]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel_ds.c
Merge remote-tracking branch 'omap/for-next'
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
57         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
58         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
59         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
61         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
63         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
66         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
67         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
70         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75         union intel_x86_pebs_dse dse;
76         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78         dse.val = status;
79
80         /*
81          * bit 4: TLB access
82          * 1 = stored missed 2nd level TLB
83          *
84          * so it either hit the walker or the OS
85          * otherwise hit 2nd level TLB
86          */
87         if (dse.st_stlb_miss)
88                 val |= P(TLB, MISS);
89         else
90                 val |= P(TLB, HIT);
91
92         /*
93          * bit 0: hit L1 data cache
94          * if not set, then all we know is that
95          * it missed L1D
96          */
97         if (dse.st_l1d_hit)
98                 val |= P(LVL, HIT);
99         else
100                 val |= P(LVL, MISS);
101
102         /*
103          * bit 5: Locked prefix
104          */
105         if (dse.st_locked)
106                 val |= P(LOCK, LOCKED);
107
108         return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113         union perf_mem_data_src dse;
114
115         dse.val = PERF_MEM_NA;
116
117         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118                 dse.mem_op = PERF_MEM_OP_STORE;
119         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120                 dse.mem_op = PERF_MEM_OP_LOAD;
121
122         /*
123          * L1 info only valid for following events:
124          *
125          * MEM_UOPS_RETIRED.STLB_MISS_STORES
126          * MEM_UOPS_RETIRED.LOCK_STORES
127          * MEM_UOPS_RETIRED.SPLIT_STORES
128          * MEM_UOPS_RETIRED.ALL_STORES
129          */
130         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131                 if (status & 1)
132                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133                 else
134                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135         }
136         return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141         union intel_x86_pebs_dse dse;
142         u64 val;
143         int model = boot_cpu_data.x86_model;
144         int fam = boot_cpu_data.x86;
145
146         dse.val = status;
147
148         /*
149          * use the mapping table for bit 0-3
150          */
151         val = pebs_data_source[dse.ld_dse];
152
153         /*
154          * Nehalem models do not support TLB, Lock infos
155          */
156         if (fam == 0x6 && (model == 26 || model == 30
157             || model == 31 || model == 46)) {
158                 val |= P(TLB, NA) | P(LOCK, NA);
159                 return val;
160         }
161         /*
162          * bit 4: TLB access
163          * 0 = did not miss 2nd level TLB
164          * 1 = missed 2nd level TLB
165          */
166         if (dse.ld_stlb_miss)
167                 val |= P(TLB, MISS) | P(TLB, L2);
168         else
169                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171         /*
172          * bit 5: locked prefix
173          */
174         if (dse.ld_locked)
175                 val |= P(LOCK, LOCKED);
176
177         return val;
178 }
179
180 struct pebs_record_core {
181         u64 flags, ip;
182         u64 ax, bx, cx, dx;
183         u64 si, di, bp, sp;
184         u64 r8,  r9,  r10, r11;
185         u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189         u64 flags, ip;
190         u64 ax, bx, cx, dx;
191         u64 si, di, bp, sp;
192         u64 r8,  r9,  r10, r11;
193         u64 r12, r13, r14, r15;
194         u64 status, dla, dse, lat;
195 };
196
197 /*
198  * Same as pebs_record_nhm, with two additional fields.
199  */
200 struct pebs_record_hsw {
201         u64 flags, ip;
202         u64 ax, bx, cx, dx;
203         u64 si, di, bp, sp;
204         u64 r8,  r9,  r10, r11;
205         u64 r12, r13, r14, r15;
206         u64 status, dla, dse, lat;
207         u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211         struct {
212                 u32 cycles_last_block     : 32,
213                     hle_abort             : 1,
214                     rtm_abort             : 1,
215                     instruction_abort     : 1,
216                     non_instruction_abort : 1,
217                     retry                 : 1,
218                     data_conflict         : 1,
219                     capacity_writes       : 1,
220                     capacity_reads        : 1;
221         };
222         u64         value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
226
227 /* Same as HSW, plus TSC */
228
229 struct pebs_record_skl {
230         u64 flags, ip;
231         u64 ax, bx, cx, dx;
232         u64 si, di, bp, sp;
233         u64 r8,  r9,  r10, r11;
234         u64 r12, r13, r14, r15;
235         u64 status, dla, dse, lat;
236         u64 real_ip, tsx_tuning;
237         u64 tsc;
238 };
239
240 void init_debug_store_on_cpu(int cpu)
241 {
242         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
243
244         if (!ds)
245                 return;
246
247         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
248                      (u32)((u64)(unsigned long)ds),
249                      (u32)((u64)(unsigned long)ds >> 32));
250 }
251
252 void fini_debug_store_on_cpu(int cpu)
253 {
254         if (!per_cpu(cpu_hw_events, cpu).ds)
255                 return;
256
257         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
258 }
259
260 static DEFINE_PER_CPU(void *, insn_buffer);
261
262 static int alloc_pebs_buffer(int cpu)
263 {
264         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
265         int node = cpu_to_node(cpu);
266         int max;
267         void *buffer, *ibuffer;
268
269         if (!x86_pmu.pebs)
270                 return 0;
271
272         buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
273         if (unlikely(!buffer))
274                 return -ENOMEM;
275
276         /*
277          * HSW+ already provides us the eventing ip; no need to allocate this
278          * buffer then.
279          */
280         if (x86_pmu.intel_cap.pebs_format < 2) {
281                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
282                 if (!ibuffer) {
283                         kfree(buffer);
284                         return -ENOMEM;
285                 }
286                 per_cpu(insn_buffer, cpu) = ibuffer;
287         }
288
289         max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
290
291         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
292         ds->pebs_index = ds->pebs_buffer_base;
293         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
294                 max * x86_pmu.pebs_record_size;
295
296         return 0;
297 }
298
299 static void release_pebs_buffer(int cpu)
300 {
301         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
302
303         if (!ds || !x86_pmu.pebs)
304                 return;
305
306         kfree(per_cpu(insn_buffer, cpu));
307         per_cpu(insn_buffer, cpu) = NULL;
308
309         kfree((void *)(unsigned long)ds->pebs_buffer_base);
310         ds->pebs_buffer_base = 0;
311 }
312
313 static int alloc_bts_buffer(int cpu)
314 {
315         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
316         int node = cpu_to_node(cpu);
317         int max, thresh;
318         void *buffer;
319
320         if (!x86_pmu.bts)
321                 return 0;
322
323         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
324         if (unlikely(!buffer)) {
325                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
326                 return -ENOMEM;
327         }
328
329         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
330         thresh = max / 16;
331
332         ds->bts_buffer_base = (u64)(unsigned long)buffer;
333         ds->bts_index = ds->bts_buffer_base;
334         ds->bts_absolute_maximum = ds->bts_buffer_base +
335                 max * BTS_RECORD_SIZE;
336         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
337                 thresh * BTS_RECORD_SIZE;
338
339         return 0;
340 }
341
342 static void release_bts_buffer(int cpu)
343 {
344         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
345
346         if (!ds || !x86_pmu.bts)
347                 return;
348
349         kfree((void *)(unsigned long)ds->bts_buffer_base);
350         ds->bts_buffer_base = 0;
351 }
352
353 static int alloc_ds_buffer(int cpu)
354 {
355         int node = cpu_to_node(cpu);
356         struct debug_store *ds;
357
358         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
359         if (unlikely(!ds))
360                 return -ENOMEM;
361
362         per_cpu(cpu_hw_events, cpu).ds = ds;
363
364         return 0;
365 }
366
367 static void release_ds_buffer(int cpu)
368 {
369         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
370
371         if (!ds)
372                 return;
373
374         per_cpu(cpu_hw_events, cpu).ds = NULL;
375         kfree(ds);
376 }
377
378 void release_ds_buffers(void)
379 {
380         int cpu;
381
382         if (!x86_pmu.bts && !x86_pmu.pebs)
383                 return;
384
385         get_online_cpus();
386         for_each_online_cpu(cpu)
387                 fini_debug_store_on_cpu(cpu);
388
389         for_each_possible_cpu(cpu) {
390                 release_pebs_buffer(cpu);
391                 release_bts_buffer(cpu);
392                 release_ds_buffer(cpu);
393         }
394         put_online_cpus();
395 }
396
397 void reserve_ds_buffers(void)
398 {
399         int bts_err = 0, pebs_err = 0;
400         int cpu;
401
402         x86_pmu.bts_active = 0;
403         x86_pmu.pebs_active = 0;
404
405         if (!x86_pmu.bts && !x86_pmu.pebs)
406                 return;
407
408         if (!x86_pmu.bts)
409                 bts_err = 1;
410
411         if (!x86_pmu.pebs)
412                 pebs_err = 1;
413
414         get_online_cpus();
415
416         for_each_possible_cpu(cpu) {
417                 if (alloc_ds_buffer(cpu)) {
418                         bts_err = 1;
419                         pebs_err = 1;
420                 }
421
422                 if (!bts_err && alloc_bts_buffer(cpu))
423                         bts_err = 1;
424
425                 if (!pebs_err && alloc_pebs_buffer(cpu))
426                         pebs_err = 1;
427
428                 if (bts_err && pebs_err)
429                         break;
430         }
431
432         if (bts_err) {
433                 for_each_possible_cpu(cpu)
434                         release_bts_buffer(cpu);
435         }
436
437         if (pebs_err) {
438                 for_each_possible_cpu(cpu)
439                         release_pebs_buffer(cpu);
440         }
441
442         if (bts_err && pebs_err) {
443                 for_each_possible_cpu(cpu)
444                         release_ds_buffer(cpu);
445         } else {
446                 if (x86_pmu.bts && !bts_err)
447                         x86_pmu.bts_active = 1;
448
449                 if (x86_pmu.pebs && !pebs_err)
450                         x86_pmu.pebs_active = 1;
451
452                 for_each_online_cpu(cpu)
453                         init_debug_store_on_cpu(cpu);
454         }
455
456         put_online_cpus();
457 }
458
459 /*
460  * BTS
461  */
462
463 struct event_constraint bts_constraint =
464         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
465
466 void intel_pmu_enable_bts(u64 config)
467 {
468         unsigned long debugctlmsr;
469
470         debugctlmsr = get_debugctlmsr();
471
472         debugctlmsr |= DEBUGCTLMSR_TR;
473         debugctlmsr |= DEBUGCTLMSR_BTS;
474         if (config & ARCH_PERFMON_EVENTSEL_INT)
475                 debugctlmsr |= DEBUGCTLMSR_BTINT;
476
477         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
478                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
479
480         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
481                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
482
483         update_debugctlmsr(debugctlmsr);
484 }
485
486 void intel_pmu_disable_bts(void)
487 {
488         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489         unsigned long debugctlmsr;
490
491         if (!cpuc->ds)
492                 return;
493
494         debugctlmsr = get_debugctlmsr();
495
496         debugctlmsr &=
497                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
498                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
499
500         update_debugctlmsr(debugctlmsr);
501 }
502
503 int intel_pmu_drain_bts_buffer(void)
504 {
505         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506         struct debug_store *ds = cpuc->ds;
507         struct bts_record {
508                 u64     from;
509                 u64     to;
510                 u64     flags;
511         };
512         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
513         struct bts_record *at, *base, *top;
514         struct perf_output_handle handle;
515         struct perf_event_header header;
516         struct perf_sample_data data;
517         unsigned long skip = 0;
518         struct pt_regs regs;
519
520         if (!event)
521                 return 0;
522
523         if (!x86_pmu.bts_active)
524                 return 0;
525
526         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
527         top  = (struct bts_record *)(unsigned long)ds->bts_index;
528
529         if (top <= base)
530                 return 0;
531
532         memset(&regs, 0, sizeof(regs));
533
534         ds->bts_index = ds->bts_buffer_base;
535
536         perf_sample_data_init(&data, 0, event->hw.last_period);
537
538         /*
539          * BTS leaks kernel addresses in branches across the cpl boundary,
540          * such as traps or system calls, so unless the user is asking for
541          * kernel tracing (and right now it's not possible), we'd need to
542          * filter them out. But first we need to count how many of those we
543          * have in the current batch. This is an extra O(n) pass, however,
544          * it's much faster than the other one especially considering that
545          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
546          * alloc_bts_buffer()).
547          */
548         for (at = base; at < top; at++) {
549                 /*
550                  * Note that right now *this* BTS code only works if
551                  * attr::exclude_kernel is set, but let's keep this extra
552                  * check here in case that changes.
553                  */
554                 if (event->attr.exclude_kernel &&
555                     (kernel_ip(at->from) || kernel_ip(at->to)))
556                         skip++;
557         }
558
559         /*
560          * Prepare a generic sample, i.e. fill in the invariant fields.
561          * We will overwrite the from and to address before we output
562          * the sample.
563          */
564         perf_prepare_sample(&header, &data, event, &regs);
565
566         if (perf_output_begin(&handle, event, header.size *
567                               (top - base - skip)))
568                 return 1;
569
570         for (at = base; at < top; at++) {
571                 /* Filter out any records that contain kernel addresses. */
572                 if (event->attr.exclude_kernel &&
573                     (kernel_ip(at->from) || kernel_ip(at->to)))
574                         continue;
575
576                 data.ip         = at->from;
577                 data.addr       = at->to;
578
579                 perf_output_sample(&handle, &header, &data, event);
580         }
581
582         perf_output_end(&handle);
583
584         /* There's new data available. */
585         event->hw.interrupts++;
586         event->pending_kill = POLL_IN;
587         return 1;
588 }
589
590 static inline void intel_pmu_drain_pebs_buffer(void)
591 {
592         struct pt_regs regs;
593
594         x86_pmu.drain_pebs(&regs);
595 }
596
597 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
598 {
599         if (!sched_in)
600                 intel_pmu_drain_pebs_buffer();
601 }
602
603 /*
604  * PEBS
605  */
606 struct event_constraint intel_core2_pebs_event_constraints[] = {
607         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
608         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
609         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
610         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
611         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
612         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
613         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
614         EVENT_CONSTRAINT_END
615 };
616
617 struct event_constraint intel_atom_pebs_event_constraints[] = {
618         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
619         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
620         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
621         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
622         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623         EVENT_CONSTRAINT_END
624 };
625
626 struct event_constraint intel_slm_pebs_event_constraints[] = {
627         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
628         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
629         /* Allow all events as PEBS with no flags */
630         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
631         EVENT_CONSTRAINT_END
632 };
633
634 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
635         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
636         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
637         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
638         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
639         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
640         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
641         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
642         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
643         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
644         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
645         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
646         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
647         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
648         EVENT_CONSTRAINT_END
649 };
650
651 struct event_constraint intel_westmere_pebs_event_constraints[] = {
652         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
653         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
654         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
655         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
656         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
657         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
658         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
659         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
660         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
661         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
662         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
663         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
664         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
665         EVENT_CONSTRAINT_END
666 };
667
668 struct event_constraint intel_snb_pebs_event_constraints[] = {
669         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
670         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
671         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
672         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
673         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
674         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
675         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
676         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
677         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
678         /* Allow all events as PEBS with no flags */
679         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
680         EVENT_CONSTRAINT_END
681 };
682
683 struct event_constraint intel_ivb_pebs_event_constraints[] = {
684         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
685         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
686         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
687         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
688         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
689         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
690         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
691         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
692         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
693         /* Allow all events as PEBS with no flags */
694         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
695         EVENT_CONSTRAINT_END
696 };
697
698 struct event_constraint intel_hsw_pebs_event_constraints[] = {
699         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
700         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
701         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
702         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
703         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
704         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
705         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
706         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
707         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
708         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
709         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
710         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
711         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
712         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
713         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
714         /* Allow all events as PEBS with no flags */
715         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
716         EVENT_CONSTRAINT_END
717 };
718
719 struct event_constraint intel_skl_pebs_event_constraints[] = {
720         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
721         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
722         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
723         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
724         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
725         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
726         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
727         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
728         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
729         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
730         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
731         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
732         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
733         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
734         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
735         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
736         /* Allow all events as PEBS with no flags */
737         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
738         EVENT_CONSTRAINT_END
739 };
740
741 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
742 {
743         struct event_constraint *c;
744
745         if (!event->attr.precise_ip)
746                 return NULL;
747
748         if (x86_pmu.pebs_constraints) {
749                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
750                         if ((event->hw.config & c->cmask) == c->code) {
751                                 event->hw.flags |= c->flags;
752                                 return c;
753                         }
754                 }
755         }
756
757         return &emptyconstraint;
758 }
759
760 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
761 {
762         return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
763 }
764
765 void intel_pmu_pebs_enable(struct perf_event *event)
766 {
767         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
768         struct hw_perf_event *hwc = &event->hw;
769         struct debug_store *ds = cpuc->ds;
770         bool first_pebs;
771         u64 threshold;
772
773         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
774
775         first_pebs = !pebs_is_enabled(cpuc);
776         cpuc->pebs_enabled |= 1ULL << hwc->idx;
777
778         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
779                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
780         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
781                 cpuc->pebs_enabled |= 1ULL << 63;
782
783         /*
784          * When the event is constrained enough we can use a larger
785          * threshold and run the event with less frequent PMI.
786          */
787         if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
788                 threshold = ds->pebs_absolute_maximum -
789                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
790
791                 if (first_pebs)
792                         perf_sched_cb_inc(event->ctx->pmu);
793         } else {
794                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
795
796                 /*
797                  * If not all events can use larger buffer,
798                  * roll back to threshold = 1
799                  */
800                 if (!first_pebs &&
801                     (ds->pebs_interrupt_threshold > threshold))
802                         perf_sched_cb_dec(event->ctx->pmu);
803         }
804
805         /* Use auto-reload if possible to save a MSR write in the PMI */
806         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
807                 ds->pebs_event_reset[hwc->idx] =
808                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
809         }
810
811         if (first_pebs || ds->pebs_interrupt_threshold > threshold)
812                 ds->pebs_interrupt_threshold = threshold;
813 }
814
815 void intel_pmu_pebs_disable(struct perf_event *event)
816 {
817         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
818         struct hw_perf_event *hwc = &event->hw;
819         struct debug_store *ds = cpuc->ds;
820         bool large_pebs = ds->pebs_interrupt_threshold >
821                 ds->pebs_buffer_base + x86_pmu.pebs_record_size;
822
823         if (large_pebs)
824                 intel_pmu_drain_pebs_buffer();
825
826         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
827
828         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
829                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
830         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
831                 cpuc->pebs_enabled &= ~(1ULL << 63);
832
833         if (large_pebs && !pebs_is_enabled(cpuc))
834                 perf_sched_cb_dec(event->ctx->pmu);
835
836         if (cpuc->enabled)
837                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
838
839         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
840 }
841
842 void intel_pmu_pebs_enable_all(void)
843 {
844         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
845
846         if (cpuc->pebs_enabled)
847                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
848 }
849
850 void intel_pmu_pebs_disable_all(void)
851 {
852         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
853
854         if (cpuc->pebs_enabled)
855                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
856 }
857
858 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
859 {
860         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
861         unsigned long from = cpuc->lbr_entries[0].from;
862         unsigned long old_to, to = cpuc->lbr_entries[0].to;
863         unsigned long ip = regs->ip;
864         int is_64bit = 0;
865         void *kaddr;
866         int size;
867
868         /*
869          * We don't need to fixup if the PEBS assist is fault like
870          */
871         if (!x86_pmu.intel_cap.pebs_trap)
872                 return 1;
873
874         /*
875          * No LBR entry, no basic block, no rewinding
876          */
877         if (!cpuc->lbr_stack.nr || !from || !to)
878                 return 0;
879
880         /*
881          * Basic blocks should never cross user/kernel boundaries
882          */
883         if (kernel_ip(ip) != kernel_ip(to))
884                 return 0;
885
886         /*
887          * unsigned math, either ip is before the start (impossible) or
888          * the basic block is larger than 1 page (sanity)
889          */
890         if ((ip - to) > PEBS_FIXUP_SIZE)
891                 return 0;
892
893         /*
894          * We sampled a branch insn, rewind using the LBR stack
895          */
896         if (ip == to) {
897                 set_linear_ip(regs, from);
898                 return 1;
899         }
900
901         size = ip - to;
902         if (!kernel_ip(ip)) {
903                 int bytes;
904                 u8 *buf = this_cpu_read(insn_buffer);
905
906                 /* 'size' must fit our buffer, see above */
907                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
908                 if (bytes != 0)
909                         return 0;
910
911                 kaddr = buf;
912         } else {
913                 kaddr = (void *)to;
914         }
915
916         do {
917                 struct insn insn;
918
919                 old_to = to;
920
921 #ifdef CONFIG_X86_64
922                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
923 #endif
924                 insn_init(&insn, kaddr, size, is_64bit);
925                 insn_get_length(&insn);
926                 /*
927                  * Make sure there was not a problem decoding the
928                  * instruction and getting the length.  This is
929                  * doubly important because we have an infinite
930                  * loop if insn.length=0.
931                  */
932                 if (!insn.length)
933                         break;
934
935                 to += insn.length;
936                 kaddr += insn.length;
937                 size -= insn.length;
938         } while (to < ip);
939
940         if (to == ip) {
941                 set_linear_ip(regs, old_to);
942                 return 1;
943         }
944
945         /*
946          * Even though we decoded the basic block, the instruction stream
947          * never matched the given IP, either the TO or the IP got corrupted.
948          */
949         return 0;
950 }
951
952 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
953 {
954         if (pebs->tsx_tuning) {
955                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
956                 return tsx.cycles_last_block;
957         }
958         return 0;
959 }
960
961 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
962 {
963         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
964
965         /* For RTM XABORTs also log the abort code from AX */
966         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
967                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
968         return txn;
969 }
970
971 static void setup_pebs_sample_data(struct perf_event *event,
972                                    struct pt_regs *iregs, void *__pebs,
973                                    struct perf_sample_data *data,
974                                    struct pt_regs *regs)
975 {
976 #define PERF_X86_EVENT_PEBS_HSW_PREC \
977                 (PERF_X86_EVENT_PEBS_ST_HSW | \
978                  PERF_X86_EVENT_PEBS_LD_HSW | \
979                  PERF_X86_EVENT_PEBS_NA_HSW)
980         /*
981          * We cast to the biggest pebs_record but are careful not to
982          * unconditionally access the 'extra' entries.
983          */
984         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
985         struct pebs_record_skl *pebs = __pebs;
986         u64 sample_type;
987         int fll, fst, dsrc;
988         int fl = event->hw.flags;
989
990         if (pebs == NULL)
991                 return;
992
993         sample_type = event->attr.sample_type;
994         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
995
996         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
997         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
998
999         perf_sample_data_init(data, 0, event->hw.last_period);
1000
1001         data->period = event->hw.last_period;
1002
1003         /*
1004          * Use latency for weight (only avail with PEBS-LL)
1005          */
1006         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1007                 data->weight = pebs->lat;
1008
1009         /*
1010          * data.data_src encodes the data source
1011          */
1012         if (dsrc) {
1013                 u64 val = PERF_MEM_NA;
1014                 if (fll)
1015                         val = load_latency_data(pebs->dse);
1016                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1017                         val = precise_datala_hsw(event, pebs->dse);
1018                 else if (fst)
1019                         val = precise_store_data(pebs->dse);
1020                 data->data_src.val = val;
1021         }
1022
1023         /*
1024          * We use the interrupt regs as a base because the PEBS record
1025          * does not contain a full regs set, specifically it seems to
1026          * lack segment descriptors, which get used by things like
1027          * user_mode().
1028          *
1029          * In the simple case fix up only the IP and BP,SP regs, for
1030          * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1031          * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1032          */
1033         *regs = *iregs;
1034         regs->flags = pebs->flags;
1035         set_linear_ip(regs, pebs->ip);
1036         regs->bp = pebs->bp;
1037         regs->sp = pebs->sp;
1038
1039         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1040                 regs->ax = pebs->ax;
1041                 regs->bx = pebs->bx;
1042                 regs->cx = pebs->cx;
1043                 regs->dx = pebs->dx;
1044                 regs->si = pebs->si;
1045                 regs->di = pebs->di;
1046                 regs->bp = pebs->bp;
1047                 regs->sp = pebs->sp;
1048
1049                 regs->flags = pebs->flags;
1050 #ifndef CONFIG_X86_32
1051                 regs->r8 = pebs->r8;
1052                 regs->r9 = pebs->r9;
1053                 regs->r10 = pebs->r10;
1054                 regs->r11 = pebs->r11;
1055                 regs->r12 = pebs->r12;
1056                 regs->r13 = pebs->r13;
1057                 regs->r14 = pebs->r14;
1058                 regs->r15 = pebs->r15;
1059 #endif
1060         }
1061
1062         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1063                 regs->ip = pebs->real_ip;
1064                 regs->flags |= PERF_EFLAGS_EXACT;
1065         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1066                 regs->flags |= PERF_EFLAGS_EXACT;
1067         else
1068                 regs->flags &= ~PERF_EFLAGS_EXACT;
1069
1070         if ((sample_type & PERF_SAMPLE_ADDR) &&
1071             x86_pmu.intel_cap.pebs_format >= 1)
1072                 data->addr = pebs->dla;
1073
1074         if (x86_pmu.intel_cap.pebs_format >= 2) {
1075                 /* Only set the TSX weight when no memory weight. */
1076                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1077                         data->weight = intel_hsw_weight(pebs);
1078
1079                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1080                         data->txn = intel_hsw_transaction(pebs);
1081         }
1082
1083         /*
1084          * v3 supplies an accurate time stamp, so we use that
1085          * for the time stamp.
1086          *
1087          * We can only do this for the default trace clock.
1088          */
1089         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1090                 event->attr.use_clockid == 0)
1091                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1092
1093         if (has_branch_stack(event))
1094                 data->br_stack = &cpuc->lbr_stack;
1095 }
1096
1097 static inline void *
1098 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1099 {
1100         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101         void *at;
1102         u64 pebs_status;
1103
1104         if (base == NULL)
1105                 return NULL;
1106
1107         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1108                 struct pebs_record_nhm *p = at;
1109
1110                 if (test_bit(bit, (unsigned long *)&p->status)) {
1111                         /* PEBS v3 has accurate status bits */
1112                         if (x86_pmu.intel_cap.pebs_format >= 3)
1113                                 return at;
1114
1115                         if (p->status == (1 << bit))
1116                                 return at;
1117
1118                         /* clear non-PEBS bit and re-check */
1119                         pebs_status = p->status & cpuc->pebs_enabled;
1120                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1121                         if (pebs_status == (1 << bit))
1122                                 return at;
1123                 }
1124         }
1125         return NULL;
1126 }
1127
1128 static void __intel_pmu_pebs_event(struct perf_event *event,
1129                                    struct pt_regs *iregs,
1130                                    void *base, void *top,
1131                                    int bit, int count)
1132 {
1133         struct perf_sample_data data;
1134         struct pt_regs regs;
1135         void *at = get_next_pebs_record_by_bit(base, top, bit);
1136
1137         if (!intel_pmu_save_and_restart(event) &&
1138             !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1139                 return;
1140
1141         while (count > 1) {
1142                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1143                 perf_event_output(event, &data, &regs);
1144                 at += x86_pmu.pebs_record_size;
1145                 at = get_next_pebs_record_by_bit(at, top, bit);
1146                 count--;
1147         }
1148
1149         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1150
1151         /*
1152          * All but the last records are processed.
1153          * The last one is left to be able to call the overflow handler.
1154          */
1155         if (perf_event_overflow(event, &data, &regs)) {
1156                 x86_pmu_stop(event, 0);
1157                 return;
1158         }
1159
1160 }
1161
1162 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1163 {
1164         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1165         struct debug_store *ds = cpuc->ds;
1166         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1167         struct pebs_record_core *at, *top;
1168         int n;
1169
1170         if (!x86_pmu.pebs_active)
1171                 return;
1172
1173         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1174         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1175
1176         /*
1177          * Whatever else happens, drain the thing
1178          */
1179         ds->pebs_index = ds->pebs_buffer_base;
1180
1181         if (!test_bit(0, cpuc->active_mask))
1182                 return;
1183
1184         WARN_ON_ONCE(!event);
1185
1186         if (!event->attr.precise_ip)
1187                 return;
1188
1189         n = (top - at) / x86_pmu.pebs_record_size;
1190         if (n <= 0)
1191                 return;
1192
1193         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1194 }
1195
1196 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1197 {
1198         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1199         struct debug_store *ds = cpuc->ds;
1200         struct perf_event *event;
1201         void *base, *at, *top;
1202         short counts[MAX_PEBS_EVENTS] = {};
1203         short error[MAX_PEBS_EVENTS] = {};
1204         int bit, i;
1205
1206         if (!x86_pmu.pebs_active)
1207                 return;
1208
1209         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1210         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1211
1212         ds->pebs_index = ds->pebs_buffer_base;
1213
1214         if (unlikely(base >= top))
1215                 return;
1216
1217         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1218                 struct pebs_record_nhm *p = at;
1219                 u64 pebs_status;
1220
1221                 /* PEBS v3 has accurate status bits */
1222                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1223                         for_each_set_bit(bit, (unsigned long *)&p->status,
1224                                          MAX_PEBS_EVENTS)
1225                                 counts[bit]++;
1226
1227                         continue;
1228                 }
1229
1230                 pebs_status = p->status & cpuc->pebs_enabled;
1231                 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1232
1233                 bit = find_first_bit((unsigned long *)&pebs_status,
1234                                         x86_pmu.max_pebs_events);
1235                 if (WARN(bit >= x86_pmu.max_pebs_events,
1236                          "PEBS record without PEBS event! status=%Lx pebs_enabled=%Lx active_mask=%Lx",
1237                          (unsigned long long)p->status, (unsigned long long)cpuc->pebs_enabled,
1238                          *(unsigned long long *)cpuc->active_mask))
1239                         continue;
1240
1241                 /*
1242                  * The PEBS hardware does not deal well with the situation
1243                  * when events happen near to each other and multiple bits
1244                  * are set. But it should happen rarely.
1245                  *
1246                  * If these events include one PEBS and multiple non-PEBS
1247                  * events, it doesn't impact PEBS record. The record will
1248                  * be handled normally. (slow path)
1249                  *
1250                  * If these events include two or more PEBS events, the
1251                  * records for the events can be collapsed into a single
1252                  * one, and it's not possible to reconstruct all events
1253                  * that caused the PEBS record. It's called collision.
1254                  * If collision happened, the record will be dropped.
1255                  */
1256                 if (p->status != (1ULL << bit)) {
1257                         for_each_set_bit(i, (unsigned long *)&pebs_status,
1258                                          x86_pmu.max_pebs_events)
1259                                 error[i]++;
1260                         continue;
1261                 }
1262
1263                 counts[bit]++;
1264         }
1265
1266         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1267                 if ((counts[bit] == 0) && (error[bit] == 0))
1268                         continue;
1269
1270                 event = cpuc->events[bit];
1271                 WARN_ON_ONCE(!event);
1272                 WARN_ON_ONCE(!event->attr.precise_ip);
1273
1274                 /* log dropped samples number */
1275                 if (error[bit])
1276                         perf_log_lost_samples(event, error[bit]);
1277
1278                 if (counts[bit]) {
1279                         __intel_pmu_pebs_event(event, iregs, base,
1280                                                top, bit, counts[bit]);
1281                 }
1282         }
1283 }
1284
1285 /*
1286  * BTS, PEBS probe and setup
1287  */
1288
1289 void __init intel_ds_init(void)
1290 {
1291         /*
1292          * No support for 32bit formats
1293          */
1294         if (!boot_cpu_has(X86_FEATURE_DTES64))
1295                 return;
1296
1297         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1298         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1299         if (x86_pmu.pebs) {
1300                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1301                 int format = x86_pmu.intel_cap.pebs_format;
1302
1303                 switch (format) {
1304                 case 0:
1305                         printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1306                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1307                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1308                         break;
1309
1310                 case 1:
1311                         printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1312                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1313                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1314                         break;
1315
1316                 case 2:
1317                         pr_cont("PEBS fmt2%c, ", pebs_type);
1318                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1319                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1320                         break;
1321
1322                 case 3:
1323                         pr_cont("PEBS fmt3%c, ", pebs_type);
1324                         x86_pmu.pebs_record_size =
1325                                                 sizeof(struct pebs_record_skl);
1326                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1327                         x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1328                         break;
1329
1330                 default:
1331                         printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1332                         x86_pmu.pebs = 0;
1333                 }
1334         }
1335 }
1336
1337 void perf_restore_debug_store(void)
1338 {
1339         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1340
1341         if (!x86_pmu.bts && !x86_pmu.pebs)
1342                 return;
1343
1344         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1345 }