]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/svm.c
414ec25b673e0ad745a30bcc7250bebfdad5e979
[karo-tx-linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT       0x0100000000ULL
166
167 #define MSR_INVALID                     0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170         u32 index;   /* Index of the MSR */
171         bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173         { .index = MSR_STAR,                            .always = true  },
174         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
175 #ifdef CONFIG_X86_64
176         { .index = MSR_GS_BASE,                         .always = true  },
177         { .index = MSR_FS_BASE,                         .always = true  },
178         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
179         { .index = MSR_LSTAR,                           .always = true  },
180         { .index = MSR_CSTAR,                           .always = true  },
181         { .index = MSR_SYSCALL_MASK,                    .always = true  },
182 #endif
183         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
184         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
185         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
186         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
187         { .index = MSR_INVALID,                         .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
206 static void svm_complete_interrupts(struct vcpu_svm *svm);
207
208 static int nested_svm_exit_handled(struct vcpu_svm *svm);
209 static int nested_svm_intercept(struct vcpu_svm *svm);
210 static int nested_svm_vmexit(struct vcpu_svm *svm);
211 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
212                                       bool has_error_code, u32 error_code);
213 static u64 __scale_tsc(u64 ratio, u64 tsc);
214
215 enum {
216         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
217                             pause filter count */
218         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
219         VMCB_ASID,       /* ASID */
220         VMCB_INTR,       /* int_ctl, int_vector */
221         VMCB_NPT,        /* npt_en, nCR3, gPAT */
222         VMCB_CR,         /* CR0, CR3, CR4, EFER */
223         VMCB_DR,         /* DR6, DR7 */
224         VMCB_DT,         /* GDT, IDT */
225         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
226         VMCB_CR2,        /* CR2 only */
227         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
228         VMCB_DIRTY_MAX,
229 };
230
231 /* TPR and CR2 are always written before VMRUN */
232 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233
234 static inline void mark_all_dirty(struct vmcb *vmcb)
235 {
236         vmcb->control.clean = 0;
237 }
238
239 static inline void mark_all_clean(struct vmcb *vmcb)
240 {
241         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
242                                & ~VMCB_ALWAYS_DIRTY_MASK;
243 }
244
245 static inline void mark_dirty(struct vmcb *vmcb, int bit)
246 {
247         vmcb->control.clean &= ~(1 << bit);
248 }
249
250 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
251 {
252         return container_of(vcpu, struct vcpu_svm, vcpu);
253 }
254
255 static void recalc_intercepts(struct vcpu_svm *svm)
256 {
257         struct vmcb_control_area *c, *h;
258         struct nested_state *g;
259
260         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
261
262         if (!is_guest_mode(&svm->vcpu))
263                 return;
264
265         c = &svm->vmcb->control;
266         h = &svm->nested.hsave->control;
267         g = &svm->nested;
268
269         c->intercept_cr = h->intercept_cr | g->intercept_cr;
270         c->intercept_dr = h->intercept_dr | g->intercept_dr;
271         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
272         c->intercept = h->intercept | g->intercept;
273 }
274
275 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
276 {
277         if (is_guest_mode(&svm->vcpu))
278                 return svm->nested.hsave;
279         else
280                 return svm->vmcb;
281 }
282
283 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285         struct vmcb *vmcb = get_host_vmcb(svm);
286
287         vmcb->control.intercept_cr |= (1U << bit);
288
289         recalc_intercepts(svm);
290 }
291
292 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
293 {
294         struct vmcb *vmcb = get_host_vmcb(svm);
295
296         vmcb->control.intercept_cr &= ~(1U << bit);
297
298         recalc_intercepts(svm);
299 }
300
301 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
302 {
303         struct vmcb *vmcb = get_host_vmcb(svm);
304
305         return vmcb->control.intercept_cr & (1U << bit);
306 }
307
308 static inline void set_dr_intercepts(struct vcpu_svm *svm)
309 {
310         struct vmcb *vmcb = get_host_vmcb(svm);
311
312         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
313                 | (1 << INTERCEPT_DR1_READ)
314                 | (1 << INTERCEPT_DR2_READ)
315                 | (1 << INTERCEPT_DR3_READ)
316                 | (1 << INTERCEPT_DR4_READ)
317                 | (1 << INTERCEPT_DR5_READ)
318                 | (1 << INTERCEPT_DR6_READ)
319                 | (1 << INTERCEPT_DR7_READ)
320                 | (1 << INTERCEPT_DR0_WRITE)
321                 | (1 << INTERCEPT_DR1_WRITE)
322                 | (1 << INTERCEPT_DR2_WRITE)
323                 | (1 << INTERCEPT_DR3_WRITE)
324                 | (1 << INTERCEPT_DR4_WRITE)
325                 | (1 << INTERCEPT_DR5_WRITE)
326                 | (1 << INTERCEPT_DR6_WRITE)
327                 | (1 << INTERCEPT_DR7_WRITE);
328
329         recalc_intercepts(svm);
330 }
331
332 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
333 {
334         struct vmcb *vmcb = get_host_vmcb(svm);
335
336         vmcb->control.intercept_dr = 0;
337
338         recalc_intercepts(svm);
339 }
340
341 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
342 {
343         struct vmcb *vmcb = get_host_vmcb(svm);
344
345         vmcb->control.intercept_exceptions |= (1U << bit);
346
347         recalc_intercepts(svm);
348 }
349
350 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
351 {
352         struct vmcb *vmcb = get_host_vmcb(svm);
353
354         vmcb->control.intercept_exceptions &= ~(1U << bit);
355
356         recalc_intercepts(svm);
357 }
358
359 static inline void set_intercept(struct vcpu_svm *svm, int bit)
360 {
361         struct vmcb *vmcb = get_host_vmcb(svm);
362
363         vmcb->control.intercept |= (1ULL << bit);
364
365         recalc_intercepts(svm);
366 }
367
368 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
369 {
370         struct vmcb *vmcb = get_host_vmcb(svm);
371
372         vmcb->control.intercept &= ~(1ULL << bit);
373
374         recalc_intercepts(svm);
375 }
376
377 static inline void enable_gif(struct vcpu_svm *svm)
378 {
379         svm->vcpu.arch.hflags |= HF_GIF_MASK;
380 }
381
382 static inline void disable_gif(struct vcpu_svm *svm)
383 {
384         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
385 }
386
387 static inline bool gif_set(struct vcpu_svm *svm)
388 {
389         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
390 }
391
392 static unsigned long iopm_base;
393
394 struct kvm_ldttss_desc {
395         u16 limit0;
396         u16 base0;
397         unsigned base1:8, type:5, dpl:2, p:1;
398         unsigned limit1:4, zero0:3, g:1, base2:8;
399         u32 base3;
400         u32 zero1;
401 } __attribute__((packed));
402
403 struct svm_cpu_data {
404         int cpu;
405
406         u64 asid_generation;
407         u32 max_asid;
408         u32 next_asid;
409         struct kvm_ldttss_desc *tss_desc;
410
411         struct page *save_area;
412 };
413
414 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
415
416 struct svm_init_data {
417         int cpu;
418         int r;
419 };
420
421 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
422
423 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
424 #define MSRS_RANGE_SIZE 2048
425 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426
427 static u32 svm_msrpm_offset(u32 msr)
428 {
429         u32 offset;
430         int i;
431
432         for (i = 0; i < NUM_MSR_MAPS; i++) {
433                 if (msr < msrpm_ranges[i] ||
434                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
435                         continue;
436
437                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
438                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
439
440                 /* Now we have the u8 offset - but need the u32 offset */
441                 return offset / 4;
442         }
443
444         /* MSR not in any range */
445         return MSR_INVALID;
446 }
447
448 #define MAX_INST_SIZE 15
449
450 static inline void clgi(void)
451 {
452         asm volatile (__ex(SVM_CLGI));
453 }
454
455 static inline void stgi(void)
456 {
457         asm volatile (__ex(SVM_STGI));
458 }
459
460 static inline void invlpga(unsigned long addr, u32 asid)
461 {
462         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
463 }
464
465 static int get_npt_level(void)
466 {
467 #ifdef CONFIG_X86_64
468         return PT64_ROOT_LEVEL;
469 #else
470         return PT32E_ROOT_LEVEL;
471 #endif
472 }
473
474 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
475 {
476         vcpu->arch.efer = efer;
477         if (!npt_enabled && !(efer & EFER_LMA))
478                 efer &= ~EFER_LME;
479
480         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
481         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
482 }
483
484 static int is_external_interrupt(u32 info)
485 {
486         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
487         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
488 }
489
490 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
491 {
492         struct vcpu_svm *svm = to_svm(vcpu);
493         u32 ret = 0;
494
495         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
496                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
497         return ret;
498 }
499
500 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
501 {
502         struct vcpu_svm *svm = to_svm(vcpu);
503
504         if (mask == 0)
505                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
506         else
507                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
508
509 }
510
511 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
512 {
513         struct vcpu_svm *svm = to_svm(vcpu);
514
515         if (svm->vmcb->control.next_rip != 0) {
516                 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
517                 svm->next_rip = svm->vmcb->control.next_rip;
518         }
519
520         if (!svm->next_rip) {
521                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
522                                 EMULATE_DONE)
523                         printk(KERN_DEBUG "%s: NOP\n", __func__);
524                 return;
525         }
526         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
527                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
528                        __func__, kvm_rip_read(vcpu), svm->next_rip);
529
530         kvm_rip_write(vcpu, svm->next_rip);
531         svm_set_interrupt_shadow(vcpu, 0);
532 }
533
534 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
535                                 bool has_error_code, u32 error_code,
536                                 bool reinject)
537 {
538         struct vcpu_svm *svm = to_svm(vcpu);
539
540         /*
541          * If we are within a nested VM we'd better #VMEXIT and let the guest
542          * handle the exception
543          */
544         if (!reinject &&
545             nested_svm_check_exception(svm, nr, has_error_code, error_code))
546                 return;
547
548         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
549                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
550
551                 /*
552                  * For guest debugging where we have to reinject #BP if some
553                  * INT3 is guest-owned:
554                  * Emulate nRIP by moving RIP forward. Will fail if injection
555                  * raises a fault that is not intercepted. Still better than
556                  * failing in all cases.
557                  */
558                 skip_emulated_instruction(&svm->vcpu);
559                 rip = kvm_rip_read(&svm->vcpu);
560                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
561                 svm->int3_injected = rip - old_rip;
562         }
563
564         svm->vmcb->control.event_inj = nr
565                 | SVM_EVTINJ_VALID
566                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
567                 | SVM_EVTINJ_TYPE_EXEPT;
568         svm->vmcb->control.event_inj_err = error_code;
569 }
570
571 static void svm_init_erratum_383(void)
572 {
573         u32 low, high;
574         int err;
575         u64 val;
576
577         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
578                 return;
579
580         /* Use _safe variants to not break nested virtualization */
581         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
582         if (err)
583                 return;
584
585         val |= (1ULL << 47);
586
587         low  = lower_32_bits(val);
588         high = upper_32_bits(val);
589
590         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
591
592         erratum_383_found = true;
593 }
594
595 static void svm_init_osvw(struct kvm_vcpu *vcpu)
596 {
597         /*
598          * Guests should see errata 400 and 415 as fixed (assuming that
599          * HLT and IO instructions are intercepted).
600          */
601         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
602         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
603
604         /*
605          * By increasing VCPU's osvw.length to 3 we are telling the guest that
606          * all osvw.status bits inside that length, including bit 0 (which is
607          * reserved for erratum 298), are valid. However, if host processor's
608          * osvw_len is 0 then osvw_status[0] carries no information. We need to
609          * be conservative here and therefore we tell the guest that erratum 298
610          * is present (because we really don't know).
611          */
612         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
613                 vcpu->arch.osvw.status |= 1;
614 }
615
616 static int has_svm(void)
617 {
618         const char *msg;
619
620         if (!cpu_has_svm(&msg)) {
621                 printk(KERN_INFO "has_svm: %s\n", msg);
622                 return 0;
623         }
624
625         return 1;
626 }
627
628 static void svm_hardware_disable(void)
629 {
630         /* Make sure we clean up behind us */
631         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
632                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
633
634         cpu_svm_disable();
635
636         amd_pmu_disable_virt();
637 }
638
639 static int svm_hardware_enable(void)
640 {
641
642         struct svm_cpu_data *sd;
643         uint64_t efer;
644         struct desc_ptr gdt_descr;
645         struct desc_struct *gdt;
646         int me = raw_smp_processor_id();
647
648         rdmsrl(MSR_EFER, efer);
649         if (efer & EFER_SVME)
650                 return -EBUSY;
651
652         if (!has_svm()) {
653                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
654                 return -EINVAL;
655         }
656         sd = per_cpu(svm_data, me);
657         if (!sd) {
658                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
659                 return -EINVAL;
660         }
661
662         sd->asid_generation = 1;
663         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
664         sd->next_asid = sd->max_asid + 1;
665
666         native_store_gdt(&gdt_descr);
667         gdt = (struct desc_struct *)gdt_descr.address;
668         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
669
670         wrmsrl(MSR_EFER, efer | EFER_SVME);
671
672         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
673
674         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
675                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
676                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
677         }
678
679
680         /*
681          * Get OSVW bits.
682          *
683          * Note that it is possible to have a system with mixed processor
684          * revisions and therefore different OSVW bits. If bits are not the same
685          * on different processors then choose the worst case (i.e. if erratum
686          * is present on one processor and not on another then assume that the
687          * erratum is present everywhere).
688          */
689         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
690                 uint64_t len, status = 0;
691                 int err;
692
693                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
694                 if (!err)
695                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
696                                                       &err);
697
698                 if (err)
699                         osvw_status = osvw_len = 0;
700                 else {
701                         if (len < osvw_len)
702                                 osvw_len = len;
703                         osvw_status |= status;
704                         osvw_status &= (1ULL << osvw_len) - 1;
705                 }
706         } else
707                 osvw_status = osvw_len = 0;
708
709         svm_init_erratum_383();
710
711         amd_pmu_enable_virt();
712
713         return 0;
714 }
715
716 static void svm_cpu_uninit(int cpu)
717 {
718         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
719
720         if (!sd)
721                 return;
722
723         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
724         __free_page(sd->save_area);
725         kfree(sd);
726 }
727
728 static int svm_cpu_init(int cpu)
729 {
730         struct svm_cpu_data *sd;
731         int r;
732
733         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
734         if (!sd)
735                 return -ENOMEM;
736         sd->cpu = cpu;
737         sd->save_area = alloc_page(GFP_KERNEL);
738         r = -ENOMEM;
739         if (!sd->save_area)
740                 goto err_1;
741
742         per_cpu(svm_data, cpu) = sd;
743
744         return 0;
745
746 err_1:
747         kfree(sd);
748         return r;
749
750 }
751
752 static bool valid_msr_intercept(u32 index)
753 {
754         int i;
755
756         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
757                 if (direct_access_msrs[i].index == index)
758                         return true;
759
760         return false;
761 }
762
763 static void set_msr_interception(u32 *msrpm, unsigned msr,
764                                  int read, int write)
765 {
766         u8 bit_read, bit_write;
767         unsigned long tmp;
768         u32 offset;
769
770         /*
771          * If this warning triggers extend the direct_access_msrs list at the
772          * beginning of the file
773          */
774         WARN_ON(!valid_msr_intercept(msr));
775
776         offset    = svm_msrpm_offset(msr);
777         bit_read  = 2 * (msr & 0x0f);
778         bit_write = 2 * (msr & 0x0f) + 1;
779         tmp       = msrpm[offset];
780
781         BUG_ON(offset == MSR_INVALID);
782
783         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
784         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
785
786         msrpm[offset] = tmp;
787 }
788
789 static void svm_vcpu_init_msrpm(u32 *msrpm)
790 {
791         int i;
792
793         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
794
795         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796                 if (!direct_access_msrs[i].always)
797                         continue;
798
799                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
800         }
801 }
802
803 static void add_msr_offset(u32 offset)
804 {
805         int i;
806
807         for (i = 0; i < MSRPM_OFFSETS; ++i) {
808
809                 /* Offset already in list? */
810                 if (msrpm_offsets[i] == offset)
811                         return;
812
813                 /* Slot used by another offset? */
814                 if (msrpm_offsets[i] != MSR_INVALID)
815                         continue;
816
817                 /* Add offset to list */
818                 msrpm_offsets[i] = offset;
819
820                 return;
821         }
822
823         /*
824          * If this BUG triggers the msrpm_offsets table has an overflow. Just
825          * increase MSRPM_OFFSETS in this case.
826          */
827         BUG();
828 }
829
830 static void init_msrpm_offsets(void)
831 {
832         int i;
833
834         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
835
836         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
837                 u32 offset;
838
839                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
840                 BUG_ON(offset == MSR_INVALID);
841
842                 add_msr_offset(offset);
843         }
844 }
845
846 static void svm_enable_lbrv(struct vcpu_svm *svm)
847 {
848         u32 *msrpm = svm->msrpm;
849
850         svm->vmcb->control.lbr_ctl = 1;
851         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
855 }
856
857 static void svm_disable_lbrv(struct vcpu_svm *svm)
858 {
859         u32 *msrpm = svm->msrpm;
860
861         svm->vmcb->control.lbr_ctl = 0;
862         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
866 }
867
868 #define MTRR_TYPE_UC_MINUS      7
869 #define MTRR2PROTVAL_INVALID 0xff
870
871 static u8 mtrr2protval[8];
872
873 static u8 fallback_mtrr_type(int mtrr)
874 {
875         /*
876          * WT and WP aren't always available in the host PAT.  Treat
877          * them as UC and UC- respectively.  Everything else should be
878          * there.
879          */
880         switch (mtrr)
881         {
882         case MTRR_TYPE_WRTHROUGH:
883                 return MTRR_TYPE_UNCACHABLE;
884         case MTRR_TYPE_WRPROT:
885                 return MTRR_TYPE_UC_MINUS;
886         default:
887                 BUG();
888         }
889 }
890
891 static void build_mtrr2protval(void)
892 {
893         int i;
894         u64 pat;
895
896         for (i = 0; i < 8; i++)
897                 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
898
899         /* Ignore the invalid MTRR types.  */
900         mtrr2protval[2] = 0;
901         mtrr2protval[3] = 0;
902
903         /*
904          * Use host PAT value to figure out the mapping from guest MTRR
905          * values to nested page table PAT/PCD/PWT values.  We do not
906          * want to change the host PAT value every time we enter the
907          * guest.
908          */
909         rdmsrl(MSR_IA32_CR_PAT, pat);
910         for (i = 0; i < 8; i++) {
911                 u8 mtrr = pat >> (8 * i);
912
913                 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
914                         mtrr2protval[mtrr] = __cm_idx2pte(i);
915         }
916
917         for (i = 0; i < 8; i++) {
918                 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
919                         u8 fallback = fallback_mtrr_type(i);
920                         mtrr2protval[i] = mtrr2protval[fallback];
921                         BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
922                 }
923         }
924 }
925
926 static __init int svm_hardware_setup(void)
927 {
928         int cpu;
929         struct page *iopm_pages;
930         void *iopm_va;
931         int r;
932
933         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
934
935         if (!iopm_pages)
936                 return -ENOMEM;
937
938         iopm_va = page_address(iopm_pages);
939         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
940         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
941
942         init_msrpm_offsets();
943
944         if (boot_cpu_has(X86_FEATURE_NX))
945                 kvm_enable_efer_bits(EFER_NX);
946
947         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
948                 kvm_enable_efer_bits(EFER_FFXSR);
949
950         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
951                 u64 max;
952
953                 kvm_has_tsc_control = true;
954
955                 /*
956                  * Make sure the user can only configure tsc_khz values that
957                  * fit into a signed integer.
958                  * A min value is not calculated needed because it will always
959                  * be 1 on all machines and a value of 0 is used to disable
960                  * tsc-scaling for the vcpu.
961                  */
962                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
963
964                 kvm_max_guest_tsc_khz = max;
965         }
966
967         if (nested) {
968                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
969                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
970         }
971
972         for_each_possible_cpu(cpu) {
973                 r = svm_cpu_init(cpu);
974                 if (r)
975                         goto err;
976         }
977
978         if (!boot_cpu_has(X86_FEATURE_NPT))
979                 npt_enabled = false;
980
981         if (npt_enabled && !npt) {
982                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
983                 npt_enabled = false;
984         }
985
986         if (npt_enabled) {
987                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
988                 kvm_enable_tdp();
989         } else
990                 kvm_disable_tdp();
991
992         build_mtrr2protval();
993         return 0;
994
995 err:
996         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
997         iopm_base = 0;
998         return r;
999 }
1000
1001 static __exit void svm_hardware_unsetup(void)
1002 {
1003         int cpu;
1004
1005         for_each_possible_cpu(cpu)
1006                 svm_cpu_uninit(cpu);
1007
1008         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1009         iopm_base = 0;
1010 }
1011
1012 static void init_seg(struct vmcb_seg *seg)
1013 {
1014         seg->selector = 0;
1015         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1016                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1017         seg->limit = 0xffff;
1018         seg->base = 0;
1019 }
1020
1021 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1022 {
1023         seg->selector = 0;
1024         seg->attrib = SVM_SELECTOR_P_MASK | type;
1025         seg->limit = 0xffff;
1026         seg->base = 0;
1027 }
1028
1029 static u64 __scale_tsc(u64 ratio, u64 tsc)
1030 {
1031         u64 mult, frac, _tsc;
1032
1033         mult  = ratio >> 32;
1034         frac  = ratio & ((1ULL << 32) - 1);
1035
1036         _tsc  = tsc;
1037         _tsc *= mult;
1038         _tsc += (tsc >> 32) * frac;
1039         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1040
1041         return _tsc;
1042 }
1043
1044 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1045 {
1046         struct vcpu_svm *svm = to_svm(vcpu);
1047         u64 _tsc = tsc;
1048
1049         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1050                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1051
1052         return _tsc;
1053 }
1054
1055 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058         u64 ratio;
1059         u64 khz;
1060
1061         /* Guest TSC same frequency as host TSC? */
1062         if (!scale) {
1063                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1064                 return;
1065         }
1066
1067         /* TSC scaling supported? */
1068         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1069                 if (user_tsc_khz > tsc_khz) {
1070                         vcpu->arch.tsc_catchup = 1;
1071                         vcpu->arch.tsc_always_catchup = 1;
1072                 } else
1073                         WARN(1, "user requested TSC rate below hardware speed\n");
1074                 return;
1075         }
1076
1077         khz = user_tsc_khz;
1078
1079         /* TSC scaling required  - calculate ratio */
1080         ratio = khz << 32;
1081         do_div(ratio, tsc_khz);
1082
1083         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1084                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1085                                 user_tsc_khz);
1086                 return;
1087         }
1088         svm->tsc_ratio             = ratio;
1089 }
1090
1091 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1092 {
1093         struct vcpu_svm *svm = to_svm(vcpu);
1094
1095         return svm->vmcb->control.tsc_offset;
1096 }
1097
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1099 {
1100         struct vcpu_svm *svm = to_svm(vcpu);
1101         u64 g_tsc_offset = 0;
1102
1103         if (is_guest_mode(vcpu)) {
1104                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1105                                svm->nested.hsave->control.tsc_offset;
1106                 svm->nested.hsave->control.tsc_offset = offset;
1107         } else
1108                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1109                                            svm->vmcb->control.tsc_offset,
1110                                            offset);
1111
1112         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1113
1114         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1115 }
1116
1117 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1118 {
1119         struct vcpu_svm *svm = to_svm(vcpu);
1120
1121         if (host) {
1122                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1123                         WARN_ON(adjustment < 0);
1124                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1125         }
1126
1127         svm->vmcb->control.tsc_offset += adjustment;
1128         if (is_guest_mode(vcpu))
1129                 svm->nested.hsave->control.tsc_offset += adjustment;
1130         else
1131                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1132                                      svm->vmcb->control.tsc_offset - adjustment,
1133                                      svm->vmcb->control.tsc_offset);
1134
1135         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1136 }
1137
1138 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1139 {
1140         u64 tsc;
1141
1142         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1143
1144         return target_tsc - tsc;
1145 }
1146
1147 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1148 {
1149         struct kvm_vcpu *vcpu = &svm->vcpu;
1150
1151         /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1152          *
1153          * AMD does not have IPAT.  To emulate it for the case of guests
1154          * with no assigned devices, just set everything to WB.  If guests
1155          * have assigned devices, however, we cannot force WB for RAM
1156          * pages only, so use the guest PAT directly.
1157          */
1158         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1159                 *g_pat = 0x0606060606060606;
1160         else
1161                 *g_pat = vcpu->arch.pat;
1162 }
1163
1164 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1165 {
1166         u8 mtrr;
1167
1168         /*
1169          * 1. MMIO: always map as UC
1170          * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1171          * 3. Passthrough: can't guarantee the result, try to trust guest.
1172          */
1173         if (is_mmio)
1174                 return _PAGE_NOCACHE;
1175
1176         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1177                 return 0;
1178
1179         mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1180         return mtrr2protval[mtrr];
1181 }
1182
1183 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1184 {
1185         struct vmcb_control_area *control = &svm->vmcb->control;
1186         struct vmcb_save_area *save = &svm->vmcb->save;
1187
1188         svm->vcpu.fpu_active = 1;
1189         svm->vcpu.arch.hflags = 0;
1190
1191         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1192         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1193         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1194         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1195         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1196         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1197         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1198
1199         set_dr_intercepts(svm);
1200
1201         set_exception_intercept(svm, PF_VECTOR);
1202         set_exception_intercept(svm, UD_VECTOR);
1203         set_exception_intercept(svm, MC_VECTOR);
1204
1205         set_intercept(svm, INTERCEPT_INTR);
1206         set_intercept(svm, INTERCEPT_NMI);
1207         set_intercept(svm, INTERCEPT_SMI);
1208         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1209         set_intercept(svm, INTERCEPT_RDPMC);
1210         set_intercept(svm, INTERCEPT_CPUID);
1211         set_intercept(svm, INTERCEPT_INVD);
1212         set_intercept(svm, INTERCEPT_HLT);
1213         set_intercept(svm, INTERCEPT_INVLPG);
1214         set_intercept(svm, INTERCEPT_INVLPGA);
1215         set_intercept(svm, INTERCEPT_IOIO_PROT);
1216         set_intercept(svm, INTERCEPT_MSR_PROT);
1217         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1218         set_intercept(svm, INTERCEPT_SHUTDOWN);
1219         set_intercept(svm, INTERCEPT_VMRUN);
1220         set_intercept(svm, INTERCEPT_VMMCALL);
1221         set_intercept(svm, INTERCEPT_VMLOAD);
1222         set_intercept(svm, INTERCEPT_VMSAVE);
1223         set_intercept(svm, INTERCEPT_STGI);
1224         set_intercept(svm, INTERCEPT_CLGI);
1225         set_intercept(svm, INTERCEPT_SKINIT);
1226         set_intercept(svm, INTERCEPT_WBINVD);
1227         set_intercept(svm, INTERCEPT_MONITOR);
1228         set_intercept(svm, INTERCEPT_MWAIT);
1229         set_intercept(svm, INTERCEPT_XSETBV);
1230
1231         control->iopm_base_pa = iopm_base;
1232         control->msrpm_base_pa = __pa(svm->msrpm);
1233         control->int_ctl = V_INTR_MASKING_MASK;
1234
1235         init_seg(&save->es);
1236         init_seg(&save->ss);
1237         init_seg(&save->ds);
1238         init_seg(&save->fs);
1239         init_seg(&save->gs);
1240
1241         save->cs.selector = 0xf000;
1242         save->cs.base = 0xffff0000;
1243         /* Executable/Readable Code Segment */
1244         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1245                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1246         save->cs.limit = 0xffff;
1247
1248         save->gdtr.limit = 0xffff;
1249         save->idtr.limit = 0xffff;
1250
1251         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1252         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1253
1254         if (!init_event)
1255                 svm_set_efer(&svm->vcpu, 0);
1256         save->dr6 = 0xffff0ff0;
1257         kvm_set_rflags(&svm->vcpu, 2);
1258         save->rip = 0x0000fff0;
1259         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1260
1261         /*
1262          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1263          * It also updates the guest-visible cr0 value.
1264          */
1265         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1266
1267         save->cr4 = X86_CR4_PAE;
1268         /* rdx = ?? */
1269
1270         if (npt_enabled) {
1271                 /* Setup VMCB for Nested Paging */
1272                 control->nested_ctl = 1;
1273                 clr_intercept(svm, INTERCEPT_INVLPG);
1274                 clr_exception_intercept(svm, PF_VECTOR);
1275                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1276                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1277                 save->g_pat = svm->vcpu.arch.pat;
1278                 svm_set_guest_pat(svm, &save->g_pat);
1279                 save->cr3 = 0;
1280                 save->cr4 = 0;
1281         }
1282         svm->asid_generation = 0;
1283
1284         svm->nested.vmcb = 0;
1285         svm->vcpu.arch.hflags = 0;
1286
1287         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1288                 control->pause_filter_count = 3000;
1289                 set_intercept(svm, INTERCEPT_PAUSE);
1290         }
1291
1292         mark_all_dirty(svm->vmcb);
1293
1294         enable_gif(svm);
1295 }
1296
1297 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1298 {
1299         struct vcpu_svm *svm = to_svm(vcpu);
1300         u32 dummy;
1301         u32 eax = 1;
1302
1303         if (!init_event) {
1304                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1305                                            MSR_IA32_APICBASE_ENABLE;
1306                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1307                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1308         }
1309         init_vmcb(svm, init_event);
1310
1311         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1312         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1313 }
1314
1315 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1316 {
1317         struct vcpu_svm *svm;
1318         struct page *page;
1319         struct page *msrpm_pages;
1320         struct page *hsave_page;
1321         struct page *nested_msrpm_pages;
1322         int err;
1323
1324         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1325         if (!svm) {
1326                 err = -ENOMEM;
1327                 goto out;
1328         }
1329
1330         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1331
1332         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1333         if (err)
1334                 goto free_svm;
1335
1336         err = -ENOMEM;
1337         page = alloc_page(GFP_KERNEL);
1338         if (!page)
1339                 goto uninit;
1340
1341         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1342         if (!msrpm_pages)
1343                 goto free_page1;
1344
1345         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1346         if (!nested_msrpm_pages)
1347                 goto free_page2;
1348
1349         hsave_page = alloc_page(GFP_KERNEL);
1350         if (!hsave_page)
1351                 goto free_page3;
1352
1353         svm->nested.hsave = page_address(hsave_page);
1354
1355         svm->msrpm = page_address(msrpm_pages);
1356         svm_vcpu_init_msrpm(svm->msrpm);
1357
1358         svm->nested.msrpm = page_address(nested_msrpm_pages);
1359         svm_vcpu_init_msrpm(svm->nested.msrpm);
1360
1361         svm->vmcb = page_address(page);
1362         clear_page(svm->vmcb);
1363         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1364         svm->asid_generation = 0;
1365         init_vmcb(svm, false);
1366
1367         svm_init_osvw(&svm->vcpu);
1368
1369         return &svm->vcpu;
1370
1371 free_page3:
1372         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1373 free_page2:
1374         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1375 free_page1:
1376         __free_page(page);
1377 uninit:
1378         kvm_vcpu_uninit(&svm->vcpu);
1379 free_svm:
1380         kmem_cache_free(kvm_vcpu_cache, svm);
1381 out:
1382         return ERR_PTR(err);
1383 }
1384
1385 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1386 {
1387         struct vcpu_svm *svm = to_svm(vcpu);
1388
1389         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1390         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1391         __free_page(virt_to_page(svm->nested.hsave));
1392         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1393         kvm_vcpu_uninit(vcpu);
1394         kmem_cache_free(kvm_vcpu_cache, svm);
1395 }
1396
1397 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1398 {
1399         struct vcpu_svm *svm = to_svm(vcpu);
1400         int i;
1401
1402         if (unlikely(cpu != vcpu->cpu)) {
1403                 svm->asid_generation = 0;
1404                 mark_all_dirty(svm->vmcb);
1405         }
1406
1407 #ifdef CONFIG_X86_64
1408         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1409 #endif
1410         savesegment(fs, svm->host.fs);
1411         savesegment(gs, svm->host.gs);
1412         svm->host.ldt = kvm_read_ldt();
1413
1414         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1415                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1416
1417         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1418             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1419                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1420                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1421         }
1422 }
1423
1424 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1425 {
1426         struct vcpu_svm *svm = to_svm(vcpu);
1427         int i;
1428
1429         ++vcpu->stat.host_state_reload;
1430         kvm_load_ldt(svm->host.ldt);
1431 #ifdef CONFIG_X86_64
1432         loadsegment(fs, svm->host.fs);
1433         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1434         load_gs_index(svm->host.gs);
1435 #else
1436 #ifdef CONFIG_X86_32_LAZY_GS
1437         loadsegment(gs, svm->host.gs);
1438 #endif
1439 #endif
1440         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1441                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1442 }
1443
1444 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1445 {
1446         return to_svm(vcpu)->vmcb->save.rflags;
1447 }
1448
1449 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1450 {
1451        /*
1452         * Any change of EFLAGS.VM is accompained by a reload of SS
1453         * (caused by either a task switch or an inter-privilege IRET),
1454         * so we do not need to update the CPL here.
1455         */
1456         to_svm(vcpu)->vmcb->save.rflags = rflags;
1457 }
1458
1459 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1460 {
1461         switch (reg) {
1462         case VCPU_EXREG_PDPTR:
1463                 BUG_ON(!npt_enabled);
1464                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1465                 break;
1466         default:
1467                 BUG();
1468         }
1469 }
1470
1471 static void svm_set_vintr(struct vcpu_svm *svm)
1472 {
1473         set_intercept(svm, INTERCEPT_VINTR);
1474 }
1475
1476 static void svm_clear_vintr(struct vcpu_svm *svm)
1477 {
1478         clr_intercept(svm, INTERCEPT_VINTR);
1479 }
1480
1481 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1482 {
1483         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1484
1485         switch (seg) {
1486         case VCPU_SREG_CS: return &save->cs;
1487         case VCPU_SREG_DS: return &save->ds;
1488         case VCPU_SREG_ES: return &save->es;
1489         case VCPU_SREG_FS: return &save->fs;
1490         case VCPU_SREG_GS: return &save->gs;
1491         case VCPU_SREG_SS: return &save->ss;
1492         case VCPU_SREG_TR: return &save->tr;
1493         case VCPU_SREG_LDTR: return &save->ldtr;
1494         }
1495         BUG();
1496         return NULL;
1497 }
1498
1499 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1500 {
1501         struct vmcb_seg *s = svm_seg(vcpu, seg);
1502
1503         return s->base;
1504 }
1505
1506 static void svm_get_segment(struct kvm_vcpu *vcpu,
1507                             struct kvm_segment *var, int seg)
1508 {
1509         struct vmcb_seg *s = svm_seg(vcpu, seg);
1510
1511         var->base = s->base;
1512         var->limit = s->limit;
1513         var->selector = s->selector;
1514         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1515         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1516         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1517         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1518         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1519         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1520         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1521
1522         /*
1523          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1524          * However, the SVM spec states that the G bit is not observed by the
1525          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1526          * So let's synthesize a legal G bit for all segments, this helps
1527          * running KVM nested. It also helps cross-vendor migration, because
1528          * Intel's vmentry has a check on the 'G' bit.
1529          */
1530         var->g = s->limit > 0xfffff;
1531
1532         /*
1533          * AMD's VMCB does not have an explicit unusable field, so emulate it
1534          * for cross vendor migration purposes by "not present"
1535          */
1536         var->unusable = !var->present || (var->type == 0);
1537
1538         switch (seg) {
1539         case VCPU_SREG_TR:
1540                 /*
1541                  * Work around a bug where the busy flag in the tr selector
1542                  * isn't exposed
1543                  */
1544                 var->type |= 0x2;
1545                 break;
1546         case VCPU_SREG_DS:
1547         case VCPU_SREG_ES:
1548         case VCPU_SREG_FS:
1549         case VCPU_SREG_GS:
1550                 /*
1551                  * The accessed bit must always be set in the segment
1552                  * descriptor cache, although it can be cleared in the
1553                  * descriptor, the cached bit always remains at 1. Since
1554                  * Intel has a check on this, set it here to support
1555                  * cross-vendor migration.
1556                  */
1557                 if (!var->unusable)
1558                         var->type |= 0x1;
1559                 break;
1560         case VCPU_SREG_SS:
1561                 /*
1562                  * On AMD CPUs sometimes the DB bit in the segment
1563                  * descriptor is left as 1, although the whole segment has
1564                  * been made unusable. Clear it here to pass an Intel VMX
1565                  * entry check when cross vendor migrating.
1566                  */
1567                 if (var->unusable)
1568                         var->db = 0;
1569                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1570                 break;
1571         }
1572 }
1573
1574 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1575 {
1576         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1577
1578         return save->cpl;
1579 }
1580
1581 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1582 {
1583         struct vcpu_svm *svm = to_svm(vcpu);
1584
1585         dt->size = svm->vmcb->save.idtr.limit;
1586         dt->address = svm->vmcb->save.idtr.base;
1587 }
1588
1589 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1590 {
1591         struct vcpu_svm *svm = to_svm(vcpu);
1592
1593         svm->vmcb->save.idtr.limit = dt->size;
1594         svm->vmcb->save.idtr.base = dt->address ;
1595         mark_dirty(svm->vmcb, VMCB_DT);
1596 }
1597
1598 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1599 {
1600         struct vcpu_svm *svm = to_svm(vcpu);
1601
1602         dt->size = svm->vmcb->save.gdtr.limit;
1603         dt->address = svm->vmcb->save.gdtr.base;
1604 }
1605
1606 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1607 {
1608         struct vcpu_svm *svm = to_svm(vcpu);
1609
1610         svm->vmcb->save.gdtr.limit = dt->size;
1611         svm->vmcb->save.gdtr.base = dt->address ;
1612         mark_dirty(svm->vmcb, VMCB_DT);
1613 }
1614
1615 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1616 {
1617 }
1618
1619 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1620 {
1621 }
1622
1623 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1624 {
1625 }
1626
1627 static void update_cr0_intercept(struct vcpu_svm *svm)
1628 {
1629         ulong gcr0 = svm->vcpu.arch.cr0;
1630         u64 *hcr0 = &svm->vmcb->save.cr0;
1631
1632         if (!svm->vcpu.fpu_active)
1633                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1634         else
1635                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1636                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1637
1638         mark_dirty(svm->vmcb, VMCB_CR);
1639
1640         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1641                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1642                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1643         } else {
1644                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1645                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1646         }
1647 }
1648
1649 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1650 {
1651         struct vcpu_svm *svm = to_svm(vcpu);
1652
1653 #ifdef CONFIG_X86_64
1654         if (vcpu->arch.efer & EFER_LME) {
1655                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1656                         vcpu->arch.efer |= EFER_LMA;
1657                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1658                 }
1659
1660                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1661                         vcpu->arch.efer &= ~EFER_LMA;
1662                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1663                 }
1664         }
1665 #endif
1666         vcpu->arch.cr0 = cr0;
1667
1668         if (!npt_enabled)
1669                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1670
1671         if (!vcpu->fpu_active)
1672                 cr0 |= X86_CR0_TS;
1673         /*
1674          * re-enable caching here because the QEMU bios
1675          * does not do it - this results in some delay at
1676          * reboot
1677          */
1678         if (!(vcpu->kvm->arch.disabled_quirks & KVM_QUIRK_CD_NW_CLEARED))
1679                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1680         svm->vmcb->save.cr0 = cr0;
1681         mark_dirty(svm->vmcb, VMCB_CR);
1682         update_cr0_intercept(svm);
1683 }
1684
1685 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1686 {
1687         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1688         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1689
1690         if (cr4 & X86_CR4_VMXE)
1691                 return 1;
1692
1693         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1694                 svm_flush_tlb(vcpu);
1695
1696         vcpu->arch.cr4 = cr4;
1697         if (!npt_enabled)
1698                 cr4 |= X86_CR4_PAE;
1699         cr4 |= host_cr4_mce;
1700         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1701         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1702         return 0;
1703 }
1704
1705 static void svm_set_segment(struct kvm_vcpu *vcpu,
1706                             struct kvm_segment *var, int seg)
1707 {
1708         struct vcpu_svm *svm = to_svm(vcpu);
1709         struct vmcb_seg *s = svm_seg(vcpu, seg);
1710
1711         s->base = var->base;
1712         s->limit = var->limit;
1713         s->selector = var->selector;
1714         if (var->unusable)
1715                 s->attrib = 0;
1716         else {
1717                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1718                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1719                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1720                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1721                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1722                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1723                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1724                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1725         }
1726
1727         /*
1728          * This is always accurate, except if SYSRET returned to a segment
1729          * with SS.DPL != 3.  Intel does not have this quirk, and always
1730          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1731          * would entail passing the CPL to userspace and back.
1732          */
1733         if (seg == VCPU_SREG_SS)
1734                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1735
1736         mark_dirty(svm->vmcb, VMCB_SEG);
1737 }
1738
1739 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1740 {
1741         struct vcpu_svm *svm = to_svm(vcpu);
1742
1743         clr_exception_intercept(svm, DB_VECTOR);
1744         clr_exception_intercept(svm, BP_VECTOR);
1745
1746         if (svm->nmi_singlestep)
1747                 set_exception_intercept(svm, DB_VECTOR);
1748
1749         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1750                 if (vcpu->guest_debug &
1751                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1752                         set_exception_intercept(svm, DB_VECTOR);
1753                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1754                         set_exception_intercept(svm, BP_VECTOR);
1755         } else
1756                 vcpu->guest_debug = 0;
1757 }
1758
1759 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1760 {
1761         if (sd->next_asid > sd->max_asid) {
1762                 ++sd->asid_generation;
1763                 sd->next_asid = 1;
1764                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1765         }
1766
1767         svm->asid_generation = sd->asid_generation;
1768         svm->vmcb->control.asid = sd->next_asid++;
1769
1770         mark_dirty(svm->vmcb, VMCB_ASID);
1771 }
1772
1773 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1774 {
1775         return to_svm(vcpu)->vmcb->save.dr6;
1776 }
1777
1778 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1779 {
1780         struct vcpu_svm *svm = to_svm(vcpu);
1781
1782         svm->vmcb->save.dr6 = value;
1783         mark_dirty(svm->vmcb, VMCB_DR);
1784 }
1785
1786 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1787 {
1788         struct vcpu_svm *svm = to_svm(vcpu);
1789
1790         get_debugreg(vcpu->arch.db[0], 0);
1791         get_debugreg(vcpu->arch.db[1], 1);
1792         get_debugreg(vcpu->arch.db[2], 2);
1793         get_debugreg(vcpu->arch.db[3], 3);
1794         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1795         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1796
1797         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1798         set_dr_intercepts(svm);
1799 }
1800
1801 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1802 {
1803         struct vcpu_svm *svm = to_svm(vcpu);
1804
1805         svm->vmcb->save.dr7 = value;
1806         mark_dirty(svm->vmcb, VMCB_DR);
1807 }
1808
1809 static int pf_interception(struct vcpu_svm *svm)
1810 {
1811         u64 fault_address = svm->vmcb->control.exit_info_2;
1812         u32 error_code;
1813         int r = 1;
1814
1815         switch (svm->apf_reason) {
1816         default:
1817                 error_code = svm->vmcb->control.exit_info_1;
1818
1819                 trace_kvm_page_fault(fault_address, error_code);
1820                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1821                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1822                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1823                         svm->vmcb->control.insn_bytes,
1824                         svm->vmcb->control.insn_len);
1825                 break;
1826         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1827                 svm->apf_reason = 0;
1828                 local_irq_disable();
1829                 kvm_async_pf_task_wait(fault_address);
1830                 local_irq_enable();
1831                 break;
1832         case KVM_PV_REASON_PAGE_READY:
1833                 svm->apf_reason = 0;
1834                 local_irq_disable();
1835                 kvm_async_pf_task_wake(fault_address);
1836                 local_irq_enable();
1837                 break;
1838         }
1839         return r;
1840 }
1841
1842 static int db_interception(struct vcpu_svm *svm)
1843 {
1844         struct kvm_run *kvm_run = svm->vcpu.run;
1845
1846         if (!(svm->vcpu.guest_debug &
1847               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1848                 !svm->nmi_singlestep) {
1849                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1850                 return 1;
1851         }
1852
1853         if (svm->nmi_singlestep) {
1854                 svm->nmi_singlestep = false;
1855                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1856                         svm->vmcb->save.rflags &=
1857                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1858                 update_db_bp_intercept(&svm->vcpu);
1859         }
1860
1861         if (svm->vcpu.guest_debug &
1862             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1863                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1864                 kvm_run->debug.arch.pc =
1865                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1866                 kvm_run->debug.arch.exception = DB_VECTOR;
1867                 return 0;
1868         }
1869
1870         return 1;
1871 }
1872
1873 static int bp_interception(struct vcpu_svm *svm)
1874 {
1875         struct kvm_run *kvm_run = svm->vcpu.run;
1876
1877         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1878         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1879         kvm_run->debug.arch.exception = BP_VECTOR;
1880         return 0;
1881 }
1882
1883 static int ud_interception(struct vcpu_svm *svm)
1884 {
1885         int er;
1886
1887         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1888         if (er != EMULATE_DONE)
1889                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1890         return 1;
1891 }
1892
1893 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1894 {
1895         struct vcpu_svm *svm = to_svm(vcpu);
1896
1897         clr_exception_intercept(svm, NM_VECTOR);
1898
1899         svm->vcpu.fpu_active = 1;
1900         update_cr0_intercept(svm);
1901 }
1902
1903 static int nm_interception(struct vcpu_svm *svm)
1904 {
1905         svm_fpu_activate(&svm->vcpu);
1906         return 1;
1907 }
1908
1909 static bool is_erratum_383(void)
1910 {
1911         int err, i;
1912         u64 value;
1913
1914         if (!erratum_383_found)
1915                 return false;
1916
1917         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1918         if (err)
1919                 return false;
1920
1921         /* Bit 62 may or may not be set for this mce */
1922         value &= ~(1ULL << 62);
1923
1924         if (value != 0xb600000000010015ULL)
1925                 return false;
1926
1927         /* Clear MCi_STATUS registers */
1928         for (i = 0; i < 6; ++i)
1929                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1930
1931         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1932         if (!err) {
1933                 u32 low, high;
1934
1935                 value &= ~(1ULL << 2);
1936                 low    = lower_32_bits(value);
1937                 high   = upper_32_bits(value);
1938
1939                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1940         }
1941
1942         /* Flush tlb to evict multi-match entries */
1943         __flush_tlb_all();
1944
1945         return true;
1946 }
1947
1948 static void svm_handle_mce(struct vcpu_svm *svm)
1949 {
1950         if (is_erratum_383()) {
1951                 /*
1952                  * Erratum 383 triggered. Guest state is corrupt so kill the
1953                  * guest.
1954                  */
1955                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1956
1957                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1958
1959                 return;
1960         }
1961
1962         /*
1963          * On an #MC intercept the MCE handler is not called automatically in
1964          * the host. So do it by hand here.
1965          */
1966         asm volatile (
1967                 "int $0x12\n");
1968         /* not sure if we ever come back to this point */
1969
1970         return;
1971 }
1972
1973 static int mc_interception(struct vcpu_svm *svm)
1974 {
1975         return 1;
1976 }
1977
1978 static int shutdown_interception(struct vcpu_svm *svm)
1979 {
1980         struct kvm_run *kvm_run = svm->vcpu.run;
1981
1982         /*
1983          * VMCB is undefined after a SHUTDOWN intercept
1984          * so reinitialize it.
1985          */
1986         clear_page(svm->vmcb);
1987         init_vmcb(svm, false);
1988
1989         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1990         return 0;
1991 }
1992
1993 static int io_interception(struct vcpu_svm *svm)
1994 {
1995         struct kvm_vcpu *vcpu = &svm->vcpu;
1996         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1997         int size, in, string;
1998         unsigned port;
1999
2000         ++svm->vcpu.stat.io_exits;
2001         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2002         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2003         if (string || in)
2004                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2005
2006         port = io_info >> 16;
2007         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2008         svm->next_rip = svm->vmcb->control.exit_info_2;
2009         skip_emulated_instruction(&svm->vcpu);
2010
2011         return kvm_fast_pio_out(vcpu, size, port);
2012 }
2013
2014 static int nmi_interception(struct vcpu_svm *svm)
2015 {
2016         return 1;
2017 }
2018
2019 static int intr_interception(struct vcpu_svm *svm)
2020 {
2021         ++svm->vcpu.stat.irq_exits;
2022         return 1;
2023 }
2024
2025 static int nop_on_interception(struct vcpu_svm *svm)
2026 {
2027         return 1;
2028 }
2029
2030 static int halt_interception(struct vcpu_svm *svm)
2031 {
2032         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2033         return kvm_emulate_halt(&svm->vcpu);
2034 }
2035
2036 static int vmmcall_interception(struct vcpu_svm *svm)
2037 {
2038         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2039         kvm_emulate_hypercall(&svm->vcpu);
2040         return 1;
2041 }
2042
2043 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2044 {
2045         struct vcpu_svm *svm = to_svm(vcpu);
2046
2047         return svm->nested.nested_cr3;
2048 }
2049
2050 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2051 {
2052         struct vcpu_svm *svm = to_svm(vcpu);
2053         u64 cr3 = svm->nested.nested_cr3;
2054         u64 pdpte;
2055         int ret;
2056
2057         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2058                                        offset_in_page(cr3) + index * 8, 8);
2059         if (ret)
2060                 return 0;
2061         return pdpte;
2062 }
2063
2064 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2065                                    unsigned long root)
2066 {
2067         struct vcpu_svm *svm = to_svm(vcpu);
2068
2069         svm->vmcb->control.nested_cr3 = root;
2070         mark_dirty(svm->vmcb, VMCB_NPT);
2071         svm_flush_tlb(vcpu);
2072 }
2073
2074 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2075                                        struct x86_exception *fault)
2076 {
2077         struct vcpu_svm *svm = to_svm(vcpu);
2078
2079         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2080                 /*
2081                  * TODO: track the cause of the nested page fault, and
2082                  * correctly fill in the high bits of exit_info_1.
2083                  */
2084                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2085                 svm->vmcb->control.exit_code_hi = 0;
2086                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2087                 svm->vmcb->control.exit_info_2 = fault->address;
2088         }
2089
2090         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2091         svm->vmcb->control.exit_info_1 |= fault->error_code;
2092
2093         /*
2094          * The present bit is always zero for page structure faults on real
2095          * hardware.
2096          */
2097         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2098                 svm->vmcb->control.exit_info_1 &= ~1;
2099
2100         nested_svm_vmexit(svm);
2101 }
2102
2103 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2104 {
2105         WARN_ON(mmu_is_nested(vcpu));
2106         kvm_init_shadow_mmu(vcpu);
2107         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2108         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2109         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2110         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2111         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2112         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2113 }
2114
2115 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2116 {
2117         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2118 }
2119
2120 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2121 {
2122         if (!(svm->vcpu.arch.efer & EFER_SVME)
2123             || !is_paging(&svm->vcpu)) {
2124                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2125                 return 1;
2126         }
2127
2128         if (svm->vmcb->save.cpl) {
2129                 kvm_inject_gp(&svm->vcpu, 0);
2130                 return 1;
2131         }
2132
2133        return 0;
2134 }
2135
2136 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2137                                       bool has_error_code, u32 error_code)
2138 {
2139         int vmexit;
2140
2141         if (!is_guest_mode(&svm->vcpu))
2142                 return 0;
2143
2144         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2145         svm->vmcb->control.exit_code_hi = 0;
2146         svm->vmcb->control.exit_info_1 = error_code;
2147         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2148
2149         vmexit = nested_svm_intercept(svm);
2150         if (vmexit == NESTED_EXIT_DONE)
2151                 svm->nested.exit_required = true;
2152
2153         return vmexit;
2154 }
2155
2156 /* This function returns true if it is save to enable the irq window */
2157 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2158 {
2159         if (!is_guest_mode(&svm->vcpu))
2160                 return true;
2161
2162         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2163                 return true;
2164
2165         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2166                 return false;
2167
2168         /*
2169          * if vmexit was already requested (by intercepted exception
2170          * for instance) do not overwrite it with "external interrupt"
2171          * vmexit.
2172          */
2173         if (svm->nested.exit_required)
2174                 return false;
2175
2176         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2177         svm->vmcb->control.exit_info_1 = 0;
2178         svm->vmcb->control.exit_info_2 = 0;
2179
2180         if (svm->nested.intercept & 1ULL) {
2181                 /*
2182                  * The #vmexit can't be emulated here directly because this
2183                  * code path runs with irqs and preemption disabled. A
2184                  * #vmexit emulation might sleep. Only signal request for
2185                  * the #vmexit here.
2186                  */
2187                 svm->nested.exit_required = true;
2188                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2189                 return false;
2190         }
2191
2192         return true;
2193 }
2194
2195 /* This function returns true if it is save to enable the nmi window */
2196 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2197 {
2198         if (!is_guest_mode(&svm->vcpu))
2199                 return true;
2200
2201         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2202                 return true;
2203
2204         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2205         svm->nested.exit_required = true;
2206
2207         return false;
2208 }
2209
2210 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2211 {
2212         struct page *page;
2213
2214         might_sleep();
2215
2216         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2217         if (is_error_page(page))
2218                 goto error;
2219
2220         *_page = page;
2221
2222         return kmap(page);
2223
2224 error:
2225         kvm_inject_gp(&svm->vcpu, 0);
2226
2227         return NULL;
2228 }
2229
2230 static void nested_svm_unmap(struct page *page)
2231 {
2232         kunmap(page);
2233         kvm_release_page_dirty(page);
2234 }
2235
2236 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2237 {
2238         unsigned port, size, iopm_len;
2239         u16 val, mask;
2240         u8 start_bit;
2241         u64 gpa;
2242
2243         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2244                 return NESTED_EXIT_HOST;
2245
2246         port = svm->vmcb->control.exit_info_1 >> 16;
2247         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2248                 SVM_IOIO_SIZE_SHIFT;
2249         gpa  = svm->nested.vmcb_iopm + (port / 8);
2250         start_bit = port % 8;
2251         iopm_len = (start_bit + size > 8) ? 2 : 1;
2252         mask = (0xf >> (4 - size)) << start_bit;
2253         val = 0;
2254
2255         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2256                 return NESTED_EXIT_DONE;
2257
2258         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2259 }
2260
2261 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2262 {
2263         u32 offset, msr, value;
2264         int write, mask;
2265
2266         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2267                 return NESTED_EXIT_HOST;
2268
2269         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2270         offset = svm_msrpm_offset(msr);
2271         write  = svm->vmcb->control.exit_info_1 & 1;
2272         mask   = 1 << ((2 * (msr & 0xf)) + write);
2273
2274         if (offset == MSR_INVALID)
2275                 return NESTED_EXIT_DONE;
2276
2277         /* Offset is in 32 bit units but need in 8 bit units */
2278         offset *= 4;
2279
2280         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2281                 return NESTED_EXIT_DONE;
2282
2283         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2284 }
2285
2286 static int nested_svm_exit_special(struct vcpu_svm *svm)
2287 {
2288         u32 exit_code = svm->vmcb->control.exit_code;
2289
2290         switch (exit_code) {
2291         case SVM_EXIT_INTR:
2292         case SVM_EXIT_NMI:
2293         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2294                 return NESTED_EXIT_HOST;
2295         case SVM_EXIT_NPF:
2296                 /* For now we are always handling NPFs when using them */
2297                 if (npt_enabled)
2298                         return NESTED_EXIT_HOST;
2299                 break;
2300         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2301                 /* When we're shadowing, trap PFs, but not async PF */
2302                 if (!npt_enabled && svm->apf_reason == 0)
2303                         return NESTED_EXIT_HOST;
2304                 break;
2305         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2306                 nm_interception(svm);
2307                 break;
2308         default:
2309                 break;
2310         }
2311
2312         return NESTED_EXIT_CONTINUE;
2313 }
2314
2315 /*
2316  * If this function returns true, this #vmexit was already handled
2317  */
2318 static int nested_svm_intercept(struct vcpu_svm *svm)
2319 {
2320         u32 exit_code = svm->vmcb->control.exit_code;
2321         int vmexit = NESTED_EXIT_HOST;
2322
2323         switch (exit_code) {
2324         case SVM_EXIT_MSR:
2325                 vmexit = nested_svm_exit_handled_msr(svm);
2326                 break;
2327         case SVM_EXIT_IOIO:
2328                 vmexit = nested_svm_intercept_ioio(svm);
2329                 break;
2330         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2331                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2332                 if (svm->nested.intercept_cr & bit)
2333                         vmexit = NESTED_EXIT_DONE;
2334                 break;
2335         }
2336         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2337                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2338                 if (svm->nested.intercept_dr & bit)
2339                         vmexit = NESTED_EXIT_DONE;
2340                 break;
2341         }
2342         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2343                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2344                 if (svm->nested.intercept_exceptions & excp_bits)
2345                         vmexit = NESTED_EXIT_DONE;
2346                 /* async page fault always cause vmexit */
2347                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2348                          svm->apf_reason != 0)
2349                         vmexit = NESTED_EXIT_DONE;
2350                 break;
2351         }
2352         case SVM_EXIT_ERR: {
2353                 vmexit = NESTED_EXIT_DONE;
2354                 break;
2355         }
2356         default: {
2357                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2358                 if (svm->nested.intercept & exit_bits)
2359                         vmexit = NESTED_EXIT_DONE;
2360         }
2361         }
2362
2363         return vmexit;
2364 }
2365
2366 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2367 {
2368         int vmexit;
2369
2370         vmexit = nested_svm_intercept(svm);
2371
2372         if (vmexit == NESTED_EXIT_DONE)
2373                 nested_svm_vmexit(svm);
2374
2375         return vmexit;
2376 }
2377
2378 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2379 {
2380         struct vmcb_control_area *dst  = &dst_vmcb->control;
2381         struct vmcb_control_area *from = &from_vmcb->control;
2382
2383         dst->intercept_cr         = from->intercept_cr;
2384         dst->intercept_dr         = from->intercept_dr;
2385         dst->intercept_exceptions = from->intercept_exceptions;
2386         dst->intercept            = from->intercept;
2387         dst->iopm_base_pa         = from->iopm_base_pa;
2388         dst->msrpm_base_pa        = from->msrpm_base_pa;
2389         dst->tsc_offset           = from->tsc_offset;
2390         dst->asid                 = from->asid;
2391         dst->tlb_ctl              = from->tlb_ctl;
2392         dst->int_ctl              = from->int_ctl;
2393         dst->int_vector           = from->int_vector;
2394         dst->int_state            = from->int_state;
2395         dst->exit_code            = from->exit_code;
2396         dst->exit_code_hi         = from->exit_code_hi;
2397         dst->exit_info_1          = from->exit_info_1;
2398         dst->exit_info_2          = from->exit_info_2;
2399         dst->exit_int_info        = from->exit_int_info;
2400         dst->exit_int_info_err    = from->exit_int_info_err;
2401         dst->nested_ctl           = from->nested_ctl;
2402         dst->event_inj            = from->event_inj;
2403         dst->event_inj_err        = from->event_inj_err;
2404         dst->nested_cr3           = from->nested_cr3;
2405         dst->lbr_ctl              = from->lbr_ctl;
2406 }
2407
2408 static int nested_svm_vmexit(struct vcpu_svm *svm)
2409 {
2410         struct vmcb *nested_vmcb;
2411         struct vmcb *hsave = svm->nested.hsave;
2412         struct vmcb *vmcb = svm->vmcb;
2413         struct page *page;
2414
2415         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2416                                        vmcb->control.exit_info_1,
2417                                        vmcb->control.exit_info_2,
2418                                        vmcb->control.exit_int_info,
2419                                        vmcb->control.exit_int_info_err,
2420                                        KVM_ISA_SVM);
2421
2422         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2423         if (!nested_vmcb)
2424                 return 1;
2425
2426         /* Exit Guest-Mode */
2427         leave_guest_mode(&svm->vcpu);
2428         svm->nested.vmcb = 0;
2429
2430         /* Give the current vmcb to the guest */
2431         disable_gif(svm);
2432
2433         nested_vmcb->save.es     = vmcb->save.es;
2434         nested_vmcb->save.cs     = vmcb->save.cs;
2435         nested_vmcb->save.ss     = vmcb->save.ss;
2436         nested_vmcb->save.ds     = vmcb->save.ds;
2437         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2438         nested_vmcb->save.idtr   = vmcb->save.idtr;
2439         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2440         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2441         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2442         nested_vmcb->save.cr2    = vmcb->save.cr2;
2443         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2444         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2445         nested_vmcb->save.rip    = vmcb->save.rip;
2446         nested_vmcb->save.rsp    = vmcb->save.rsp;
2447         nested_vmcb->save.rax    = vmcb->save.rax;
2448         nested_vmcb->save.dr7    = vmcb->save.dr7;
2449         nested_vmcb->save.dr6    = vmcb->save.dr6;
2450         nested_vmcb->save.cpl    = vmcb->save.cpl;
2451
2452         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2453         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2454         nested_vmcb->control.int_state         = vmcb->control.int_state;
2455         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2456         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2457         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2458         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2459         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2460         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2461         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2462
2463         /*
2464          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2465          * to make sure that we do not lose injected events. So check event_inj
2466          * here and copy it to exit_int_info if it is valid.
2467          * Exit_int_info and event_inj can't be both valid because the case
2468          * below only happens on a VMRUN instruction intercept which has
2469          * no valid exit_int_info set.
2470          */
2471         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2472                 struct vmcb_control_area *nc = &nested_vmcb->control;
2473
2474                 nc->exit_int_info     = vmcb->control.event_inj;
2475                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2476         }
2477
2478         nested_vmcb->control.tlb_ctl           = 0;
2479         nested_vmcb->control.event_inj         = 0;
2480         nested_vmcb->control.event_inj_err     = 0;
2481
2482         /* We always set V_INTR_MASKING and remember the old value in hflags */
2483         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2484                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2485
2486         /* Restore the original control entries */
2487         copy_vmcb_control_area(vmcb, hsave);
2488
2489         kvm_clear_exception_queue(&svm->vcpu);
2490         kvm_clear_interrupt_queue(&svm->vcpu);
2491
2492         svm->nested.nested_cr3 = 0;
2493
2494         /* Restore selected save entries */
2495         svm->vmcb->save.es = hsave->save.es;
2496         svm->vmcb->save.cs = hsave->save.cs;
2497         svm->vmcb->save.ss = hsave->save.ss;
2498         svm->vmcb->save.ds = hsave->save.ds;
2499         svm->vmcb->save.gdtr = hsave->save.gdtr;
2500         svm->vmcb->save.idtr = hsave->save.idtr;
2501         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2502         svm_set_efer(&svm->vcpu, hsave->save.efer);
2503         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2504         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2505         if (npt_enabled) {
2506                 svm->vmcb->save.cr3 = hsave->save.cr3;
2507                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2508         } else {
2509                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2510         }
2511         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2512         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2513         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2514         svm->vmcb->save.dr7 = 0;
2515         svm->vmcb->save.cpl = 0;
2516         svm->vmcb->control.exit_int_info = 0;
2517
2518         mark_all_dirty(svm->vmcb);
2519
2520         nested_svm_unmap(page);
2521
2522         nested_svm_uninit_mmu_context(&svm->vcpu);
2523         kvm_mmu_reset_context(&svm->vcpu);
2524         kvm_mmu_load(&svm->vcpu);
2525
2526         return 0;
2527 }
2528
2529 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2530 {
2531         /*
2532          * This function merges the msr permission bitmaps of kvm and the
2533          * nested vmcb. It is optimized in that it only merges the parts where
2534          * the kvm msr permission bitmap may contain zero bits
2535          */
2536         int i;
2537
2538         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2539                 return true;
2540
2541         for (i = 0; i < MSRPM_OFFSETS; i++) {
2542                 u32 value, p;
2543                 u64 offset;
2544
2545                 if (msrpm_offsets[i] == 0xffffffff)
2546                         break;
2547
2548                 p      = msrpm_offsets[i];
2549                 offset = svm->nested.vmcb_msrpm + (p * 4);
2550
2551                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2552                         return false;
2553
2554                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2555         }
2556
2557         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2558
2559         return true;
2560 }
2561
2562 static bool nested_vmcb_checks(struct vmcb *vmcb)
2563 {
2564         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2565                 return false;
2566
2567         if (vmcb->control.asid == 0)
2568                 return false;
2569
2570         if (vmcb->control.nested_ctl && !npt_enabled)
2571                 return false;
2572
2573         return true;
2574 }
2575
2576 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2577 {
2578         struct vmcb *nested_vmcb;
2579         struct vmcb *hsave = svm->nested.hsave;
2580         struct vmcb *vmcb = svm->vmcb;
2581         struct page *page;
2582         u64 vmcb_gpa;
2583
2584         vmcb_gpa = svm->vmcb->save.rax;
2585
2586         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2587         if (!nested_vmcb)
2588                 return false;
2589
2590         if (!nested_vmcb_checks(nested_vmcb)) {
2591                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2592                 nested_vmcb->control.exit_code_hi = 0;
2593                 nested_vmcb->control.exit_info_1  = 0;
2594                 nested_vmcb->control.exit_info_2  = 0;
2595
2596                 nested_svm_unmap(page);
2597
2598                 return false;
2599         }
2600
2601         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2602                                nested_vmcb->save.rip,
2603                                nested_vmcb->control.int_ctl,
2604                                nested_vmcb->control.event_inj,
2605                                nested_vmcb->control.nested_ctl);
2606
2607         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2608                                     nested_vmcb->control.intercept_cr >> 16,
2609                                     nested_vmcb->control.intercept_exceptions,
2610                                     nested_vmcb->control.intercept);
2611
2612         /* Clear internal status */
2613         kvm_clear_exception_queue(&svm->vcpu);
2614         kvm_clear_interrupt_queue(&svm->vcpu);
2615
2616         /*
2617          * Save the old vmcb, so we don't need to pick what we save, but can
2618          * restore everything when a VMEXIT occurs
2619          */
2620         hsave->save.es     = vmcb->save.es;
2621         hsave->save.cs     = vmcb->save.cs;
2622         hsave->save.ss     = vmcb->save.ss;
2623         hsave->save.ds     = vmcb->save.ds;
2624         hsave->save.gdtr   = vmcb->save.gdtr;
2625         hsave->save.idtr   = vmcb->save.idtr;
2626         hsave->save.efer   = svm->vcpu.arch.efer;
2627         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2628         hsave->save.cr4    = svm->vcpu.arch.cr4;
2629         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2630         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2631         hsave->save.rsp    = vmcb->save.rsp;
2632         hsave->save.rax    = vmcb->save.rax;
2633         if (npt_enabled)
2634                 hsave->save.cr3    = vmcb->save.cr3;
2635         else
2636                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2637
2638         copy_vmcb_control_area(hsave, vmcb);
2639
2640         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2641                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2642         else
2643                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2644
2645         if (nested_vmcb->control.nested_ctl) {
2646                 kvm_mmu_unload(&svm->vcpu);
2647                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2648                 nested_svm_init_mmu_context(&svm->vcpu);
2649         }
2650
2651         /* Load the nested guest state */
2652         svm->vmcb->save.es = nested_vmcb->save.es;
2653         svm->vmcb->save.cs = nested_vmcb->save.cs;
2654         svm->vmcb->save.ss = nested_vmcb->save.ss;
2655         svm->vmcb->save.ds = nested_vmcb->save.ds;
2656         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2657         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2658         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2659         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2660         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2661         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2662         if (npt_enabled) {
2663                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2664                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2665         } else
2666                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2667
2668         /* Guest paging mode is active - reset mmu */
2669         kvm_mmu_reset_context(&svm->vcpu);
2670
2671         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2672         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2673         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2674         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2675
2676         /* In case we don't even reach vcpu_run, the fields are not updated */
2677         svm->vmcb->save.rax = nested_vmcb->save.rax;
2678         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2679         svm->vmcb->save.rip = nested_vmcb->save.rip;
2680         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2681         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2682         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2683
2684         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2685         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2686
2687         /* cache intercepts */
2688         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2689         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2690         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2691         svm->nested.intercept            = nested_vmcb->control.intercept;
2692
2693         svm_flush_tlb(&svm->vcpu);
2694         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2695         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2696                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2697         else
2698                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2699
2700         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2701                 /* We only want the cr8 intercept bits of the guest */
2702                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2703                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2704         }
2705
2706         /* We don't want to see VMMCALLs from a nested guest */
2707         clr_intercept(svm, INTERCEPT_VMMCALL);
2708
2709         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2710         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2711         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2712         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2713         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2714         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2715
2716         nested_svm_unmap(page);
2717
2718         /* Enter Guest-Mode */
2719         enter_guest_mode(&svm->vcpu);
2720
2721         /*
2722          * Merge guest and host intercepts - must be called  with vcpu in
2723          * guest-mode to take affect here
2724          */
2725         recalc_intercepts(svm);
2726
2727         svm->nested.vmcb = vmcb_gpa;
2728
2729         enable_gif(svm);
2730
2731         mark_all_dirty(svm->vmcb);
2732
2733         return true;
2734 }
2735
2736 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2737 {
2738         to_vmcb->save.fs = from_vmcb->save.fs;
2739         to_vmcb->save.gs = from_vmcb->save.gs;
2740         to_vmcb->save.tr = from_vmcb->save.tr;
2741         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2742         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2743         to_vmcb->save.star = from_vmcb->save.star;
2744         to_vmcb->save.lstar = from_vmcb->save.lstar;
2745         to_vmcb->save.cstar = from_vmcb->save.cstar;
2746         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2747         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2748         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2749         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2750 }
2751
2752 static int vmload_interception(struct vcpu_svm *svm)
2753 {
2754         struct vmcb *nested_vmcb;
2755         struct page *page;
2756
2757         if (nested_svm_check_permissions(svm))
2758                 return 1;
2759
2760         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2761         if (!nested_vmcb)
2762                 return 1;
2763
2764         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2765         skip_emulated_instruction(&svm->vcpu);
2766
2767         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2768         nested_svm_unmap(page);
2769
2770         return 1;
2771 }
2772
2773 static int vmsave_interception(struct vcpu_svm *svm)
2774 {
2775         struct vmcb *nested_vmcb;
2776         struct page *page;
2777
2778         if (nested_svm_check_permissions(svm))
2779                 return 1;
2780
2781         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2782         if (!nested_vmcb)
2783                 return 1;
2784
2785         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2786         skip_emulated_instruction(&svm->vcpu);
2787
2788         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2789         nested_svm_unmap(page);
2790
2791         return 1;
2792 }
2793
2794 static int vmrun_interception(struct vcpu_svm *svm)
2795 {
2796         if (nested_svm_check_permissions(svm))
2797                 return 1;
2798
2799         /* Save rip after vmrun instruction */
2800         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2801
2802         if (!nested_svm_vmrun(svm))
2803                 return 1;
2804
2805         if (!nested_svm_vmrun_msrpm(svm))
2806                 goto failed;
2807
2808         return 1;
2809
2810 failed:
2811
2812         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2813         svm->vmcb->control.exit_code_hi = 0;
2814         svm->vmcb->control.exit_info_1  = 0;
2815         svm->vmcb->control.exit_info_2  = 0;
2816
2817         nested_svm_vmexit(svm);
2818
2819         return 1;
2820 }
2821
2822 static int stgi_interception(struct vcpu_svm *svm)
2823 {
2824         if (nested_svm_check_permissions(svm))
2825                 return 1;
2826
2827         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2828         skip_emulated_instruction(&svm->vcpu);
2829         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2830
2831         enable_gif(svm);
2832
2833         return 1;
2834 }
2835
2836 static int clgi_interception(struct vcpu_svm *svm)
2837 {
2838         if (nested_svm_check_permissions(svm))
2839                 return 1;
2840
2841         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2842         skip_emulated_instruction(&svm->vcpu);
2843
2844         disable_gif(svm);
2845
2846         /* After a CLGI no interrupts should come */
2847         svm_clear_vintr(svm);
2848         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2849
2850         mark_dirty(svm->vmcb, VMCB_INTR);
2851
2852         return 1;
2853 }
2854
2855 static int invlpga_interception(struct vcpu_svm *svm)
2856 {
2857         struct kvm_vcpu *vcpu = &svm->vcpu;
2858
2859         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2860                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2861
2862         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2863         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2864
2865         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2866         skip_emulated_instruction(&svm->vcpu);
2867         return 1;
2868 }
2869
2870 static int skinit_interception(struct vcpu_svm *svm)
2871 {
2872         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2873
2874         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2875         return 1;
2876 }
2877
2878 static int wbinvd_interception(struct vcpu_svm *svm)
2879 {
2880         kvm_emulate_wbinvd(&svm->vcpu);
2881         return 1;
2882 }
2883
2884 static int xsetbv_interception(struct vcpu_svm *svm)
2885 {
2886         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2887         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2888
2889         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2890                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2891                 skip_emulated_instruction(&svm->vcpu);
2892         }
2893
2894         return 1;
2895 }
2896
2897 static int task_switch_interception(struct vcpu_svm *svm)
2898 {
2899         u16 tss_selector;
2900         int reason;
2901         int int_type = svm->vmcb->control.exit_int_info &
2902                 SVM_EXITINTINFO_TYPE_MASK;
2903         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2904         uint32_t type =
2905                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2906         uint32_t idt_v =
2907                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2908         bool has_error_code = false;
2909         u32 error_code = 0;
2910
2911         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2912
2913         if (svm->vmcb->control.exit_info_2 &
2914             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2915                 reason = TASK_SWITCH_IRET;
2916         else if (svm->vmcb->control.exit_info_2 &
2917                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2918                 reason = TASK_SWITCH_JMP;
2919         else if (idt_v)
2920                 reason = TASK_SWITCH_GATE;
2921         else
2922                 reason = TASK_SWITCH_CALL;
2923
2924         if (reason == TASK_SWITCH_GATE) {
2925                 switch (type) {
2926                 case SVM_EXITINTINFO_TYPE_NMI:
2927                         svm->vcpu.arch.nmi_injected = false;
2928                         break;
2929                 case SVM_EXITINTINFO_TYPE_EXEPT:
2930                         if (svm->vmcb->control.exit_info_2 &
2931                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2932                                 has_error_code = true;
2933                                 error_code =
2934                                         (u32)svm->vmcb->control.exit_info_2;
2935                         }
2936                         kvm_clear_exception_queue(&svm->vcpu);
2937                         break;
2938                 case SVM_EXITINTINFO_TYPE_INTR:
2939                         kvm_clear_interrupt_queue(&svm->vcpu);
2940                         break;
2941                 default:
2942                         break;
2943                 }
2944         }
2945
2946         if (reason != TASK_SWITCH_GATE ||
2947             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2948             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2949              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2950                 skip_emulated_instruction(&svm->vcpu);
2951
2952         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2953                 int_vec = -1;
2954
2955         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2956                                 has_error_code, error_code) == EMULATE_FAIL) {
2957                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2958                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2959                 svm->vcpu.run->internal.ndata = 0;
2960                 return 0;
2961         }
2962         return 1;
2963 }
2964
2965 static int cpuid_interception(struct vcpu_svm *svm)
2966 {
2967         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2968         kvm_emulate_cpuid(&svm->vcpu);
2969         return 1;
2970 }
2971
2972 static int iret_interception(struct vcpu_svm *svm)
2973 {
2974         ++svm->vcpu.stat.nmi_window_exits;
2975         clr_intercept(svm, INTERCEPT_IRET);
2976         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2977         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2978         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2979         return 1;
2980 }
2981
2982 static int invlpg_interception(struct vcpu_svm *svm)
2983 {
2984         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2985                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2986
2987         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2988         skip_emulated_instruction(&svm->vcpu);
2989         return 1;
2990 }
2991
2992 static int emulate_on_interception(struct vcpu_svm *svm)
2993 {
2994         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2995 }
2996
2997 static int rdpmc_interception(struct vcpu_svm *svm)
2998 {
2999         int err;
3000
3001         if (!static_cpu_has(X86_FEATURE_NRIPS))
3002                 return emulate_on_interception(svm);
3003
3004         err = kvm_rdpmc(&svm->vcpu);
3005         kvm_complete_insn_gp(&svm->vcpu, err);
3006
3007         return 1;
3008 }
3009
3010 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3011                                             unsigned long val)
3012 {
3013         unsigned long cr0 = svm->vcpu.arch.cr0;
3014         bool ret = false;
3015         u64 intercept;
3016
3017         intercept = svm->nested.intercept;
3018
3019         if (!is_guest_mode(&svm->vcpu) ||
3020             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3021                 return false;
3022
3023         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3024         val &= ~SVM_CR0_SELECTIVE_MASK;
3025
3026         if (cr0 ^ val) {
3027                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3028                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3029         }
3030
3031         return ret;
3032 }
3033
3034 #define CR_VALID (1ULL << 63)
3035
3036 static int cr_interception(struct vcpu_svm *svm)
3037 {
3038         int reg, cr;
3039         unsigned long val;
3040         int err;
3041
3042         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3043                 return emulate_on_interception(svm);
3044
3045         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3046                 return emulate_on_interception(svm);
3047
3048         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3049         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3050                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3051         else
3052                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3053
3054         err = 0;
3055         if (cr >= 16) { /* mov to cr */
3056                 cr -= 16;
3057                 val = kvm_register_read(&svm->vcpu, reg);
3058                 switch (cr) {
3059                 case 0:
3060                         if (!check_selective_cr0_intercepted(svm, val))
3061                                 err = kvm_set_cr0(&svm->vcpu, val);
3062                         else
3063                                 return 1;
3064
3065                         break;
3066                 case 3:
3067                         err = kvm_set_cr3(&svm->vcpu, val);
3068                         break;
3069                 case 4:
3070                         err = kvm_set_cr4(&svm->vcpu, val);
3071                         break;
3072                 case 8:
3073                         err = kvm_set_cr8(&svm->vcpu, val);
3074                         break;
3075                 default:
3076                         WARN(1, "unhandled write to CR%d", cr);
3077                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3078                         return 1;
3079                 }
3080         } else { /* mov from cr */
3081                 switch (cr) {
3082                 case 0:
3083                         val = kvm_read_cr0(&svm->vcpu);
3084                         break;
3085                 case 2:
3086                         val = svm->vcpu.arch.cr2;
3087                         break;
3088                 case 3:
3089                         val = kvm_read_cr3(&svm->vcpu);
3090                         break;
3091                 case 4:
3092                         val = kvm_read_cr4(&svm->vcpu);
3093                         break;
3094                 case 8:
3095                         val = kvm_get_cr8(&svm->vcpu);
3096                         break;
3097                 default:
3098                         WARN(1, "unhandled read from CR%d", cr);
3099                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3100                         return 1;
3101                 }
3102                 kvm_register_write(&svm->vcpu, reg, val);
3103         }
3104         kvm_complete_insn_gp(&svm->vcpu, err);
3105
3106         return 1;
3107 }
3108
3109 static int dr_interception(struct vcpu_svm *svm)
3110 {
3111         int reg, dr;
3112         unsigned long val;
3113
3114         if (svm->vcpu.guest_debug == 0) {
3115                 /*
3116                  * No more DR vmexits; force a reload of the debug registers
3117                  * and reenter on this instruction.  The next vmexit will
3118                  * retrieve the full state of the debug registers.
3119                  */
3120                 clr_dr_intercepts(svm);
3121                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3122                 return 1;
3123         }
3124
3125         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3126                 return emulate_on_interception(svm);
3127
3128         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3129         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3130
3131         if (dr >= 16) { /* mov to DRn */
3132                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3133                         return 1;
3134                 val = kvm_register_read(&svm->vcpu, reg);
3135                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3136         } else {
3137                 if (!kvm_require_dr(&svm->vcpu, dr))
3138                         return 1;
3139                 kvm_get_dr(&svm->vcpu, dr, &val);
3140                 kvm_register_write(&svm->vcpu, reg, val);
3141         }
3142
3143         skip_emulated_instruction(&svm->vcpu);
3144
3145         return 1;
3146 }
3147
3148 static int cr8_write_interception(struct vcpu_svm *svm)
3149 {
3150         struct kvm_run *kvm_run = svm->vcpu.run;
3151         int r;
3152
3153         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3154         /* instruction emulation calls kvm_set_cr8() */
3155         r = cr_interception(svm);
3156         if (irqchip_in_kernel(svm->vcpu.kvm))
3157                 return r;
3158         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3159                 return r;
3160         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3161         return 0;
3162 }
3163
3164 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3165 {
3166         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3167         return vmcb->control.tsc_offset +
3168                 svm_scale_tsc(vcpu, host_tsc);
3169 }
3170
3171 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3172 {
3173         struct vcpu_svm *svm = to_svm(vcpu);
3174
3175         switch (msr_info->index) {
3176         case MSR_IA32_TSC: {
3177                 msr_info->data = svm->vmcb->control.tsc_offset +
3178                         svm_scale_tsc(vcpu, native_read_tsc());
3179
3180                 break;
3181         }
3182         case MSR_STAR:
3183                 msr_info->data = svm->vmcb->save.star;
3184                 break;
3185 #ifdef CONFIG_X86_64
3186         case MSR_LSTAR:
3187                 msr_info->data = svm->vmcb->save.lstar;
3188                 break;
3189         case MSR_CSTAR:
3190                 msr_info->data = svm->vmcb->save.cstar;
3191                 break;
3192         case MSR_KERNEL_GS_BASE:
3193                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3194                 break;
3195         case MSR_SYSCALL_MASK:
3196                 msr_info->data = svm->vmcb->save.sfmask;
3197                 break;
3198 #endif
3199         case MSR_IA32_SYSENTER_CS:
3200                 msr_info->data = svm->vmcb->save.sysenter_cs;
3201                 break;
3202         case MSR_IA32_SYSENTER_EIP:
3203                 msr_info->data = svm->sysenter_eip;
3204                 break;
3205         case MSR_IA32_SYSENTER_ESP:
3206                 msr_info->data = svm->sysenter_esp;
3207                 break;
3208         /*
3209          * Nobody will change the following 5 values in the VMCB so we can
3210          * safely return them on rdmsr. They will always be 0 until LBRV is
3211          * implemented.
3212          */
3213         case MSR_IA32_DEBUGCTLMSR:
3214                 msr_info->data = svm->vmcb->save.dbgctl;
3215                 break;
3216         case MSR_IA32_LASTBRANCHFROMIP:
3217                 msr_info->data = svm->vmcb->save.br_from;
3218                 break;
3219         case MSR_IA32_LASTBRANCHTOIP:
3220                 msr_info->data = svm->vmcb->save.br_to;
3221                 break;
3222         case MSR_IA32_LASTINTFROMIP:
3223                 msr_info->data = svm->vmcb->save.last_excp_from;
3224                 break;
3225         case MSR_IA32_LASTINTTOIP:
3226                 msr_info->data = svm->vmcb->save.last_excp_to;
3227                 break;
3228         case MSR_VM_HSAVE_PA:
3229                 msr_info->data = svm->nested.hsave_msr;
3230                 break;
3231         case MSR_VM_CR:
3232                 msr_info->data = svm->nested.vm_cr_msr;
3233                 break;
3234         case MSR_IA32_UCODE_REV:
3235                 msr_info->data = 0x01000065;
3236                 break;
3237         default:
3238                 return kvm_get_msr_common(vcpu, msr_info);
3239         }
3240         return 0;
3241 }
3242
3243 static int rdmsr_interception(struct vcpu_svm *svm)
3244 {
3245         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3246         struct msr_data msr_info;
3247
3248         msr_info.index = ecx;
3249         msr_info.host_initiated = false;
3250         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3251                 trace_kvm_msr_read_ex(ecx);
3252                 kvm_inject_gp(&svm->vcpu, 0);
3253         } else {
3254                 trace_kvm_msr_read(ecx, msr_info.data);
3255
3256                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3257                                    msr_info.data & 0xffffffff);
3258                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3259                                    msr_info.data >> 32);
3260                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3261                 skip_emulated_instruction(&svm->vcpu);
3262         }
3263         return 1;
3264 }
3265
3266 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3267 {
3268         struct vcpu_svm *svm = to_svm(vcpu);
3269         int svm_dis, chg_mask;
3270
3271         if (data & ~SVM_VM_CR_VALID_MASK)
3272                 return 1;
3273
3274         chg_mask = SVM_VM_CR_VALID_MASK;
3275
3276         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3277                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3278
3279         svm->nested.vm_cr_msr &= ~chg_mask;
3280         svm->nested.vm_cr_msr |= (data & chg_mask);
3281
3282         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3283
3284         /* check for svm_disable while efer.svme is set */
3285         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3286                 return 1;
3287
3288         return 0;
3289 }
3290
3291 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3292 {
3293         struct vcpu_svm *svm = to_svm(vcpu);
3294
3295         u32 ecx = msr->index;
3296         u64 data = msr->data;
3297         switch (ecx) {
3298         case MSR_IA32_TSC:
3299                 kvm_write_tsc(vcpu, msr);
3300                 break;
3301         case MSR_STAR:
3302                 svm->vmcb->save.star = data;
3303                 break;
3304 #ifdef CONFIG_X86_64
3305         case MSR_LSTAR:
3306                 svm->vmcb->save.lstar = data;
3307                 break;
3308         case MSR_CSTAR:
3309                 svm->vmcb->save.cstar = data;
3310                 break;
3311         case MSR_KERNEL_GS_BASE:
3312                 svm->vmcb->save.kernel_gs_base = data;
3313                 break;
3314         case MSR_SYSCALL_MASK:
3315                 svm->vmcb->save.sfmask = data;
3316                 break;
3317 #endif
3318         case MSR_IA32_SYSENTER_CS:
3319                 svm->vmcb->save.sysenter_cs = data;
3320                 break;
3321         case MSR_IA32_SYSENTER_EIP:
3322                 svm->sysenter_eip = data;
3323                 svm->vmcb->save.sysenter_eip = data;
3324                 break;
3325         case MSR_IA32_SYSENTER_ESP:
3326                 svm->sysenter_esp = data;
3327                 svm->vmcb->save.sysenter_esp = data;
3328                 break;
3329         case MSR_IA32_DEBUGCTLMSR:
3330                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3331                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3332                                     __func__, data);
3333                         break;
3334                 }
3335                 if (data & DEBUGCTL_RESERVED_BITS)
3336                         return 1;
3337
3338                 svm->vmcb->save.dbgctl = data;
3339                 mark_dirty(svm->vmcb, VMCB_LBR);
3340                 if (data & (1ULL<<0))
3341                         svm_enable_lbrv(svm);
3342                 else
3343                         svm_disable_lbrv(svm);
3344                 break;
3345         case MSR_VM_HSAVE_PA:
3346                 svm->nested.hsave_msr = data;
3347                 break;
3348         case MSR_VM_CR:
3349                 return svm_set_vm_cr(vcpu, data);
3350         case MSR_VM_IGNNE:
3351                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3352                 break;
3353         default:
3354                 return kvm_set_msr_common(vcpu, msr);
3355         }
3356         return 0;
3357 }
3358
3359 static int wrmsr_interception(struct vcpu_svm *svm)
3360 {
3361         struct msr_data msr;
3362         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3363         u64 data = kvm_read_edx_eax(&svm->vcpu);
3364
3365         msr.data = data;
3366         msr.index = ecx;
3367         msr.host_initiated = false;
3368
3369         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3370         if (kvm_set_msr(&svm->vcpu, &msr)) {
3371                 trace_kvm_msr_write_ex(ecx, data);
3372                 kvm_inject_gp(&svm->vcpu, 0);
3373         } else {
3374                 trace_kvm_msr_write(ecx, data);
3375                 skip_emulated_instruction(&svm->vcpu);
3376         }
3377         return 1;
3378 }
3379
3380 static int msr_interception(struct vcpu_svm *svm)
3381 {
3382         if (svm->vmcb->control.exit_info_1)
3383                 return wrmsr_interception(svm);
3384         else
3385                 return rdmsr_interception(svm);
3386 }
3387
3388 static int interrupt_window_interception(struct vcpu_svm *svm)
3389 {
3390         struct kvm_run *kvm_run = svm->vcpu.run;
3391
3392         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3393         svm_clear_vintr(svm);
3394         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3395         mark_dirty(svm->vmcb, VMCB_INTR);
3396         ++svm->vcpu.stat.irq_window_exits;
3397         /*
3398          * If the user space waits to inject interrupts, exit as soon as
3399          * possible
3400          */
3401         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3402             kvm_run->request_interrupt_window &&
3403             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3404                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3405                 return 0;
3406         }
3407
3408         return 1;
3409 }
3410
3411 static int pause_interception(struct vcpu_svm *svm)
3412 {
3413         kvm_vcpu_on_spin(&(svm->vcpu));
3414         return 1;
3415 }
3416
3417 static int nop_interception(struct vcpu_svm *svm)
3418 {
3419         skip_emulated_instruction(&(svm->vcpu));
3420         return 1;
3421 }
3422
3423 static int monitor_interception(struct vcpu_svm *svm)
3424 {
3425         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3426         return nop_interception(svm);
3427 }
3428
3429 static int mwait_interception(struct vcpu_svm *svm)
3430 {
3431         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3432         return nop_interception(svm);
3433 }
3434
3435 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3436         [SVM_EXIT_READ_CR0]                     = cr_interception,
3437         [SVM_EXIT_READ_CR3]                     = cr_interception,
3438         [SVM_EXIT_READ_CR4]                     = cr_interception,
3439         [SVM_EXIT_READ_CR8]                     = cr_interception,
3440         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3441         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3442         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3443         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3444         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3445         [SVM_EXIT_READ_DR0]                     = dr_interception,
3446         [SVM_EXIT_READ_DR1]                     = dr_interception,
3447         [SVM_EXIT_READ_DR2]                     = dr_interception,
3448         [SVM_EXIT_READ_DR3]                     = dr_interception,
3449         [SVM_EXIT_READ_DR4]                     = dr_interception,
3450         [SVM_EXIT_READ_DR5]                     = dr_interception,
3451         [SVM_EXIT_READ_DR6]                     = dr_interception,
3452         [SVM_EXIT_READ_DR7]                     = dr_interception,
3453         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3454         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3455         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3456         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3457         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3458         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3459         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3460         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3461         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3462         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3463         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3464         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3465         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3466         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3467         [SVM_EXIT_INTR]                         = intr_interception,
3468         [SVM_EXIT_NMI]                          = nmi_interception,
3469         [SVM_EXIT_SMI]                          = nop_on_interception,
3470         [SVM_EXIT_INIT]                         = nop_on_interception,
3471         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3472         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3473         [SVM_EXIT_CPUID]                        = cpuid_interception,
3474         [SVM_EXIT_IRET]                         = iret_interception,
3475         [SVM_EXIT_INVD]                         = emulate_on_interception,
3476         [SVM_EXIT_PAUSE]                        = pause_interception,
3477         [SVM_EXIT_HLT]                          = halt_interception,
3478         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3479         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3480         [SVM_EXIT_IOIO]                         = io_interception,
3481         [SVM_EXIT_MSR]                          = msr_interception,
3482         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3483         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3484         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3485         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3486         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3487         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3488         [SVM_EXIT_STGI]                         = stgi_interception,
3489         [SVM_EXIT_CLGI]                         = clgi_interception,
3490         [SVM_EXIT_SKINIT]                       = skinit_interception,
3491         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3492         [SVM_EXIT_MONITOR]                      = monitor_interception,
3493         [SVM_EXIT_MWAIT]                        = mwait_interception,
3494         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3495         [SVM_EXIT_NPF]                          = pf_interception,
3496         [SVM_EXIT_RSM]                          = emulate_on_interception,
3497 };
3498
3499 static void dump_vmcb(struct kvm_vcpu *vcpu)
3500 {
3501         struct vcpu_svm *svm = to_svm(vcpu);
3502         struct vmcb_control_area *control = &svm->vmcb->control;
3503         struct vmcb_save_area *save = &svm->vmcb->save;
3504
3505         pr_err("VMCB Control Area:\n");
3506         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3507         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3508         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3509         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3510         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3511         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3512         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3513         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3514         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3515         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3516         pr_err("%-20s%d\n", "asid:", control->asid);
3517         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3518         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3519         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3520         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3521         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3522         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3523         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3524         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3525         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3526         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3527         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3528         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3529         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3530         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3531         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3532         pr_err("VMCB State Save Area:\n");
3533         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3534                "es:",
3535                save->es.selector, save->es.attrib,
3536                save->es.limit, save->es.base);
3537         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3538                "cs:",
3539                save->cs.selector, save->cs.attrib,
3540                save->cs.limit, save->cs.base);
3541         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3542                "ss:",
3543                save->ss.selector, save->ss.attrib,
3544                save->ss.limit, save->ss.base);
3545         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3546                "ds:",
3547                save->ds.selector, save->ds.attrib,
3548                save->ds.limit, save->ds.base);
3549         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3550                "fs:",
3551                save->fs.selector, save->fs.attrib,
3552                save->fs.limit, save->fs.base);
3553         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3554                "gs:",
3555                save->gs.selector, save->gs.attrib,
3556                save->gs.limit, save->gs.base);
3557         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3558                "gdtr:",
3559                save->gdtr.selector, save->gdtr.attrib,
3560                save->gdtr.limit, save->gdtr.base);
3561         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3562                "ldtr:",
3563                save->ldtr.selector, save->ldtr.attrib,
3564                save->ldtr.limit, save->ldtr.base);
3565         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3566                "idtr:",
3567                save->idtr.selector, save->idtr.attrib,
3568                save->idtr.limit, save->idtr.base);
3569         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3570                "tr:",
3571                save->tr.selector, save->tr.attrib,
3572                save->tr.limit, save->tr.base);
3573         pr_err("cpl:            %d                efer:         %016llx\n",
3574                 save->cpl, save->efer);
3575         pr_err("%-15s %016llx %-13s %016llx\n",
3576                "cr0:", save->cr0, "cr2:", save->cr2);
3577         pr_err("%-15s %016llx %-13s %016llx\n",
3578                "cr3:", save->cr3, "cr4:", save->cr4);
3579         pr_err("%-15s %016llx %-13s %016llx\n",
3580                "dr6:", save->dr6, "dr7:", save->dr7);
3581         pr_err("%-15s %016llx %-13s %016llx\n",
3582                "rip:", save->rip, "rflags:", save->rflags);
3583         pr_err("%-15s %016llx %-13s %016llx\n",
3584                "rsp:", save->rsp, "rax:", save->rax);
3585         pr_err("%-15s %016llx %-13s %016llx\n",
3586                "star:", save->star, "lstar:", save->lstar);
3587         pr_err("%-15s %016llx %-13s %016llx\n",
3588                "cstar:", save->cstar, "sfmask:", save->sfmask);
3589         pr_err("%-15s %016llx %-13s %016llx\n",
3590                "kernel_gs_base:", save->kernel_gs_base,
3591                "sysenter_cs:", save->sysenter_cs);
3592         pr_err("%-15s %016llx %-13s %016llx\n",
3593                "sysenter_esp:", save->sysenter_esp,
3594                "sysenter_eip:", save->sysenter_eip);
3595         pr_err("%-15s %016llx %-13s %016llx\n",
3596                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3597         pr_err("%-15s %016llx %-13s %016llx\n",
3598                "br_from:", save->br_from, "br_to:", save->br_to);
3599         pr_err("%-15s %016llx %-13s %016llx\n",
3600                "excp_from:", save->last_excp_from,
3601                "excp_to:", save->last_excp_to);
3602 }
3603
3604 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3605 {
3606         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3607
3608         *info1 = control->exit_info_1;
3609         *info2 = control->exit_info_2;
3610 }
3611
3612 static int handle_exit(struct kvm_vcpu *vcpu)
3613 {
3614         struct vcpu_svm *svm = to_svm(vcpu);
3615         struct kvm_run *kvm_run = vcpu->run;
3616         u32 exit_code = svm->vmcb->control.exit_code;
3617
3618         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3619                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3620         if (npt_enabled)
3621                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3622
3623         if (unlikely(svm->nested.exit_required)) {
3624                 nested_svm_vmexit(svm);
3625                 svm->nested.exit_required = false;
3626
3627                 return 1;
3628         }
3629
3630         if (is_guest_mode(vcpu)) {
3631                 int vmexit;
3632
3633                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3634                                         svm->vmcb->control.exit_info_1,
3635                                         svm->vmcb->control.exit_info_2,
3636                                         svm->vmcb->control.exit_int_info,
3637                                         svm->vmcb->control.exit_int_info_err,
3638                                         KVM_ISA_SVM);
3639
3640                 vmexit = nested_svm_exit_special(svm);
3641
3642                 if (vmexit == NESTED_EXIT_CONTINUE)
3643                         vmexit = nested_svm_exit_handled(svm);
3644
3645                 if (vmexit == NESTED_EXIT_DONE)
3646                         return 1;
3647         }
3648
3649         svm_complete_interrupts(svm);
3650
3651         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3652                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3653                 kvm_run->fail_entry.hardware_entry_failure_reason
3654                         = svm->vmcb->control.exit_code;
3655                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3656                 dump_vmcb(vcpu);
3657                 return 0;
3658         }
3659
3660         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3661             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3662             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3663             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3664                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3665                        "exit_code 0x%x\n",
3666                        __func__, svm->vmcb->control.exit_int_info,
3667                        exit_code);
3668
3669         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3670             || !svm_exit_handlers[exit_code]) {
3671                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3672                 kvm_queue_exception(vcpu, UD_VECTOR);
3673                 return 1;
3674         }
3675
3676         return svm_exit_handlers[exit_code](svm);
3677 }
3678
3679 static void reload_tss(struct kvm_vcpu *vcpu)
3680 {
3681         int cpu = raw_smp_processor_id();
3682
3683         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3684         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3685         load_TR_desc();
3686 }
3687
3688 static void pre_svm_run(struct vcpu_svm *svm)
3689 {
3690         int cpu = raw_smp_processor_id();
3691
3692         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3693
3694         /* FIXME: handle wraparound of asid_generation */
3695         if (svm->asid_generation != sd->asid_generation)
3696                 new_asid(svm, sd);
3697 }
3698
3699 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3700 {
3701         struct vcpu_svm *svm = to_svm(vcpu);
3702
3703         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3704         vcpu->arch.hflags |= HF_NMI_MASK;
3705         set_intercept(svm, INTERCEPT_IRET);
3706         ++vcpu->stat.nmi_injections;
3707 }
3708
3709 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3710 {
3711         struct vmcb_control_area *control;
3712
3713         control = &svm->vmcb->control;
3714         control->int_vector = irq;
3715         control->int_ctl &= ~V_INTR_PRIO_MASK;
3716         control->int_ctl |= V_IRQ_MASK |
3717                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3718         mark_dirty(svm->vmcb, VMCB_INTR);
3719 }
3720
3721 static void svm_set_irq(struct kvm_vcpu *vcpu)
3722 {
3723         struct vcpu_svm *svm = to_svm(vcpu);
3724
3725         BUG_ON(!(gif_set(svm)));
3726
3727         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3728         ++vcpu->stat.irq_injections;
3729
3730         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3731                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3732 }
3733
3734 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3735 {
3736         struct vcpu_svm *svm = to_svm(vcpu);
3737
3738         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3739                 return;
3740
3741         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3742
3743         if (irr == -1)
3744                 return;
3745
3746         if (tpr >= irr)
3747                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3748 }
3749
3750 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3751 {
3752         return;
3753 }
3754
3755 static int svm_vm_has_apicv(struct kvm *kvm)
3756 {
3757         return 0;
3758 }
3759
3760 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3761 {
3762         return;
3763 }
3764
3765 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3766 {
3767         return;
3768 }
3769
3770 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3771 {
3772         struct vcpu_svm *svm = to_svm(vcpu);
3773         struct vmcb *vmcb = svm->vmcb;
3774         int ret;
3775         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3776               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3777         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3778
3779         return ret;
3780 }
3781
3782 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3783 {
3784         struct vcpu_svm *svm = to_svm(vcpu);
3785
3786         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3787 }
3788
3789 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3790 {
3791         struct vcpu_svm *svm = to_svm(vcpu);
3792
3793         if (masked) {
3794                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3795                 set_intercept(svm, INTERCEPT_IRET);
3796         } else {
3797                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3798                 clr_intercept(svm, INTERCEPT_IRET);
3799         }
3800 }
3801
3802 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3803 {
3804         struct vcpu_svm *svm = to_svm(vcpu);
3805         struct vmcb *vmcb = svm->vmcb;
3806         int ret;
3807
3808         if (!gif_set(svm) ||
3809              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3810                 return 0;
3811
3812         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3813
3814         if (is_guest_mode(vcpu))
3815                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3816
3817         return ret;
3818 }
3819
3820 static void enable_irq_window(struct kvm_vcpu *vcpu)
3821 {
3822         struct vcpu_svm *svm = to_svm(vcpu);
3823
3824         /*
3825          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3826          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3827          * get that intercept, this function will be called again though and
3828          * we'll get the vintr intercept.
3829          */
3830         if (gif_set(svm) && nested_svm_intr(svm)) {
3831                 svm_set_vintr(svm);
3832                 svm_inject_irq(svm, 0x0);
3833         }
3834 }
3835
3836 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3837 {
3838         struct vcpu_svm *svm = to_svm(vcpu);
3839
3840         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3841             == HF_NMI_MASK)
3842                 return; /* IRET will cause a vm exit */
3843
3844         /*
3845          * Something prevents NMI from been injected. Single step over possible
3846          * problem (IRET or exception injection or interrupt shadow)
3847          */
3848         svm->nmi_singlestep = true;
3849         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3850         update_db_bp_intercept(vcpu);
3851 }
3852
3853 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3854 {
3855         return 0;
3856 }
3857
3858 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3859 {
3860         struct vcpu_svm *svm = to_svm(vcpu);
3861
3862         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3863                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3864         else
3865                 svm->asid_generation--;
3866 }
3867
3868 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3869 {
3870 }
3871
3872 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3873 {
3874         struct vcpu_svm *svm = to_svm(vcpu);
3875
3876         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3877                 return;
3878
3879         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3880                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3881                 kvm_set_cr8(vcpu, cr8);
3882         }
3883 }
3884
3885 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3886 {
3887         struct vcpu_svm *svm = to_svm(vcpu);
3888         u64 cr8;
3889
3890         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3891                 return;
3892
3893         cr8 = kvm_get_cr8(vcpu);
3894         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3895         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3896 }
3897
3898 static void svm_complete_interrupts(struct vcpu_svm *svm)
3899 {
3900         u8 vector;
3901         int type;
3902         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3903         unsigned int3_injected = svm->int3_injected;
3904
3905         svm->int3_injected = 0;
3906
3907         /*
3908          * If we've made progress since setting HF_IRET_MASK, we've
3909          * executed an IRET and can allow NMI injection.
3910          */
3911         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3912             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3913                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3914                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3915         }
3916
3917         svm->vcpu.arch.nmi_injected = false;
3918         kvm_clear_exception_queue(&svm->vcpu);
3919         kvm_clear_interrupt_queue(&svm->vcpu);
3920
3921         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3922                 return;
3923
3924         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3925
3926         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3927         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3928
3929         switch (type) {
3930         case SVM_EXITINTINFO_TYPE_NMI:
3931                 svm->vcpu.arch.nmi_injected = true;
3932                 break;
3933         case SVM_EXITINTINFO_TYPE_EXEPT:
3934                 /*
3935                  * In case of software exceptions, do not reinject the vector,
3936                  * but re-execute the instruction instead. Rewind RIP first
3937                  * if we emulated INT3 before.
3938                  */
3939                 if (kvm_exception_is_soft(vector)) {
3940                         if (vector == BP_VECTOR && int3_injected &&
3941                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3942                                 kvm_rip_write(&svm->vcpu,
3943                                               kvm_rip_read(&svm->vcpu) -
3944                                               int3_injected);
3945                         break;
3946                 }
3947                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3948                         u32 err = svm->vmcb->control.exit_int_info_err;
3949                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3950
3951                 } else
3952                         kvm_requeue_exception(&svm->vcpu, vector);
3953                 break;
3954         case SVM_EXITINTINFO_TYPE_INTR:
3955                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3956                 break;
3957         default:
3958                 break;
3959         }
3960 }
3961
3962 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3963 {
3964         struct vcpu_svm *svm = to_svm(vcpu);
3965         struct vmcb_control_area *control = &svm->vmcb->control;
3966
3967         control->exit_int_info = control->event_inj;
3968         control->exit_int_info_err = control->event_inj_err;
3969         control->event_inj = 0;
3970         svm_complete_interrupts(svm);
3971 }
3972
3973 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3974 {
3975         struct vcpu_svm *svm = to_svm(vcpu);
3976
3977         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3978         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3979         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3980
3981         /*
3982          * A vmexit emulation is required before the vcpu can be executed
3983          * again.
3984          */
3985         if (unlikely(svm->nested.exit_required))
3986                 return;
3987
3988         pre_svm_run(svm);
3989
3990         sync_lapic_to_cr8(vcpu);
3991
3992         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3993
3994         clgi();
3995
3996         local_irq_enable();
3997
3998         asm volatile (
3999                 "push %%" _ASM_BP "; \n\t"
4000                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4001                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4002                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4003                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4004                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4005                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4006 #ifdef CONFIG_X86_64
4007                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4008                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4009                 "mov %c[r10](%[svm]), %%r10 \n\t"
4010                 "mov %c[r11](%[svm]), %%r11 \n\t"
4011                 "mov %c[r12](%[svm]), %%r12 \n\t"
4012                 "mov %c[r13](%[svm]), %%r13 \n\t"
4013                 "mov %c[r14](%[svm]), %%r14 \n\t"
4014                 "mov %c[r15](%[svm]), %%r15 \n\t"
4015 #endif
4016
4017                 /* Enter guest mode */
4018                 "push %%" _ASM_AX " \n\t"
4019                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4020                 __ex(SVM_VMLOAD) "\n\t"
4021                 __ex(SVM_VMRUN) "\n\t"
4022                 __ex(SVM_VMSAVE) "\n\t"
4023                 "pop %%" _ASM_AX " \n\t"
4024
4025                 /* Save guest registers, load host registers */
4026                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4027                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4028                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4029                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4030                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4031                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4032 #ifdef CONFIG_X86_64
4033                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4034                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4035                 "mov %%r10, %c[r10](%[svm]) \n\t"
4036                 "mov %%r11, %c[r11](%[svm]) \n\t"
4037                 "mov %%r12, %c[r12](%[svm]) \n\t"
4038                 "mov %%r13, %c[r13](%[svm]) \n\t"
4039                 "mov %%r14, %c[r14](%[svm]) \n\t"
4040                 "mov %%r15, %c[r15](%[svm]) \n\t"
4041 #endif
4042                 "pop %%" _ASM_BP
4043                 :
4044                 : [svm]"a"(svm),
4045                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4046                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4047                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4048                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4049                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4050                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4051                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4052 #ifdef CONFIG_X86_64
4053                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4054                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4055                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4056                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4057                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4058                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4059                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4060                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4061 #endif
4062                 : "cc", "memory"
4063 #ifdef CONFIG_X86_64
4064                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4065                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4066 #else
4067                 , "ebx", "ecx", "edx", "esi", "edi"
4068 #endif
4069                 );
4070
4071 #ifdef CONFIG_X86_64
4072         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4073 #else
4074         loadsegment(fs, svm->host.fs);
4075 #ifndef CONFIG_X86_32_LAZY_GS
4076         loadsegment(gs, svm->host.gs);
4077 #endif
4078 #endif
4079
4080         reload_tss(vcpu);
4081
4082         local_irq_disable();
4083
4084         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4085         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4086         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4087         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4088
4089         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4090
4091         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4092                 kvm_before_handle_nmi(&svm->vcpu);
4093
4094         stgi();
4095
4096         /* Any pending NMI will happen here */
4097
4098         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4099                 kvm_after_handle_nmi(&svm->vcpu);
4100
4101         sync_cr8_to_lapic(vcpu);
4102
4103         svm->next_rip = 0;
4104
4105         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4106
4107         /* if exit due to PF check for async PF */
4108         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4109                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4110
4111         if (npt_enabled) {
4112                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4113                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4114         }
4115
4116         /*
4117          * We need to handle MC intercepts here before the vcpu has a chance to
4118          * change the physical cpu
4119          */
4120         if (unlikely(svm->vmcb->control.exit_code ==
4121                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4122                 svm_handle_mce(svm);
4123
4124         mark_all_clean(svm->vmcb);
4125 }
4126
4127 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4128 {
4129         struct vcpu_svm *svm = to_svm(vcpu);
4130
4131         svm->vmcb->save.cr3 = root;
4132         mark_dirty(svm->vmcb, VMCB_CR);
4133         svm_flush_tlb(vcpu);
4134 }
4135
4136 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4137 {
4138         struct vcpu_svm *svm = to_svm(vcpu);
4139
4140         svm->vmcb->control.nested_cr3 = root;
4141         mark_dirty(svm->vmcb, VMCB_NPT);
4142
4143         /* Also sync guest cr3 here in case we live migrate */
4144         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4145         mark_dirty(svm->vmcb, VMCB_CR);
4146
4147         svm_flush_tlb(vcpu);
4148 }
4149
4150 static int is_disabled(void)
4151 {
4152         u64 vm_cr;
4153
4154         rdmsrl(MSR_VM_CR, vm_cr);
4155         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4156                 return 1;
4157
4158         return 0;
4159 }
4160
4161 static void
4162 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4163 {
4164         /*
4165          * Patch in the VMMCALL instruction:
4166          */
4167         hypercall[0] = 0x0f;
4168         hypercall[1] = 0x01;
4169         hypercall[2] = 0xd9;
4170 }
4171
4172 static void svm_check_processor_compat(void *rtn)
4173 {
4174         *(int *)rtn = 0;
4175 }
4176
4177 static bool svm_cpu_has_accelerated_tpr(void)
4178 {
4179         return false;
4180 }
4181
4182 static bool svm_has_high_real_mode_segbase(void)
4183 {
4184         return true;
4185 }
4186
4187 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4188 {
4189 }
4190
4191 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4192 {
4193         switch (func) {
4194         case 0x80000001:
4195                 if (nested)
4196                         entry->ecx |= (1 << 2); /* Set SVM bit */
4197                 break;
4198         case 0x8000000A:
4199                 entry->eax = 1; /* SVM revision 1 */
4200                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4201                                    ASID emulation to nested SVM */
4202                 entry->ecx = 0; /* Reserved */
4203                 entry->edx = 0; /* Per default do not support any
4204                                    additional features */
4205
4206                 /* Support next_rip if host supports it */
4207                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4208                         entry->edx |= SVM_FEATURE_NRIP;
4209
4210                 /* Support NPT for the guest if enabled */
4211                 if (npt_enabled)
4212                         entry->edx |= SVM_FEATURE_NPT;
4213
4214                 break;
4215         }
4216 }
4217
4218 static int svm_get_lpage_level(void)
4219 {
4220         return PT_PDPE_LEVEL;
4221 }
4222
4223 static bool svm_rdtscp_supported(void)
4224 {
4225         return false;
4226 }
4227
4228 static bool svm_invpcid_supported(void)
4229 {
4230         return false;
4231 }
4232
4233 static bool svm_mpx_supported(void)
4234 {
4235         return false;
4236 }
4237
4238 static bool svm_xsaves_supported(void)
4239 {
4240         return false;
4241 }
4242
4243 static bool svm_has_wbinvd_exit(void)
4244 {
4245         return true;
4246 }
4247
4248 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4249 {
4250         struct vcpu_svm *svm = to_svm(vcpu);
4251
4252         set_exception_intercept(svm, NM_VECTOR);
4253         update_cr0_intercept(svm);
4254 }
4255
4256 #define PRE_EX(exit)  { .exit_code = (exit), \
4257                         .stage = X86_ICPT_PRE_EXCEPT, }
4258 #define POST_EX(exit) { .exit_code = (exit), \
4259                         .stage = X86_ICPT_POST_EXCEPT, }
4260 #define POST_MEM(exit) { .exit_code = (exit), \
4261                         .stage = X86_ICPT_POST_MEMACCESS, }
4262
4263 static const struct __x86_intercept {
4264         u32 exit_code;
4265         enum x86_intercept_stage stage;
4266 } x86_intercept_map[] = {
4267         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4268         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4269         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4270         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4271         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4272         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4273         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4274         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4275         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4276         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4277         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4278         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4279         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4280         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4281         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4282         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4283         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4284         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4285         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4286         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4287         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4288         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4289         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4290         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4291         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4292         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4293         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4294         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4295         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4296         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4297         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4298         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4299         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4300         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4301         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4302         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4303         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4304         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4305         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4306         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4307         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4308         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4309         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4310         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4311         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4312         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4313 };
4314
4315 #undef PRE_EX
4316 #undef POST_EX
4317 #undef POST_MEM
4318
4319 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4320                                struct x86_instruction_info *info,
4321                                enum x86_intercept_stage stage)
4322 {
4323         struct vcpu_svm *svm = to_svm(vcpu);
4324         int vmexit, ret = X86EMUL_CONTINUE;
4325         struct __x86_intercept icpt_info;
4326         struct vmcb *vmcb = svm->vmcb;
4327
4328         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4329                 goto out;
4330
4331         icpt_info = x86_intercept_map[info->intercept];
4332
4333         if (stage != icpt_info.stage)
4334                 goto out;
4335
4336         switch (icpt_info.exit_code) {
4337         case SVM_EXIT_READ_CR0:
4338                 if (info->intercept == x86_intercept_cr_read)
4339                         icpt_info.exit_code += info->modrm_reg;
4340                 break;
4341         case SVM_EXIT_WRITE_CR0: {
4342                 unsigned long cr0, val;
4343                 u64 intercept;
4344
4345                 if (info->intercept == x86_intercept_cr_write)
4346                         icpt_info.exit_code += info->modrm_reg;
4347
4348                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4349                     info->intercept == x86_intercept_clts)
4350                         break;
4351
4352                 intercept = svm->nested.intercept;
4353
4354                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4355                         break;
4356
4357                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4358                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4359
4360                 if (info->intercept == x86_intercept_lmsw) {
4361                         cr0 &= 0xfUL;
4362                         val &= 0xfUL;
4363                         /* lmsw can't clear PE - catch this here */
4364                         if (cr0 & X86_CR0_PE)
4365                                 val |= X86_CR0_PE;
4366                 }
4367
4368                 if (cr0 ^ val)
4369                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4370
4371                 break;
4372         }
4373         case SVM_EXIT_READ_DR0:
4374         case SVM_EXIT_WRITE_DR0:
4375                 icpt_info.exit_code += info->modrm_reg;
4376                 break;
4377         case SVM_EXIT_MSR:
4378                 if (info->intercept == x86_intercept_wrmsr)
4379                         vmcb->control.exit_info_1 = 1;
4380                 else
4381                         vmcb->control.exit_info_1 = 0;
4382                 break;
4383         case SVM_EXIT_PAUSE:
4384                 /*
4385                  * We get this for NOP only, but pause
4386                  * is rep not, check this here
4387                  */
4388                 if (info->rep_prefix != REPE_PREFIX)
4389                         goto out;
4390         case SVM_EXIT_IOIO: {
4391                 u64 exit_info;
4392                 u32 bytes;
4393
4394                 if (info->intercept == x86_intercept_in ||
4395                     info->intercept == x86_intercept_ins) {
4396                         exit_info = ((info->src_val & 0xffff) << 16) |
4397                                 SVM_IOIO_TYPE_MASK;
4398                         bytes = info->dst_bytes;
4399                 } else {
4400                         exit_info = (info->dst_val & 0xffff) << 16;
4401                         bytes = info->src_bytes;
4402                 }
4403
4404                 if (info->intercept == x86_intercept_outs ||
4405                     info->intercept == x86_intercept_ins)
4406                         exit_info |= SVM_IOIO_STR_MASK;
4407
4408                 if (info->rep_prefix)
4409                         exit_info |= SVM_IOIO_REP_MASK;
4410
4411                 bytes = min(bytes, 4u);
4412
4413                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4414
4415                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4416
4417                 vmcb->control.exit_info_1 = exit_info;
4418                 vmcb->control.exit_info_2 = info->next_rip;
4419
4420                 break;
4421         }
4422         default:
4423                 break;
4424         }
4425
4426         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4427         if (static_cpu_has(X86_FEATURE_NRIPS))
4428                 vmcb->control.next_rip  = info->next_rip;
4429         vmcb->control.exit_code = icpt_info.exit_code;
4430         vmexit = nested_svm_exit_handled(svm);
4431
4432         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4433                                            : X86EMUL_CONTINUE;
4434
4435 out:
4436         return ret;
4437 }
4438
4439 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4440 {
4441         local_irq_enable();
4442 }
4443
4444 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4445 {
4446 }
4447
4448 static struct kvm_x86_ops svm_x86_ops = {
4449         .cpu_has_kvm_support = has_svm,
4450         .disabled_by_bios = is_disabled,
4451         .hardware_setup = svm_hardware_setup,
4452         .hardware_unsetup = svm_hardware_unsetup,
4453         .check_processor_compatibility = svm_check_processor_compat,
4454         .hardware_enable = svm_hardware_enable,
4455         .hardware_disable = svm_hardware_disable,
4456         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4457         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4458
4459         .vcpu_create = svm_create_vcpu,
4460         .vcpu_free = svm_free_vcpu,
4461         .vcpu_reset = svm_vcpu_reset,
4462
4463         .prepare_guest_switch = svm_prepare_guest_switch,
4464         .vcpu_load = svm_vcpu_load,
4465         .vcpu_put = svm_vcpu_put,
4466
4467         .update_db_bp_intercept = update_db_bp_intercept,
4468         .get_msr = svm_get_msr,
4469         .set_msr = svm_set_msr,
4470         .get_segment_base = svm_get_segment_base,
4471         .get_segment = svm_get_segment,
4472         .set_segment = svm_set_segment,
4473         .get_cpl = svm_get_cpl,
4474         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4475         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4476         .decache_cr3 = svm_decache_cr3,
4477         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4478         .set_cr0 = svm_set_cr0,
4479         .set_cr3 = svm_set_cr3,
4480         .set_cr4 = svm_set_cr4,
4481         .set_efer = svm_set_efer,
4482         .get_idt = svm_get_idt,
4483         .set_idt = svm_set_idt,
4484         .get_gdt = svm_get_gdt,
4485         .set_gdt = svm_set_gdt,
4486         .get_dr6 = svm_get_dr6,
4487         .set_dr6 = svm_set_dr6,
4488         .set_dr7 = svm_set_dr7,
4489         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4490         .cache_reg = svm_cache_reg,
4491         .get_rflags = svm_get_rflags,
4492         .set_rflags = svm_set_rflags,
4493         .fpu_activate = svm_fpu_activate,
4494         .fpu_deactivate = svm_fpu_deactivate,
4495
4496         .tlb_flush = svm_flush_tlb,
4497
4498         .run = svm_vcpu_run,
4499         .handle_exit = handle_exit,
4500         .skip_emulated_instruction = skip_emulated_instruction,
4501         .set_interrupt_shadow = svm_set_interrupt_shadow,
4502         .get_interrupt_shadow = svm_get_interrupt_shadow,
4503         .patch_hypercall = svm_patch_hypercall,
4504         .set_irq = svm_set_irq,
4505         .set_nmi = svm_inject_nmi,
4506         .queue_exception = svm_queue_exception,
4507         .cancel_injection = svm_cancel_injection,
4508         .interrupt_allowed = svm_interrupt_allowed,
4509         .nmi_allowed = svm_nmi_allowed,
4510         .get_nmi_mask = svm_get_nmi_mask,
4511         .set_nmi_mask = svm_set_nmi_mask,
4512         .enable_nmi_window = enable_nmi_window,
4513         .enable_irq_window = enable_irq_window,
4514         .update_cr8_intercept = update_cr8_intercept,
4515         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4516         .vm_has_apicv = svm_vm_has_apicv,
4517         .load_eoi_exitmap = svm_load_eoi_exitmap,
4518         .sync_pir_to_irr = svm_sync_pir_to_irr,
4519
4520         .set_tss_addr = svm_set_tss_addr,
4521         .get_tdp_level = get_npt_level,
4522         .get_mt_mask = svm_get_mt_mask,
4523
4524         .get_exit_info = svm_get_exit_info,
4525
4526         .get_lpage_level = svm_get_lpage_level,
4527
4528         .cpuid_update = svm_cpuid_update,
4529
4530         .rdtscp_supported = svm_rdtscp_supported,
4531         .invpcid_supported = svm_invpcid_supported,
4532         .mpx_supported = svm_mpx_supported,
4533         .xsaves_supported = svm_xsaves_supported,
4534
4535         .set_supported_cpuid = svm_set_supported_cpuid,
4536
4537         .has_wbinvd_exit = svm_has_wbinvd_exit,
4538
4539         .set_tsc_khz = svm_set_tsc_khz,
4540         .read_tsc_offset = svm_read_tsc_offset,
4541         .write_tsc_offset = svm_write_tsc_offset,
4542         .adjust_tsc_offset = svm_adjust_tsc_offset,
4543         .compute_tsc_offset = svm_compute_tsc_offset,
4544         .read_l1_tsc = svm_read_l1_tsc,
4545
4546         .set_tdp_cr3 = set_tdp_cr3,
4547
4548         .check_intercept = svm_check_intercept,
4549         .handle_external_intr = svm_handle_external_intr,
4550
4551         .sched_in = svm_sched_in,
4552
4553         .pmu_ops = &amd_pmu_ops,
4554 };
4555
4556 static int __init svm_init(void)
4557 {
4558         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4559                         __alignof__(struct vcpu_svm), THIS_MODULE);
4560 }
4561
4562 static void __exit svm_exit(void)
4563 {
4564         kvm_exit();
4565 }
4566
4567 module_init(svm_init)
4568 module_exit(svm_exit)