]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/machine_kexec_64.c
415480d3ea848bcf95e7ae26b56a5261add1cc8c
[karo-tx-linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28
29 #ifdef CONFIG_KEXEC_FILE
30 static struct kexec_file_ops *kexec_file_loaders[] = {
31                 &kexec_bzImage64_ops,
32 };
33 #endif
34
35 static void free_transition_pgtable(struct kimage *image)
36 {
37         free_page((unsigned long)image->arch.pud);
38         free_page((unsigned long)image->arch.pmd);
39         free_page((unsigned long)image->arch.pte);
40 }
41
42 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
43 {
44         pud_t *pud;
45         pmd_t *pmd;
46         pte_t *pte;
47         unsigned long vaddr, paddr;
48         int result = -ENOMEM;
49
50         vaddr = (unsigned long)relocate_kernel;
51         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
52         pgd += pgd_index(vaddr);
53         if (!pgd_present(*pgd)) {
54                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
55                 if (!pud)
56                         goto err;
57                 image->arch.pud = pud;
58                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
59         }
60         pud = pud_offset(pgd, vaddr);
61         if (!pud_present(*pud)) {
62                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
63                 if (!pmd)
64                         goto err;
65                 image->arch.pmd = pmd;
66                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
67         }
68         pmd = pmd_offset(pud, vaddr);
69         if (!pmd_present(*pmd)) {
70                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
71                 if (!pte)
72                         goto err;
73                 image->arch.pte = pte;
74                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
75         }
76         pte = pte_offset_kernel(pmd, vaddr);
77         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
78         return 0;
79 err:
80         free_transition_pgtable(image);
81         return result;
82 }
83
84 static void *alloc_pgt_page(void *data)
85 {
86         struct kimage *image = (struct kimage *)data;
87         struct page *page;
88         void *p = NULL;
89
90         page = kimage_alloc_control_pages(image, 0);
91         if (page) {
92                 p = page_address(page);
93                 clear_page(p);
94         }
95
96         return p;
97 }
98
99 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
100 {
101         struct x86_mapping_info info = {
102                 .alloc_pgt_page = alloc_pgt_page,
103                 .context        = image,
104                 .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
105         };
106         unsigned long mstart, mend;
107         pgd_t *level4p;
108         int result;
109         int i;
110
111         level4p = (pgd_t *)__va(start_pgtable);
112         clear_page(level4p);
113         for (i = 0; i < nr_pfn_mapped; i++) {
114                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
115                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
116
117                 result = kernel_ident_mapping_init(&info,
118                                                  level4p, mstart, mend);
119                 if (result)
120                         return result;
121         }
122
123         /*
124          * segments's mem ranges could be outside 0 ~ max_pfn,
125          * for example when jump back to original kernel from kexeced kernel.
126          * or first kernel is booted with user mem map, and second kernel
127          * could be loaded out of that range.
128          */
129         for (i = 0; i < image->nr_segments; i++) {
130                 mstart = image->segment[i].mem;
131                 mend   = mstart + image->segment[i].memsz;
132
133                 result = kernel_ident_mapping_init(&info,
134                                                  level4p, mstart, mend);
135
136                 if (result)
137                         return result;
138         }
139
140         return init_transition_pgtable(image, level4p);
141 }
142
143 static void set_idt(void *newidt, u16 limit)
144 {
145         struct desc_ptr curidt;
146
147         /* x86-64 supports unaliged loads & stores */
148         curidt.size    = limit;
149         curidt.address = (unsigned long)newidt;
150
151         __asm__ __volatile__ (
152                 "lidtq %0\n"
153                 : : "m" (curidt)
154                 );
155 };
156
157
158 static void set_gdt(void *newgdt, u16 limit)
159 {
160         struct desc_ptr curgdt;
161
162         /* x86-64 supports unaligned loads & stores */
163         curgdt.size    = limit;
164         curgdt.address = (unsigned long)newgdt;
165
166         __asm__ __volatile__ (
167                 "lgdtq %0\n"
168                 : : "m" (curgdt)
169                 );
170 };
171
172 static void load_segments(void)
173 {
174         __asm__ __volatile__ (
175                 "\tmovl %0,%%ds\n"
176                 "\tmovl %0,%%es\n"
177                 "\tmovl %0,%%ss\n"
178                 "\tmovl %0,%%fs\n"
179                 "\tmovl %0,%%gs\n"
180                 : : "a" (__KERNEL_DS) : "memory"
181                 );
182 }
183
184 #ifdef CONFIG_KEXEC_FILE
185 /* Update purgatory as needed after various image segments have been prepared */
186 static int arch_update_purgatory(struct kimage *image)
187 {
188         int ret = 0;
189
190         if (!image->file_mode)
191                 return 0;
192
193         /* Setup copying of backup region */
194         if (image->type == KEXEC_TYPE_CRASH) {
195                 ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
196                                 &image->arch.backup_load_addr,
197                                 sizeof(image->arch.backup_load_addr), 0);
198                 if (ret)
199                         return ret;
200
201                 ret = kexec_purgatory_get_set_symbol(image, "backup_src",
202                                 &image->arch.backup_src_start,
203                                 sizeof(image->arch.backup_src_start), 0);
204                 if (ret)
205                         return ret;
206
207                 ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
208                                 &image->arch.backup_src_sz,
209                                 sizeof(image->arch.backup_src_sz), 0);
210                 if (ret)
211                         return ret;
212         }
213
214         return ret;
215 }
216 #else /* !CONFIG_KEXEC_FILE */
217 static inline int arch_update_purgatory(struct kimage *image)
218 {
219         return 0;
220 }
221 #endif /* CONFIG_KEXEC_FILE */
222
223 int machine_kexec_prepare(struct kimage *image)
224 {
225         unsigned long start_pgtable;
226         int result;
227
228         /* Calculate the offsets */
229         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
230
231         /* Setup the identity mapped 64bit page table */
232         result = init_pgtable(image, start_pgtable);
233         if (result)
234                 return result;
235
236         /* update purgatory as needed */
237         result = arch_update_purgatory(image);
238         if (result)
239                 return result;
240
241         return 0;
242 }
243
244 void machine_kexec_cleanup(struct kimage *image)
245 {
246         free_transition_pgtable(image);
247 }
248
249 /*
250  * Do not allocate memory (or fail in any way) in machine_kexec().
251  * We are past the point of no return, committed to rebooting now.
252  */
253 void machine_kexec(struct kimage *image)
254 {
255         unsigned long page_list[PAGES_NR];
256         void *control_page;
257         int save_ftrace_enabled;
258
259 #ifdef CONFIG_KEXEC_JUMP
260         if (image->preserve_context)
261                 save_processor_state();
262 #endif
263
264         save_ftrace_enabled = __ftrace_enabled_save();
265
266         /* Interrupts aren't acceptable while we reboot */
267         local_irq_disable();
268         hw_breakpoint_disable();
269
270         if (image->preserve_context) {
271 #ifdef CONFIG_X86_IO_APIC
272                 /*
273                  * We need to put APICs in legacy mode so that we can
274                  * get timer interrupts in second kernel. kexec/kdump
275                  * paths already have calls to disable_IO_APIC() in
276                  * one form or other. kexec jump path also need
277                  * one.
278                  */
279                 disable_IO_APIC();
280 #endif
281         }
282
283         control_page = page_address(image->control_code_page) + PAGE_SIZE;
284         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
285
286         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
287         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
288         page_list[PA_TABLE_PAGE] =
289           (unsigned long)__pa(page_address(image->control_code_page));
290
291         if (image->type == KEXEC_TYPE_DEFAULT)
292                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
293                                                 << PAGE_SHIFT);
294
295         /*
296          * The segment registers are funny things, they have both a
297          * visible and an invisible part.  Whenever the visible part is
298          * set to a specific selector, the invisible part is loaded
299          * with from a table in memory.  At no other time is the
300          * descriptor table in memory accessed.
301          *
302          * I take advantage of this here by force loading the
303          * segments, before I zap the gdt with an invalid value.
304          */
305         load_segments();
306         /*
307          * The gdt & idt are now invalid.
308          * If you want to load them you must set up your own idt & gdt.
309          */
310         set_gdt(phys_to_virt(0), 0);
311         set_idt(phys_to_virt(0), 0);
312
313         /* now call it */
314         image->start = relocate_kernel((unsigned long)image->head,
315                                        (unsigned long)page_list,
316                                        image->start,
317                                        image->preserve_context);
318
319 #ifdef CONFIG_KEXEC_JUMP
320         if (image->preserve_context)
321                 restore_processor_state();
322 #endif
323
324         __ftrace_enabled_restore(save_ftrace_enabled);
325 }
326
327 void arch_crash_save_vmcoreinfo(void)
328 {
329         VMCOREINFO_SYMBOL(phys_base);
330         VMCOREINFO_SYMBOL(init_level4_pgt);
331
332 #ifdef CONFIG_NUMA
333         VMCOREINFO_SYMBOL(node_data);
334         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
335 #endif
336         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
337                               (unsigned long)&_text - __START_KERNEL);
338 }
339
340 /* arch-dependent functionality related to kexec file-based syscall */
341
342 #ifdef CONFIG_KEXEC_FILE
343 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
344                                   unsigned long buf_len)
345 {
346         int i, ret = -ENOEXEC;
347         struct kexec_file_ops *fops;
348
349         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
350                 fops = kexec_file_loaders[i];
351                 if (!fops || !fops->probe)
352                         continue;
353
354                 ret = fops->probe(buf, buf_len);
355                 if (!ret) {
356                         image->fops = fops;
357                         return ret;
358                 }
359         }
360
361         return ret;
362 }
363
364 void *arch_kexec_kernel_image_load(struct kimage *image)
365 {
366         vfree(image->arch.elf_headers);
367         image->arch.elf_headers = NULL;
368
369         if (!image->fops || !image->fops->load)
370                 return ERR_PTR(-ENOEXEC);
371
372         return image->fops->load(image, image->kernel_buf,
373                                  image->kernel_buf_len, image->initrd_buf,
374                                  image->initrd_buf_len, image->cmdline_buf,
375                                  image->cmdline_buf_len);
376 }
377
378 int arch_kimage_file_post_load_cleanup(struct kimage *image)
379 {
380         if (!image->fops || !image->fops->cleanup)
381                 return 0;
382
383         return image->fops->cleanup(image->image_loader_data);
384 }
385
386 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
387                                  unsigned long kernel_len)
388 {
389         if (!image->fops || !image->fops->verify_sig) {
390                 pr_debug("kernel loader does not support signature verification.");
391                 return -EKEYREJECTED;
392         }
393
394         return image->fops->verify_sig(kernel, kernel_len);
395 }
396
397 /*
398  * Apply purgatory relocations.
399  *
400  * ehdr: Pointer to elf headers
401  * sechdrs: Pointer to section headers.
402  * relsec: section index of SHT_RELA section.
403  *
404  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
405  */
406 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
407                                      Elf64_Shdr *sechdrs, unsigned int relsec)
408 {
409         unsigned int i;
410         Elf64_Rela *rel;
411         Elf64_Sym *sym;
412         void *location;
413         Elf64_Shdr *section, *symtabsec;
414         unsigned long address, sec_base, value;
415         const char *strtab, *name, *shstrtab;
416
417         /*
418          * ->sh_offset has been modified to keep the pointer to section
419          * contents in memory
420          */
421         rel = (void *)sechdrs[relsec].sh_offset;
422
423         /* Section to which relocations apply */
424         section = &sechdrs[sechdrs[relsec].sh_info];
425
426         pr_debug("Applying relocate section %u to %u\n", relsec,
427                  sechdrs[relsec].sh_info);
428
429         /* Associated symbol table */
430         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
431
432         /* String table */
433         if (symtabsec->sh_link >= ehdr->e_shnum) {
434                 /* Invalid strtab section number */
435                 pr_err("Invalid string table section index %d\n",
436                        symtabsec->sh_link);
437                 return -ENOEXEC;
438         }
439
440         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
441
442         /* section header string table */
443         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
444
445         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
446
447                 /*
448                  * rel[i].r_offset contains byte offset from beginning
449                  * of section to the storage unit affected.
450                  *
451                  * This is location to update (->sh_offset). This is temporary
452                  * buffer where section is currently loaded. This will finally
453                  * be loaded to a different address later, pointed to by
454                  * ->sh_addr. kexec takes care of moving it
455                  *  (kexec_load_segment()).
456                  */
457                 location = (void *)(section->sh_offset + rel[i].r_offset);
458
459                 /* Final address of the location */
460                 address = section->sh_addr + rel[i].r_offset;
461
462                 /*
463                  * rel[i].r_info contains information about symbol table index
464                  * w.r.t which relocation must be made and type of relocation
465                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
466                  * these respectively.
467                  */
468                 sym = (Elf64_Sym *)symtabsec->sh_offset +
469                                 ELF64_R_SYM(rel[i].r_info);
470
471                 if (sym->st_name)
472                         name = strtab + sym->st_name;
473                 else
474                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
475
476                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
477                          name, sym->st_info, sym->st_shndx, sym->st_value,
478                          sym->st_size);
479
480                 if (sym->st_shndx == SHN_UNDEF) {
481                         pr_err("Undefined symbol: %s\n", name);
482                         return -ENOEXEC;
483                 }
484
485                 if (sym->st_shndx == SHN_COMMON) {
486                         pr_err("symbol '%s' in common section\n", name);
487                         return -ENOEXEC;
488                 }
489
490                 if (sym->st_shndx == SHN_ABS)
491                         sec_base = 0;
492                 else if (sym->st_shndx >= ehdr->e_shnum) {
493                         pr_err("Invalid section %d for symbol %s\n",
494                                sym->st_shndx, name);
495                         return -ENOEXEC;
496                 } else
497                         sec_base = sechdrs[sym->st_shndx].sh_addr;
498
499                 value = sym->st_value;
500                 value += sec_base;
501                 value += rel[i].r_addend;
502
503                 switch (ELF64_R_TYPE(rel[i].r_info)) {
504                 case R_X86_64_NONE:
505                         break;
506                 case R_X86_64_64:
507                         *(u64 *)location = value;
508                         break;
509                 case R_X86_64_32:
510                         *(u32 *)location = value;
511                         if (value != *(u32 *)location)
512                                 goto overflow;
513                         break;
514                 case R_X86_64_32S:
515                         *(s32 *)location = value;
516                         if ((s64)value != *(s32 *)location)
517                                 goto overflow;
518                         break;
519                 case R_X86_64_PC32:
520                         value -= (u64)address;
521                         *(u32 *)location = value;
522                         break;
523                 default:
524                         pr_err("Unknown rela relocation: %llu\n",
525                                ELF64_R_TYPE(rel[i].r_info));
526                         return -ENOEXEC;
527                 }
528         }
529         return 0;
530
531 overflow:
532         pr_err("Overflow in relocation type %d value 0x%lx\n",
533                (int)ELF64_R_TYPE(rel[i].r_info), value);
534         return -ENOEXEC;
535 }
536 #endif /* CONFIG_KEXEC_FILE */