]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/mmu.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
136                         | shadow_x_mask | shadow_nx_mask)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_SHIFT                  19
209 #define MMIO_GEN_LOW_SHIFT              9
210 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216         u64 mask;
217
218         WARN_ON(gen > MMIO_MAX_GEN);
219
220         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222         return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227         unsigned int gen;
228
229         spte &= ~shadow_mmio_mask;
230
231         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233         return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238         /*
239          * Init kvm generation close to MMIO_MAX_GEN to easily test the
240          * code of handling generation number wrap-around.
241          */
242         return (kvm_memslots(kvm)->generation +
243                       MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247                            unsigned access)
248 {
249         unsigned int gen = kvm_current_mmio_generation(kvm);
250         u64 mask = generation_mmio_spte_mask(gen);
251
252         access &= ACC_WRITE_MASK | ACC_USER_MASK;
253         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255         trace_mark_mmio_spte(sptep, gfn, access, gen);
256         mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267         return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273         return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277                           pfn_t pfn, unsigned access)
278 {
279         if (unlikely(is_noslot_pfn(pfn))) {
280                 mark_mmio_spte(kvm, sptep, gfn, access);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289         unsigned int kvm_gen, spte_gen;
290
291         kvm_gen = kvm_current_mmio_generation(kvm);
292         spte_gen = get_mmio_spte_generation(spte);
293
294         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295         return likely(kvm_gen == spte_gen);
296 }
297
298 static inline u64 rsvd_bits(int s, int e)
299 {
300         return ((1ULL << (e - s + 1)) - 1) << s;
301 }
302
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
305 {
306         shadow_user_mask = user_mask;
307         shadow_accessed_mask = accessed_mask;
308         shadow_dirty_mask = dirty_mask;
309         shadow_nx_mask = nx_mask;
310         shadow_x_mask = x_mask;
311 }
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
314 static int is_cpuid_PSE36(void)
315 {
316         return 1;
317 }
318
319 static int is_nx(struct kvm_vcpu *vcpu)
320 {
321         return vcpu->arch.efer & EFER_NX;
322 }
323
324 static int is_shadow_present_pte(u64 pte)
325 {
326         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 }
328
329 static int is_large_pte(u64 pte)
330 {
331         return pte & PT_PAGE_SIZE_MASK;
332 }
333
334 static int is_rmap_spte(u64 pte)
335 {
336         return is_shadow_present_pte(pte);
337 }
338
339 static int is_last_spte(u64 pte, int level)
340 {
341         if (level == PT_PAGE_TABLE_LEVEL)
342                 return 1;
343         if (is_large_pte(pte))
344                 return 1;
345         return 0;
346 }
347
348 static pfn_t spte_to_pfn(u64 pte)
349 {
350         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
351 }
352
353 static gfn_t pse36_gfn_delta(u32 gpte)
354 {
355         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
356
357         return (gpte & PT32_DIR_PSE36_MASK) << shift;
358 }
359
360 #ifdef CONFIG_X86_64
361 static void __set_spte(u64 *sptep, u64 spte)
362 {
363         *sptep = spte;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         *sptep = spte;
369 }
370
371 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
372 {
373         return xchg(sptep, spte);
374 }
375
376 static u64 __get_spte_lockless(u64 *sptep)
377 {
378         return ACCESS_ONCE(*sptep);
379 }
380
381 static bool __check_direct_spte_mmio_pf(u64 spte)
382 {
383         /* It is valid if the spte is zapped. */
384         return spte == 0ull;
385 }
386 #else
387 union split_spte {
388         struct {
389                 u32 spte_low;
390                 u32 spte_high;
391         };
392         u64 spte;
393 };
394
395 static void count_spte_clear(u64 *sptep, u64 spte)
396 {
397         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
398
399         if (is_shadow_present_pte(spte))
400                 return;
401
402         /* Ensure the spte is completely set before we increase the count */
403         smp_wmb();
404         sp->clear_spte_count++;
405 }
406
407 static void __set_spte(u64 *sptep, u64 spte)
408 {
409         union split_spte *ssptep, sspte;
410
411         ssptep = (union split_spte *)sptep;
412         sspte = (union split_spte)spte;
413
414         ssptep->spte_high = sspte.spte_high;
415
416         /*
417          * If we map the spte from nonpresent to present, We should store
418          * the high bits firstly, then set present bit, so cpu can not
419          * fetch this spte while we are setting the spte.
420          */
421         smp_wmb();
422
423         ssptep->spte_low = sspte.spte_low;
424 }
425
426 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
427 {
428         union split_spte *ssptep, sspte;
429
430         ssptep = (union split_spte *)sptep;
431         sspte = (union split_spte)spte;
432
433         ssptep->spte_low = sspte.spte_low;
434
435         /*
436          * If we map the spte from present to nonpresent, we should clear
437          * present bit firstly to avoid vcpu fetch the old high bits.
438          */
439         smp_wmb();
440
441         ssptep->spte_high = sspte.spte_high;
442         count_spte_clear(sptep, spte);
443 }
444
445 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
446 {
447         union split_spte *ssptep, sspte, orig;
448
449         ssptep = (union split_spte *)sptep;
450         sspte = (union split_spte)spte;
451
452         /* xchg acts as a barrier before the setting of the high bits */
453         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454         orig.spte_high = ssptep->spte_high;
455         ssptep->spte_high = sspte.spte_high;
456         count_spte_clear(sptep, spte);
457
458         return orig.spte;
459 }
460
461 /*
462  * The idea using the light way get the spte on x86_32 guest is from
463  * gup_get_pte(arch/x86/mm/gup.c).
464  *
465  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
466  * coalesces them and we are running out of the MMU lock.  Therefore
467  * we need to protect against in-progress updates of the spte.
468  *
469  * Reading the spte while an update is in progress may get the old value
470  * for the high part of the spte.  The race is fine for a present->non-present
471  * change (because the high part of the spte is ignored for non-present spte),
472  * but for a present->present change we must reread the spte.
473  *
474  * All such changes are done in two steps (present->non-present and
475  * non-present->present), hence it is enough to count the number of
476  * present->non-present updates: if it changed while reading the spte,
477  * we might have hit the race.  This is done using clear_spte_count.
478  */
479 static u64 __get_spte_lockless(u64 *sptep)
480 {
481         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
482         union split_spte spte, *orig = (union split_spte *)sptep;
483         int count;
484
485 retry:
486         count = sp->clear_spte_count;
487         smp_rmb();
488
489         spte.spte_low = orig->spte_low;
490         smp_rmb();
491
492         spte.spte_high = orig->spte_high;
493         smp_rmb();
494
495         if (unlikely(spte.spte_low != orig->spte_low ||
496               count != sp->clear_spte_count))
497                 goto retry;
498
499         return spte.spte;
500 }
501
502 static bool __check_direct_spte_mmio_pf(u64 spte)
503 {
504         union split_spte sspte = (union split_spte)spte;
505         u32 high_mmio_mask = shadow_mmio_mask >> 32;
506
507         /* It is valid if the spte is zapped. */
508         if (spte == 0ull)
509                 return true;
510
511         /* It is valid if the spte is being zapped. */
512         if (sspte.spte_low == 0ull &&
513             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
514                 return true;
515
516         return false;
517 }
518 #endif
519
520 static bool spte_is_locklessly_modifiable(u64 spte)
521 {
522         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
523                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
524 }
525
526 static bool spte_has_volatile_bits(u64 spte)
527 {
528         /*
529          * Always atomicly update spte if it can be updated
530          * out of mmu-lock, it can ensure dirty bit is not lost,
531          * also, it can help us to get a stable is_writable_pte()
532          * to ensure tlb flush is not missed.
533          */
534         if (spte_is_locklessly_modifiable(spte))
535                 return true;
536
537         if (!shadow_accessed_mask)
538                 return false;
539
540         if (!is_shadow_present_pte(spte))
541                 return false;
542
543         if ((spte & shadow_accessed_mask) &&
544               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545                 return false;
546
547         return true;
548 }
549
550 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
551 {
552         return (old_spte & bit_mask) && !(new_spte & bit_mask);
553 }
554
555 /* Rules for using mmu_spte_set:
556  * Set the sptep from nonpresent to present.
557  * Note: the sptep being assigned *must* be either not present
558  * or in a state where the hardware will not attempt to update
559  * the spte.
560  */
561 static void mmu_spte_set(u64 *sptep, u64 new_spte)
562 {
563         WARN_ON(is_shadow_present_pte(*sptep));
564         __set_spte(sptep, new_spte);
565 }
566
567 /* Rules for using mmu_spte_update:
568  * Update the state bits, it means the mapped pfn is not changged.
569  *
570  * Whenever we overwrite a writable spte with a read-only one we
571  * should flush remote TLBs. Otherwise rmap_write_protect
572  * will find a read-only spte, even though the writable spte
573  * might be cached on a CPU's TLB, the return value indicates this
574  * case.
575  */
576 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
577 {
578         u64 old_spte = *sptep;
579         bool ret = false;
580
581         WARN_ON(!is_rmap_spte(new_spte));
582
583         if (!is_shadow_present_pte(old_spte)) {
584                 mmu_spte_set(sptep, new_spte);
585                 return ret;
586         }
587
588         if (!spte_has_volatile_bits(old_spte))
589                 __update_clear_spte_fast(sptep, new_spte);
590         else
591                 old_spte = __update_clear_spte_slow(sptep, new_spte);
592
593         /*
594          * For the spte updated out of mmu-lock is safe, since
595          * we always atomicly update it, see the comments in
596          * spte_has_volatile_bits().
597          */
598         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
599                 ret = true;
600
601         if (!shadow_accessed_mask)
602                 return ret;
603
604         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
605                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
606         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
607                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
608
609         return ret;
610 }
611
612 /*
613  * Rules for using mmu_spte_clear_track_bits:
614  * It sets the sptep from present to nonpresent, and track the
615  * state bits, it is used to clear the last level sptep.
616  */
617 static int mmu_spte_clear_track_bits(u64 *sptep)
618 {
619         pfn_t pfn;
620         u64 old_spte = *sptep;
621
622         if (!spte_has_volatile_bits(old_spte))
623                 __update_clear_spte_fast(sptep, 0ull);
624         else
625                 old_spte = __update_clear_spte_slow(sptep, 0ull);
626
627         if (!is_rmap_spte(old_spte))
628                 return 0;
629
630         pfn = spte_to_pfn(old_spte);
631
632         /*
633          * KVM does not hold the refcount of the page used by
634          * kvm mmu, before reclaiming the page, we should
635          * unmap it from mmu first.
636          */
637         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
638
639         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
640                 kvm_set_pfn_accessed(pfn);
641         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
642                 kvm_set_pfn_dirty(pfn);
643         return 1;
644 }
645
646 /*
647  * Rules for using mmu_spte_clear_no_track:
648  * Directly clear spte without caring the state bits of sptep,
649  * it is used to set the upper level spte.
650  */
651 static void mmu_spte_clear_no_track(u64 *sptep)
652 {
653         __update_clear_spte_fast(sptep, 0ull);
654 }
655
656 static u64 mmu_spte_get_lockless(u64 *sptep)
657 {
658         return __get_spte_lockless(sptep);
659 }
660
661 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
662 {
663         /*
664          * Prevent page table teardown by making any free-er wait during
665          * kvm_flush_remote_tlbs() IPI to all active vcpus.
666          */
667         local_irq_disable();
668         vcpu->mode = READING_SHADOW_PAGE_TABLES;
669         /*
670          * Make sure a following spte read is not reordered ahead of the write
671          * to vcpu->mode.
672          */
673         smp_mb();
674 }
675
676 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
677 {
678         /*
679          * Make sure the write to vcpu->mode is not reordered in front of
680          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
681          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
682          */
683         smp_mb();
684         vcpu->mode = OUTSIDE_GUEST_MODE;
685         local_irq_enable();
686 }
687
688 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
689                                   struct kmem_cache *base_cache, int min)
690 {
691         void *obj;
692
693         if (cache->nobjs >= min)
694                 return 0;
695         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
697                 if (!obj)
698                         return -ENOMEM;
699                 cache->objects[cache->nobjs++] = obj;
700         }
701         return 0;
702 }
703
704 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
705 {
706         return cache->nobjs;
707 }
708
709 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
710                                   struct kmem_cache *cache)
711 {
712         while (mc->nobjs)
713                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714 }
715
716 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
717                                        int min)
718 {
719         void *page;
720
721         if (cache->nobjs >= min)
722                 return 0;
723         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
724                 page = (void *)__get_free_page(GFP_KERNEL);
725                 if (!page)
726                         return -ENOMEM;
727                 cache->objects[cache->nobjs++] = page;
728         }
729         return 0;
730 }
731
732 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
733 {
734         while (mc->nobjs)
735                 free_page((unsigned long)mc->objects[--mc->nobjs]);
736 }
737
738 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
739 {
740         int r;
741
742         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
743                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
744         if (r)
745                 goto out;
746         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
747         if (r)
748                 goto out;
749         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
750                                    mmu_page_header_cache, 4);
751 out:
752         return r;
753 }
754
755 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
756 {
757         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
758                                 pte_list_desc_cache);
759         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
760         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
761                                 mmu_page_header_cache);
762 }
763
764 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
765 {
766         void *p;
767
768         BUG_ON(!mc->nobjs);
769         p = mc->objects[--mc->nobjs];
770         return p;
771 }
772
773 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
774 {
775         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
776 }
777
778 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
779 {
780         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
781 }
782
783 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
784 {
785         if (!sp->role.direct)
786                 return sp->gfns[index];
787
788         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
789 }
790
791 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
792 {
793         if (sp->role.direct)
794                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
795         else
796                 sp->gfns[index] = gfn;
797 }
798
799 /*
800  * Return the pointer to the large page information for a given gfn,
801  * handling slots that are not large page aligned.
802  */
803 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
804                                               struct kvm_memory_slot *slot,
805                                               int level)
806 {
807         unsigned long idx;
808
809         idx = gfn_to_index(gfn, slot->base_gfn, level);
810         return &slot->arch.lpage_info[level - 2][idx];
811 }
812
813 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
814 {
815         struct kvm_memory_slot *slot;
816         struct kvm_lpage_info *linfo;
817         int i;
818
819         slot = gfn_to_memslot(kvm, gfn);
820         for (i = PT_DIRECTORY_LEVEL;
821              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822                 linfo = lpage_info_slot(gfn, slot, i);
823                 linfo->write_count += 1;
824         }
825         kvm->arch.indirect_shadow_pages++;
826 }
827
828 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
829 {
830         struct kvm_memory_slot *slot;
831         struct kvm_lpage_info *linfo;
832         int i;
833
834         slot = gfn_to_memslot(kvm, gfn);
835         for (i = PT_DIRECTORY_LEVEL;
836              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
837                 linfo = lpage_info_slot(gfn, slot, i);
838                 linfo->write_count -= 1;
839                 WARN_ON(linfo->write_count < 0);
840         }
841         kvm->arch.indirect_shadow_pages--;
842 }
843
844 static int has_wrprotected_page(struct kvm *kvm,
845                                 gfn_t gfn,
846                                 int level)
847 {
848         struct kvm_memory_slot *slot;
849         struct kvm_lpage_info *linfo;
850
851         slot = gfn_to_memslot(kvm, gfn);
852         if (slot) {
853                 linfo = lpage_info_slot(gfn, slot, level);
854                 return linfo->write_count;
855         }
856
857         return 1;
858 }
859
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
861 {
862         unsigned long page_size;
863         int i, ret = 0;
864
865         page_size = kvm_host_page_size(kvm, gfn);
866
867         for (i = PT_PAGE_TABLE_LEVEL;
868              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
869                 if (page_size >= KVM_HPAGE_SIZE(i))
870                         ret = i;
871                 else
872                         break;
873         }
874
875         return ret;
876 }
877
878 static struct kvm_memory_slot *
879 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
880                             bool no_dirty_log)
881 {
882         struct kvm_memory_slot *slot;
883
884         slot = gfn_to_memslot(vcpu->kvm, gfn);
885         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
886               (no_dirty_log && slot->dirty_bitmap))
887                 slot = NULL;
888
889         return slot;
890 }
891
892 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893 {
894         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
895 }
896
897 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
898 {
899         int host_level, level, max_level;
900
901         host_level = host_mapping_level(vcpu->kvm, large_gfn);
902
903         if (host_level == PT_PAGE_TABLE_LEVEL)
904                 return host_level;
905
906         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
907
908         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
909                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
910                         break;
911
912         return level - 1;
913 }
914
915 /*
916  * Pte mapping structures:
917  *
918  * If pte_list bit zero is zero, then pte_list point to the spte.
919  *
920  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
921  * pte_list_desc containing more mappings.
922  *
923  * Returns the number of pte entries before the spte was added or zero if
924  * the spte was not added.
925  *
926  */
927 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
928                         unsigned long *pte_list)
929 {
930         struct pte_list_desc *desc;
931         int i, count = 0;
932
933         if (!*pte_list) {
934                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
935                 *pte_list = (unsigned long)spte;
936         } else if (!(*pte_list & 1)) {
937                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
938                 desc = mmu_alloc_pte_list_desc(vcpu);
939                 desc->sptes[0] = (u64 *)*pte_list;
940                 desc->sptes[1] = spte;
941                 *pte_list = (unsigned long)desc | 1;
942                 ++count;
943         } else {
944                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
945                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
946                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
947                         desc = desc->more;
948                         count += PTE_LIST_EXT;
949                 }
950                 if (desc->sptes[PTE_LIST_EXT-1]) {
951                         desc->more = mmu_alloc_pte_list_desc(vcpu);
952                         desc = desc->more;
953                 }
954                 for (i = 0; desc->sptes[i]; ++i)
955                         ++count;
956                 desc->sptes[i] = spte;
957         }
958         return count;
959 }
960
961 static void
962 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
963                            int i, struct pte_list_desc *prev_desc)
964 {
965         int j;
966
967         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
968                 ;
969         desc->sptes[i] = desc->sptes[j];
970         desc->sptes[j] = NULL;
971         if (j != 0)
972                 return;
973         if (!prev_desc && !desc->more)
974                 *pte_list = (unsigned long)desc->sptes[0];
975         else
976                 if (prev_desc)
977                         prev_desc->more = desc->more;
978                 else
979                         *pte_list = (unsigned long)desc->more | 1;
980         mmu_free_pte_list_desc(desc);
981 }
982
983 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
984 {
985         struct pte_list_desc *desc;
986         struct pte_list_desc *prev_desc;
987         int i;
988
989         if (!*pte_list) {
990                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
991                 BUG();
992         } else if (!(*pte_list & 1)) {
993                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
994                 if ((u64 *)*pte_list != spte) {
995                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
996                         BUG();
997                 }
998                 *pte_list = 0;
999         } else {
1000                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1001                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1002                 prev_desc = NULL;
1003                 while (desc) {
1004                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1005                                 if (desc->sptes[i] == spte) {
1006                                         pte_list_desc_remove_entry(pte_list,
1007                                                                desc, i,
1008                                                                prev_desc);
1009                                         return;
1010                                 }
1011                         prev_desc = desc;
1012                         desc = desc->more;
1013                 }
1014                 pr_err("pte_list_remove: %p many->many\n", spte);
1015                 BUG();
1016         }
1017 }
1018
1019 typedef void (*pte_list_walk_fn) (u64 *spte);
1020 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1021 {
1022         struct pte_list_desc *desc;
1023         int i;
1024
1025         if (!*pte_list)
1026                 return;
1027
1028         if (!(*pte_list & 1))
1029                 return fn((u64 *)*pte_list);
1030
1031         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1032         while (desc) {
1033                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1034                         fn(desc->sptes[i]);
1035                 desc = desc->more;
1036         }
1037 }
1038
1039 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1040                                     struct kvm_memory_slot *slot)
1041 {
1042         unsigned long idx;
1043
1044         idx = gfn_to_index(gfn, slot->base_gfn, level);
1045         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1046 }
1047
1048 /*
1049  * Take gfn and return the reverse mapping to it.
1050  */
1051 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1052 {
1053         struct kvm_memory_slot *slot;
1054
1055         slot = gfn_to_memslot(kvm, gfn);
1056         return __gfn_to_rmap(gfn, level, slot);
1057 }
1058
1059 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1060 {
1061         struct kvm_mmu_memory_cache *cache;
1062
1063         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1064         return mmu_memory_cache_free_objects(cache);
1065 }
1066
1067 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1068 {
1069         struct kvm_mmu_page *sp;
1070         unsigned long *rmapp;
1071
1072         sp = page_header(__pa(spte));
1073         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1074         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1075         return pte_list_add(vcpu, spte, rmapp);
1076 }
1077
1078 static void rmap_remove(struct kvm *kvm, u64 *spte)
1079 {
1080         struct kvm_mmu_page *sp;
1081         gfn_t gfn;
1082         unsigned long *rmapp;
1083
1084         sp = page_header(__pa(spte));
1085         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1086         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1087         pte_list_remove(spte, rmapp);
1088 }
1089
1090 /*
1091  * Used by the following functions to iterate through the sptes linked by a
1092  * rmap.  All fields are private and not assumed to be used outside.
1093  */
1094 struct rmap_iterator {
1095         /* private fields */
1096         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1097         int pos;                        /* index of the sptep */
1098 };
1099
1100 /*
1101  * Iteration must be started by this function.  This should also be used after
1102  * removing/dropping sptes from the rmap link because in such cases the
1103  * information in the itererator may not be valid.
1104  *
1105  * Returns sptep if found, NULL otherwise.
1106  */
1107 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1108 {
1109         if (!rmap)
1110                 return NULL;
1111
1112         if (!(rmap & 1)) {
1113                 iter->desc = NULL;
1114                 return (u64 *)rmap;
1115         }
1116
1117         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1118         iter->pos = 0;
1119         return iter->desc->sptes[iter->pos];
1120 }
1121
1122 /*
1123  * Must be used with a valid iterator: e.g. after rmap_get_first().
1124  *
1125  * Returns sptep if found, NULL otherwise.
1126  */
1127 static u64 *rmap_get_next(struct rmap_iterator *iter)
1128 {
1129         if (iter->desc) {
1130                 if (iter->pos < PTE_LIST_EXT - 1) {
1131                         u64 *sptep;
1132
1133                         ++iter->pos;
1134                         sptep = iter->desc->sptes[iter->pos];
1135                         if (sptep)
1136                                 return sptep;
1137                 }
1138
1139                 iter->desc = iter->desc->more;
1140
1141                 if (iter->desc) {
1142                         iter->pos = 0;
1143                         /* desc->sptes[0] cannot be NULL */
1144                         return iter->desc->sptes[iter->pos];
1145                 }
1146         }
1147
1148         return NULL;
1149 }
1150
1151 static void drop_spte(struct kvm *kvm, u64 *sptep)
1152 {
1153         if (mmu_spte_clear_track_bits(sptep))
1154                 rmap_remove(kvm, sptep);
1155 }
1156
1157
1158 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159 {
1160         if (is_large_pte(*sptep)) {
1161                 WARN_ON(page_header(__pa(sptep))->role.level ==
1162                         PT_PAGE_TABLE_LEVEL);
1163                 drop_spte(kvm, sptep);
1164                 --kvm->stat.lpages;
1165                 return true;
1166         }
1167
1168         return false;
1169 }
1170
1171 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172 {
1173         if (__drop_large_spte(vcpu->kvm, sptep))
1174                 kvm_flush_remote_tlbs(vcpu->kvm);
1175 }
1176
1177 /*
1178  * Write-protect on the specified @sptep, @pt_protect indicates whether
1179  * spte writ-protection is caused by protecting shadow page table.
1180  * @flush indicates whether tlb need be flushed.
1181  *
1182  * Note: write protection is difference between drity logging and spte
1183  * protection:
1184  * - for dirty logging, the spte can be set to writable at anytime if
1185  *   its dirty bitmap is properly set.
1186  * - for spte protection, the spte can be writable only after unsync-ing
1187  *   shadow page.
1188  *
1189  * Return true if the spte is dropped.
1190  */
1191 static bool
1192 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1193 {
1194         u64 spte = *sptep;
1195
1196         if (!is_writable_pte(spte) &&
1197               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198                 return false;
1199
1200         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1201
1202         if (__drop_large_spte(kvm, sptep)) {
1203                 *flush |= true;
1204                 return true;
1205         }
1206
1207         if (pt_protect)
1208                 spte &= ~SPTE_MMU_WRITEABLE;
1209         spte = spte & ~PT_WRITABLE_MASK;
1210
1211         *flush |= mmu_spte_update(sptep, spte);
1212         return false;
1213 }
1214
1215 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1216                                  bool pt_protect)
1217 {
1218         u64 *sptep;
1219         struct rmap_iterator iter;
1220         bool flush = false;
1221
1222         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1223                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1224                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1225                         sptep = rmap_get_first(*rmapp, &iter);
1226                         continue;
1227                 }
1228
1229                 sptep = rmap_get_next(&iter);
1230         }
1231
1232         return flush;
1233 }
1234
1235 /**
1236  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1237  * @kvm: kvm instance
1238  * @slot: slot to protect
1239  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1240  * @mask: indicates which pages we should protect
1241  *
1242  * Used when we do not need to care about huge page mappings: e.g. during dirty
1243  * logging we do not have any such mappings.
1244  */
1245 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246                                      struct kvm_memory_slot *slot,
1247                                      gfn_t gfn_offset, unsigned long mask)
1248 {
1249         unsigned long *rmapp;
1250
1251         while (mask) {
1252                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1253                                       PT_PAGE_TABLE_LEVEL, slot);
1254                 __rmap_write_protect(kvm, rmapp, false);
1255
1256                 /* clear the first set bit */
1257                 mask &= mask - 1;
1258         }
1259 }
1260
1261 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1262 {
1263         struct kvm_memory_slot *slot;
1264         unsigned long *rmapp;
1265         int i;
1266         bool write_protected = false;
1267
1268         slot = gfn_to_memslot(kvm, gfn);
1269
1270         for (i = PT_PAGE_TABLE_LEVEL;
1271              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1272                 rmapp = __gfn_to_rmap(gfn, i, slot);
1273                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1274         }
1275
1276         return write_protected;
1277 }
1278
1279 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280                            struct kvm_memory_slot *slot, unsigned long data)
1281 {
1282         u64 *sptep;
1283         struct rmap_iterator iter;
1284         int need_tlb_flush = 0;
1285
1286         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1287                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1288                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1289
1290                 drop_spte(kvm, sptep);
1291                 need_tlb_flush = 1;
1292         }
1293
1294         return need_tlb_flush;
1295 }
1296
1297 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1298                              struct kvm_memory_slot *slot, unsigned long data)
1299 {
1300         u64 *sptep;
1301         struct rmap_iterator iter;
1302         int need_flush = 0;
1303         u64 new_spte;
1304         pte_t *ptep = (pte_t *)data;
1305         pfn_t new_pfn;
1306
1307         WARN_ON(pte_huge(*ptep));
1308         new_pfn = pte_pfn(*ptep);
1309
1310         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1311                 BUG_ON(!is_shadow_present_pte(*sptep));
1312                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1313
1314                 need_flush = 1;
1315
1316                 if (pte_write(*ptep)) {
1317                         drop_spte(kvm, sptep);
1318                         sptep = rmap_get_first(*rmapp, &iter);
1319                 } else {
1320                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1321                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1322
1323                         new_spte &= ~PT_WRITABLE_MASK;
1324                         new_spte &= ~SPTE_HOST_WRITEABLE;
1325                         new_spte &= ~shadow_accessed_mask;
1326
1327                         mmu_spte_clear_track_bits(sptep);
1328                         mmu_spte_set(sptep, new_spte);
1329                         sptep = rmap_get_next(&iter);
1330                 }
1331         }
1332
1333         if (need_flush)
1334                 kvm_flush_remote_tlbs(kvm);
1335
1336         return 0;
1337 }
1338
1339 static int kvm_handle_hva_range(struct kvm *kvm,
1340                                 unsigned long start,
1341                                 unsigned long end,
1342                                 unsigned long data,
1343                                 int (*handler)(struct kvm *kvm,
1344                                                unsigned long *rmapp,
1345                                                struct kvm_memory_slot *slot,
1346                                                unsigned long data))
1347 {
1348         int j;
1349         int ret = 0;
1350         struct kvm_memslots *slots;
1351         struct kvm_memory_slot *memslot;
1352
1353         slots = kvm_memslots(kvm);
1354
1355         kvm_for_each_memslot(memslot, slots) {
1356                 unsigned long hva_start, hva_end;
1357                 gfn_t gfn_start, gfn_end;
1358
1359                 hva_start = max(start, memslot->userspace_addr);
1360                 hva_end = min(end, memslot->userspace_addr +
1361                                         (memslot->npages << PAGE_SHIFT));
1362                 if (hva_start >= hva_end)
1363                         continue;
1364                 /*
1365                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1366                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1367                  */
1368                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1369                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1370
1371                 for (j = PT_PAGE_TABLE_LEVEL;
1372                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1373                         unsigned long idx, idx_end;
1374                         unsigned long *rmapp;
1375
1376                         /*
1377                          * {idx(page_j) | page_j intersects with
1378                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1379                          */
1380                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1381                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1382
1383                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1384
1385                         for (; idx <= idx_end; ++idx)
1386                                 ret |= handler(kvm, rmapp++, memslot, data);
1387                 }
1388         }
1389
1390         return ret;
1391 }
1392
1393 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1394                           unsigned long data,
1395                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1396                                          struct kvm_memory_slot *slot,
1397                                          unsigned long data))
1398 {
1399         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1400 }
1401
1402 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1403 {
1404         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1405 }
1406
1407 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1408 {
1409         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1410 }
1411
1412 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1413 {
1414         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1415 }
1416
1417 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1418                          struct kvm_memory_slot *slot, unsigned long data)
1419 {
1420         u64 *sptep;
1421         struct rmap_iterator uninitialized_var(iter);
1422         int young = 0;
1423
1424         /*
1425          * In case of absence of EPT Access and Dirty Bits supports,
1426          * emulate the accessed bit for EPT, by checking if this page has
1427          * an EPT mapping, and clearing it if it does. On the next access,
1428          * a new EPT mapping will be established.
1429          * This has some overhead, but not as much as the cost of swapping
1430          * out actively used pages or breaking up actively used hugepages.
1431          */
1432         if (!shadow_accessed_mask) {
1433                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1434                 goto out;
1435         }
1436
1437         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1438              sptep = rmap_get_next(&iter)) {
1439                 BUG_ON(!is_shadow_present_pte(*sptep));
1440
1441                 if (*sptep & shadow_accessed_mask) {
1442                         young = 1;
1443                         clear_bit((ffs(shadow_accessed_mask) - 1),
1444                                  (unsigned long *)sptep);
1445                 }
1446         }
1447 out:
1448         /* @data has hva passed to kvm_age_hva(). */
1449         trace_kvm_age_page(data, slot, young);
1450         return young;
1451 }
1452
1453 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1454                               struct kvm_memory_slot *slot, unsigned long data)
1455 {
1456         u64 *sptep;
1457         struct rmap_iterator iter;
1458         int young = 0;
1459
1460         /*
1461          * If there's no access bit in the secondary pte set by the
1462          * hardware it's up to gup-fast/gup to set the access bit in
1463          * the primary pte or in the page structure.
1464          */
1465         if (!shadow_accessed_mask)
1466                 goto out;
1467
1468         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1469              sptep = rmap_get_next(&iter)) {
1470                 BUG_ON(!is_shadow_present_pte(*sptep));
1471
1472                 if (*sptep & shadow_accessed_mask) {
1473                         young = 1;
1474                         break;
1475                 }
1476         }
1477 out:
1478         return young;
1479 }
1480
1481 #define RMAP_RECYCLE_THRESHOLD 1000
1482
1483 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1484 {
1485         unsigned long *rmapp;
1486         struct kvm_mmu_page *sp;
1487
1488         sp = page_header(__pa(spte));
1489
1490         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1491
1492         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1493         kvm_flush_remote_tlbs(vcpu->kvm);
1494 }
1495
1496 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1497 {
1498         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1499 }
1500
1501 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1502 {
1503         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1504 }
1505
1506 #ifdef MMU_DEBUG
1507 static int is_empty_shadow_page(u64 *spt)
1508 {
1509         u64 *pos;
1510         u64 *end;
1511
1512         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1513                 if (is_shadow_present_pte(*pos)) {
1514                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1515                                pos, *pos);
1516                         return 0;
1517                 }
1518         return 1;
1519 }
1520 #endif
1521
1522 /*
1523  * This value is the sum of all of the kvm instances's
1524  * kvm->arch.n_used_mmu_pages values.  We need a global,
1525  * aggregate version in order to make the slab shrinker
1526  * faster
1527  */
1528 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1529 {
1530         kvm->arch.n_used_mmu_pages += nr;
1531         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1532 }
1533
1534 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1535 {
1536         ASSERT(is_empty_shadow_page(sp->spt));
1537         hlist_del(&sp->hash_link);
1538         list_del(&sp->link);
1539         free_page((unsigned long)sp->spt);
1540         if (!sp->role.direct)
1541                 free_page((unsigned long)sp->gfns);
1542         kmem_cache_free(mmu_page_header_cache, sp);
1543 }
1544
1545 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1546 {
1547         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1548 }
1549
1550 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1551                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1552 {
1553         if (!parent_pte)
1554                 return;
1555
1556         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1557 }
1558
1559 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1560                                        u64 *parent_pte)
1561 {
1562         pte_list_remove(parent_pte, &sp->parent_ptes);
1563 }
1564
1565 static void drop_parent_pte(struct kvm_mmu_page *sp,
1566                             u64 *parent_pte)
1567 {
1568         mmu_page_remove_parent_pte(sp, parent_pte);
1569         mmu_spte_clear_no_track(parent_pte);
1570 }
1571
1572 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1573                                                u64 *parent_pte, int direct)
1574 {
1575         struct kvm_mmu_page *sp;
1576
1577         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1578         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1579         if (!direct)
1580                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1582
1583         /*
1584          * The active_mmu_pages list is the FIFO list, do not move the
1585          * page until it is zapped. kvm_zap_obsolete_pages depends on
1586          * this feature. See the comments in kvm_zap_obsolete_pages().
1587          */
1588         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1589         sp->parent_ptes = 0;
1590         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1591         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1592         return sp;
1593 }
1594
1595 static void mark_unsync(u64 *spte);
1596 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1597 {
1598         pte_list_walk(&sp->parent_ptes, mark_unsync);
1599 }
1600
1601 static void mark_unsync(u64 *spte)
1602 {
1603         struct kvm_mmu_page *sp;
1604         unsigned int index;
1605
1606         sp = page_header(__pa(spte));
1607         index = spte - sp->spt;
1608         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1609                 return;
1610         if (sp->unsync_children++)
1611                 return;
1612         kvm_mmu_mark_parents_unsync(sp);
1613 }
1614
1615 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1616                                struct kvm_mmu_page *sp)
1617 {
1618         return 1;
1619 }
1620
1621 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1622 {
1623 }
1624
1625 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1626                                  struct kvm_mmu_page *sp, u64 *spte,
1627                                  const void *pte)
1628 {
1629         WARN_ON(1);
1630 }
1631
1632 #define KVM_PAGE_ARRAY_NR 16
1633
1634 struct kvm_mmu_pages {
1635         struct mmu_page_and_offset {
1636                 struct kvm_mmu_page *sp;
1637                 unsigned int idx;
1638         } page[KVM_PAGE_ARRAY_NR];
1639         unsigned int nr;
1640 };
1641
1642 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1643                          int idx)
1644 {
1645         int i;
1646
1647         if (sp->unsync)
1648                 for (i=0; i < pvec->nr; i++)
1649                         if (pvec->page[i].sp == sp)
1650                                 return 0;
1651
1652         pvec->page[pvec->nr].sp = sp;
1653         pvec->page[pvec->nr].idx = idx;
1654         pvec->nr++;
1655         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1656 }
1657
1658 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1659                            struct kvm_mmu_pages *pvec)
1660 {
1661         int i, ret, nr_unsync_leaf = 0;
1662
1663         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1664                 struct kvm_mmu_page *child;
1665                 u64 ent = sp->spt[i];
1666
1667                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1668                         goto clear_child_bitmap;
1669
1670                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1671
1672                 if (child->unsync_children) {
1673                         if (mmu_pages_add(pvec, child, i))
1674                                 return -ENOSPC;
1675
1676                         ret = __mmu_unsync_walk(child, pvec);
1677                         if (!ret)
1678                                 goto clear_child_bitmap;
1679                         else if (ret > 0)
1680                                 nr_unsync_leaf += ret;
1681                         else
1682                                 return ret;
1683                 } else if (child->unsync) {
1684                         nr_unsync_leaf++;
1685                         if (mmu_pages_add(pvec, child, i))
1686                                 return -ENOSPC;
1687                 } else
1688                          goto clear_child_bitmap;
1689
1690                 continue;
1691
1692 clear_child_bitmap:
1693                 __clear_bit(i, sp->unsync_child_bitmap);
1694                 sp->unsync_children--;
1695                 WARN_ON((int)sp->unsync_children < 0);
1696         }
1697
1698
1699         return nr_unsync_leaf;
1700 }
1701
1702 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1703                            struct kvm_mmu_pages *pvec)
1704 {
1705         if (!sp->unsync_children)
1706                 return 0;
1707
1708         mmu_pages_add(pvec, sp, 0);
1709         return __mmu_unsync_walk(sp, pvec);
1710 }
1711
1712 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1713 {
1714         WARN_ON(!sp->unsync);
1715         trace_kvm_mmu_sync_page(sp);
1716         sp->unsync = 0;
1717         --kvm->stat.mmu_unsync;
1718 }
1719
1720 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1721                                     struct list_head *invalid_list);
1722 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1723                                     struct list_head *invalid_list);
1724
1725 /*
1726  * NOTE: we should pay more attention on the zapped-obsolete page
1727  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1728  * since it has been deleted from active_mmu_pages but still can be found
1729  * at hast list.
1730  *
1731  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1732  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1733  * all the obsolete pages.
1734  */
1735 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1736         hlist_for_each_entry(_sp,                                       \
1737           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1738                 if ((_sp)->gfn != (_gfn)) {} else
1739
1740 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1741         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1742                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1743
1744 /* @sp->gfn should be write-protected at the call site */
1745 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1746                            struct list_head *invalid_list, bool clear_unsync)
1747 {
1748         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1749                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1750                 return 1;
1751         }
1752
1753         if (clear_unsync)
1754                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1755
1756         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1757                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1758                 return 1;
1759         }
1760
1761         kvm_mmu_flush_tlb(vcpu);
1762         return 0;
1763 }
1764
1765 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1766                                    struct kvm_mmu_page *sp)
1767 {
1768         LIST_HEAD(invalid_list);
1769         int ret;
1770
1771         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1772         if (ret)
1773                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1774
1775         return ret;
1776 }
1777
1778 #ifdef CONFIG_KVM_MMU_AUDIT
1779 #include "mmu_audit.c"
1780 #else
1781 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1782 static void mmu_audit_disable(void) { }
1783 #endif
1784
1785 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1786                          struct list_head *invalid_list)
1787 {
1788         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1789 }
1790
1791 /* @gfn should be write-protected at the call site */
1792 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1793 {
1794         struct kvm_mmu_page *s;
1795         LIST_HEAD(invalid_list);
1796         bool flush = false;
1797
1798         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1799                 if (!s->unsync)
1800                         continue;
1801
1802                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1803                 kvm_unlink_unsync_page(vcpu->kvm, s);
1804                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1805                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1806                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1807                         continue;
1808                 }
1809                 flush = true;
1810         }
1811
1812         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1813         if (flush)
1814                 kvm_mmu_flush_tlb(vcpu);
1815 }
1816
1817 struct mmu_page_path {
1818         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1819         unsigned int idx[PT64_ROOT_LEVEL-1];
1820 };
1821
1822 #define for_each_sp(pvec, sp, parents, i)                       \
1823                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1824                         sp = pvec.page[i].sp;                   \
1825                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1826                         i = mmu_pages_next(&pvec, &parents, i))
1827
1828 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1829                           struct mmu_page_path *parents,
1830                           int i)
1831 {
1832         int n;
1833
1834         for (n = i+1; n < pvec->nr; n++) {
1835                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1836
1837                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1838                         parents->idx[0] = pvec->page[n].idx;
1839                         return n;
1840                 }
1841
1842                 parents->parent[sp->role.level-2] = sp;
1843                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1844         }
1845
1846         return n;
1847 }
1848
1849 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1850 {
1851         struct kvm_mmu_page *sp;
1852         unsigned int level = 0;
1853
1854         do {
1855                 unsigned int idx = parents->idx[level];
1856
1857                 sp = parents->parent[level];
1858                 if (!sp)
1859                         return;
1860
1861                 --sp->unsync_children;
1862                 WARN_ON((int)sp->unsync_children < 0);
1863                 __clear_bit(idx, sp->unsync_child_bitmap);
1864                 level++;
1865         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1866 }
1867
1868 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1869                                struct mmu_page_path *parents,
1870                                struct kvm_mmu_pages *pvec)
1871 {
1872         parents->parent[parent->role.level-1] = NULL;
1873         pvec->nr = 0;
1874 }
1875
1876 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1877                               struct kvm_mmu_page *parent)
1878 {
1879         int i;
1880         struct kvm_mmu_page *sp;
1881         struct mmu_page_path parents;
1882         struct kvm_mmu_pages pages;
1883         LIST_HEAD(invalid_list);
1884
1885         kvm_mmu_pages_init(parent, &parents, &pages);
1886         while (mmu_unsync_walk(parent, &pages)) {
1887                 bool protected = false;
1888
1889                 for_each_sp(pages, sp, parents, i)
1890                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1891
1892                 if (protected)
1893                         kvm_flush_remote_tlbs(vcpu->kvm);
1894
1895                 for_each_sp(pages, sp, parents, i) {
1896                         kvm_sync_page(vcpu, sp, &invalid_list);
1897                         mmu_pages_clear_parents(&parents);
1898                 }
1899                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1900                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1901                 kvm_mmu_pages_init(parent, &parents, &pages);
1902         }
1903 }
1904
1905 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1906 {
1907         int i;
1908
1909         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1910                 sp->spt[i] = 0ull;
1911 }
1912
1913 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1914 {
1915         sp->write_flooding_count = 0;
1916 }
1917
1918 static void clear_sp_write_flooding_count(u64 *spte)
1919 {
1920         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1921
1922         __clear_sp_write_flooding_count(sp);
1923 }
1924
1925 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1926 {
1927         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1928 }
1929
1930 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1931                                              gfn_t gfn,
1932                                              gva_t gaddr,
1933                                              unsigned level,
1934                                              int direct,
1935                                              unsigned access,
1936                                              u64 *parent_pte)
1937 {
1938         union kvm_mmu_page_role role;
1939         unsigned quadrant;
1940         struct kvm_mmu_page *sp;
1941         bool need_sync = false;
1942
1943         role = vcpu->arch.mmu.base_role;
1944         role.level = level;
1945         role.direct = direct;
1946         if (role.direct)
1947                 role.cr4_pae = 0;
1948         role.access = access;
1949         if (!vcpu->arch.mmu.direct_map
1950             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1951                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1952                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1953                 role.quadrant = quadrant;
1954         }
1955         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1956                 if (is_obsolete_sp(vcpu->kvm, sp))
1957                         continue;
1958
1959                 if (!need_sync && sp->unsync)
1960                         need_sync = true;
1961
1962                 if (sp->role.word != role.word)
1963                         continue;
1964
1965                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1966                         break;
1967
1968                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1969                 if (sp->unsync_children) {
1970                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1971                         kvm_mmu_mark_parents_unsync(sp);
1972                 } else if (sp->unsync)
1973                         kvm_mmu_mark_parents_unsync(sp);
1974
1975                 __clear_sp_write_flooding_count(sp);
1976                 trace_kvm_mmu_get_page(sp, false);
1977                 return sp;
1978         }
1979         ++vcpu->kvm->stat.mmu_cache_miss;
1980         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1981         if (!sp)
1982                 return sp;
1983         sp->gfn = gfn;
1984         sp->role = role;
1985         hlist_add_head(&sp->hash_link,
1986                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1987         if (!direct) {
1988                 if (rmap_write_protect(vcpu->kvm, gfn))
1989                         kvm_flush_remote_tlbs(vcpu->kvm);
1990                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1991                         kvm_sync_pages(vcpu, gfn);
1992
1993                 account_shadowed(vcpu->kvm, gfn);
1994         }
1995         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1996         init_shadow_page_table(sp);
1997         trace_kvm_mmu_get_page(sp, true);
1998         return sp;
1999 }
2000
2001 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2002                              struct kvm_vcpu *vcpu, u64 addr)
2003 {
2004         iterator->addr = addr;
2005         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2006         iterator->level = vcpu->arch.mmu.shadow_root_level;
2007
2008         if (iterator->level == PT64_ROOT_LEVEL &&
2009             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2010             !vcpu->arch.mmu.direct_map)
2011                 --iterator->level;
2012
2013         if (iterator->level == PT32E_ROOT_LEVEL) {
2014                 iterator->shadow_addr
2015                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2016                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2017                 --iterator->level;
2018                 if (!iterator->shadow_addr)
2019                         iterator->level = 0;
2020         }
2021 }
2022
2023 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2024 {
2025         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2026                 return false;
2027
2028         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2029         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2030         return true;
2031 }
2032
2033 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2034                                u64 spte)
2035 {
2036         if (is_last_spte(spte, iterator->level)) {
2037                 iterator->level = 0;
2038                 return;
2039         }
2040
2041         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2042         --iterator->level;
2043 }
2044
2045 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2046 {
2047         return __shadow_walk_next(iterator, *iterator->sptep);
2048 }
2049
2050 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2051 {
2052         u64 spte;
2053
2054         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2055                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2056
2057         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2058                shadow_user_mask | shadow_x_mask;
2059
2060         if (accessed)
2061                 spte |= shadow_accessed_mask;
2062
2063         mmu_spte_set(sptep, spte);
2064 }
2065
2066 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2067                                    unsigned direct_access)
2068 {
2069         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2070                 struct kvm_mmu_page *child;
2071
2072                 /*
2073                  * For the direct sp, if the guest pte's dirty bit
2074                  * changed form clean to dirty, it will corrupt the
2075                  * sp's access: allow writable in the read-only sp,
2076                  * so we should update the spte at this point to get
2077                  * a new sp with the correct access.
2078                  */
2079                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2080                 if (child->role.access == direct_access)
2081                         return;
2082
2083                 drop_parent_pte(child, sptep);
2084                 kvm_flush_remote_tlbs(vcpu->kvm);
2085         }
2086 }
2087
2088 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2089                              u64 *spte)
2090 {
2091         u64 pte;
2092         struct kvm_mmu_page *child;
2093
2094         pte = *spte;
2095         if (is_shadow_present_pte(pte)) {
2096                 if (is_last_spte(pte, sp->role.level)) {
2097                         drop_spte(kvm, spte);
2098                         if (is_large_pte(pte))
2099                                 --kvm->stat.lpages;
2100                 } else {
2101                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2102                         drop_parent_pte(child, spte);
2103                 }
2104                 return true;
2105         }
2106
2107         if (is_mmio_spte(pte))
2108                 mmu_spte_clear_no_track(spte);
2109
2110         return false;
2111 }
2112
2113 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2114                                          struct kvm_mmu_page *sp)
2115 {
2116         unsigned i;
2117
2118         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2119                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2120 }
2121
2122 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2123 {
2124         mmu_page_remove_parent_pte(sp, parent_pte);
2125 }
2126
2127 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2128 {
2129         u64 *sptep;
2130         struct rmap_iterator iter;
2131
2132         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2133                 drop_parent_pte(sp, sptep);
2134 }
2135
2136 static int mmu_zap_unsync_children(struct kvm *kvm,
2137                                    struct kvm_mmu_page *parent,
2138                                    struct list_head *invalid_list)
2139 {
2140         int i, zapped = 0;
2141         struct mmu_page_path parents;
2142         struct kvm_mmu_pages pages;
2143
2144         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2145                 return 0;
2146
2147         kvm_mmu_pages_init(parent, &parents, &pages);
2148         while (mmu_unsync_walk(parent, &pages)) {
2149                 struct kvm_mmu_page *sp;
2150
2151                 for_each_sp(pages, sp, parents, i) {
2152                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2153                         mmu_pages_clear_parents(&parents);
2154                         zapped++;
2155                 }
2156                 kvm_mmu_pages_init(parent, &parents, &pages);
2157         }
2158
2159         return zapped;
2160 }
2161
2162 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163                                     struct list_head *invalid_list)
2164 {
2165         int ret;
2166
2167         trace_kvm_mmu_prepare_zap_page(sp);
2168         ++kvm->stat.mmu_shadow_zapped;
2169         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2170         kvm_mmu_page_unlink_children(kvm, sp);
2171         kvm_mmu_unlink_parents(kvm, sp);
2172
2173         if (!sp->role.invalid && !sp->role.direct)
2174                 unaccount_shadowed(kvm, sp->gfn);
2175
2176         if (sp->unsync)
2177                 kvm_unlink_unsync_page(kvm, sp);
2178         if (!sp->root_count) {
2179                 /* Count self */
2180                 ret++;
2181                 list_move(&sp->link, invalid_list);
2182                 kvm_mod_used_mmu_pages(kvm, -1);
2183         } else {
2184                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2185
2186                 /*
2187                  * The obsolete pages can not be used on any vcpus.
2188                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2189                  */
2190                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2191                         kvm_reload_remote_mmus(kvm);
2192         }
2193
2194         sp->role.invalid = 1;
2195         return ret;
2196 }
2197
2198 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2199                                     struct list_head *invalid_list)
2200 {
2201         struct kvm_mmu_page *sp, *nsp;
2202
2203         if (list_empty(invalid_list))
2204                 return;
2205
2206         /*
2207          * wmb: make sure everyone sees our modifications to the page tables
2208          * rmb: make sure we see changes to vcpu->mode
2209          */
2210         smp_mb();
2211
2212         /*
2213          * Wait for all vcpus to exit guest mode and/or lockless shadow
2214          * page table walks.
2215          */
2216         kvm_flush_remote_tlbs(kvm);
2217
2218         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2219                 WARN_ON(!sp->role.invalid || sp->root_count);
2220                 kvm_mmu_free_page(sp);
2221         }
2222 }
2223
2224 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2225                                         struct list_head *invalid_list)
2226 {
2227         struct kvm_mmu_page *sp;
2228
2229         if (list_empty(&kvm->arch.active_mmu_pages))
2230                 return false;
2231
2232         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2233                         struct kvm_mmu_page, link);
2234         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2235
2236         return true;
2237 }
2238
2239 /*
2240  * Changing the number of mmu pages allocated to the vm
2241  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2242  */
2243 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2244 {
2245         LIST_HEAD(invalid_list);
2246
2247         spin_lock(&kvm->mmu_lock);
2248
2249         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2250                 /* Need to free some mmu pages to achieve the goal. */
2251                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2252                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2253                                 break;
2254
2255                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2256                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2257         }
2258
2259         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2260
2261         spin_unlock(&kvm->mmu_lock);
2262 }
2263
2264 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2265 {
2266         struct kvm_mmu_page *sp;
2267         LIST_HEAD(invalid_list);
2268         int r;
2269
2270         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2271         r = 0;
2272         spin_lock(&kvm->mmu_lock);
2273         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2274                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2275                          sp->role.word);
2276                 r = 1;
2277                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2278         }
2279         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2280         spin_unlock(&kvm->mmu_lock);
2281
2282         return r;
2283 }
2284 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2285
2286 /*
2287  * The function is based on mtrr_type_lookup() in
2288  * arch/x86/kernel/cpu/mtrr/generic.c
2289  */
2290 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2291                          u64 start, u64 end)
2292 {
2293         int i;
2294         u64 base, mask;
2295         u8 prev_match, curr_match;
2296         int num_var_ranges = KVM_NR_VAR_MTRR;
2297
2298         if (!mtrr_state->enabled)
2299                 return 0xFF;
2300
2301         /* Make end inclusive end, instead of exclusive */
2302         end--;
2303
2304         /* Look in fixed ranges. Just return the type as per start */
2305         if (mtrr_state->have_fixed && (start < 0x100000)) {
2306                 int idx;
2307
2308                 if (start < 0x80000) {
2309                         idx = 0;
2310                         idx += (start >> 16);
2311                         return mtrr_state->fixed_ranges[idx];
2312                 } else if (start < 0xC0000) {
2313                         idx = 1 * 8;
2314                         idx += ((start - 0x80000) >> 14);
2315                         return mtrr_state->fixed_ranges[idx];
2316                 } else if (start < 0x1000000) {
2317                         idx = 3 * 8;
2318                         idx += ((start - 0xC0000) >> 12);
2319                         return mtrr_state->fixed_ranges[idx];
2320                 }
2321         }
2322
2323         /*
2324          * Look in variable ranges
2325          * Look of multiple ranges matching this address and pick type
2326          * as per MTRR precedence
2327          */
2328         if (!(mtrr_state->enabled & 2))
2329                 return mtrr_state->def_type;
2330
2331         prev_match = 0xFF;
2332         for (i = 0; i < num_var_ranges; ++i) {
2333                 unsigned short start_state, end_state;
2334
2335                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2336                         continue;
2337
2338                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2339                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2340                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2341                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2342
2343                 start_state = ((start & mask) == (base & mask));
2344                 end_state = ((end & mask) == (base & mask));
2345                 if (start_state != end_state)
2346                         return 0xFE;
2347
2348                 if ((start & mask) != (base & mask))
2349                         continue;
2350
2351                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2352                 if (prev_match == 0xFF) {
2353                         prev_match = curr_match;
2354                         continue;
2355                 }
2356
2357                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2358                     curr_match == MTRR_TYPE_UNCACHABLE)
2359                         return MTRR_TYPE_UNCACHABLE;
2360
2361                 if ((prev_match == MTRR_TYPE_WRBACK &&
2362                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2363                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2364                      curr_match == MTRR_TYPE_WRBACK)) {
2365                         prev_match = MTRR_TYPE_WRTHROUGH;
2366                         curr_match = MTRR_TYPE_WRTHROUGH;
2367                 }
2368
2369                 if (prev_match != curr_match)
2370                         return MTRR_TYPE_UNCACHABLE;
2371         }
2372
2373         if (prev_match != 0xFF)
2374                 return prev_match;
2375
2376         return mtrr_state->def_type;
2377 }
2378
2379 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 {
2381         u8 mtrr;
2382
2383         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2384                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2385         if (mtrr == 0xfe || mtrr == 0xff)
2386                 mtrr = MTRR_TYPE_WRBACK;
2387         return mtrr;
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2390
2391 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2392 {
2393         trace_kvm_mmu_unsync_page(sp);
2394         ++vcpu->kvm->stat.mmu_unsync;
2395         sp->unsync = 1;
2396
2397         kvm_mmu_mark_parents_unsync(sp);
2398 }
2399
2400 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2401 {
2402         struct kvm_mmu_page *s;
2403
2404         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2405                 if (s->unsync)
2406                         continue;
2407                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2408                 __kvm_unsync_page(vcpu, s);
2409         }
2410 }
2411
2412 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2413                                   bool can_unsync)
2414 {
2415         struct kvm_mmu_page *s;
2416         bool need_unsync = false;
2417
2418         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2419                 if (!can_unsync)
2420                         return 1;
2421
2422                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2423                         return 1;
2424
2425                 if (!s->unsync)
2426                         need_unsync = true;
2427         }
2428         if (need_unsync)
2429                 kvm_unsync_pages(vcpu, gfn);
2430         return 0;
2431 }
2432
2433 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2434                     unsigned pte_access, int level,
2435                     gfn_t gfn, pfn_t pfn, bool speculative,
2436                     bool can_unsync, bool host_writable)
2437 {
2438         u64 spte;
2439         int ret = 0;
2440
2441         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2442                 return 0;
2443
2444         spte = PT_PRESENT_MASK;
2445         if (!speculative)
2446                 spte |= shadow_accessed_mask;
2447
2448         if (pte_access & ACC_EXEC_MASK)
2449                 spte |= shadow_x_mask;
2450         else
2451                 spte |= shadow_nx_mask;
2452
2453         if (pte_access & ACC_USER_MASK)
2454                 spte |= shadow_user_mask;
2455
2456         if (level > PT_PAGE_TABLE_LEVEL)
2457                 spte |= PT_PAGE_SIZE_MASK;
2458         if (tdp_enabled)
2459                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2460                         kvm_is_mmio_pfn(pfn));
2461
2462         if (host_writable)
2463                 spte |= SPTE_HOST_WRITEABLE;
2464         else
2465                 pte_access &= ~ACC_WRITE_MASK;
2466
2467         spte |= (u64)pfn << PAGE_SHIFT;
2468
2469         if (pte_access & ACC_WRITE_MASK) {
2470
2471                 /*
2472                  * Other vcpu creates new sp in the window between
2473                  * mapping_level() and acquiring mmu-lock. We can
2474                  * allow guest to retry the access, the mapping can
2475                  * be fixed if guest refault.
2476                  */
2477                 if (level > PT_PAGE_TABLE_LEVEL &&
2478                     has_wrprotected_page(vcpu->kvm, gfn, level))
2479                         goto done;
2480
2481                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2482
2483                 /*
2484                  * Optimization: for pte sync, if spte was writable the hash
2485                  * lookup is unnecessary (and expensive). Write protection
2486                  * is responsibility of mmu_get_page / kvm_sync_page.
2487                  * Same reasoning can be applied to dirty page accounting.
2488                  */
2489                 if (!can_unsync && is_writable_pte(*sptep))
2490                         goto set_pte;
2491
2492                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2493                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2494                                  __func__, gfn);
2495                         ret = 1;
2496                         pte_access &= ~ACC_WRITE_MASK;
2497                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2498                 }
2499         }
2500
2501         if (pte_access & ACC_WRITE_MASK)
2502                 mark_page_dirty(vcpu->kvm, gfn);
2503
2504 set_pte:
2505         if (mmu_spte_update(sptep, spte))
2506                 kvm_flush_remote_tlbs(vcpu->kvm);
2507 done:
2508         return ret;
2509 }
2510
2511 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512                          unsigned pte_access, int write_fault, int *emulate,
2513                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2514                          bool host_writable)
2515 {
2516         int was_rmapped = 0;
2517         int rmap_count;
2518
2519         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2520                  *sptep, write_fault, gfn);
2521
2522         if (is_rmap_spte(*sptep)) {
2523                 /*
2524                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2525                  * the parent of the now unreachable PTE.
2526                  */
2527                 if (level > PT_PAGE_TABLE_LEVEL &&
2528                     !is_large_pte(*sptep)) {
2529                         struct kvm_mmu_page *child;
2530                         u64 pte = *sptep;
2531
2532                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2533                         drop_parent_pte(child, sptep);
2534                         kvm_flush_remote_tlbs(vcpu->kvm);
2535                 } else if (pfn != spte_to_pfn(*sptep)) {
2536                         pgprintk("hfn old %llx new %llx\n",
2537                                  spte_to_pfn(*sptep), pfn);
2538                         drop_spte(vcpu->kvm, sptep);
2539                         kvm_flush_remote_tlbs(vcpu->kvm);
2540                 } else
2541                         was_rmapped = 1;
2542         }
2543
2544         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2545               true, host_writable)) {
2546                 if (write_fault)
2547                         *emulate = 1;
2548                 kvm_mmu_flush_tlb(vcpu);
2549         }
2550
2551         if (unlikely(is_mmio_spte(*sptep) && emulate))
2552                 *emulate = 1;
2553
2554         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2555         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2556                  is_large_pte(*sptep)? "2MB" : "4kB",
2557                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2558                  *sptep, sptep);
2559         if (!was_rmapped && is_large_pte(*sptep))
2560                 ++vcpu->kvm->stat.lpages;
2561
2562         if (is_shadow_present_pte(*sptep)) {
2563                 if (!was_rmapped) {
2564                         rmap_count = rmap_add(vcpu, sptep, gfn);
2565                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2566                                 rmap_recycle(vcpu, sptep, gfn);
2567                 }
2568         }
2569
2570         kvm_release_pfn_clean(pfn);
2571 }
2572
2573 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2574                                      bool no_dirty_log)
2575 {
2576         struct kvm_memory_slot *slot;
2577
2578         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2579         if (!slot)
2580                 return KVM_PFN_ERR_FAULT;
2581
2582         return gfn_to_pfn_memslot_atomic(slot, gfn);
2583 }
2584
2585 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2586                                     struct kvm_mmu_page *sp,
2587                                     u64 *start, u64 *end)
2588 {
2589         struct page *pages[PTE_PREFETCH_NUM];
2590         unsigned access = sp->role.access;
2591         int i, ret;
2592         gfn_t gfn;
2593
2594         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2595         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2596                 return -1;
2597
2598         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2599         if (ret <= 0)
2600                 return -1;
2601
2602         for (i = 0; i < ret; i++, gfn++, start++)
2603                 mmu_set_spte(vcpu, start, access, 0, NULL,
2604                              sp->role.level, gfn, page_to_pfn(pages[i]),
2605                              true, true);
2606
2607         return 0;
2608 }
2609
2610 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2611                                   struct kvm_mmu_page *sp, u64 *sptep)
2612 {
2613         u64 *spte, *start = NULL;
2614         int i;
2615
2616         WARN_ON(!sp->role.direct);
2617
2618         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2619         spte = sp->spt + i;
2620
2621         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2622                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2623                         if (!start)
2624                                 continue;
2625                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2626                                 break;
2627                         start = NULL;
2628                 } else if (!start)
2629                         start = spte;
2630         }
2631 }
2632
2633 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2634 {
2635         struct kvm_mmu_page *sp;
2636
2637         /*
2638          * Since it's no accessed bit on EPT, it's no way to
2639          * distinguish between actually accessed translations
2640          * and prefetched, so disable pte prefetch if EPT is
2641          * enabled.
2642          */
2643         if (!shadow_accessed_mask)
2644                 return;
2645
2646         sp = page_header(__pa(sptep));
2647         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2648                 return;
2649
2650         __direct_pte_prefetch(vcpu, sp, sptep);
2651 }
2652
2653 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2654                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2655                         bool prefault)
2656 {
2657         struct kvm_shadow_walk_iterator iterator;
2658         struct kvm_mmu_page *sp;
2659         int emulate = 0;
2660         gfn_t pseudo_gfn;
2661
2662         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2663                 if (iterator.level == level) {
2664                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2665                                      write, &emulate, level, gfn, pfn,
2666                                      prefault, map_writable);
2667                         direct_pte_prefetch(vcpu, iterator.sptep);
2668                         ++vcpu->stat.pf_fixed;
2669                         break;
2670                 }
2671
2672                 if (!is_shadow_present_pte(*iterator.sptep)) {
2673                         u64 base_addr = iterator.addr;
2674
2675                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2676                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2677                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2678                                               iterator.level - 1,
2679                                               1, ACC_ALL, iterator.sptep);
2680
2681                         link_shadow_page(iterator.sptep, sp, true);
2682                 }
2683         }
2684         return emulate;
2685 }
2686
2687 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2688 {
2689         siginfo_t info;
2690
2691         info.si_signo   = SIGBUS;
2692         info.si_errno   = 0;
2693         info.si_code    = BUS_MCEERR_AR;
2694         info.si_addr    = (void __user *)address;
2695         info.si_addr_lsb = PAGE_SHIFT;
2696
2697         send_sig_info(SIGBUS, &info, tsk);
2698 }
2699
2700 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2701 {
2702         /*
2703          * Do not cache the mmio info caused by writing the readonly gfn
2704          * into the spte otherwise read access on readonly gfn also can
2705          * caused mmio page fault and treat it as mmio access.
2706          * Return 1 to tell kvm to emulate it.
2707          */
2708         if (pfn == KVM_PFN_ERR_RO_FAULT)
2709                 return 1;
2710
2711         if (pfn == KVM_PFN_ERR_HWPOISON) {
2712                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2713                 return 0;
2714         }
2715
2716         return -EFAULT;
2717 }
2718
2719 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2720                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2721 {
2722         pfn_t pfn = *pfnp;
2723         gfn_t gfn = *gfnp;
2724         int level = *levelp;
2725
2726         /*
2727          * Check if it's a transparent hugepage. If this would be an
2728          * hugetlbfs page, level wouldn't be set to
2729          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2730          * here.
2731          */
2732         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2733             level == PT_PAGE_TABLE_LEVEL &&
2734             PageTransCompound(pfn_to_page(pfn)) &&
2735             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2736                 unsigned long mask;
2737                 /*
2738                  * mmu_notifier_retry was successful and we hold the
2739                  * mmu_lock here, so the pmd can't become splitting
2740                  * from under us, and in turn
2741                  * __split_huge_page_refcount() can't run from under
2742                  * us and we can safely transfer the refcount from
2743                  * PG_tail to PG_head as we switch the pfn to tail to
2744                  * head.
2745                  */
2746                 *levelp = level = PT_DIRECTORY_LEVEL;
2747                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2748                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2749                 if (pfn & mask) {
2750                         gfn &= ~mask;
2751                         *gfnp = gfn;
2752                         kvm_release_pfn_clean(pfn);
2753                         pfn &= ~mask;
2754                         kvm_get_pfn(pfn);
2755                         *pfnp = pfn;
2756                 }
2757         }
2758 }
2759
2760 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2761                                 pfn_t pfn, unsigned access, int *ret_val)
2762 {
2763         bool ret = true;
2764
2765         /* The pfn is invalid, report the error! */
2766         if (unlikely(is_error_pfn(pfn))) {
2767                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2768                 goto exit;
2769         }
2770
2771         if (unlikely(is_noslot_pfn(pfn)))
2772                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2773
2774         ret = false;
2775 exit:
2776         return ret;
2777 }
2778
2779 static bool page_fault_can_be_fast(u32 error_code)
2780 {
2781         /*
2782          * Do not fix the mmio spte with invalid generation number which
2783          * need to be updated by slow page fault path.
2784          */
2785         if (unlikely(error_code & PFERR_RSVD_MASK))
2786                 return false;
2787
2788         /*
2789          * #PF can be fast only if the shadow page table is present and it
2790          * is caused by write-protect, that means we just need change the
2791          * W bit of the spte which can be done out of mmu-lock.
2792          */
2793         if (!(error_code & PFERR_PRESENT_MASK) ||
2794               !(error_code & PFERR_WRITE_MASK))
2795                 return false;
2796
2797         return true;
2798 }
2799
2800 static bool
2801 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2802 {
2803         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2804         gfn_t gfn;
2805
2806         WARN_ON(!sp->role.direct);
2807
2808         /*
2809          * The gfn of direct spte is stable since it is calculated
2810          * by sp->gfn.
2811          */
2812         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2813
2814         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2815                 mark_page_dirty(vcpu->kvm, gfn);
2816
2817         return true;
2818 }
2819
2820 /*
2821  * Return value:
2822  * - true: let the vcpu to access on the same address again.
2823  * - false: let the real page fault path to fix it.
2824  */
2825 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2826                             u32 error_code)
2827 {
2828         struct kvm_shadow_walk_iterator iterator;
2829         bool ret = false;
2830         u64 spte = 0ull;
2831
2832         if (!page_fault_can_be_fast(error_code))
2833                 return false;
2834
2835         walk_shadow_page_lockless_begin(vcpu);
2836         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2837                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2838                         break;
2839
2840         /*
2841          * If the mapping has been changed, let the vcpu fault on the
2842          * same address again.
2843          */
2844         if (!is_rmap_spte(spte)) {
2845                 ret = true;
2846                 goto exit;
2847         }
2848
2849         if (!is_last_spte(spte, level))
2850                 goto exit;
2851
2852         /*
2853          * Check if it is a spurious fault caused by TLB lazily flushed.
2854          *
2855          * Need not check the access of upper level table entries since
2856          * they are always ACC_ALL.
2857          */
2858          if (is_writable_pte(spte)) {
2859                 ret = true;
2860                 goto exit;
2861         }
2862
2863         /*
2864          * Currently, to simplify the code, only the spte write-protected
2865          * by dirty-log can be fast fixed.
2866          */
2867         if (!spte_is_locklessly_modifiable(spte))
2868                 goto exit;
2869
2870         /*
2871          * Currently, fast page fault only works for direct mapping since
2872          * the gfn is not stable for indirect shadow page.
2873          * See Documentation/virtual/kvm/locking.txt to get more detail.
2874          */
2875         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2876 exit:
2877         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2878                               spte, ret);
2879         walk_shadow_page_lockless_end(vcpu);
2880
2881         return ret;
2882 }
2883
2884 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2885                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2886 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2887
2888 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2889                          gfn_t gfn, bool prefault)
2890 {
2891         int r;
2892         int level;
2893         int force_pt_level;
2894         pfn_t pfn;
2895         unsigned long mmu_seq;
2896         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2897
2898         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2899         if (likely(!force_pt_level)) {
2900                 level = mapping_level(vcpu, gfn);
2901                 /*
2902                  * This path builds a PAE pagetable - so we can map
2903                  * 2mb pages at maximum. Therefore check if the level
2904                  * is larger than that.
2905                  */
2906                 if (level > PT_DIRECTORY_LEVEL)
2907                         level = PT_DIRECTORY_LEVEL;
2908
2909                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2910         } else
2911                 level = PT_PAGE_TABLE_LEVEL;
2912
2913         if (fast_page_fault(vcpu, v, level, error_code))
2914                 return 0;
2915
2916         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2917         smp_rmb();
2918
2919         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2920                 return 0;
2921
2922         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2923                 return r;
2924
2925         spin_lock(&vcpu->kvm->mmu_lock);
2926         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2927                 goto out_unlock;
2928         make_mmu_pages_available(vcpu);
2929         if (likely(!force_pt_level))
2930                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2931         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2932                          prefault);
2933         spin_unlock(&vcpu->kvm->mmu_lock);
2934
2935
2936         return r;
2937
2938 out_unlock:
2939         spin_unlock(&vcpu->kvm->mmu_lock);
2940         kvm_release_pfn_clean(pfn);
2941         return 0;
2942 }
2943
2944
2945 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2946 {
2947         int i;
2948         struct kvm_mmu_page *sp;
2949         LIST_HEAD(invalid_list);
2950
2951         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2952                 return;
2953
2954         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2955             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2956              vcpu->arch.mmu.direct_map)) {
2957                 hpa_t root = vcpu->arch.mmu.root_hpa;
2958
2959                 spin_lock(&vcpu->kvm->mmu_lock);
2960                 sp = page_header(root);
2961                 --sp->root_count;
2962                 if (!sp->root_count && sp->role.invalid) {
2963                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2964                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2965                 }
2966                 spin_unlock(&vcpu->kvm->mmu_lock);
2967                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2968                 return;
2969         }
2970
2971         spin_lock(&vcpu->kvm->mmu_lock);
2972         for (i = 0; i < 4; ++i) {
2973                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2974
2975                 if (root) {
2976                         root &= PT64_BASE_ADDR_MASK;
2977                         sp = page_header(root);
2978                         --sp->root_count;
2979                         if (!sp->root_count && sp->role.invalid)
2980                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2981                                                          &invalid_list);
2982                 }
2983                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2984         }
2985         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2986         spin_unlock(&vcpu->kvm->mmu_lock);
2987         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2988 }
2989
2990 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2991 {
2992         int ret = 0;
2993
2994         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2995                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2996                 ret = 1;
2997         }
2998
2999         return ret;
3000 }
3001
3002 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3003 {
3004         struct kvm_mmu_page *sp;
3005         unsigned i;
3006
3007         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3008                 spin_lock(&vcpu->kvm->mmu_lock);
3009                 make_mmu_pages_available(vcpu);
3010                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3011                                       1, ACC_ALL, NULL);
3012                 ++sp->root_count;
3013                 spin_unlock(&vcpu->kvm->mmu_lock);
3014                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3015         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3016                 for (i = 0; i < 4; ++i) {
3017                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3018
3019                         ASSERT(!VALID_PAGE(root));
3020                         spin_lock(&vcpu->kvm->mmu_lock);
3021                         make_mmu_pages_available(vcpu);
3022                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3023                                               i << 30,
3024                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3025                                               NULL);
3026                         root = __pa(sp->spt);
3027                         ++sp->root_count;
3028                         spin_unlock(&vcpu->kvm->mmu_lock);
3029                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3030                 }
3031                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3032         } else
3033                 BUG();
3034
3035         return 0;
3036 }
3037
3038 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3039 {
3040         struct kvm_mmu_page *sp;
3041         u64 pdptr, pm_mask;
3042         gfn_t root_gfn;
3043         int i;
3044
3045         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3046
3047         if (mmu_check_root(vcpu, root_gfn))
3048                 return 1;
3049
3050         /*
3051          * Do we shadow a long mode page table? If so we need to
3052          * write-protect the guests page table root.
3053          */
3054         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3055                 hpa_t root = vcpu->arch.mmu.root_hpa;
3056
3057                 ASSERT(!VALID_PAGE(root));
3058
3059                 spin_lock(&vcpu->kvm->mmu_lock);
3060                 make_mmu_pages_available(vcpu);
3061                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3062                                       0, ACC_ALL, NULL);
3063                 root = __pa(sp->spt);
3064                 ++sp->root_count;
3065                 spin_unlock(&vcpu->kvm->mmu_lock);
3066                 vcpu->arch.mmu.root_hpa = root;
3067                 return 0;
3068         }
3069
3070         /*
3071          * We shadow a 32 bit page table. This may be a legacy 2-level
3072          * or a PAE 3-level page table. In either case we need to be aware that
3073          * the shadow page table may be a PAE or a long mode page table.
3074          */
3075         pm_mask = PT_PRESENT_MASK;
3076         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3077                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3078
3079         for (i = 0; i < 4; ++i) {
3080                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3081
3082                 ASSERT(!VALID_PAGE(root));
3083                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3084                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3085                         if (!is_present_gpte(pdptr)) {
3086                                 vcpu->arch.mmu.pae_root[i] = 0;
3087                                 continue;
3088                         }
3089                         root_gfn = pdptr >> PAGE_SHIFT;
3090                         if (mmu_check_root(vcpu, root_gfn))
3091                                 return 1;
3092                 }
3093                 spin_lock(&vcpu->kvm->mmu_lock);
3094                 make_mmu_pages_available(vcpu);
3095                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3096                                       PT32_ROOT_LEVEL, 0,
3097                                       ACC_ALL, NULL);
3098                 root = __pa(sp->spt);
3099                 ++sp->root_count;
3100                 spin_unlock(&vcpu->kvm->mmu_lock);
3101
3102                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3103         }
3104         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3105
3106         /*
3107          * If we shadow a 32 bit page table with a long mode page
3108          * table we enter this path.
3109          */
3110         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3111                 if (vcpu->arch.mmu.lm_root == NULL) {
3112                         /*
3113                          * The additional page necessary for this is only
3114                          * allocated on demand.
3115                          */
3116
3117                         u64 *lm_root;
3118
3119                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3120                         if (lm_root == NULL)
3121                                 return 1;
3122
3123                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3124
3125                         vcpu->arch.mmu.lm_root = lm_root;
3126                 }
3127
3128                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3129         }
3130
3131         return 0;
3132 }
3133
3134 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3135 {
3136         if (vcpu->arch.mmu.direct_map)
3137                 return mmu_alloc_direct_roots(vcpu);
3138         else
3139                 return mmu_alloc_shadow_roots(vcpu);
3140 }
3141
3142 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3143 {
3144         int i;
3145         struct kvm_mmu_page *sp;
3146
3147         if (vcpu->arch.mmu.direct_map)
3148                 return;
3149
3150         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3151                 return;
3152
3153         vcpu_clear_mmio_info(vcpu, ~0ul);
3154         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3155         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3156                 hpa_t root = vcpu->arch.mmu.root_hpa;
3157                 sp = page_header(root);
3158                 mmu_sync_children(vcpu, sp);
3159                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3160                 return;
3161         }
3162         for (i = 0; i < 4; ++i) {
3163                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3164
3165                 if (root && VALID_PAGE(root)) {
3166                         root &= PT64_BASE_ADDR_MASK;
3167                         sp = page_header(root);
3168                         mmu_sync_children(vcpu, sp);
3169                 }
3170         }
3171         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3172 }
3173
3174 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3175 {
3176         spin_lock(&vcpu->kvm->mmu_lock);
3177         mmu_sync_roots(vcpu);
3178         spin_unlock(&vcpu->kvm->mmu_lock);
3179 }
3180 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3181
3182 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3183                                   u32 access, struct x86_exception *exception)
3184 {
3185         if (exception)
3186                 exception->error_code = 0;
3187         return vaddr;
3188 }
3189
3190 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3191                                          u32 access,
3192                                          struct x86_exception *exception)
3193 {
3194         if (exception)
3195                 exception->error_code = 0;
3196         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3197 }
3198
3199 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3200 {
3201         if (direct)
3202                 return vcpu_match_mmio_gpa(vcpu, addr);
3203
3204         return vcpu_match_mmio_gva(vcpu, addr);
3205 }
3206
3207
3208 /*
3209  * On direct hosts, the last spte is only allows two states
3210  * for mmio page fault:
3211  *   - It is the mmio spte
3212  *   - It is zapped or it is being zapped.
3213  *
3214  * This function completely checks the spte when the last spte
3215  * is not the mmio spte.
3216  */
3217 static bool check_direct_spte_mmio_pf(u64 spte)
3218 {
3219         return __check_direct_spte_mmio_pf(spte);
3220 }
3221
3222 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3223 {
3224         struct kvm_shadow_walk_iterator iterator;
3225         u64 spte = 0ull;
3226
3227         walk_shadow_page_lockless_begin(vcpu);
3228         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3229                 if (!is_shadow_present_pte(spte))
3230                         break;
3231         walk_shadow_page_lockless_end(vcpu);
3232
3233         return spte;
3234 }
3235
3236 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3237 {
3238         u64 spte;
3239
3240         if (quickly_check_mmio_pf(vcpu, addr, direct))
3241                 return RET_MMIO_PF_EMULATE;
3242
3243         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3244
3245         if (is_mmio_spte(spte)) {
3246                 gfn_t gfn = get_mmio_spte_gfn(spte);
3247                 unsigned access = get_mmio_spte_access(spte);
3248
3249                 if (!check_mmio_spte(vcpu->kvm, spte))
3250                         return RET_MMIO_PF_INVALID;
3251
3252                 if (direct)
3253                         addr = 0;
3254
3255                 trace_handle_mmio_page_fault(addr, gfn, access);
3256                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3257                 return RET_MMIO_PF_EMULATE;
3258         }
3259
3260         /*
3261          * It's ok if the gva is remapped by other cpus on shadow guest,
3262          * it's a BUG if the gfn is not a mmio page.
3263          */
3264         if (direct && !check_direct_spte_mmio_pf(spte))
3265                 return RET_MMIO_PF_BUG;
3266
3267         /*
3268          * If the page table is zapped by other cpus, let CPU fault again on
3269          * the address.
3270          */
3271         return RET_MMIO_PF_RETRY;
3272 }
3273 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3274
3275 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3276                                   u32 error_code, bool direct)
3277 {
3278         int ret;
3279
3280         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3281         WARN_ON(ret == RET_MMIO_PF_BUG);
3282         return ret;
3283 }
3284
3285 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3286                                 u32 error_code, bool prefault)
3287 {
3288         gfn_t gfn;
3289         int r;
3290
3291         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3292
3293         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3294                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3295
3296                 if (likely(r != RET_MMIO_PF_INVALID))
3297                         return r;
3298         }
3299
3300         r = mmu_topup_memory_caches(vcpu);
3301         if (r)
3302                 return r;
3303
3304         ASSERT(vcpu);
3305         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3306
3307         gfn = gva >> PAGE_SHIFT;
3308
3309         return nonpaging_map(vcpu, gva & PAGE_MASK,
3310                              error_code, gfn, prefault);
3311 }
3312
3313 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3314 {
3315         struct kvm_arch_async_pf arch;
3316
3317         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3318         arch.gfn = gfn;
3319         arch.direct_map = vcpu->arch.mmu.direct_map;
3320         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3321
3322         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3323 }
3324
3325 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3326 {
3327         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3328                      kvm_event_needs_reinjection(vcpu)))
3329                 return false;
3330
3331         return kvm_x86_ops->interrupt_allowed(vcpu);
3332 }
3333
3334 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3335                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3336 {
3337         bool async;
3338
3339         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3340
3341         if (!async)
3342                 return false; /* *pfn has correct page already */
3343
3344         if (!prefault && can_do_async_pf(vcpu)) {
3345                 trace_kvm_try_async_get_page(gva, gfn);
3346                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3347                         trace_kvm_async_pf_doublefault(gva, gfn);
3348                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3349                         return true;
3350                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3351                         return true;
3352         }
3353
3354         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3355
3356         return false;
3357 }
3358
3359 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3360                           bool prefault)
3361 {
3362         pfn_t pfn;
3363         int r;
3364         int level;
3365         int force_pt_level;
3366         gfn_t gfn = gpa >> PAGE_SHIFT;
3367         unsigned long mmu_seq;
3368         int write = error_code & PFERR_WRITE_MASK;
3369         bool map_writable;
3370
3371         ASSERT(vcpu);
3372         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3373
3374         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3375                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3376
3377                 if (likely(r != RET_MMIO_PF_INVALID))
3378                         return r;
3379         }
3380
3381         r = mmu_topup_memory_caches(vcpu);
3382         if (r)
3383                 return r;
3384
3385         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3386         if (likely(!force_pt_level)) {
3387                 level = mapping_level(vcpu, gfn);
3388                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3389         } else
3390                 level = PT_PAGE_TABLE_LEVEL;
3391
3392         if (fast_page_fault(vcpu, gpa, level, error_code))
3393                 return 0;
3394
3395         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3396         smp_rmb();
3397
3398         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3399                 return 0;
3400
3401         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3402                 return r;
3403
3404         spin_lock(&vcpu->kvm->mmu_lock);
3405         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3406                 goto out_unlock;
3407         make_mmu_pages_available(vcpu);
3408         if (likely(!force_pt_level))
3409                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3410         r = __direct_map(vcpu, gpa, write, map_writable,
3411                          level, gfn, pfn, prefault);
3412         spin_unlock(&vcpu->kvm->mmu_lock);
3413
3414         return r;
3415
3416 out_unlock:
3417         spin_unlock(&vcpu->kvm->mmu_lock);
3418         kvm_release_pfn_clean(pfn);
3419         return 0;
3420 }
3421
3422 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3423                                    struct kvm_mmu *context)
3424 {
3425         context->page_fault = nonpaging_page_fault;
3426         context->gva_to_gpa = nonpaging_gva_to_gpa;
3427         context->sync_page = nonpaging_sync_page;
3428         context->invlpg = nonpaging_invlpg;
3429         context->update_pte = nonpaging_update_pte;
3430         context->root_level = 0;
3431         context->shadow_root_level = PT32E_ROOT_LEVEL;
3432         context->root_hpa = INVALID_PAGE;
3433         context->direct_map = true;
3434         context->nx = false;
3435 }
3436
3437 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3438 {
3439         ++vcpu->stat.tlb_flush;
3440         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3441 }
3442 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3443
3444 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3445 {
3446         mmu_free_roots(vcpu);
3447 }
3448
3449 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3450 {
3451         return kvm_read_cr3(vcpu);
3452 }
3453
3454 static void inject_page_fault(struct kvm_vcpu *vcpu,
3455                               struct x86_exception *fault)
3456 {
3457         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3458 }
3459
3460 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3461                            unsigned access, int *nr_present)
3462 {
3463         if (unlikely(is_mmio_spte(*sptep))) {
3464                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3465                         mmu_spte_clear_no_track(sptep);
3466                         return true;
3467                 }
3468
3469                 (*nr_present)++;
3470                 mark_mmio_spte(kvm, sptep, gfn, access);
3471                 return true;
3472         }
3473
3474         return false;
3475 }
3476
3477 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3478 {
3479         unsigned index;
3480
3481         index = level - 1;
3482         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3483         return mmu->last_pte_bitmap & (1 << index);
3484 }
3485
3486 #define PTTYPE_EPT 18 /* arbitrary */
3487 #define PTTYPE PTTYPE_EPT
3488 #include "paging_tmpl.h"
3489 #undef PTTYPE
3490
3491 #define PTTYPE 64
3492 #include "paging_tmpl.h"
3493 #undef PTTYPE
3494
3495 #define PTTYPE 32
3496 #include "paging_tmpl.h"
3497 #undef PTTYPE
3498
3499 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3500                                   struct kvm_mmu *context)
3501 {
3502         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3503         u64 exb_bit_rsvd = 0;
3504
3505         context->bad_mt_xwr = 0;
3506
3507         if (!context->nx)
3508                 exb_bit_rsvd = rsvd_bits(63, 63);
3509         switch (context->root_level) {
3510         case PT32_ROOT_LEVEL:
3511                 /* no rsvd bits for 2 level 4K page table entries */
3512                 context->rsvd_bits_mask[0][1] = 0;
3513                 context->rsvd_bits_mask[0][0] = 0;
3514                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3515
3516                 if (!is_pse(vcpu)) {
3517                         context->rsvd_bits_mask[1][1] = 0;
3518                         break;
3519                 }
3520
3521                 if (is_cpuid_PSE36())
3522                         /* 36bits PSE 4MB page */
3523                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3524                 else
3525                         /* 32 bits PSE 4MB page */
3526                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3527                 break;
3528         case PT32E_ROOT_LEVEL:
3529                 context->rsvd_bits_mask[0][2] =
3530                         rsvd_bits(maxphyaddr, 63) |
3531                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3532                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3533                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3534                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3535                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3536                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3537                         rsvd_bits(maxphyaddr, 62) |
3538                         rsvd_bits(13, 20);              /* large page */
3539                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3540                 break;
3541         case PT64_ROOT_LEVEL:
3542                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3543                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3544                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3545                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3546                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3547                         rsvd_bits(maxphyaddr, 51);
3548                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3549                         rsvd_bits(maxphyaddr, 51);
3550                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3551                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3552                         rsvd_bits(maxphyaddr, 51) |
3553                         rsvd_bits(13, 29);
3554                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3555                         rsvd_bits(maxphyaddr, 51) |
3556                         rsvd_bits(13, 20);              /* large page */
3557                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3558                 break;
3559         }
3560 }
3561
3562 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3563                 struct kvm_mmu *context, bool execonly)
3564 {
3565         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3566         int pte;
3567
3568         context->rsvd_bits_mask[0][3] =
3569                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3570         context->rsvd_bits_mask[0][2] =
3571                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3572         context->rsvd_bits_mask[0][1] =
3573                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3574         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3575
3576         /* large page */
3577         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3578         context->rsvd_bits_mask[1][2] =
3579                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3580         context->rsvd_bits_mask[1][1] =
3581                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3582         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3583
3584         for (pte = 0; pte < 64; pte++) {
3585                 int rwx_bits = pte & 7;
3586                 int mt = pte >> 3;
3587                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3588                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3589                                 (rwx_bits == 0x4 && !execonly))
3590                         context->bad_mt_xwr |= (1ull << pte);
3591         }
3592 }
3593
3594 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3595                 struct kvm_mmu *mmu, bool ept)
3596 {
3597         unsigned bit, byte, pfec;
3598         u8 map;
3599         bool fault, x, w, u, wf, uf, ff, smep;
3600
3601         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3602         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3603                 pfec = byte << 1;
3604                 map = 0;
3605                 wf = pfec & PFERR_WRITE_MASK;
3606                 uf = pfec & PFERR_USER_MASK;
3607                 ff = pfec & PFERR_FETCH_MASK;
3608                 for (bit = 0; bit < 8; ++bit) {
3609                         x = bit & ACC_EXEC_MASK;
3610                         w = bit & ACC_WRITE_MASK;
3611                         u = bit & ACC_USER_MASK;
3612
3613                         if (!ept) {
3614                                 /* Not really needed: !nx will cause pte.nx to fault */
3615                                 x |= !mmu->nx;
3616                                 /* Allow supervisor writes if !cr0.wp */
3617                                 w |= !is_write_protection(vcpu) && !uf;
3618                                 /* Disallow supervisor fetches of user code if cr4.smep */
3619                                 x &= !(smep && u && !uf);
3620                         } else
3621                                 /* Not really needed: no U/S accesses on ept  */
3622                                 u = 1;
3623
3624                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3625                         map |= fault << bit;
3626                 }
3627                 mmu->permissions[byte] = map;
3628         }
3629 }
3630
3631 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3632 {
3633         u8 map;
3634         unsigned level, root_level = mmu->root_level;
3635         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3636
3637         if (root_level == PT32E_ROOT_LEVEL)
3638                 --root_level;
3639         /* PT_PAGE_TABLE_LEVEL always terminates */
3640         map = 1 | (1 << ps_set_index);
3641         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3642                 if (level <= PT_PDPE_LEVEL
3643                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3644                         map |= 1 << (ps_set_index | (level - 1));
3645         }
3646         mmu->last_pte_bitmap = map;
3647 }
3648
3649 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3650                                          struct kvm_mmu *context,
3651                                          int level)
3652 {
3653         context->nx = is_nx(vcpu);
3654         context->root_level = level;
3655
3656         reset_rsvds_bits_mask(vcpu, context);
3657         update_permission_bitmask(vcpu, context, false);
3658         update_last_pte_bitmap(vcpu, context);
3659
3660         ASSERT(is_pae(vcpu));
3661         context->page_fault = paging64_page_fault;
3662         context->gva_to_gpa = paging64_gva_to_gpa;
3663         context->sync_page = paging64_sync_page;
3664         context->invlpg = paging64_invlpg;
3665         context->update_pte = paging64_update_pte;
3666         context->shadow_root_level = level;
3667         context->root_hpa = INVALID_PAGE;
3668         context->direct_map = false;
3669 }
3670
3671 static void paging64_init_context(struct kvm_vcpu *vcpu,
3672                                   struct kvm_mmu *context)
3673 {
3674         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3675 }
3676
3677 static void paging32_init_context(struct kvm_vcpu *vcpu,
3678                                   struct kvm_mmu *context)
3679 {
3680         context->nx = false;
3681         context->root_level = PT32_ROOT_LEVEL;
3682
3683         reset_rsvds_bits_mask(vcpu, context);
3684         update_permission_bitmask(vcpu, context, false);
3685         update_last_pte_bitmap(vcpu, context);
3686
3687         context->page_fault = paging32_page_fault;
3688         context->gva_to_gpa = paging32_gva_to_gpa;
3689         context->sync_page = paging32_sync_page;
3690         context->invlpg = paging32_invlpg;
3691         context->update_pte = paging32_update_pte;
3692         context->shadow_root_level = PT32E_ROOT_LEVEL;
3693         context->root_hpa = INVALID_PAGE;
3694         context->direct_map = false;
3695 }
3696
3697 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3698                                    struct kvm_mmu *context)
3699 {
3700         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3701 }
3702
3703 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3704 {
3705         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3706
3707         context->base_role.word = 0;
3708         context->page_fault = tdp_page_fault;
3709         context->sync_page = nonpaging_sync_page;
3710         context->invlpg = nonpaging_invlpg;
3711         context->update_pte = nonpaging_update_pte;
3712         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3713         context->root_hpa = INVALID_PAGE;
3714         context->direct_map = true;
3715         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3716         context->get_cr3 = get_cr3;
3717         context->get_pdptr = kvm_pdptr_read;
3718         context->inject_page_fault = kvm_inject_page_fault;
3719
3720         if (!is_paging(vcpu)) {
3721                 context->nx = false;
3722                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3723                 context->root_level = 0;
3724         } else if (is_long_mode(vcpu)) {
3725                 context->nx = is_nx(vcpu);
3726                 context->root_level = PT64_ROOT_LEVEL;
3727                 reset_rsvds_bits_mask(vcpu, context);
3728                 context->gva_to_gpa = paging64_gva_to_gpa;
3729         } else if (is_pae(vcpu)) {
3730                 context->nx = is_nx(vcpu);
3731                 context->root_level = PT32E_ROOT_LEVEL;
3732                 reset_rsvds_bits_mask(vcpu, context);
3733                 context->gva_to_gpa = paging64_gva_to_gpa;
3734         } else {
3735                 context->nx = false;
3736                 context->root_level = PT32_ROOT_LEVEL;
3737                 reset_rsvds_bits_mask(vcpu, context);
3738                 context->gva_to_gpa = paging32_gva_to_gpa;
3739         }
3740
3741         update_permission_bitmask(vcpu, context, false);
3742         update_last_pte_bitmap(vcpu, context);
3743 }
3744
3745 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3746 {
3747         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3748         ASSERT(vcpu);
3749         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3750
3751         if (!is_paging(vcpu))
3752                 nonpaging_init_context(vcpu, context);
3753         else if (is_long_mode(vcpu))
3754                 paging64_init_context(vcpu, context);
3755         else if (is_pae(vcpu))
3756                 paging32E_init_context(vcpu, context);
3757         else
3758                 paging32_init_context(vcpu, context);
3759
3760         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3761         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3762         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3763         vcpu->arch.mmu.base_role.smep_andnot_wp
3764                 = smep && !is_write_protection(vcpu);
3765 }
3766 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3767
3768 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3769                 bool execonly)
3770 {
3771         ASSERT(vcpu);
3772         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3773
3774         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3775
3776         context->nx = true;
3777         context->page_fault = ept_page_fault;
3778         context->gva_to_gpa = ept_gva_to_gpa;
3779         context->sync_page = ept_sync_page;
3780         context->invlpg = ept_invlpg;
3781         context->update_pte = ept_update_pte;
3782         context->root_level = context->shadow_root_level;
3783         context->root_hpa = INVALID_PAGE;
3784         context->direct_map = false;
3785
3786         update_permission_bitmask(vcpu, context, true);
3787         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3788 }
3789 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3790
3791 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3792 {
3793         kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3794         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3795         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3796         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3797         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3798 }
3799
3800 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3801 {
3802         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3803
3804         g_context->get_cr3           = get_cr3;
3805         g_context->get_pdptr         = kvm_pdptr_read;
3806         g_context->inject_page_fault = kvm_inject_page_fault;
3807
3808         /*
3809          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3810          * translation of l2_gpa to l1_gpa addresses is done using the
3811          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3812          * functions between mmu and nested_mmu are swapped.
3813          */
3814         if (!is_paging(vcpu)) {
3815                 g_context->nx = false;
3816                 g_context->root_level = 0;
3817                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3818         } else if (is_long_mode(vcpu)) {
3819                 g_context->nx = is_nx(vcpu);
3820                 g_context->root_level = PT64_ROOT_LEVEL;
3821                 reset_rsvds_bits_mask(vcpu, g_context);
3822                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3823         } else if (is_pae(vcpu)) {
3824                 g_context->nx = is_nx(vcpu);
3825                 g_context->root_level = PT32E_ROOT_LEVEL;
3826                 reset_rsvds_bits_mask(vcpu, g_context);
3827                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3828         } else {
3829                 g_context->nx = false;
3830                 g_context->root_level = PT32_ROOT_LEVEL;
3831                 reset_rsvds_bits_mask(vcpu, g_context);
3832                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3833         }
3834
3835         update_permission_bitmask(vcpu, g_context, false);
3836         update_last_pte_bitmap(vcpu, g_context);
3837 }
3838
3839 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3840 {
3841         if (mmu_is_nested(vcpu))
3842                 return init_kvm_nested_mmu(vcpu);
3843         else if (tdp_enabled)
3844                 return init_kvm_tdp_mmu(vcpu);
3845         else
3846                 return init_kvm_softmmu(vcpu);
3847 }
3848
3849 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3850 {
3851         ASSERT(vcpu);
3852
3853         kvm_mmu_unload(vcpu);
3854         init_kvm_mmu(vcpu);
3855 }
3856 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3857
3858 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3859 {
3860         int r;
3861
3862         r = mmu_topup_memory_caches(vcpu);
3863         if (r)
3864                 goto out;
3865         r = mmu_alloc_roots(vcpu);
3866         kvm_mmu_sync_roots(vcpu);
3867         if (r)
3868                 goto out;
3869         /* set_cr3() should ensure TLB has been flushed */
3870         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3871 out:
3872         return r;
3873 }
3874 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3875
3876 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3877 {
3878         mmu_free_roots(vcpu);
3879         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3880 }
3881 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3882
3883 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3884                                   struct kvm_mmu_page *sp, u64 *spte,
3885                                   const void *new)
3886 {
3887         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3888                 ++vcpu->kvm->stat.mmu_pde_zapped;
3889                 return;
3890         }
3891
3892         ++vcpu->kvm->stat.mmu_pte_updated;
3893         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3894 }
3895
3896 static bool need_remote_flush(u64 old, u64 new)
3897 {
3898         if (!is_shadow_present_pte(old))
3899                 return false;
3900         if (!is_shadow_present_pte(new))
3901                 return true;
3902         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3903                 return true;
3904         old ^= shadow_nx_mask;
3905         new ^= shadow_nx_mask;
3906         return (old & ~new & PT64_PERM_MASK) != 0;
3907 }
3908
3909 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3910                                     bool remote_flush, bool local_flush)
3911 {
3912         if (zap_page)
3913                 return;
3914
3915         if (remote_flush)
3916                 kvm_flush_remote_tlbs(vcpu->kvm);
3917         else if (local_flush)
3918                 kvm_mmu_flush_tlb(vcpu);
3919 }
3920
3921 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3922                                     const u8 *new, int *bytes)
3923 {
3924         u64 gentry;
3925         int r;
3926
3927         /*
3928          * Assume that the pte write on a page table of the same type
3929          * as the current vcpu paging mode since we update the sptes only
3930          * when they have the same mode.
3931          */
3932         if (is_pae(vcpu) && *bytes == 4) {
3933                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3934                 *gpa &= ~(gpa_t)7;
3935                 *bytes = 8;
3936                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3937                 if (r)
3938                         gentry = 0;
3939                 new = (const u8 *)&gentry;
3940         }
3941
3942         switch (*bytes) {
3943         case 4:
3944                 gentry = *(const u32 *)new;
3945                 break;
3946         case 8:
3947                 gentry = *(const u64 *)new;
3948                 break;
3949         default:
3950                 gentry = 0;
3951                 break;
3952         }
3953
3954         return gentry;
3955 }
3956
3957 /*
3958  * If we're seeing too many writes to a page, it may no longer be a page table,
3959  * or we may be forking, in which case it is better to unmap the page.
3960  */
3961 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3962 {
3963         /*
3964          * Skip write-flooding detected for the sp whose level is 1, because
3965          * it can become unsync, then the guest page is not write-protected.
3966          */
3967         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3968                 return false;
3969
3970         return ++sp->write_flooding_count >= 3;
3971 }
3972
3973 /*
3974  * Misaligned accesses are too much trouble to fix up; also, they usually
3975  * indicate a page is not used as a page table.
3976  */
3977 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3978                                     int bytes)
3979 {
3980         unsigned offset, pte_size, misaligned;
3981
3982         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3983                  gpa, bytes, sp->role.word);
3984
3985         offset = offset_in_page(gpa);
3986         pte_size = sp->role.cr4_pae ? 8 : 4;
3987
3988         /*
3989          * Sometimes, the OS only writes the last one bytes to update status
3990          * bits, for example, in linux, andb instruction is used in clear_bit().
3991          */
3992         if (!(offset & (pte_size - 1)) && bytes == 1)
3993                 return false;
3994
3995         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3996         misaligned |= bytes < 4;
3997
3998         return misaligned;
3999 }
4000
4001 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4002 {
4003         unsigned page_offset, quadrant;
4004         u64 *spte;
4005         int level;
4006
4007         page_offset = offset_in_page(gpa);
4008         level = sp->role.level;
4009         *nspte = 1;
4010         if (!sp->role.cr4_pae) {
4011                 page_offset <<= 1;      /* 32->64 */
4012                 /*
4013                  * A 32-bit pde maps 4MB while the shadow pdes map
4014                  * only 2MB.  So we need to double the offset again
4015                  * and zap two pdes instead of one.
4016                  */
4017                 if (level == PT32_ROOT_LEVEL) {
4018                         page_offset &= ~7; /* kill rounding error */
4019                         page_offset <<= 1;
4020                         *nspte = 2;
4021                 }
4022                 quadrant = page_offset >> PAGE_SHIFT;
4023                 page_offset &= ~PAGE_MASK;
4024                 if (quadrant != sp->role.quadrant)
4025                         return NULL;
4026         }
4027
4028         spte = &sp->spt[page_offset / sizeof(*spte)];
4029         return spte;
4030 }
4031
4032 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4033                        const u8 *new, int bytes)
4034 {
4035         gfn_t gfn = gpa >> PAGE_SHIFT;
4036         union kvm_mmu_page_role mask = { .word = 0 };
4037         struct kvm_mmu_page *sp;
4038         LIST_HEAD(invalid_list);
4039         u64 entry, gentry, *spte;
4040         int npte;
4041         bool remote_flush, local_flush, zap_page;
4042
4043         /*
4044          * If we don't have indirect shadow pages, it means no page is
4045          * write-protected, so we can exit simply.
4046          */
4047         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4048                 return;
4049
4050         zap_page = remote_flush = local_flush = false;
4051
4052         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4053
4054         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4055
4056         /*
4057          * No need to care whether allocation memory is successful
4058          * or not since pte prefetch is skiped if it does not have
4059          * enough objects in the cache.
4060          */
4061         mmu_topup_memory_caches(vcpu);
4062
4063         spin_lock(&vcpu->kvm->mmu_lock);
4064         ++vcpu->kvm->stat.mmu_pte_write;
4065         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4066
4067         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4068         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4069                 if (detect_write_misaligned(sp, gpa, bytes) ||
4070                       detect_write_flooding(sp)) {
4071                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4072                                                      &invalid_list);
4073                         ++vcpu->kvm->stat.mmu_flooded;
4074                         continue;
4075                 }
4076
4077                 spte = get_written_sptes(sp, gpa, &npte);
4078                 if (!spte)
4079                         continue;
4080
4081                 local_flush = true;
4082                 while (npte--) {
4083                         entry = *spte;
4084                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4085                         if (gentry &&
4086                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4087                               & mask.word) && rmap_can_add(vcpu))
4088                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4089                         if (need_remote_flush(entry, *spte))
4090                                 remote_flush = true;
4091                         ++spte;
4092                 }
4093         }
4094         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4095         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4096         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4097         spin_unlock(&vcpu->kvm->mmu_lock);
4098 }
4099
4100 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4101 {
4102         gpa_t gpa;
4103         int r;
4104
4105         if (vcpu->arch.mmu.direct_map)
4106                 return 0;
4107
4108         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4109
4110         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4111
4112         return r;
4113 }
4114 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4115
4116 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4117 {
4118         LIST_HEAD(invalid_list);
4119
4120         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4121                 return;
4122
4123         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4124                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4125                         break;
4126
4127                 ++vcpu->kvm->stat.mmu_recycled;
4128         }
4129         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4130 }
4131
4132 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4133 {
4134         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4135                 return vcpu_match_mmio_gpa(vcpu, addr);
4136
4137         return vcpu_match_mmio_gva(vcpu, addr);
4138 }
4139
4140 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4141                        void *insn, int insn_len)
4142 {
4143         int r, emulation_type = EMULTYPE_RETRY;
4144         enum emulation_result er;
4145
4146         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4147         if (r < 0)
4148                 goto out;
4149
4150         if (!r) {
4151                 r = 1;
4152                 goto out;
4153         }
4154
4155         if (is_mmio_page_fault(vcpu, cr2))
4156                 emulation_type = 0;
4157
4158         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4159
4160         switch (er) {
4161         case EMULATE_DONE:
4162                 return 1;
4163         case EMULATE_USER_EXIT:
4164                 ++vcpu->stat.mmio_exits;
4165                 /* fall through */
4166         case EMULATE_FAIL:
4167                 return 0;
4168         default:
4169                 BUG();
4170         }
4171 out:
4172         return r;
4173 }
4174 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4175
4176 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4177 {
4178         vcpu->arch.mmu.invlpg(vcpu, gva);
4179         kvm_mmu_flush_tlb(vcpu);
4180         ++vcpu->stat.invlpg;
4181 }
4182 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4183
4184 void kvm_enable_tdp(void)
4185 {
4186         tdp_enabled = true;
4187 }
4188 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4189
4190 void kvm_disable_tdp(void)
4191 {
4192         tdp_enabled = false;
4193 }
4194 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4195
4196 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4197 {
4198         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4199         if (vcpu->arch.mmu.lm_root != NULL)
4200                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4201 }
4202
4203 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4204 {
4205         struct page *page;
4206         int i;
4207
4208         ASSERT(vcpu);
4209
4210         /*
4211          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4212          * Therefore we need to allocate shadow page tables in the first
4213          * 4GB of memory, which happens to fit the DMA32 zone.
4214          */
4215         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4216         if (!page)
4217                 return -ENOMEM;
4218
4219         vcpu->arch.mmu.pae_root = page_address(page);
4220         for (i = 0; i < 4; ++i)
4221                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4222
4223         return 0;
4224 }
4225
4226 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4227 {
4228         ASSERT(vcpu);
4229
4230         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4231         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4232         vcpu->arch.mmu.translate_gpa = translate_gpa;
4233         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4234
4235         return alloc_mmu_pages(vcpu);
4236 }
4237
4238 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4239 {
4240         ASSERT(vcpu);
4241         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4242
4243         init_kvm_mmu(vcpu);
4244 }
4245
4246 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4247 {
4248         struct kvm_memory_slot *memslot;
4249         gfn_t last_gfn;
4250         int i;
4251
4252         memslot = id_to_memslot(kvm->memslots, slot);
4253         last_gfn = memslot->base_gfn + memslot->npages - 1;
4254
4255         spin_lock(&kvm->mmu_lock);
4256
4257         for (i = PT_PAGE_TABLE_LEVEL;
4258              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4259                 unsigned long *rmapp;
4260                 unsigned long last_index, index;
4261
4262                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4263                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4264
4265                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4266                         if (*rmapp)
4267                                 __rmap_write_protect(kvm, rmapp, false);
4268
4269                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4270                                 kvm_flush_remote_tlbs(kvm);
4271                                 cond_resched_lock(&kvm->mmu_lock);
4272                         }
4273                 }
4274         }
4275
4276         kvm_flush_remote_tlbs(kvm);
4277         spin_unlock(&kvm->mmu_lock);
4278 }
4279
4280 #define BATCH_ZAP_PAGES 10
4281 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4282 {
4283         struct kvm_mmu_page *sp, *node;
4284         int batch = 0;
4285
4286 restart:
4287         list_for_each_entry_safe_reverse(sp, node,
4288               &kvm->arch.active_mmu_pages, link) {
4289                 int ret;
4290
4291                 /*
4292                  * No obsolete page exists before new created page since
4293                  * active_mmu_pages is the FIFO list.
4294                  */
4295                 if (!is_obsolete_sp(kvm, sp))
4296                         break;
4297
4298                 /*
4299                  * Since we are reversely walking the list and the invalid
4300                  * list will be moved to the head, skip the invalid page
4301                  * can help us to avoid the infinity list walking.
4302                  */
4303                 if (sp->role.invalid)
4304                         continue;
4305
4306                 /*
4307                  * Need not flush tlb since we only zap the sp with invalid
4308                  * generation number.
4309                  */
4310                 if (batch >= BATCH_ZAP_PAGES &&
4311                       cond_resched_lock(&kvm->mmu_lock)) {
4312                         batch = 0;
4313                         goto restart;
4314                 }
4315
4316                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4317                                 &kvm->arch.zapped_obsolete_pages);
4318                 batch += ret;
4319
4320                 if (ret)
4321                         goto restart;
4322         }
4323
4324         /*
4325          * Should flush tlb before free page tables since lockless-walking
4326          * may use the pages.
4327          */
4328         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4329 }
4330
4331 /*
4332  * Fast invalidate all shadow pages and use lock-break technique
4333  * to zap obsolete pages.
4334  *
4335  * It's required when memslot is being deleted or VM is being
4336  * destroyed, in these cases, we should ensure that KVM MMU does
4337  * not use any resource of the being-deleted slot or all slots
4338  * after calling the function.
4339  */
4340 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4341 {
4342         spin_lock(&kvm->mmu_lock);
4343         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4344         kvm->arch.mmu_valid_gen++;
4345
4346         /*
4347          * Notify all vcpus to reload its shadow page table
4348          * and flush TLB. Then all vcpus will switch to new
4349          * shadow page table with the new mmu_valid_gen.
4350          *
4351          * Note: we should do this under the protection of
4352          * mmu-lock, otherwise, vcpu would purge shadow page
4353          * but miss tlb flush.
4354          */
4355         kvm_reload_remote_mmus(kvm);
4356
4357         kvm_zap_obsolete_pages(kvm);
4358         spin_unlock(&kvm->mmu_lock);
4359 }
4360
4361 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4362 {
4363         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4364 }
4365
4366 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4367 {
4368         /*
4369          * The very rare case: if the generation-number is round,
4370          * zap all shadow pages.
4371          */
4372         if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4373                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4374                 kvm_mmu_invalidate_zap_all_pages(kvm);
4375         }
4376 }
4377
4378 static unsigned long
4379 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4380 {
4381         struct kvm *kvm;
4382         int nr_to_scan = sc->nr_to_scan;
4383         unsigned long freed = 0;
4384
4385         spin_lock(&kvm_lock);
4386
4387         list_for_each_entry(kvm, &vm_list, vm_list) {
4388                 int idx;
4389                 LIST_HEAD(invalid_list);
4390
4391                 /*
4392                  * Never scan more than sc->nr_to_scan VM instances.
4393                  * Will not hit this condition practically since we do not try
4394                  * to shrink more than one VM and it is very unlikely to see
4395                  * !n_used_mmu_pages so many times.
4396                  */
4397                 if (!nr_to_scan--)
4398                         break;
4399                 /*
4400                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4401                  * here. We may skip a VM instance errorneosly, but we do not
4402                  * want to shrink a VM that only started to populate its MMU
4403                  * anyway.
4404                  */
4405                 if (!kvm->arch.n_used_mmu_pages &&
4406                       !kvm_has_zapped_obsolete_pages(kvm))
4407                         continue;
4408
4409                 idx = srcu_read_lock(&kvm->srcu);
4410                 spin_lock(&kvm->mmu_lock);
4411
4412                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4413                         kvm_mmu_commit_zap_page(kvm,
4414                               &kvm->arch.zapped_obsolete_pages);
4415                         goto unlock;
4416                 }
4417
4418                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4419                         freed++;
4420                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4421
4422 unlock:
4423                 spin_unlock(&kvm->mmu_lock);
4424                 srcu_read_unlock(&kvm->srcu, idx);
4425
4426                 /*
4427                  * unfair on small ones
4428                  * per-vm shrinkers cry out
4429                  * sadness comes quickly
4430                  */
4431                 list_move_tail(&kvm->vm_list, &vm_list);
4432                 break;
4433         }
4434
4435         spin_unlock(&kvm_lock);
4436         return freed;
4437 }
4438
4439 static unsigned long
4440 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4441 {
4442         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4443 }
4444
4445 static struct shrinker mmu_shrinker = {
4446         .count_objects = mmu_shrink_count,
4447         .scan_objects = mmu_shrink_scan,
4448         .seeks = DEFAULT_SEEKS * 10,
4449 };
4450
4451 static void mmu_destroy_caches(void)
4452 {
4453         if (pte_list_desc_cache)
4454                 kmem_cache_destroy(pte_list_desc_cache);
4455         if (mmu_page_header_cache)
4456                 kmem_cache_destroy(mmu_page_header_cache);
4457 }
4458
4459 int kvm_mmu_module_init(void)
4460 {
4461         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4462                                             sizeof(struct pte_list_desc),
4463                                             0, 0, NULL);
4464         if (!pte_list_desc_cache)
4465                 goto nomem;
4466
4467         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4468                                                   sizeof(struct kvm_mmu_page),
4469                                                   0, 0, NULL);
4470         if (!mmu_page_header_cache)
4471                 goto nomem;
4472
4473         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4474                 goto nomem;
4475
4476         register_shrinker(&mmu_shrinker);
4477
4478         return 0;
4479
4480 nomem:
4481         mmu_destroy_caches();
4482         return -ENOMEM;
4483 }
4484
4485 /*
4486  * Caculate mmu pages needed for kvm.
4487  */
4488 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4489 {
4490         unsigned int nr_mmu_pages;
4491         unsigned int  nr_pages = 0;
4492         struct kvm_memslots *slots;
4493         struct kvm_memory_slot *memslot;
4494
4495         slots = kvm_memslots(kvm);
4496
4497         kvm_for_each_memslot(memslot, slots)
4498                 nr_pages += memslot->npages;
4499
4500         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4501         nr_mmu_pages = max(nr_mmu_pages,
4502                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4503
4504         return nr_mmu_pages;
4505 }
4506
4507 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4508 {
4509         struct kvm_shadow_walk_iterator iterator;
4510         u64 spte;
4511         int nr_sptes = 0;
4512
4513         walk_shadow_page_lockless_begin(vcpu);
4514         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4515                 sptes[iterator.level-1] = spte;
4516                 nr_sptes++;
4517                 if (!is_shadow_present_pte(spte))
4518                         break;
4519         }
4520         walk_shadow_page_lockless_end(vcpu);
4521
4522         return nr_sptes;
4523 }
4524 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4525
4526 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4527 {
4528         ASSERT(vcpu);
4529
4530         kvm_mmu_unload(vcpu);
4531         free_mmu_pages(vcpu);
4532         mmu_free_memory_caches(vcpu);
4533 }
4534
4535 void kvm_mmu_module_exit(void)
4536 {
4537         mmu_destroy_caches();
4538         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4539         unregister_shrinker(&mmu_shrinker);
4540         mmu_audit_disable();
4541 }