]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/iseries/setup.c
[PATCH] powerpc: merge code values for identifying platforms
[karo-tx-linux.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/systemcfg.h>
43
44 #include <asm/time.h>
45 #include <asm/paca.h>
46 #include <asm/cache.h>
47 #include <asm/sections.h>
48 #include <asm/abs_addr.h>
49 #include <asm/iseries/hv_lp_config.h>
50 #include <asm/iseries/hv_call_event.h>
51 #include <asm/iseries/hv_call_xm.h>
52 #include <asm/iseries/it_lp_queue.h>
53 #include <asm/iseries/mf.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
56
57 #include "naca.h"
58 #include "setup.h"
59 #include "irq.h"
60 #include "vpd_areas.h"
61 #include "processor_vpd.h"
62 #include "main_store.h"
63 #include "call_sm.h"
64 #include "call_hpt.h"
65
66 extern void hvlog(char *fmt, ...);
67
68 #ifdef DEBUG
69 #define DBG(fmt...) hvlog(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73
74 /* Function Prototypes */
75 static unsigned long build_iSeries_Memory_Map(void);
76 static void iseries_shared_idle(void);
77 static void iseries_dedicated_idle(void);
78 #ifdef CONFIG_PCI
79 extern void iSeries_pci_final_fixup(void);
80 #else
81 static void iSeries_pci_final_fixup(void) { }
82 #endif
83
84 /* Global Variables */
85 int piranha_simulator;
86
87 extern int rd_size;             /* Defined in drivers/block/rd.c */
88 extern unsigned long klimit;
89 extern unsigned long embedded_sysmap_start;
90 extern unsigned long embedded_sysmap_end;
91
92 extern unsigned long iSeries_recal_tb;
93 extern unsigned long iSeries_recal_titan;
94
95 static int mf_initialized;
96
97 static unsigned long cmd_mem_limit;
98
99 struct MemoryBlock {
100         unsigned long absStart;
101         unsigned long absEnd;
102         unsigned long logicalStart;
103         unsigned long logicalEnd;
104 };
105
106 /*
107  * Process the main store vpd to determine where the holes in memory are
108  * and return the number of physical blocks and fill in the array of
109  * block data.
110  */
111 static unsigned long iSeries_process_Condor_mainstore_vpd(
112                 struct MemoryBlock *mb_array, unsigned long max_entries)
113 {
114         unsigned long holeFirstChunk, holeSizeChunks;
115         unsigned long numMemoryBlocks = 1;
116         struct IoHriMainStoreSegment4 *msVpd =
117                 (struct IoHriMainStoreSegment4 *)xMsVpd;
118         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
119         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
120         unsigned long holeSize = holeEnd - holeStart;
121
122         printk("Mainstore_VPD: Condor\n");
123         /*
124          * Determine if absolute memory has any
125          * holes so that we can interpret the
126          * access map we get back from the hypervisor
127          * correctly.
128          */
129         mb_array[0].logicalStart = 0;
130         mb_array[0].logicalEnd = 0x100000000;
131         mb_array[0].absStart = 0;
132         mb_array[0].absEnd = 0x100000000;
133
134         if (holeSize) {
135                 numMemoryBlocks = 2;
136                 holeStart = holeStart & 0x000fffffffffffff;
137                 holeStart = addr_to_chunk(holeStart);
138                 holeFirstChunk = holeStart;
139                 holeSize = addr_to_chunk(holeSize);
140                 holeSizeChunks = holeSize;
141                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
142                                 holeFirstChunk, holeSizeChunks );
143                 mb_array[0].logicalEnd = holeFirstChunk;
144                 mb_array[0].absEnd = holeFirstChunk;
145                 mb_array[1].logicalStart = holeFirstChunk;
146                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
147                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
148                 mb_array[1].absEnd = 0x100000000;
149         }
150         return numMemoryBlocks;
151 }
152
153 #define MaxSegmentAreas                 32
154 #define MaxSegmentAdrRangeBlocks        128
155 #define MaxAreaRangeBlocks              4
156
157 static unsigned long iSeries_process_Regatta_mainstore_vpd(
158                 struct MemoryBlock *mb_array, unsigned long max_entries)
159 {
160         struct IoHriMainStoreSegment5 *msVpdP =
161                 (struct IoHriMainStoreSegment5 *)xMsVpd;
162         unsigned long numSegmentBlocks = 0;
163         u32 existsBits = msVpdP->msAreaExists;
164         unsigned long area_num;
165
166         printk("Mainstore_VPD: Regatta\n");
167
168         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
169                 unsigned long numAreaBlocks;
170                 struct IoHriMainStoreArea4 *currentArea;
171
172                 if (existsBits & 0x80000000) {
173                         unsigned long block_num;
174
175                         currentArea = &msVpdP->msAreaArray[area_num];
176                         numAreaBlocks = currentArea->numAdrRangeBlocks;
177                         printk("ms_vpd: processing area %2ld  blocks=%ld",
178                                         area_num, numAreaBlocks);
179                         for (block_num = 0; block_num < numAreaBlocks;
180                                         ++block_num ) {
181                                 /* Process an address range block */
182                                 struct MemoryBlock tempBlock;
183                                 unsigned long i;
184
185                                 tempBlock.absStart =
186                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
187                                 tempBlock.absEnd =
188                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
189                                 tempBlock.logicalStart = 0;
190                                 tempBlock.logicalEnd   = 0;
191                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
192                                                 block_num, tempBlock.absStart,
193                                                 tempBlock.absEnd);
194
195                                 for (i = 0; i < numSegmentBlocks; ++i) {
196                                         if (mb_array[i].absStart ==
197                                                         tempBlock.absStart)
198                                                 break;
199                                 }
200                                 if (i == numSegmentBlocks) {
201                                         if (numSegmentBlocks == max_entries)
202                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
203                                         mb_array[numSegmentBlocks] = tempBlock;
204                                         ++numSegmentBlocks;
205                                 } else
206                                         printk(" (duplicate)");
207                         }
208                         printk("\n");
209                 }
210                 existsBits <<= 1;
211         }
212         /* Now sort the blocks found into ascending sequence */
213         if (numSegmentBlocks > 1) {
214                 unsigned long m, n;
215
216                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
217                         for (n = numSegmentBlocks - 1; m < n; --n) {
218                                 if (mb_array[n].absStart <
219                                                 mb_array[n-1].absStart) {
220                                         struct MemoryBlock tempBlock;
221
222                                         tempBlock = mb_array[n];
223                                         mb_array[n] = mb_array[n-1];
224                                         mb_array[n-1] = tempBlock;
225                                 }
226                         }
227                 }
228         }
229         /*
230          * Assign "logical" addresses to each block.  These
231          * addresses correspond to the hypervisor "bitmap" space.
232          * Convert all addresses into units of 256K chunks.
233          */
234         {
235         unsigned long i, nextBitmapAddress;
236
237         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
238         nextBitmapAddress = 0;
239         for (i = 0; i < numSegmentBlocks; ++i) {
240                 unsigned long length = mb_array[i].absEnd -
241                         mb_array[i].absStart;
242
243                 mb_array[i].logicalStart = nextBitmapAddress;
244                 mb_array[i].logicalEnd = nextBitmapAddress + length;
245                 nextBitmapAddress += length;
246                 printk("          Bitmap range: %016lx - %016lx\n"
247                                 "        Absolute range: %016lx - %016lx\n",
248                                 mb_array[i].logicalStart,
249                                 mb_array[i].logicalEnd,
250                                 mb_array[i].absStart, mb_array[i].absEnd);
251                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
252                                 0x000fffffffffffff);
253                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
254                                 0x000fffffffffffff);
255                 mb_array[i].logicalStart =
256                         addr_to_chunk(mb_array[i].logicalStart);
257                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
258         }
259         }
260
261         return numSegmentBlocks;
262 }
263
264 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
265                 unsigned long max_entries)
266 {
267         unsigned long i;
268         unsigned long mem_blocks = 0;
269
270         if (cpu_has_feature(CPU_FTR_SLB))
271                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
272                                 max_entries);
273         else
274                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
275                                 max_entries);
276
277         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
278         for (i = 0; i < mem_blocks; ++i) {
279                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
280                        "                             abs chunks %016lx - %016lx\n",
281                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
282                         mb_array[i].absStart, mb_array[i].absEnd);
283         }
284         return mem_blocks;
285 }
286
287 static void __init iSeries_get_cmdline(void)
288 {
289         char *p, *q;
290
291         /* copy the command line parameter from the primary VSP  */
292         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
293                         HvLpDma_Direction_RemoteToLocal);
294
295         p = cmd_line;
296         q = cmd_line + 255;
297         while(p < q) {
298                 if (!*p || *p == '\n')
299                         break;
300                 ++p;
301         }
302         *p = 0;
303 }
304
305 static void __init iSeries_init_early(void)
306 {
307         DBG(" -> iSeries_init_early()\n");
308
309         ppc64_firmware_features = FW_FEATURE_ISERIES;
310
311         ppc64_interrupt_controller = IC_ISERIES;
312
313 #if defined(CONFIG_BLK_DEV_INITRD)
314         /*
315          * If the init RAM disk has been configured and there is
316          * a non-zero starting address for it, set it up
317          */
318         if (naca.xRamDisk) {
319                 initrd_start = (unsigned long)__va(naca.xRamDisk);
320                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
321                 initrd_below_start_ok = 1;      // ramdisk in kernel space
322                 ROOT_DEV = Root_RAM0;
323                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
324                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
325         } else
326 #endif /* CONFIG_BLK_DEV_INITRD */
327         {
328             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
329         }
330
331         iSeries_recal_tb = get_tb();
332         iSeries_recal_titan = HvCallXm_loadTod();
333
334         /*
335          * Initialize the hash table management pointers
336          */
337         hpte_init_iSeries();
338
339         /*
340          * Initialize the DMA/TCE management
341          */
342         iommu_init_early_iSeries();
343
344         /* Initialize machine-dependency vectors */
345 #ifdef CONFIG_SMP
346         smp_init_iSeries();
347 #endif
348         if (itLpNaca.xPirEnvironMode == 0)
349                 piranha_simulator = 1;
350
351         /* Associate Lp Event Queue 0 with processor 0 */
352         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
353
354         mf_init();
355         mf_initialized = 1;
356         mb();
357
358         /* If we were passed an initrd, set the ROOT_DEV properly if the values
359          * look sensible. If not, clear initrd reference.
360          */
361 #ifdef CONFIG_BLK_DEV_INITRD
362         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
363             initrd_end > initrd_start)
364                 ROOT_DEV = Root_RAM0;
365         else
366                 initrd_start = initrd_end = 0;
367 #endif /* CONFIG_BLK_DEV_INITRD */
368
369         DBG(" <- iSeries_init_early()\n");
370 }
371
372 struct mschunks_map mschunks_map = {
373         /* XXX We don't use these, but Piranha might need them. */
374         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
375         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
376         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
377 };
378 EXPORT_SYMBOL(mschunks_map);
379
380 void mschunks_alloc(unsigned long num_chunks)
381 {
382         klimit = _ALIGN(klimit, sizeof(u32));
383         mschunks_map.mapping = (u32 *)klimit;
384         klimit += num_chunks * sizeof(u32);
385         mschunks_map.num_chunks = num_chunks;
386 }
387
388 /*
389  * The iSeries may have very large memories ( > 128 GB ) and a partition
390  * may get memory in "chunks" that may be anywhere in the 2**52 real
391  * address space.  The chunks are 256K in size.  To map this to the
392  * memory model Linux expects, the AS/400 specific code builds a
393  * translation table to translate what Linux thinks are "physical"
394  * addresses to the actual real addresses.  This allows us to make
395  * it appear to Linux that we have contiguous memory starting at
396  * physical address zero while in fact this could be far from the truth.
397  * To avoid confusion, I'll let the words physical and/or real address
398  * apply to the Linux addresses while I'll use "absolute address" to
399  * refer to the actual hardware real address.
400  *
401  * build_iSeries_Memory_Map gets information from the Hypervisor and
402  * looks at the Main Store VPD to determine the absolute addresses
403  * of the memory that has been assigned to our partition and builds
404  * a table used to translate Linux's physical addresses to these
405  * absolute addresses.  Absolute addresses are needed when
406  * communicating with the hypervisor (e.g. to build HPT entries)
407  *
408  * Returns the physical memory size
409  */
410
411 static unsigned long __init build_iSeries_Memory_Map(void)
412 {
413         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
414         u32 nextPhysChunk;
415         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
416         u32 totalChunks,moreChunks;
417         u32 currChunk, thisChunk, absChunk;
418         u32 currDword;
419         u32 chunkBit;
420         u64 map;
421         struct MemoryBlock mb[32];
422         unsigned long numMemoryBlocks, curBlock;
423
424         /* Chunk size on iSeries is 256K bytes */
425         totalChunks = (u32)HvLpConfig_getMsChunks();
426         mschunks_alloc(totalChunks);
427
428         /*
429          * Get absolute address of our load area
430          * and map it to physical address 0
431          * This guarantees that the loadarea ends up at physical 0
432          * otherwise, it might not be returned by PLIC as the first
433          * chunks
434          */
435
436         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
437         loadAreaSize =  itLpNaca.xLoadAreaChunks;
438
439         /*
440          * Only add the pages already mapped here.
441          * Otherwise we might add the hpt pages
442          * The rest of the pages of the load area
443          * aren't in the HPT yet and can still
444          * be assigned an arbitrary physical address
445          */
446         if ((loadAreaSize * 64) > HvPagesToMap)
447                 loadAreaSize = HvPagesToMap / 64;
448
449         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
450
451         /*
452          * TODO Do we need to do something if the HPT is in the 64MB load area?
453          * This would be required if the itLpNaca.xLoadAreaChunks includes
454          * the HPT size
455          */
456
457         printk("Mapping load area - physical addr = 0000000000000000\n"
458                 "                    absolute addr = %016lx\n",
459                 chunk_to_addr(loadAreaFirstChunk));
460         printk("Load area size %dK\n", loadAreaSize * 256);
461
462         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
463                 mschunks_map.mapping[nextPhysChunk] =
464                         loadAreaFirstChunk + nextPhysChunk;
465
466         /*
467          * Get absolute address of our HPT and remember it so
468          * we won't map it to any physical address
469          */
470         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
471         hptSizePages = (u32)HvCallHpt_getHptPages();
472         hptSizeChunks = hptSizePages >>
473                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
474         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
475
476         printk("HPT absolute addr = %016lx, size = %dK\n",
477                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
478
479         ppc64_pft_size = __ilog2(hptSizePages * HW_PAGE_SIZE);
480
481         /*
482          * The actual hashed page table is in the hypervisor,
483          * we have no direct access
484          */
485         htab_address = NULL;
486
487         /*
488          * Determine if absolute memory has any
489          * holes so that we can interpret the
490          * access map we get back from the hypervisor
491          * correctly.
492          */
493         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
494
495         /*
496          * Process the main store access map from the hypervisor
497          * to build up our physical -> absolute translation table
498          */
499         curBlock = 0;
500         currChunk = 0;
501         currDword = 0;
502         moreChunks = totalChunks;
503
504         while (moreChunks) {
505                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
506                                 currDword);
507                 thisChunk = currChunk;
508                 while (map) {
509                         chunkBit = map >> 63;
510                         map <<= 1;
511                         if (chunkBit) {
512                                 --moreChunks;
513                                 while (thisChunk >= mb[curBlock].logicalEnd) {
514                                         ++curBlock;
515                                         if (curBlock >= numMemoryBlocks)
516                                                 panic("out of memory blocks");
517                                 }
518                                 if (thisChunk < mb[curBlock].logicalStart)
519                                         panic("memory block error");
520
521                                 absChunk = mb[curBlock].absStart +
522                                         (thisChunk - mb[curBlock].logicalStart);
523                                 if (((absChunk < hptFirstChunk) ||
524                                      (absChunk > hptLastChunk)) &&
525                                     ((absChunk < loadAreaFirstChunk) ||
526                                      (absChunk > loadAreaLastChunk))) {
527                                         mschunks_map.mapping[nextPhysChunk] =
528                                                 absChunk;
529                                         ++nextPhysChunk;
530                                 }
531                         }
532                         ++thisChunk;
533                 }
534                 ++currDword;
535                 currChunk += 64;
536         }
537
538         /*
539          * main store size (in chunks) is
540          *   totalChunks - hptSizeChunks
541          * which should be equal to
542          *   nextPhysChunk
543          */
544         return chunk_to_addr(nextPhysChunk);
545 }
546
547 /*
548  * Document me.
549  */
550 static void __init iSeries_setup_arch(void)
551 {
552         unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
553
554         if (get_paca()->lppaca.shared_proc) {
555                 ppc_md.idle_loop = iseries_shared_idle;
556                 printk(KERN_INFO "Using shared processor idle loop\n");
557         } else {
558                 ppc_md.idle_loop = iseries_dedicated_idle;
559                 printk(KERN_INFO "Using dedicated idle loop\n");
560         }
561
562         /* Setup the Lp Event Queue */
563         setup_hvlpevent_queue();
564
565         printk("Max  logical processors = %d\n",
566                         itVpdAreas.xSlicMaxLogicalProcs);
567         printk("Max physical processors = %d\n",
568                         itVpdAreas.xSlicMaxPhysicalProcs);
569
570         _systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
571         printk("Processor version = %x\n", _systemcfg->processor);
572 }
573
574 static void iSeries_show_cpuinfo(struct seq_file *m)
575 {
576         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
577 }
578
579 /*
580  * Document me.
581  * and Implement me.
582  */
583 static int iSeries_get_irq(struct pt_regs *regs)
584 {
585         /* -2 means ignore this interrupt */
586         return -2;
587 }
588
589 /*
590  * Document me.
591  */
592 static void iSeries_restart(char *cmd)
593 {
594         mf_reboot();
595 }
596
597 /*
598  * Document me.
599  */
600 static void iSeries_power_off(void)
601 {
602         mf_power_off();
603 }
604
605 /*
606  * Document me.
607  */
608 static void iSeries_halt(void)
609 {
610         mf_power_off();
611 }
612
613 static void __init iSeries_progress(char * st, unsigned short code)
614 {
615         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
616         if (!piranha_simulator && mf_initialized) {
617                 if (code != 0xffff)
618                         mf_display_progress(code);
619                 else
620                         mf_clear_src();
621         }
622 }
623
624 static void __init iSeries_fixup_klimit(void)
625 {
626         /*
627          * Change klimit to take into account any ram disk
628          * that may be included
629          */
630         if (naca.xRamDisk)
631                 klimit = KERNELBASE + (u64)naca.xRamDisk +
632                         (naca.xRamDiskSize * HW_PAGE_SIZE);
633         else {
634                 /*
635                  * No ram disk was included - check and see if there
636                  * was an embedded system map.  Change klimit to take
637                  * into account any embedded system map
638                  */
639                 if (embedded_sysmap_end)
640                         klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
641                                         0xfffffffffffff000);
642         }
643 }
644
645 static int __init iSeries_src_init(void)
646 {
647         /* clear the progress line */
648         ppc_md.progress(" ", 0xffff);
649         return 0;
650 }
651
652 late_initcall(iSeries_src_init);
653
654 static inline void process_iSeries_events(void)
655 {
656         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
657 }
658
659 static void yield_shared_processor(void)
660 {
661         unsigned long tb;
662
663         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
664                                     HvCall_MaskLpEvent |
665                                     HvCall_MaskLpProd |
666                                     HvCall_MaskTimeout);
667
668         tb = get_tb();
669         /* Compute future tb value when yield should expire */
670         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
671
672         /*
673          * The decrementer stops during the yield.  Force a fake decrementer
674          * here and let the timer_interrupt code sort out the actual time.
675          */
676         get_paca()->lppaca.int_dword.fields.decr_int = 1;
677         process_iSeries_events();
678 }
679
680 static void iseries_shared_idle(void)
681 {
682         while (1) {
683                 while (!need_resched() && !hvlpevent_is_pending()) {
684                         local_irq_disable();
685                         ppc64_runlatch_off();
686
687                         /* Recheck with irqs off */
688                         if (!need_resched() && !hvlpevent_is_pending())
689                                 yield_shared_processor();
690
691                         HMT_medium();
692                         local_irq_enable();
693                 }
694
695                 ppc64_runlatch_on();
696
697                 if (hvlpevent_is_pending())
698                         process_iSeries_events();
699
700                 preempt_enable_no_resched();
701                 schedule();
702                 preempt_disable();
703         }
704 }
705
706 static void iseries_dedicated_idle(void)
707 {
708         long oldval;
709         set_thread_flag(TIF_POLLING_NRFLAG);
710
711         while (1) {
712                 if (!need_resched()) {
713                         while (!need_resched()) {
714                                 ppc64_runlatch_off();
715                                 HMT_low();
716
717                                 if (hvlpevent_is_pending()) {
718                                         HMT_medium();
719                                         ppc64_runlatch_on();
720                                         process_iSeries_events();
721                                 }
722                         }
723
724                         HMT_medium();
725                 }
726
727                 ppc64_runlatch_on();
728                 preempt_enable_no_resched();
729                 schedule();
730                 preempt_disable();
731         }
732 }
733
734 #ifndef CONFIG_PCI
735 void __init iSeries_init_IRQ(void) { }
736 #endif
737
738 static int __init iseries_probe(int platform)
739 {
740         return PLATFORM_ISERIES_LPAR == platform;
741 }
742
743 struct machdep_calls __initdata iseries_md = {
744         .setup_arch     = iSeries_setup_arch,
745         .show_cpuinfo   = iSeries_show_cpuinfo,
746         .init_IRQ       = iSeries_init_IRQ,
747         .get_irq        = iSeries_get_irq,
748         .init_early     = iSeries_init_early,
749         .pcibios_fixup  = iSeries_pci_final_fixup,
750         .restart        = iSeries_restart,
751         .power_off      = iSeries_power_off,
752         .halt           = iSeries_halt,
753         .get_boot_time  = iSeries_get_boot_time,
754         .set_rtc_time   = iSeries_set_rtc_time,
755         .get_rtc_time   = iSeries_get_rtc_time,
756         .calibrate_decr = generic_calibrate_decr,
757         .progress       = iSeries_progress,
758         .probe          = iseries_probe,
759         /* XXX Implement enable_pmcs for iSeries */
760 };
761
762 struct blob {
763         unsigned char data[PAGE_SIZE];
764         unsigned long next;
765 };
766
767 struct iseries_flat_dt {
768         struct boot_param_header header;
769         u64 reserve_map[2];
770         struct blob dt;
771         struct blob strings;
772 };
773
774 struct iseries_flat_dt iseries_dt;
775
776 void dt_init(struct iseries_flat_dt *dt)
777 {
778         dt->header.off_mem_rsvmap =
779                 offsetof(struct iseries_flat_dt, reserve_map);
780         dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
781         dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
782         dt->header.totalsize = sizeof(struct iseries_flat_dt);
783         dt->header.dt_strings_size = sizeof(struct blob);
784
785         /* There is no notion of hardware cpu id on iSeries */
786         dt->header.boot_cpuid_phys = smp_processor_id();
787
788         dt->dt.next = (unsigned long)&dt->dt.data;
789         dt->strings.next = (unsigned long)&dt->strings.data;
790
791         dt->header.magic = OF_DT_HEADER;
792         dt->header.version = 0x10;
793         dt->header.last_comp_version = 0x10;
794
795         dt->reserve_map[0] = 0;
796         dt->reserve_map[1] = 0;
797 }
798
799 void dt_check_blob(struct blob *b)
800 {
801         if (b->next >= (unsigned long)&b->next) {
802                 DBG("Ran out of space in flat device tree blob!\n");
803                 BUG();
804         }
805 }
806
807 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
808 {
809         *((u32*)dt->dt.next) = value;
810         dt->dt.next += sizeof(u32);
811
812         dt_check_blob(&dt->dt);
813 }
814
815 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
816 {
817         *((u64*)dt->dt.next) = value;
818         dt->dt.next += sizeof(u64);
819
820         dt_check_blob(&dt->dt);
821 }
822
823 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
824 {
825         unsigned long start = blob->next - (unsigned long)blob->data;
826
827         memcpy((char *)blob->next, data, len);
828         blob->next = _ALIGN(blob->next + len, 4);
829
830         dt_check_blob(blob);
831
832         return start;
833 }
834
835 void dt_start_node(struct iseries_flat_dt *dt, char *name)
836 {
837         dt_push_u32(dt, OF_DT_BEGIN_NODE);
838         dt_push_bytes(&dt->dt, name, strlen(name) + 1);
839 }
840
841 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
842
843 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
844 {
845         unsigned long offset;
846
847         dt_push_u32(dt, OF_DT_PROP);
848
849         /* Length of the data */
850         dt_push_u32(dt, len);
851
852         /* Put the property name in the string blob. */
853         offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
854
855         /* The offset of the properties name in the string blob. */
856         dt_push_u32(dt, (u32)offset);
857
858         /* The actual data. */
859         dt_push_bytes(&dt->dt, data, len);
860 }
861
862 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
863 {
864         dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
865 }
866
867 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
868 {
869         dt_prop(dt, name, (char *)&data, sizeof(u32));
870 }
871
872 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
873 {
874         dt_prop(dt, name, (char *)&data, sizeof(u64));
875 }
876
877 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
878 {
879         dt_prop(dt, name, (char *)data, sizeof(u64) * n);
880 }
881
882 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
883 {
884         dt_prop(dt, name, NULL, 0);
885 }
886
887 void dt_cpus(struct iseries_flat_dt *dt)
888 {
889         unsigned char buf[32];
890         unsigned char *p;
891         unsigned int i, index;
892         struct IoHriProcessorVpd *d;
893
894         /* yuck */
895         snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
896         p = strchr(buf, ' ');
897         if (!p) p = buf + strlen(buf);
898
899         dt_start_node(dt, "cpus");
900         dt_prop_u32(dt, "#address-cells", 1);
901         dt_prop_u32(dt, "#size-cells", 0);
902
903         for (i = 0; i < NR_CPUS; i++) {
904                 if (paca[i].lppaca.dyn_proc_status >= 2)
905                         continue;
906
907                 snprintf(p, 32 - (p - buf), "@%d", i);
908                 dt_start_node(dt, buf);
909
910                 dt_prop_str(dt, "device_type", "cpu");
911
912                 index = paca[i].lppaca.dyn_hv_phys_proc_index;
913                 d = &xIoHriProcessorVpd[index];
914
915                 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
916                 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
917
918                 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
919                 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
920
921                 /* magic conversions to Hz copied from old code */
922                 dt_prop_u32(dt, "clock-frequency",
923                         ((1UL << 34) * 1000000) / d->xProcFreq);
924                 dt_prop_u32(dt, "timebase-frequency",
925                         ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
926
927                 dt_prop_u32(dt, "reg", i);
928
929                 dt_end_node(dt);
930         }
931
932         dt_end_node(dt);
933 }
934
935 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
936 {
937         u64 tmp[2];
938
939         dt_init(dt);
940
941         dt_start_node(dt, "");
942
943         dt_prop_u32(dt, "#address-cells", 2);
944         dt_prop_u32(dt, "#size-cells", 2);
945
946         /* /memory */
947         dt_start_node(dt, "memory@0");
948         dt_prop_str(dt, "name", "memory");
949         dt_prop_str(dt, "device_type", "memory");
950         tmp[0] = 0;
951         tmp[1] = phys_mem_size;
952         dt_prop_u64_list(dt, "reg", tmp, 2);
953         dt_end_node(dt);
954
955         /* /chosen */
956         dt_start_node(dt, "chosen");
957         dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
958         if (cmd_mem_limit)
959                 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
960         dt_end_node(dt);
961
962         dt_cpus(dt);
963
964         dt_end_node(dt);
965
966         dt_push_u32(dt, OF_DT_END);
967 }
968
969 void * __init iSeries_early_setup(void)
970 {
971         unsigned long phys_mem_size;
972
973         iSeries_fixup_klimit();
974
975         /*
976          * Initialize the table which translate Linux physical addresses to
977          * AS/400 absolute addresses
978          */
979         phys_mem_size = build_iSeries_Memory_Map();
980
981         iSeries_get_cmdline();
982
983         /* Save unparsed command line copy for /proc/cmdline */
984         strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
985
986         /* Parse early parameters, in particular mem=x */
987         parse_early_param();
988
989         build_flat_dt(&iseries_dt, phys_mem_size);
990
991         return (void *) __pa(&iseries_dt);
992 }
993
994 /*
995  * On iSeries we just parse the mem=X option from the command line.
996  * On pSeries it's a bit more complicated, see prom_init_mem()
997  */
998 static int __init early_parsemem(char *p)
999 {
1000         if (p)
1001                 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
1002         return 0;
1003 }
1004 early_param("mem", early_parsemem);