]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/time.c
f81c81b92f0e9706f24151bc8cecc71ff2e21418
[karo-tx-linux.git] / arch / powerpc / kernel / time.c
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  * 
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34
35 #include <linux/errno.h>
36 #include <linux/export.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <asm/trace.h>
58
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
77
78 /* powerpc clocksource/clockevent code */
79
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
82
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85         .name         = "rtc",
86         .rating       = 400,
87         .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
88         .mask         = CLOCKSOURCE_MASK(64),
89         .read         = rtc_read,
90 };
91
92 static cycle_t timebase_read(struct clocksource *);
93 static struct clocksource clocksource_timebase = {
94         .name         = "timebase",
95         .rating       = 400,
96         .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
97         .mask         = CLOCKSOURCE_MASK(64),
98         .read         = timebase_read,
99 };
100
101 #define DECREMENTER_MAX 0x7fffffff
102
103 static int decrementer_set_next_event(unsigned long evt,
104                                       struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106                                  struct clock_event_device *dev);
107
108 static struct clock_event_device decrementer_clockevent = {
109         .name           = "decrementer",
110         .rating         = 200,
111         .irq            = 0,
112         .set_next_event = decrementer_set_next_event,
113         .set_mode       = decrementer_set_mode,
114         .features       = CLOCK_EVT_FEAT_ONESHOT,
115 };
116
117 DEFINE_PER_CPU(u64, decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
119
120 #ifdef CONFIG_PPC_ISERIES
121 static unsigned long __initdata iSeries_recal_titan;
122 static signed long __initdata iSeries_recal_tb;
123
124 /* Forward declaration is only needed for iSereis compiles */
125 static void __init clocksource_init(void);
126 #endif
127
128 #define XSEC_PER_SEC (1024*1024)
129
130 #ifdef CONFIG_PPC64
131 #define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
132 #else
133 /* compute ((xsec << 12) * max) >> 32 */
134 #define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
135 #endif
136
137 unsigned long tb_ticks_per_jiffy;
138 unsigned long tb_ticks_per_usec = 100; /* sane default */
139 EXPORT_SYMBOL(tb_ticks_per_usec);
140 unsigned long tb_ticks_per_sec;
141 EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
142
143 DEFINE_SPINLOCK(rtc_lock);
144 EXPORT_SYMBOL_GPL(rtc_lock);
145
146 static u64 tb_to_ns_scale __read_mostly;
147 static unsigned tb_to_ns_shift __read_mostly;
148 static u64 boot_tb __read_mostly;
149
150 extern struct timezone sys_tz;
151 static long timezone_offset;
152
153 unsigned long ppc_proc_freq;
154 EXPORT_SYMBOL_GPL(ppc_proc_freq);
155 unsigned long ppc_tb_freq;
156 EXPORT_SYMBOL_GPL(ppc_tb_freq);
157
158 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
159 /*
160  * Factors for converting from cputime_t (timebase ticks) to
161  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
162  * These are all stored as 0.64 fixed-point binary fractions.
163  */
164 u64 __cputime_jiffies_factor;
165 EXPORT_SYMBOL(__cputime_jiffies_factor);
166 u64 __cputime_usec_factor;
167 EXPORT_SYMBOL(__cputime_usec_factor);
168 u64 __cputime_sec_factor;
169 EXPORT_SYMBOL(__cputime_sec_factor);
170 u64 __cputime_clockt_factor;
171 EXPORT_SYMBOL(__cputime_clockt_factor);
172 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
173 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
174
175 cputime_t cputime_one_jiffy;
176
177 void (*dtl_consumer)(struct dtl_entry *, u64);
178
179 static void calc_cputime_factors(void)
180 {
181         struct div_result res;
182
183         div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
184         __cputime_jiffies_factor = res.result_low;
185         div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
186         __cputime_usec_factor = res.result_low;
187         div128_by_32(1, 0, tb_ticks_per_sec, &res);
188         __cputime_sec_factor = res.result_low;
189         div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
190         __cputime_clockt_factor = res.result_low;
191 }
192
193 /*
194  * Read the SPURR on systems that have it, otherwise the PURR,
195  * or if that doesn't exist return the timebase value passed in.
196  */
197 static u64 read_spurr(u64 tb)
198 {
199         if (cpu_has_feature(CPU_FTR_SPURR))
200                 return mfspr(SPRN_SPURR);
201         if (cpu_has_feature(CPU_FTR_PURR))
202                 return mfspr(SPRN_PURR);
203         return tb;
204 }
205
206 #ifdef CONFIG_PPC_SPLPAR
207
208 /*
209  * Scan the dispatch trace log and count up the stolen time.
210  * Should be called with interrupts disabled.
211  */
212 static u64 scan_dispatch_log(u64 stop_tb)
213 {
214         u64 i = local_paca->dtl_ridx;
215         struct dtl_entry *dtl = local_paca->dtl_curr;
216         struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
217         struct lppaca *vpa = local_paca->lppaca_ptr;
218         u64 tb_delta;
219         u64 stolen = 0;
220         u64 dtb;
221
222         if (!dtl)
223                 return 0;
224
225         if (i == vpa->dtl_idx)
226                 return 0;
227         while (i < vpa->dtl_idx) {
228                 if (dtl_consumer)
229                         dtl_consumer(dtl, i);
230                 dtb = dtl->timebase;
231                 tb_delta = dtl->enqueue_to_dispatch_time +
232                         dtl->ready_to_enqueue_time;
233                 barrier();
234                 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
235                         /* buffer has overflowed */
236                         i = vpa->dtl_idx - N_DISPATCH_LOG;
237                         dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
238                         continue;
239                 }
240                 if (dtb > stop_tb)
241                         break;
242                 stolen += tb_delta;
243                 ++i;
244                 ++dtl;
245                 if (dtl == dtl_end)
246                         dtl = local_paca->dispatch_log;
247         }
248         local_paca->dtl_ridx = i;
249         local_paca->dtl_curr = dtl;
250         return stolen;
251 }
252
253 /*
254  * Accumulate stolen time by scanning the dispatch trace log.
255  * Called on entry from user mode.
256  */
257 void accumulate_stolen_time(void)
258 {
259         u64 sst, ust;
260
261         u8 save_soft_enabled = local_paca->soft_enabled;
262
263         /* We are called early in the exception entry, before
264          * soft/hard_enabled are sync'ed to the expected state
265          * for the exception. We are hard disabled but the PACA
266          * needs to reflect that so various debug stuff doesn't
267          * complain
268          */
269         local_paca->soft_enabled = 0;
270
271         sst = scan_dispatch_log(local_paca->starttime_user);
272         ust = scan_dispatch_log(local_paca->starttime);
273         local_paca->system_time -= sst;
274         local_paca->user_time -= ust;
275         local_paca->stolen_time += ust + sst;
276
277         local_paca->soft_enabled = save_soft_enabled;
278 }
279
280 static inline u64 calculate_stolen_time(u64 stop_tb)
281 {
282         u64 stolen = 0;
283
284         if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
285                 stolen = scan_dispatch_log(stop_tb);
286                 get_paca()->system_time -= stolen;
287         }
288
289         stolen += get_paca()->stolen_time;
290         get_paca()->stolen_time = 0;
291         return stolen;
292 }
293
294 #else /* CONFIG_PPC_SPLPAR */
295 static inline u64 calculate_stolen_time(u64 stop_tb)
296 {
297         return 0;
298 }
299
300 #endif /* CONFIG_PPC_SPLPAR */
301
302 /*
303  * Account time for a transition between system, hard irq
304  * or soft irq state.
305  */
306 void account_system_vtime(struct task_struct *tsk)
307 {
308         u64 now, nowscaled, delta, deltascaled;
309         unsigned long flags;
310         u64 stolen, udelta, sys_scaled, user_scaled;
311
312         local_irq_save(flags);
313         now = mftb();
314         nowscaled = read_spurr(now);
315         get_paca()->system_time += now - get_paca()->starttime;
316         get_paca()->starttime = now;
317         deltascaled = nowscaled - get_paca()->startspurr;
318         get_paca()->startspurr = nowscaled;
319
320         stolen = calculate_stolen_time(now);
321
322         delta = get_paca()->system_time;
323         get_paca()->system_time = 0;
324         udelta = get_paca()->user_time - get_paca()->utime_sspurr;
325         get_paca()->utime_sspurr = get_paca()->user_time;
326
327         /*
328          * Because we don't read the SPURR on every kernel entry/exit,
329          * deltascaled includes both user and system SPURR ticks.
330          * Apportion these ticks to system SPURR ticks and user
331          * SPURR ticks in the same ratio as the system time (delta)
332          * and user time (udelta) values obtained from the timebase
333          * over the same interval.  The system ticks get accounted here;
334          * the user ticks get saved up in paca->user_time_scaled to be
335          * used by account_process_tick.
336          */
337         sys_scaled = delta;
338         user_scaled = udelta;
339         if (deltascaled != delta + udelta) {
340                 if (udelta) {
341                         sys_scaled = deltascaled * delta / (delta + udelta);
342                         user_scaled = deltascaled - sys_scaled;
343                 } else {
344                         sys_scaled = deltascaled;
345                 }
346         }
347         get_paca()->user_time_scaled += user_scaled;
348
349         if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
350                 account_system_time(tsk, 0, delta, sys_scaled);
351                 if (stolen)
352                         account_steal_time(stolen);
353         } else {
354                 account_idle_time(delta + stolen);
355         }
356         local_irq_restore(flags);
357 }
358 EXPORT_SYMBOL_GPL(account_system_vtime);
359
360 /*
361  * Transfer the user and system times accumulated in the paca
362  * by the exception entry and exit code to the generic process
363  * user and system time records.
364  * Must be called with interrupts disabled.
365  * Assumes that account_system_vtime() has been called recently
366  * (i.e. since the last entry from usermode) so that
367  * get_paca()->user_time_scaled is up to date.
368  */
369 void account_process_tick(struct task_struct *tsk, int user_tick)
370 {
371         cputime_t utime, utimescaled;
372
373         utime = get_paca()->user_time;
374         utimescaled = get_paca()->user_time_scaled;
375         get_paca()->user_time = 0;
376         get_paca()->user_time_scaled = 0;
377         get_paca()->utime_sspurr = 0;
378         account_user_time(tsk, utime, utimescaled);
379 }
380
381 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
382 #define calc_cputime_factors()
383 #endif
384
385 void __delay(unsigned long loops)
386 {
387         unsigned long start;
388         int diff;
389
390         if (__USE_RTC()) {
391                 start = get_rtcl();
392                 do {
393                         /* the RTCL register wraps at 1000000000 */
394                         diff = get_rtcl() - start;
395                         if (diff < 0)
396                                 diff += 1000000000;
397                 } while (diff < loops);
398         } else {
399                 start = get_tbl();
400                 while (get_tbl() - start < loops)
401                         HMT_low();
402                 HMT_medium();
403         }
404 }
405 EXPORT_SYMBOL(__delay);
406
407 void udelay(unsigned long usecs)
408 {
409         __delay(tb_ticks_per_usec * usecs);
410 }
411 EXPORT_SYMBOL(udelay);
412
413 #ifdef CONFIG_SMP
414 unsigned long profile_pc(struct pt_regs *regs)
415 {
416         unsigned long pc = instruction_pointer(regs);
417
418         if (in_lock_functions(pc))
419                 return regs->link;
420
421         return pc;
422 }
423 EXPORT_SYMBOL(profile_pc);
424 #endif
425
426 #ifdef CONFIG_PPC_ISERIES
427
428 /* 
429  * This function recalibrates the timebase based on the 49-bit time-of-day
430  * value in the Titan chip.  The Titan is much more accurate than the value
431  * returned by the service processor for the timebase frequency.
432  */
433
434 static int __init iSeries_tb_recal(void)
435 {
436         unsigned long titan, tb;
437
438         /* Make sure we only run on iSeries */
439         if (!firmware_has_feature(FW_FEATURE_ISERIES))
440                 return -ENODEV;
441
442         tb = get_tb();
443         titan = HvCallXm_loadTod();
444         if ( iSeries_recal_titan ) {
445                 unsigned long tb_ticks = tb - iSeries_recal_tb;
446                 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
447                 unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
448                 unsigned long new_tb_ticks_per_jiffy =
449                         DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
450                 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
451                 char sign = '+';                
452                 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
453                 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
454
455                 if ( tick_diff < 0 ) {
456                         tick_diff = -tick_diff;
457                         sign = '-';
458                 }
459                 if ( tick_diff ) {
460                         if ( tick_diff < tb_ticks_per_jiffy/25 ) {
461                                 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
462                                                 new_tb_ticks_per_jiffy, sign, tick_diff );
463                                 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
464                                 tb_ticks_per_sec   = new_tb_ticks_per_sec;
465                                 calc_cputime_factors();
466                                 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
467                                 setup_cputime_one_jiffy();
468                         }
469                         else {
470                                 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
471                                         "                   new tb_ticks_per_jiffy = %lu\n"
472                                         "                   old tb_ticks_per_jiffy = %lu\n",
473                                         new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
474                         }
475                 }
476         }
477         iSeries_recal_titan = titan;
478         iSeries_recal_tb = tb;
479
480         /* Called here as now we know accurate values for the timebase */
481         clocksource_init();
482         return 0;
483 }
484 late_initcall(iSeries_tb_recal);
485
486 /* Called from platform early init */
487 void __init iSeries_time_init_early(void)
488 {
489         iSeries_recal_tb = get_tb();
490         iSeries_recal_titan = HvCallXm_loadTod();
491 }
492 #endif /* CONFIG_PPC_ISERIES */
493
494 #ifdef CONFIG_IRQ_WORK
495
496 /*
497  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
498  */
499 #ifdef CONFIG_PPC64
500 static inline unsigned long test_irq_work_pending(void)
501 {
502         unsigned long x;
503
504         asm volatile("lbz %0,%1(13)"
505                 : "=r" (x)
506                 : "i" (offsetof(struct paca_struct, irq_work_pending)));
507         return x;
508 }
509
510 static inline void set_irq_work_pending_flag(void)
511 {
512         asm volatile("stb %0,%1(13)" : :
513                 "r" (1),
514                 "i" (offsetof(struct paca_struct, irq_work_pending)));
515 }
516
517 static inline void clear_irq_work_pending(void)
518 {
519         asm volatile("stb %0,%1(13)" : :
520                 "r" (0),
521                 "i" (offsetof(struct paca_struct, irq_work_pending)));
522 }
523
524 #else /* 32-bit */
525
526 DEFINE_PER_CPU(u8, irq_work_pending);
527
528 #define set_irq_work_pending_flag()     __get_cpu_var(irq_work_pending) = 1
529 #define test_irq_work_pending()         __get_cpu_var(irq_work_pending)
530 #define clear_irq_work_pending()        __get_cpu_var(irq_work_pending) = 0
531
532 #endif /* 32 vs 64 bit */
533
534 void arch_irq_work_raise(void)
535 {
536         preempt_disable();
537         set_irq_work_pending_flag();
538         set_dec(1);
539         preempt_enable();
540 }
541
542 #else  /* CONFIG_IRQ_WORK */
543
544 #define test_irq_work_pending() 0
545 #define clear_irq_work_pending()
546
547 #endif /* CONFIG_IRQ_WORK */
548
549 /*
550  * For iSeries shared processors, we have to let the hypervisor
551  * set the hardware decrementer.  We set a virtual decrementer
552  * in the lppaca and call the hypervisor if the virtual
553  * decrementer is less than the current value in the hardware
554  * decrementer. (almost always the new decrementer value will
555  * be greater than the current hardware decementer so the hypervisor
556  * call will not be needed)
557  */
558
559 /*
560  * timer_interrupt - gets called when the decrementer overflows,
561  * with interrupts disabled.
562  */
563 void timer_interrupt(struct pt_regs * regs)
564 {
565         struct pt_regs *old_regs;
566         u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
567         struct clock_event_device *evt = &__get_cpu_var(decrementers);
568
569         /* Ensure a positive value is written to the decrementer, or else
570          * some CPUs will continue to take decrementer exceptions.
571          */
572         set_dec(DECREMENTER_MAX);
573
574         /* Some implementations of hotplug will get timer interrupts while
575          * offline, just ignore these
576          */
577         if (!cpu_online(smp_processor_id()))
578                 return;
579
580         /* Conditionally hard-enable interrupts now that the DEC has been
581          * bumped to its maximum value
582          */
583         may_hard_irq_enable();
584
585         trace_timer_interrupt_entry(regs);
586
587         __get_cpu_var(irq_stat).timer_irqs++;
588
589 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
590         if (atomic_read(&ppc_n_lost_interrupts) != 0)
591                 do_IRQ(regs);
592 #endif
593
594         old_regs = set_irq_regs(regs);
595         irq_enter();
596
597         if (test_irq_work_pending()) {
598                 clear_irq_work_pending();
599                 irq_work_run();
600         }
601
602 #ifdef CONFIG_PPC_ISERIES
603         if (firmware_has_feature(FW_FEATURE_ISERIES))
604                 get_lppaca()->int_dword.fields.decr_int = 0;
605 #endif
606
607         *next_tb = ~(u64)0;
608         if (evt->event_handler)
609                 evt->event_handler(evt);
610
611 #ifdef CONFIG_PPC_ISERIES
612         if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
613                 process_hvlpevents();
614 #endif
615
616 #ifdef CONFIG_PPC64
617         /* collect purr register values often, for accurate calculations */
618         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
619                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
620                 cu->current_tb = mfspr(SPRN_PURR);
621         }
622 #endif
623
624         irq_exit();
625         set_irq_regs(old_regs);
626
627         trace_timer_interrupt_exit(regs);
628 }
629
630 #ifdef CONFIG_SUSPEND
631 static void generic_suspend_disable_irqs(void)
632 {
633         /* Disable the decrementer, so that it doesn't interfere
634          * with suspending.
635          */
636
637         set_dec(DECREMENTER_MAX);
638         local_irq_disable();
639         set_dec(DECREMENTER_MAX);
640 }
641
642 static void generic_suspend_enable_irqs(void)
643 {
644         local_irq_enable();
645 }
646
647 /* Overrides the weak version in kernel/power/main.c */
648 void arch_suspend_disable_irqs(void)
649 {
650         if (ppc_md.suspend_disable_irqs)
651                 ppc_md.suspend_disable_irqs();
652         generic_suspend_disable_irqs();
653 }
654
655 /* Overrides the weak version in kernel/power/main.c */
656 void arch_suspend_enable_irqs(void)
657 {
658         generic_suspend_enable_irqs();
659         if (ppc_md.suspend_enable_irqs)
660                 ppc_md.suspend_enable_irqs();
661 }
662 #endif
663
664 /*
665  * Scheduler clock - returns current time in nanosec units.
666  *
667  * Note: mulhdu(a, b) (multiply high double unsigned) returns
668  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
669  * are 64-bit unsigned numbers.
670  */
671 unsigned long long sched_clock(void)
672 {
673         if (__USE_RTC())
674                 return get_rtc();
675         return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
676 }
677
678 static int __init get_freq(char *name, int cells, unsigned long *val)
679 {
680         struct device_node *cpu;
681         const unsigned int *fp;
682         int found = 0;
683
684         /* The cpu node should have timebase and clock frequency properties */
685         cpu = of_find_node_by_type(NULL, "cpu");
686
687         if (cpu) {
688                 fp = of_get_property(cpu, name, NULL);
689                 if (fp) {
690                         found = 1;
691                         *val = of_read_ulong(fp, cells);
692                 }
693
694                 of_node_put(cpu);
695         }
696
697         return found;
698 }
699
700 /* should become __cpuinit when secondary_cpu_time_init also is */
701 void start_cpu_decrementer(void)
702 {
703 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
704         /* Clear any pending timer interrupts */
705         mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
706
707         /* Enable decrementer interrupt */
708         mtspr(SPRN_TCR, TCR_DIE);
709 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
710 }
711
712 void __init generic_calibrate_decr(void)
713 {
714         ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
715
716         if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
717             !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
718
719                 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
720                                 "(not found)\n");
721         }
722
723         ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
724
725         if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
726             !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
727
728                 printk(KERN_ERR "WARNING: Estimating processor frequency "
729                                 "(not found)\n");
730         }
731 }
732
733 int update_persistent_clock(struct timespec now)
734 {
735         struct rtc_time tm;
736
737         if (!ppc_md.set_rtc_time)
738                 return 0;
739
740         to_tm(now.tv_sec + 1 + timezone_offset, &tm);
741         tm.tm_year -= 1900;
742         tm.tm_mon -= 1;
743
744         return ppc_md.set_rtc_time(&tm);
745 }
746
747 static void __read_persistent_clock(struct timespec *ts)
748 {
749         struct rtc_time tm;
750         static int first = 1;
751
752         ts->tv_nsec = 0;
753         /* XXX this is a litle fragile but will work okay in the short term */
754         if (first) {
755                 first = 0;
756                 if (ppc_md.time_init)
757                         timezone_offset = ppc_md.time_init();
758
759                 /* get_boot_time() isn't guaranteed to be safe to call late */
760                 if (ppc_md.get_boot_time) {
761                         ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
762                         return;
763                 }
764         }
765         if (!ppc_md.get_rtc_time) {
766                 ts->tv_sec = 0;
767                 return;
768         }
769         ppc_md.get_rtc_time(&tm);
770
771         ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
772                             tm.tm_hour, tm.tm_min, tm.tm_sec);
773 }
774
775 void read_persistent_clock(struct timespec *ts)
776 {
777         __read_persistent_clock(ts);
778
779         /* Sanitize it in case real time clock is set below EPOCH */
780         if (ts->tv_sec < 0) {
781                 ts->tv_sec = 0;
782                 ts->tv_nsec = 0;
783         }
784                 
785 }
786
787 /* clocksource code */
788 static cycle_t rtc_read(struct clocksource *cs)
789 {
790         return (cycle_t)get_rtc();
791 }
792
793 static cycle_t timebase_read(struct clocksource *cs)
794 {
795         return (cycle_t)get_tb();
796 }
797
798 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
799                         struct clocksource *clock, u32 mult)
800 {
801         u64 new_tb_to_xs, new_stamp_xsec;
802         u32 frac_sec;
803
804         if (clock != &clocksource_timebase)
805                 return;
806
807         /* Make userspace gettimeofday spin until we're done. */
808         ++vdso_data->tb_update_count;
809         smp_mb();
810
811         /* 19342813113834067 ~= 2^(20+64) / 1e9 */
812         new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
813         new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
814         do_div(new_stamp_xsec, 1000000000);
815         new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
816
817         BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
818         /* this is tv_nsec / 1e9 as a 0.32 fraction */
819         frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
820
821         /*
822          * tb_update_count is used to allow the userspace gettimeofday code
823          * to assure itself that it sees a consistent view of the tb_to_xs and
824          * stamp_xsec variables.  It reads the tb_update_count, then reads
825          * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
826          * the two values of tb_update_count match and are even then the
827          * tb_to_xs and stamp_xsec values are consistent.  If not, then it
828          * loops back and reads them again until this criteria is met.
829          * We expect the caller to have done the first increment of
830          * vdso_data->tb_update_count already.
831          */
832         vdso_data->tb_orig_stamp = clock->cycle_last;
833         vdso_data->stamp_xsec = new_stamp_xsec;
834         vdso_data->tb_to_xs = new_tb_to_xs;
835         vdso_data->wtom_clock_sec = wtm->tv_sec;
836         vdso_data->wtom_clock_nsec = wtm->tv_nsec;
837         vdso_data->stamp_xtime = *wall_time;
838         vdso_data->stamp_sec_fraction = frac_sec;
839         smp_wmb();
840         ++(vdso_data->tb_update_count);
841 }
842
843 void update_vsyscall_tz(void)
844 {
845         /* Make userspace gettimeofday spin until we're done. */
846         ++vdso_data->tb_update_count;
847         smp_mb();
848         vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
849         vdso_data->tz_dsttime = sys_tz.tz_dsttime;
850         smp_mb();
851         ++vdso_data->tb_update_count;
852 }
853
854 static void __init clocksource_init(void)
855 {
856         struct clocksource *clock;
857
858         if (__USE_RTC())
859                 clock = &clocksource_rtc;
860         else
861                 clock = &clocksource_timebase;
862
863         if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
864                 printk(KERN_ERR "clocksource: %s is already registered\n",
865                        clock->name);
866                 return;
867         }
868
869         printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
870                clock->name, clock->mult, clock->shift);
871 }
872
873 static int decrementer_set_next_event(unsigned long evt,
874                                       struct clock_event_device *dev)
875 {
876         __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
877         set_dec(evt);
878         return 0;
879 }
880
881 static void decrementer_set_mode(enum clock_event_mode mode,
882                                  struct clock_event_device *dev)
883 {
884         if (mode != CLOCK_EVT_MODE_ONESHOT)
885                 decrementer_set_next_event(DECREMENTER_MAX, dev);
886 }
887
888 static void register_decrementer_clockevent(int cpu)
889 {
890         struct clock_event_device *dec = &per_cpu(decrementers, cpu);
891
892         *dec = decrementer_clockevent;
893         dec->cpumask = cpumask_of(cpu);
894
895         printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
896                     dec->name, dec->mult, dec->shift, cpu);
897
898         clockevents_register_device(dec);
899 }
900
901 static void __init init_decrementer_clockevent(void)
902 {
903         int cpu = smp_processor_id();
904
905         clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
906
907         decrementer_clockevent.max_delta_ns =
908                 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
909         decrementer_clockevent.min_delta_ns =
910                 clockevent_delta2ns(2, &decrementer_clockevent);
911
912         register_decrementer_clockevent(cpu);
913 }
914
915 void secondary_cpu_time_init(void)
916 {
917         /* Start the decrementer on CPUs that have manual control
918          * such as BookE
919          */
920         start_cpu_decrementer();
921
922         /* FIME: Should make unrelatred change to move snapshot_timebase
923          * call here ! */
924         register_decrementer_clockevent(smp_processor_id());
925 }
926
927 /* This function is only called on the boot processor */
928 void __init time_init(void)
929 {
930         struct div_result res;
931         u64 scale;
932         unsigned shift;
933
934         if (__USE_RTC()) {
935                 /* 601 processor: dec counts down by 128 every 128ns */
936                 ppc_tb_freq = 1000000000;
937         } else {
938                 /* Normal PowerPC with timebase register */
939                 ppc_md.calibrate_decr();
940                 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
941                        ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
942                 printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
943                        ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
944         }
945
946         tb_ticks_per_jiffy = ppc_tb_freq / HZ;
947         tb_ticks_per_sec = ppc_tb_freq;
948         tb_ticks_per_usec = ppc_tb_freq / 1000000;
949         calc_cputime_factors();
950         setup_cputime_one_jiffy();
951
952         /*
953          * Compute scale factor for sched_clock.
954          * The calibrate_decr() function has set tb_ticks_per_sec,
955          * which is the timebase frequency.
956          * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
957          * the 128-bit result as a 64.64 fixed-point number.
958          * We then shift that number right until it is less than 1.0,
959          * giving us the scale factor and shift count to use in
960          * sched_clock().
961          */
962         div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
963         scale = res.result_low;
964         for (shift = 0; res.result_high != 0; ++shift) {
965                 scale = (scale >> 1) | (res.result_high << 63);
966                 res.result_high >>= 1;
967         }
968         tb_to_ns_scale = scale;
969         tb_to_ns_shift = shift;
970         /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
971         boot_tb = get_tb_or_rtc();
972
973         /* If platform provided a timezone (pmac), we correct the time */
974         if (timezone_offset) {
975                 sys_tz.tz_minuteswest = -timezone_offset / 60;
976                 sys_tz.tz_dsttime = 0;
977         }
978
979         vdso_data->tb_update_count = 0;
980         vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
981
982         /* Start the decrementer on CPUs that have manual control
983          * such as BookE
984          */
985         start_cpu_decrementer();
986
987         /* Register the clocksource, if we're not running on iSeries */
988         if (!firmware_has_feature(FW_FEATURE_ISERIES))
989                 clocksource_init();
990
991         init_decrementer_clockevent();
992 }
993
994
995 #define FEBRUARY        2
996 #define STARTOFTIME     1970
997 #define SECDAY          86400L
998 #define SECYR           (SECDAY * 365)
999 #define leapyear(year)          ((year) % 4 == 0 && \
1000                                  ((year) % 100 != 0 || (year) % 400 == 0))
1001 #define days_in_year(a)         (leapyear(a) ? 366 : 365)
1002 #define days_in_month(a)        (month_days[(a) - 1])
1003
1004 static int month_days[12] = {
1005         31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1006 };
1007
1008 /*
1009  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1010  */
1011 void GregorianDay(struct rtc_time * tm)
1012 {
1013         int leapsToDate;
1014         int lastYear;
1015         int day;
1016         int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1017
1018         lastYear = tm->tm_year - 1;
1019
1020         /*
1021          * Number of leap corrections to apply up to end of last year
1022          */
1023         leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1024
1025         /*
1026          * This year is a leap year if it is divisible by 4 except when it is
1027          * divisible by 100 unless it is divisible by 400
1028          *
1029          * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1030          */
1031         day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1032
1033         day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1034                    tm->tm_mday;
1035
1036         tm->tm_wday = day % 7;
1037 }
1038
1039 void to_tm(int tim, struct rtc_time * tm)
1040 {
1041         register int    i;
1042         register long   hms, day;
1043
1044         day = tim / SECDAY;
1045         hms = tim % SECDAY;
1046
1047         /* Hours, minutes, seconds are easy */
1048         tm->tm_hour = hms / 3600;
1049         tm->tm_min = (hms % 3600) / 60;
1050         tm->tm_sec = (hms % 3600) % 60;
1051
1052         /* Number of years in days */
1053         for (i = STARTOFTIME; day >= days_in_year(i); i++)
1054                 day -= days_in_year(i);
1055         tm->tm_year = i;
1056
1057         /* Number of months in days left */
1058         if (leapyear(tm->tm_year))
1059                 days_in_month(FEBRUARY) = 29;
1060         for (i = 1; day >= days_in_month(i); i++)
1061                 day -= days_in_month(i);
1062         days_in_month(FEBRUARY) = 28;
1063         tm->tm_mon = i;
1064
1065         /* Days are what is left over (+1) from all that. */
1066         tm->tm_mday = day + 1;
1067
1068         /*
1069          * Determine the day of week
1070          */
1071         GregorianDay(tm);
1072 }
1073
1074 /*
1075  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1076  * result.
1077  */
1078 void div128_by_32(u64 dividend_high, u64 dividend_low,
1079                   unsigned divisor, struct div_result *dr)
1080 {
1081         unsigned long a, b, c, d;
1082         unsigned long w, x, y, z;
1083         u64 ra, rb, rc;
1084
1085         a = dividend_high >> 32;
1086         b = dividend_high & 0xffffffff;
1087         c = dividend_low >> 32;
1088         d = dividend_low & 0xffffffff;
1089
1090         w = a / divisor;
1091         ra = ((u64)(a - (w * divisor)) << 32) + b;
1092
1093         rb = ((u64) do_div(ra, divisor) << 32) + c;
1094         x = ra;
1095
1096         rc = ((u64) do_div(rb, divisor) << 32) + d;
1097         y = rb;
1098
1099         do_div(rc, divisor);
1100         z = rc;
1101
1102         dr->result_high = ((u64)w << 32) + x;
1103         dr->result_low  = ((u64)y << 32) + z;
1104
1105 }
1106
1107 /* We don't need to calibrate delay, we use the CPU timebase for that */
1108 void calibrate_delay(void)
1109 {
1110         /* Some generic code (such as spinlock debug) use loops_per_jiffy
1111          * as the number of __delay(1) in a jiffy, so make it so
1112          */
1113         loops_per_jiffy = tb_ticks_per_jiffy;
1114 }
1115
1116 static int __init rtc_init(void)
1117 {
1118         struct platform_device *pdev;
1119
1120         if (!ppc_md.get_rtc_time)
1121                 return -ENODEV;
1122
1123         pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1124         if (IS_ERR(pdev))
1125                 return PTR_ERR(pdev);
1126
1127         return 0;
1128 }
1129
1130 module_init(rtc_init);