]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/ppc64/kernel/prom.c
powerpc: merge irq.c
[karo-tx-linux.git] / arch / ppc64 / kernel / prom.c
1 /*
2  * 
3  *
4  * Procedures for interfacing to Open Firmware.
5  *
6  * Paul Mackerras       August 1996.
7  * Copyright (C) 1996 Paul Mackerras.
8  * 
9  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10  *    {engebret|bergner}@us.ibm.com 
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17
18 #undef DEBUG
19
20 #include <stdarg.h>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/threads.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/pci.h>
29 #include <linux/stringify.h>
30 #include <linux/delay.h>
31 #include <linux/initrd.h>
32 #include <linux/bitops.h>
33 #include <linux/module.h>
34 #include <linux/module.h>
35
36 #include <asm/prom.h>
37 #include <asm/rtas.h>
38 #include <asm/lmb.h>
39 #include <asm/abs_addr.h>
40 #include <asm/page.h>
41 #include <asm/processor.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/smp.h>
45 #include <asm/system.h>
46 #include <asm/mmu.h>
47 #include <asm/pgtable.h>
48 #include <asm/pci.h>
49 #include <asm/iommu.h>
50 #include <asm/btext.h>
51 #include <asm/sections.h>
52 #include <asm/machdep.h>
53 #include <asm/pSeries_reconfig.h>
54
55 #ifdef DEBUG
56 #define DBG(fmt...) udbg_printf(fmt)
57 #else
58 #define DBG(fmt...)
59 #endif
60
61 struct pci_reg_property {
62         struct pci_address addr;
63         u32 size_hi;
64         u32 size_lo;
65 };
66
67 struct isa_reg_property {
68         u32 space;
69         u32 address;
70         u32 size;
71 };
72
73
74 typedef int interpret_func(struct device_node *, unsigned long *,
75                            int, int, int);
76
77 extern struct rtas_t rtas;
78 extern struct lmb lmb;
79 extern unsigned long klimit;
80 extern unsigned long memory_limit;
81
82 static int __initdata dt_root_addr_cells;
83 static int __initdata dt_root_size_cells;
84 static int __initdata iommu_is_off;
85 int __initdata iommu_force_on;
86 unsigned long tce_alloc_start, tce_alloc_end;
87
88 typedef u32 cell_t;
89
90 #if 0
91 static struct boot_param_header *initial_boot_params __initdata;
92 #else
93 struct boot_param_header *initial_boot_params;
94 #endif
95
96 static struct device_node *allnodes = NULL;
97
98 /* use when traversing tree through the allnext, child, sibling,
99  * or parent members of struct device_node.
100  */
101 static DEFINE_RWLOCK(devtree_lock);
102
103 /* export that to outside world */
104 struct device_node *of_chosen;
105
106 /*
107  * Wrapper for allocating memory for various data that needs to be
108  * attached to device nodes as they are processed at boot or when
109  * added to the device tree later (e.g. DLPAR).  At boot there is
110  * already a region reserved so we just increment *mem_start by size;
111  * otherwise we call kmalloc.
112  */
113 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
114 {
115         unsigned long tmp;
116
117         if (!mem_start)
118                 return kmalloc(size, GFP_KERNEL);
119
120         tmp = *mem_start;
121         *mem_start += size;
122         return (void *)tmp;
123 }
124
125 /*
126  * Find the device_node with a given phandle.
127  */
128 static struct device_node * find_phandle(phandle ph)
129 {
130         struct device_node *np;
131
132         for (np = allnodes; np != 0; np = np->allnext)
133                 if (np->linux_phandle == ph)
134                         return np;
135         return NULL;
136 }
137
138 /*
139  * Find the interrupt parent of a node.
140  */
141 static struct device_node * __devinit intr_parent(struct device_node *p)
142 {
143         phandle *parp;
144
145         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
146         if (parp == NULL)
147                 return p->parent;
148         return find_phandle(*parp);
149 }
150
151 /*
152  * Find out the size of each entry of the interrupts property
153  * for a node.
154  */
155 int __devinit prom_n_intr_cells(struct device_node *np)
156 {
157         struct device_node *p;
158         unsigned int *icp;
159
160         for (p = np; (p = intr_parent(p)) != NULL; ) {
161                 icp = (unsigned int *)
162                         get_property(p, "#interrupt-cells", NULL);
163                 if (icp != NULL)
164                         return *icp;
165                 if (get_property(p, "interrupt-controller", NULL) != NULL
166                     || get_property(p, "interrupt-map", NULL) != NULL) {
167                         printk("oops, node %s doesn't have #interrupt-cells\n",
168                                p->full_name);
169                         return 1;
170                 }
171         }
172 #ifdef DEBUG_IRQ
173         printk("prom_n_intr_cells failed for %s\n", np->full_name);
174 #endif
175         return 1;
176 }
177
178 /*
179  * Map an interrupt from a device up to the platform interrupt
180  * descriptor.
181  */
182 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
183                                    struct device_node *np, unsigned int *ints,
184                                    int nintrc)
185 {
186         struct device_node *p, *ipar;
187         unsigned int *imap, *imask, *ip;
188         int i, imaplen, match;
189         int newintrc = 0, newaddrc = 0;
190         unsigned int *reg;
191         int naddrc;
192
193         reg = (unsigned int *) get_property(np, "reg", NULL);
194         naddrc = prom_n_addr_cells(np);
195         p = intr_parent(np);
196         while (p != NULL) {
197                 if (get_property(p, "interrupt-controller", NULL) != NULL)
198                         /* this node is an interrupt controller, stop here */
199                         break;
200                 imap = (unsigned int *)
201                         get_property(p, "interrupt-map", &imaplen);
202                 if (imap == NULL) {
203                         p = intr_parent(p);
204                         continue;
205                 }
206                 imask = (unsigned int *)
207                         get_property(p, "interrupt-map-mask", NULL);
208                 if (imask == NULL) {
209                         printk("oops, %s has interrupt-map but no mask\n",
210                                p->full_name);
211                         return 0;
212                 }
213                 imaplen /= sizeof(unsigned int);
214                 match = 0;
215                 ipar = NULL;
216                 while (imaplen > 0 && !match) {
217                         /* check the child-interrupt field */
218                         match = 1;
219                         for (i = 0; i < naddrc && match; ++i)
220                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
221                         for (; i < naddrc + nintrc && match; ++i)
222                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
223                         imap += naddrc + nintrc;
224                         imaplen -= naddrc + nintrc;
225                         /* grab the interrupt parent */
226                         ipar = find_phandle((phandle) *imap++);
227                         --imaplen;
228                         if (ipar == NULL) {
229                                 printk("oops, no int parent %x in map of %s\n",
230                                        imap[-1], p->full_name);
231                                 return 0;
232                         }
233                         /* find the parent's # addr and intr cells */
234                         ip = (unsigned int *)
235                                 get_property(ipar, "#interrupt-cells", NULL);
236                         if (ip == NULL) {
237                                 printk("oops, no #interrupt-cells on %s\n",
238                                        ipar->full_name);
239                                 return 0;
240                         }
241                         newintrc = *ip;
242                         ip = (unsigned int *)
243                                 get_property(ipar, "#address-cells", NULL);
244                         newaddrc = (ip == NULL)? 0: *ip;
245                         imap += newaddrc + newintrc;
246                         imaplen -= newaddrc + newintrc;
247                 }
248                 if (imaplen < 0) {
249                         printk("oops, error decoding int-map on %s, len=%d\n",
250                                p->full_name, imaplen);
251                         return 0;
252                 }
253                 if (!match) {
254 #ifdef DEBUG_IRQ
255                         printk("oops, no match in %s int-map for %s\n",
256                                p->full_name, np->full_name);
257 #endif
258                         return 0;
259                 }
260                 p = ipar;
261                 naddrc = newaddrc;
262                 nintrc = newintrc;
263                 ints = imap - nintrc;
264                 reg = ints - naddrc;
265         }
266         if (p == NULL) {
267 #ifdef DEBUG_IRQ
268                 printk("hmmm, int tree for %s doesn't have ctrler\n",
269                        np->full_name);
270 #endif
271                 return 0;
272         }
273         *irq = ints;
274         *ictrler = p;
275         return nintrc;
276 }
277
278 static int __devinit finish_node_interrupts(struct device_node *np,
279                                             unsigned long *mem_start,
280                                             int measure_only)
281 {
282         unsigned int *ints;
283         int intlen, intrcells, intrcount;
284         int i, j, n;
285         unsigned int *irq, virq;
286         struct device_node *ic;
287
288         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
289         if (ints == NULL)
290                 return 0;
291         intrcells = prom_n_intr_cells(np);
292         intlen /= intrcells * sizeof(unsigned int);
293
294         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
295         if (!np->intrs)
296                 return -ENOMEM;
297
298         if (measure_only)
299                 return 0;
300
301         intrcount = 0;
302         for (i = 0; i < intlen; ++i, ints += intrcells) {
303                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
304                 if (n <= 0)
305                         continue;
306
307                 /* don't map IRQ numbers under a cascaded 8259 controller */
308                 if (ic && device_is_compatible(ic, "chrp,iic")) {
309                         np->intrs[intrcount].line = irq[0];
310                 } else {
311                         virq = virt_irq_create_mapping(irq[0]);
312                         if (virq == NO_IRQ) {
313                                 printk(KERN_CRIT "Could not allocate interrupt"
314                                        " number for %s\n", np->full_name);
315                                 continue;
316                         }
317                         np->intrs[intrcount].line = irq_offset_up(virq);
318                 }
319
320                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
321                 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
322                         char *name = get_property(ic->parent, "name", NULL);
323                         if (name && !strcmp(name, "u3"))
324                                 np->intrs[intrcount].line += 128;
325                         else if (!(name && !strcmp(name, "mac-io")))
326                                 /* ignore other cascaded controllers, such as
327                                    the k2-sata-root */
328                                 break;
329                 }
330                 np->intrs[intrcount].sense = 1;
331                 if (n > 1)
332                         np->intrs[intrcount].sense = irq[1];
333                 if (n > 2) {
334                         printk("hmmm, got %d intr cells for %s:", n,
335                                np->full_name);
336                         for (j = 0; j < n; ++j)
337                                 printk(" %d", irq[j]);
338                         printk("\n");
339                 }
340                 ++intrcount;
341         }
342         np->n_intrs = intrcount;
343
344         return 0;
345 }
346
347 static int __devinit interpret_pci_props(struct device_node *np,
348                                          unsigned long *mem_start,
349                                          int naddrc, int nsizec,
350                                          int measure_only)
351 {
352         struct address_range *adr;
353         struct pci_reg_property *pci_addrs;
354         int i, l, n_addrs;
355
356         pci_addrs = (struct pci_reg_property *)
357                 get_property(np, "assigned-addresses", &l);
358         if (!pci_addrs)
359                 return 0;
360
361         n_addrs = l / sizeof(*pci_addrs);
362
363         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
364         if (!adr)
365                 return -ENOMEM;
366
367         if (measure_only)
368                 return 0;
369
370         np->addrs = adr;
371         np->n_addrs = n_addrs;
372
373         for (i = 0; i < n_addrs; i++) {
374                 adr[i].space = pci_addrs[i].addr.a_hi;
375                 adr[i].address = pci_addrs[i].addr.a_lo |
376                         ((u64)pci_addrs[i].addr.a_mid << 32);
377                 adr[i].size = pci_addrs[i].size_lo;
378         }
379
380         return 0;
381 }
382
383 static int __init interpret_dbdma_props(struct device_node *np,
384                                         unsigned long *mem_start,
385                                         int naddrc, int nsizec,
386                                         int measure_only)
387 {
388         struct reg_property32 *rp;
389         struct address_range *adr;
390         unsigned long base_address;
391         int i, l;
392         struct device_node *db;
393
394         base_address = 0;
395         if (!measure_only) {
396                 for (db = np->parent; db != NULL; db = db->parent) {
397                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
398                                 base_address = db->addrs[0].address;
399                                 break;
400                         }
401                 }
402         }
403
404         rp = (struct reg_property32 *) get_property(np, "reg", &l);
405         if (rp != 0 && l >= sizeof(struct reg_property32)) {
406                 i = 0;
407                 adr = (struct address_range *) (*mem_start);
408                 while ((l -= sizeof(struct reg_property32)) >= 0) {
409                         if (!measure_only) {
410                                 adr[i].space = 2;
411                                 adr[i].address = rp[i].address + base_address;
412                                 adr[i].size = rp[i].size;
413                         }
414                         ++i;
415                 }
416                 np->addrs = adr;
417                 np->n_addrs = i;
418                 (*mem_start) += i * sizeof(struct address_range);
419         }
420
421         return 0;
422 }
423
424 static int __init interpret_macio_props(struct device_node *np,
425                                         unsigned long *mem_start,
426                                         int naddrc, int nsizec,
427                                         int measure_only)
428 {
429         struct reg_property32 *rp;
430         struct address_range *adr;
431         unsigned long base_address;
432         int i, l;
433         struct device_node *db;
434
435         base_address = 0;
436         if (!measure_only) {
437                 for (db = np->parent; db != NULL; db = db->parent) {
438                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
439                                 base_address = db->addrs[0].address;
440                                 break;
441                         }
442                 }
443         }
444
445         rp = (struct reg_property32 *) get_property(np, "reg", &l);
446         if (rp != 0 && l >= sizeof(struct reg_property32)) {
447                 i = 0;
448                 adr = (struct address_range *) (*mem_start);
449                 while ((l -= sizeof(struct reg_property32)) >= 0) {
450                         if (!measure_only) {
451                                 adr[i].space = 2;
452                                 adr[i].address = rp[i].address + base_address;
453                                 adr[i].size = rp[i].size;
454                         }
455                         ++i;
456                 }
457                 np->addrs = adr;
458                 np->n_addrs = i;
459                 (*mem_start) += i * sizeof(struct address_range);
460         }
461
462         return 0;
463 }
464
465 static int __init interpret_isa_props(struct device_node *np,
466                                       unsigned long *mem_start,
467                                       int naddrc, int nsizec,
468                                       int measure_only)
469 {
470         struct isa_reg_property *rp;
471         struct address_range *adr;
472         int i, l;
473
474         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
475         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
476                 i = 0;
477                 adr = (struct address_range *) (*mem_start);
478                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
479                         if (!measure_only) {
480                                 adr[i].space = rp[i].space;
481                                 adr[i].address = rp[i].address;
482                                 adr[i].size = rp[i].size;
483                         }
484                         ++i;
485                 }
486                 np->addrs = adr;
487                 np->n_addrs = i;
488                 (*mem_start) += i * sizeof(struct address_range);
489         }
490
491         return 0;
492 }
493
494 static int __init interpret_root_props(struct device_node *np,
495                                        unsigned long *mem_start,
496                                        int naddrc, int nsizec,
497                                        int measure_only)
498 {
499         struct address_range *adr;
500         int i, l;
501         unsigned int *rp;
502         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
503
504         rp = (unsigned int *) get_property(np, "reg", &l);
505         if (rp != 0 && l >= rpsize) {
506                 i = 0;
507                 adr = (struct address_range *) (*mem_start);
508                 while ((l -= rpsize) >= 0) {
509                         if (!measure_only) {
510                                 adr[i].space = 0;
511                                 adr[i].address = rp[naddrc - 1];
512                                 adr[i].size = rp[naddrc + nsizec - 1];
513                         }
514                         ++i;
515                         rp += naddrc + nsizec;
516                 }
517                 np->addrs = adr;
518                 np->n_addrs = i;
519                 (*mem_start) += i * sizeof(struct address_range);
520         }
521
522         return 0;
523 }
524
525 static int __devinit finish_node(struct device_node *np,
526                                  unsigned long *mem_start,
527                                  interpret_func *ifunc,
528                                  int naddrc, int nsizec,
529                                  int measure_only)
530 {
531         struct device_node *child;
532         int *ip, rc = 0;
533
534         /* get the device addresses and interrupts */
535         if (ifunc != NULL)
536                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
537         if (rc)
538                 goto out;
539
540         rc = finish_node_interrupts(np, mem_start, measure_only);
541         if (rc)
542                 goto out;
543
544         /* Look for #address-cells and #size-cells properties. */
545         ip = (int *) get_property(np, "#address-cells", NULL);
546         if (ip != NULL)
547                 naddrc = *ip;
548         ip = (int *) get_property(np, "#size-cells", NULL);
549         if (ip != NULL)
550                 nsizec = *ip;
551
552         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
553                 ifunc = interpret_root_props;
554         else if (np->type == 0)
555                 ifunc = NULL;
556         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
557                 ifunc = interpret_pci_props;
558         else if (!strcmp(np->type, "dbdma"))
559                 ifunc = interpret_dbdma_props;
560         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
561                 ifunc = interpret_macio_props;
562         else if (!strcmp(np->type, "isa"))
563                 ifunc = interpret_isa_props;
564         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
565                 ifunc = interpret_root_props;
566         else if (!((ifunc == interpret_dbdma_props
567                     || ifunc == interpret_macio_props)
568                    && (!strcmp(np->type, "escc")
569                        || !strcmp(np->type, "media-bay"))))
570                 ifunc = NULL;
571
572         for (child = np->child; child != NULL; child = child->sibling) {
573                 rc = finish_node(child, mem_start, ifunc,
574                                  naddrc, nsizec, measure_only);
575                 if (rc)
576                         goto out;
577         }
578 out:
579         return rc;
580 }
581
582 /**
583  * finish_device_tree is called once things are running normally
584  * (i.e. with text and data mapped to the address they were linked at).
585  * It traverses the device tree and fills in some of the additional,
586  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
587  * mapping is also initialized at this point.
588  */
589 void __init finish_device_tree(void)
590 {
591         unsigned long start, end, size = 0;
592
593         DBG(" -> finish_device_tree\n");
594
595         if (ppc64_interrupt_controller == IC_INVALID) {
596                 DBG("failed to configure interrupt controller type\n");
597                 panic("failed to configure interrupt controller type\n");
598         }
599         
600         /* Initialize virtual IRQ map */
601         virt_irq_init();
602
603         /*
604          * Finish device-tree (pre-parsing some properties etc...)
605          * We do this in 2 passes. One with "measure_only" set, which
606          * will only measure the amount of memory needed, then we can
607          * allocate that memory, and call finish_node again. However,
608          * we must be careful as most routines will fail nowadays when
609          * prom_alloc() returns 0, so we must make sure our first pass
610          * doesn't start at 0. We pre-initialize size to 16 for that
611          * reason and then remove those additional 16 bytes
612          */
613         size = 16;
614         finish_node(allnodes, &size, NULL, 0, 0, 1);
615         size -= 16;
616         end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
617         finish_node(allnodes, &end, NULL, 0, 0, 0);
618         BUG_ON(end != start + size);
619
620         DBG(" <- finish_device_tree\n");
621 }
622
623 #ifdef DEBUG
624 #define printk udbg_printf
625 #endif
626
627 static inline char *find_flat_dt_string(u32 offset)
628 {
629         return ((char *)initial_boot_params) +
630                 initial_boot_params->off_dt_strings + offset;
631 }
632
633 /**
634  * This function is used to scan the flattened device-tree, it is
635  * used to extract the memory informations at boot before we can
636  * unflatten the tree
637  */
638 int __init of_scan_flat_dt(int (*it)(unsigned long node,
639                                      const char *uname, int depth,
640                                      void *data),
641                            void *data)
642 {
643         unsigned long p = ((unsigned long)initial_boot_params) +
644                 initial_boot_params->off_dt_struct;
645         int rc = 0;
646         int depth = -1;
647
648         do {
649                 u32 tag = *((u32 *)p);
650                 char *pathp;
651                 
652                 p += 4;
653                 if (tag == OF_DT_END_NODE) {
654                         depth --;
655                         continue;
656                 }
657                 if (tag == OF_DT_NOP)
658                         continue;
659                 if (tag == OF_DT_END)
660                         break;
661                 if (tag == OF_DT_PROP) {
662                         u32 sz = *((u32 *)p);
663                         p += 8;
664                         if (initial_boot_params->version < 0x10)
665                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
666                         p += sz;
667                         p = _ALIGN(p, 4);
668                         continue;
669                 }
670                 if (tag != OF_DT_BEGIN_NODE) {
671                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
672                                " device tree !\n", tag);
673                         return -EINVAL;
674                 }
675                 depth++;
676                 pathp = (char *)p;
677                 p = _ALIGN(p + strlen(pathp) + 1, 4);
678                 if ((*pathp) == '/') {
679                         char *lp, *np;
680                         for (lp = NULL, np = pathp; *np; np++)
681                                 if ((*np) == '/')
682                                         lp = np+1;
683                         if (lp != NULL)
684                                 pathp = lp;
685                 }
686                 rc = it(p, pathp, depth, data);
687                 if (rc != 0)
688                         break;          
689         } while(1);
690
691         return rc;
692 }
693
694 /**
695  * This  function can be used within scan_flattened_dt callback to get
696  * access to properties
697  */
698 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
699                                  unsigned long *size)
700 {
701         unsigned long p = node;
702
703         do {
704                 u32 tag = *((u32 *)p);
705                 u32 sz, noff;
706                 const char *nstr;
707
708                 p += 4;
709                 if (tag == OF_DT_NOP)
710                         continue;
711                 if (tag != OF_DT_PROP)
712                         return NULL;
713
714                 sz = *((u32 *)p);
715                 noff = *((u32 *)(p + 4));
716                 p += 8;
717                 if (initial_boot_params->version < 0x10)
718                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
719
720                 nstr = find_flat_dt_string(noff);
721                 if (nstr == NULL) {
722                         printk(KERN_WARNING "Can't find property index"
723                                " name !\n");
724                         return NULL;
725                 }
726                 if (strcmp(name, nstr) == 0) {
727                         if (size)
728                                 *size = sz;
729                         return (void *)p;
730                 }
731                 p += sz;
732                 p = _ALIGN(p, 4);
733         } while(1);
734 }
735
736 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
737                                        unsigned long align)
738 {
739         void *res;
740
741         *mem = _ALIGN(*mem, align);
742         res = (void *)*mem;
743         *mem += size;
744
745         return res;
746 }
747
748 static unsigned long __init unflatten_dt_node(unsigned long mem,
749                                               unsigned long *p,
750                                               struct device_node *dad,
751                                               struct device_node ***allnextpp,
752                                               unsigned long fpsize)
753 {
754         struct device_node *np;
755         struct property *pp, **prev_pp = NULL;
756         char *pathp;
757         u32 tag;
758         unsigned int l, allocl;
759         int has_name = 0;
760         int new_format = 0;
761
762         tag = *((u32 *)(*p));
763         if (tag != OF_DT_BEGIN_NODE) {
764                 printk("Weird tag at start of node: %x\n", tag);
765                 return mem;
766         }
767         *p += 4;
768         pathp = (char *)*p;
769         l = allocl = strlen(pathp) + 1;
770         *p = _ALIGN(*p + l, 4);
771
772         /* version 0x10 has a more compact unit name here instead of the full
773          * path. we accumulate the full path size using "fpsize", we'll rebuild
774          * it later. We detect this because the first character of the name is
775          * not '/'.
776          */
777         if ((*pathp) != '/') {
778                 new_format = 1;
779                 if (fpsize == 0) {
780                         /* root node: special case. fpsize accounts for path
781                          * plus terminating zero. root node only has '/', so
782                          * fpsize should be 2, but we want to avoid the first
783                          * level nodes to have two '/' so we use fpsize 1 here
784                          */
785                         fpsize = 1;
786                         allocl = 2;
787                 } else {
788                         /* account for '/' and path size minus terminal 0
789                          * already in 'l'
790                          */
791                         fpsize += l;
792                         allocl = fpsize;
793                 }
794         }
795
796
797         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
798                                 __alignof__(struct device_node));
799         if (allnextpp) {
800                 memset(np, 0, sizeof(*np));
801                 np->full_name = ((char*)np) + sizeof(struct device_node);
802                 if (new_format) {
803                         char *p = np->full_name;
804                         /* rebuild full path for new format */
805                         if (dad && dad->parent) {
806                                 strcpy(p, dad->full_name);
807 #ifdef DEBUG
808                                 if ((strlen(p) + l + 1) != allocl) {
809                                         DBG("%s: p: %d, l: %d, a: %d\n",
810                                             pathp, strlen(p), l, allocl);
811                                 }
812 #endif
813                                 p += strlen(p);
814                         }
815                         *(p++) = '/';
816                         memcpy(p, pathp, l);
817                 } else
818                         memcpy(np->full_name, pathp, l);
819                 prev_pp = &np->properties;
820                 **allnextpp = np;
821                 *allnextpp = &np->allnext;
822                 if (dad != NULL) {
823                         np->parent = dad;
824                         /* we temporarily use the next field as `last_child'*/
825                         if (dad->next == 0)
826                                 dad->child = np;
827                         else
828                                 dad->next->sibling = np;
829                         dad->next = np;
830                 }
831                 kref_init(&np->kref);
832         }
833         while(1) {
834                 u32 sz, noff;
835                 char *pname;
836
837                 tag = *((u32 *)(*p));
838                 if (tag == OF_DT_NOP) {
839                         *p += 4;
840                         continue;
841                 }
842                 if (tag != OF_DT_PROP)
843                         break;
844                 *p += 4;
845                 sz = *((u32 *)(*p));
846                 noff = *((u32 *)((*p) + 4));
847                 *p += 8;
848                 if (initial_boot_params->version < 0x10)
849                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
850
851                 pname = find_flat_dt_string(noff);
852                 if (pname == NULL) {
853                         printk("Can't find property name in list !\n");
854                         break;
855                 }
856                 if (strcmp(pname, "name") == 0)
857                         has_name = 1;
858                 l = strlen(pname) + 1;
859                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
860                                         __alignof__(struct property));
861                 if (allnextpp) {
862                         if (strcmp(pname, "linux,phandle") == 0) {
863                                 np->node = *((u32 *)*p);
864                                 if (np->linux_phandle == 0)
865                                         np->linux_phandle = np->node;
866                         }
867                         if (strcmp(pname, "ibm,phandle") == 0)
868                                 np->linux_phandle = *((u32 *)*p);
869                         pp->name = pname;
870                         pp->length = sz;
871                         pp->value = (void *)*p;
872                         *prev_pp = pp;
873                         prev_pp = &pp->next;
874                 }
875                 *p = _ALIGN((*p) + sz, 4);
876         }
877         /* with version 0x10 we may not have the name property, recreate
878          * it here from the unit name if absent
879          */
880         if (!has_name) {
881                 char *p = pathp, *ps = pathp, *pa = NULL;
882                 int sz;
883
884                 while (*p) {
885                         if ((*p) == '@')
886                                 pa = p;
887                         if ((*p) == '/')
888                                 ps = p + 1;
889                         p++;
890                 }
891                 if (pa < ps)
892                         pa = p;
893                 sz = (pa - ps) + 1;
894                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
895                                         __alignof__(struct property));
896                 if (allnextpp) {
897                         pp->name = "name";
898                         pp->length = sz;
899                         pp->value = (unsigned char *)(pp + 1);
900                         *prev_pp = pp;
901                         prev_pp = &pp->next;
902                         memcpy(pp->value, ps, sz - 1);
903                         ((char *)pp->value)[sz - 1] = 0;
904                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
905                 }
906         }
907         if (allnextpp) {
908                 *prev_pp = NULL;
909                 np->name = get_property(np, "name", NULL);
910                 np->type = get_property(np, "device_type", NULL);
911
912                 if (!np->name)
913                         np->name = "<NULL>";
914                 if (!np->type)
915                         np->type = "<NULL>";
916         }
917         while (tag == OF_DT_BEGIN_NODE) {
918                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
919                 tag = *((u32 *)(*p));
920         }
921         if (tag != OF_DT_END_NODE) {
922                 printk("Weird tag at end of node: %x\n", tag);
923                 return mem;
924         }
925         *p += 4;
926         return mem;
927 }
928
929
930 /**
931  * unflattens the device-tree passed by the firmware, creating the
932  * tree of struct device_node. It also fills the "name" and "type"
933  * pointers of the nodes so the normal device-tree walking functions
934  * can be used (this used to be done by finish_device_tree)
935  */
936 void __init unflatten_device_tree(void)
937 {
938         unsigned long start, mem, size;
939         struct device_node **allnextp = &allnodes;
940         char *p = NULL;
941         int l = 0;
942
943         DBG(" -> unflatten_device_tree()\n");
944
945         /* First pass, scan for size */
946         start = ((unsigned long)initial_boot_params) +
947                 initial_boot_params->off_dt_struct;
948         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
949         size = (size | 3) + 1;
950
951         DBG("  size is %lx, allocating...\n", size);
952
953         /* Allocate memory for the expanded device tree */
954         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
955         if (!mem) {
956                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
957                 panic("Couldn't allocate memory with lmb_alloc()!\n");
958         }
959         mem = (unsigned long)abs_to_virt(mem);
960
961         ((u32 *)mem)[size / 4] = 0xdeadbeef;
962
963         DBG("  unflattening...\n", mem);
964
965         /* Second pass, do actual unflattening */
966         start = ((unsigned long)initial_boot_params) +
967                 initial_boot_params->off_dt_struct;
968         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
969         if (*((u32 *)start) != OF_DT_END)
970                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
971         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
972                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
973                        ((u32 *)mem)[size / 4] );
974         *allnextp = NULL;
975
976         /* Get pointer to OF "/chosen" node for use everywhere */
977         of_chosen = of_find_node_by_path("/chosen");
978
979         /* Retreive command line */
980         if (of_chosen != NULL) {
981                 p = (char *)get_property(of_chosen, "bootargs", &l);
982                 if (p != NULL && l > 0)
983                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
984         }
985 #ifdef CONFIG_CMDLINE
986         if (l == 0 || (l == 1 && (*p) == 0))
987                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
988 #endif /* CONFIG_CMDLINE */
989
990         DBG("Command line is: %s\n", cmd_line);
991
992         DBG(" <- unflatten_device_tree()\n");
993 }
994
995
996 static int __init early_init_dt_scan_cpus(unsigned long node,
997                                           const char *uname, int depth, void *data)
998 {
999         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1000         u32 *prop;
1001         unsigned long size;
1002
1003         /* We are scanning "cpu" nodes only */
1004         if (type == NULL || strcmp(type, "cpu") != 0)
1005                 return 0;
1006
1007         if (initial_boot_params && initial_boot_params->version >= 2) {
1008                 /* version 2 of the kexec param format adds the phys cpuid
1009                  * of booted proc.
1010                  */
1011                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1012                 boot_cpuid = 0;
1013         } else {
1014                 /* Check if it's the boot-cpu, set it's hw index in paca now */
1015                 if (of_get_flat_dt_prop(node, "linux,boot-cpu", NULL)
1016                     != NULL) {
1017                         u32 *prop = of_get_flat_dt_prop(node, "reg", NULL);
1018                         set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1019                         boot_cpuid_phys = get_hard_smp_processor_id(0);
1020                 }
1021         }
1022
1023 #ifdef CONFIG_ALTIVEC
1024         /* Check if we have a VMX and eventually update CPU features */
1025         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1026         if (prop && (*prop) > 0) {
1027                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1028                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1029         }
1030
1031         /* Same goes for Apple's "altivec" property */
1032         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1033         if (prop) {
1034                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1035                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1036         }
1037 #endif /* CONFIG_ALTIVEC */
1038
1039         /*
1040          * Check for an SMT capable CPU and set the CPU feature. We do
1041          * this by looking at the size of the ibm,ppc-interrupt-server#s
1042          * property
1043          */
1044         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1045                                        &size);
1046         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1047         if (prop && ((size / sizeof(u32)) > 1))
1048                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1049
1050         return 0;
1051 }
1052
1053 static int __init early_init_dt_scan_chosen(unsigned long node,
1054                                             const char *uname, int depth, void *data)
1055 {
1056         u32 *prop;
1057         u64 *prop64;
1058
1059         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1060
1061         if (depth != 1 || strcmp(uname, "chosen") != 0)
1062                 return 0;
1063
1064         /* get platform type */
1065         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1066         if (prop == NULL)
1067                 return 0;
1068         systemcfg->platform = *prop;
1069
1070         /* check if iommu is forced on or off */
1071         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1072                 iommu_is_off = 1;
1073         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1074                 iommu_force_on = 1;
1075
1076         prop64 = (u64*)of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1077         if (prop64)
1078                 memory_limit = *prop64;
1079
1080         prop64 = (u64*)of_get_flat_dt_prop(node, "linux,tce-alloc-start",NULL);
1081         if (prop64)
1082                 tce_alloc_start = *prop64;
1083
1084         prop64 = (u64*)of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1085         if (prop64)
1086                 tce_alloc_end = *prop64;
1087
1088 #ifdef CONFIG_PPC_RTAS
1089         /* To help early debugging via the front panel, we retreive a minimal
1090          * set of RTAS infos now if available
1091          */
1092         {
1093                 u64 *basep, *entryp;
1094
1095                 basep = (u64*)of_get_flat_dt_prop(node,
1096                                                   "linux,rtas-base", NULL);
1097                 entryp = (u64*)of_get_flat_dt_prop(node,
1098                                                    "linux,rtas-entry", NULL);
1099                 prop = (u32*)of_get_flat_dt_prop(node,
1100                                                  "linux,rtas-size", NULL);
1101                 if (basep && entryp && prop) {
1102                         rtas.base = *basep;
1103                         rtas.entry = *entryp;
1104                         rtas.size = *prop;
1105                 }
1106         }
1107 #endif /* CONFIG_PPC_RTAS */
1108
1109         /* break now */
1110         return 1;
1111 }
1112
1113 static int __init early_init_dt_scan_root(unsigned long node,
1114                                           const char *uname, int depth, void *data)
1115 {
1116         u32 *prop;
1117
1118         if (depth != 0)
1119                 return 0;
1120
1121         prop = (u32 *)of_get_flat_dt_prop(node, "#size-cells", NULL);
1122         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1123         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1124
1125         prop = (u32 *)of_get_flat_dt_prop(node, "#address-cells", NULL);
1126         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1127         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1128         
1129         /* break now */
1130         return 1;
1131 }
1132
1133 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1134 {
1135         cell_t *p = *cellp;
1136         unsigned long r = 0;
1137
1138         /* Ignore more than 2 cells */
1139         while (s > 2) {
1140                 p++;
1141                 s--;
1142         }
1143         while (s) {
1144                 r <<= 32;
1145                 r |= *(p++);
1146                 s--;
1147         }
1148
1149         *cellp = p;
1150         return r;
1151 }
1152
1153
1154 static int __init early_init_dt_scan_memory(unsigned long node,
1155                                             const char *uname, int depth, void *data)
1156 {
1157         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1158         cell_t *reg, *endp;
1159         unsigned long l;
1160
1161         /* We are scanning "memory" nodes only */
1162         if (type == NULL || strcmp(type, "memory") != 0)
1163                 return 0;
1164
1165         reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1166         if (reg == NULL)
1167                 return 0;
1168
1169         endp = reg + (l / sizeof(cell_t));
1170
1171         DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1172             uname, l, reg[0], reg[1], reg[2], reg[3]);
1173
1174         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1175                 unsigned long base, size;
1176
1177                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1178                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1179
1180                 if (size == 0)
1181                         continue;
1182                 DBG(" - %lx ,  %lx\n", base, size);
1183                 if (iommu_is_off) {
1184                         if (base >= 0x80000000ul)
1185                                 continue;
1186                         if ((base + size) > 0x80000000ul)
1187                                 size = 0x80000000ul - base;
1188                 }
1189                 lmb_add(base, size);
1190         }
1191         return 0;
1192 }
1193
1194 static void __init early_reserve_mem(void)
1195 {
1196         u64 base, size;
1197         u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1198                                    initial_boot_params->off_mem_rsvmap);
1199         while (1) {
1200                 base = *(reserve_map++);
1201                 size = *(reserve_map++);
1202                 if (size == 0)
1203                         break;
1204                 DBG("reserving: %lx -> %lx\n", base, size);
1205                 lmb_reserve(base, size);
1206         }
1207
1208 #if 0
1209         DBG("memory reserved, lmbs :\n");
1210         lmb_dump_all();
1211 #endif
1212 }
1213
1214 void __init early_init_devtree(void *params)
1215 {
1216         DBG(" -> early_init_devtree()\n");
1217
1218         /* Setup flat device-tree pointer */
1219         initial_boot_params = params;
1220
1221         /* Retreive various informations from the /chosen node of the
1222          * device-tree, including the platform type, initrd location and
1223          * size, TCE reserve, and more ...
1224          */
1225         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1226
1227         /* Scan memory nodes and rebuild LMBs */
1228         lmb_init();
1229         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1230         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1231         lmb_enforce_memory_limit(memory_limit);
1232         lmb_analyze();
1233         systemcfg->physicalMemorySize = lmb_phys_mem_size();
1234         lmb_reserve(0, __pa(klimit));
1235
1236         DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1237
1238         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1239         early_reserve_mem();
1240
1241         DBG("Scanning CPUs ...\n");
1242
1243         /* Retreive hash table size from flattened tree plus other
1244          * CPU related informations (altivec support, boot CPU ID, ...)
1245          */
1246         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1247
1248         DBG(" <- early_init_devtree()\n");
1249 }
1250
1251 #undef printk
1252
1253 int
1254 prom_n_addr_cells(struct device_node* np)
1255 {
1256         int* ip;
1257         do {
1258                 if (np->parent)
1259                         np = np->parent;
1260                 ip = (int *) get_property(np, "#address-cells", NULL);
1261                 if (ip != NULL)
1262                         return *ip;
1263         } while (np->parent);
1264         /* No #address-cells property for the root node, default to 1 */
1265         return 1;
1266 }
1267
1268 int
1269 prom_n_size_cells(struct device_node* np)
1270 {
1271         int* ip;
1272         do {
1273                 if (np->parent)
1274                         np = np->parent;
1275                 ip = (int *) get_property(np, "#size-cells", NULL);
1276                 if (ip != NULL)
1277                         return *ip;
1278         } while (np->parent);
1279         /* No #size-cells property for the root node, default to 1 */
1280         return 1;
1281 }
1282
1283 /**
1284  * Work out the sense (active-low level / active-high edge)
1285  * of each interrupt from the device tree.
1286  */
1287 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1288 {
1289         struct device_node *np;
1290         int i, j;
1291
1292         /* default to level-triggered */
1293         memset(senses, 1, max - off);
1294
1295         for (np = allnodes; np != 0; np = np->allnext) {
1296                 for (j = 0; j < np->n_intrs; j++) {
1297                         i = np->intrs[j].line;
1298                         if (i >= off && i < max)
1299                                 senses[i-off] = np->intrs[j].sense ?
1300                                         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1301                                         IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1302                 }
1303         }
1304 }
1305
1306 /**
1307  * Construct and return a list of the device_nodes with a given name.
1308  */
1309 struct device_node *
1310 find_devices(const char *name)
1311 {
1312         struct device_node *head, **prevp, *np;
1313
1314         prevp = &head;
1315         for (np = allnodes; np != 0; np = np->allnext) {
1316                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1317                         *prevp = np;
1318                         prevp = &np->next;
1319                 }
1320         }
1321         *prevp = NULL;
1322         return head;
1323 }
1324 EXPORT_SYMBOL(find_devices);
1325
1326 /**
1327  * Construct and return a list of the device_nodes with a given type.
1328  */
1329 struct device_node *
1330 find_type_devices(const char *type)
1331 {
1332         struct device_node *head, **prevp, *np;
1333
1334         prevp = &head;
1335         for (np = allnodes; np != 0; np = np->allnext) {
1336                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1337                         *prevp = np;
1338                         prevp = &np->next;
1339                 }
1340         }
1341         *prevp = NULL;
1342         return head;
1343 }
1344 EXPORT_SYMBOL(find_type_devices);
1345
1346 /**
1347  * Returns all nodes linked together
1348  */
1349 struct device_node *
1350 find_all_nodes(void)
1351 {
1352         struct device_node *head, **prevp, *np;
1353
1354         prevp = &head;
1355         for (np = allnodes; np != 0; np = np->allnext) {
1356                 *prevp = np;
1357                 prevp = &np->next;
1358         }
1359         *prevp = NULL;
1360         return head;
1361 }
1362 EXPORT_SYMBOL(find_all_nodes);
1363
1364 /** Checks if the given "compat" string matches one of the strings in
1365  * the device's "compatible" property
1366  */
1367 int
1368 device_is_compatible(struct device_node *device, const char *compat)
1369 {
1370         const char* cp;
1371         int cplen, l;
1372
1373         cp = (char *) get_property(device, "compatible", &cplen);
1374         if (cp == NULL)
1375                 return 0;
1376         while (cplen > 0) {
1377                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1378                         return 1;
1379                 l = strlen(cp) + 1;
1380                 cp += l;
1381                 cplen -= l;
1382         }
1383
1384         return 0;
1385 }
1386 EXPORT_SYMBOL(device_is_compatible);
1387
1388
1389 /**
1390  * Indicates whether the root node has a given value in its
1391  * compatible property.
1392  */
1393 int
1394 machine_is_compatible(const char *compat)
1395 {
1396         struct device_node *root;
1397         int rc = 0;
1398
1399         root = of_find_node_by_path("/");
1400         if (root) {
1401                 rc = device_is_compatible(root, compat);
1402                 of_node_put(root);
1403         }
1404         return rc;
1405 }
1406 EXPORT_SYMBOL(machine_is_compatible);
1407
1408 /**
1409  * Construct and return a list of the device_nodes with a given type
1410  * and compatible property.
1411  */
1412 struct device_node *
1413 find_compatible_devices(const char *type, const char *compat)
1414 {
1415         struct device_node *head, **prevp, *np;
1416
1417         prevp = &head;
1418         for (np = allnodes; np != 0; np = np->allnext) {
1419                 if (type != NULL
1420                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1421                         continue;
1422                 if (device_is_compatible(np, compat)) {
1423                         *prevp = np;
1424                         prevp = &np->next;
1425                 }
1426         }
1427         *prevp = NULL;
1428         return head;
1429 }
1430 EXPORT_SYMBOL(find_compatible_devices);
1431
1432 /**
1433  * Find the device_node with a given full_name.
1434  */
1435 struct device_node *
1436 find_path_device(const char *path)
1437 {
1438         struct device_node *np;
1439
1440         for (np = allnodes; np != 0; np = np->allnext)
1441                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1442                         return np;
1443         return NULL;
1444 }
1445 EXPORT_SYMBOL(find_path_device);
1446
1447 /*******
1448  *
1449  * New implementation of the OF "find" APIs, return a refcounted
1450  * object, call of_node_put() when done.  The device tree and list
1451  * are protected by a rw_lock.
1452  *
1453  * Note that property management will need some locking as well,
1454  * this isn't dealt with yet.
1455  *
1456  *******/
1457
1458 /**
1459  *      of_find_node_by_name - Find a node by its "name" property
1460  *      @from:  The node to start searching from or NULL, the node
1461  *              you pass will not be searched, only the next one
1462  *              will; typically, you pass what the previous call
1463  *              returned. of_node_put() will be called on it
1464  *      @name:  The name string to match against
1465  *
1466  *      Returns a node pointer with refcount incremented, use
1467  *      of_node_put() on it when done.
1468  */
1469 struct device_node *of_find_node_by_name(struct device_node *from,
1470         const char *name)
1471 {
1472         struct device_node *np;
1473
1474         read_lock(&devtree_lock);
1475         np = from ? from->allnext : allnodes;
1476         for (; np != 0; np = np->allnext)
1477                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1478                     && of_node_get(np))
1479                         break;
1480         if (from)
1481                 of_node_put(from);
1482         read_unlock(&devtree_lock);
1483         return np;
1484 }
1485 EXPORT_SYMBOL(of_find_node_by_name);
1486
1487 /**
1488  *      of_find_node_by_type - Find a node by its "device_type" property
1489  *      @from:  The node to start searching from or NULL, the node
1490  *              you pass will not be searched, only the next one
1491  *              will; typically, you pass what the previous call
1492  *              returned. of_node_put() will be called on it
1493  *      @name:  The type string to match against
1494  *
1495  *      Returns a node pointer with refcount incremented, use
1496  *      of_node_put() on it when done.
1497  */
1498 struct device_node *of_find_node_by_type(struct device_node *from,
1499         const char *type)
1500 {
1501         struct device_node *np;
1502
1503         read_lock(&devtree_lock);
1504         np = from ? from->allnext : allnodes;
1505         for (; np != 0; np = np->allnext)
1506                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1507                     && of_node_get(np))
1508                         break;
1509         if (from)
1510                 of_node_put(from);
1511         read_unlock(&devtree_lock);
1512         return np;
1513 }
1514 EXPORT_SYMBOL(of_find_node_by_type);
1515
1516 /**
1517  *      of_find_compatible_node - Find a node based on type and one of the
1518  *                                tokens in its "compatible" property
1519  *      @from:          The node to start searching from or NULL, the node
1520  *                      you pass will not be searched, only the next one
1521  *                      will; typically, you pass what the previous call
1522  *                      returned. of_node_put() will be called on it
1523  *      @type:          The type string to match "device_type" or NULL to ignore
1524  *      @compatible:    The string to match to one of the tokens in the device
1525  *                      "compatible" list.
1526  *
1527  *      Returns a node pointer with refcount incremented, use
1528  *      of_node_put() on it when done.
1529  */
1530 struct device_node *of_find_compatible_node(struct device_node *from,
1531         const char *type, const char *compatible)
1532 {
1533         struct device_node *np;
1534
1535         read_lock(&devtree_lock);
1536         np = from ? from->allnext : allnodes;
1537         for (; np != 0; np = np->allnext) {
1538                 if (type != NULL
1539                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1540                         continue;
1541                 if (device_is_compatible(np, compatible) && of_node_get(np))
1542                         break;
1543         }
1544         if (from)
1545                 of_node_put(from);
1546         read_unlock(&devtree_lock);
1547         return np;
1548 }
1549 EXPORT_SYMBOL(of_find_compatible_node);
1550
1551 /**
1552  *      of_find_node_by_path - Find a node matching a full OF path
1553  *      @path:  The full path to match
1554  *
1555  *      Returns a node pointer with refcount incremented, use
1556  *      of_node_put() on it when done.
1557  */
1558 struct device_node *of_find_node_by_path(const char *path)
1559 {
1560         struct device_node *np = allnodes;
1561
1562         read_lock(&devtree_lock);
1563         for (; np != 0; np = np->allnext) {
1564                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1565                     && of_node_get(np))
1566                         break;
1567         }
1568         read_unlock(&devtree_lock);
1569         return np;
1570 }
1571 EXPORT_SYMBOL(of_find_node_by_path);
1572
1573 /**
1574  *      of_find_node_by_phandle - Find a node given a phandle
1575  *      @handle:        phandle of the node to find
1576  *
1577  *      Returns a node pointer with refcount incremented, use
1578  *      of_node_put() on it when done.
1579  */
1580 struct device_node *of_find_node_by_phandle(phandle handle)
1581 {
1582         struct device_node *np;
1583
1584         read_lock(&devtree_lock);
1585         for (np = allnodes; np != 0; np = np->allnext)
1586                 if (np->linux_phandle == handle)
1587                         break;
1588         if (np)
1589                 of_node_get(np);
1590         read_unlock(&devtree_lock);
1591         return np;
1592 }
1593 EXPORT_SYMBOL(of_find_node_by_phandle);
1594
1595 /**
1596  *      of_find_all_nodes - Get next node in global list
1597  *      @prev:  Previous node or NULL to start iteration
1598  *              of_node_put() will be called on it
1599  *
1600  *      Returns a node pointer with refcount incremented, use
1601  *      of_node_put() on it when done.
1602  */
1603 struct device_node *of_find_all_nodes(struct device_node *prev)
1604 {
1605         struct device_node *np;
1606
1607         read_lock(&devtree_lock);
1608         np = prev ? prev->allnext : allnodes;
1609         for (; np != 0; np = np->allnext)
1610                 if (of_node_get(np))
1611                         break;
1612         if (prev)
1613                 of_node_put(prev);
1614         read_unlock(&devtree_lock);
1615         return np;
1616 }
1617 EXPORT_SYMBOL(of_find_all_nodes);
1618
1619 /**
1620  *      of_get_parent - Get a node's parent if any
1621  *      @node:  Node to get parent
1622  *
1623  *      Returns a node pointer with refcount incremented, use
1624  *      of_node_put() on it when done.
1625  */
1626 struct device_node *of_get_parent(const struct device_node *node)
1627 {
1628         struct device_node *np;
1629
1630         if (!node)
1631                 return NULL;
1632
1633         read_lock(&devtree_lock);
1634         np = of_node_get(node->parent);
1635         read_unlock(&devtree_lock);
1636         return np;
1637 }
1638 EXPORT_SYMBOL(of_get_parent);
1639
1640 /**
1641  *      of_get_next_child - Iterate a node childs
1642  *      @node:  parent node
1643  *      @prev:  previous child of the parent node, or NULL to get first
1644  *
1645  *      Returns a node pointer with refcount incremented, use
1646  *      of_node_put() on it when done.
1647  */
1648 struct device_node *of_get_next_child(const struct device_node *node,
1649         struct device_node *prev)
1650 {
1651         struct device_node *next;
1652
1653         read_lock(&devtree_lock);
1654         next = prev ? prev->sibling : node->child;
1655         for (; next != 0; next = next->sibling)
1656                 if (of_node_get(next))
1657                         break;
1658         if (prev)
1659                 of_node_put(prev);
1660         read_unlock(&devtree_lock);
1661         return next;
1662 }
1663 EXPORT_SYMBOL(of_get_next_child);
1664
1665 /**
1666  *      of_node_get - Increment refcount of a node
1667  *      @node:  Node to inc refcount, NULL is supported to
1668  *              simplify writing of callers
1669  *
1670  *      Returns node.
1671  */
1672 struct device_node *of_node_get(struct device_node *node)
1673 {
1674         if (node)
1675                 kref_get(&node->kref);
1676         return node;
1677 }
1678 EXPORT_SYMBOL(of_node_get);
1679
1680 static inline struct device_node * kref_to_device_node(struct kref *kref)
1681 {
1682         return container_of(kref, struct device_node, kref);
1683 }
1684
1685 /**
1686  *      of_node_release - release a dynamically allocated node
1687  *      @kref:  kref element of the node to be released
1688  *
1689  *      In of_node_put() this function is passed to kref_put()
1690  *      as the destructor.
1691  */
1692 static void of_node_release(struct kref *kref)
1693 {
1694         struct device_node *node = kref_to_device_node(kref);
1695         struct property *prop = node->properties;
1696
1697         if (!OF_IS_DYNAMIC(node))
1698                 return;
1699         while (prop) {
1700                 struct property *next = prop->next;
1701                 kfree(prop->name);
1702                 kfree(prop->value);
1703                 kfree(prop);
1704                 prop = next;
1705         }
1706         kfree(node->intrs);
1707         kfree(node->addrs);
1708         kfree(node->full_name);
1709         kfree(node->data);
1710         kfree(node);
1711 }
1712
1713 /**
1714  *      of_node_put - Decrement refcount of a node
1715  *      @node:  Node to dec refcount, NULL is supported to
1716  *              simplify writing of callers
1717  *
1718  */
1719 void of_node_put(struct device_node *node)
1720 {
1721         if (node)
1722                 kref_put(&node->kref, of_node_release);
1723 }
1724 EXPORT_SYMBOL(of_node_put);
1725
1726 /*
1727  * Fix up the uninitialized fields in a new device node:
1728  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1729  *
1730  * A lot of boot-time code is duplicated here, because functions such
1731  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1732  * slab allocator.
1733  *
1734  * This should probably be split up into smaller chunks.
1735  */
1736
1737 static int of_finish_dynamic_node(struct device_node *node,
1738                                   unsigned long *unused1, int unused2,
1739                                   int unused3, int unused4)
1740 {
1741         struct device_node *parent = of_get_parent(node);
1742         int err = 0;
1743         phandle *ibm_phandle;
1744
1745         node->name = get_property(node, "name", NULL);
1746         node->type = get_property(node, "device_type", NULL);
1747
1748         if (!parent) {
1749                 err = -ENODEV;
1750                 goto out;
1751         }
1752
1753         /* We don't support that function on PowerMac, at least
1754          * not yet
1755          */
1756         if (systemcfg->platform == PLATFORM_POWERMAC)
1757                 return -ENODEV;
1758
1759         /* fix up new node's linux_phandle field */
1760         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1761                 node->linux_phandle = *ibm_phandle;
1762
1763 out:
1764         of_node_put(parent);
1765         return err;
1766 }
1767
1768 /*
1769  * Plug a device node into the tree and global list.
1770  */
1771 void of_attach_node(struct device_node *np)
1772 {
1773         write_lock(&devtree_lock);
1774         np->sibling = np->parent->child;
1775         np->allnext = allnodes;
1776         np->parent->child = np;
1777         allnodes = np;
1778         write_unlock(&devtree_lock);
1779 }
1780
1781 /*
1782  * "Unplug" a node from the device tree.  The caller must hold
1783  * a reference to the node.  The memory associated with the node
1784  * is not freed until its refcount goes to zero.
1785  */
1786 void of_detach_node(const struct device_node *np)
1787 {
1788         struct device_node *parent;
1789
1790         write_lock(&devtree_lock);
1791
1792         parent = np->parent;
1793
1794         if (allnodes == np)
1795                 allnodes = np->allnext;
1796         else {
1797                 struct device_node *prev;
1798                 for (prev = allnodes;
1799                      prev->allnext != np;
1800                      prev = prev->allnext)
1801                         ;
1802                 prev->allnext = np->allnext;
1803         }
1804
1805         if (parent->child == np)
1806                 parent->child = np->sibling;
1807         else {
1808                 struct device_node *prevsib;
1809                 for (prevsib = np->parent->child;
1810                      prevsib->sibling != np;
1811                      prevsib = prevsib->sibling)
1812                         ;
1813                 prevsib->sibling = np->sibling;
1814         }
1815
1816         write_unlock(&devtree_lock);
1817 }
1818
1819 static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1820 {
1821         int err;
1822
1823         switch (action) {
1824         case PSERIES_RECONFIG_ADD:
1825                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1826                 if (err < 0) {
1827                         printk(KERN_ERR "finish_node returned %d\n", err);
1828                         err = NOTIFY_BAD;
1829                 }
1830                 break;
1831         default:
1832                 err = NOTIFY_DONE;
1833                 break;
1834         }
1835         return err;
1836 }
1837
1838 static struct notifier_block prom_reconfig_nb = {
1839         .notifier_call = prom_reconfig_notifier,
1840         .priority = 10, /* This one needs to run first */
1841 };
1842
1843 static int __init prom_reconfig_setup(void)
1844 {
1845         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1846 }
1847 __initcall(prom_reconfig_setup);
1848
1849 /*
1850  * Find a property with a given name for a given node
1851  * and return the value.
1852  */
1853 unsigned char *
1854 get_property(struct device_node *np, const char *name, int *lenp)
1855 {
1856         struct property *pp;
1857
1858         for (pp = np->properties; pp != 0; pp = pp->next)
1859                 if (strcmp(pp->name, name) == 0) {
1860                         if (lenp != 0)
1861                                 *lenp = pp->length;
1862                         return pp->value;
1863                 }
1864         return NULL;
1865 }
1866 EXPORT_SYMBOL(get_property);
1867
1868 /*
1869  * Add a property to a node.
1870  */
1871 int
1872 prom_add_property(struct device_node* np, struct property* prop)
1873 {
1874         struct property **next;
1875
1876         prop->next = NULL;      
1877         write_lock(&devtree_lock);
1878         next = &np->properties;
1879         while (*next) {
1880                 if (strcmp(prop->name, (*next)->name) == 0) {
1881                         /* duplicate ! don't insert it */
1882                         write_unlock(&devtree_lock);
1883                         return -1;
1884                 }
1885                 next = &(*next)->next;
1886         }
1887         *next = prop;
1888         write_unlock(&devtree_lock);
1889
1890         /* try to add to proc as well if it was initialized */
1891         if (np->pde)
1892                 proc_device_tree_add_prop(np->pde, prop);
1893
1894         return 0;
1895 }
1896
1897 #if 0
1898 void
1899 print_properties(struct device_node *np)
1900 {
1901         struct property *pp;
1902         char *cp;
1903         int i, n;
1904
1905         for (pp = np->properties; pp != 0; pp = pp->next) {
1906                 printk(KERN_INFO "%s", pp->name);
1907                 for (i = strlen(pp->name); i < 16; ++i)
1908                         printk(" ");
1909                 cp = (char *) pp->value;
1910                 for (i = pp->length; i > 0; --i, ++cp)
1911                         if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1912                             || (i == 1 && *cp != 0))
1913                                 break;
1914                 if (i == 0 && pp->length > 1) {
1915                         /* looks like a string */
1916                         printk(" %s\n", (char *) pp->value);
1917                 } else {
1918                         /* dump it in hex */
1919                         n = pp->length;
1920                         if (n > 64)
1921                                 n = 64;
1922                         if (pp->length % 4 == 0) {
1923                                 unsigned int *p = (unsigned int *) pp->value;
1924
1925                                 n /= 4;
1926                                 for (i = 0; i < n; ++i) {
1927                                         if (i != 0 && (i % 4) == 0)
1928                                                 printk("\n                ");
1929                                         printk(" %08x", *p++);
1930                                 }
1931                         } else {
1932                                 unsigned char *bp = pp->value;
1933
1934                                 for (i = 0; i < n; ++i) {
1935                                         if (i != 0 && (i % 16) == 0)
1936                                                 printk("\n                ");
1937                                         printk(" %02x", *bp++);
1938                                 }
1939                         }
1940                         printk("\n");
1941                         if (pp->length > 64)
1942                                 printk("                 ... (length = %d)\n",
1943                                        pp->length);
1944                 }
1945         }
1946 }
1947 #endif
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957