]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "perf_event.h"
22
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
29         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
30         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
31         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
32         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
33         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
34         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
35         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46         EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64         EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80         EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88         EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100         EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123         EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147         EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156         EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161         EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169         EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177         EVENT_CONSTRAINT_END
178 };
179
180 struct event_constraint intel_skl_event_constraints[] = {
181         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
182         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
183         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
184         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
185         EVENT_CONSTRAINT_END
186 };
187
188 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
189         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
191         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
192         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193         EVENT_EXTRA_END
194 };
195
196 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
197         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
199         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
200         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201         EVENT_EXTRA_END
202 };
203
204 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
205         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
206         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
207         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
208         /*
209          * Note the low 8 bits eventsel code is not a continuous field, containing
210          * some #GPing bits. These are masked out.
211          */
212         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
213         EVENT_EXTRA_END
214 };
215
216 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
217 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
218 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
219
220 struct attribute *nhm_events_attrs[] = {
221         EVENT_PTR(mem_ld_nhm),
222         NULL,
223 };
224
225 struct attribute *snb_events_attrs[] = {
226         EVENT_PTR(mem_ld_snb),
227         EVENT_PTR(mem_st_snb),
228         NULL,
229 };
230
231 static struct event_constraint intel_hsw_event_constraints[] = {
232         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
233         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
234         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
235         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
236         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
237         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
238         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
239         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
240         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
241         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
242         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
243         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
244
245         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
246         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
247         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
248         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
249
250         EVENT_CONSTRAINT_END
251 };
252
253 struct event_constraint intel_bdw_event_constraints[] = {
254         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
255         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
256         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
257         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
258         INTEL_UEVENT_CONSTRAINT(0x8a3, 0x4),    /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
259         EVENT_CONSTRAINT_END
260 };
261
262 static u64 intel_pmu_event_map(int hw_event)
263 {
264         return intel_perfmon_event_map[hw_event];
265 }
266
267 /*
268  * Notes on the events:
269  * - data reads do not include code reads (comparable to earlier tables)
270  * - data counts include speculative execution (except L1 write, dtlb, bpu)
271  * - remote node access includes remote memory, remote cache, remote mmio.
272  * - prefetches are not included in the counts.
273  * - icache miss does not include decoded icache
274  */
275
276 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
277 #define SKL_DEMAND_RFO                  BIT_ULL(1)
278 #define SKL_ANY_RESPONSE                BIT_ULL(16)
279 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
280 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
281 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
282 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
283 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
284 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
285                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
286                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
287                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
288 #define SKL_SPL_HIT                     BIT_ULL(30)
289 #define SKL_SNOOP_NONE                  BIT_ULL(31)
290 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
291 #define SKL_SNOOP_MISS                  BIT_ULL(33)
292 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
293 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
294 #define SKL_SNOOP_HITM                  BIT_ULL(36)
295 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
296 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
297                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
298                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
299                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
300 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
301 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
302                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
303                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
304                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
305 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
306 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
307 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
308                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
309                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
310
311 static __initconst const u64 skl_hw_cache_event_ids
312                                 [PERF_COUNT_HW_CACHE_MAX]
313                                 [PERF_COUNT_HW_CACHE_OP_MAX]
314                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
315 {
316  [ C(L1D ) ] = {
317         [ C(OP_READ) ] = {
318                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
319                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
320         },
321         [ C(OP_WRITE) ] = {
322                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
323                 [ C(RESULT_MISS)   ] = 0x0,
324         },
325         [ C(OP_PREFETCH) ] = {
326                 [ C(RESULT_ACCESS) ] = 0x0,
327                 [ C(RESULT_MISS)   ] = 0x0,
328         },
329  },
330  [ C(L1I ) ] = {
331         [ C(OP_READ) ] = {
332                 [ C(RESULT_ACCESS) ] = 0x0,
333                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
334         },
335         [ C(OP_WRITE) ] = {
336                 [ C(RESULT_ACCESS) ] = -1,
337                 [ C(RESULT_MISS)   ] = -1,
338         },
339         [ C(OP_PREFETCH) ] = {
340                 [ C(RESULT_ACCESS) ] = 0x0,
341                 [ C(RESULT_MISS)   ] = 0x0,
342         },
343  },
344  [ C(LL  ) ] = {
345         [ C(OP_READ) ] = {
346                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
347                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
348         },
349         [ C(OP_WRITE) ] = {
350                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
351                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
352         },
353         [ C(OP_PREFETCH) ] = {
354                 [ C(RESULT_ACCESS) ] = 0x0,
355                 [ C(RESULT_MISS)   ] = 0x0,
356         },
357  },
358  [ C(DTLB) ] = {
359         [ C(OP_READ) ] = {
360                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
361                 [ C(RESULT_MISS)   ] = 0x608,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
362         },
363         [ C(OP_WRITE) ] = {
364                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
365                 [ C(RESULT_MISS)   ] = 0x649,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
366         },
367         [ C(OP_PREFETCH) ] = {
368                 [ C(RESULT_ACCESS) ] = 0x0,
369                 [ C(RESULT_MISS)   ] = 0x0,
370         },
371  },
372  [ C(ITLB) ] = {
373         [ C(OP_READ) ] = {
374                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
375                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
376         },
377         [ C(OP_WRITE) ] = {
378                 [ C(RESULT_ACCESS) ] = -1,
379                 [ C(RESULT_MISS)   ] = -1,
380         },
381         [ C(OP_PREFETCH) ] = {
382                 [ C(RESULT_ACCESS) ] = -1,
383                 [ C(RESULT_MISS)   ] = -1,
384         },
385  },
386  [ C(BPU ) ] = {
387         [ C(OP_READ) ] = {
388                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
389                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
390         },
391         [ C(OP_WRITE) ] = {
392                 [ C(RESULT_ACCESS) ] = -1,
393                 [ C(RESULT_MISS)   ] = -1,
394         },
395         [ C(OP_PREFETCH) ] = {
396                 [ C(RESULT_ACCESS) ] = -1,
397                 [ C(RESULT_MISS)   ] = -1,
398         },
399  },
400  [ C(NODE) ] = {
401         [ C(OP_READ) ] = {
402                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
403                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
404         },
405         [ C(OP_WRITE) ] = {
406                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
407                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
408         },
409         [ C(OP_PREFETCH) ] = {
410                 [ C(RESULT_ACCESS) ] = 0x0,
411                 [ C(RESULT_MISS)   ] = 0x0,
412         },
413  },
414 };
415
416 static __initconst const u64 skl_hw_cache_extra_regs
417                                 [PERF_COUNT_HW_CACHE_MAX]
418                                 [PERF_COUNT_HW_CACHE_OP_MAX]
419                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
420 {
421  [ C(LL  ) ] = {
422         [ C(OP_READ) ] = {
423                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
424                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
425                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
426                                        SKL_L3_MISS|SKL_ANY_SNOOP|
427                                        SKL_SUPPLIER_NONE,
428         },
429         [ C(OP_WRITE) ] = {
430                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
431                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
432                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
433                                        SKL_L3_MISS|SKL_ANY_SNOOP|
434                                        SKL_SUPPLIER_NONE,
435         },
436         [ C(OP_PREFETCH) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x0,
438                 [ C(RESULT_MISS)   ] = 0x0,
439         },
440  },
441  [ C(NODE) ] = {
442         [ C(OP_READ) ] = {
443                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
444                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
445                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
446                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
447         },
448         [ C(OP_WRITE) ] = {
449                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
450                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
451                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
452                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x0,
456                 [ C(RESULT_MISS)   ] = 0x0,
457         },
458  },
459 };
460
461 #define SNB_DMND_DATA_RD        (1ULL << 0)
462 #define SNB_DMND_RFO            (1ULL << 1)
463 #define SNB_DMND_IFETCH         (1ULL << 2)
464 #define SNB_DMND_WB             (1ULL << 3)
465 #define SNB_PF_DATA_RD          (1ULL << 4)
466 #define SNB_PF_RFO              (1ULL << 5)
467 #define SNB_PF_IFETCH           (1ULL << 6)
468 #define SNB_LLC_DATA_RD         (1ULL << 7)
469 #define SNB_LLC_RFO             (1ULL << 8)
470 #define SNB_LLC_IFETCH          (1ULL << 9)
471 #define SNB_BUS_LOCKS           (1ULL << 10)
472 #define SNB_STRM_ST             (1ULL << 11)
473 #define SNB_OTHER               (1ULL << 15)
474 #define SNB_RESP_ANY            (1ULL << 16)
475 #define SNB_NO_SUPP             (1ULL << 17)
476 #define SNB_LLC_HITM            (1ULL << 18)
477 #define SNB_LLC_HITE            (1ULL << 19)
478 #define SNB_LLC_HITS            (1ULL << 20)
479 #define SNB_LLC_HITF            (1ULL << 21)
480 #define SNB_LOCAL               (1ULL << 22)
481 #define SNB_REMOTE              (0xffULL << 23)
482 #define SNB_SNP_NONE            (1ULL << 31)
483 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
484 #define SNB_SNP_MISS            (1ULL << 33)
485 #define SNB_NO_FWD              (1ULL << 34)
486 #define SNB_SNP_FWD             (1ULL << 35)
487 #define SNB_HITM                (1ULL << 36)
488 #define SNB_NON_DRAM            (1ULL << 37)
489
490 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
491 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
492 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
493
494 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
495                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
496                                  SNB_HITM)
497
498 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
499 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
500
501 #define SNB_L3_ACCESS           SNB_RESP_ANY
502 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
503
504 static __initconst const u64 snb_hw_cache_extra_regs
505                                 [PERF_COUNT_HW_CACHE_MAX]
506                                 [PERF_COUNT_HW_CACHE_OP_MAX]
507                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
508 {
509  [ C(LL  ) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
512                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
516                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
520                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
521         },
522  },
523  [ C(NODE) ] = {
524         [ C(OP_READ) ] = {
525                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
526                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
527         },
528         [ C(OP_WRITE) ] = {
529                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
530                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
531         },
532         [ C(OP_PREFETCH) ] = {
533                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
534                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
535         },
536  },
537 };
538
539 static __initconst const u64 snb_hw_cache_event_ids
540                                 [PERF_COUNT_HW_CACHE_MAX]
541                                 [PERF_COUNT_HW_CACHE_OP_MAX]
542                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
543 {
544  [ C(L1D) ] = {
545         [ C(OP_READ) ] = {
546                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
547                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
548         },
549         [ C(OP_WRITE) ] = {
550                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
551                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
552         },
553         [ C(OP_PREFETCH) ] = {
554                 [ C(RESULT_ACCESS) ] = 0x0,
555                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
556         },
557  },
558  [ C(L1I ) ] = {
559         [ C(OP_READ) ] = {
560                 [ C(RESULT_ACCESS) ] = 0x0,
561                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
562         },
563         [ C(OP_WRITE) ] = {
564                 [ C(RESULT_ACCESS) ] = -1,
565                 [ C(RESULT_MISS)   ] = -1,
566         },
567         [ C(OP_PREFETCH) ] = {
568                 [ C(RESULT_ACCESS) ] = 0x0,
569                 [ C(RESULT_MISS)   ] = 0x0,
570         },
571  },
572  [ C(LL  ) ] = {
573         [ C(OP_READ) ] = {
574                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
575                 [ C(RESULT_ACCESS) ] = 0x01b7,
576                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
577                 [ C(RESULT_MISS)   ] = 0x01b7,
578         },
579         [ C(OP_WRITE) ] = {
580                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
581                 [ C(RESULT_ACCESS) ] = 0x01b7,
582                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
583                 [ C(RESULT_MISS)   ] = 0x01b7,
584         },
585         [ C(OP_PREFETCH) ] = {
586                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
587                 [ C(RESULT_ACCESS) ] = 0x01b7,
588                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
589                 [ C(RESULT_MISS)   ] = 0x01b7,
590         },
591  },
592  [ C(DTLB) ] = {
593         [ C(OP_READ) ] = {
594                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
595                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
596         },
597         [ C(OP_WRITE) ] = {
598                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
599                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
600         },
601         [ C(OP_PREFETCH) ] = {
602                 [ C(RESULT_ACCESS) ] = 0x0,
603                 [ C(RESULT_MISS)   ] = 0x0,
604         },
605  },
606  [ C(ITLB) ] = {
607         [ C(OP_READ) ] = {
608                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
609                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
610         },
611         [ C(OP_WRITE) ] = {
612                 [ C(RESULT_ACCESS) ] = -1,
613                 [ C(RESULT_MISS)   ] = -1,
614         },
615         [ C(OP_PREFETCH) ] = {
616                 [ C(RESULT_ACCESS) ] = -1,
617                 [ C(RESULT_MISS)   ] = -1,
618         },
619  },
620  [ C(BPU ) ] = {
621         [ C(OP_READ) ] = {
622                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
623                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
624         },
625         [ C(OP_WRITE) ] = {
626                 [ C(RESULT_ACCESS) ] = -1,
627                 [ C(RESULT_MISS)   ] = -1,
628         },
629         [ C(OP_PREFETCH) ] = {
630                 [ C(RESULT_ACCESS) ] = -1,
631                 [ C(RESULT_MISS)   ] = -1,
632         },
633  },
634  [ C(NODE) ] = {
635         [ C(OP_READ) ] = {
636                 [ C(RESULT_ACCESS) ] = 0x01b7,
637                 [ C(RESULT_MISS)   ] = 0x01b7,
638         },
639         [ C(OP_WRITE) ] = {
640                 [ C(RESULT_ACCESS) ] = 0x01b7,
641                 [ C(RESULT_MISS)   ] = 0x01b7,
642         },
643         [ C(OP_PREFETCH) ] = {
644                 [ C(RESULT_ACCESS) ] = 0x01b7,
645                 [ C(RESULT_MISS)   ] = 0x01b7,
646         },
647  },
648
649 };
650
651 /*
652  * Notes on the events:
653  * - data reads do not include code reads (comparable to earlier tables)
654  * - data counts include speculative execution (except L1 write, dtlb, bpu)
655  * - remote node access includes remote memory, remote cache, remote mmio.
656  * - prefetches are not included in the counts because they are not
657  *   reliably counted.
658  */
659
660 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
661 #define HSW_DEMAND_RFO                  BIT_ULL(1)
662 #define HSW_ANY_RESPONSE                BIT_ULL(16)
663 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
664 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
665 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
666 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
667 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
668 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
669                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
670                                          HSW_L3_MISS_REMOTE_HOP2P)
671 #define HSW_SNOOP_NONE                  BIT_ULL(31)
672 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
673 #define HSW_SNOOP_MISS                  BIT_ULL(33)
674 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
675 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
676 #define HSW_SNOOP_HITM                  BIT_ULL(36)
677 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
678 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
679                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
680                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
681                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
682 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
683 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
684 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
685 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
686                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
687 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
688
689 #define BDW_L3_MISS_LOCAL               BIT(26)
690 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
691                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
692                                          HSW_L3_MISS_REMOTE_HOP2P)
693
694
695 static __initconst const u64 hsw_hw_cache_event_ids
696                                 [PERF_COUNT_HW_CACHE_MAX]
697                                 [PERF_COUNT_HW_CACHE_OP_MAX]
698                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700  [ C(L1D ) ] = {
701         [ C(OP_READ) ] = {
702                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
703                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
704         },
705         [ C(OP_WRITE) ] = {
706                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
707                 [ C(RESULT_MISS)   ] = 0x0,
708         },
709         [ C(OP_PREFETCH) ] = {
710                 [ C(RESULT_ACCESS) ] = 0x0,
711                 [ C(RESULT_MISS)   ] = 0x0,
712         },
713  },
714  [ C(L1I ) ] = {
715         [ C(OP_READ) ] = {
716                 [ C(RESULT_ACCESS) ] = 0x0,
717                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
718         },
719         [ C(OP_WRITE) ] = {
720                 [ C(RESULT_ACCESS) ] = -1,
721                 [ C(RESULT_MISS)   ] = -1,
722         },
723         [ C(OP_PREFETCH) ] = {
724                 [ C(RESULT_ACCESS) ] = 0x0,
725                 [ C(RESULT_MISS)   ] = 0x0,
726         },
727  },
728  [ C(LL  ) ] = {
729         [ C(OP_READ) ] = {
730                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
731                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
732         },
733         [ C(OP_WRITE) ] = {
734                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
735                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
736         },
737         [ C(OP_PREFETCH) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x0,
739                 [ C(RESULT_MISS)   ] = 0x0,
740         },
741  },
742  [ C(DTLB) ] = {
743         [ C(OP_READ) ] = {
744                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
745                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
746         },
747         [ C(OP_WRITE) ] = {
748                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
749                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
750         },
751         [ C(OP_PREFETCH) ] = {
752                 [ C(RESULT_ACCESS) ] = 0x0,
753                 [ C(RESULT_MISS)   ] = 0x0,
754         },
755  },
756  [ C(ITLB) ] = {
757         [ C(OP_READ) ] = {
758                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
759                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
760         },
761         [ C(OP_WRITE) ] = {
762                 [ C(RESULT_ACCESS) ] = -1,
763                 [ C(RESULT_MISS)   ] = -1,
764         },
765         [ C(OP_PREFETCH) ] = {
766                 [ C(RESULT_ACCESS) ] = -1,
767                 [ C(RESULT_MISS)   ] = -1,
768         },
769  },
770  [ C(BPU ) ] = {
771         [ C(OP_READ) ] = {
772                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
773                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
774         },
775         [ C(OP_WRITE) ] = {
776                 [ C(RESULT_ACCESS) ] = -1,
777                 [ C(RESULT_MISS)   ] = -1,
778         },
779         [ C(OP_PREFETCH) ] = {
780                 [ C(RESULT_ACCESS) ] = -1,
781                 [ C(RESULT_MISS)   ] = -1,
782         },
783  },
784  [ C(NODE) ] = {
785         [ C(OP_READ) ] = {
786                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
787                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
788         },
789         [ C(OP_WRITE) ] = {
790                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
791                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
792         },
793         [ C(OP_PREFETCH) ] = {
794                 [ C(RESULT_ACCESS) ] = 0x0,
795                 [ C(RESULT_MISS)   ] = 0x0,
796         },
797  },
798 };
799
800 static __initconst const u64 hsw_hw_cache_extra_regs
801                                 [PERF_COUNT_HW_CACHE_MAX]
802                                 [PERF_COUNT_HW_CACHE_OP_MAX]
803                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
804 {
805  [ C(LL  ) ] = {
806         [ C(OP_READ) ] = {
807                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
808                                        HSW_LLC_ACCESS,
809                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
810                                        HSW_L3_MISS|HSW_ANY_SNOOP,
811         },
812         [ C(OP_WRITE) ] = {
813                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
814                                        HSW_LLC_ACCESS,
815                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
816                                        HSW_L3_MISS|HSW_ANY_SNOOP,
817         },
818         [ C(OP_PREFETCH) ] = {
819                 [ C(RESULT_ACCESS) ] = 0x0,
820                 [ C(RESULT_MISS)   ] = 0x0,
821         },
822  },
823  [ C(NODE) ] = {
824         [ C(OP_READ) ] = {
825                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
826                                        HSW_L3_MISS_LOCAL_DRAM|
827                                        HSW_SNOOP_DRAM,
828                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
829                                        HSW_L3_MISS_REMOTE|
830                                        HSW_SNOOP_DRAM,
831         },
832         [ C(OP_WRITE) ] = {
833                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
834                                        HSW_L3_MISS_LOCAL_DRAM|
835                                        HSW_SNOOP_DRAM,
836                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
837                                        HSW_L3_MISS_REMOTE|
838                                        HSW_SNOOP_DRAM,
839         },
840         [ C(OP_PREFETCH) ] = {
841                 [ C(RESULT_ACCESS) ] = 0x0,
842                 [ C(RESULT_MISS)   ] = 0x0,
843         },
844  },
845 };
846
847 static __initconst const u64 westmere_hw_cache_event_ids
848                                 [PERF_COUNT_HW_CACHE_MAX]
849                                 [PERF_COUNT_HW_CACHE_OP_MAX]
850                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
851 {
852  [ C(L1D) ] = {
853         [ C(OP_READ) ] = {
854                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
855                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
856         },
857         [ C(OP_WRITE) ] = {
858                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
859                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
860         },
861         [ C(OP_PREFETCH) ] = {
862                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
863                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
864         },
865  },
866  [ C(L1I ) ] = {
867         [ C(OP_READ) ] = {
868                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
869                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
870         },
871         [ C(OP_WRITE) ] = {
872                 [ C(RESULT_ACCESS) ] = -1,
873                 [ C(RESULT_MISS)   ] = -1,
874         },
875         [ C(OP_PREFETCH) ] = {
876                 [ C(RESULT_ACCESS) ] = 0x0,
877                 [ C(RESULT_MISS)   ] = 0x0,
878         },
879  },
880  [ C(LL  ) ] = {
881         [ C(OP_READ) ] = {
882                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
883                 [ C(RESULT_ACCESS) ] = 0x01b7,
884                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
885                 [ C(RESULT_MISS)   ] = 0x01b7,
886         },
887         /*
888          * Use RFO, not WRITEBACK, because a write miss would typically occur
889          * on RFO.
890          */
891         [ C(OP_WRITE) ] = {
892                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
893                 [ C(RESULT_ACCESS) ] = 0x01b7,
894                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
895                 [ C(RESULT_MISS)   ] = 0x01b7,
896         },
897         [ C(OP_PREFETCH) ] = {
898                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
899                 [ C(RESULT_ACCESS) ] = 0x01b7,
900                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
901                 [ C(RESULT_MISS)   ] = 0x01b7,
902         },
903  },
904  [ C(DTLB) ] = {
905         [ C(OP_READ) ] = {
906                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
907                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
908         },
909         [ C(OP_WRITE) ] = {
910                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
911                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918  [ C(ITLB) ] = {
919         [ C(OP_READ) ] = {
920                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
921                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
922         },
923         [ C(OP_WRITE) ] = {
924                 [ C(RESULT_ACCESS) ] = -1,
925                 [ C(RESULT_MISS)   ] = -1,
926         },
927         [ C(OP_PREFETCH) ] = {
928                 [ C(RESULT_ACCESS) ] = -1,
929                 [ C(RESULT_MISS)   ] = -1,
930         },
931  },
932  [ C(BPU ) ] = {
933         [ C(OP_READ) ] = {
934                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
935                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
936         },
937         [ C(OP_WRITE) ] = {
938                 [ C(RESULT_ACCESS) ] = -1,
939                 [ C(RESULT_MISS)   ] = -1,
940         },
941         [ C(OP_PREFETCH) ] = {
942                 [ C(RESULT_ACCESS) ] = -1,
943                 [ C(RESULT_MISS)   ] = -1,
944         },
945  },
946  [ C(NODE) ] = {
947         [ C(OP_READ) ] = {
948                 [ C(RESULT_ACCESS) ] = 0x01b7,
949                 [ C(RESULT_MISS)   ] = 0x01b7,
950         },
951         [ C(OP_WRITE) ] = {
952                 [ C(RESULT_ACCESS) ] = 0x01b7,
953                 [ C(RESULT_MISS)   ] = 0x01b7,
954         },
955         [ C(OP_PREFETCH) ] = {
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 [ C(RESULT_MISS)   ] = 0x01b7,
958         },
959  },
960 };
961
962 /*
963  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
964  * See IA32 SDM Vol 3B 30.6.1.3
965  */
966
967 #define NHM_DMND_DATA_RD        (1 << 0)
968 #define NHM_DMND_RFO            (1 << 1)
969 #define NHM_DMND_IFETCH         (1 << 2)
970 #define NHM_DMND_WB             (1 << 3)
971 #define NHM_PF_DATA_RD          (1 << 4)
972 #define NHM_PF_DATA_RFO         (1 << 5)
973 #define NHM_PF_IFETCH           (1 << 6)
974 #define NHM_OFFCORE_OTHER       (1 << 7)
975 #define NHM_UNCORE_HIT          (1 << 8)
976 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
977 #define NHM_OTHER_CORE_HITM     (1 << 10)
978                                 /* reserved */
979 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
980 #define NHM_REMOTE_DRAM         (1 << 13)
981 #define NHM_LOCAL_DRAM          (1 << 14)
982 #define NHM_NON_DRAM            (1 << 15)
983
984 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
985 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
986
987 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
988 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
989 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
990
991 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
992 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
994
995 static __initconst const u64 nehalem_hw_cache_extra_regs
996                                 [PERF_COUNT_HW_CACHE_MAX]
997                                 [PERF_COUNT_HW_CACHE_OP_MAX]
998                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
999 {
1000  [ C(LL  ) ] = {
1001         [ C(OP_READ) ] = {
1002                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1003                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1004         },
1005         [ C(OP_WRITE) ] = {
1006                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1007                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1008         },
1009         [ C(OP_PREFETCH) ] = {
1010                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1011                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1012         },
1013  },
1014  [ C(NODE) ] = {
1015         [ C(OP_READ) ] = {
1016                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1017                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1018         },
1019         [ C(OP_WRITE) ] = {
1020                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1021                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1022         },
1023         [ C(OP_PREFETCH) ] = {
1024                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1025                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1026         },
1027  },
1028 };
1029
1030 static __initconst const u64 nehalem_hw_cache_event_ids
1031                                 [PERF_COUNT_HW_CACHE_MAX]
1032                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1033                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1034 {
1035  [ C(L1D) ] = {
1036         [ C(OP_READ) ] = {
1037                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1038                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1039         },
1040         [ C(OP_WRITE) ] = {
1041                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1042                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1043         },
1044         [ C(OP_PREFETCH) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1046                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1047         },
1048  },
1049  [ C(L1I ) ] = {
1050         [ C(OP_READ) ] = {
1051                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1052                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1053         },
1054         [ C(OP_WRITE) ] = {
1055                 [ C(RESULT_ACCESS) ] = -1,
1056                 [ C(RESULT_MISS)   ] = -1,
1057         },
1058         [ C(OP_PREFETCH) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x0,
1060                 [ C(RESULT_MISS)   ] = 0x0,
1061         },
1062  },
1063  [ C(LL  ) ] = {
1064         [ C(OP_READ) ] = {
1065                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1066                 [ C(RESULT_ACCESS) ] = 0x01b7,
1067                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1068                 [ C(RESULT_MISS)   ] = 0x01b7,
1069         },
1070         /*
1071          * Use RFO, not WRITEBACK, because a write miss would typically occur
1072          * on RFO.
1073          */
1074         [ C(OP_WRITE) ] = {
1075                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1076                 [ C(RESULT_ACCESS) ] = 0x01b7,
1077                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1078                 [ C(RESULT_MISS)   ] = 0x01b7,
1079         },
1080         [ C(OP_PREFETCH) ] = {
1081                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1082                 [ C(RESULT_ACCESS) ] = 0x01b7,
1083                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1084                 [ C(RESULT_MISS)   ] = 0x01b7,
1085         },
1086  },
1087  [ C(DTLB) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1090                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1094                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = 0x0,
1098                 [ C(RESULT_MISS)   ] = 0x0,
1099         },
1100  },
1101  [ C(ITLB) ] = {
1102         [ C(OP_READ) ] = {
1103                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1104                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1105         },
1106         [ C(OP_WRITE) ] = {
1107                 [ C(RESULT_ACCESS) ] = -1,
1108                 [ C(RESULT_MISS)   ] = -1,
1109         },
1110         [ C(OP_PREFETCH) ] = {
1111                 [ C(RESULT_ACCESS) ] = -1,
1112                 [ C(RESULT_MISS)   ] = -1,
1113         },
1114  },
1115  [ C(BPU ) ] = {
1116         [ C(OP_READ) ] = {
1117                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1118                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1119         },
1120         [ C(OP_WRITE) ] = {
1121                 [ C(RESULT_ACCESS) ] = -1,
1122                 [ C(RESULT_MISS)   ] = -1,
1123         },
1124         [ C(OP_PREFETCH) ] = {
1125                 [ C(RESULT_ACCESS) ] = -1,
1126                 [ C(RESULT_MISS)   ] = -1,
1127         },
1128  },
1129  [ C(NODE) ] = {
1130         [ C(OP_READ) ] = {
1131                 [ C(RESULT_ACCESS) ] = 0x01b7,
1132                 [ C(RESULT_MISS)   ] = 0x01b7,
1133         },
1134         [ C(OP_WRITE) ] = {
1135                 [ C(RESULT_ACCESS) ] = 0x01b7,
1136                 [ C(RESULT_MISS)   ] = 0x01b7,
1137         },
1138         [ C(OP_PREFETCH) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 [ C(RESULT_MISS)   ] = 0x01b7,
1141         },
1142  },
1143 };
1144
1145 static __initconst const u64 core2_hw_cache_event_ids
1146                                 [PERF_COUNT_HW_CACHE_MAX]
1147                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1148                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1149 {
1150  [ C(L1D) ] = {
1151         [ C(OP_READ) ] = {
1152                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1153                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1154         },
1155         [ C(OP_WRITE) ] = {
1156                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1157                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1158         },
1159         [ C(OP_PREFETCH) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1161                 [ C(RESULT_MISS)   ] = 0,
1162         },
1163  },
1164  [ C(L1I ) ] = {
1165         [ C(OP_READ) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1167                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1168         },
1169         [ C(OP_WRITE) ] = {
1170                 [ C(RESULT_ACCESS) ] = -1,
1171                 [ C(RESULT_MISS)   ] = -1,
1172         },
1173         [ C(OP_PREFETCH) ] = {
1174                 [ C(RESULT_ACCESS) ] = 0,
1175                 [ C(RESULT_MISS)   ] = 0,
1176         },
1177  },
1178  [ C(LL  ) ] = {
1179         [ C(OP_READ) ] = {
1180                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1181                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1182         },
1183         [ C(OP_WRITE) ] = {
1184                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1185                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1186         },
1187         [ C(OP_PREFETCH) ] = {
1188                 [ C(RESULT_ACCESS) ] = 0,
1189                 [ C(RESULT_MISS)   ] = 0,
1190         },
1191  },
1192  [ C(DTLB) ] = {
1193         [ C(OP_READ) ] = {
1194                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1195                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1196         },
1197         [ C(OP_WRITE) ] = {
1198                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1199                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1200         },
1201         [ C(OP_PREFETCH) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0,
1203                 [ C(RESULT_MISS)   ] = 0,
1204         },
1205  },
1206  [ C(ITLB) ] = {
1207         [ C(OP_READ) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1209                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1210         },
1211         [ C(OP_WRITE) ] = {
1212                 [ C(RESULT_ACCESS) ] = -1,
1213                 [ C(RESULT_MISS)   ] = -1,
1214         },
1215         [ C(OP_PREFETCH) ] = {
1216                 [ C(RESULT_ACCESS) ] = -1,
1217                 [ C(RESULT_MISS)   ] = -1,
1218         },
1219  },
1220  [ C(BPU ) ] = {
1221         [ C(OP_READ) ] = {
1222                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1223                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1224         },
1225         [ C(OP_WRITE) ] = {
1226                 [ C(RESULT_ACCESS) ] = -1,
1227                 [ C(RESULT_MISS)   ] = -1,
1228         },
1229         [ C(OP_PREFETCH) ] = {
1230                 [ C(RESULT_ACCESS) ] = -1,
1231                 [ C(RESULT_MISS)   ] = -1,
1232         },
1233  },
1234 };
1235
1236 static __initconst const u64 atom_hw_cache_event_ids
1237                                 [PERF_COUNT_HW_CACHE_MAX]
1238                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1239                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1240 {
1241  [ C(L1D) ] = {
1242         [ C(OP_READ) ] = {
1243                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1244                 [ C(RESULT_MISS)   ] = 0,
1245         },
1246         [ C(OP_WRITE) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250         [ C(OP_PREFETCH) ] = {
1251                 [ C(RESULT_ACCESS) ] = 0x0,
1252                 [ C(RESULT_MISS)   ] = 0,
1253         },
1254  },
1255  [ C(L1I ) ] = {
1256         [ C(OP_READ) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1258                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1259         },
1260         [ C(OP_WRITE) ] = {
1261                 [ C(RESULT_ACCESS) ] = -1,
1262                 [ C(RESULT_MISS)   ] = -1,
1263         },
1264         [ C(OP_PREFETCH) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0,
1266                 [ C(RESULT_MISS)   ] = 0,
1267         },
1268  },
1269  [ C(LL  ) ] = {
1270         [ C(OP_READ) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1272                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1273         },
1274         [ C(OP_WRITE) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1276                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1277         },
1278         [ C(OP_PREFETCH) ] = {
1279                 [ C(RESULT_ACCESS) ] = 0,
1280                 [ C(RESULT_MISS)   ] = 0,
1281         },
1282  },
1283  [ C(DTLB) ] = {
1284         [ C(OP_READ) ] = {
1285                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1286                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1287         },
1288         [ C(OP_WRITE) ] = {
1289                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1290                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1291         },
1292         [ C(OP_PREFETCH) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0,
1294                 [ C(RESULT_MISS)   ] = 0,
1295         },
1296  },
1297  [ C(ITLB) ] = {
1298         [ C(OP_READ) ] = {
1299                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1300                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1301         },
1302         [ C(OP_WRITE) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306         [ C(OP_PREFETCH) ] = {
1307                 [ C(RESULT_ACCESS) ] = -1,
1308                 [ C(RESULT_MISS)   ] = -1,
1309         },
1310  },
1311  [ C(BPU ) ] = {
1312         [ C(OP_READ) ] = {
1313                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1314                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1315         },
1316         [ C(OP_WRITE) ] = {
1317                 [ C(RESULT_ACCESS) ] = -1,
1318                 [ C(RESULT_MISS)   ] = -1,
1319         },
1320         [ C(OP_PREFETCH) ] = {
1321                 [ C(RESULT_ACCESS) ] = -1,
1322                 [ C(RESULT_MISS)   ] = -1,
1323         },
1324  },
1325 };
1326
1327 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1328 {
1329         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1330         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1331         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1332         EVENT_EXTRA_END
1333 };
1334
1335 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1336 #define SLM_DMND_WRITE          SNB_DMND_RFO
1337 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1338
1339 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1340 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1341 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1342
1343 static __initconst const u64 slm_hw_cache_extra_regs
1344                                 [PERF_COUNT_HW_CACHE_MAX]
1345                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1346                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1347 {
1348  [ C(LL  ) ] = {
1349         [ C(OP_READ) ] = {
1350                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1351                 [ C(RESULT_MISS)   ] = 0,
1352         },
1353         [ C(OP_WRITE) ] = {
1354                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1355                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1356         },
1357         [ C(OP_PREFETCH) ] = {
1358                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1359                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1360         },
1361  },
1362 };
1363
1364 static __initconst const u64 slm_hw_cache_event_ids
1365                                 [PERF_COUNT_HW_CACHE_MAX]
1366                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1367                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1368 {
1369  [ C(L1D) ] = {
1370         [ C(OP_READ) ] = {
1371                 [ C(RESULT_ACCESS) ] = 0,
1372                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1373         },
1374         [ C(OP_WRITE) ] = {
1375                 [ C(RESULT_ACCESS) ] = 0,
1376                 [ C(RESULT_MISS)   ] = 0,
1377         },
1378         [ C(OP_PREFETCH) ] = {
1379                 [ C(RESULT_ACCESS) ] = 0,
1380                 [ C(RESULT_MISS)   ] = 0,
1381         },
1382  },
1383  [ C(L1I ) ] = {
1384         [ C(OP_READ) ] = {
1385                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1386                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1387         },
1388         [ C(OP_WRITE) ] = {
1389                 [ C(RESULT_ACCESS) ] = -1,
1390                 [ C(RESULT_MISS)   ] = -1,
1391         },
1392         [ C(OP_PREFETCH) ] = {
1393                 [ C(RESULT_ACCESS) ] = 0,
1394                 [ C(RESULT_MISS)   ] = 0,
1395         },
1396  },
1397  [ C(LL  ) ] = {
1398         [ C(OP_READ) ] = {
1399                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1400                 [ C(RESULT_ACCESS) ] = 0x01b7,
1401                 [ C(RESULT_MISS)   ] = 0,
1402         },
1403         [ C(OP_WRITE) ] = {
1404                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1405                 [ C(RESULT_ACCESS) ] = 0x01b7,
1406                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1407                 [ C(RESULT_MISS)   ] = 0x01b7,
1408         },
1409         [ C(OP_PREFETCH) ] = {
1410                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1411                 [ C(RESULT_ACCESS) ] = 0x01b7,
1412                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1413                 [ C(RESULT_MISS)   ] = 0x01b7,
1414         },
1415  },
1416  [ C(DTLB) ] = {
1417         [ C(OP_READ) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0,
1419                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1420         },
1421         [ C(OP_WRITE) ] = {
1422                 [ C(RESULT_ACCESS) ] = 0,
1423                 [ C(RESULT_MISS)   ] = 0,
1424         },
1425         [ C(OP_PREFETCH) ] = {
1426                 [ C(RESULT_ACCESS) ] = 0,
1427                 [ C(RESULT_MISS)   ] = 0,
1428         },
1429  },
1430  [ C(ITLB) ] = {
1431         [ C(OP_READ) ] = {
1432                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1433                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1434         },
1435         [ C(OP_WRITE) ] = {
1436                 [ C(RESULT_ACCESS) ] = -1,
1437                 [ C(RESULT_MISS)   ] = -1,
1438         },
1439         [ C(OP_PREFETCH) ] = {
1440                 [ C(RESULT_ACCESS) ] = -1,
1441                 [ C(RESULT_MISS)   ] = -1,
1442         },
1443  },
1444  [ C(BPU ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1447                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = -1,
1451                 [ C(RESULT_MISS)   ] = -1,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = -1,
1455                 [ C(RESULT_MISS)   ] = -1,
1456         },
1457  },
1458 };
1459
1460 /*
1461  * Use from PMIs where the LBRs are already disabled.
1462  */
1463 static void __intel_pmu_disable_all(void)
1464 {
1465         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1466
1467         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1468
1469         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1470                 intel_pmu_disable_bts();
1471         else
1472                 intel_bts_disable_local();
1473
1474         intel_pmu_pebs_disable_all();
1475 }
1476
1477 static void intel_pmu_disable_all(void)
1478 {
1479         __intel_pmu_disable_all();
1480         intel_pmu_lbr_disable_all();
1481 }
1482
1483 static void __intel_pmu_enable_all(int added, bool pmi)
1484 {
1485         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1486
1487         intel_pmu_pebs_enable_all();
1488         intel_pmu_lbr_enable_all(pmi);
1489         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1490                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1491
1492         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1493                 struct perf_event *event =
1494                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1495
1496                 if (WARN_ON_ONCE(!event))
1497                         return;
1498
1499                 intel_pmu_enable_bts(event->hw.config);
1500         } else
1501                 intel_bts_enable_local();
1502 }
1503
1504 static void intel_pmu_enable_all(int added)
1505 {
1506         __intel_pmu_enable_all(added, false);
1507 }
1508
1509 /*
1510  * Workaround for:
1511  *   Intel Errata AAK100 (model 26)
1512  *   Intel Errata AAP53  (model 30)
1513  *   Intel Errata BD53   (model 44)
1514  *
1515  * The official story:
1516  *   These chips need to be 'reset' when adding counters by programming the
1517  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1518  *   in sequence on the same PMC or on different PMCs.
1519  *
1520  * In practise it appears some of these events do in fact count, and
1521  * we need to programm all 4 events.
1522  */
1523 static void intel_pmu_nhm_workaround(void)
1524 {
1525         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1526         static const unsigned long nhm_magic[4] = {
1527                 0x4300B5,
1528                 0x4300D2,
1529                 0x4300B1,
1530                 0x4300B1
1531         };
1532         struct perf_event *event;
1533         int i;
1534
1535         /*
1536          * The Errata requires below steps:
1537          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1538          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1539          *    the corresponding PMCx;
1540          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1541          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1542          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1543          */
1544
1545         /*
1546          * The real steps we choose are a little different from above.
1547          * A) To reduce MSR operations, we don't run step 1) as they
1548          *    are already cleared before this function is called;
1549          * B) Call x86_perf_event_update to save PMCx before configuring
1550          *    PERFEVTSELx with magic number;
1551          * C) With step 5), we do clear only when the PERFEVTSELx is
1552          *    not used currently.
1553          * D) Call x86_perf_event_set_period to restore PMCx;
1554          */
1555
1556         /* We always operate 4 pairs of PERF Counters */
1557         for (i = 0; i < 4; i++) {
1558                 event = cpuc->events[i];
1559                 if (event)
1560                         x86_perf_event_update(event);
1561         }
1562
1563         for (i = 0; i < 4; i++) {
1564                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1565                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1566         }
1567
1568         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1569         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1570
1571         for (i = 0; i < 4; i++) {
1572                 event = cpuc->events[i];
1573
1574                 if (event) {
1575                         x86_perf_event_set_period(event);
1576                         __x86_pmu_enable_event(&event->hw,
1577                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1578                 } else
1579                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1580         }
1581 }
1582
1583 static void intel_pmu_nhm_enable_all(int added)
1584 {
1585         if (added)
1586                 intel_pmu_nhm_workaround();
1587         intel_pmu_enable_all(added);
1588 }
1589
1590 static inline u64 intel_pmu_get_status(void)
1591 {
1592         u64 status;
1593
1594         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1595
1596         return status;
1597 }
1598
1599 static inline void intel_pmu_ack_status(u64 ack)
1600 {
1601         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1602 }
1603
1604 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1605 {
1606         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1607         u64 ctrl_val, mask;
1608
1609         mask = 0xfULL << (idx * 4);
1610
1611         rdmsrl(hwc->config_base, ctrl_val);
1612         ctrl_val &= ~mask;
1613         wrmsrl(hwc->config_base, ctrl_val);
1614 }
1615
1616 static inline bool event_is_checkpointed(struct perf_event *event)
1617 {
1618         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1619 }
1620
1621 static void intel_pmu_disable_event(struct perf_event *event)
1622 {
1623         struct hw_perf_event *hwc = &event->hw;
1624         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1625
1626         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1627                 intel_pmu_disable_bts();
1628                 intel_pmu_drain_bts_buffer();
1629                 return;
1630         }
1631
1632         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1633         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1634         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1635
1636         /*
1637          * must disable before any actual event
1638          * because any event may be combined with LBR
1639          */
1640         if (needs_branch_stack(event))
1641                 intel_pmu_lbr_disable(event);
1642
1643         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1644                 intel_pmu_disable_fixed(hwc);
1645                 return;
1646         }
1647
1648         x86_pmu_disable_event(event);
1649
1650         if (unlikely(event->attr.precise_ip))
1651                 intel_pmu_pebs_disable(event);
1652 }
1653
1654 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1655 {
1656         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1657         u64 ctrl_val, bits, mask;
1658
1659         /*
1660          * Enable IRQ generation (0x8),
1661          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1662          * if requested:
1663          */
1664         bits = 0x8ULL;
1665         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1666                 bits |= 0x2;
1667         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1668                 bits |= 0x1;
1669
1670         /*
1671          * ANY bit is supported in v3 and up
1672          */
1673         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1674                 bits |= 0x4;
1675
1676         bits <<= (idx * 4);
1677         mask = 0xfULL << (idx * 4);
1678
1679         rdmsrl(hwc->config_base, ctrl_val);
1680         ctrl_val &= ~mask;
1681         ctrl_val |= bits;
1682         wrmsrl(hwc->config_base, ctrl_val);
1683 }
1684
1685 static void intel_pmu_enable_event(struct perf_event *event)
1686 {
1687         struct hw_perf_event *hwc = &event->hw;
1688         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1689
1690         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1691                 if (!__this_cpu_read(cpu_hw_events.enabled))
1692                         return;
1693
1694                 intel_pmu_enable_bts(hwc->config);
1695                 return;
1696         }
1697         /*
1698          * must enabled before any actual event
1699          * because any event may be combined with LBR
1700          */
1701         if (needs_branch_stack(event))
1702                 intel_pmu_lbr_enable(event);
1703
1704         if (event->attr.exclude_host)
1705                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1706         if (event->attr.exclude_guest)
1707                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1708
1709         if (unlikely(event_is_checkpointed(event)))
1710                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1711
1712         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1713                 intel_pmu_enable_fixed(hwc);
1714                 return;
1715         }
1716
1717         if (unlikely(event->attr.precise_ip))
1718                 intel_pmu_pebs_enable(event);
1719
1720         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1721 }
1722
1723 /*
1724  * Save and restart an expired event. Called by NMI contexts,
1725  * so it has to be careful about preempting normal event ops:
1726  */
1727 int intel_pmu_save_and_restart(struct perf_event *event)
1728 {
1729         x86_perf_event_update(event);
1730         /*
1731          * For a checkpointed counter always reset back to 0.  This
1732          * avoids a situation where the counter overflows, aborts the
1733          * transaction and is then set back to shortly before the
1734          * overflow, and overflows and aborts again.
1735          */
1736         if (unlikely(event_is_checkpointed(event))) {
1737                 /* No race with NMIs because the counter should not be armed */
1738                 wrmsrl(event->hw.event_base, 0);
1739                 local64_set(&event->hw.prev_count, 0);
1740         }
1741         return x86_perf_event_set_period(event);
1742 }
1743
1744 static void intel_pmu_reset(void)
1745 {
1746         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1747         unsigned long flags;
1748         int idx;
1749
1750         if (!x86_pmu.num_counters)
1751                 return;
1752
1753         local_irq_save(flags);
1754
1755         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1756
1757         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1758                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1759                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1760         }
1761         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1762                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1763
1764         if (ds)
1765                 ds->bts_index = ds->bts_buffer_base;
1766
1767         /* Ack all overflows and disable fixed counters */
1768         if (x86_pmu.version >= 2) {
1769                 intel_pmu_ack_status(intel_pmu_get_status());
1770                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1771         }
1772
1773         /* Reset LBRs and LBR freezing */
1774         if (x86_pmu.lbr_nr) {
1775                 update_debugctlmsr(get_debugctlmsr() &
1776                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1777         }
1778
1779         local_irq_restore(flags);
1780 }
1781
1782 /*
1783  * This handler is triggered by the local APIC, so the APIC IRQ handling
1784  * rules apply:
1785  */
1786 static int intel_pmu_handle_irq(struct pt_regs *regs)
1787 {
1788         struct perf_sample_data data;
1789         struct cpu_hw_events *cpuc;
1790         int bit, loops;
1791         u64 status;
1792         int handled;
1793
1794         cpuc = this_cpu_ptr(&cpu_hw_events);
1795
1796         /*
1797          * No known reason to not always do late ACK,
1798          * but just in case do it opt-in.
1799          */
1800         if (!x86_pmu.late_ack)
1801                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1802         __intel_pmu_disable_all();
1803         handled = intel_pmu_drain_bts_buffer();
1804         handled += intel_bts_interrupt();
1805         status = intel_pmu_get_status();
1806         if (!status)
1807                 goto done;
1808
1809         loops = 0;
1810 again:
1811         intel_pmu_lbr_read();
1812         intel_pmu_ack_status(status);
1813         if (++loops > 100) {
1814                 static bool warned = false;
1815                 if (!warned) {
1816                         WARN(1, "perfevents: irq loop stuck!\n");
1817                         perf_event_print_debug();
1818                         warned = true;
1819                 }
1820                 intel_pmu_reset();
1821                 goto done;
1822         }
1823
1824         inc_irq_stat(apic_perf_irqs);
1825
1826
1827         /*
1828          * Ignore a range of extra bits in status that do not indicate
1829          * overflow by themselves.
1830          */
1831         status &= ~(GLOBAL_STATUS_COND_CHG |
1832                     GLOBAL_STATUS_ASIF |
1833                     GLOBAL_STATUS_LBRS_FROZEN);
1834         if (!status)
1835                 goto done;
1836
1837         /*
1838          * PEBS overflow sets bit 62 in the global status register
1839          */
1840         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1841                 handled++;
1842                 x86_pmu.drain_pebs(regs);
1843         }
1844
1845         /*
1846          * Intel PT
1847          */
1848         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1849                 handled++;
1850                 intel_pt_interrupt();
1851         }
1852
1853         /*
1854          * Checkpointed counters can lead to 'spurious' PMIs because the
1855          * rollback caused by the PMI will have cleared the overflow status
1856          * bit. Therefore always force probe these counters.
1857          */
1858         status |= cpuc->intel_cp_status;
1859
1860         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1861                 struct perf_event *event = cpuc->events[bit];
1862
1863                 handled++;
1864
1865                 if (!test_bit(bit, cpuc->active_mask))
1866                         continue;
1867
1868                 if (!intel_pmu_save_and_restart(event))
1869                         continue;
1870
1871                 perf_sample_data_init(&data, 0, event->hw.last_period);
1872
1873                 if (has_branch_stack(event))
1874                         data.br_stack = &cpuc->lbr_stack;
1875
1876                 if (perf_event_overflow(event, &data, regs))
1877                         x86_pmu_stop(event, 0);
1878         }
1879
1880         /*
1881          * Repeat if there is more work to be done:
1882          */
1883         status = intel_pmu_get_status();
1884         if (status)
1885                 goto again;
1886
1887 done:
1888         __intel_pmu_enable_all(0, true);
1889         /*
1890          * Only unmask the NMI after the overflow counters
1891          * have been reset. This avoids spurious NMIs on
1892          * Haswell CPUs.
1893          */
1894         if (x86_pmu.late_ack)
1895                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1896         return handled;
1897 }
1898
1899 static struct event_constraint *
1900 intel_bts_constraints(struct perf_event *event)
1901 {
1902         struct hw_perf_event *hwc = &event->hw;
1903         unsigned int hw_event, bts_event;
1904
1905         if (event->attr.freq)
1906                 return NULL;
1907
1908         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1909         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1910
1911         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1912                 return &bts_constraint;
1913
1914         return NULL;
1915 }
1916
1917 static int intel_alt_er(int idx, u64 config)
1918 {
1919         int alt_idx;
1920         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1921                 return idx;
1922
1923         if (idx == EXTRA_REG_RSP_0)
1924                 alt_idx = EXTRA_REG_RSP_1;
1925
1926         if (idx == EXTRA_REG_RSP_1)
1927                 alt_idx = EXTRA_REG_RSP_0;
1928
1929         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1930                 return idx;
1931
1932         return alt_idx;
1933 }
1934
1935 static void intel_fixup_er(struct perf_event *event, int idx)
1936 {
1937         event->hw.extra_reg.idx = idx;
1938
1939         if (idx == EXTRA_REG_RSP_0) {
1940                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1941                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1942                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1943         } else if (idx == EXTRA_REG_RSP_1) {
1944                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1945                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1946                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1947         }
1948 }
1949
1950 /*
1951  * manage allocation of shared extra msr for certain events
1952  *
1953  * sharing can be:
1954  * per-cpu: to be shared between the various events on a single PMU
1955  * per-core: per-cpu + shared by HT threads
1956  */
1957 static struct event_constraint *
1958 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1959                                    struct perf_event *event,
1960                                    struct hw_perf_event_extra *reg)
1961 {
1962         struct event_constraint *c = &emptyconstraint;
1963         struct er_account *era;
1964         unsigned long flags;
1965         int idx = reg->idx;
1966
1967         /*
1968          * reg->alloc can be set due to existing state, so for fake cpuc we
1969          * need to ignore this, otherwise we might fail to allocate proper fake
1970          * state for this extra reg constraint. Also see the comment below.
1971          */
1972         if (reg->alloc && !cpuc->is_fake)
1973                 return NULL; /* call x86_get_event_constraint() */
1974
1975 again:
1976         era = &cpuc->shared_regs->regs[idx];
1977         /*
1978          * we use spin_lock_irqsave() to avoid lockdep issues when
1979          * passing a fake cpuc
1980          */
1981         raw_spin_lock_irqsave(&era->lock, flags);
1982
1983         if (!atomic_read(&era->ref) || era->config == reg->config) {
1984
1985                 /*
1986                  * If its a fake cpuc -- as per validate_{group,event}() we
1987                  * shouldn't touch event state and we can avoid doing so
1988                  * since both will only call get_event_constraints() once
1989                  * on each event, this avoids the need for reg->alloc.
1990                  *
1991                  * Not doing the ER fixup will only result in era->reg being
1992                  * wrong, but since we won't actually try and program hardware
1993                  * this isn't a problem either.
1994                  */
1995                 if (!cpuc->is_fake) {
1996                         if (idx != reg->idx)
1997                                 intel_fixup_er(event, idx);
1998
1999                         /*
2000                          * x86_schedule_events() can call get_event_constraints()
2001                          * multiple times on events in the case of incremental
2002                          * scheduling(). reg->alloc ensures we only do the ER
2003                          * allocation once.
2004                          */
2005                         reg->alloc = 1;
2006                 }
2007
2008                 /* lock in msr value */
2009                 era->config = reg->config;
2010                 era->reg = reg->reg;
2011
2012                 /* one more user */
2013                 atomic_inc(&era->ref);
2014
2015                 /*
2016                  * need to call x86_get_event_constraint()
2017                  * to check if associated event has constraints
2018                  */
2019                 c = NULL;
2020         } else {
2021                 idx = intel_alt_er(idx, reg->config);
2022                 if (idx != reg->idx) {
2023                         raw_spin_unlock_irqrestore(&era->lock, flags);
2024                         goto again;
2025                 }
2026         }
2027         raw_spin_unlock_irqrestore(&era->lock, flags);
2028
2029         return c;
2030 }
2031
2032 static void
2033 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2034                                    struct hw_perf_event_extra *reg)
2035 {
2036         struct er_account *era;
2037
2038         /*
2039          * Only put constraint if extra reg was actually allocated. Also takes
2040          * care of event which do not use an extra shared reg.
2041          *
2042          * Also, if this is a fake cpuc we shouldn't touch any event state
2043          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2044          * either since it'll be thrown out.
2045          */
2046         if (!reg->alloc || cpuc->is_fake)
2047                 return;
2048
2049         era = &cpuc->shared_regs->regs[reg->idx];
2050
2051         /* one fewer user */
2052         atomic_dec(&era->ref);
2053
2054         /* allocate again next time */
2055         reg->alloc = 0;
2056 }
2057
2058 static struct event_constraint *
2059 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2060                               struct perf_event *event)
2061 {
2062         struct event_constraint *c = NULL, *d;
2063         struct hw_perf_event_extra *xreg, *breg;
2064
2065         xreg = &event->hw.extra_reg;
2066         if (xreg->idx != EXTRA_REG_NONE) {
2067                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2068                 if (c == &emptyconstraint)
2069                         return c;
2070         }
2071         breg = &event->hw.branch_reg;
2072         if (breg->idx != EXTRA_REG_NONE) {
2073                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2074                 if (d == &emptyconstraint) {
2075                         __intel_shared_reg_put_constraints(cpuc, xreg);
2076                         c = d;
2077                 }
2078         }
2079         return c;
2080 }
2081
2082 struct event_constraint *
2083 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2084                           struct perf_event *event)
2085 {
2086         struct event_constraint *c;
2087
2088         if (x86_pmu.event_constraints) {
2089                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2090                         if ((event->hw.config & c->cmask) == c->code) {
2091                                 event->hw.flags |= c->flags;
2092                                 return c;
2093                         }
2094                 }
2095         }
2096
2097         return &unconstrained;
2098 }
2099
2100 static struct event_constraint *
2101 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2102                             struct perf_event *event)
2103 {
2104         struct event_constraint *c;
2105
2106         c = intel_bts_constraints(event);
2107         if (c)
2108                 return c;
2109
2110         c = intel_shared_regs_constraints(cpuc, event);
2111         if (c)
2112                 return c;
2113
2114         c = intel_pebs_constraints(event);
2115         if (c)
2116                 return c;
2117
2118         return x86_get_event_constraints(cpuc, idx, event);
2119 }
2120
2121 static void
2122 intel_start_scheduling(struct cpu_hw_events *cpuc)
2123 {
2124         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2125         struct intel_excl_states *xl;
2126         int tid = cpuc->excl_thread_id;
2127
2128         /*
2129          * nothing needed if in group validation mode
2130          */
2131         if (cpuc->is_fake || !is_ht_workaround_enabled())
2132                 return;
2133
2134         /*
2135          * no exclusion needed
2136          */
2137         if (WARN_ON_ONCE(!excl_cntrs))
2138                 return;
2139
2140         xl = &excl_cntrs->states[tid];
2141
2142         xl->sched_started = true;
2143         /*
2144          * lock shared state until we are done scheduling
2145          * in stop_event_scheduling()
2146          * makes scheduling appear as a transaction
2147          */
2148         raw_spin_lock(&excl_cntrs->lock);
2149 }
2150
2151 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2152 {
2153         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2154         struct event_constraint *c = cpuc->event_constraint[idx];
2155         struct intel_excl_states *xl;
2156         int tid = cpuc->excl_thread_id;
2157
2158         if (cpuc->is_fake || !is_ht_workaround_enabled())
2159                 return;
2160
2161         if (WARN_ON_ONCE(!excl_cntrs))
2162                 return;
2163
2164         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2165                 return;
2166
2167         xl = &excl_cntrs->states[tid];
2168
2169         lockdep_assert_held(&excl_cntrs->lock);
2170
2171         if (c->flags & PERF_X86_EVENT_EXCL)
2172                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2173         else
2174                 xl->state[cntr] = INTEL_EXCL_SHARED;
2175 }
2176
2177 static void
2178 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2179 {
2180         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2181         struct intel_excl_states *xl;
2182         int tid = cpuc->excl_thread_id;
2183
2184         /*
2185          * nothing needed if in group validation mode
2186          */
2187         if (cpuc->is_fake || !is_ht_workaround_enabled())
2188                 return;
2189         /*
2190          * no exclusion needed
2191          */
2192         if (WARN_ON_ONCE(!excl_cntrs))
2193                 return;
2194
2195         xl = &excl_cntrs->states[tid];
2196
2197         xl->sched_started = false;
2198         /*
2199          * release shared state lock (acquired in intel_start_scheduling())
2200          */
2201         raw_spin_unlock(&excl_cntrs->lock);
2202 }
2203
2204 static struct event_constraint *
2205 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2206                            int idx, struct event_constraint *c)
2207 {
2208         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2209         struct intel_excl_states *xlo;
2210         int tid = cpuc->excl_thread_id;
2211         int is_excl, i;
2212
2213         /*
2214          * validating a group does not require
2215          * enforcing cross-thread  exclusion
2216          */
2217         if (cpuc->is_fake || !is_ht_workaround_enabled())
2218                 return c;
2219
2220         /*
2221          * no exclusion needed
2222          */
2223         if (WARN_ON_ONCE(!excl_cntrs))
2224                 return c;
2225
2226         /*
2227          * because we modify the constraint, we need
2228          * to make a copy. Static constraints come
2229          * from static const tables.
2230          *
2231          * only needed when constraint has not yet
2232          * been cloned (marked dynamic)
2233          */
2234         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2235                 struct event_constraint *cx;
2236
2237                 /*
2238                  * grab pre-allocated constraint entry
2239                  */
2240                 cx = &cpuc->constraint_list[idx];
2241
2242                 /*
2243                  * initialize dynamic constraint
2244                  * with static constraint
2245                  */
2246                 *cx = *c;
2247
2248                 /*
2249                  * mark constraint as dynamic, so we
2250                  * can free it later on
2251                  */
2252                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2253                 c = cx;
2254         }
2255
2256         /*
2257          * From here on, the constraint is dynamic.
2258          * Either it was just allocated above, or it
2259          * was allocated during a earlier invocation
2260          * of this function
2261          */
2262
2263         /*
2264          * state of sibling HT
2265          */
2266         xlo = &excl_cntrs->states[tid ^ 1];
2267
2268         /*
2269          * event requires exclusive counter access
2270          * across HT threads
2271          */
2272         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2273         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2274                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2275                 if (!cpuc->n_excl++)
2276                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2277         }
2278
2279         /*
2280          * Modify static constraint with current dynamic
2281          * state of thread
2282          *
2283          * EXCLUSIVE: sibling counter measuring exclusive event
2284          * SHARED   : sibling counter measuring non-exclusive event
2285          * UNUSED   : sibling counter unused
2286          */
2287         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2288                 /*
2289                  * exclusive event in sibling counter
2290                  * our corresponding counter cannot be used
2291                  * regardless of our event
2292                  */
2293                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2294                         __clear_bit(i, c->idxmsk);
2295                 /*
2296                  * if measuring an exclusive event, sibling
2297                  * measuring non-exclusive, then counter cannot
2298                  * be used
2299                  */
2300                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2301                         __clear_bit(i, c->idxmsk);
2302         }
2303
2304         /*
2305          * recompute actual bit weight for scheduling algorithm
2306          */
2307         c->weight = hweight64(c->idxmsk64);
2308
2309         /*
2310          * if we return an empty mask, then switch
2311          * back to static empty constraint to avoid
2312          * the cost of freeing later on
2313          */
2314         if (c->weight == 0)
2315                 c = &emptyconstraint;
2316
2317         return c;
2318 }
2319
2320 static struct event_constraint *
2321 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2322                             struct perf_event *event)
2323 {
2324         struct event_constraint *c1 = NULL;
2325         struct event_constraint *c2;
2326
2327         if (idx >= 0) /* fake does < 0 */
2328                 c1 = cpuc->event_constraint[idx];
2329
2330         /*
2331          * first time only
2332          * - static constraint: no change across incremental scheduling calls
2333          * - dynamic constraint: handled by intel_get_excl_constraints()
2334          */
2335         c2 = __intel_get_event_constraints(cpuc, idx, event);
2336         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2337                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2338                 c1->weight = c2->weight;
2339                 c2 = c1;
2340         }
2341
2342         if (cpuc->excl_cntrs)
2343                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2344
2345         return c2;
2346 }
2347
2348 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2349                 struct perf_event *event)
2350 {
2351         struct hw_perf_event *hwc = &event->hw;
2352         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2353         int tid = cpuc->excl_thread_id;
2354         struct intel_excl_states *xl;
2355
2356         /*
2357          * nothing needed if in group validation mode
2358          */
2359         if (cpuc->is_fake)
2360                 return;
2361
2362         if (WARN_ON_ONCE(!excl_cntrs))
2363                 return;
2364
2365         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2366                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2367                 if (!--cpuc->n_excl)
2368                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2369         }
2370
2371         /*
2372          * If event was actually assigned, then mark the counter state as
2373          * unused now.
2374          */
2375         if (hwc->idx >= 0) {
2376                 xl = &excl_cntrs->states[tid];
2377
2378                 /*
2379                  * put_constraint may be called from x86_schedule_events()
2380                  * which already has the lock held so here make locking
2381                  * conditional.
2382                  */
2383                 if (!xl->sched_started)
2384                         raw_spin_lock(&excl_cntrs->lock);
2385
2386                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2387
2388                 if (!xl->sched_started)
2389                         raw_spin_unlock(&excl_cntrs->lock);
2390         }
2391 }
2392
2393 static void
2394 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2395                                         struct perf_event *event)
2396 {
2397         struct hw_perf_event_extra *reg;
2398
2399         reg = &event->hw.extra_reg;
2400         if (reg->idx != EXTRA_REG_NONE)
2401                 __intel_shared_reg_put_constraints(cpuc, reg);
2402
2403         reg = &event->hw.branch_reg;
2404         if (reg->idx != EXTRA_REG_NONE)
2405                 __intel_shared_reg_put_constraints(cpuc, reg);
2406 }
2407
2408 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2409                                         struct perf_event *event)
2410 {
2411         intel_put_shared_regs_event_constraints(cpuc, event);
2412
2413         /*
2414          * is PMU has exclusive counter restrictions, then
2415          * all events are subject to and must call the
2416          * put_excl_constraints() routine
2417          */
2418         if (cpuc->excl_cntrs)
2419                 intel_put_excl_constraints(cpuc, event);
2420 }
2421
2422 static void intel_pebs_aliases_core2(struct perf_event *event)
2423 {
2424         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2425                 /*
2426                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2427                  * (0x003c) so that we can use it with PEBS.
2428                  *
2429                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2430                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2431                  * (0x00c0), which is a PEBS capable event, to get the same
2432                  * count.
2433                  *
2434                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2435                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2436                  * larger than the maximum number of instructions that can be
2437                  * retired per cycle (4) and then inverting the condition, we
2438                  * count all cycles that retire 16 or less instructions, which
2439                  * is every cycle.
2440                  *
2441                  * Thereby we gain a PEBS capable cycle counter.
2442                  */
2443                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2444
2445                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2446                 event->hw.config = alt_config;
2447         }
2448 }
2449
2450 static void intel_pebs_aliases_snb(struct perf_event *event)
2451 {
2452         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2453                 /*
2454                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2455                  * (0x003c) so that we can use it with PEBS.
2456                  *
2457                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2458                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2459                  * (0x01c2), which is a PEBS capable event, to get the same
2460                  * count.
2461                  *
2462                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2463                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2464                  * larger than the maximum number of micro-ops that can be
2465                  * retired per cycle (4) and then inverting the condition, we
2466                  * count all cycles that retire 16 or less micro-ops, which
2467                  * is every cycle.
2468                  *
2469                  * Thereby we gain a PEBS capable cycle counter.
2470                  */
2471                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2472
2473                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2474                 event->hw.config = alt_config;
2475         }
2476 }
2477
2478 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2479 {
2480         unsigned long flags = x86_pmu.free_running_flags;
2481
2482         if (event->attr.use_clockid)
2483                 flags &= ~PERF_SAMPLE_TIME;
2484         return flags;
2485 }
2486
2487 static int intel_pmu_hw_config(struct perf_event *event)
2488 {
2489         int ret = x86_pmu_hw_config(event);
2490
2491         if (ret)
2492                 return ret;
2493
2494         if (event->attr.precise_ip) {
2495                 if (!event->attr.freq) {
2496                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2497                         if (!(event->attr.sample_type &
2498                               ~intel_pmu_free_running_flags(event)))
2499                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2500                 }
2501                 if (x86_pmu.pebs_aliases)
2502                         x86_pmu.pebs_aliases(event);
2503         }
2504
2505         if (needs_branch_stack(event)) {
2506                 ret = intel_pmu_setup_lbr_filter(event);
2507                 if (ret)
2508                         return ret;
2509
2510                 /*
2511                  * BTS is set up earlier in this path, so don't account twice
2512                  */
2513                 if (!intel_pmu_has_bts(event)) {
2514                         /* disallow lbr if conflicting events are present */
2515                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2516                                 return -EBUSY;
2517
2518                         event->destroy = hw_perf_lbr_event_destroy;
2519                 }
2520         }
2521
2522         if (event->attr.type != PERF_TYPE_RAW)
2523                 return 0;
2524
2525         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2526                 return 0;
2527
2528         if (x86_pmu.version < 3)
2529                 return -EINVAL;
2530
2531         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2532                 return -EACCES;
2533
2534         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2535
2536         return 0;
2537 }
2538
2539 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2540 {
2541         if (x86_pmu.guest_get_msrs)
2542                 return x86_pmu.guest_get_msrs(nr);
2543         *nr = 0;
2544         return NULL;
2545 }
2546 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2547
2548 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2549 {
2550         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2551         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2552
2553         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2554         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2555         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2556         /*
2557          * If PMU counter has PEBS enabled it is not enough to disable counter
2558          * on a guest entry since PEBS memory write can overshoot guest entry
2559          * and corrupt guest memory. Disabling PEBS solves the problem.
2560          */
2561         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2562         arr[1].host = cpuc->pebs_enabled;
2563         arr[1].guest = 0;
2564
2565         *nr = 2;
2566         return arr;
2567 }
2568
2569 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2570 {
2571         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2572         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2573         int idx;
2574
2575         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2576                 struct perf_event *event = cpuc->events[idx];
2577
2578                 arr[idx].msr = x86_pmu_config_addr(idx);
2579                 arr[idx].host = arr[idx].guest = 0;
2580
2581                 if (!test_bit(idx, cpuc->active_mask))
2582                         continue;
2583
2584                 arr[idx].host = arr[idx].guest =
2585                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2586
2587                 if (event->attr.exclude_host)
2588                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2589                 else if (event->attr.exclude_guest)
2590                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2591         }
2592
2593         *nr = x86_pmu.num_counters;
2594         return arr;
2595 }
2596
2597 static void core_pmu_enable_event(struct perf_event *event)
2598 {
2599         if (!event->attr.exclude_host)
2600                 x86_pmu_enable_event(event);
2601 }
2602
2603 static void core_pmu_enable_all(int added)
2604 {
2605         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2606         int idx;
2607
2608         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2609                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2610
2611                 if (!test_bit(idx, cpuc->active_mask) ||
2612                                 cpuc->events[idx]->attr.exclude_host)
2613                         continue;
2614
2615                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2616         }
2617 }
2618
2619 static int hsw_hw_config(struct perf_event *event)
2620 {
2621         int ret = intel_pmu_hw_config(event);
2622
2623         if (ret)
2624                 return ret;
2625         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2626                 return 0;
2627         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2628
2629         /*
2630          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2631          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2632          * this combination.
2633          */
2634         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2635              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2636               event->attr.precise_ip > 0))
2637                 return -EOPNOTSUPP;
2638
2639         if (event_is_checkpointed(event)) {
2640                 /*
2641                  * Sampling of checkpointed events can cause situations where
2642                  * the CPU constantly aborts because of a overflow, which is
2643                  * then checkpointed back and ignored. Forbid checkpointing
2644                  * for sampling.
2645                  *
2646                  * But still allow a long sampling period, so that perf stat
2647                  * from KVM works.
2648                  */
2649                 if (event->attr.sample_period > 0 &&
2650                     event->attr.sample_period < 0x7fffffff)
2651                         return -EOPNOTSUPP;
2652         }
2653         return 0;
2654 }
2655
2656 static struct event_constraint counter2_constraint =
2657                         EVENT_CONSTRAINT(0, 0x4, 0);
2658
2659 static struct event_constraint *
2660 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2661                           struct perf_event *event)
2662 {
2663         struct event_constraint *c;
2664
2665         c = intel_get_event_constraints(cpuc, idx, event);
2666
2667         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2668         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2669                 if (c->idxmsk64 & (1U << 2))
2670                         return &counter2_constraint;
2671                 return &emptyconstraint;
2672         }
2673
2674         return c;
2675 }
2676
2677 /*
2678  * Broadwell:
2679  *
2680  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2681  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2682  * the two to enforce a minimum period of 128 (the smallest value that has bits
2683  * 0-5 cleared and >= 100).
2684  *
2685  * Because of how the code in x86_perf_event_set_period() works, the truncation
2686  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2687  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2688  *
2689  * Therefore the effective (average) period matches the requested period,
2690  * despite coarser hardware granularity.
2691  */
2692 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2693 {
2694         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2695                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
2696                 if (left < 128)
2697                         left = 128;
2698                 left &= ~0x3fu;
2699         }
2700         return left;
2701 }
2702
2703 PMU_FORMAT_ATTR(event,  "config:0-7"    );
2704 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2705 PMU_FORMAT_ATTR(edge,   "config:18"     );
2706 PMU_FORMAT_ATTR(pc,     "config:19"     );
2707 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2708 PMU_FORMAT_ATTR(inv,    "config:23"     );
2709 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2710 PMU_FORMAT_ATTR(in_tx,  "config:32");
2711 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2712
2713 static struct attribute *intel_arch_formats_attr[] = {
2714         &format_attr_event.attr,
2715         &format_attr_umask.attr,
2716         &format_attr_edge.attr,
2717         &format_attr_pc.attr,
2718         &format_attr_inv.attr,
2719         &format_attr_cmask.attr,
2720         NULL,
2721 };
2722
2723 ssize_t intel_event_sysfs_show(char *page, u64 config)
2724 {
2725         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2726
2727         return x86_event_sysfs_show(page, config, event);
2728 }
2729
2730 struct intel_shared_regs *allocate_shared_regs(int cpu)
2731 {
2732         struct intel_shared_regs *regs;
2733         int i;
2734
2735         regs = kzalloc_node(sizeof(struct intel_shared_regs),
2736                             GFP_KERNEL, cpu_to_node(cpu));
2737         if (regs) {
2738                 /*
2739                  * initialize the locks to keep lockdep happy
2740                  */
2741                 for (i = 0; i < EXTRA_REG_MAX; i++)
2742                         raw_spin_lock_init(&regs->regs[i].lock);
2743
2744                 regs->core_id = -1;
2745         }
2746         return regs;
2747 }
2748
2749 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2750 {
2751         struct intel_excl_cntrs *c;
2752
2753         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2754                          GFP_KERNEL, cpu_to_node(cpu));
2755         if (c) {
2756                 raw_spin_lock_init(&c->lock);
2757                 c->core_id = -1;
2758         }
2759         return c;
2760 }
2761
2762 static int intel_pmu_cpu_prepare(int cpu)
2763 {
2764         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2765
2766         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2767                 cpuc->shared_regs = allocate_shared_regs(cpu);
2768                 if (!cpuc->shared_regs)
2769                         goto err;
2770         }
2771
2772         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2773                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2774
2775                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2776                 if (!cpuc->constraint_list)
2777                         goto err_shared_regs;
2778
2779                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2780                 if (!cpuc->excl_cntrs)
2781                         goto err_constraint_list;
2782
2783                 cpuc->excl_thread_id = 0;
2784         }
2785
2786         return NOTIFY_OK;
2787
2788 err_constraint_list:
2789         kfree(cpuc->constraint_list);
2790         cpuc->constraint_list = NULL;
2791
2792 err_shared_regs:
2793         kfree(cpuc->shared_regs);
2794         cpuc->shared_regs = NULL;
2795
2796 err:
2797         return NOTIFY_BAD;
2798 }
2799
2800 static void intel_pmu_cpu_starting(int cpu)
2801 {
2802         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2803         int core_id = topology_core_id(cpu);
2804         int i;
2805
2806         init_debug_store_on_cpu(cpu);
2807         /*
2808          * Deal with CPUs that don't clear their LBRs on power-up.
2809          */
2810         intel_pmu_lbr_reset();
2811
2812         cpuc->lbr_sel = NULL;
2813
2814         if (!cpuc->shared_regs)
2815                 return;
2816
2817         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2818                 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2819
2820                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2821                         struct intel_shared_regs *pc;
2822
2823                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2824                         if (pc && pc->core_id == core_id) {
2825                                 *onln = cpuc->shared_regs;
2826                                 cpuc->shared_regs = pc;
2827                                 break;
2828                         }
2829                 }
2830                 cpuc->shared_regs->core_id = core_id;
2831                 cpuc->shared_regs->refcnt++;
2832         }
2833
2834         if (x86_pmu.lbr_sel_map)
2835                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2836
2837         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2838                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2839                         struct intel_excl_cntrs *c;
2840
2841                         c = per_cpu(cpu_hw_events, i).excl_cntrs;
2842                         if (c && c->core_id == core_id) {
2843                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2844                                 cpuc->excl_cntrs = c;
2845                                 cpuc->excl_thread_id = 1;
2846                                 break;
2847                         }
2848                 }
2849                 cpuc->excl_cntrs->core_id = core_id;
2850                 cpuc->excl_cntrs->refcnt++;
2851         }
2852 }
2853
2854 static void free_excl_cntrs(int cpu)
2855 {
2856         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2857         struct intel_excl_cntrs *c;
2858
2859         c = cpuc->excl_cntrs;
2860         if (c) {
2861                 if (c->core_id == -1 || --c->refcnt == 0)
2862                         kfree(c);
2863                 cpuc->excl_cntrs = NULL;
2864                 kfree(cpuc->constraint_list);
2865                 cpuc->constraint_list = NULL;
2866         }
2867 }
2868
2869 static void intel_pmu_cpu_dying(int cpu)
2870 {
2871         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2872         struct intel_shared_regs *pc;
2873
2874         pc = cpuc->shared_regs;
2875         if (pc) {
2876                 if (pc->core_id == -1 || --pc->refcnt == 0)
2877                         kfree(pc);
2878                 cpuc->shared_regs = NULL;
2879         }
2880
2881         free_excl_cntrs(cpu);
2882
2883         fini_debug_store_on_cpu(cpu);
2884 }
2885
2886 static void intel_pmu_sched_task(struct perf_event_context *ctx,
2887                                  bool sched_in)
2888 {
2889         if (x86_pmu.pebs_active)
2890                 intel_pmu_pebs_sched_task(ctx, sched_in);
2891         if (x86_pmu.lbr_nr)
2892                 intel_pmu_lbr_sched_task(ctx, sched_in);
2893 }
2894
2895 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2896
2897 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2898
2899 PMU_FORMAT_ATTR(frontend, "config1:0-23");
2900
2901 static struct attribute *intel_arch3_formats_attr[] = {
2902         &format_attr_event.attr,
2903         &format_attr_umask.attr,
2904         &format_attr_edge.attr,
2905         &format_attr_pc.attr,
2906         &format_attr_any.attr,
2907         &format_attr_inv.attr,
2908         &format_attr_cmask.attr,
2909         &format_attr_in_tx.attr,
2910         &format_attr_in_tx_cp.attr,
2911
2912         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2913         &format_attr_ldlat.attr, /* PEBS load latency */
2914         NULL,
2915 };
2916
2917 static struct attribute *skl_format_attr[] = {
2918         &format_attr_frontend.attr,
2919         NULL,
2920 };
2921
2922 static __initconst const struct x86_pmu core_pmu = {
2923         .name                   = "core",
2924         .handle_irq             = x86_pmu_handle_irq,
2925         .disable_all            = x86_pmu_disable_all,
2926         .enable_all             = core_pmu_enable_all,
2927         .enable                 = core_pmu_enable_event,
2928         .disable                = x86_pmu_disable_event,
2929         .hw_config              = x86_pmu_hw_config,
2930         .schedule_events        = x86_schedule_events,
2931         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2932         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2933         .event_map              = intel_pmu_event_map,
2934         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2935         .apic                   = 1,
2936         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
2937
2938         /*
2939          * Intel PMCs cannot be accessed sanely above 32-bit width,
2940          * so we install an artificial 1<<31 period regardless of
2941          * the generic event period:
2942          */
2943         .max_period             = (1ULL<<31) - 1,
2944         .get_event_constraints  = intel_get_event_constraints,
2945         .put_event_constraints  = intel_put_event_constraints,
2946         .event_constraints      = intel_core_event_constraints,
2947         .guest_get_msrs         = core_guest_get_msrs,
2948         .format_attrs           = intel_arch_formats_attr,
2949         .events_sysfs_show      = intel_event_sysfs_show,
2950
2951         /*
2952          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2953          * together with PMU version 1 and thus be using core_pmu with
2954          * shared_regs. We need following callbacks here to allocate
2955          * it properly.
2956          */
2957         .cpu_prepare            = intel_pmu_cpu_prepare,
2958         .cpu_starting           = intel_pmu_cpu_starting,
2959         .cpu_dying              = intel_pmu_cpu_dying,
2960 };
2961
2962 static __initconst const struct x86_pmu intel_pmu = {
2963         .name                   = "Intel",
2964         .handle_irq             = intel_pmu_handle_irq,
2965         .disable_all            = intel_pmu_disable_all,
2966         .enable_all             = intel_pmu_enable_all,
2967         .enable                 = intel_pmu_enable_event,
2968         .disable                = intel_pmu_disable_event,
2969         .hw_config              = intel_pmu_hw_config,
2970         .schedule_events        = x86_schedule_events,
2971         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2972         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2973         .event_map              = intel_pmu_event_map,
2974         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2975         .apic                   = 1,
2976         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
2977         /*
2978          * Intel PMCs cannot be accessed sanely above 32 bit width,
2979          * so we install an artificial 1<<31 period regardless of
2980          * the generic event period:
2981          */
2982         .max_period             = (1ULL << 31) - 1,
2983         .get_event_constraints  = intel_get_event_constraints,
2984         .put_event_constraints  = intel_put_event_constraints,
2985         .pebs_aliases           = intel_pebs_aliases_core2,
2986
2987         .format_attrs           = intel_arch3_formats_attr,
2988         .events_sysfs_show      = intel_event_sysfs_show,
2989
2990         .cpu_prepare            = intel_pmu_cpu_prepare,
2991         .cpu_starting           = intel_pmu_cpu_starting,
2992         .cpu_dying              = intel_pmu_cpu_dying,
2993         .guest_get_msrs         = intel_guest_get_msrs,
2994         .sched_task             = intel_pmu_sched_task,
2995 };
2996
2997 static __init void intel_clovertown_quirk(void)
2998 {
2999         /*
3000          * PEBS is unreliable due to:
3001          *
3002          *   AJ67  - PEBS may experience CPL leaks
3003          *   AJ68  - PEBS PMI may be delayed by one event
3004          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3005          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3006          *
3007          * AJ67 could be worked around by restricting the OS/USR flags.
3008          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3009          *
3010          * AJ106 could possibly be worked around by not allowing LBR
3011          *       usage from PEBS, including the fixup.
3012          * AJ68  could possibly be worked around by always programming
3013          *       a pebs_event_reset[0] value and coping with the lost events.
3014          *
3015          * But taken together it might just make sense to not enable PEBS on
3016          * these chips.
3017          */
3018         pr_warn("PEBS disabled due to CPU errata\n");
3019         x86_pmu.pebs = 0;
3020         x86_pmu.pebs_constraints = NULL;
3021 }
3022
3023 static int intel_snb_pebs_broken(int cpu)
3024 {
3025         u32 rev = UINT_MAX; /* default to broken for unknown models */
3026
3027         switch (cpu_data(cpu).x86_model) {
3028         case 42: /* SNB */
3029                 rev = 0x28;
3030                 break;
3031
3032         case 45: /* SNB-EP */
3033                 switch (cpu_data(cpu).x86_mask) {
3034                 case 6: rev = 0x618; break;
3035                 case 7: rev = 0x70c; break;
3036                 }
3037         }
3038
3039         return (cpu_data(cpu).microcode < rev);
3040 }
3041
3042 static void intel_snb_check_microcode(void)
3043 {
3044         int pebs_broken = 0;
3045         int cpu;
3046
3047         get_online_cpus();
3048         for_each_online_cpu(cpu) {
3049                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3050                         break;
3051         }
3052         put_online_cpus();
3053
3054         if (pebs_broken == x86_pmu.pebs_broken)
3055                 return;
3056
3057         /*
3058          * Serialized by the microcode lock..
3059          */
3060         if (x86_pmu.pebs_broken) {
3061                 pr_info("PEBS enabled due to microcode update\n");
3062                 x86_pmu.pebs_broken = 0;
3063         } else {
3064                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3065                 x86_pmu.pebs_broken = 1;
3066         }
3067 }
3068
3069 /*
3070  * Under certain circumstances, access certain MSR may cause #GP.
3071  * The function tests if the input MSR can be safely accessed.
3072  */
3073 static bool check_msr(unsigned long msr, u64 mask)
3074 {
3075         u64 val_old, val_new, val_tmp;
3076
3077         /*
3078          * Read the current value, change it and read it back to see if it
3079          * matches, this is needed to detect certain hardware emulators
3080          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3081          */
3082         if (rdmsrl_safe(msr, &val_old))
3083                 return false;
3084
3085         /*
3086          * Only change the bits which can be updated by wrmsrl.
3087          */
3088         val_tmp = val_old ^ mask;
3089         if (wrmsrl_safe(msr, val_tmp) ||
3090             rdmsrl_safe(msr, &val_new))
3091                 return false;
3092
3093         if (val_new != val_tmp)
3094                 return false;
3095
3096         /* Here it's sure that the MSR can be safely accessed.
3097          * Restore the old value and return.
3098          */
3099         wrmsrl(msr, val_old);
3100
3101         return true;
3102 }
3103
3104 static __init void intel_sandybridge_quirk(void)
3105 {
3106         x86_pmu.check_microcode = intel_snb_check_microcode;
3107         intel_snb_check_microcode();
3108 }
3109
3110 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3111         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3112         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3113         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3114         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3115         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3116         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3117         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3118 };
3119
3120 static __init void intel_arch_events_quirk(void)
3121 {
3122         int bit;
3123
3124         /* disable event that reported as not presend by cpuid */
3125         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3126                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3127                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3128                         intel_arch_events_map[bit].name);
3129         }
3130 }
3131
3132 static __init void intel_nehalem_quirk(void)
3133 {
3134         union cpuid10_ebx ebx;
3135
3136         ebx.full = x86_pmu.events_maskl;
3137         if (ebx.split.no_branch_misses_retired) {
3138                 /*
3139                  * Erratum AAJ80 detected, we work it around by using
3140                  * the BR_MISP_EXEC.ANY event. This will over-count
3141                  * branch-misses, but it's still much better than the
3142                  * architectural event which is often completely bogus:
3143                  */
3144                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3145                 ebx.split.no_branch_misses_retired = 0;
3146                 x86_pmu.events_maskl = ebx.full;
3147                 pr_info("CPU erratum AAJ80 worked around\n");
3148         }
3149 }
3150
3151 /*
3152  * enable software workaround for errata:
3153  * SNB: BJ122
3154  * IVB: BV98
3155  * HSW: HSD29
3156  *
3157  * Only needed when HT is enabled. However detecting
3158  * if HT is enabled is difficult (model specific). So instead,
3159  * we enable the workaround in the early boot, and verify if
3160  * it is needed in a later initcall phase once we have valid
3161  * topology information to check if HT is actually enabled
3162  */
3163 static __init void intel_ht_bug(void)
3164 {
3165         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3166
3167         x86_pmu.start_scheduling = intel_start_scheduling;
3168         x86_pmu.commit_scheduling = intel_commit_scheduling;
3169         x86_pmu.stop_scheduling = intel_stop_scheduling;
3170 }
3171
3172 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3173 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3174
3175 /* Haswell special events */
3176 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3177 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3178 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3179 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3180 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3181 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3182 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3183 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3184 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3185 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3186 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3187 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3188
3189 static struct attribute *hsw_events_attrs[] = {
3190         EVENT_PTR(tx_start),
3191         EVENT_PTR(tx_commit),
3192         EVENT_PTR(tx_abort),
3193         EVENT_PTR(tx_capacity),
3194         EVENT_PTR(tx_conflict),
3195         EVENT_PTR(el_start),
3196         EVENT_PTR(el_commit),
3197         EVENT_PTR(el_abort),
3198         EVENT_PTR(el_capacity),
3199         EVENT_PTR(el_conflict),
3200         EVENT_PTR(cycles_t),
3201         EVENT_PTR(cycles_ct),
3202         EVENT_PTR(mem_ld_hsw),
3203         EVENT_PTR(mem_st_hsw),
3204         NULL
3205 };
3206
3207 __init int intel_pmu_init(void)
3208 {
3209         union cpuid10_edx edx;
3210         union cpuid10_eax eax;
3211         union cpuid10_ebx ebx;
3212         struct event_constraint *c;
3213         unsigned int unused;
3214         struct extra_reg *er;
3215         int version, i;
3216
3217         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3218                 switch (boot_cpu_data.x86) {
3219                 case 0x6:
3220                         return p6_pmu_init();
3221                 case 0xb:
3222                         return knc_pmu_init();
3223                 case 0xf:
3224                         return p4_pmu_init();
3225                 }
3226                 return -ENODEV;
3227         }
3228
3229         /*
3230          * Check whether the Architectural PerfMon supports
3231          * Branch Misses Retired hw_event or not.
3232          */
3233         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3234         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3235                 return -ENODEV;
3236
3237         version = eax.split.version_id;
3238         if (version < 2)
3239                 x86_pmu = core_pmu;
3240         else
3241                 x86_pmu = intel_pmu;
3242
3243         x86_pmu.version                 = version;
3244         x86_pmu.num_counters            = eax.split.num_counters;
3245         x86_pmu.cntval_bits             = eax.split.bit_width;
3246         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3247
3248         x86_pmu.events_maskl            = ebx.full;
3249         x86_pmu.events_mask_len         = eax.split.mask_length;
3250
3251         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3252
3253         /*
3254          * Quirk: v2 perfmon does not report fixed-purpose events, so
3255          * assume at least 3 events:
3256          */
3257         if (version > 1)
3258                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3259
3260         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3261                 u64 capabilities;
3262
3263                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3264                 x86_pmu.intel_cap.capabilities = capabilities;
3265         }
3266
3267         intel_ds_init();
3268
3269         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3270
3271         /*
3272          * Install the hw-cache-events table:
3273          */
3274         switch (boot_cpu_data.x86_model) {
3275         case 14: /* 65nm Core "Yonah" */
3276                 pr_cont("Core events, ");
3277                 break;
3278
3279         case 15: /* 65nm Core2 "Merom"          */
3280                 x86_add_quirk(intel_clovertown_quirk);
3281         case 22: /* 65nm Core2 "Merom-L"        */
3282         case 23: /* 45nm Core2 "Penryn"         */
3283         case 29: /* 45nm Core2 "Dunnington (MP) */
3284                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3285                        sizeof(hw_cache_event_ids));
3286
3287                 intel_pmu_lbr_init_core();
3288
3289                 x86_pmu.event_constraints = intel_core2_event_constraints;
3290                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3291                 pr_cont("Core2 events, ");
3292                 break;
3293
3294         case 30: /* 45nm Nehalem    */
3295         case 26: /* 45nm Nehalem-EP */
3296         case 46: /* 45nm Nehalem-EX */
3297                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3298                        sizeof(hw_cache_event_ids));
3299                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3300                        sizeof(hw_cache_extra_regs));
3301
3302                 intel_pmu_lbr_init_nhm();
3303
3304                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3305                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3306                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3307                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3308
3309                 x86_pmu.cpu_events = nhm_events_attrs;
3310
3311                 /* UOPS_ISSUED.STALLED_CYCLES */
3312                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3313                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3314                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3315                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3316                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3317
3318                 x86_add_quirk(intel_nehalem_quirk);
3319
3320                 pr_cont("Nehalem events, ");
3321                 break;
3322
3323         case 28: /* 45nm Atom "Pineview"   */
3324         case 38: /* 45nm Atom "Lincroft"   */
3325         case 39: /* 32nm Atom "Penwell"    */
3326         case 53: /* 32nm Atom "Cloverview" */
3327         case 54: /* 32nm Atom "Cedarview"  */
3328                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3329                        sizeof(hw_cache_event_ids));
3330
3331                 intel_pmu_lbr_init_atom();
3332
3333                 x86_pmu.event_constraints = intel_gen_event_constraints;
3334                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3335                 pr_cont("Atom events, ");
3336                 break;
3337
3338         case 55: /* 22nm Atom "Silvermont"                */
3339         case 76: /* 14nm Atom "Airmont"                   */
3340         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3341                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3342                         sizeof(hw_cache_event_ids));
3343                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3344                        sizeof(hw_cache_extra_regs));
3345
3346                 intel_pmu_lbr_init_atom();
3347
3348                 x86_pmu.event_constraints = intel_slm_event_constraints;
3349                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3350                 x86_pmu.extra_regs = intel_slm_extra_regs;
3351                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3352                 pr_cont("Silvermont events, ");
3353                 break;
3354
3355         case 37: /* 32nm Westmere    */
3356         case 44: /* 32nm Westmere-EP */
3357         case 47: /* 32nm Westmere-EX */
3358                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3359                        sizeof(hw_cache_event_ids));
3360                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3361                        sizeof(hw_cache_extra_regs));
3362
3363                 intel_pmu_lbr_init_nhm();
3364
3365                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3366                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3367                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3368                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3369                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3370
3371                 x86_pmu.cpu_events = nhm_events_attrs;
3372
3373                 /* UOPS_ISSUED.STALLED_CYCLES */
3374                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3375                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3376                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3377                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3378                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3379
3380                 pr_cont("Westmere events, ");
3381                 break;
3382
3383         case 42: /* 32nm SandyBridge         */
3384         case 45: /* 32nm SandyBridge-E/EN/EP */
3385                 x86_add_quirk(intel_sandybridge_quirk);
3386                 x86_add_quirk(intel_ht_bug);
3387                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3388                        sizeof(hw_cache_event_ids));
3389                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3390                        sizeof(hw_cache_extra_regs));
3391
3392                 intel_pmu_lbr_init_snb();
3393
3394                 x86_pmu.event_constraints = intel_snb_event_constraints;
3395                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3396                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3397                 if (boot_cpu_data.x86_model == 45)
3398                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3399                 else
3400                         x86_pmu.extra_regs = intel_snb_extra_regs;
3401
3402
3403                 /* all extra regs are per-cpu when HT is on */
3404                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3405                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3406
3407                 x86_pmu.cpu_events = snb_events_attrs;
3408
3409                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3410                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3411                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3412                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3413                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3414                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3415
3416                 pr_cont("SandyBridge events, ");
3417                 break;
3418
3419         case 58: /* 22nm IvyBridge       */
3420         case 62: /* 22nm IvyBridge-EP/EX */
3421                 x86_add_quirk(intel_ht_bug);
3422                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3423                        sizeof(hw_cache_event_ids));
3424                 /* dTLB-load-misses on IVB is different than SNB */
3425                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3426
3427                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3428                        sizeof(hw_cache_extra_regs));
3429
3430                 intel_pmu_lbr_init_snb();
3431
3432                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3433                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3434                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3435                 if (boot_cpu_data.x86_model == 62)
3436                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3437                 else
3438                         x86_pmu.extra_regs = intel_snb_extra_regs;
3439                 /* all extra regs are per-cpu when HT is on */
3440                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3441                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3442
3443                 x86_pmu.cpu_events = snb_events_attrs;
3444
3445                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3446                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3447                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3448
3449                 pr_cont("IvyBridge events, ");
3450                 break;
3451
3452
3453         case 60: /* 22nm Haswell Core */
3454         case 63: /* 22nm Haswell Server */
3455         case 69: /* 22nm Haswell ULT */
3456         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3457                 x86_add_quirk(intel_ht_bug);
3458                 x86_pmu.late_ack = true;
3459                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3460                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3461
3462                 intel_pmu_lbr_init_hsw();
3463
3464                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3465                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3466                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3467                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3468                 /* all extra regs are per-cpu when HT is on */
3469                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3470                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3471
3472                 x86_pmu.hw_config = hsw_hw_config;
3473                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3474                 x86_pmu.cpu_events = hsw_events_attrs;
3475                 x86_pmu.lbr_double_abort = true;
3476                 pr_cont("Haswell events, ");
3477                 break;
3478
3479         case 61: /* 14nm Broadwell Core-M */
3480         case 86: /* 14nm Broadwell Xeon D */
3481         case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3482         case 79: /* 14nm Broadwell Server */
3483                 x86_pmu.late_ack = true;
3484                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3485                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3486
3487                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3488                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3489                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3490                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3491                                                                           HSW_SNOOP_DRAM;
3492                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3493                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3494                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3495                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3496
3497                 intel_pmu_lbr_init_hsw();
3498
3499                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3500                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3501                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3502                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3503                 /* all extra regs are per-cpu when HT is on */
3504                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3505                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3506
3507                 x86_pmu.hw_config = hsw_hw_config;
3508                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3509                 x86_pmu.cpu_events = hsw_events_attrs;
3510                 x86_pmu.limit_period = bdw_limit_period;
3511                 pr_cont("Broadwell events, ");
3512                 break;
3513
3514         case 78: /* 14nm Skylake Mobile */
3515         case 94: /* 14nm Skylake Desktop */
3516                 x86_pmu.late_ack = true;
3517                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3518                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3519                 intel_pmu_lbr_init_skl();
3520
3521                 x86_pmu.event_constraints = intel_skl_event_constraints;
3522                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3523                 x86_pmu.extra_regs = intel_skl_extra_regs;
3524                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3525                 /* all extra regs are per-cpu when HT is on */
3526                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3527                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3528
3529                 x86_pmu.hw_config = hsw_hw_config;
3530                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3531                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3532                                                   skl_format_attr);
3533                 WARN_ON(!x86_pmu.format_attrs);
3534                 x86_pmu.cpu_events = hsw_events_attrs;
3535                 pr_cont("Skylake events, ");
3536                 break;
3537
3538         default:
3539                 switch (x86_pmu.version) {
3540                 case 1:
3541                         x86_pmu.event_constraints = intel_v1_event_constraints;
3542                         pr_cont("generic architected perfmon v1, ");
3543                         break;
3544                 default:
3545                         /*
3546                          * default constraints for v2 and up
3547                          */
3548                         x86_pmu.event_constraints = intel_gen_event_constraints;
3549                         pr_cont("generic architected perfmon, ");
3550                         break;
3551                 }
3552         }
3553
3554         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3555                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3556                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3557                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3558         }
3559         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3560
3561         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3562                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3563                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3564                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3565         }
3566
3567         x86_pmu.intel_ctrl |=
3568                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3569
3570         if (x86_pmu.event_constraints) {
3571                 /*
3572                  * event on fixed counter2 (REF_CYCLES) only works on this
3573                  * counter, so do not extend mask to generic counters
3574                  */
3575                 for_each_event_constraint(c, x86_pmu.event_constraints) {
3576                         if (c->cmask == FIXED_EVENT_FLAGS
3577                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3578                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3579                         }
3580                         c->idxmsk64 &=
3581                                 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3582                         c->weight = hweight64(c->idxmsk64);
3583                 }
3584         }
3585
3586         /*
3587          * Access LBR MSR may cause #GP under certain circumstances.
3588          * E.g. KVM doesn't support LBR MSR
3589          * Check all LBT MSR here.
3590          * Disable LBR access if any LBR MSRs can not be accessed.
3591          */
3592         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3593                 x86_pmu.lbr_nr = 0;
3594         for (i = 0; i < x86_pmu.lbr_nr; i++) {
3595                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3596                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3597                         x86_pmu.lbr_nr = 0;
3598         }
3599
3600         /*
3601          * Access extra MSR may cause #GP under certain circumstances.
3602          * E.g. KVM doesn't support offcore event
3603          * Check all extra_regs here.
3604          */
3605         if (x86_pmu.extra_regs) {
3606                 for (er = x86_pmu.extra_regs; er->msr; er++) {
3607                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
3608                         /* Disable LBR select mapping */
3609                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3610                                 x86_pmu.lbr_sel_map = NULL;
3611                 }
3612         }
3613
3614         /* Support full width counters using alternative MSR range */
3615         if (x86_pmu.intel_cap.full_width_write) {
3616                 x86_pmu.max_period = x86_pmu.cntval_mask;
3617                 x86_pmu.perfctr = MSR_IA32_PMC0;
3618                 pr_cont("full-width counters, ");
3619         }
3620
3621         return 0;
3622 }
3623
3624 /*
3625  * HT bug: phase 2 init
3626  * Called once we have valid topology information to check
3627  * whether or not HT is enabled
3628  * If HT is off, then we disable the workaround
3629  */
3630 static __init int fixup_ht_bug(void)
3631 {
3632         int cpu = smp_processor_id();
3633         int w, c;
3634         /*
3635          * problem not present on this CPU model, nothing to do
3636          */
3637         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3638                 return 0;
3639
3640         w = cpumask_weight(topology_sibling_cpumask(cpu));
3641         if (w > 1) {
3642                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3643                 return 0;
3644         }
3645
3646         if (lockup_detector_suspend() != 0) {
3647                 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3648                 return 0;
3649         }
3650
3651         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3652
3653         x86_pmu.start_scheduling = NULL;
3654         x86_pmu.commit_scheduling = NULL;
3655         x86_pmu.stop_scheduling = NULL;
3656
3657         lockup_detector_resume();
3658
3659         get_online_cpus();
3660
3661         for_each_online_cpu(c) {
3662                 free_excl_cntrs(c);
3663         }
3664
3665         put_online_cpus();
3666         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3667         return 0;
3668 }
3669 subsys_initcall(fixup_ht_bug)