu);
2471         if (r)
2472                 goto vcpu_destroy;
2473
2474         mutex_lock(&kvm->lock);
2475         if (kvm_get_vcpu_by_id(kvm, id)) {
2476                 r = -EEXIST;
2477                 goto unlock_vcpu_destroy;
2478         }
2479
2480         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2481
2482         /* Now it's all set up, let userspace reach it */
2483         kvm_get_kvm(kvm);
2484         r = create_vcpu_fd(vcpu);
2485         if (r < 0) {
2486                 kvm_put_kvm(kvm);
2487                 goto unlock_vcpu_destroy;
2488         }
2489
2490         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2491
2492         /*
2493          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2494          * before kvm->online_vcpu's incremented value.
2495          */
2496         smp_wmb();
2497         atomic_inc(&kvm->online_vcpus);
2498
2499         mutex_unlock(&kvm->lock);
2500         kvm_arch_vcpu_postcreate(vcpu);
2501         return r;
2502
2503 unlock_vcpu_destroy:
2504         mutex_unlock(&kvm->lock);
2505         debugfs_remove_recursive(vcpu->debugfs_dentry);
2506 vcpu_destroy:
2507         kvm_arch_vcpu_destroy(vcpu);
2508 vcpu_decrement:
2509         mutex_lock(&kvm->lock);
2510         kvm->created_vcpus--;
2511         mutex_unlock(&kvm->lock);
2512         return r;
2513 }
2514
2515 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2516 {
2517         if (sigset) {
2518                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2519                 vcpu->sigset_active = 1;
2520                 vcpu->sigset = *sigset;
2521         } else
2522                 vcpu->sigset_active = 0;
2523         return 0;
2524 }
2525
2526 static long kvm_vcpu_ioctl(struct file *filp,
2527                            unsigned int ioctl, unsigned long arg)
2528 {
2529         struct kvm_vcpu *vcpu = filp->private_data;
2530         void __user *argp = (void __user *)arg;
2531         int r;
2532         struct kvm_fpu *fpu = NULL;
2533         struct kvm_sregs *kvm_sregs = NULL;
2534
2535         if (vcpu->kvm->mm != current->mm)
2536                 return -EIO;
2537
2538         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2539                 return -EINVAL;
2540
2541 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2542         /*
2543          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2544          * so vcpu_load() would break it.
2545          */
2546         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2547                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2548 #endif
2549
2550
2551         r = vcpu_load(vcpu);
2552         if (r)
2553                 return r;
2554         switch (ioctl) {
2555         case KVM_RUN:
2556                 r = -EINVAL;
2557                 if (arg)
2558                         goto out;
2559                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2560                         /* The thread running this VCPU changed. */
2561                         struct pid *oldpid = vcpu->pid;
2562                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2563
2564                         rcu_assign_pointer(vcpu->pid, newpid);
2565                         if (oldpid)
2566                                 synchronize_rcu();
2567                         put_pid(oldpid);
2568                 }
2569                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2570                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2571                 break;
2572         case KVM_GET_REGS: {
2573                 struct kvm_regs *kvm_regs;
2574
2575                 r = -ENOMEM;
2576                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2577                 if (!kvm_regs)
2578                         goto out;
2579                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2580                 if (r)
2581                         goto out_free1;
2582                 r = -EFAULT;
2583                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2584                         goto out_free1;
2585                 r = 0;
2586 out_free1:
2587                 kfree(kvm_regs);
2588                 break;
2589         }
2590         case KVM_SET_REGS: {
2591                 struct kvm_regs *kvm_regs;
2592
2593                 r = -ENOMEM;
2594                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2595                 if (IS_ERR(kvm_regs)) {
2596                         r = PTR_ERR(kvm_regs);
2597                         goto out;
2598                 }
2599                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2600                 kfree(kvm_regs);
2601                 break;
2602         }
2603         case KVM_GET_SREGS: {
2604                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2605                 r = -ENOMEM;
2606                 if (!kvm_sregs)
2607                         goto out;
2608                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2609                 if (r)
2610                         goto out;
2611                 r = -EFAULT;
2612                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2613                         goto out;
2614                 r = 0;
2615                 break;
2616         }
2617         case KVM_SET_SREGS: {
2618                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2619                 if (IS_ERR(kvm_sregs)) {
2620                         r = PTR_ERR(kvm_sregs);
2621                         kvm_sregs = NULL;
2622                         goto out;
2623                 }
2624                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2625                 break;
2626         }
2627         case KVM_GET_MP_STATE: {
2628                 struct kvm_mp_state mp_state;
2629
2630                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2631                 if (r)
2632                         goto out;
2633                 r = -EFAULT;
2634                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2635                         goto out;
2636                 r = 0;
2637                 break;
2638         }
2639         case KVM_SET_MP_STATE: {
2640                 struct kvm_mp_state mp_state;
2641
2642                 r = -EFAULT;
2643                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2644                         goto out;
2645                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2646                 break;
2647         }
2648         case KVM_TRANSLATE: {
2649                 struct kvm_translation tr;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&tr, argp, sizeof(tr)))
2653                         goto out;
2654                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2655                 if (r)
2656                         goto out;
2657                 r = -EFAULT;
2658                 if (copy_to_user(argp, &tr, sizeof(tr)))
2659                         goto out;
2660                 r = 0;
2661                 break;
2662         }
2663         case KVM_SET_GUEST_DEBUG: {
2664                 struct kvm_guest_debug dbg;
2665
2666                 r = -EFAULT;
2667                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2668                         goto out;
2669                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2670                 break;
2671         }
2672         case KVM_SET_SIGNAL_MASK: {
2673                 struct kvm_signal_mask __user *sigmask_arg = argp;
2674                 struct kvm_signal_mask kvm_sigmask;
2675                 sigset_t sigset, *p;
2676
2677                 p = NULL;
2678                 if (argp) {
2679                         r = -EFAULT;
2680                         if (copy_from_user(&kvm_sigmask, argp,
2681                                            sizeof(kvm_sigmask)))
2682                                 goto out;
2683                         r = -EINVAL;
2684                         if (kvm_sigmask.len != sizeof(sigset))
2685                                 goto out;
2686                         r = -EFAULT;
2687                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2688                                            sizeof(sigset)))
2689                                 goto out;
2690                         p = &sigset;
2691                 }
2692                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2693                 break;
2694         }
2695         case KVM_GET_FPU: {
2696                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2697                 r = -ENOMEM;
2698                 if (!fpu)
2699                         goto out;
2700                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2701                 if (r)
2702                         goto out;
2703                 r = -EFAULT;
2704                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2705                         goto out;
2706                 r = 0;
2707                 break;
2708         }
2709         case KVM_SET_FPU: {
2710                 fpu = memdup_user(argp, sizeof(*fpu));
2711                 if (IS_ERR(fpu)) {
2712                         r = PTR_ERR(fpu);
2713                         fpu = NULL;
2714                         goto out;
2715                 }
2716                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2717                 break;
2718         }
2719         default:
2720                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2721         }
2722 out:
2723         vcpu_put(vcpu);
2724         kfree(fpu);
2725         kfree(kvm_sregs);
2726         return r;
2727 }
2728
2729 #ifdef CONFIG_KVM_COMPAT
2730 static long kvm_vcpu_compat_ioctl(struct file *filp,
2731                                   unsigned int ioctl, unsigned long arg)
2732 {
2733         struct kvm_vcpu *vcpu = filp->private_data;
2734         void __user *argp = compat_ptr(arg);
2735         int r;
2736
2737         if (vcpu->kvm->mm != current->mm)
2738                 return -EIO;
2739
2740         switch (ioctl) {
2741         case KVM_SET_SIGNAL_MASK: {
2742                 struct kvm_signal_mask __user *sigmask_arg = argp;
2743                 struct kvm_signal_mask kvm_sigmask;
2744                 compat_sigset_t csigset;
2745                 sigset_t sigset;
2746
2747                 if (argp) {
2748                         r = -EFAULT;
2749                         if (copy_from_user(&kvm_sigmask, argp,
2750                                            sizeof(kvm_sigmask)))
2751                                 goto out;
2752                         r = -EINVAL;
2753                         if (kvm_sigmask.len != sizeof(csigset))
2754                                 goto out;
2755                         r = -EFAULT;
2756                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2757                                            sizeof(csigset)))
2758                                 goto out;
2759                         sigset_from_compat(&sigset, &csigset);
2760                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2761                 } else
2762                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2763                 break;
2764         }
2765         default:
2766                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2767         }
2768
2769 out:
2770         return r;
2771 }
2772 #endif
2773
2774 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2775                                  int (*accessor)(struct kvm_device *dev,
2776                                                  struct kvm_device_attr *attr),
2777                                  unsigned long arg)
2778 {
2779         struct kvm_device_attr attr;
2780
2781         if (!accessor)
2782                 return -EPERM;
2783
2784         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2785                 return -EFAULT;
2786
2787         return accessor(dev, &attr);
2788 }
2789
2790 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2791                              unsigned long arg)
2792 {
2793         struct kvm_device *dev = filp->private_data;
2794
2795         switch (ioctl) {
2796         case KVM_SET_DEVICE_ATTR:
2797                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2798         case KVM_GET_DEVICE_ATTR:
2799                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2800         case KVM_HAS_DEVICE_ATTR:
2801                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2802         default:
2803                 if (dev->ops->ioctl)
2804                         return dev->ops->ioctl(dev, ioctl, arg);
2805
2806                 return -ENOTTY;
2807         }
2808 }
2809
2810 static int kvm_device_release(struct inode *inode, struct file *filp)
2811 {
2812         struct kvm_device *dev = filp->private_data;
2813         struct kvm *kvm = dev->kvm;
2814
2815         kvm_put_kvm(kvm);
2816         return 0;
2817 }
2818
2819 static const struct file_operations kvm_device_fops = {
2820         .unlocked_ioctl = kvm_device_ioctl,
2821 #ifdef CONFIG_KVM_COMPAT
2822         .compat_ioctl = kvm_device_ioctl,
2823 #endif
2824         .release = kvm_device_release,
2825 };
2826
2827 struct kvm_device *kvm_device_from_filp(struct file *filp)
2828 {
2829         if (filp->f_op != &kvm_device_fops)
2830                 return NULL;
2831
2832         return filp->private_data;
2833 }
2834
2835 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2836 #ifdef CONFIG_KVM_MPIC
2837         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2838         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2839 #endif
2840
2841 #ifdef CONFIG_KVM_XICS
2842         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2843 #endif
2844 };
2845
2846 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2847 {
2848         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2849                 return -ENOSPC;
2850
2851         if (kvm_device_ops_table[type] != NULL)
2852                 return -EEXIST;
2853
2854         kvm_device_ops_table[type] = ops;
2855         return 0;
2856 }
2857
2858 void kvm_unregister_device_ops(u32 type)
2859 {
2860         if (kvm_device_ops_table[type] != NULL)
2861                 kvm_device_ops_table[type] = NULL;
2862 }
2863
2864 static int kvm_ioctl_create_device(struct kvm *kvm,
2865                                    struct kvm_create_device *cd)
2866 {
2867         struct kvm_device_ops *ops = NULL;
2868         struct kvm_device *dev;
2869         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2870         int ret;
2871
2872         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2873                 return -ENODEV;
2874
2875         ops = kvm_device_ops_table[cd->type];
2876         if (ops == NULL)
2877                 return -ENODEV;
2878
2879         if (test)
2880                 return 0;
2881
2882         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2883         if (!dev)
2884                 return -ENOMEM;
2885
2886         dev->ops = ops;
2887         dev->kvm = kvm;
2888
2889         mutex_lock(&kvm->lock);
2890         ret = ops->create(dev, cd->type);
2891         if (ret < 0) {
2892                 mutex_unlock(&kvm->lock);
2893                 kfree(dev);
2894                 return ret;
2895         }
2896         list_add(&dev->vm_node, &kvm->devices);
2897         mutex_unlock(&kvm->lock);
2898
2899         if (ops->init)
2900                 ops->init(dev);
2901
2902         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2903         if (ret < 0) {
2904                 mutex_lock(&kvm->lock);
2905                 list_del(&dev->vm_node);
2906                 mutex_unlock(&kvm->lock);
2907                 ops->destroy(dev);
2908                 return ret;
2909         }
2910
2911         kvm_get_kvm(kvm);
2912         cd->fd = ret;
2913         return 0;
2914 }
2915
2916 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2917 {
2918         switch (arg) {
2919         case KVM_CAP_USER_MEMORY:
2920         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2921         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2922         case KVM_CAP_INTERNAL_ERROR_DATA:
2923 #ifdef CONFIG_HAVE_KVM_MSI
2924         case KVM_CAP_SIGNAL_MSI:
2925 #endif
2926 #ifdef CONFIG_HAVE_KVM_IRQFD
2927         case KVM_CAP_IRQFD:
2928         case KVM_CAP_IRQFD_RESAMPLE:
2929 #endif
2930         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2931         case KVM_CAP_CHECK_EXTENSION_VM:
2932                 return 1;
2933 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2934         case KVM_CAP_IRQ_ROUTING:
2935                 return KVM_MAX_IRQ_ROUTES;
2936 #endif
2937 #if KVM_ADDRESS_SPACE_NUM > 1
2938         case KVM_CAP_MULTI_ADDRESS_SPACE:
2939                 return KVM_ADDRESS_SPACE_NUM;
2940 #endif
2941         case KVM_CAP_MAX_VCPU_ID:
2942                 return KVM_MAX_VCPU_ID;
2943         default:
2944                 break;
2945         }
2946         return kvm_vm_ioctl_check_extension(kvm, arg);
2947 }
2948
2949 static long kvm_vm_ioctl(struct file *filp,
2950                            unsigned int ioctl, unsigned long arg)
2951 {
2952         struct kvm *kvm = filp->private_data;
2953         void __user *argp = (void __user *)arg;
2954         int r;
2955
2956         if (kvm->mm != current->mm)
2957                 return -EIO;
2958         switch (ioctl) {
2959         case KVM_CREATE_VCPU:
2960                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2961                 break;
2962         case KVM_SET_USER_MEMORY_REGION: {
2963                 struct kvm_userspace_memory_region kvm_userspace_mem;
2964
2965                 r = -EFAULT;
2966                 if (copy_from_user(&kvm_userspace_mem, argp,
2967                                                 sizeof(kvm_userspace_mem)))
2968                         goto out;
2969
2970                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2971                 break;
2972         }
2973         case KVM_GET_DIRTY_LOG: {
2974                 struct kvm_dirty_log log;
2975
2976                 r = -EFAULT;
2977                 if (copy_from_user(&log, argp, sizeof(log)))
2978                         goto out;
2979                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2980                 break;
2981         }
2982 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2983         case KVM_REGISTER_COALESCED_MMIO: {
2984                 struct kvm_coalesced_mmio_zone zone;
2985
2986                 r = -EFAULT;
2987                 if (copy_from_user(&zone, argp, sizeof(zone)))
2988                         goto out;
2989                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2990                 break;
2991         }
2992         case KVM_UNREGISTER_COALESCED_MMIO: {
2993                 struct kvm_coalesced_mmio_zone zone;
2994
2995                 r = -EFAULT;
2996                 if (copy_from_user(&zone, argp, sizeof(zone)))
2997                         goto out;
2998                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2999                 break;
3000         }
3001 #endif
3002         case KVM_IRQFD: {
3003                 struct kvm_irqfd data;
3004
3005                 r = -EFAULT;
3006                 if (copy_from_user(&data, argp, sizeof(data)))
3007                         goto out;
3008                 r = kvm_irqfd(kvm, &data);
3009                 break;
3010         }
3011         case KVM_IOEVENTFD: {
3012                 struct kvm_ioeventfd data;
3013
3014                 r = -EFAULT;
3015                 if (copy_from_user(&data, argp, sizeof(data)))
3016                         goto out;
3017                 r = kvm_ioeventfd(kvm, &data);
3018                 break;
3019         }
3020 #ifdef CONFIG_HAVE_KVM_MSI
3021         case KVM_SIGNAL_MSI: {
3022                 struct kvm_msi msi;
3023
3024                 r = -EFAULT;
3025                 if (copy_from_user(&msi, argp, sizeof(msi)))
3026                         goto out;
3027                 r = kvm_send_userspace_msi(kvm, &msi);
3028                 break;
3029         }
3030 #endif
3031 #ifdef __KVM_HAVE_IRQ_LINE
3032         case KVM_IRQ_LINE_STATUS:
3033         case KVM_IRQ_LINE: {
3034                 struct kvm_irq_level irq_event;
3035
3036                 r = -EFAULT;
3037                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3038                         goto out;
3039
3040                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3041                                         ioctl == KVM_IRQ_LINE_STATUS);
3042                 if (r)
3043                         goto out;
3044
3045                 r = -EFAULT;
3046                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3047                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3048                                 goto out;
3049                 }
3050
3051                 r = 0;
3052                 break;
3053         }
3054 #endif
3055 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3056         case KVM_SET_GSI_ROUTING: {
3057                 struct kvm_irq_routing routing;
3058                 struct kvm_irq_routing __user *urouting;
3059                 struct kvm_irq_routing_entry *entries = NULL;
3060
3061                 r = -EFAULT;
3062                 if (copy_from_user(&routing, argp, sizeof(routing)))
3063                         goto out;
3064                 r = -EINVAL;
3065                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3066                         goto out;
3067                 if (routing.flags)
3068                         goto out;
3069                 if (routing.nr) {
3070                         r = -ENOMEM;
3071                         entries = vmalloc(routing.nr * sizeof(*entries));
3072                         if (!entries)
3073                                 goto out;
3074                         r = -EFAULT;
3075                         urouting = argp;
3076                         if (copy_from_user(entries, urouting->entries,
3077                                            routing.nr * sizeof(*entries)))
3078                                 goto out_free_irq_routing;
3079                 }
3080                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3081                                         routing.flags);
3082 out_free_irq_routing:
3083                 vfree(entries);
3084                 break;
3085         }
3086 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3087         case KVM_CREATE_DEVICE: {
3088                 struct kvm_create_device cd;
3089
3090                 r = -EFAULT;
3091                 if (copy_from_user(&cd, argp, sizeof(cd)))
3092                         goto out;
3093
3094                 r = kvm_ioctl_create_device(kvm, &cd);
3095                 if (r)
3096                         goto out;
3097
3098                 r = -EFAULT;
3099                 if (copy_to_user(argp, &cd, sizeof(cd)))
3100                         goto out;
3101
3102                 r = 0;
3103                 break;
3104         }
3105         case KVM_CHECK_EXTENSION:
3106                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3107                 break;
3108         default:
3109                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3110         }
3111 out:
3112         return r;
3113 }
3114
3115 #ifdef CONFIG_KVM_COMPAT
3116 struct compat_kvm_dirty_log {
3117         __u32 slot;
3118         __u32 padding1;
3119         union {
3120                 compat_uptr_t dirty_bitmap; /* one bit per page */
3121                 __u64 padding2;
3122         };
3123 };
3124
3125 static long kvm_vm_compat_ioctl(struct file *filp,
3126                            unsigned int ioctl, unsigned long arg)
3127 {
3128         struct kvm *kvm = filp->private_data;
3129         int r;
3130
3131         if (kvm->mm != current->mm)
3132                 return -EIO;
3133         switch (ioctl) {
3134         case KVM_GET_DIRTY_LOG: {
3135                 struct compat_kvm_dirty_log compat_log;
3136                 struct kvm_dirty_log log;
3137
3138                 if (copy_from_user(&compat_log, (void __user *)arg,
3139                                    sizeof(compat_log)))
3140                         return -EFAULT;
3141                 log.slot         = compat_log.slot;
3142                 log.padding1     = compat_log.padding1;
3143                 log.padding2     = compat_log.padding2;
3144                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3145
3146                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3147                 break;
3148         }
3149         default:
3150                 r = kvm_vm_ioctl(filp, ioctl, arg);
3151         }
3152         return r;
3153 }
3154 #endif
3155
3156 static struct file_operations kvm_vm_fops = {
3157         .release        = kvm_vm_release,
3158         .unlocked_ioctl = kvm_vm_ioctl,
3159 #ifdef CONFIG_KVM_COMPAT
3160         .compat_ioctl   = kvm_vm_compat_ioctl,
3161 #endif
3162         .llseek         = noop_llseek,
3163 };
3164
3165 static int kvm_dev_ioctl_create_vm(unsigned long type)
3166 {
3167         int r;
3168         struct kvm *kvm;
3169         struct file *file;
3170
3171         kvm = kvm_create_vm(type);
3172         if (IS_ERR(kvm))
3173                 return PTR_ERR(kvm);
3174 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3175         r = kvm_coalesced_mmio_init(kvm);
3176         if (r < 0) {
3177                 kvm_put_kvm(kvm);
3178                 return r;
3179         }
3180 #endif
3181         r = get_unused_fd_flags(O_CLOEXEC);
3182         if (r < 0) {
3183                 kvm_put_kvm(kvm);
3184                 return r;
3185         }
3186         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3187         if (IS_ERR(file)) {
3188                 put_unused_fd(r);
3189                 kvm_put_kvm(kvm);
3190                 return PTR_ERR(file);
3191         }
3192
3193         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3194                 put_unused_fd(r);
3195                 fput(file);
3196                 return -ENOMEM;
3197         }
3198
3199         fd_install(r, file);
3200         return r;
3201 }
3202
3203 static long kvm_dev_ioctl(struct file *filp,
3204                           unsigned int ioctl, unsigned long arg)
3205 {
3206         long r = -EINVAL;
3207
3208         switch (ioctl) {
3209         case KVM_GET_API_VERSION:
3210                 if (arg)
3211                         goto out;
3212                 r = KVM_API_VERSION;
3213                 break;
3214         case KVM_CREATE_VM:
3215                 r = kvm_dev_ioctl_create_vm(arg);
3216                 break;
3217         case KVM_CHECK_EXTENSION:
3218                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3219                 break;
3220         case KVM_GET_VCPU_MMAP_SIZE:
3221                 if (arg)
3222                         goto out;
3223                 r = PAGE_SIZE;     /* struct kvm_run */
3224 #ifdef CONFIG_X86
3225                 r += PAGE_SIZE;    /* pio data page */
3226 #endif
3227 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3228                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3229 #endif
3230                 break;
3231         case KVM_TRACE_ENABLE:
3232         case KVM_TRACE_PAUSE:
3233         case KVM_TRACE_DISABLE:
3234                 r = -EOPNOTSUPP;
3235                 break;
3236         default:
3237                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3238         }
3239 out:
3240         return r;
3241 }
3242
3243 static struct file_operations kvm_chardev_ops = {
3244         .unlocked_ioctl = kvm_dev_ioctl,
3245         .compat_ioctl   = kvm_dev_ioctl,
3246         .llseek         = noop_llseek,
3247 };
3248
3249 static struct miscdevice kvm_dev = {
3250         KVM_MINOR,
3251         "kvm",
3252         &kvm_chardev_ops,
3253 };
3254
3255 static void hardware_enable_nolock(void *junk)
3256 {
3257         int cpu = raw_smp_processor_id();
3258         int r;
3259
3260         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3261                 return;
3262
3263         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3264
3265         r = kvm_arch_hardware_enable();
3266
3267         if (r) {
3268                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3269                 atomic_inc(&hardware_enable_failed);
3270                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3271         }
3272 }
3273
3274 static int kvm_starting_cpu(unsigned int cpu)
3275 {
3276         raw_spin_lock(&kvm_count_lock);
3277         if (kvm_usage_count)
3278                 hardware_enable_nolock(NULL);
3279         raw_spin_unlock(&kvm_count_lock);
3280         return 0;
3281 }
3282
3283 static void hardware_disable_nolock(void *junk)
3284 {
3285         int cpu = raw_smp_processor_id();
3286
3287         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3288                 return;
3289         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3290         kvm_arch_hardware_disable();
3291 }
3292
3293 static int kvm_dying_cpu(unsigned int cpu)
3294 {
3295         raw_spin_lock(&kvm_count_lock);
3296         if (kvm_usage_count)
3297                 hardware_disable_nolock(NULL);
3298         raw_spin_unlock(&kvm_count_lock);
3299         return 0;
3300 }
3301
3302 static void hardware_disable_all_nolock(void)
3303 {
3304         BUG_ON(!kvm_usage_count);
3305
3306         kvm_usage_count--;
3307         if (!kvm_usage_count)
3308                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3309 }
3310
3311 static void hardware_disable_all(void)
3312 {
3313         raw_spin_lock(&kvm_count_lock);
3314         hardware_disable_all_nolock();
3315         raw_spin_unlock(&kvm_count_lock);
3316 }
3317
3318 static int hardware_enable_all(void)
3319 {
3320         int r = 0;
3321
3322         raw_spin_lock(&kvm_count_lock);
3323
3324         kvm_usage_count++;
3325         if (kvm_usage_count == 1) {
3326                 atomic_set(&hardware_enable_failed, 0);
3327                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3328
3329                 if (atomic_read(&hardware_enable_failed)) {
3330                         hardware_disable_all_nolock();
3331                         r = -EBUSY;
3332                 }
3333         }
3334
3335         raw_spin_unlock(&kvm_count_lock);
3336
3337         return r;
3338 }
3339
3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3341                       void *v)
3342 {
3343         /*
3344          * Some (well, at least mine) BIOSes hang on reboot if
3345          * in vmx root mode.
3346          *
3347          * And Intel TXT required VMX off for all cpu when system shutdown.
3348          */
3349         pr_info("kvm: exiting hardware virtualization\n");
3350         kvm_rebooting = true;
3351         on_each_cpu(hardware_disable_nolock, NULL, 1);
3352         return NOTIFY_OK;
3353 }
3354
3355 static struct notifier_block kvm_reboot_notifier = {
3356         .notifier_call = kvm_reboot,
3357         .priority = 0,
3358 };
3359
3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3361 {
3362         int i;
3363
3364         for (i = 0; i < bus->dev_count; i++) {
3365                 struct kvm_io_device *pos = bus->range[i].dev;
3366
3367                 kvm_iodevice_destructor(pos);
3368         }
3369         kfree(bus);
3370 }
3371
3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3373                                  const struct kvm_io_range *r2)
3374 {
3375         gpa_t addr1 = r1->addr;
3376         gpa_t addr2 = r2->addr;
3377
3378         if (addr1 < addr2)
3379                 return -1;
3380
3381         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3382          * accept any overlapping write.  Any order is acceptable for
3383          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3384          * we process all of them.
3385          */
3386         if (r2->len) {
3387                 addr1 += r1->len;
3388                 addr2 += r2->len;
3389         }
3390
3391         if (addr1 > addr2)
3392                 return 1;
3393
3394         return 0;
3395 }
3396
3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3398 {
3399         return kvm_io_bus_cmp(p1, p2);
3400 }
3401
3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3403                           gpa_t addr, int len)
3404 {
3405         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3406                 .addr = addr,
3407                 .len = len,
3408                 .dev = dev,
3409         };
3410
3411         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3412                 kvm_io_bus_sort_cmp, NULL);
3413
3414         return 0;
3415 }
3416
3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3418                              gpa_t addr, int len)
3419 {
3420         struct kvm_io_range *range, key;
3421         int off;
3422
3423         key = (struct kvm_io_range) {
3424                 .addr = addr,
3425                 .len = len,
3426         };
3427
3428         range = bsearch(&key, bus->range, bus->dev_count,
3429                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3430         if (range == NULL)
3431                 return -ENOENT;
3432
3433         off = range - bus->range;
3434
3435         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3436                 off--;
3437
3438         return off;
3439 }
3440
3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3442                               struct kvm_io_range *range, const void *val)
3443 {
3444         int idx;
3445
3446         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3447         if (idx < 0)
3448                 return -EOPNOTSUPP;
3449
3450         while (idx < bus->dev_count &&
3451                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3452                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3453                                         range->len, val))
3454                         return idx;
3455                 idx++;
3456         }
3457
3458         return -EOPNOTSUPP;
3459 }
3460
3461 /* kvm_io_bus_write - called under kvm->slots_lock */
3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3463                      int len, const void *val)
3464 {
3465         struct kvm_io_bus *bus;
3466         struct kvm_io_range range;
3467         int r;
3468
3469         range = (struct kvm_io_range) {
3470                 .addr = addr,
3471                 .len = len,
3472         };
3473
3474         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3475         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3476         return r < 0 ? r : 0;
3477 }
3478
3479 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3480 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3481                             gpa_t addr, int len, const void *val, long cookie)
3482 {
3483         struct kvm_io_bus *bus;
3484         struct kvm_io_range range;
3485
3486         range = (struct kvm_io_range) {
3487                 .addr = addr,
3488                 .len = len,
3489         };
3490
3491         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3492
3493         /* First try the device referenced by cookie. */
3494         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3495             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3496                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3497                                         val))
3498                         return cookie;
3499
3500         /*
3501          * cookie contained garbage; fall back to search and return the
3502          * correct cookie value.
3503          */
3504         return __kvm_io_bus_write(vcpu, bus, &range, val);
3505 }
3506
3507 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3508                              struct kvm_io_range *range, void *val)
3509 {
3510         int idx;
3511
3512         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3513         if (idx < 0)
3514                 return -EOPNOTSUPP;
3515
3516         while (idx < bus->dev_count &&
3517                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3518                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3519                                        range->len, val))
3520                         return idx;
3521                 idx++;
3522         }
3523
3524         return -EOPNOTSUPP;
3525 }
3526 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3527
3528 /* kvm_io_bus_read - called under kvm->slots_lock */
3529 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3530                     int len, void *val)
3531 {
3532         struct kvm_io_bus *bus;
3533         struct kvm_io_range range;
3534         int r;
3535
3536         range = (struct kvm_io_range) {
3537                 .addr = addr,
3538                 .len = len,
3539         };
3540
3541         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3542         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3543         return r < 0 ? r : 0;
3544 }
3545
3546
3547 /* Caller must hold slots_lock. */
3548 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3549                             int len, struct kvm_io_device *dev)
3550 {
3551         struct kvm_io_bus *new_bus, *bus;
3552
3553         bus = kvm->buses[bus_idx];
3554         /* exclude ioeventfd which is limited by maximum fd */
3555         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3556                 return -ENOSPC;
3557
3558         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3559                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3560         if (!new_bus)
3561                 return -ENOMEM;
3562         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3563                sizeof(struct kvm_io_range)));
3564         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3565         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3566         synchronize_srcu_expedited(&kvm->srcu);
3567         kfree(bus);
3568
3569         return 0;
3570 }
3571
3572 /* Caller must hold slots_lock. */
3573 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3574                               struct kvm_io_device *dev)
3575 {
3576         int i, r;
3577         struct kvm_io_bus *new_bus, *bus;
3578
3579         bus = kvm->buses[bus_idx];
3580         r = -ENOENT;
3581         for (i = 0; i < bus->dev_count; i++)
3582                 if (bus->range[i].dev == dev) {
3583                         r = 0;
3584                         break;
3585                 }
3586
3587         if (r)
3588                 return r;
3589
3590         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3591                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3592         if (!new_bus)
3593                 return -ENOMEM;
3594
3595         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596         new_bus->dev_count--;
3597         memcpy(new_bus->range + i, bus->range + i + 1,
3598                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3599
3600         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3601         synchronize_srcu_expedited(&kvm->srcu);
3602         kfree(bus);
3603         return r;
3604 }
3605
3606 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3607                                          gpa_t addr)
3608 {
3609         struct kvm_io_bus *bus;
3610         int dev_idx, srcu_idx;
3611         struct kvm_io_device *iodev = NULL;
3612
3613         srcu_idx = srcu_read_lock(&kvm->srcu);
3614
3615         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3616
3617         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3618         if (dev_idx < 0)
3619                 goto out_unlock;
3620
3621         iodev = bus->range[dev_idx].dev;
3622
3623 out_unlock:
3624         srcu_read_unlock(&kvm->srcu, srcu_idx);
3625
3626         return iodev;
3627 }
3628 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3629
3630 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3631                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3632                            const char *fmt)
3633 {
3634         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3635                                           inode->i_private;
3636
3637         /* The debugfs files are a reference to the kvm struct which
3638          * is still valid when kvm_destroy_vm is called.
3639          * To avoid the race between open and the removal of the debugfs
3640          * directory we test against the users count.
3641          */
3642         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3643                 return -ENOENT;
3644
3645         if (simple_attr_open(inode, file, get, set, fmt)) {
3646                 kvm_put_kvm(stat_data->kvm);
3647                 return -ENOMEM;
3648         }
3649
3650         return 0;
3651 }
3652
3653 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3654 {
3655         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3656                                           inode->i_private;
3657
3658         simple_attr_release(inode, file);
3659         kvm_put_kvm(stat_data->kvm);
3660
3661         return 0;
3662 }
3663
3664 static int vm_stat_get_per_vm(void *data, u64 *val)
3665 {
3666         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3667
3668         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3669
3670         return 0;
3671 }
3672
3673 static int vm_stat_clear_per_vm(void *data, u64 val)
3674 {
3675         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3676
3677         if (val)
3678                 return -EINVAL;
3679
3680         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3681
3682         return 0;
3683 }
3684
3685 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3686 {
3687         __simple_attr_check_format("%llu\n", 0ull);
3688         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3689                                 vm_stat_clear_per_vm, "%llu\n");
3690 }
3691
3692 static const struct file_operations vm_stat_get_per_vm_fops = {
3693         .owner   = THIS_MODULE,
3694         .open    = vm_stat_get_per_vm_open,
3695         .release = kvm_debugfs_release,
3696         .read    = simple_attr_read,
3697         .write   = simple_attr_write,
3698         .llseek  = generic_file_llseek,
3699 };
3700
3701 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3702 {
3703         int i;
3704         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3705         struct kvm_vcpu *vcpu;
3706
3707         *val = 0;
3708
3709         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3710                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3711
3712         return 0;
3713 }
3714
3715 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3716 {
3717         int i;
3718         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3719         struct kvm_vcpu *vcpu;
3720
3721         if (val)
3722                 return -EINVAL;
3723
3724         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3725                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3726
3727         return 0;
3728 }
3729
3730 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3731 {
3732         __simple_attr_check_format("%llu\n", 0ull);
3733         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3734                                  vcpu_stat_clear_per_vm, "%llu\n");
3735 }
3736
3737 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3738         .owner   = THIS_MODULE,
3739         .open    = vcpu_stat_get_per_vm_open,
3740         .release = kvm_debugfs_release,
3741         .read    = simple_attr_read,
3742         .write   = simple_attr_write,
3743         .llseek  = generic_file_llseek,
3744 };
3745
3746 static const struct file_operations *stat_fops_per_vm[] = {
3747         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3748         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3749 };
3750
3751 static int vm_stat_get(void *_offset, u64 *val)
3752 {
3753         unsigned offset = (long)_offset;
3754         struct kvm *kvm;
3755         struct kvm_stat_data stat_tmp = {.offset = offset};
3756         u64 tmp_val;
3757
3758         *val = 0;
3759         spin_lock(&kvm_lock);
3760         list_for_each_entry(kvm, &vm_list, vm_list) {
3761                 stat_tmp.kvm = kvm;
3762                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3763                 *val += tmp_val;
3764         }
3765         spin_unlock(&kvm_lock);
3766         return 0;
3767 }
3768
3769 static int vm_stat_clear(void *_offset, u64 val)
3770 {
3771         unsigned offset = (long)_offset;
3772         struct kvm *kvm;
3773         struct kvm_stat_data stat_tmp = {.offset = offset};
3774
3775         if (val)
3776                 return -EINVAL;
3777
3778         spin_lock(&kvm_lock);
3779         list_for_each_entry(kvm, &vm_list, vm_list) {
3780                 stat_tmp.kvm = kvm;
3781                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3782         }
3783         spin_unlock(&kvm_lock);
3784
3785         return 0;
3786 }
3787
3788 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3789
3790 static int vcpu_stat_get(void *_offset, u64 *val)
3791 {
3792         unsigned offset = (long)_offset;
3793         struct kvm *kvm;
3794         struct kvm_stat_data stat_tmp = {.offset = offset};
3795         u64 tmp_val;
3796
3797         *val = 0;
3798         spin_lock(&kvm_lock);
3799         list_for_each_entry(kvm, &vm_list, vm_list) {
3800                 stat_tmp.kvm = kvm;
3801                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3802                 *val += tmp_val;
3803         }
3804         spin_unlock(&kvm_lock);
3805         return 0;
3806 }
3807
3808 static int vcpu_stat_clear(void *_offset, u64 val)
3809 {
3810         unsigned offset = (long)_offset;
3811         struct kvm *kvm;
3812         struct kvm_stat_data stat_tmp = {.offset = offset};
3813
3814         if (val)
3815                 return -EINVAL;
3816
3817         spin_lock(&kvm_lock);
3818         list_for_each_entry(kvm, &vm_list, vm_list) {
3819                 stat_tmp.kvm = kvm;
3820                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3821         }
3822         spin_unlock(&kvm_lock);
3823
3824         return 0;
3825 }
3826
3827 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3828                         "%llu\n");
3829
3830 static const struct file_operations *stat_fops[] = {
3831         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3832         [KVM_STAT_VM]   = &vm_stat_fops,
3833 };
3834
3835 static int kvm_init_debug(void)
3836 {
3837         int r = -EEXIST;
3838         struct kvm_stats_debugfs_item *p;
3839
3840         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3841         if (kvm_debugfs_dir == NULL)
3842                 goto out;
3843
3844         kvm_debugfs_num_entries = 0;
3845         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3846                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3847                                          (void *)(long)p->offset,
3848                                          stat_fops[p->kind]))
3849                         goto out_dir;
3850         }
3851
3852         return 0;
3853
3854 out_dir:
3855         debugfs_remove_recursive(kvm_debugfs_dir);
3856 out:
3857         return r;
3858 }
3859
3860 static int kvm_suspend(void)
3861 {
3862         if (kvm_usage_count)
3863                 hardware_disable_nolock(NULL);
3864         return 0;
3865 }
3866
3867 static void kvm_resume(void)
3868 {
3869         if (kvm_usage_count) {
3870                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3871                 hardware_enable_nolock(NULL);
3872         }
3873 }
3874
3875 static struct syscore_ops kvm_syscore_ops = {
3876         .suspend = kvm_suspend,
3877         .resume = kvm_resume,
3878 };
3879
3880 static inline
3881 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3882 {
3883         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3884 }
3885
3886 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3887 {
3888         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3889
3890         if (vcpu->preempted)
3891                 vcpu->preempted = false;
3892
3893         kvm_arch_sched_in(vcpu, cpu);
3894
3895         kvm_arch_vcpu_load(vcpu, cpu);
3896 }
3897
3898 static void kvm_sched_out(struct preempt_notifier *pn,
3899                           struct task_struct *next)
3900 {
3901         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3902
3903         if (current->state == TASK_RUNNING)
3904                 vcpu->preempted = true;
3905         kvm_arch_vcpu_put(vcpu);
3906 }
3907
3908 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3909                   struct module *module)
3910 {
3911         int r;
3912         int cpu;
3913
3914         r = kvm_arch_init(opaque);
3915         if (r)
3916                 goto out_fail;
3917
3918         /*
3919          * kvm_arch_init makes sure there's at most one caller
3920          * for architectures that support multiple implementations,
3921          * like intel and amd on x86.
3922          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3923          * conflicts in case kvm is already setup for another implementation.
3924          */
3925         r = kvm_irqfd_init();
3926         if (r)
3927                 goto out_irqfd;
3928
3929         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3930                 r = -ENOMEM;
3931                 goto out_free_0;
3932         }
3933
3934         r = kvm_arch_hardware_setup();
3935         if (r < 0)
3936                 goto out_free_0a;
3937
3938         for_each_online_cpu(cpu) {
3939                 smp_call_function_single(cpu,
3940                                 kvm_arch_check_processor_compat,
3941                                 &r, 1);
3942                 if (r < 0)
3943                         goto out_free_1;
3944         }
3945
3946         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3947                                       kvm_starting_cpu, kvm_dying_cpu);
3948         if (r)
3949                 goto out_free_2;
3950         register_reboot_notifier(&kvm_reboot_notifier);
3951
3952         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3953         if (!vcpu_align)
3954                 vcpu_align = __alignof__(struct kvm_vcpu);
3955         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3956                                            0, NULL);
3957         if (!kvm_vcpu_cache) {
3958                 r = -ENOMEM;
3959                 goto out_free_3;
3960         }
3961
3962         r = kvm_async_pf_init();
3963         if (r)
3964                 goto out_free;
3965
3966         kvm_chardev_ops.owner = module;
3967         kvm_vm_fops.owner = module;
3968         kvm_vcpu_fops.owner = module;
3969
3970         r = misc_register(&kvm_dev);
3971         if (r) {
3972                 pr_err("kvm: misc device register failed\n");
3973                 goto out_unreg;
3974         }
3975
3976         register_syscore_ops(&kvm_syscore_ops);
3977
3978         kvm_preempt_ops.sched_in = kvm_sched_in;
3979         kvm_preempt_ops.sched_out = kvm_sched_out;
3980
3981         r = kvm_init_debug();
3982         if (r) {
3983                 pr_err("kvm: create debugfs files failed\n");
3984                 goto out_undebugfs;
3985         }
3986
3987         r = kvm_vfio_ops_init();
3988         WARN_ON(r);
3989
3990         return 0;
3991
3992 out_undebugfs:
3993         unregister_syscore_ops(&kvm_syscore_ops);
3994         misc_deregister(&kvm_dev);
3995 out_unreg:
3996         kvm_async_pf_deinit();
3997 out_free:
3998         kmem_cache_destroy(kvm_vcpu_cache);
3999 out_free_3:
4000         unregister_reboot_notifier(&kvm_reboot_notifier);
4001         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4002 out_free_2:
4003 out_free_1:
4004         kvm_arch_hardware_unsetup();
4005 out_free_0a:
4006         free_cpumask_var(cpus_hardware_enabled);
4007 out_free_0:
4008         kvm_irqfd_exit();
4009 out_irqfd:
4010         kvm_arch_exit();
4011 out_fail:
4012         return r;
4013 }
4014 EXPORT_SYMBOL_GPL(kvm_init);
4015
4016 void kvm_exit(void)
4017 {
4018         debugfs_remove_recursive(kvm_debugfs_dir);
4019         misc_deregister(&kvm_dev);
4020         kmem_cache_destroy(kvm_vcpu_cache);
4021         kvm_async_pf_deinit();
4022         unregister_syscore_ops(&kvm_syscore_ops);
4023         unregister_reboot_notifier(&kvm_reboot_notifier);
4024         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4025         on_each_cpu(hardware_disable_nolock, NULL, 1);
4026         kvm_arch_hardware_unsetup();
4027         kvm_arch_exit();
4028         kvm_irqfd_exit();
4029         free_cpumask_var(cpus_hardware_enabled);
4030         kvm_vfio_ops_exit();
4031 }
4032 EXPORT_SYMBOL_GPL(kvm_exit);