]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/vmx.c
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_VMX),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76                         enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96  * If nested=1, nested virtualization is supported, i.e., guests may use
97  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98  * use VMX instructions.
99  */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON                                            \
111         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS                                      \
113         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
114          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125  * ple_gap:    upper bound on the amount of time between two successive
126  *             executions of PAUSE in a loop. Also indicate if ple enabled.
127  *             According to test, this time is usually smaller than 128 cycles.
128  * ple_window: upper bound on the amount of time a guest is allowed to execute
129  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
130  *             less than 2^12 cycles
131  * Time is measured based on a counter that runs at the same rate as the TSC,
132  * refer SDM volume 3b section 21.6.13 & 22.1.3.
133  */
134 #define KVM_VMX_DEFAULT_PLE_GAP           128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
139                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166         u32 revision_id;
167         u32 abort;
168         char data[0];
169 };
170
171 /*
172  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174  * loaded on this CPU (so we can clear them if the CPU goes down).
175  */
176 struct loaded_vmcs {
177         struct vmcs *vmcs;
178         int cpu;
179         int launched;
180         struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184         unsigned index;
185         u64 data;
186         u64 mask;
187 };
188
189 /*
190  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195  * More than one of these structures may exist, if L1 runs multiple L2 guests.
196  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197  * underlying hardware which will be used to run L2.
198  * This structure is packed to ensure that its layout is identical across
199  * machines (necessary for live migration).
200  * If there are changes in this struct, VMCS12_REVISION must be changed.
201  */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204         /* According to the Intel spec, a VMCS region must start with the
205          * following two fields. Then follow implementation-specific data.
206          */
207         u32 revision_id;
208         u32 abort;
209
210         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211         u32 padding[7]; /* room for future expansion */
212
213         u64 io_bitmap_a;
214         u64 io_bitmap_b;
215         u64 msr_bitmap;
216         u64 vm_exit_msr_store_addr;
217         u64 vm_exit_msr_load_addr;
218         u64 vm_entry_msr_load_addr;
219         u64 tsc_offset;
220         u64 virtual_apic_page_addr;
221         u64 apic_access_addr;
222         u64 posted_intr_desc_addr;
223         u64 ept_pointer;
224         u64 eoi_exit_bitmap0;
225         u64 eoi_exit_bitmap1;
226         u64 eoi_exit_bitmap2;
227         u64 eoi_exit_bitmap3;
228         u64 xss_exit_bitmap;
229         u64 guest_physical_address;
230         u64 vmcs_link_pointer;
231         u64 guest_ia32_debugctl;
232         u64 guest_ia32_pat;
233         u64 guest_ia32_efer;
234         u64 guest_ia32_perf_global_ctrl;
235         u64 guest_pdptr0;
236         u64 guest_pdptr1;
237         u64 guest_pdptr2;
238         u64 guest_pdptr3;
239         u64 guest_bndcfgs;
240         u64 host_ia32_pat;
241         u64 host_ia32_efer;
242         u64 host_ia32_perf_global_ctrl;
243         u64 padding64[8]; /* room for future expansion */
244         /*
245          * To allow migration of L1 (complete with its L2 guests) between
246          * machines of different natural widths (32 or 64 bit), we cannot have
247          * unsigned long fields with no explict size. We use u64 (aliased
248          * natural_width) instead. Luckily, x86 is little-endian.
249          */
250         natural_width cr0_guest_host_mask;
251         natural_width cr4_guest_host_mask;
252         natural_width cr0_read_shadow;
253         natural_width cr4_read_shadow;
254         natural_width cr3_target_value0;
255         natural_width cr3_target_value1;
256         natural_width cr3_target_value2;
257         natural_width cr3_target_value3;
258         natural_width exit_qualification;
259         natural_width guest_linear_address;
260         natural_width guest_cr0;
261         natural_width guest_cr3;
262         natural_width guest_cr4;
263         natural_width guest_es_base;
264         natural_width guest_cs_base;
265         natural_width guest_ss_base;
266         natural_width guest_ds_base;
267         natural_width guest_fs_base;
268         natural_width guest_gs_base;
269         natural_width guest_ldtr_base;
270         natural_width guest_tr_base;
271         natural_width guest_gdtr_base;
272         natural_width guest_idtr_base;
273         natural_width guest_dr7;
274         natural_width guest_rsp;
275         natural_width guest_rip;
276         natural_width guest_rflags;
277         natural_width guest_pending_dbg_exceptions;
278         natural_width guest_sysenter_esp;
279         natural_width guest_sysenter_eip;
280         natural_width host_cr0;
281         natural_width host_cr3;
282         natural_width host_cr4;
283         natural_width host_fs_base;
284         natural_width host_gs_base;
285         natural_width host_tr_base;
286         natural_width host_gdtr_base;
287         natural_width host_idtr_base;
288         natural_width host_ia32_sysenter_esp;
289         natural_width host_ia32_sysenter_eip;
290         natural_width host_rsp;
291         natural_width host_rip;
292         natural_width paddingl[8]; /* room for future expansion */
293         u32 pin_based_vm_exec_control;
294         u32 cpu_based_vm_exec_control;
295         u32 exception_bitmap;
296         u32 page_fault_error_code_mask;
297         u32 page_fault_error_code_match;
298         u32 cr3_target_count;
299         u32 vm_exit_controls;
300         u32 vm_exit_msr_store_count;
301         u32 vm_exit_msr_load_count;
302         u32 vm_entry_controls;
303         u32 vm_entry_msr_load_count;
304         u32 vm_entry_intr_info_field;
305         u32 vm_entry_exception_error_code;
306         u32 vm_entry_instruction_len;
307         u32 tpr_threshold;
308         u32 secondary_vm_exec_control;
309         u32 vm_instruction_error;
310         u32 vm_exit_reason;
311         u32 vm_exit_intr_info;
312         u32 vm_exit_intr_error_code;
313         u32 idt_vectoring_info_field;
314         u32 idt_vectoring_error_code;
315         u32 vm_exit_instruction_len;
316         u32 vmx_instruction_info;
317         u32 guest_es_limit;
318         u32 guest_cs_limit;
319         u32 guest_ss_limit;
320         u32 guest_ds_limit;
321         u32 guest_fs_limit;
322         u32 guest_gs_limit;
323         u32 guest_ldtr_limit;
324         u32 guest_tr_limit;
325         u32 guest_gdtr_limit;
326         u32 guest_idtr_limit;
327         u32 guest_es_ar_bytes;
328         u32 guest_cs_ar_bytes;
329         u32 guest_ss_ar_bytes;
330         u32 guest_ds_ar_bytes;
331         u32 guest_fs_ar_bytes;
332         u32 guest_gs_ar_bytes;
333         u32 guest_ldtr_ar_bytes;
334         u32 guest_tr_ar_bytes;
335         u32 guest_interruptibility_info;
336         u32 guest_activity_state;
337         u32 guest_sysenter_cs;
338         u32 host_ia32_sysenter_cs;
339         u32 vmx_preemption_timer_value;
340         u32 padding32[7]; /* room for future expansion */
341         u16 virtual_processor_id;
342         u16 posted_intr_nv;
343         u16 guest_es_selector;
344         u16 guest_cs_selector;
345         u16 guest_ss_selector;
346         u16 guest_ds_selector;
347         u16 guest_fs_selector;
348         u16 guest_gs_selector;
349         u16 guest_ldtr_selector;
350         u16 guest_tr_selector;
351         u16 guest_intr_status;
352         u16 host_es_selector;
353         u16 host_cs_selector;
354         u16 host_ss_selector;
355         u16 host_ds_selector;
356         u16 host_fs_selector;
357         u16 host_gs_selector;
358         u16 host_tr_selector;
359 };
360
361 /*
362  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365  */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371  * current implementation, 4K are reserved to avoid future complications.
372  */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377         struct list_head list;
378         gpa_t vmptr;
379         struct loaded_vmcs vmcs02;
380 };
381
382 /*
383  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385  */
386 struct nested_vmx {
387         /* Has the level1 guest done vmxon? */
388         bool vmxon;
389         gpa_t vmxon_ptr;
390
391         /* The guest-physical address of the current VMCS L1 keeps for L2 */
392         gpa_t current_vmptr;
393         /* The host-usable pointer to the above */
394         struct page *current_vmcs12_page;
395         struct vmcs12 *current_vmcs12;
396         struct vmcs *current_shadow_vmcs;
397         /*
398          * Indicates if the shadow vmcs must be updated with the
399          * data hold by vmcs12
400          */
401         bool sync_shadow_vmcs;
402
403         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404         struct list_head vmcs02_pool;
405         int vmcs02_num;
406         u64 vmcs01_tsc_offset;
407         /* L2 must run next, and mustn't decide to exit to L1. */
408         bool nested_run_pending;
409         /*
410          * Guest pages referred to in vmcs02 with host-physical pointers, so
411          * we must keep them pinned while L2 runs.
412          */
413         struct page *apic_access_page;
414         struct page *virtual_apic_page;
415         struct page *pi_desc_page;
416         struct pi_desc *pi_desc;
417         bool pi_pending;
418         u16 posted_intr_nv;
419         u64 msr_ia32_feature_control;
420
421         struct hrtimer preemption_timer;
422         bool preemption_timer_expired;
423
424         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425         u64 vmcs01_debugctl;
426
427         u32 nested_vmx_procbased_ctls_low;
428         u32 nested_vmx_procbased_ctls_high;
429         u32 nested_vmx_true_procbased_ctls_low;
430         u32 nested_vmx_secondary_ctls_low;
431         u32 nested_vmx_secondary_ctls_high;
432         u32 nested_vmx_pinbased_ctls_low;
433         u32 nested_vmx_pinbased_ctls_high;
434         u32 nested_vmx_exit_ctls_low;
435         u32 nested_vmx_exit_ctls_high;
436         u32 nested_vmx_true_exit_ctls_low;
437         u32 nested_vmx_entry_ctls_low;
438         u32 nested_vmx_entry_ctls_high;
439         u32 nested_vmx_true_entry_ctls_low;
440         u32 nested_vmx_misc_low;
441         u32 nested_vmx_misc_high;
442         u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON  0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448         u32 pir[8];     /* Posted interrupt requested */
449         u32 control;    /* bit 0 of control is outstanding notification bit */
450         u32 rsvd[7];
451 } __aligned(64);
452
453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455         return test_and_set_bit(POSTED_INTR_ON,
456                         (unsigned long *)&pi_desc->control);
457 }
458
459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461         return test_and_clear_bit(POSTED_INTR_ON,
462                         (unsigned long *)&pi_desc->control);
463 }
464
465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471         struct kvm_vcpu       vcpu;
472         unsigned long         host_rsp;
473         u8                    fail;
474         bool                  nmi_known_unmasked;
475         u32                   exit_intr_info;
476         u32                   idt_vectoring_info;
477         ulong                 rflags;
478         struct shared_msr_entry *guest_msrs;
479         int                   nmsrs;
480         int                   save_nmsrs;
481         unsigned long         host_idt_base;
482 #ifdef CONFIG_X86_64
483         u64                   msr_host_kernel_gs_base;
484         u64                   msr_guest_kernel_gs_base;
485 #endif
486         u32 vm_entry_controls_shadow;
487         u32 vm_exit_controls_shadow;
488         /*
489          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490          * non-nested (L1) guest, it always points to vmcs01. For a nested
491          * guest (L2), it points to a different VMCS.
492          */
493         struct loaded_vmcs    vmcs01;
494         struct loaded_vmcs   *loaded_vmcs;
495         bool                  __launched; /* temporary, used in vmx_vcpu_run */
496         struct msr_autoload {
497                 unsigned nr;
498                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500         } msr_autoload;
501         struct {
502                 int           loaded;
503                 u16           fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505                 u16           ds_sel, es_sel;
506 #endif
507                 int           gs_ldt_reload_needed;
508                 int           fs_reload_needed;
509                 u64           msr_host_bndcfgs;
510                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
511         } host_state;
512         struct {
513                 int vm86_active;
514                 ulong save_rflags;
515                 struct kvm_segment segs[8];
516         } rmode;
517         struct {
518                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519                 struct kvm_save_segment {
520                         u16 selector;
521                         unsigned long base;
522                         u32 limit;
523                         u32 ar;
524                 } seg[8];
525         } segment_cache;
526         int vpid;
527         bool emulation_required;
528
529         /* Support for vnmi-less CPUs */
530         int soft_vnmi_blocked;
531         ktime_t entry_time;
532         s64 vnmi_blocked_time;
533         u32 exit_reason;
534
535         bool rdtscp_enabled;
536
537         /* Posted interrupt descriptor */
538         struct pi_desc pi_desc;
539
540         /* Support for a guest hypervisor (nested VMX) */
541         struct nested_vmx nested;
542
543         /* Dynamic PLE window. */
544         int ple_window;
545         bool ple_window_dirty;
546
547         /* Support for PML */
548 #define PML_ENTITY_NUM          512
549         struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553         SEG_FIELD_SEL = 0,
554         SEG_FIELD_BASE = 1,
555         SEG_FIELD_LIMIT = 2,
556         SEG_FIELD_AR = 3,
557
558         SEG_FIELD_NR = 4
559 };
560
561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563         return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
569                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573         /*
574          * We do NOT shadow fields that are modified when L0
575          * traps and emulates any vmx instruction (e.g. VMPTRLD,
576          * VMXON...) executed by L1.
577          * For example, VM_INSTRUCTION_ERROR is read
578          * by L1 if a vmx instruction fails (part of the error path).
579          * Note the code assumes this logic. If for some reason
580          * we start shadowing these fields then we need to
581          * force a shadow sync when L0 emulates vmx instructions
582          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583          * by nested_vmx_failValid)
584          */
585         VM_EXIT_REASON,
586         VM_EXIT_INTR_INFO,
587         VM_EXIT_INSTRUCTION_LEN,
588         IDT_VECTORING_INFO_FIELD,
589         IDT_VECTORING_ERROR_CODE,
590         VM_EXIT_INTR_ERROR_CODE,
591         EXIT_QUALIFICATION,
592         GUEST_LINEAR_ADDRESS,
593         GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596         ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599         TPR_THRESHOLD,
600         GUEST_RIP,
601         GUEST_RSP,
602         GUEST_CR0,
603         GUEST_CR3,
604         GUEST_CR4,
605         GUEST_INTERRUPTIBILITY_INFO,
606         GUEST_RFLAGS,
607         GUEST_CS_SELECTOR,
608         GUEST_CS_AR_BYTES,
609         GUEST_CS_LIMIT,
610         GUEST_CS_BASE,
611         GUEST_ES_BASE,
612         GUEST_BNDCFGS,
613         CR0_GUEST_HOST_MASK,
614         CR0_READ_SHADOW,
615         CR4_READ_SHADOW,
616         TSC_OFFSET,
617         EXCEPTION_BITMAP,
618         CPU_BASED_VM_EXEC_CONTROL,
619         VM_ENTRY_EXCEPTION_ERROR_CODE,
620         VM_ENTRY_INTR_INFO_FIELD,
621         VM_ENTRY_INSTRUCTION_LEN,
622         VM_ENTRY_EXCEPTION_ERROR_CODE,
623         HOST_FS_BASE,
624         HOST_GS_BASE,
625         HOST_FS_SELECTOR,
626         HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629         ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633         FIELD(POSTED_INTR_NV, posted_intr_nv),
634         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642         FIELD(GUEST_INTR_STATUS, guest_intr_status),
643         FIELD(HOST_ES_SELECTOR, host_es_selector),
644         FIELD(HOST_CS_SELECTOR, host_cs_selector),
645         FIELD(HOST_SS_SELECTOR, host_ss_selector),
646         FIELD(HOST_DS_SELECTOR, host_ds_selector),
647         FIELD(HOST_FS_SELECTOR, host_fs_selector),
648         FIELD(HOST_GS_SELECTOR, host_gs_selector),
649         FIELD(HOST_TR_SELECTOR, host_tr_selector),
650         FIELD64(IO_BITMAP_A, io_bitmap_a),
651         FIELD64(IO_BITMAP_B, io_bitmap_b),
652         FIELD64(MSR_BITMAP, msr_bitmap),
653         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656         FIELD64(TSC_OFFSET, tsc_offset),
657         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660         FIELD64(EPT_POINTER, ept_pointer),
661         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672         FIELD64(GUEST_PDPTR0, guest_pdptr0),
673         FIELD64(GUEST_PDPTR1, guest_pdptr1),
674         FIELD64(GUEST_PDPTR2, guest_pdptr2),
675         FIELD64(GUEST_PDPTR3, guest_pdptr3),
676         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677         FIELD64(HOST_IA32_PAT, host_ia32_pat),
678         FIELD64(HOST_IA32_EFER, host_ia32_efer),
679         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682         FIELD(EXCEPTION_BITMAP, exception_bitmap),
683         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685         FIELD(CR3_TARGET_COUNT, cr3_target_count),
686         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694         FIELD(TPR_THRESHOLD, tpr_threshold),
695         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697         FIELD(VM_EXIT_REASON, vm_exit_reason),
698         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704         FIELD(GUEST_ES_LIMIT, guest_es_limit),
705         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735         FIELD(EXIT_QUALIFICATION, exit_qualification),
736         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737         FIELD(GUEST_CR0, guest_cr0),
738         FIELD(GUEST_CR3, guest_cr3),
739         FIELD(GUEST_CR4, guest_cr4),
740         FIELD(GUEST_ES_BASE, guest_es_base),
741         FIELD(GUEST_CS_BASE, guest_cs_base),
742         FIELD(GUEST_SS_BASE, guest_ss_base),
743         FIELD(GUEST_DS_BASE, guest_ds_base),
744         FIELD(GUEST_FS_BASE, guest_fs_base),
745         FIELD(GUEST_GS_BASE, guest_gs_base),
746         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747         FIELD(GUEST_TR_BASE, guest_tr_base),
748         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750         FIELD(GUEST_DR7, guest_dr7),
751         FIELD(GUEST_RSP, guest_rsp),
752         FIELD(GUEST_RIP, guest_rip),
753         FIELD(GUEST_RFLAGS, guest_rflags),
754         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757         FIELD(HOST_CR0, host_cr0),
758         FIELD(HOST_CR3, host_cr3),
759         FIELD(HOST_CR4, host_cr4),
760         FIELD(HOST_FS_BASE, host_fs_base),
761         FIELD(HOST_GS_BASE, host_gs_base),
762         FIELD(HOST_TR_BASE, host_tr_base),
763         FIELD(HOST_GDTR_BASE, host_gdtr_base),
764         FIELD(HOST_IDTR_BASE, host_idtr_base),
765         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767         FIELD(HOST_RSP, host_rsp),
768         FIELD(HOST_RIP, host_rip),
769 };
770
771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776             vmcs_field_to_offset_table[field] == 0)
777                 return -ENOENT;
778
779         return vmcs_field_to_offset_table[field];
780 }
781
782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784         return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
790         if (is_error_page(page))
791                 return NULL;
792
793         return page;
794 }
795
796 static void nested_release_page(struct page *page)
797 {
798         kvm_release_page_dirty(page);
799 }
800
801 static void nested_release_page_clean(struct page *page)
802 {
803         kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
814 static void vmx_set_segment(struct kvm_vcpu *vcpu,
815                             struct kvm_segment *var, int seg);
816 static void vmx_get_segment(struct kvm_vcpu *vcpu,
817                             struct kvm_segment *var, int seg);
818 static bool guest_state_valid(struct kvm_vcpu *vcpu);
819 static u32 vmx_segment_access_rights(struct kvm_segment *var);
820 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
821 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
822 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
823 static int alloc_identity_pagetable(struct kvm *kvm);
824
825 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
826 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
827 /*
828  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
829  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
830  */
831 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
832 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
833
834 static unsigned long *vmx_io_bitmap_a;
835 static unsigned long *vmx_io_bitmap_b;
836 static unsigned long *vmx_msr_bitmap_legacy;
837 static unsigned long *vmx_msr_bitmap_longmode;
838 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
839 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
840 static unsigned long *vmx_msr_bitmap_nested;
841 static unsigned long *vmx_vmread_bitmap;
842 static unsigned long *vmx_vmwrite_bitmap;
843
844 static bool cpu_has_load_ia32_efer;
845 static bool cpu_has_load_perf_global_ctrl;
846
847 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
848 static DEFINE_SPINLOCK(vmx_vpid_lock);
849
850 static struct vmcs_config {
851         int size;
852         int order;
853         u32 revision_id;
854         u32 pin_based_exec_ctrl;
855         u32 cpu_based_exec_ctrl;
856         u32 cpu_based_2nd_exec_ctrl;
857         u32 vmexit_ctrl;
858         u32 vmentry_ctrl;
859 } vmcs_config;
860
861 static struct vmx_capability {
862         u32 ept;
863         u32 vpid;
864 } vmx_capability;
865
866 #define VMX_SEGMENT_FIELD(seg)                                  \
867         [VCPU_SREG_##seg] = {                                   \
868                 .selector = GUEST_##seg##_SELECTOR,             \
869                 .base = GUEST_##seg##_BASE,                     \
870                 .limit = GUEST_##seg##_LIMIT,                   \
871                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
872         }
873
874 static const struct kvm_vmx_segment_field {
875         unsigned selector;
876         unsigned base;
877         unsigned limit;
878         unsigned ar_bytes;
879 } kvm_vmx_segment_fields[] = {
880         VMX_SEGMENT_FIELD(CS),
881         VMX_SEGMENT_FIELD(DS),
882         VMX_SEGMENT_FIELD(ES),
883         VMX_SEGMENT_FIELD(FS),
884         VMX_SEGMENT_FIELD(GS),
885         VMX_SEGMENT_FIELD(SS),
886         VMX_SEGMENT_FIELD(TR),
887         VMX_SEGMENT_FIELD(LDTR),
888 };
889
890 static u64 host_efer;
891
892 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
893
894 /*
895  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
896  * away by decrementing the array size.
897  */
898 static const u32 vmx_msr_index[] = {
899 #ifdef CONFIG_X86_64
900         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
901 #endif
902         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
903 };
904
905 static inline bool is_page_fault(u32 intr_info)
906 {
907         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
908                              INTR_INFO_VALID_MASK)) ==
909                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
910 }
911
912 static inline bool is_no_device(u32 intr_info)
913 {
914         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
915                              INTR_INFO_VALID_MASK)) ==
916                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
917 }
918
919 static inline bool is_invalid_opcode(u32 intr_info)
920 {
921         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
922                              INTR_INFO_VALID_MASK)) ==
923                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
924 }
925
926 static inline bool is_external_interrupt(u32 intr_info)
927 {
928         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
929                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
930 }
931
932 static inline bool is_machine_check(u32 intr_info)
933 {
934         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
935                              INTR_INFO_VALID_MASK)) ==
936                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
937 }
938
939 static inline bool cpu_has_vmx_msr_bitmap(void)
940 {
941         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
942 }
943
944 static inline bool cpu_has_vmx_tpr_shadow(void)
945 {
946         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
947 }
948
949 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
950 {
951         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
952 }
953
954 static inline bool cpu_has_secondary_exec_ctrls(void)
955 {
956         return vmcs_config.cpu_based_exec_ctrl &
957                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
958 }
959
960 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
961 {
962         return vmcs_config.cpu_based_2nd_exec_ctrl &
963                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
964 }
965
966 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
967 {
968         return vmcs_config.cpu_based_2nd_exec_ctrl &
969                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
970 }
971
972 static inline bool cpu_has_vmx_apic_register_virt(void)
973 {
974         return vmcs_config.cpu_based_2nd_exec_ctrl &
975                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
976 }
977
978 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
979 {
980         return vmcs_config.cpu_based_2nd_exec_ctrl &
981                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
982 }
983
984 static inline bool cpu_has_vmx_posted_intr(void)
985 {
986         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
987 }
988
989 static inline bool cpu_has_vmx_apicv(void)
990 {
991         return cpu_has_vmx_apic_register_virt() &&
992                 cpu_has_vmx_virtual_intr_delivery() &&
993                 cpu_has_vmx_posted_intr();
994 }
995
996 static inline bool cpu_has_vmx_flexpriority(void)
997 {
998         return cpu_has_vmx_tpr_shadow() &&
999                 cpu_has_vmx_virtualize_apic_accesses();
1000 }
1001
1002 static inline bool cpu_has_vmx_ept_execute_only(void)
1003 {
1004         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_ept_2m_page(void)
1008 {
1009         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1010 }
1011
1012 static inline bool cpu_has_vmx_ept_1g_page(void)
1013 {
1014         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1015 }
1016
1017 static inline bool cpu_has_vmx_ept_4levels(void)
1018 {
1019         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020 }
1021
1022 static inline bool cpu_has_vmx_ept_ad_bits(void)
1023 {
1024         return vmx_capability.ept & VMX_EPT_AD_BIT;
1025 }
1026
1027 static inline bool cpu_has_vmx_invept_context(void)
1028 {
1029         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1030 }
1031
1032 static inline bool cpu_has_vmx_invept_global(void)
1033 {
1034         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1035 }
1036
1037 static inline bool cpu_has_vmx_invvpid_single(void)
1038 {
1039         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040 }
1041
1042 static inline bool cpu_has_vmx_invvpid_global(void)
1043 {
1044         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045 }
1046
1047 static inline bool cpu_has_vmx_ept(void)
1048 {
1049         return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                 SECONDARY_EXEC_ENABLE_EPT;
1051 }
1052
1053 static inline bool cpu_has_vmx_unrestricted_guest(void)
1054 {
1055         return vmcs_config.cpu_based_2nd_exec_ctrl &
1056                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057 }
1058
1059 static inline bool cpu_has_vmx_ple(void)
1060 {
1061         return vmcs_config.cpu_based_2nd_exec_ctrl &
1062                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063 }
1064
1065 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1066 {
1067         return flexpriority_enabled && irqchip_in_kernel(kvm);
1068 }
1069
1070 static inline bool cpu_has_vmx_vpid(void)
1071 {
1072         return vmcs_config.cpu_based_2nd_exec_ctrl &
1073                 SECONDARY_EXEC_ENABLE_VPID;
1074 }
1075
1076 static inline bool cpu_has_vmx_rdtscp(void)
1077 {
1078         return vmcs_config.cpu_based_2nd_exec_ctrl &
1079                 SECONDARY_EXEC_RDTSCP;
1080 }
1081
1082 static inline bool cpu_has_vmx_invpcid(void)
1083 {
1084         return vmcs_config.cpu_based_2nd_exec_ctrl &
1085                 SECONDARY_EXEC_ENABLE_INVPCID;
1086 }
1087
1088 static inline bool cpu_has_virtual_nmis(void)
1089 {
1090         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
1093 static inline bool cpu_has_vmx_wbinvd_exit(void)
1094 {
1095         return vmcs_config.cpu_based_2nd_exec_ctrl &
1096                 SECONDARY_EXEC_WBINVD_EXITING;
1097 }
1098
1099 static inline bool cpu_has_vmx_shadow_vmcs(void)
1100 {
1101         u64 vmx_msr;
1102         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103         /* check if the cpu supports writing r/o exit information fields */
1104         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105                 return false;
1106
1107         return vmcs_config.cpu_based_2nd_exec_ctrl &
1108                 SECONDARY_EXEC_SHADOW_VMCS;
1109 }
1110
1111 static inline bool cpu_has_vmx_pml(void)
1112 {
1113         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114 }
1115
1116 static inline bool report_flexpriority(void)
1117 {
1118         return flexpriority_enabled;
1119 }
1120
1121 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122 {
1123         return vmcs12->cpu_based_vm_exec_control & bit;
1124 }
1125
1126 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127 {
1128         return (vmcs12->cpu_based_vm_exec_control &
1129                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130                 (vmcs12->secondary_vm_exec_control & bit);
1131 }
1132
1133 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1134 {
1135         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136 }
1137
1138 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139 {
1140         return vmcs12->pin_based_vm_exec_control &
1141                 PIN_BASED_VMX_PREEMPTION_TIMER;
1142 }
1143
1144 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145 {
1146         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147 }
1148
1149 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150 {
1151         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152                 vmx_xsaves_supported();
1153 }
1154
1155 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156 {
1157         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158 }
1159
1160 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161 {
1162         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163 }
1164
1165 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166 {
1167         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168 }
1169
1170 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171 {
1172         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173 }
1174
1175 static inline bool is_exception(u32 intr_info)
1176 {
1177         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179 }
1180
1181 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182                               u32 exit_intr_info,
1183                               unsigned long exit_qualification);
1184 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185                         struct vmcs12 *vmcs12,
1186                         u32 reason, unsigned long qualification);
1187
1188 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1189 {
1190         int i;
1191
1192         for (i = 0; i < vmx->nmsrs; ++i)
1193                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1194                         return i;
1195         return -1;
1196 }
1197
1198 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199 {
1200     struct {
1201         u64 vpid : 16;
1202         u64 rsvd : 48;
1203         u64 gva;
1204     } operand = { vpid, 0, gva };
1205
1206     asm volatile (__ex(ASM_VMX_INVVPID)
1207                   /* CF==1 or ZF==1 --> rc = -1 */
1208                   "; ja 1f ; ud2 ; 1:"
1209                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1210 }
1211
1212 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213 {
1214         struct {
1215                 u64 eptp, gpa;
1216         } operand = {eptp, gpa};
1217
1218         asm volatile (__ex(ASM_VMX_INVEPT)
1219                         /* CF==1 or ZF==1 --> rc = -1 */
1220                         "; ja 1f ; ud2 ; 1:\n"
1221                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1222 }
1223
1224 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1225 {
1226         int i;
1227
1228         i = __find_msr_index(vmx, msr);
1229         if (i >= 0)
1230                 return &vmx->guest_msrs[i];
1231         return NULL;
1232 }
1233
1234 static void vmcs_clear(struct vmcs *vmcs)
1235 {
1236         u64 phys_addr = __pa(vmcs);
1237         u8 error;
1238
1239         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1240                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1241                       : "cc", "memory");
1242         if (error)
1243                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244                        vmcs, phys_addr);
1245 }
1246
1247 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248 {
1249         vmcs_clear(loaded_vmcs->vmcs);
1250         loaded_vmcs->cpu = -1;
1251         loaded_vmcs->launched = 0;
1252 }
1253
1254 static void vmcs_load(struct vmcs *vmcs)
1255 {
1256         u64 phys_addr = __pa(vmcs);
1257         u8 error;
1258
1259         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1260                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1261                         : "cc", "memory");
1262         if (error)
1263                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1264                        vmcs, phys_addr);
1265 }
1266
1267 #ifdef CONFIG_KEXEC
1268 /*
1269  * This bitmap is used to indicate whether the vmclear
1270  * operation is enabled on all cpus. All disabled by
1271  * default.
1272  */
1273 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
1275 static inline void crash_enable_local_vmclear(int cpu)
1276 {
1277         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278 }
1279
1280 static inline void crash_disable_local_vmclear(int cpu)
1281 {
1282         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283 }
1284
1285 static inline int crash_local_vmclear_enabled(int cpu)
1286 {
1287         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288 }
1289
1290 static void crash_vmclear_local_loaded_vmcss(void)
1291 {
1292         int cpu = raw_smp_processor_id();
1293         struct loaded_vmcs *v;
1294
1295         if (!crash_local_vmclear_enabled(cpu))
1296                 return;
1297
1298         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299                             loaded_vmcss_on_cpu_link)
1300                 vmcs_clear(v->vmcs);
1301 }
1302 #else
1303 static inline void crash_enable_local_vmclear(int cpu) { }
1304 static inline void crash_disable_local_vmclear(int cpu) { }
1305 #endif /* CONFIG_KEXEC */
1306
1307 static void __loaded_vmcs_clear(void *arg)
1308 {
1309         struct loaded_vmcs *loaded_vmcs = arg;
1310         int cpu = raw_smp_processor_id();
1311
1312         if (loaded_vmcs->cpu != cpu)
1313                 return; /* vcpu migration can race with cpu offline */
1314         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1315                 per_cpu(current_vmcs, cpu) = NULL;
1316         crash_disable_local_vmclear(cpu);
1317         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1318
1319         /*
1320          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321          * is before setting loaded_vmcs->vcpu to -1 which is done in
1322          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323          * then adds the vmcs into percpu list before it is deleted.
1324          */
1325         smp_wmb();
1326
1327         loaded_vmcs_init(loaded_vmcs);
1328         crash_enable_local_vmclear(cpu);
1329 }
1330
1331 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1332 {
1333         int cpu = loaded_vmcs->cpu;
1334
1335         if (cpu != -1)
1336                 smp_call_function_single(cpu,
1337                          __loaded_vmcs_clear, loaded_vmcs, 1);
1338 }
1339
1340 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1341 {
1342         if (vmx->vpid == 0)
1343                 return;
1344
1345         if (cpu_has_vmx_invvpid_single())
1346                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1347 }
1348
1349 static inline void vpid_sync_vcpu_global(void)
1350 {
1351         if (cpu_has_vmx_invvpid_global())
1352                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353 }
1354
1355 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356 {
1357         if (cpu_has_vmx_invvpid_single())
1358                 vpid_sync_vcpu_single(vmx);
1359         else
1360                 vpid_sync_vcpu_global();
1361 }
1362
1363 static inline void ept_sync_global(void)
1364 {
1365         if (cpu_has_vmx_invept_global())
1366                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367 }
1368
1369 static inline void ept_sync_context(u64 eptp)
1370 {
1371         if (enable_ept) {
1372                 if (cpu_has_vmx_invept_context())
1373                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374                 else
1375                         ept_sync_global();
1376         }
1377 }
1378
1379 static __always_inline unsigned long vmcs_readl(unsigned long field)
1380 {
1381         unsigned long value;
1382
1383         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384                       : "=a"(value) : "d"(field) : "cc");
1385         return value;
1386 }
1387
1388 static __always_inline u16 vmcs_read16(unsigned long field)
1389 {
1390         return vmcs_readl(field);
1391 }
1392
1393 static __always_inline u32 vmcs_read32(unsigned long field)
1394 {
1395         return vmcs_readl(field);
1396 }
1397
1398 static __always_inline u64 vmcs_read64(unsigned long field)
1399 {
1400 #ifdef CONFIG_X86_64
1401         return vmcs_readl(field);
1402 #else
1403         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404 #endif
1405 }
1406
1407 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408 {
1409         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411         dump_stack();
1412 }
1413
1414 static void vmcs_writel(unsigned long field, unsigned long value)
1415 {
1416         u8 error;
1417
1418         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1419                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1420         if (unlikely(error))
1421                 vmwrite_error(field, value);
1422 }
1423
1424 static void vmcs_write16(unsigned long field, u16 value)
1425 {
1426         vmcs_writel(field, value);
1427 }
1428
1429 static void vmcs_write32(unsigned long field, u32 value)
1430 {
1431         vmcs_writel(field, value);
1432 }
1433
1434 static void vmcs_write64(unsigned long field, u64 value)
1435 {
1436         vmcs_writel(field, value);
1437 #ifndef CONFIG_X86_64
1438         asm volatile ("");
1439         vmcs_writel(field+1, value >> 32);
1440 #endif
1441 }
1442
1443 static void vmcs_clear_bits(unsigned long field, u32 mask)
1444 {
1445         vmcs_writel(field, vmcs_readl(field) & ~mask);
1446 }
1447
1448 static void vmcs_set_bits(unsigned long field, u32 mask)
1449 {
1450         vmcs_writel(field, vmcs_readl(field) | mask);
1451 }
1452
1453 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454 {
1455         vmcs_write32(VM_ENTRY_CONTROLS, val);
1456         vmx->vm_entry_controls_shadow = val;
1457 }
1458
1459 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460 {
1461         if (vmx->vm_entry_controls_shadow != val)
1462                 vm_entry_controls_init(vmx, val);
1463 }
1464
1465 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466 {
1467         return vmx->vm_entry_controls_shadow;
1468 }
1469
1470
1471 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472 {
1473         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474 }
1475
1476 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477 {
1478         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479 }
1480
1481 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482 {
1483         vmcs_write32(VM_EXIT_CONTROLS, val);
1484         vmx->vm_exit_controls_shadow = val;
1485 }
1486
1487 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488 {
1489         if (vmx->vm_exit_controls_shadow != val)
1490                 vm_exit_controls_init(vmx, val);
1491 }
1492
1493 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494 {
1495         return vmx->vm_exit_controls_shadow;
1496 }
1497
1498
1499 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500 {
1501         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502 }
1503
1504 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505 {
1506         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507 }
1508
1509 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510 {
1511         vmx->segment_cache.bitmask = 0;
1512 }
1513
1514 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515                                        unsigned field)
1516 {
1517         bool ret;
1518         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522                 vmx->segment_cache.bitmask = 0;
1523         }
1524         ret = vmx->segment_cache.bitmask & mask;
1525         vmx->segment_cache.bitmask |= mask;
1526         return ret;
1527 }
1528
1529 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530 {
1531         u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535         return *p;
1536 }
1537
1538 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539 {
1540         ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544         return *p;
1545 }
1546
1547 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548 {
1549         u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553         return *p;
1554 }
1555
1556 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557 {
1558         u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562         return *p;
1563 }
1564
1565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566 {
1567         u32 eb;
1568
1569         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1571         if ((vcpu->guest_debug &
1572              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574                 eb |= 1u << BP_VECTOR;
1575         if (to_vmx(vcpu)->rmode.vm86_active)
1576                 eb = ~0;
1577         if (enable_ept)
1578                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1579         if (vcpu->fpu_active)
1580                 eb &= ~(1u << NM_VECTOR);
1581
1582         /* When we are running a nested L2 guest and L1 specified for it a
1583          * certain exception bitmap, we must trap the same exceptions and pass
1584          * them to L1. When running L2, we will only handle the exceptions
1585          * specified above if L1 did not want them.
1586          */
1587         if (is_guest_mode(vcpu))
1588                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
1590         vmcs_write32(EXCEPTION_BITMAP, eb);
1591 }
1592
1593 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594                 unsigned long entry, unsigned long exit)
1595 {
1596         vm_entry_controls_clearbit(vmx, entry);
1597         vm_exit_controls_clearbit(vmx, exit);
1598 }
1599
1600 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601 {
1602         unsigned i;
1603         struct msr_autoload *m = &vmx->msr_autoload;
1604
1605         switch (msr) {
1606         case MSR_EFER:
1607                 if (cpu_has_load_ia32_efer) {
1608                         clear_atomic_switch_msr_special(vmx,
1609                                         VM_ENTRY_LOAD_IA32_EFER,
1610                                         VM_EXIT_LOAD_IA32_EFER);
1611                         return;
1612                 }
1613                 break;
1614         case MSR_CORE_PERF_GLOBAL_CTRL:
1615                 if (cpu_has_load_perf_global_ctrl) {
1616                         clear_atomic_switch_msr_special(vmx,
1617                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619                         return;
1620                 }
1621                 break;
1622         }
1623
1624         for (i = 0; i < m->nr; ++i)
1625                 if (m->guest[i].index == msr)
1626                         break;
1627
1628         if (i == m->nr)
1629                 return;
1630         --m->nr;
1631         m->guest[i] = m->guest[m->nr];
1632         m->host[i] = m->host[m->nr];
1633         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635 }
1636
1637 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638                 unsigned long entry, unsigned long exit,
1639                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640                 u64 guest_val, u64 host_val)
1641 {
1642         vmcs_write64(guest_val_vmcs, guest_val);
1643         vmcs_write64(host_val_vmcs, host_val);
1644         vm_entry_controls_setbit(vmx, entry);
1645         vm_exit_controls_setbit(vmx, exit);
1646 }
1647
1648 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649                                   u64 guest_val, u64 host_val)
1650 {
1651         unsigned i;
1652         struct msr_autoload *m = &vmx->msr_autoload;
1653
1654         switch (msr) {
1655         case MSR_EFER:
1656                 if (cpu_has_load_ia32_efer) {
1657                         add_atomic_switch_msr_special(vmx,
1658                                         VM_ENTRY_LOAD_IA32_EFER,
1659                                         VM_EXIT_LOAD_IA32_EFER,
1660                                         GUEST_IA32_EFER,
1661                                         HOST_IA32_EFER,
1662                                         guest_val, host_val);
1663                         return;
1664                 }
1665                 break;
1666         case MSR_CORE_PERF_GLOBAL_CTRL:
1667                 if (cpu_has_load_perf_global_ctrl) {
1668                         add_atomic_switch_msr_special(vmx,
1669                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1672                                         HOST_IA32_PERF_GLOBAL_CTRL,
1673                                         guest_val, host_val);
1674                         return;
1675                 }
1676                 break;
1677         }
1678
1679         for (i = 0; i < m->nr; ++i)
1680                 if (m->guest[i].index == msr)
1681                         break;
1682
1683         if (i == NR_AUTOLOAD_MSRS) {
1684                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1685                                 "Can't add msr %x\n", msr);
1686                 return;
1687         } else if (i == m->nr) {
1688                 ++m->nr;
1689                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1690                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1691         }
1692
1693         m->guest[i].index = msr;
1694         m->guest[i].value = guest_val;
1695         m->host[i].index = msr;
1696         m->host[i].value = host_val;
1697 }
1698
1699 static void reload_tss(void)
1700 {
1701         /*
1702          * VT restores TR but not its size.  Useless.
1703          */
1704         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1705         struct desc_struct *descs;
1706
1707         descs = (void *)gdt->address;
1708         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1709         load_TR_desc();
1710 }
1711
1712 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1713 {
1714         u64 guest_efer;
1715         u64 ignore_bits;
1716
1717         guest_efer = vmx->vcpu.arch.efer;
1718
1719         /*
1720          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1721          * outside long mode
1722          */
1723         ignore_bits = EFER_NX | EFER_SCE;
1724 #ifdef CONFIG_X86_64
1725         ignore_bits |= EFER_LMA | EFER_LME;
1726         /* SCE is meaningful only in long mode on Intel */
1727         if (guest_efer & EFER_LMA)
1728                 ignore_bits &= ~(u64)EFER_SCE;
1729 #endif
1730         guest_efer &= ~ignore_bits;
1731         guest_efer |= host_efer & ignore_bits;
1732         vmx->guest_msrs[efer_offset].data = guest_efer;
1733         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1734
1735         clear_atomic_switch_msr(vmx, MSR_EFER);
1736
1737         /*
1738          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1739          * On CPUs that support "load IA32_EFER", always switch EFER
1740          * atomically, since it's faster than switching it manually.
1741          */
1742         if (cpu_has_load_ia32_efer ||
1743             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1744                 guest_efer = vmx->vcpu.arch.efer;
1745                 if (!(guest_efer & EFER_LMA))
1746                         guest_efer &= ~EFER_LME;
1747                 if (guest_efer != host_efer)
1748                         add_atomic_switch_msr(vmx, MSR_EFER,
1749                                               guest_efer, host_efer);
1750                 return false;
1751         }
1752
1753         return true;
1754 }
1755
1756 static unsigned long segment_base(u16 selector)
1757 {
1758         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1759         struct desc_struct *d;
1760         unsigned long table_base;
1761         unsigned long v;
1762
1763         if (!(selector & ~3))
1764                 return 0;
1765
1766         table_base = gdt->address;
1767
1768         if (selector & 4) {           /* from ldt */
1769                 u16 ldt_selector = kvm_read_ldt();
1770
1771                 if (!(ldt_selector & ~3))
1772                         return 0;
1773
1774                 table_base = segment_base(ldt_selector);
1775         }
1776         d = (struct desc_struct *)(table_base + (selector & ~7));
1777         v = get_desc_base(d);
1778 #ifdef CONFIG_X86_64
1779        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1780                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1781 #endif
1782         return v;
1783 }
1784
1785 static inline unsigned long kvm_read_tr_base(void)
1786 {
1787         u16 tr;
1788         asm("str %0" : "=g"(tr));
1789         return segment_base(tr);
1790 }
1791
1792 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1793 {
1794         struct vcpu_vmx *vmx = to_vmx(vcpu);
1795         int i;
1796
1797         if (vmx->host_state.loaded)
1798                 return;
1799
1800         vmx->host_state.loaded = 1;
1801         /*
1802          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1803          * allow segment selectors with cpl > 0 or ti == 1.
1804          */
1805         vmx->host_state.ldt_sel = kvm_read_ldt();
1806         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1807         savesegment(fs, vmx->host_state.fs_sel);
1808         if (!(vmx->host_state.fs_sel & 7)) {
1809                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1810                 vmx->host_state.fs_reload_needed = 0;
1811         } else {
1812                 vmcs_write16(HOST_FS_SELECTOR, 0);
1813                 vmx->host_state.fs_reload_needed = 1;
1814         }
1815         savesegment(gs, vmx->host_state.gs_sel);
1816         if (!(vmx->host_state.gs_sel & 7))
1817                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1818         else {
1819                 vmcs_write16(HOST_GS_SELECTOR, 0);
1820                 vmx->host_state.gs_ldt_reload_needed = 1;
1821         }
1822
1823 #ifdef CONFIG_X86_64
1824         savesegment(ds, vmx->host_state.ds_sel);
1825         savesegment(es, vmx->host_state.es_sel);
1826 #endif
1827
1828 #ifdef CONFIG_X86_64
1829         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1830         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1831 #else
1832         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1833         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1834 #endif
1835
1836 #ifdef CONFIG_X86_64
1837         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1838         if (is_long_mode(&vmx->vcpu))
1839                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1840 #endif
1841         if (boot_cpu_has(X86_FEATURE_MPX))
1842                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1843         for (i = 0; i < vmx->save_nmsrs; ++i)
1844                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1845                                    vmx->guest_msrs[i].data,
1846                                    vmx->guest_msrs[i].mask);
1847 }
1848
1849 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1850 {
1851         if (!vmx->host_state.loaded)
1852                 return;
1853
1854         ++vmx->vcpu.stat.host_state_reload;
1855         vmx->host_state.loaded = 0;
1856 #ifdef CONFIG_X86_64
1857         if (is_long_mode(&vmx->vcpu))
1858                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1859 #endif
1860         if (vmx->host_state.gs_ldt_reload_needed) {
1861                 kvm_load_ldt(vmx->host_state.ldt_sel);
1862 #ifdef CONFIG_X86_64
1863                 load_gs_index(vmx->host_state.gs_sel);
1864 #else
1865                 loadsegment(gs, vmx->host_state.gs_sel);
1866 #endif
1867         }
1868         if (vmx->host_state.fs_reload_needed)
1869                 loadsegment(fs, vmx->host_state.fs_sel);
1870 #ifdef CONFIG_X86_64
1871         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1872                 loadsegment(ds, vmx->host_state.ds_sel);
1873                 loadsegment(es, vmx->host_state.es_sel);
1874         }
1875 #endif
1876         reload_tss();
1877 #ifdef CONFIG_X86_64
1878         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1879 #endif
1880         if (vmx->host_state.msr_host_bndcfgs)
1881                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1882         /*
1883          * If the FPU is not active (through the host task or
1884          * the guest vcpu), then restore the cr0.TS bit.
1885          */
1886         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1887                 stts();
1888         load_gdt(this_cpu_ptr(&host_gdt));
1889 }
1890
1891 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1892 {
1893         preempt_disable();
1894         __vmx_load_host_state(vmx);
1895         preempt_enable();
1896 }
1897
1898 /*
1899  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1900  * vcpu mutex is already taken.
1901  */
1902 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1903 {
1904         struct vcpu_vmx *vmx = to_vmx(vcpu);
1905         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1906
1907         if (!vmm_exclusive)
1908                 kvm_cpu_vmxon(phys_addr);
1909         else if (vmx->loaded_vmcs->cpu != cpu)
1910                 loaded_vmcs_clear(vmx->loaded_vmcs);
1911
1912         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1913                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1914                 vmcs_load(vmx->loaded_vmcs->vmcs);
1915         }
1916
1917         if (vmx->loaded_vmcs->cpu != cpu) {
1918                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1919                 unsigned long sysenter_esp;
1920
1921                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1922                 local_irq_disable();
1923                 crash_disable_local_vmclear(cpu);
1924
1925                 /*
1926                  * Read loaded_vmcs->cpu should be before fetching
1927                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1928                  * See the comments in __loaded_vmcs_clear().
1929                  */
1930                 smp_rmb();
1931
1932                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1933                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1934                 crash_enable_local_vmclear(cpu);
1935                 local_irq_enable();
1936
1937                 /*
1938                  * Linux uses per-cpu TSS and GDT, so set these when switching
1939                  * processors.
1940                  */
1941                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1942                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1943
1944                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1945                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1946                 vmx->loaded_vmcs->cpu = cpu;
1947         }
1948 }
1949
1950 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1951 {
1952         __vmx_load_host_state(to_vmx(vcpu));
1953         if (!vmm_exclusive) {
1954                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1955                 vcpu->cpu = -1;
1956                 kvm_cpu_vmxoff();
1957         }
1958 }
1959
1960 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1961 {
1962         ulong cr0;
1963
1964         if (vcpu->fpu_active)
1965                 return;
1966         vcpu->fpu_active = 1;
1967         cr0 = vmcs_readl(GUEST_CR0);
1968         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1969         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1970         vmcs_writel(GUEST_CR0, cr0);
1971         update_exception_bitmap(vcpu);
1972         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1973         if (is_guest_mode(vcpu))
1974                 vcpu->arch.cr0_guest_owned_bits &=
1975                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1976         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1977 }
1978
1979 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1980
1981 /*
1982  * Return the cr0 value that a nested guest would read. This is a combination
1983  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1984  * its hypervisor (cr0_read_shadow).
1985  */
1986 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1987 {
1988         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1989                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1990 }
1991 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1992 {
1993         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1994                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1995 }
1996
1997 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1998 {
1999         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2000          * set this *before* calling this function.
2001          */
2002         vmx_decache_cr0_guest_bits(vcpu);
2003         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2004         update_exception_bitmap(vcpu);
2005         vcpu->arch.cr0_guest_owned_bits = 0;
2006         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2007         if (is_guest_mode(vcpu)) {
2008                 /*
2009                  * L1's specified read shadow might not contain the TS bit,
2010                  * so now that we turned on shadowing of this bit, we need to
2011                  * set this bit of the shadow. Like in nested_vmx_run we need
2012                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2013                  * up-to-date here because we just decached cr0.TS (and we'll
2014                  * only update vmcs12->guest_cr0 on nested exit).
2015                  */
2016                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2018                         (vcpu->arch.cr0 & X86_CR0_TS);
2019                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2020         } else
2021                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2022 }
2023
2024 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2025 {
2026         unsigned long rflags, save_rflags;
2027
2028         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2029                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2030                 rflags = vmcs_readl(GUEST_RFLAGS);
2031                 if (to_vmx(vcpu)->rmode.vm86_active) {
2032                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2033                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2034                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2035                 }
2036                 to_vmx(vcpu)->rflags = rflags;
2037         }
2038         return to_vmx(vcpu)->rflags;
2039 }
2040
2041 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2042 {
2043         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2044         to_vmx(vcpu)->rflags = rflags;
2045         if (to_vmx(vcpu)->rmode.vm86_active) {
2046                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2047                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2048         }
2049         vmcs_writel(GUEST_RFLAGS, rflags);
2050 }
2051
2052 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2053 {
2054         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2055         int ret = 0;
2056
2057         if (interruptibility & GUEST_INTR_STATE_STI)
2058                 ret |= KVM_X86_SHADOW_INT_STI;
2059         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2060                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2061
2062         return ret;
2063 }
2064
2065 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2066 {
2067         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2068         u32 interruptibility = interruptibility_old;
2069
2070         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2071
2072         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2073                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2074         else if (mask & KVM_X86_SHADOW_INT_STI)
2075                 interruptibility |= GUEST_INTR_STATE_STI;
2076
2077         if ((interruptibility != interruptibility_old))
2078                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2079 }
2080
2081 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2082 {
2083         unsigned long rip;
2084
2085         rip = kvm_rip_read(vcpu);
2086         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2087         kvm_rip_write(vcpu, rip);
2088
2089         /* skipping an emulated instruction also counts */
2090         vmx_set_interrupt_shadow(vcpu, 0);
2091 }
2092
2093 /*
2094  * KVM wants to inject page-faults which it got to the guest. This function
2095  * checks whether in a nested guest, we need to inject them to L1 or L2.
2096  */
2097 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2098 {
2099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101         if (!(vmcs12->exception_bitmap & (1u << nr)))
2102                 return 0;
2103
2104         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2105                           vmcs_read32(VM_EXIT_INTR_INFO),
2106                           vmcs_readl(EXIT_QUALIFICATION));
2107         return 1;
2108 }
2109
2110 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2111                                 bool has_error_code, u32 error_code,
2112                                 bool reinject)
2113 {
2114         struct vcpu_vmx *vmx = to_vmx(vcpu);
2115         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2116
2117         if (!reinject && is_guest_mode(vcpu) &&
2118             nested_vmx_check_exception(vcpu, nr))
2119                 return;
2120
2121         if (has_error_code) {
2122                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2123                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2124         }
2125
2126         if (vmx->rmode.vm86_active) {
2127                 int inc_eip = 0;
2128                 if (kvm_exception_is_soft(nr))
2129                         inc_eip = vcpu->arch.event_exit_inst_len;
2130                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2131                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2132                 return;
2133         }
2134
2135         if (kvm_exception_is_soft(nr)) {
2136                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2137                              vmx->vcpu.arch.event_exit_inst_len);
2138                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2139         } else
2140                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2141
2142         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2143 }
2144
2145 static bool vmx_rdtscp_supported(void)
2146 {
2147         return cpu_has_vmx_rdtscp();
2148 }
2149
2150 static bool vmx_invpcid_supported(void)
2151 {
2152         return cpu_has_vmx_invpcid() && enable_ept;
2153 }
2154
2155 /*
2156  * Swap MSR entry in host/guest MSR entry array.
2157  */
2158 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2159 {
2160         struct shared_msr_entry tmp;
2161
2162         tmp = vmx->guest_msrs[to];
2163         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2164         vmx->guest_msrs[from] = tmp;
2165 }
2166
2167 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2168 {
2169         unsigned long *msr_bitmap;
2170
2171         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2172                 if (is_long_mode(vcpu))
2173                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2174                 else
2175                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2176         } else {
2177                 if (is_long_mode(vcpu))
2178                         msr_bitmap = vmx_msr_bitmap_longmode;
2179                 else
2180                         msr_bitmap = vmx_msr_bitmap_legacy;
2181         }
2182
2183         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2184 }
2185
2186 /*
2187  * Set up the vmcs to automatically save and restore system
2188  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2189  * mode, as fiddling with msrs is very expensive.
2190  */
2191 static void setup_msrs(struct vcpu_vmx *vmx)
2192 {
2193         int save_nmsrs, index;
2194
2195         save_nmsrs = 0;
2196 #ifdef CONFIG_X86_64
2197         if (is_long_mode(&vmx->vcpu)) {
2198                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2199                 if (index >= 0)
2200                         move_msr_up(vmx, index, save_nmsrs++);
2201                 index = __find_msr_index(vmx, MSR_LSTAR);
2202                 if (index >= 0)
2203                         move_msr_up(vmx, index, save_nmsrs++);
2204                 index = __find_msr_index(vmx, MSR_CSTAR);
2205                 if (index >= 0)
2206                         move_msr_up(vmx, index, save_nmsrs++);
2207                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2208                 if (index >= 0 && vmx->rdtscp_enabled)
2209                         move_msr_up(vmx, index, save_nmsrs++);
2210                 /*
2211                  * MSR_STAR is only needed on long mode guests, and only
2212                  * if efer.sce is enabled.
2213                  */
2214                 index = __find_msr_index(vmx, MSR_STAR);
2215                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2216                         move_msr_up(vmx, index, save_nmsrs++);
2217         }
2218 #endif
2219         index = __find_msr_index(vmx, MSR_EFER);
2220         if (index >= 0 && update_transition_efer(vmx, index))
2221                 move_msr_up(vmx, index, save_nmsrs++);
2222
2223         vmx->save_nmsrs = save_nmsrs;
2224
2225         if (cpu_has_vmx_msr_bitmap())
2226                 vmx_set_msr_bitmap(&vmx->vcpu);
2227 }
2228
2229 /*
2230  * reads and returns guest's timestamp counter "register"
2231  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2232  */
2233 static u64 guest_read_tsc(void)
2234 {
2235         u64 host_tsc, tsc_offset;
2236
2237         rdtscll(host_tsc);
2238         tsc_offset = vmcs_read64(TSC_OFFSET);
2239         return host_tsc + tsc_offset;
2240 }
2241
2242 /*
2243  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2244  * counter, even if a nested guest (L2) is currently running.
2245  */
2246 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2247 {
2248         u64 tsc_offset;
2249
2250         tsc_offset = is_guest_mode(vcpu) ?
2251                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2252                 vmcs_read64(TSC_OFFSET);
2253         return host_tsc + tsc_offset;
2254 }
2255
2256 /*
2257  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2258  * software catchup for faster rates on slower CPUs.
2259  */
2260 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2261 {
2262         if (!scale)
2263                 return;
2264
2265         if (user_tsc_khz > tsc_khz) {
2266                 vcpu->arch.tsc_catchup = 1;
2267                 vcpu->arch.tsc_always_catchup = 1;
2268         } else
2269                 WARN(1, "user requested TSC rate below hardware speed\n");
2270 }
2271
2272 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2273 {
2274         return vmcs_read64(TSC_OFFSET);
2275 }
2276
2277 /*
2278  * writes 'offset' into guest's timestamp counter offset register
2279  */
2280 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2281 {
2282         if (is_guest_mode(vcpu)) {
2283                 /*
2284                  * We're here if L1 chose not to trap WRMSR to TSC. According
2285                  * to the spec, this should set L1's TSC; The offset that L1
2286                  * set for L2 remains unchanged, and still needs to be added
2287                  * to the newly set TSC to get L2's TSC.
2288                  */
2289                 struct vmcs12 *vmcs12;
2290                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2291                 /* recalculate vmcs02.TSC_OFFSET: */
2292                 vmcs12 = get_vmcs12(vcpu);
2293                 vmcs_write64(TSC_OFFSET, offset +
2294                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2295                          vmcs12->tsc_offset : 0));
2296         } else {
2297                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2298                                            vmcs_read64(TSC_OFFSET), offset);
2299                 vmcs_write64(TSC_OFFSET, offset);
2300         }
2301 }
2302
2303 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2304 {
2305         u64 offset = vmcs_read64(TSC_OFFSET);
2306
2307         vmcs_write64(TSC_OFFSET, offset + adjustment);
2308         if (is_guest_mode(vcpu)) {
2309                 /* Even when running L2, the adjustment needs to apply to L1 */
2310                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2311         } else
2312                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2313                                            offset + adjustment);
2314 }
2315
2316 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2317 {
2318         return target_tsc - native_read_tsc();
2319 }
2320
2321 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2322 {
2323         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2324         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2325 }
2326
2327 /*
2328  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2329  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2330  * all guests if the "nested" module option is off, and can also be disabled
2331  * for a single guest by disabling its VMX cpuid bit.
2332  */
2333 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2334 {
2335         return nested && guest_cpuid_has_vmx(vcpu);
2336 }
2337
2338 /*
2339  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2340  * returned for the various VMX controls MSRs when nested VMX is enabled.
2341  * The same values should also be used to verify that vmcs12 control fields are
2342  * valid during nested entry from L1 to L2.
2343  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2344  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2345  * bit in the high half is on if the corresponding bit in the control field
2346  * may be on. See also vmx_control_verify().
2347  */
2348 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2349 {
2350         /*
2351          * Note that as a general rule, the high half of the MSRs (bits in
2352          * the control fields which may be 1) should be initialized by the
2353          * intersection of the underlying hardware's MSR (i.e., features which
2354          * can be supported) and the list of features we want to expose -
2355          * because they are known to be properly supported in our code.
2356          * Also, usually, the low half of the MSRs (bits which must be 1) can
2357          * be set to 0, meaning that L1 may turn off any of these bits. The
2358          * reason is that if one of these bits is necessary, it will appear
2359          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2360          * fields of vmcs01 and vmcs02, will turn these bits off - and
2361          * nested_vmx_exit_handled() will not pass related exits to L1.
2362          * These rules have exceptions below.
2363          */
2364
2365         /* pin-based controls */
2366         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2367                 vmx->nested.nested_vmx_pinbased_ctls_low,
2368                 vmx->nested.nested_vmx_pinbased_ctls_high);
2369         vmx->nested.nested_vmx_pinbased_ctls_low |=
2370                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2371         vmx->nested.nested_vmx_pinbased_ctls_high &=
2372                 PIN_BASED_EXT_INTR_MASK |
2373                 PIN_BASED_NMI_EXITING |
2374                 PIN_BASED_VIRTUAL_NMIS;
2375         vmx->nested.nested_vmx_pinbased_ctls_high |=
2376                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2377                 PIN_BASED_VMX_PREEMPTION_TIMER;
2378         if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2379                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2380                         PIN_BASED_POSTED_INTR;
2381
2382         /* exit controls */
2383         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2384                 vmx->nested.nested_vmx_exit_ctls_low,
2385                 vmx->nested.nested_vmx_exit_ctls_high);
2386         vmx->nested.nested_vmx_exit_ctls_low =
2387                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2388
2389         vmx->nested.nested_vmx_exit_ctls_high &=
2390 #ifdef CONFIG_X86_64
2391                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2392 #endif
2393                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2394         vmx->nested.nested_vmx_exit_ctls_high |=
2395                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2396                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2397                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2398
2399         if (vmx_mpx_supported())
2400                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2401
2402         /* We support free control of debug control saving. */
2403         vmx->nested.nested_vmx_true_exit_ctls_low =
2404                 vmx->nested.nested_vmx_exit_ctls_low &
2405                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2406
2407         /* entry controls */
2408         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2409                 vmx->nested.nested_vmx_entry_ctls_low,
2410                 vmx->nested.nested_vmx_entry_ctls_high);
2411         vmx->nested.nested_vmx_entry_ctls_low =
2412                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2413         vmx->nested.nested_vmx_entry_ctls_high &=
2414 #ifdef CONFIG_X86_64
2415                 VM_ENTRY_IA32E_MODE |
2416 #endif
2417                 VM_ENTRY_LOAD_IA32_PAT;
2418         vmx->nested.nested_vmx_entry_ctls_high |=
2419                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2420         if (vmx_mpx_supported())
2421                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2422
2423         /* We support free control of debug control loading. */
2424         vmx->nested.nested_vmx_true_entry_ctls_low =
2425                 vmx->nested.nested_vmx_entry_ctls_low &
2426                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2427
2428         /* cpu-based controls */
2429         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2430                 vmx->nested.nested_vmx_procbased_ctls_low,
2431                 vmx->nested.nested_vmx_procbased_ctls_high);
2432         vmx->nested.nested_vmx_procbased_ctls_low =
2433                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2434         vmx->nested.nested_vmx_procbased_ctls_high &=
2435                 CPU_BASED_VIRTUAL_INTR_PENDING |
2436                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2437                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2438                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2439                 CPU_BASED_CR3_STORE_EXITING |
2440 #ifdef CONFIG_X86_64
2441                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2442 #endif
2443                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2444                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2445                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2446                 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2447                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2448         /*
2449          * We can allow some features even when not supported by the
2450          * hardware. For example, L1 can specify an MSR bitmap - and we
2451          * can use it to avoid exits to L1 - even when L0 runs L2
2452          * without MSR bitmaps.
2453          */
2454         vmx->nested.nested_vmx_procbased_ctls_high |=
2455                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2456                 CPU_BASED_USE_MSR_BITMAPS;
2457
2458         /* We support free control of CR3 access interception. */
2459         vmx->nested.nested_vmx_true_procbased_ctls_low =
2460                 vmx->nested.nested_vmx_procbased_ctls_low &
2461                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2462
2463         /* secondary cpu-based controls */
2464         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2465                 vmx->nested.nested_vmx_secondary_ctls_low,
2466                 vmx->nested.nested_vmx_secondary_ctls_high);
2467         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2468         vmx->nested.nested_vmx_secondary_ctls_high &=
2469                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2470                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2471                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2472                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2473                 SECONDARY_EXEC_WBINVD_EXITING |
2474                 SECONDARY_EXEC_XSAVES;
2475
2476         if (enable_ept) {
2477                 /* nested EPT: emulate EPT also to L1 */
2478                 vmx->nested.nested_vmx_secondary_ctls_high |=
2479                         SECONDARY_EXEC_ENABLE_EPT |
2480                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2481                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2482                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2483                          VMX_EPT_INVEPT_BIT;
2484                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2485                 /*
2486                  * For nested guests, we don't do anything specific
2487                  * for single context invalidation. Hence, only advertise
2488                  * support for global context invalidation.
2489                  */
2490                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2491         } else
2492                 vmx->nested.nested_vmx_ept_caps = 0;
2493
2494         /* miscellaneous data */
2495         rdmsr(MSR_IA32_VMX_MISC,
2496                 vmx->nested.nested_vmx_misc_low,
2497                 vmx->nested.nested_vmx_misc_high);
2498         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2499         vmx->nested.nested_vmx_misc_low |=
2500                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2501                 VMX_MISC_ACTIVITY_HLT;
2502         vmx->nested.nested_vmx_misc_high = 0;
2503 }
2504
2505 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2506 {
2507         /*
2508          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2509          */
2510         return ((control & high) | low) == control;
2511 }
2512
2513 static inline u64 vmx_control_msr(u32 low, u32 high)
2514 {
2515         return low | ((u64)high << 32);
2516 }
2517
2518 /* Returns 0 on success, non-0 otherwise. */
2519 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2520 {
2521         struct vcpu_vmx *vmx = to_vmx(vcpu);
2522
2523         switch (msr_index) {
2524         case MSR_IA32_VMX_BASIC:
2525                 /*
2526                  * This MSR reports some information about VMX support. We
2527                  * should return information about the VMX we emulate for the
2528                  * guest, and the VMCS structure we give it - not about the
2529                  * VMX support of the underlying hardware.
2530                  */
2531                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2532                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2533                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2534                 break;
2535         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2536         case MSR_IA32_VMX_PINBASED_CTLS:
2537                 *pdata = vmx_control_msr(
2538                         vmx->nested.nested_vmx_pinbased_ctls_low,
2539                         vmx->nested.nested_vmx_pinbased_ctls_high);
2540                 break;
2541         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2542                 *pdata = vmx_control_msr(
2543                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2544                         vmx->nested.nested_vmx_procbased_ctls_high);
2545                 break;
2546         case MSR_IA32_VMX_PROCBASED_CTLS:
2547                 *pdata = vmx_control_msr(
2548                         vmx->nested.nested_vmx_procbased_ctls_low,
2549                         vmx->nested.nested_vmx_procbased_ctls_high);
2550                 break;
2551         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2552                 *pdata = vmx_control_msr(
2553                         vmx->nested.nested_vmx_true_exit_ctls_low,
2554                         vmx->nested.nested_vmx_exit_ctls_high);
2555                 break;
2556         case MSR_IA32_VMX_EXIT_CTLS:
2557                 *pdata = vmx_control_msr(
2558                         vmx->nested.nested_vmx_exit_ctls_low,
2559                         vmx->nested.nested_vmx_exit_ctls_high);
2560                 break;
2561         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2562                 *pdata = vmx_control_msr(
2563                         vmx->nested.nested_vmx_true_entry_ctls_low,
2564                         vmx->nested.nested_vmx_entry_ctls_high);
2565                 break;
2566         case MSR_IA32_VMX_ENTRY_CTLS:
2567                 *pdata = vmx_control_msr(
2568                         vmx->nested.nested_vmx_entry_ctls_low,
2569                         vmx->nested.nested_vmx_entry_ctls_high);
2570                 break;
2571         case MSR_IA32_VMX_MISC:
2572                 *pdata = vmx_control_msr(
2573                         vmx->nested.nested_vmx_misc_low,
2574                         vmx->nested.nested_vmx_misc_high);
2575                 break;
2576         /*
2577          * These MSRs specify bits which the guest must keep fixed (on or off)
2578          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2579          * We picked the standard core2 setting.
2580          */
2581 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2582 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2583         case MSR_IA32_VMX_CR0_FIXED0:
2584                 *pdata = VMXON_CR0_ALWAYSON;
2585                 break;
2586         case MSR_IA32_VMX_CR0_FIXED1:
2587                 *pdata = -1ULL;
2588                 break;
2589         case MSR_IA32_VMX_CR4_FIXED0:
2590                 *pdata = VMXON_CR4_ALWAYSON;
2591                 break;
2592         case MSR_IA32_VMX_CR4_FIXED1:
2593                 *pdata = -1ULL;
2594                 break;
2595         case MSR_IA32_VMX_VMCS_ENUM:
2596                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2597                 break;
2598         case MSR_IA32_VMX_PROCBASED_CTLS2:
2599                 *pdata = vmx_control_msr(
2600                         vmx->nested.nested_vmx_secondary_ctls_low,
2601                         vmx->nested.nested_vmx_secondary_ctls_high);
2602                 break;
2603         case MSR_IA32_VMX_EPT_VPID_CAP:
2604                 /* Currently, no nested vpid support */
2605                 *pdata = vmx->nested.nested_vmx_ept_caps;
2606                 break;
2607         default:
2608                 return 1;
2609         }
2610
2611         return 0;
2612 }
2613
2614 /*
2615  * Reads an msr value (of 'msr_index') into 'pdata'.
2616  * Returns 0 on success, non-0 otherwise.
2617  * Assumes vcpu_load() was already called.
2618  */
2619 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2620 {
2621         u64 data;
2622         struct shared_msr_entry *msr;
2623
2624         if (!pdata) {
2625                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2626                 return -EINVAL;
2627         }
2628
2629         switch (msr_index) {
2630 #ifdef CONFIG_X86_64
2631         case MSR_FS_BASE:
2632                 data = vmcs_readl(GUEST_FS_BASE);
2633                 break;
2634         case MSR_GS_BASE:
2635                 data = vmcs_readl(GUEST_GS_BASE);
2636                 break;
2637         case MSR_KERNEL_GS_BASE:
2638                 vmx_load_host_state(to_vmx(vcpu));
2639                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2640                 break;
2641 #endif
2642         case MSR_EFER:
2643                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2644         case MSR_IA32_TSC:
2645                 data = guest_read_tsc();
2646                 break;
2647         case MSR_IA32_SYSENTER_CS:
2648                 data = vmcs_read32(GUEST_SYSENTER_CS);
2649                 break;
2650         case MSR_IA32_SYSENTER_EIP:
2651                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2652                 break;
2653         case MSR_IA32_SYSENTER_ESP:
2654                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2655                 break;
2656         case MSR_IA32_BNDCFGS:
2657                 if (!vmx_mpx_supported())
2658                         return 1;
2659                 data = vmcs_read64(GUEST_BNDCFGS);
2660                 break;
2661         case MSR_IA32_FEATURE_CONTROL:
2662                 if (!nested_vmx_allowed(vcpu))
2663                         return 1;
2664                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2665                 break;
2666         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2667                 if (!nested_vmx_allowed(vcpu))
2668                         return 1;
2669                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2670         case MSR_IA32_XSS:
2671                 if (!vmx_xsaves_supported())
2672                         return 1;
2673                 data = vcpu->arch.ia32_xss;
2674                 break;
2675         case MSR_TSC_AUX:
2676                 if (!to_vmx(vcpu)->rdtscp_enabled)
2677                         return 1;
2678                 /* Otherwise falls through */
2679         default:
2680                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2681                 if (msr) {
2682                         data = msr->data;
2683                         break;
2684                 }
2685                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2686         }
2687
2688         *pdata = data;
2689         return 0;
2690 }
2691
2692 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2693
2694 /*
2695  * Writes msr value into into the appropriate "register".
2696  * Returns 0 on success, non-0 otherwise.
2697  * Assumes vcpu_load() was already called.
2698  */
2699 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2700 {
2701         struct vcpu_vmx *vmx = to_vmx(vcpu);
2702         struct shared_msr_entry *msr;
2703         int ret = 0;
2704         u32 msr_index = msr_info->index;
2705         u64 data = msr_info->data;
2706
2707         switch (msr_index) {
2708         case MSR_EFER:
2709                 ret = kvm_set_msr_common(vcpu, msr_info);
2710                 break;
2711 #ifdef CONFIG_X86_64
2712         case MSR_FS_BASE:
2713                 vmx_segment_cache_clear(vmx);
2714                 vmcs_writel(GUEST_FS_BASE, data);
2715                 break;
2716         case MSR_GS_BASE:
2717                 vmx_segment_cache_clear(vmx);
2718                 vmcs_writel(GUEST_GS_BASE, data);
2719                 break;
2720         case MSR_KERNEL_GS_BASE:
2721                 vmx_load_host_state(vmx);
2722                 vmx->msr_guest_kernel_gs_base = data;
2723                 break;
2724 #endif
2725         case MSR_IA32_SYSENTER_CS:
2726                 vmcs_write32(GUEST_SYSENTER_CS, data);
2727                 break;
2728         case MSR_IA32_SYSENTER_EIP:
2729                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2730                 break;
2731         case MSR_IA32_SYSENTER_ESP:
2732                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2733                 break;
2734         case MSR_IA32_BNDCFGS:
2735                 if (!vmx_mpx_supported())
2736                         return 1;
2737                 vmcs_write64(GUEST_BNDCFGS, data);
2738                 break;
2739         case MSR_IA32_TSC:
2740                 kvm_write_tsc(vcpu, msr_info);
2741                 break;
2742         case MSR_IA32_CR_PAT:
2743                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2744                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2745                                 return 1;
2746                         vmcs_write64(GUEST_IA32_PAT, data);
2747                         vcpu->arch.pat = data;
2748                         break;
2749                 }
2750                 ret = kvm_set_msr_common(vcpu, msr_info);
2751                 break;
2752         case MSR_IA32_TSC_ADJUST:
2753                 ret = kvm_set_msr_common(vcpu, msr_info);
2754                 break;
2755         case MSR_IA32_FEATURE_CONTROL:
2756                 if (!nested_vmx_allowed(vcpu) ||
2757                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2758                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2759                         return 1;
2760                 vmx->nested.msr_ia32_feature_control = data;
2761                 if (msr_info->host_initiated && data == 0)
2762                         vmx_leave_nested(vcpu);
2763                 break;
2764         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2765                 return 1; /* they are read-only */
2766         case MSR_IA32_XSS:
2767                 if (!vmx_xsaves_supported())
2768                         return 1;
2769                 /*
2770                  * The only supported bit as of Skylake is bit 8, but
2771                  * it is not supported on KVM.
2772                  */
2773                 if (data != 0)
2774                         return 1;
2775                 vcpu->arch.ia32_xss = data;
2776                 if (vcpu->arch.ia32_xss != host_xss)
2777                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2778                                 vcpu->arch.ia32_xss, host_xss);
2779                 else
2780                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2781                 break;
2782         case MSR_TSC_AUX:
2783                 if (!vmx->rdtscp_enabled)
2784                         return 1;
2785                 /* Check reserved bit, higher 32 bits should be zero */
2786                 if ((data >> 32) != 0)
2787                         return 1;
2788                 /* Otherwise falls through */
2789         default:
2790                 msr = find_msr_entry(vmx, msr_index);
2791                 if (msr) {
2792                         u64 old_msr_data = msr->data;
2793                         msr->data = data;
2794                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2795                                 preempt_disable();
2796                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2797                                                          msr->mask);
2798                                 preempt_enable();
2799                                 if (ret)
2800                                         msr->data = old_msr_data;
2801                         }
2802                         break;
2803                 }
2804                 ret = kvm_set_msr_common(vcpu, msr_info);
2805         }
2806
2807         return ret;
2808 }
2809
2810 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2811 {
2812         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2813         switch (reg) {
2814         case VCPU_REGS_RSP:
2815                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2816                 break;
2817         case VCPU_REGS_RIP:
2818                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2819                 break;
2820         case VCPU_EXREG_PDPTR:
2821                 if (enable_ept)
2822                         ept_save_pdptrs(vcpu);
2823                 break;
2824         default:
2825                 break;
2826         }
2827 }
2828
2829 static __init int cpu_has_kvm_support(void)
2830 {
2831         return cpu_has_vmx();
2832 }
2833
2834 static __init int vmx_disabled_by_bios(void)
2835 {
2836         u64 msr;
2837
2838         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2839         if (msr & FEATURE_CONTROL_LOCKED) {
2840                 /* launched w/ TXT and VMX disabled */
2841                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2842                         && tboot_enabled())
2843                         return 1;
2844                 /* launched w/o TXT and VMX only enabled w/ TXT */
2845                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2846                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2847                         && !tboot_enabled()) {
2848                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2849                                 "activate TXT before enabling KVM\n");
2850                         return 1;
2851                 }
2852                 /* launched w/o TXT and VMX disabled */
2853                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2854                         && !tboot_enabled())
2855                         return 1;
2856         }
2857
2858         return 0;
2859 }
2860
2861 static void kvm_cpu_vmxon(u64 addr)
2862 {
2863         asm volatile (ASM_VMX_VMXON_RAX
2864                         : : "a"(&addr), "m"(addr)
2865                         : "memory", "cc");
2866 }
2867
2868 static int hardware_enable(void)
2869 {
2870         int cpu = raw_smp_processor_id();
2871         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2872         u64 old, test_bits;
2873
2874         if (cr4_read_shadow() & X86_CR4_VMXE)
2875                 return -EBUSY;
2876
2877         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2878
2879         /*
2880          * Now we can enable the vmclear operation in kdump
2881          * since the loaded_vmcss_on_cpu list on this cpu
2882          * has been initialized.
2883          *
2884          * Though the cpu is not in VMX operation now, there
2885          * is no problem to enable the vmclear operation
2886          * for the loaded_vmcss_on_cpu list is empty!
2887          */
2888         crash_enable_local_vmclear(cpu);
2889
2890         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2891
2892         test_bits = FEATURE_CONTROL_LOCKED;
2893         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2894         if (tboot_enabled())
2895                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2896
2897         if ((old & test_bits) != test_bits) {
2898                 /* enable and lock */
2899                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2900         }
2901         cr4_set_bits(X86_CR4_VMXE);
2902
2903         if (vmm_exclusive) {
2904                 kvm_cpu_vmxon(phys_addr);
2905                 ept_sync_global();
2906         }
2907
2908         native_store_gdt(this_cpu_ptr(&host_gdt));
2909
2910         return 0;
2911 }
2912
2913 static void vmclear_local_loaded_vmcss(void)
2914 {
2915         int cpu = raw_smp_processor_id();
2916         struct loaded_vmcs *v, *n;
2917
2918         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2919                                  loaded_vmcss_on_cpu_link)
2920                 __loaded_vmcs_clear(v);
2921 }
2922
2923
2924 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2925  * tricks.
2926  */
2927 static void kvm_cpu_vmxoff(void)
2928 {
2929         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2930 }
2931
2932 static void hardware_disable(void)
2933 {
2934         if (vmm_exclusive) {
2935                 vmclear_local_loaded_vmcss();
2936                 kvm_cpu_vmxoff();
2937         }
2938         cr4_clear_bits(X86_CR4_VMXE);
2939 }
2940
2941 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2942                                       u32 msr, u32 *result)
2943 {
2944         u32 vmx_msr_low, vmx_msr_high;
2945         u32 ctl = ctl_min | ctl_opt;
2946
2947         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2948
2949         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2950         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2951
2952         /* Ensure minimum (required) set of control bits are supported. */
2953         if (ctl_min & ~ctl)
2954                 return -EIO;
2955
2956         *result = ctl;
2957         return 0;
2958 }
2959
2960 static __init bool allow_1_setting(u32 msr, u32 ctl)
2961 {
2962         u32 vmx_msr_low, vmx_msr_high;
2963
2964         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2965         return vmx_msr_high & ctl;
2966 }
2967
2968 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2969 {
2970         u32 vmx_msr_low, vmx_msr_high;
2971         u32 min, opt, min2, opt2;
2972         u32 _pin_based_exec_control = 0;
2973         u32 _cpu_based_exec_control = 0;
2974         u32 _cpu_based_2nd_exec_control = 0;
2975         u32 _vmexit_control = 0;
2976         u32 _vmentry_control = 0;
2977
2978         min = CPU_BASED_HLT_EXITING |
2979 #ifdef CONFIG_X86_64
2980               CPU_BASED_CR8_LOAD_EXITING |
2981               CPU_BASED_CR8_STORE_EXITING |
2982 #endif
2983               CPU_BASED_CR3_LOAD_EXITING |
2984               CPU_BASED_CR3_STORE_EXITING |
2985               CPU_BASED_USE_IO_BITMAPS |
2986               CPU_BASED_MOV_DR_EXITING |
2987               CPU_BASED_USE_TSC_OFFSETING |
2988               CPU_BASED_MWAIT_EXITING |
2989               CPU_BASED_MONITOR_EXITING |
2990               CPU_BASED_INVLPG_EXITING |
2991               CPU_BASED_RDPMC_EXITING;
2992
2993         opt = CPU_BASED_TPR_SHADOW |
2994               CPU_BASED_USE_MSR_BITMAPS |
2995               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2996         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2997                                 &_cpu_based_exec_control) < 0)
2998                 return -EIO;
2999 #ifdef CONFIG_X86_64
3000         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3001                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3002                                            ~CPU_BASED_CR8_STORE_EXITING;
3003 #endif
3004         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3005                 min2 = 0;
3006                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3007                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3008                         SECONDARY_EXEC_WBINVD_EXITING |
3009                         SECONDARY_EXEC_ENABLE_VPID |
3010                         SECONDARY_EXEC_ENABLE_EPT |
3011                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3012                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3013                         SECONDARY_EXEC_RDTSCP |
3014                         SECONDARY_EXEC_ENABLE_INVPCID |
3015                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3016                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3017                         SECONDARY_EXEC_SHADOW_VMCS |
3018                         SECONDARY_EXEC_XSAVES |
3019                         SECONDARY_EXEC_ENABLE_PML;
3020                 if (adjust_vmx_controls(min2, opt2,
3021                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3022                                         &_cpu_based_2nd_exec_control) < 0)
3023                         return -EIO;
3024         }
3025 #ifndef CONFIG_X86_64
3026         if (!(_cpu_based_2nd_exec_control &
3027                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3028                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3029 #endif
3030
3031         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3032                 _cpu_based_2nd_exec_control &= ~(
3033                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3034                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3035                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3036
3037         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3038                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3039                    enabled */
3040                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3041                                              CPU_BASED_CR3_STORE_EXITING |
3042                                              CPU_BASED_INVLPG_EXITING);
3043                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3044                       vmx_capability.ept, vmx_capability.vpid);
3045         }
3046
3047         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3048 #ifdef CONFIG_X86_64
3049         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3050 #endif
3051         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3052                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3053         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3054                                 &_vmexit_control) < 0)
3055                 return -EIO;
3056
3057         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3058         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3059         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3060                                 &_pin_based_exec_control) < 0)
3061                 return -EIO;
3062
3063         if (!(_cpu_based_2nd_exec_control &
3064                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3065                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3066                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3067
3068         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3069         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3070         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3071                                 &_vmentry_control) < 0)
3072                 return -EIO;
3073
3074         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3075
3076         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3077         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3078                 return -EIO;
3079
3080 #ifdef CONFIG_X86_64
3081         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3082         if (vmx_msr_high & (1u<<16))
3083                 return -EIO;
3084 #endif
3085
3086         /* Require Write-Back (WB) memory type for VMCS accesses. */
3087         if (((vmx_msr_high >> 18) & 15) != 6)
3088                 return -EIO;
3089
3090         vmcs_conf->size = vmx_msr_high & 0x1fff;
3091         vmcs_conf->order = get_order(vmcs_config.size);
3092         vmcs_conf->revision_id = vmx_msr_low;
3093
3094         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3095         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3096         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3097         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3098         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3099
3100         cpu_has_load_ia32_efer =
3101                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3102                                 VM_ENTRY_LOAD_IA32_EFER)
3103                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3104                                    VM_EXIT_LOAD_IA32_EFER);
3105
3106         cpu_has_load_perf_global_ctrl =
3107                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3108                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3109                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3110                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3111
3112         /*
3113          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3114          * but due to arrata below it can't be used. Workaround is to use
3115          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3116          *
3117          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3118          *
3119          * AAK155             (model 26)
3120          * AAP115             (model 30)
3121          * AAT100             (model 37)
3122          * BC86,AAY89,BD102   (model 44)
3123          * BA97               (model 46)
3124          *
3125          */
3126         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3127                 switch (boot_cpu_data.x86_model) {
3128                 case 26:
3129                 case 30:
3130                 case 37:
3131                 case 44:
3132                 case 46:
3133                         cpu_has_load_perf_global_ctrl = false;
3134                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3135                                         "does not work properly. Using workaround\n");
3136                         break;
3137                 default:
3138                         break;
3139                 }
3140         }
3141
3142         if (cpu_has_xsaves)
3143                 rdmsrl(MSR_IA32_XSS, host_xss);
3144
3145         return 0;
3146 }
3147
3148 static struct vmcs *alloc_vmcs_cpu(int cpu)
3149 {
3150         int node = cpu_to_node(cpu);
3151         struct page *pages;
3152         struct vmcs *vmcs;
3153
3154         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3155         if (!pages)
3156                 return NULL;
3157         vmcs = page_address(pages);
3158         memset(vmcs, 0, vmcs_config.size);
3159         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3160         return vmcs;
3161 }
3162
3163 static struct vmcs *alloc_vmcs(void)
3164 {
3165         return alloc_vmcs_cpu(raw_smp_processor_id());
3166 }
3167
3168 static void free_vmcs(struct vmcs *vmcs)
3169 {
3170         free_pages((unsigned long)vmcs, vmcs_config.order);
3171 }
3172
3173 /*
3174  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3175  */
3176 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3177 {
3178         if (!loaded_vmcs->vmcs)
3179                 return;
3180         loaded_vmcs_clear(loaded_vmcs);
3181         free_vmcs(loaded_vmcs->vmcs);
3182         loaded_vmcs->vmcs = NULL;
3183 }
3184
3185 static void free_kvm_area(void)
3186 {
3187         int cpu;
3188
3189         for_each_possible_cpu(cpu) {
3190                 free_vmcs(per_cpu(vmxarea, cpu));
3191                 per_cpu(vmxarea, cpu) = NULL;
3192         }
3193 }
3194
3195 static void init_vmcs_shadow_fields(void)
3196 {
3197         int i, j;
3198
3199         /* No checks for read only fields yet */
3200
3201         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3202                 switch (shadow_read_write_fields[i]) {
3203                 case GUEST_BNDCFGS:
3204                         if (!vmx_mpx_supported())
3205                                 continue;
3206                         break;
3207                 default:
3208                         break;
3209                 }
3210
3211                 if (j < i)
3212                         shadow_read_write_fields[j] =
3213                                 shadow_read_write_fields[i];
3214                 j++;
3215         }
3216         max_shadow_read_write_fields = j;
3217
3218         /* shadowed fields guest access without vmexit */
3219         for (i = 0; i < max_shadow_read_write_fields; i++) {
3220                 clear_bit(shadow_read_write_fields[i],
3221                           vmx_vmwrite_bitmap);
3222                 clear_bit(shadow_read_write_fields[i],
3223                           vmx_vmread_bitmap);
3224         }
3225         for (i = 0; i < max_shadow_read_only_fields; i++)
3226                 clear_bit(shadow_read_only_fields[i],
3227                           vmx_vmread_bitmap);
3228 }
3229
3230 static __init int alloc_kvm_area(void)
3231 {
3232         int cpu;
3233
3234         for_each_possible_cpu(cpu) {
3235                 struct vmcs *vmcs;
3236
3237                 vmcs = alloc_vmcs_cpu(cpu);
3238                 if (!vmcs) {
3239                         free_kvm_area();
3240                         return -ENOMEM;
3241                 }
3242
3243                 per_cpu(vmxarea, cpu) = vmcs;
3244         }
3245         return 0;
3246 }
3247
3248 static bool emulation_required(struct kvm_vcpu *vcpu)
3249 {
3250         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3251 }
3252
3253 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3254                 struct kvm_segment *save)
3255 {
3256         if (!emulate_invalid_guest_state) {
3257                 /*
3258                  * CS and SS RPL should be equal during guest entry according
3259                  * to VMX spec, but in reality it is not always so. Since vcpu
3260                  * is in the middle of the transition from real mode to
3261                  * protected mode it is safe to assume that RPL 0 is a good
3262                  * default value.
3263                  */
3264                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3265                         save->selector &= ~SELECTOR_RPL_MASK;
3266                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3267                 save->s = 1;
3268         }
3269         vmx_set_segment(vcpu, save, seg);
3270 }
3271
3272 static void enter_pmode(struct kvm_vcpu *vcpu)
3273 {
3274         unsigned long flags;
3275         struct vcpu_vmx *vmx = to_vmx(vcpu);
3276
3277         /*
3278          * Update real mode segment cache. It may be not up-to-date if sement
3279          * register was written while vcpu was in a guest mode.
3280          */
3281         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3282         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3283         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3284         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3285         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3286         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3287
3288         vmx->rmode.vm86_active = 0;
3289
3290         vmx_segment_cache_clear(vmx);
3291
3292         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3293
3294         flags = vmcs_readl(GUEST_RFLAGS);
3295         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3296         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3297         vmcs_writel(GUEST_RFLAGS, flags);
3298
3299         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3300                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3301
3302         update_exception_bitmap(vcpu);
3303
3304         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3305         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3306         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3307         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3308         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3309         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3310 }
3311
3312 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3313 {
3314         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3315         struct kvm_segment var = *save;
3316
3317         var.dpl = 0x3;
3318         if (seg == VCPU_SREG_CS)
3319                 var.type = 0x3;
3320
3321         if (!emulate_invalid_guest_state) {
3322                 var.selector = var.base >> 4;
3323                 var.base = var.base & 0xffff0;
3324                 var.limit = 0xffff;
3325                 var.g = 0;
3326                 var.db = 0;
3327                 var.present = 1;
3328                 var.s = 1;
3329                 var.l = 0;
3330                 var.unusable = 0;
3331                 var.type = 0x3;
3332                 var.avl = 0;
3333                 if (save->base & 0xf)
3334                         printk_once(KERN_WARNING "kvm: segment base is not "
3335                                         "paragraph aligned when entering "
3336                                         "protected mode (seg=%d)", seg);
3337         }
3338
3339         vmcs_write16(sf->selector, var.selector);
3340         vmcs_write32(sf->base, var.base);
3341         vmcs_write32(sf->limit, var.limit);
3342         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3343 }
3344
3345 static void enter_rmode(struct kvm_vcpu *vcpu)
3346 {
3347         unsigned long flags;
3348         struct vcpu_vmx *vmx = to_vmx(vcpu);
3349
3350         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3351         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3352         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3353         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3354         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3355         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3356         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3357
3358         vmx->rmode.vm86_active = 1;
3359
3360         /*
3361          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3362          * vcpu. Warn the user that an update is overdue.
3363          */
3364         if (!vcpu->kvm->arch.tss_addr)
3365                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3366                              "called before entering vcpu\n");
3367
3368         vmx_segment_cache_clear(vmx);
3369
3370         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3371         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3372         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3373
3374         flags = vmcs_readl(GUEST_RFLAGS);
3375         vmx->rmode.save_rflags = flags;
3376
3377         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3378
3379         vmcs_writel(GUEST_RFLAGS, flags);
3380         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3381         update_exception_bitmap(vcpu);
3382
3383         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3384         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3385         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3386         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3387         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3388         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3389
3390         kvm_mmu_reset_context(vcpu);
3391 }
3392
3393 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3394 {
3395         struct vcpu_vmx *vmx = to_vmx(vcpu);
3396         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3397
3398         if (!msr)
3399                 return;
3400
3401         /*
3402          * Force kernel_gs_base reloading before EFER changes, as control
3403          * of this msr depends on is_long_mode().
3404          */
3405         vmx_load_host_state(to_vmx(vcpu));
3406         vcpu->arch.efer = efer;
3407         if (efer & EFER_LMA) {
3408                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3409                 msr->data = efer;
3410         } else {
3411                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3412
3413                 msr->data = efer & ~EFER_LME;
3414         }
3415         setup_msrs(vmx);
3416 }
3417
3418 #ifdef CONFIG_X86_64
3419
3420 static void enter_lmode(struct kvm_vcpu *vcpu)
3421 {
3422         u32 guest_tr_ar;
3423
3424         vmx_segment_cache_clear(to_vmx(vcpu));
3425
3426         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3427         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3428                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3429                                      __func__);
3430                 vmcs_write32(GUEST_TR_AR_BYTES,
3431                              (guest_tr_ar & ~AR_TYPE_MASK)
3432                              | AR_TYPE_BUSY_64_TSS);
3433         }
3434         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3435 }
3436
3437 static void exit_lmode(struct kvm_vcpu *vcpu)
3438 {
3439         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3440         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3441 }
3442
3443 #endif
3444
3445 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3446 {
3447         vpid_sync_context(to_vmx(vcpu));
3448         if (enable_ept) {
3449                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3450                         return;
3451                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3452         }
3453 }
3454
3455 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3456 {
3457         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3458
3459         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3460         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3461 }
3462
3463 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3464 {
3465         if (enable_ept && is_paging(vcpu))
3466                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3467         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3468 }
3469
3470 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3471 {
3472         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3473
3474         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3475         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3476 }
3477
3478 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3479 {
3480         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3481
3482         if (!test_bit(VCPU_EXREG_PDPTR,
3483                       (unsigned long *)&vcpu->arch.regs_dirty))
3484                 return;
3485
3486         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3487                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3488                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3489                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3490                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3491         }
3492 }
3493
3494 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3495 {
3496         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3497
3498         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3499                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3500                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3501                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3502                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3503         }
3504
3505         __set_bit(VCPU_EXREG_PDPTR,
3506                   (unsigned long *)&vcpu->arch.regs_avail);
3507         __set_bit(VCPU_EXREG_PDPTR,
3508                   (unsigned long *)&vcpu->arch.regs_dirty);
3509 }
3510
3511 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3512
3513 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3514                                         unsigned long cr0,
3515                                         struct kvm_vcpu *vcpu)
3516 {
3517         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3518                 vmx_decache_cr3(vcpu);
3519         if (!(cr0 & X86_CR0_PG)) {
3520                 /* From paging/starting to nonpaging */
3521                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3522                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3523                              (CPU_BASED_CR3_LOAD_EXITING |
3524                               CPU_BASED_CR3_STORE_EXITING));
3525                 vcpu->arch.cr0 = cr0;
3526                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3527         } else if (!is_paging(vcpu)) {
3528                 /* From nonpaging to paging */
3529                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3530                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3531                              ~(CPU_BASED_CR3_LOAD_EXITING |
3532                                CPU_BASED_CR3_STORE_EXITING));
3533                 vcpu->arch.cr0 = cr0;
3534                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3535         }
3536
3537         if (!(cr0 & X86_CR0_WP))
3538                 *hw_cr0 &= ~X86_CR0_WP;
3539 }
3540
3541 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3542 {
3543         struct vcpu_vmx *vmx = to_vmx(vcpu);
3544         unsigned long hw_cr0;
3545
3546         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3547         if (enable_unrestricted_guest)
3548                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3549         else {
3550                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3551
3552                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3553                         enter_pmode(vcpu);
3554
3555                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3556                         enter_rmode(vcpu);
3557         }
3558
3559 #ifdef CONFIG_X86_64
3560         if (vcpu->arch.efer & EFER_LME) {
3561                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3562                         enter_lmode(vcpu);
3563                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3564                         exit_lmode(vcpu);
3565         }
3566 #endif
3567
3568         if (enable_ept)
3569                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3570
3571         if (!vcpu->fpu_active)
3572                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3573
3574         vmcs_writel(CR0_READ_SHADOW, cr0);
3575         vmcs_writel(GUEST_CR0, hw_cr0);
3576         vcpu->arch.cr0 = cr0;
3577
3578         /* depends on vcpu->arch.cr0 to be set to a new value */
3579         vmx->emulation_required = emulation_required(vcpu);
3580 }
3581
3582 static u64 construct_eptp(unsigned long root_hpa)
3583 {
3584         u64 eptp;
3585
3586         /* TODO write the value reading from MSR */
3587         eptp = VMX_EPT_DEFAULT_MT |
3588                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3589         if (enable_ept_ad_bits)
3590                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3591         eptp |= (root_hpa & PAGE_MASK);
3592
3593         return eptp;
3594 }
3595
3596 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3597 {
3598         unsigned long guest_cr3;
3599         u64 eptp;
3600
3601         guest_cr3 = cr3;
3602         if (enable_ept) {
3603                 eptp = construct_eptp(cr3);
3604                 vmcs_write64(EPT_POINTER, eptp);
3605                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3606                         guest_cr3 = kvm_read_cr3(vcpu);
3607                 else
3608                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3609                 ept_load_pdptrs(vcpu);
3610         }
3611
3612         vmx_flush_tlb(vcpu);
3613         vmcs_writel(GUEST_CR3, guest_cr3);
3614 }
3615
3616 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3617 {
3618         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3619                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3620
3621         if (cr4 & X86_CR4_VMXE) {
3622                 /*
3623                  * To use VMXON (and later other VMX instructions), a guest
3624                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3625                  * So basically the check on whether to allow nested VMX
3626                  * is here.
3627                  */
3628                 if (!nested_vmx_allowed(vcpu))
3629                         return 1;
3630         }
3631         if (to_vmx(vcpu)->nested.vmxon &&
3632             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3633                 return 1;
3634
3635         vcpu->arch.cr4 = cr4;
3636         if (enable_ept) {
3637                 if (!is_paging(vcpu)) {
3638                         hw_cr4 &= ~X86_CR4_PAE;
3639                         hw_cr4 |= X86_CR4_PSE;
3640                         /*
3641                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3642                          * in hardware. However KVM always uses paging mode to
3643                          * emulate guest non-paging mode with TDP.
3644                          * To emulate this behavior, SMEP/SMAP needs to be
3645                          * manually disabled when guest switches to non-paging
3646                          * mode.
3647                          */
3648                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3649                 } else if (!(cr4 & X86_CR4_PAE)) {
3650                         hw_cr4 &= ~X86_CR4_PAE;
3651                 }
3652         }
3653
3654         vmcs_writel(CR4_READ_SHADOW, cr4);
3655         vmcs_writel(GUEST_CR4, hw_cr4);
3656         return 0;
3657 }
3658
3659 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3660                             struct kvm_segment *var, int seg)
3661 {
3662         struct vcpu_vmx *vmx = to_vmx(vcpu);
3663         u32 ar;
3664
3665         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3666                 *var = vmx->rmode.segs[seg];
3667                 if (seg == VCPU_SREG_TR
3668                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3669                         return;
3670                 var->base = vmx_read_guest_seg_base(vmx, seg);
3671                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3672                 return;
3673         }
3674         var->base = vmx_read_guest_seg_base(vmx, seg);
3675         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3676         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3677         ar = vmx_read_guest_seg_ar(vmx, seg);
3678         var->unusable = (ar >> 16) & 1;
3679         var->type = ar & 15;
3680         var->s = (ar >> 4) & 1;
3681         var->dpl = (ar >> 5) & 3;
3682         /*
3683          * Some userspaces do not preserve unusable property. Since usable
3684          * segment has to be present according to VMX spec we can use present
3685          * property to amend userspace bug by making unusable segment always
3686          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3687          * segment as unusable.
3688          */
3689         var->present = !var->unusable;
3690         var->avl = (ar >> 12) & 1;
3691         var->l = (ar >> 13) & 1;
3692         var->db = (ar >> 14) & 1;
3693         var->g = (ar >> 15) & 1;
3694 }
3695
3696 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3697 {
3698         struct kvm_segment s;
3699
3700         if (to_vmx(vcpu)->rmode.vm86_active) {
3701                 vmx_get_segment(vcpu, &s, seg);
3702                 return s.base;
3703         }
3704         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3705 }
3706
3707 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3708 {
3709         struct vcpu_vmx *vmx = to_vmx(vcpu);
3710
3711         if (unlikely(vmx->rmode.vm86_active))
3712                 return 0;
3713         else {
3714                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3715                 return AR_DPL(ar);
3716         }
3717 }
3718
3719 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3720 {
3721         u32 ar;
3722
3723         if (var->unusable || !var->present)
3724                 ar = 1 << 16;
3725         else {
3726                 ar = var->type & 15;
3727                 ar |= (var->s & 1) << 4;
3728                 ar |= (var->dpl & 3) << 5;
3729                 ar |= (var->present & 1) << 7;
3730                 ar |= (var->avl & 1) << 12;
3731                 ar |= (var->l & 1) << 13;
3732                 ar |= (var->db & 1) << 14;
3733                 ar |= (var->g & 1) << 15;
3734         }
3735
3736         return ar;
3737 }
3738
3739 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3740                             struct kvm_segment *var, int seg)
3741 {
3742         struct vcpu_vmx *vmx = to_vmx(vcpu);
3743         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3744
3745         vmx_segment_cache_clear(vmx);
3746
3747         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3748                 vmx->rmode.segs[seg] = *var;
3749                 if (seg == VCPU_SREG_TR)
3750                         vmcs_write16(sf->selector, var->selector);
3751                 else if (var->s)
3752                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3753                 goto out;
3754         }
3755
3756         vmcs_writel(sf->base, var->base);
3757         vmcs_write32(sf->limit, var->limit);
3758         vmcs_write16(sf->selector, var->selector);
3759
3760         /*
3761          *   Fix the "Accessed" bit in AR field of segment registers for older
3762          * qemu binaries.
3763          *   IA32 arch specifies that at the time of processor reset the
3764          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3765          * is setting it to 0 in the userland code. This causes invalid guest
3766          * state vmexit when "unrestricted guest" mode is turned on.
3767          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3768          * tree. Newer qemu binaries with that qemu fix would not need this
3769          * kvm hack.
3770          */
3771         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3772                 var->type |= 0x1; /* Accessed */
3773
3774         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3775
3776 out:
3777         vmx->emulation_required = emulation_required(vcpu);
3778 }
3779
3780 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3781 {
3782         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3783
3784         *db = (ar >> 14) & 1;
3785         *l = (ar >> 13) & 1;
3786 }
3787
3788 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3789 {
3790         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3791         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3792 }
3793
3794 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3795 {
3796         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3797         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3798 }
3799
3800 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3801 {
3802         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3803         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3804 }
3805
3806 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3807 {
3808         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3809         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3810 }
3811
3812 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3813 {
3814         struct kvm_segment var;
3815         u32 ar;
3816
3817         vmx_get_segment(vcpu, &var, seg);
3818         var.dpl = 0x3;
3819         if (seg == VCPU_SREG_CS)
3820                 var.type = 0x3;
3821         ar = vmx_segment_access_rights(&var);
3822
3823         if (var.base != (var.selector << 4))
3824                 return false;
3825         if (var.limit != 0xffff)
3826                 return false;
3827         if (ar != 0xf3)
3828                 return false;
3829
3830         return true;
3831 }
3832
3833 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3834 {
3835         struct kvm_segment cs;
3836         unsigned int cs_rpl;
3837
3838         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3839         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3840
3841         if (cs.unusable)
3842                 return false;
3843         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3844                 return false;
3845         if (!cs.s)
3846                 return false;
3847         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3848                 if (cs.dpl > cs_rpl)
3849                         return false;
3850         } else {
3851                 if (cs.dpl != cs_rpl)
3852                         return false;
3853         }
3854         if (!cs.present)
3855                 return false;
3856
3857         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3858         return true;
3859 }
3860
3861 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3862 {
3863         struct kvm_segment ss;
3864         unsigned int ss_rpl;
3865
3866         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3867         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3868
3869         if (ss.unusable)
3870                 return true;
3871         if (ss.type != 3 && ss.type != 7)
3872                 return false;
3873         if (!ss.s)
3874                 return false;
3875         if (ss.dpl != ss_rpl) /* DPL != RPL */
3876                 return false;
3877         if (!ss.present)
3878                 return false;
3879
3880         return true;
3881 }
3882
3883 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3884 {
3885         struct kvm_segment var;
3886         unsigned int rpl;
3887
3888         vmx_get_segment(vcpu, &var, seg);
3889         rpl = var.selector & SELECTOR_RPL_MASK;
3890
3891         if (var.unusable)
3892                 return true;
3893         if (!var.s)
3894                 return false;
3895         if (!var.present)
3896                 return false;
3897         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3898                 if (var.dpl < rpl) /* DPL < RPL */
3899                         return false;
3900         }
3901
3902         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3903          * rights flags
3904          */
3905         return true;
3906 }
3907
3908 static bool tr_valid(struct kvm_vcpu *vcpu)
3909 {
3910         struct kvm_segment tr;
3911
3912         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3913
3914         if (tr.unusable)
3915                 return false;
3916         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3917                 return false;
3918         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3919                 return false;
3920         if (!tr.present)
3921                 return false;
3922
3923         return true;
3924 }
3925
3926 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3927 {
3928         struct kvm_segment ldtr;
3929
3930         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3931
3932         if (ldtr.unusable)
3933                 return true;
3934         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3935                 return false;
3936         if (ldtr.type != 2)
3937                 return false;
3938         if (!ldtr.present)
3939                 return false;
3940
3941         return true;
3942 }
3943
3944 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3945 {
3946         struct kvm_segment cs, ss;
3947
3948         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3949         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3950
3951         return ((cs.selector & SELECTOR_RPL_MASK) ==
3952                  (ss.selector & SELECTOR_RPL_MASK));
3953 }
3954
3955 /*
3956  * Check if guest state is valid. Returns true if valid, false if
3957  * not.
3958  * We assume that registers are always usable
3959  */
3960 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3961 {
3962         if (enable_unrestricted_guest)
3963                 return true;
3964
3965         /* real mode guest state checks */
3966         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3967                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3968                         return false;
3969                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3970                         return false;
3971                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3972                         return false;
3973                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3974                         return false;
3975                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3976                         return false;
3977                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3978                         return false;
3979         } else {
3980         /* protected mode guest state checks */
3981                 if (!cs_ss_rpl_check(vcpu))
3982                         return false;
3983                 if (!code_segment_valid(vcpu))
3984                         return false;
3985                 if (!stack_segment_valid(vcpu))
3986                         return false;
3987                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3988                         return false;
3989                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3990                         return false;
3991                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3992                         return false;
3993                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3994                         return false;
3995                 if (!tr_valid(vcpu))
3996                         return false;
3997                 if (!ldtr_valid(vcpu))
3998                         return false;
3999         }
4000         /* TODO:
4001          * - Add checks on RIP
4002          * - Add checks on RFLAGS
4003          */
4004
4005         return true;
4006 }
4007
4008 static int init_rmode_tss(struct kvm *kvm)
4009 {
4010         gfn_t fn;
4011         u16 data = 0;
4012         int idx, r;
4013
4014         idx = srcu_read_lock(&kvm->srcu);
4015         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4016         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4017         if (r < 0)
4018                 goto out;
4019         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4020         r = kvm_write_guest_page(kvm, fn++, &data,
4021                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4022         if (r < 0)
4023                 goto out;
4024         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4025         if (r < 0)
4026                 goto out;
4027         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4028         if (r < 0)
4029                 goto out;
4030         data = ~0;
4031         r = kvm_write_guest_page(kvm, fn, &data,
4032                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4033                                  sizeof(u8));
4034 out:
4035         srcu_read_unlock(&kvm->srcu, idx);
4036         return r;
4037 }
4038
4039 static int init_rmode_identity_map(struct kvm *kvm)
4040 {
4041         int i, idx, r = 0;
4042         pfn_t identity_map_pfn;
4043         u32 tmp;
4044
4045         if (!enable_ept)
4046                 return 0;
4047
4048         /* Protect kvm->arch.ept_identity_pagetable_done. */
4049         mutex_lock(&kvm->slots_lock);
4050
4051         if (likely(kvm->arch.ept_identity_pagetable_done))
4052                 goto out2;
4053
4054         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4055
4056         r = alloc_identity_pagetable(kvm);
4057         if (r < 0)
4058                 goto out2;
4059
4060         idx = srcu_read_lock(&kvm->srcu);
4061         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4062         if (r < 0)
4063                 goto out;
4064         /* Set up identity-mapping pagetable for EPT in real mode */
4065         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4066                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4067                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4068                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4069                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4070                 if (r < 0)
4071                         goto out;
4072         }
4073         kvm->arch.ept_identity_pagetable_done = true;
4074
4075 out:
4076         srcu_read_unlock(&kvm->srcu, idx);
4077
4078 out2:
4079         mutex_unlock(&kvm->slots_lock);
4080         return r;
4081 }
4082
4083 static void seg_setup(int seg)
4084 {
4085         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4086         unsigned int ar;
4087
4088         vmcs_write16(sf->selector, 0);
4089         vmcs_writel(sf->base, 0);
4090         vmcs_write32(sf->limit, 0xffff);
4091         ar = 0x93;
4092         if (seg == VCPU_SREG_CS)
4093                 ar |= 0x08; /* code segment */
4094
4095         vmcs_write32(sf->ar_bytes, ar);
4096 }
4097
4098 static int alloc_apic_access_page(struct kvm *kvm)
4099 {
4100         struct page *page;
4101         struct kvm_userspace_memory_region kvm_userspace_mem;
4102         int r = 0;
4103
4104         mutex_lock(&kvm->slots_lock);
4105         if (kvm->arch.apic_access_page_done)
4106                 goto out;
4107         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4108         kvm_userspace_mem.flags = 0;
4109         kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4110         kvm_userspace_mem.memory_size = PAGE_SIZE;
4111         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4112         if (r)
4113                 goto out;
4114
4115         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4116         if (is_error_page(page)) {
4117                 r = -EFAULT;
4118                 goto out;
4119         }
4120
4121         /*
4122          * Do not pin the page in memory, so that memory hot-unplug
4123          * is able to migrate it.
4124          */
4125         put_page(page);
4126         kvm->arch.apic_access_page_done = true;
4127 out:
4128         mutex_unlock(&kvm->slots_lock);
4129         return r;
4130 }
4131
4132 static int alloc_identity_pagetable(struct kvm *kvm)
4133 {
4134         /* Called with kvm->slots_lock held. */
4135
4136         struct kvm_userspace_memory_region kvm_userspace_mem;
4137         int r = 0;
4138
4139         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4140
4141         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4142         kvm_userspace_mem.flags = 0;
4143         kvm_userspace_mem.guest_phys_addr =
4144                 kvm->arch.ept_identity_map_addr;
4145         kvm_userspace_mem.memory_size = PAGE_SIZE;
4146         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4147
4148         return r;
4149 }
4150
4151 static void allocate_vpid(struct vcpu_vmx *vmx)
4152 {
4153         int vpid;
4154
4155         vmx->vpid = 0;
4156         if (!enable_vpid)
4157                 return;
4158         spin_lock(&vmx_vpid_lock);
4159         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4160         if (vpid < VMX_NR_VPIDS) {
4161                 vmx->vpid = vpid;
4162                 __set_bit(vpid, vmx_vpid_bitmap);
4163         }
4164         spin_unlock(&vmx_vpid_lock);
4165 }
4166
4167 static void free_vpid(struct vcpu_vmx *vmx)
4168 {
4169         if (!enable_vpid)
4170                 return;
4171         spin_lock(&vmx_vpid_lock);
4172         if (vmx->vpid != 0)
4173                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4174         spin_unlock(&vmx_vpid_lock);
4175 }
4176
4177 #define MSR_TYPE_R      1
4178 #define MSR_TYPE_W      2
4179 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4180                                                 u32 msr, int type)
4181 {
4182         int f = sizeof(unsigned long);
4183
4184         if (!cpu_has_vmx_msr_bitmap())
4185                 return;
4186
4187         /*
4188          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4189          * have the write-low and read-high bitmap offsets the wrong way round.
4190          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4191          */
4192         if (msr <= 0x1fff) {
4193                 if (type & MSR_TYPE_R)
4194                         /* read-low */
4195                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4196
4197                 if (type & MSR_TYPE_W)
4198                         /* write-low */
4199                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4200
4201         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4202                 msr &= 0x1fff;
4203                 if (type & MSR_TYPE_R)
4204                         /* read-high */
4205                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4206
4207                 if (type & MSR_TYPE_W)
4208                         /* write-high */
4209                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4210
4211         }
4212 }
4213
4214 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4215                                                 u32 msr, int type)
4216 {
4217         int f = sizeof(unsigned long);
4218
4219         if (!cpu_has_vmx_msr_bitmap())
4220                 return;
4221
4222         /*
4223          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4224          * have the write-low and read-high bitmap offsets the wrong way round.
4225          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4226          */
4227         if (msr <= 0x1fff) {
4228                 if (type & MSR_TYPE_R)
4229                         /* read-low */
4230                         __set_bit(msr, msr_bitmap + 0x000 / f);
4231
4232                 if (type & MSR_TYPE_W)
4233                         /* write-low */
4234                         __set_bit(msr, msr_bitmap + 0x800 / f);
4235
4236         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4237                 msr &= 0x1fff;
4238                 if (type & MSR_TYPE_R)
4239                         /* read-high */
4240                         __set_bit(msr, msr_bitmap + 0x400 / f);
4241
4242                 if (type & MSR_TYPE_W)
4243                         /* write-high */
4244                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4245
4246         }
4247 }
4248
4249 /*
4250  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4251  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4252  */
4253 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4254                                                unsigned long *msr_bitmap_nested,
4255                                                u32 msr, int type)
4256 {
4257         int f = sizeof(unsigned long);
4258
4259         if (!cpu_has_vmx_msr_bitmap()) {
4260                 WARN_ON(1);
4261                 return;
4262         }
4263
4264         /*
4265          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4266          * have the write-low and read-high bitmap offsets the wrong way round.
4267          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4268          */
4269         if (msr <= 0x1fff) {
4270                 if (type & MSR_TYPE_R &&
4271                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4272                         /* read-low */
4273                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4274
4275                 if (type & MSR_TYPE_W &&
4276                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4277                         /* write-low */
4278                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4279
4280         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4281                 msr &= 0x1fff;
4282                 if (type & MSR_TYPE_R &&
4283                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4284                         /* read-high */
4285                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4286
4287                 if (type & MSR_TYPE_W &&
4288                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4289                         /* write-high */
4290                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4291
4292         }
4293 }
4294
4295 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4296 {
4297         if (!longmode_only)
4298                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4299                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4300         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4301                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4302 }
4303
4304 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4305 {
4306         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4307                         msr, MSR_TYPE_R);
4308         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4309                         msr, MSR_TYPE_R);
4310 }
4311
4312 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4313 {
4314         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4315                         msr, MSR_TYPE_R);
4316         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4317                         msr, MSR_TYPE_R);
4318 }
4319
4320 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4321 {
4322         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4323                         msr, MSR_TYPE_W);
4324         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4325                         msr, MSR_TYPE_W);
4326 }
4327
4328 static int vmx_vm_has_apicv(struct kvm *kvm)
4329 {
4330         return enable_apicv && irqchip_in_kernel(kvm);
4331 }
4332
4333 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4334 {
4335         struct vcpu_vmx *vmx = to_vmx(vcpu);
4336         int max_irr;
4337         void *vapic_page;
4338         u16 status;
4339
4340         if (vmx->nested.pi_desc &&
4341             vmx->nested.pi_pending) {
4342                 vmx->nested.pi_pending = false;
4343                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4344                         return 0;
4345
4346                 max_irr = find_last_bit(
4347                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4348
4349                 if (max_irr == 256)
4350                         return 0;
4351
4352                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4353                 if (!vapic_page) {
4354                         WARN_ON(1);
4355                         return -ENOMEM;
4356                 }
4357                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4358                 kunmap(vmx->nested.virtual_apic_page);
4359
4360                 status = vmcs_read16(GUEST_INTR_STATUS);
4361                 if ((u8)max_irr > ((u8)status & 0xff)) {
4362                         status &= ~0xff;
4363                         status |= (u8)max_irr;
4364                         vmcs_write16(GUEST_INTR_STATUS, status);
4365                 }
4366         }
4367         return 0;
4368 }
4369
4370 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4371                                                 int vector)
4372 {
4373         struct vcpu_vmx *vmx = to_vmx(vcpu);
4374
4375         if (is_guest_mode(vcpu) &&
4376             vector == vmx->nested.posted_intr_nv) {
4377                 /* the PIR and ON have been set by L1. */
4378                 if (vcpu->mode == IN_GUEST_MODE)
4379                         apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4380                                 POSTED_INTR_VECTOR);
4381                 /*
4382                  * If a posted intr is not recognized by hardware,
4383                  * we will accomplish it in the next vmentry.
4384                  */
4385                 vmx->nested.pi_pending = true;
4386                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4387                 return 0;
4388         }
4389         return -1;
4390 }
4391 /*
4392  * Send interrupt to vcpu via posted interrupt way.
4393  * 1. If target vcpu is running(non-root mode), send posted interrupt
4394  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4395  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4396  * interrupt from PIR in next vmentry.
4397  */
4398 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4399 {
4400         struct vcpu_vmx *vmx = to_vmx(vcpu);
4401         int r;
4402
4403         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4404         if (!r)
4405                 return;
4406
4407         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4408                 return;
4409
4410         r = pi_test_and_set_on(&vmx->pi_desc);
4411         kvm_make_request(KVM_REQ_EVENT, vcpu);
4412 #ifdef CONFIG_SMP
4413         if (!r && (vcpu->mode == IN_GUEST_MODE))
4414                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4415                                 POSTED_INTR_VECTOR);
4416         else
4417 #endif
4418                 kvm_vcpu_kick(vcpu);
4419 }
4420
4421 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4422 {
4423         struct vcpu_vmx *vmx = to_vmx(vcpu);
4424
4425         if (!pi_test_and_clear_on(&vmx->pi_desc))
4426                 return;
4427
4428         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4429 }
4430
4431 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4432 {
4433         return;
4434 }
4435
4436 /*
4437  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4438  * will not change in the lifetime of the guest.
4439  * Note that host-state that does change is set elsewhere. E.g., host-state
4440  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4441  */
4442 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4443 {
4444         u32 low32, high32;
4445         unsigned long tmpl;
4446         struct desc_ptr dt;
4447         unsigned long cr4;
4448
4449         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4450         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4451
4452         /* Save the most likely value for this task's CR4 in the VMCS. */
4453         cr4 = cr4_read_shadow();
4454         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4455         vmx->host_state.vmcs_host_cr4 = cr4;
4456
4457         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4458 #ifdef CONFIG_X86_64
4459         /*
4460          * Load null selectors, so we can avoid reloading them in
4461          * __vmx_load_host_state(), in case userspace uses the null selectors
4462          * too (the expected case).
4463          */
4464         vmcs_write16(HOST_DS_SELECTOR, 0);
4465         vmcs_write16(HOST_ES_SELECTOR, 0);
4466 #else
4467         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4468         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4469 #endif
4470         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4471         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4472
4473         native_store_idt(&dt);
4474         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4475         vmx->host_idt_base = dt.address;
4476
4477         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4478
4479         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4480         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4481         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4482         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4483
4484         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4485                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4486                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4487         }
4488 }
4489
4490 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4491 {
4492         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4493         if (enable_ept)
4494                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4495         if (is_guest_mode(&vmx->vcpu))
4496                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4497                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4498         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4499 }
4500
4501 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4502 {
4503         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4504
4505         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4506                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4507         return pin_based_exec_ctrl;
4508 }
4509
4510 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4511 {
4512         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4513
4514         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4515                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4516
4517         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4518                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4519 #ifdef CONFIG_X86_64
4520                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4521                                 CPU_BASED_CR8_LOAD_EXITING;
4522 #endif
4523         }
4524         if (!enable_ept)
4525                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4526                                 CPU_BASED_CR3_LOAD_EXITING  |
4527                                 CPU_BASED_INVLPG_EXITING;
4528         return exec_control;
4529 }
4530
4531 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4532 {
4533         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4534         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4535                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4536         if (vmx->vpid == 0)
4537                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4538         if (!enable_ept) {
4539                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4540                 enable_unrestricted_guest = 0;
4541                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4542                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4543         }
4544         if (!enable_unrestricted_guest)
4545                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4546         if (!ple_gap)
4547                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4548         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4549                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4550                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4551         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4552         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4553            (handle_vmptrld).
4554            We can NOT enable shadow_vmcs here because we don't have yet
4555            a current VMCS12
4556         */
4557         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4558         /* PML is enabled/disabled in creating/destorying vcpu */
4559         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4560
4561         return exec_control;
4562 }
4563
4564 static void ept_set_mmio_spte_mask(void)
4565 {
4566         /*
4567          * EPT Misconfigurations can be generated if the value of bits 2:0
4568          * of an EPT paging-structure entry is 110b (write/execute).
4569          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4570          * spte.
4571          */
4572         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4573 }
4574
4575 #define VMX_XSS_EXIT_BITMAP 0
4576 /*
4577  * Sets up the vmcs for emulated real mode.
4578  */
4579 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4580 {
4581 #ifdef CONFIG_X86_64
4582         unsigned long a;
4583 #endif
4584         int i;
4585
4586         /* I/O */
4587         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4588         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4589
4590         if (enable_shadow_vmcs) {
4591                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4592                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4593         }
4594         if (cpu_has_vmx_msr_bitmap())
4595                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4596
4597         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4598
4599         /* Control */
4600         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4601
4602         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4603
4604         if (cpu_has_secondary_exec_ctrls()) {
4605                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4606                                 vmx_secondary_exec_control(vmx));
4607         }
4608
4609         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4610                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4611                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4612                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4613                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4614
4615                 vmcs_write16(GUEST_INTR_STATUS, 0);
4616
4617                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4618                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4619         }
4620
4621         if (ple_gap) {
4622                 vmcs_write32(PLE_GAP, ple_gap);
4623                 vmx->ple_window = ple_window;
4624                 vmx->ple_window_dirty = true;
4625         }
4626
4627         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4628         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4629         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4630
4631         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4632         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4633         vmx_set_constant_host_state(vmx);
4634 #ifdef CONFIG_X86_64
4635         rdmsrl(MSR_FS_BASE, a);
4636         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4637         rdmsrl(MSR_GS_BASE, a);
4638         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4639 #else
4640         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4641         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4642 #endif
4643
4644         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4645         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4646         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4647         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4648         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4649
4650         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4651                 u32 msr_low, msr_high;
4652                 u64 host_pat;
4653                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4654                 host_pat = msr_low | ((u64) msr_high << 32);
4655                 /* Write the default value follow host pat */
4656                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4657                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4658                 vmx->vcpu.arch.pat = host_pat;
4659         }
4660
4661         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4662                 u32 index = vmx_msr_index[i];
4663                 u32 data_low, data_high;
4664                 int j = vmx->nmsrs;
4665
4666                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4667                         continue;
4668                 if (wrmsr_safe(index, data_low, data_high) < 0)
4669                         continue;
4670                 vmx->guest_msrs[j].index = i;
4671                 vmx->guest_msrs[j].data = 0;
4672                 vmx->guest_msrs[j].mask = -1ull;
4673                 ++vmx->nmsrs;
4674         }
4675
4676
4677         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4678
4679         /* 22.2.1, 20.8.1 */
4680         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4681
4682         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4683         set_cr4_guest_host_mask(vmx);
4684
4685         if (vmx_xsaves_supported())
4686                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4687
4688         return 0;
4689 }
4690
4691 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4692 {
4693         struct vcpu_vmx *vmx = to_vmx(vcpu);
4694         struct msr_data apic_base_msr;
4695
4696         vmx->rmode.vm86_active = 0;
4697
4698         vmx->soft_vnmi_blocked = 0;
4699
4700         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4701         kvm_set_cr8(&vmx->vcpu, 0);
4702         apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4703         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4704                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4705         apic_base_msr.host_initiated = true;
4706         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4707
4708         vmx_segment_cache_clear(vmx);
4709
4710         seg_setup(VCPU_SREG_CS);
4711         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4712         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4713
4714         seg_setup(VCPU_SREG_DS);
4715         seg_setup(VCPU_SREG_ES);
4716         seg_setup(VCPU_SREG_FS);
4717         seg_setup(VCPU_SREG_GS);
4718         seg_setup(VCPU_SREG_SS);
4719
4720         vmcs_write16(GUEST_TR_SELECTOR, 0);
4721         vmcs_writel(GUEST_TR_BASE, 0);
4722         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4723         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4724
4725         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4726         vmcs_writel(GUEST_LDTR_BASE, 0);
4727         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4728         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4729
4730         vmcs_write32(GUEST_SYSENTER_CS, 0);
4731         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4732         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4733
4734         vmcs_writel(GUEST_RFLAGS, 0x02);
4735         kvm_rip_write(vcpu, 0xfff0);
4736
4737         vmcs_writel(GUEST_GDTR_BASE, 0);
4738         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4739
4740         vmcs_writel(GUEST_IDTR_BASE, 0);
4741         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4742
4743         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4744         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4745         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4746
4747         /* Special registers */
4748         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4749
4750         setup_msrs(vmx);
4751
4752         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4753
4754         if (cpu_has_vmx_tpr_shadow()) {
4755                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4756                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4757                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4758                                      __pa(vmx->vcpu.arch.apic->regs));
4759                 vmcs_write32(TPR_THRESHOLD, 0);
4760         }
4761
4762         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4763
4764         if (vmx_vm_has_apicv(vcpu->kvm))
4765                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4766
4767         if (vmx->vpid != 0)
4768                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4769
4770         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4771         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4772         vmx_set_cr4(&vmx->vcpu, 0);
4773         vmx_set_efer(&vmx->vcpu, 0);
4774         vmx_fpu_activate(&vmx->vcpu);
4775         update_exception_bitmap(&vmx->vcpu);
4776
4777         vpid_sync_context(vmx);
4778 }
4779
4780 /*
4781  * In nested virtualization, check if L1 asked to exit on external interrupts.
4782  * For most existing hypervisors, this will always return true.
4783  */
4784 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4785 {
4786         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4787                 PIN_BASED_EXT_INTR_MASK;
4788 }
4789
4790 /*
4791  * In nested virtualization, check if L1 has set
4792  * VM_EXIT_ACK_INTR_ON_EXIT
4793  */
4794 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4795 {
4796         return get_vmcs12(vcpu)->vm_exit_controls &
4797                 VM_EXIT_ACK_INTR_ON_EXIT;
4798 }
4799
4800 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4801 {
4802         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4803                 PIN_BASED_NMI_EXITING;
4804 }
4805
4806 static void enable_irq_window(struct kvm_vcpu *vcpu)
4807 {
4808         u32 cpu_based_vm_exec_control;
4809
4810         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4811         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4812         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4813 }
4814
4815 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4816 {
4817         u32 cpu_based_vm_exec_control;
4818
4819         if (!cpu_has_virtual_nmis() ||
4820             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4821                 enable_irq_window(vcpu);
4822                 return;
4823         }
4824
4825         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4826         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4827         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4828 }
4829
4830 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4831 {
4832         struct vcpu_vmx *vmx = to_vmx(vcpu);
4833         uint32_t intr;
4834         int irq = vcpu->arch.interrupt.nr;
4835
4836         trace_kvm_inj_virq(irq);
4837
4838         ++vcpu->stat.irq_injections;
4839         if (vmx->rmode.vm86_active) {
4840                 int inc_eip = 0;
4841                 if (vcpu->arch.interrupt.soft)
4842                         inc_eip = vcpu->arch.event_exit_inst_len;
4843                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4844                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4845                 return;
4846         }
4847         intr = irq | INTR_INFO_VALID_MASK;
4848         if (vcpu->arch.interrupt.soft) {
4849                 intr |= INTR_TYPE_SOFT_INTR;
4850                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4851                              vmx->vcpu.arch.event_exit_inst_len);
4852         } else
4853                 intr |= INTR_TYPE_EXT_INTR;
4854         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4855 }
4856
4857 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4858 {
4859         struct vcpu_vmx *vmx = to_vmx(vcpu);
4860
4861         if (is_guest_mode(vcpu))
4862                 return;
4863
4864         if (!cpu_has_virtual_nmis()) {
4865                 /*
4866                  * Tracking the NMI-blocked state in software is built upon
4867                  * finding the next open IRQ window. This, in turn, depends on
4868                  * well-behaving guests: They have to keep IRQs disabled at
4869                  * least as long as the NMI handler runs. Otherwise we may
4870                  * cause NMI nesting, maybe breaking the guest. But as this is
4871                  * highly unlikely, we can live with the residual risk.
4872                  */
4873                 vmx->soft_vnmi_blocked = 1;
4874                 vmx->vnmi_blocked_time = 0;
4875         }
4876
4877         ++vcpu->stat.nmi_injections;
4878         vmx->nmi_known_unmasked = false;
4879         if (vmx->rmode.vm86_active) {
4880                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4881                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4882                 return;
4883         }
4884         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4885                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4886 }
4887
4888 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4889 {
4890         if (!cpu_has_virtual_nmis())
4891                 return to_vmx(vcpu)->soft_vnmi_blocked;
4892         if (to_vmx(vcpu)->nmi_known_unmasked)
4893                 return false;
4894         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4895 }
4896
4897 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4898 {
4899         struct vcpu_vmx *vmx = to_vmx(vcpu);
4900
4901         if (!cpu_has_virtual_nmis()) {
4902                 if (vmx->soft_vnmi_blocked != masked) {
4903                         vmx->soft_vnmi_blocked = masked;
4904                         vmx->vnmi_blocked_time = 0;
4905                 }
4906         } else {
4907                 vmx->nmi_known_unmasked = !masked;
4908                 if (masked)
4909                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4910                                       GUEST_INTR_STATE_NMI);
4911                 else
4912                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4913                                         GUEST_INTR_STATE_NMI);
4914         }
4915 }
4916
4917 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4918 {
4919         if (to_vmx(vcpu)->nested.nested_run_pending)
4920                 return 0;
4921
4922         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4923                 return 0;
4924
4925         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4926                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4927                    | GUEST_INTR_STATE_NMI));
4928 }
4929
4930 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4931 {
4932         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4933                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4934                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4935                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4936 }
4937
4938 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4939 {
4940         int ret;
4941         struct kvm_userspace_memory_region tss_mem = {
4942                 .slot = TSS_PRIVATE_MEMSLOT,
4943                 .guest_phys_addr = addr,
4944                 .memory_size = PAGE_SIZE * 3,
4945                 .flags = 0,
4946         };
4947
4948         ret = kvm_set_memory_region(kvm, &tss_mem);
4949         if (ret)
4950                 return ret;
4951         kvm->arch.tss_addr = addr;
4952         return init_rmode_tss(kvm);
4953 }
4954
4955 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4956 {
4957         switch (vec) {
4958         case BP_VECTOR:
4959                 /*
4960                  * Update instruction length as we may reinject the exception
4961                  * from user space while in guest debugging mode.
4962                  */
4963                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4964                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4965                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4966                         return false;
4967                 /* fall through */
4968         case DB_VECTOR:
4969                 if (vcpu->guest_debug &
4970                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4971                         return false;
4972                 /* fall through */
4973         case DE_VECTOR:
4974         case OF_VECTOR:
4975         case BR_VECTOR:
4976         case UD_VECTOR:
4977         case DF_VECTOR:
4978         case SS_VECTOR:
4979         case GP_VECTOR:
4980         case MF_VECTOR:
4981                 return true;
4982         break;
4983         }
4984         return false;
4985 }
4986
4987 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4988                                   int vec, u32 err_code)
4989 {
4990         /*
4991          * Instruction with address size override prefix opcode 0x67
4992          * Cause the #SS fault with 0 error code in VM86 mode.
4993          */
4994         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4995                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4996                         if (vcpu->arch.halt_request) {
4997                                 vcpu->arch.halt_request = 0;
4998                                 return kvm_emulate_halt(vcpu);
4999                         }
5000                         return 1;
5001                 }
5002                 return 0;
5003         }
5004
5005         /*
5006          * Forward all other exceptions that are valid in real mode.
5007          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5008          *        the required debugging infrastructure rework.
5009          */
5010         kvm_queue_exception(vcpu, vec);
5011         return 1;
5012 }
5013
5014 /*
5015  * Trigger machine check on the host. We assume all the MSRs are already set up
5016  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5017  * We pass a fake environment to the machine check handler because we want
5018  * the guest to be always treated like user space, no matter what context
5019  * it used internally.
5020  */
5021 static void kvm_machine_check(void)
5022 {
5023 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5024         struct pt_regs regs = {
5025                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5026                 .flags = X86_EFLAGS_IF,
5027         };
5028
5029         do_machine_check(&regs, 0);
5030 #endif
5031 }
5032
5033 static int handle_machine_check(struct kvm_vcpu *vcpu)
5034 {
5035         /* already handled by vcpu_run */
5036         return 1;
5037 }
5038
5039 static int handle_exception(struct kvm_vcpu *vcpu)
5040 {
5041         struct vcpu_vmx *vmx = to_vmx(vcpu);
5042         struct kvm_run *kvm_run = vcpu->run;
5043         u32 intr_info, ex_no, error_code;
5044         unsigned long cr2, rip, dr6;
5045         u32 vect_info;
5046         enum emulation_result er;
5047
5048         vect_info = vmx->idt_vectoring_info;
5049         intr_info = vmx->exit_intr_info;
5050
5051         if (is_machine_check(intr_info))
5052                 return handle_machine_check(vcpu);
5053
5054         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5055                 return 1;  /* already handled by vmx_vcpu_run() */
5056
5057         if (is_no_device(intr_info)) {
5058                 vmx_fpu_activate(vcpu);
5059                 return 1;
5060         }
5061
5062         if (is_invalid_opcode(intr_info)) {
5063                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5064                 if (er != EMULATE_DONE)
5065                         kvm_queue_exception(vcpu, UD_VECTOR);
5066                 return 1;
5067         }
5068
5069         error_code = 0;
5070         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5071                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5072
5073         /*
5074          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5075          * MMIO, it is better to report an internal error.
5076          * See the comments in vmx_handle_exit.
5077          */
5078         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5079             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5080                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5081                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5082                 vcpu->run->internal.ndata = 2;
5083                 vcpu->run->internal.data[0] = vect_info;
5084                 vcpu->run->internal.data[1] = intr_info;
5085                 return 0;
5086         }
5087
5088         if (is_page_fault(intr_info)) {
5089                 /* EPT won't cause page fault directly */
5090                 BUG_ON(enable_ept);
5091                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5092                 trace_kvm_page_fault(cr2, error_code);
5093
5094                 if (kvm_event_needs_reinjection(vcpu))
5095                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5096                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5097         }
5098
5099         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5100
5101         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5102                 return handle_rmode_exception(vcpu, ex_no, error_code);
5103
5104         switch (ex_no) {
5105         case DB_VECTOR:
5106                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5107                 if (!(vcpu->guest_debug &
5108                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5109                         vcpu->arch.dr6 &= ~15;
5110                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5111                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5112                                 skip_emulated_instruction(vcpu);
5113
5114                         kvm_queue_exception(vcpu, DB_VECTOR);
5115                         return 1;
5116                 }
5117                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5118                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5119                 /* fall through */
5120         case BP_VECTOR:
5121                 /*
5122                  * Update instruction length as we may reinject #BP from
5123                  * user space while in guest debugging mode. Reading it for
5124                  * #DB as well causes no harm, it is not used in that case.
5125                  */
5126                 vmx->vcpu.arch.event_exit_inst_len =
5127                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5128                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5129                 rip = kvm_rip_read(vcpu);
5130                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5131                 kvm_run->debug.arch.exception = ex_no;
5132                 break;
5133         default:
5134                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5135                 kvm_run->ex.exception = ex_no;
5136                 kvm_run->ex.error_code = error_code;
5137                 break;
5138         }
5139         return 0;
5140 }
5141
5142 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5143 {
5144         ++vcpu->stat.irq_exits;
5145         return 1;
5146 }
5147
5148 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5149 {
5150         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5151         return 0;
5152 }
5153
5154 static int handle_io(struct kvm_vcpu *vcpu)
5155 {
5156         unsigned long exit_qualification;
5157         int size, in, string;
5158         unsigned port;
5159
5160         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5161         string = (exit_qualification & 16) != 0;
5162         in = (exit_qualification & 8) != 0;
5163
5164         ++vcpu->stat.io_exits;
5165
5166         if (string || in)
5167                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5168
5169         port = exit_qualification >> 16;
5170         size = (exit_qualification & 7) + 1;
5171         skip_emulated_instruction(vcpu);
5172
5173         return kvm_fast_pio_out(vcpu, size, port);
5174 }
5175
5176 static void
5177 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5178 {
5179         /*
5180          * Patch in the VMCALL instruction:
5181          */
5182         hypercall[0] = 0x0f;
5183         hypercall[1] = 0x01;
5184         hypercall[2] = 0xc1;
5185 }
5186
5187 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5188 {
5189         unsigned long always_on = VMXON_CR0_ALWAYSON;
5190         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5191
5192         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5193                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5194             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5195                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5196         return (val & always_on) == always_on;
5197 }
5198
5199 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5200 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5201 {
5202         if (is_guest_mode(vcpu)) {
5203                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5204                 unsigned long orig_val = val;
5205
5206                 /*
5207                  * We get here when L2 changed cr0 in a way that did not change
5208                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5209                  * but did change L0 shadowed bits. So we first calculate the
5210                  * effective cr0 value that L1 would like to write into the
5211                  * hardware. It consists of the L2-owned bits from the new
5212                  * value combined with the L1-owned bits from L1's guest_cr0.
5213                  */
5214                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5215                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5216
5217                 if (!nested_cr0_valid(vcpu, val))
5218                         return 1;
5219
5220                 if (kvm_set_cr0(vcpu, val))
5221                         return 1;
5222                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5223                 return 0;
5224         } else {
5225                 if (to_vmx(vcpu)->nested.vmxon &&
5226                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5227                         return 1;
5228                 return kvm_set_cr0(vcpu, val);
5229         }
5230 }
5231
5232 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5233 {
5234         if (is_guest_mode(vcpu)) {
5235                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5236                 unsigned long orig_val = val;
5237
5238                 /* analogously to handle_set_cr0 */
5239                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5240                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5241                 if (kvm_set_cr4(vcpu, val))
5242                         return 1;
5243                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5244                 return 0;
5245         } else
5246                 return kvm_set_cr4(vcpu, val);
5247 }
5248
5249 /* called to set cr0 as approriate for clts instruction exit. */
5250 static void handle_clts(struct kvm_vcpu *vcpu)
5251 {
5252         if (is_guest_mode(vcpu)) {
5253                 /*
5254                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5255                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5256                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5257                  */
5258                 vmcs_writel(CR0_READ_SHADOW,
5259                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5260                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5261         } else
5262                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5263 }
5264
5265 static int handle_cr(struct kvm_vcpu *vcpu)
5266 {
5267         unsigned long exit_qualification, val;
5268         int cr;
5269         int reg;
5270         int err;
5271
5272         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5273         cr = exit_qualification & 15;
5274         reg = (exit_qualification >> 8) & 15;
5275         switch ((exit_qualification >> 4) & 3) {
5276         case 0: /* mov to cr */
5277                 val = kvm_register_readl(vcpu, reg);
5278                 trace_kvm_cr_write(cr, val);
5279                 switch (cr) {
5280                 case 0:
5281                         err = handle_set_cr0(vcpu, val);
5282                         kvm_complete_insn_gp(vcpu, err);
5283                         return 1;
5284                 case 3:
5285                         err = kvm_set_cr3(vcpu, val);
5286                         kvm_complete_insn_gp(vcpu, err);
5287                         return 1;
5288                 case 4:
5289                         err = handle_set_cr4(vcpu, val);
5290                         kvm_complete_insn_gp(vcpu, err);
5291                         return 1;
5292                 case 8: {
5293                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5294                                 u8 cr8 = (u8)val;
5295                                 err = kvm_set_cr8(vcpu, cr8);
5296                                 kvm_complete_insn_gp(vcpu, err);
5297                                 if (irqchip_in_kernel(vcpu->kvm))
5298                                         return 1;
5299                                 if (cr8_prev <= cr8)
5300                                         return 1;
5301                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5302                                 return 0;
5303                         }
5304                 }
5305                 break;
5306         case 2: /* clts */
5307                 handle_clts(vcpu);
5308                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5309                 skip_emulated_instruction(vcpu);
5310                 vmx_fpu_activate(vcpu);
5311                 return 1;
5312         case 1: /*mov from cr*/
5313                 switch (cr) {
5314                 case 3:
5315                         val = kvm_read_cr3(vcpu);
5316                         kvm_register_write(vcpu, reg, val);
5317                         trace_kvm_cr_read(cr, val);
5318                         skip_emulated_instruction(vcpu);
5319                         return 1;
5320                 case 8:
5321                         val = kvm_get_cr8(vcpu);
5322                         kvm_register_write(vcpu, reg, val);
5323                         trace_kvm_cr_read(cr, val);
5324                         skip_emulated_instruction(vcpu);
5325                         return 1;
5326                 }
5327                 break;
5328         case 3: /* lmsw */
5329                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5330                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5331                 kvm_lmsw(vcpu, val);
5332
5333                 skip_emulated_instruction(vcpu);
5334                 return 1;
5335         default:
5336                 break;
5337         }
5338         vcpu->run->exit_reason = 0;
5339         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5340                (int)(exit_qualification >> 4) & 3, cr);
5341         return 0;
5342 }
5343
5344 static int handle_dr(struct kvm_vcpu *vcpu)
5345 {
5346         unsigned long exit_qualification;
5347         int dr, dr7, reg;
5348
5349         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5350         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5351
5352         /* First, if DR does not exist, trigger UD */
5353         if (!kvm_require_dr(vcpu, dr))
5354                 return 1;
5355
5356         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5357         if (!kvm_require_cpl(vcpu, 0))
5358                 return 1;
5359         dr7 = vmcs_readl(GUEST_DR7);
5360         if (dr7 & DR7_GD) {
5361                 /*
5362                  * As the vm-exit takes precedence over the debug trap, we
5363                  * need to emulate the latter, either for the host or the
5364                  * guest debugging itself.
5365                  */
5366                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5367                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5368                         vcpu->run->debug.arch.dr7 = dr7;
5369                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5370                         vcpu->run->debug.arch.exception = DB_VECTOR;
5371                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5372                         return 0;
5373                 } else {
5374                         vcpu->arch.dr6 &= ~15;
5375                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5376                         kvm_queue_exception(vcpu, DB_VECTOR);
5377                         return 1;
5378                 }
5379         }
5380
5381         if (vcpu->guest_debug == 0) {
5382                 u32 cpu_based_vm_exec_control;
5383
5384                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5385                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5386                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5387
5388                 /*
5389                  * No more DR vmexits; force a reload of the debug registers
5390                  * and reenter on this instruction.  The next vmexit will
5391                  * retrieve the full state of the debug registers.
5392                  */
5393                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5394                 return 1;
5395         }
5396
5397         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5398         if (exit_qualification & TYPE_MOV_FROM_DR) {
5399                 unsigned long val;
5400
5401                 if (kvm_get_dr(vcpu, dr, &val))
5402                         return 1;
5403                 kvm_register_write(vcpu, reg, val);
5404         } else
5405                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5406                         return 1;
5407
5408         skip_emulated_instruction(vcpu);
5409         return 1;
5410 }
5411
5412 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5413 {
5414         return vcpu->arch.dr6;
5415 }
5416
5417 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5418 {
5419 }
5420
5421 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5422 {
5423         u32 cpu_based_vm_exec_control;
5424
5425         get_debugreg(vcpu->arch.db[0], 0);
5426         get_debugreg(vcpu->arch.db[1], 1);
5427         get_debugreg(vcpu->arch.db[2], 2);
5428         get_debugreg(vcpu->arch.db[3], 3);
5429         get_debugreg(vcpu->arch.dr6, 6);
5430         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5431
5432         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5433
5434         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5435         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5436         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5437 }
5438
5439 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5440 {
5441         vmcs_writel(GUEST_DR7, val);
5442 }
5443
5444 static int handle_cpuid(struct kvm_vcpu *vcpu)
5445 {
5446         kvm_emulate_cpuid(vcpu);
5447         return 1;
5448 }
5449
5450 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5451 {
5452         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5453         u64 data;
5454
5455         if (vmx_get_msr(vcpu, ecx, &data)) {
5456                 trace_kvm_msr_read_ex(ecx);
5457                 kvm_inject_gp(vcpu, 0);
5458                 return 1;
5459         }
5460
5461         trace_kvm_msr_read(ecx, data);
5462
5463         /* FIXME: handling of bits 32:63 of rax, rdx */
5464         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5465         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5466         skip_emulated_instruction(vcpu);
5467         return 1;
5468 }
5469
5470 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5471 {
5472         struct msr_data msr;
5473         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5474         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5475                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5476
5477         msr.data = data;
5478         msr.index = ecx;
5479         msr.host_initiated = false;
5480         if (kvm_set_msr(vcpu, &msr) != 0) {
5481                 trace_kvm_msr_write_ex(ecx, data);
5482                 kvm_inject_gp(vcpu, 0);
5483                 return 1;
5484         }
5485
5486         trace_kvm_msr_write(ecx, data);
5487         skip_emulated_instruction(vcpu);
5488         return 1;
5489 }
5490
5491 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5492 {
5493         kvm_make_request(KVM_REQ_EVENT, vcpu);
5494         return 1;
5495 }
5496
5497 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5498 {
5499         u32 cpu_based_vm_exec_control;
5500
5501         /* clear pending irq */
5502         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5503         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5504         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5505
5506         kvm_make_request(KVM_REQ_EVENT, vcpu);
5507
5508         ++vcpu->stat.irq_window_exits;
5509
5510         /*
5511          * If the user space waits to inject interrupts, exit as soon as
5512          * possible
5513          */
5514         if (!irqchip_in_kernel(vcpu->kvm) &&
5515             vcpu->run->request_interrupt_window &&
5516             !kvm_cpu_has_interrupt(vcpu)) {
5517                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5518                 return 0;
5519         }
5520         return 1;
5521 }
5522
5523 static int handle_halt(struct kvm_vcpu *vcpu)
5524 {
5525         skip_emulated_instruction(vcpu);
5526         return kvm_emulate_halt(vcpu);
5527 }
5528
5529 static int handle_vmcall(struct kvm_vcpu *vcpu)
5530 {
5531         skip_emulated_instruction(vcpu);
5532         kvm_emulate_hypercall(vcpu);
5533         return 1;
5534 }
5535
5536 static int handle_invd(struct kvm_vcpu *vcpu)
5537 {
5538         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5539 }
5540
5541 static int handle_invlpg(struct kvm_vcpu *vcpu)
5542 {
5543         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5544
5545         kvm_mmu_invlpg(vcpu, exit_qualification);
5546         skip_emulated_instruction(vcpu);
5547         return 1;
5548 }
5549
5550 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5551 {
5552         int err;
5553
5554         err = kvm_rdpmc(vcpu);
5555         kvm_complete_insn_gp(vcpu, err);
5556
5557         return 1;
5558 }
5559
5560 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5561 {
5562         skip_emulated_instruction(vcpu);
5563         kvm_emulate_wbinvd(vcpu);
5564         return 1;
5565 }
5566
5567 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5568 {
5569         u64 new_bv = kvm_read_edx_eax(vcpu);
5570         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5571
5572         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5573                 skip_emulated_instruction(vcpu);
5574         return 1;
5575 }
5576
5577 static int handle_xsaves(struct kvm_vcpu *vcpu)
5578 {
5579         skip_emulated_instruction(vcpu);
5580         WARN(1, "this should never happen\n");
5581         return 1;
5582 }
5583
5584 static int handle_xrstors(struct kvm_vcpu *vcpu)
5585 {
5586         skip_emulated_instruction(vcpu);
5587         WARN(1, "this should never happen\n");
5588         return 1;
5589 }
5590
5591 static int handle_apic_access(struct kvm_vcpu *vcpu)
5592 {
5593         if (likely(fasteoi)) {
5594                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5595                 int access_type, offset;
5596
5597                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5598                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5599                 /*
5600                  * Sane guest uses MOV to write EOI, with written value
5601                  * not cared. So make a short-circuit here by avoiding
5602                  * heavy instruction emulation.
5603                  */
5604                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5605                     (offset == APIC_EOI)) {
5606                         kvm_lapic_set_eoi(vcpu);
5607                         skip_emulated_instruction(vcpu);
5608                         return 1;
5609                 }
5610         }
5611         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5612 }
5613
5614 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5615 {
5616         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5617         int vector = exit_qualification & 0xff;
5618
5619         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5620         kvm_apic_set_eoi_accelerated(vcpu, vector);
5621         return 1;
5622 }
5623
5624 static int handle_apic_write(struct kvm_vcpu *vcpu)
5625 {
5626         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5627         u32 offset = exit_qualification & 0xfff;
5628
5629         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5630         kvm_apic_write_nodecode(vcpu, offset);
5631         return 1;
5632 }
5633
5634 static int handle_task_switch(struct kvm_vcpu *vcpu)
5635 {
5636         struct vcpu_vmx *vmx = to_vmx(vcpu);
5637         unsigned long exit_qualification;
5638         bool has_error_code = false;
5639         u32 error_code = 0;
5640         u16 tss_selector;
5641         int reason, type, idt_v, idt_index;
5642
5643         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5644         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5645         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5646
5647         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5648
5649         reason = (u32)exit_qualification >> 30;
5650         if (reason == TASK_SWITCH_GATE && idt_v) {
5651                 switch (type) {
5652                 case INTR_TYPE_NMI_INTR:
5653                         vcpu->arch.nmi_injected = false;
5654                         vmx_set_nmi_mask(vcpu, true);
5655                         break;
5656                 case INTR_TYPE_EXT_INTR:
5657                 case INTR_TYPE_SOFT_INTR:
5658                         kvm_clear_interrupt_queue(vcpu);
5659                         break;
5660                 case INTR_TYPE_HARD_EXCEPTION:
5661                         if (vmx->idt_vectoring_info &
5662                             VECTORING_INFO_DELIVER_CODE_MASK) {
5663                                 has_error_code = true;
5664                                 error_code =
5665                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5666                         }
5667                         /* fall through */
5668                 case INTR_TYPE_SOFT_EXCEPTION:
5669                         kvm_clear_exception_queue(vcpu);
5670                         break;
5671                 default:
5672                         break;
5673                 }
5674         }
5675         tss_selector = exit_qualification;
5676
5677         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5678                        type != INTR_TYPE_EXT_INTR &&
5679                        type != INTR_TYPE_NMI_INTR))
5680                 skip_emulated_instruction(vcpu);
5681
5682         if (kvm_task_switch(vcpu, tss_selector,
5683                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5684                             has_error_code, error_code) == EMULATE_FAIL) {
5685                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5686                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5687                 vcpu->run->internal.ndata = 0;
5688                 return 0;
5689         }
5690
5691         /* clear all local breakpoint enable flags */
5692         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5693
5694         /*
5695          * TODO: What about debug traps on tss switch?
5696          *       Are we supposed to inject them and update dr6?
5697          */
5698
5699         return 1;
5700 }
5701
5702 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5703 {
5704         unsigned long exit_qualification;
5705         gpa_t gpa;
5706         u32 error_code;
5707         int gla_validity;
5708
5709         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5710
5711         gla_validity = (exit_qualification >> 7) & 0x3;
5712         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5713                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5714                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5715                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5716                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5717                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5718                         (long unsigned int)exit_qualification);
5719                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5720                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5721                 return 0;
5722         }
5723
5724         /*
5725          * EPT violation happened while executing iret from NMI,
5726          * "blocked by NMI" bit has to be set before next VM entry.
5727          * There are errata that may cause this bit to not be set:
5728          * AAK134, BY25.
5729          */
5730         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5731                         cpu_has_virtual_nmis() &&
5732                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5733                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5734
5735         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5736         trace_kvm_page_fault(gpa, exit_qualification);
5737
5738         /* It is a write fault? */
5739         error_code = exit_qualification & PFERR_WRITE_MASK;
5740         /* It is a fetch fault? */
5741         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5742         /* ept page table is present? */
5743         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5744
5745         vcpu->arch.exit_qualification = exit_qualification;
5746
5747         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5748 }
5749
5750 static u64 ept_rsvd_mask(u64 spte, int level)
5751 {
5752         int i;
5753         u64 mask = 0;
5754
5755         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5756                 mask |= (1ULL << i);
5757
5758         if (level == 4)
5759                 /* bits 7:3 reserved */
5760                 mask |= 0xf8;
5761         else if (spte & (1ULL << 7))
5762                 /*
5763                  * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5764                  * level == 1 if the hypervisor is using the ignored bit 7.
5765                  */
5766                 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5767         else if (level > 1)
5768                 /* bits 6:3 reserved */
5769                 mask |= 0x78;
5770
5771         return mask;
5772 }
5773
5774 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5775                                        int level)
5776 {
5777         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5778
5779         /* 010b (write-only) */
5780         WARN_ON((spte & 0x7) == 0x2);
5781
5782         /* 110b (write/execute) */
5783         WARN_ON((spte & 0x7) == 0x6);
5784
5785         /* 100b (execute-only) and value not supported by logical processor */
5786         if (!cpu_has_vmx_ept_execute_only())
5787                 WARN_ON((spte & 0x7) == 0x4);
5788
5789         /* not 000b */
5790         if ((spte & 0x7)) {
5791                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5792
5793                 if (rsvd_bits != 0) {
5794                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5795                                          __func__, rsvd_bits);
5796                         WARN_ON(1);
5797                 }
5798
5799                 /* bits 5:3 are _not_ reserved for large page or leaf page */
5800                 if ((rsvd_bits & 0x38) == 0) {
5801                         u64 ept_mem_type = (spte & 0x38) >> 3;
5802
5803                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5804                             ept_mem_type == 7) {
5805                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5806                                                 __func__, ept_mem_type);
5807                                 WARN_ON(1);
5808                         }
5809                 }
5810         }
5811 }
5812
5813 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5814 {
5815         u64 sptes[4];
5816         int nr_sptes, i, ret;
5817         gpa_t gpa;
5818
5819         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5820         if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5821                 skip_emulated_instruction(vcpu);
5822                 return 1;
5823         }
5824
5825         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5826         if (likely(ret == RET_MMIO_PF_EMULATE))
5827                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5828                                               EMULATE_DONE;
5829
5830         if (unlikely(ret == RET_MMIO_PF_INVALID))
5831                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5832
5833         if (unlikely(ret == RET_MMIO_PF_RETRY))
5834                 return 1;
5835
5836         /* It is the real ept misconfig */
5837         printk(KERN_ERR "EPT: Misconfiguration.\n");
5838         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5839
5840         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5841
5842         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5843                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5844
5845         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5846         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5847
5848         return 0;
5849 }
5850
5851 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5852 {
5853         u32 cpu_based_vm_exec_control;
5854
5855         /* clear pending NMI */
5856         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5857         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5858         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5859         ++vcpu->stat.nmi_window_exits;
5860         kvm_make_request(KVM_REQ_EVENT, vcpu);
5861
5862         return 1;
5863 }
5864
5865 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5866 {
5867         struct vcpu_vmx *vmx = to_vmx(vcpu);
5868         enum emulation_result err = EMULATE_DONE;
5869         int ret = 1;
5870         u32 cpu_exec_ctrl;
5871         bool intr_window_requested;
5872         unsigned count = 130;
5873
5874         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5875         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5876
5877         while (vmx->emulation_required && count-- != 0) {
5878                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5879                         return handle_interrupt_window(&vmx->vcpu);
5880
5881                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5882                         return 1;
5883
5884                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5885
5886                 if (err == EMULATE_USER_EXIT) {
5887                         ++vcpu->stat.mmio_exits;
5888                         ret = 0;
5889                         goto out;
5890                 }
5891
5892                 if (err != EMULATE_DONE) {
5893                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5894                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5895                         vcpu->run->internal.ndata = 0;
5896                         return 0;
5897                 }
5898
5899                 if (vcpu->arch.halt_request) {
5900                         vcpu->arch.halt_request = 0;
5901                         ret = kvm_emulate_halt(vcpu);
5902                         goto out;
5903                 }
5904
5905                 if (signal_pending(current))
5906                         goto out;
5907                 if (need_resched())
5908                         schedule();
5909         }
5910
5911 out:
5912         return ret;
5913 }
5914
5915 static int __grow_ple_window(int val)
5916 {
5917         if (ple_window_grow < 1)
5918                 return ple_window;
5919
5920         val = min(val, ple_window_actual_max);
5921
5922         if (ple_window_grow < ple_window)
5923                 val *= ple_window_grow;
5924         else
5925                 val += ple_window_grow;
5926
5927         return val;
5928 }
5929
5930 static int __shrink_ple_window(int val, int modifier, int minimum)
5931 {
5932         if (modifier < 1)
5933                 return ple_window;
5934
5935         if (modifier < ple_window)
5936                 val /= modifier;
5937         else
5938                 val -= modifier;
5939
5940         return max(val, minimum);
5941 }
5942
5943 static void grow_ple_window(struct kvm_vcpu *vcpu)
5944 {
5945         struct vcpu_vmx *vmx = to_vmx(vcpu);
5946         int old = vmx->ple_window;
5947
5948         vmx->ple_window = __grow_ple_window(old);
5949
5950         if (vmx->ple_window != old)
5951                 vmx->ple_window_dirty = true;
5952
5953         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5954 }
5955
5956 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5957 {
5958         struct vcpu_vmx *vmx = to_vmx(vcpu);
5959         int old = vmx->ple_window;
5960
5961         vmx->ple_window = __shrink_ple_window(old,
5962                                               ple_window_shrink, ple_window);
5963
5964         if (vmx->ple_window != old)
5965                 vmx->ple_window_dirty = true;
5966
5967         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5968 }
5969
5970 /*
5971  * ple_window_actual_max is computed to be one grow_ple_window() below
5972  * ple_window_max. (See __grow_ple_window for the reason.)
5973  * This prevents overflows, because ple_window_max is int.
5974  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5975  * this process.
5976  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5977  */
5978 static void update_ple_window_actual_max(void)
5979 {
5980         ple_window_actual_max =
5981                         __shrink_ple_window(max(ple_window_max, ple_window),
5982                                             ple_window_grow, INT_MIN);
5983 }
5984
5985 static __init int hardware_setup(void)
5986 {
5987         int r = -ENOMEM, i, msr;
5988
5989         rdmsrl_safe(MSR_EFER, &host_efer);
5990
5991         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5992                 kvm_define_shared_msr(i, vmx_msr_index[i]);
5993
5994         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5995         if (!vmx_io_bitmap_a)
5996                 return r;
5997
5998         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5999         if (!vmx_io_bitmap_b)
6000                 goto out;
6001
6002         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6003         if (!vmx_msr_bitmap_legacy)
6004                 goto out1;
6005
6006         vmx_msr_bitmap_legacy_x2apic =
6007                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6008         if (!vmx_msr_bitmap_legacy_x2apic)
6009                 goto out2;
6010
6011         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6012         if (!vmx_msr_bitmap_longmode)
6013                 goto out3;
6014
6015         vmx_msr_bitmap_longmode_x2apic =
6016                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6017         if (!vmx_msr_bitmap_longmode_x2apic)
6018                 goto out4;
6019
6020         if (nested) {
6021                 vmx_msr_bitmap_nested =
6022                         (unsigned long *)__get_free_page(GFP_KERNEL);
6023                 if (!vmx_msr_bitmap_nested)
6024                         goto out5;
6025         }
6026
6027         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6028         if (!vmx_vmread_bitmap)
6029                 goto out6;
6030
6031         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6032         if (!vmx_vmwrite_bitmap)
6033                 goto out7;
6034
6035         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6036         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6037
6038         /*
6039          * Allow direct access to the PC debug port (it is often used for I/O
6040          * delays, but the vmexits simply slow things down).
6041          */
6042         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6043         clear_bit(0x80, vmx_io_bitmap_a);
6044
6045         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6046
6047         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6048         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6049         if (nested)
6050                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6051
6052         if (setup_vmcs_config(&vmcs_config) < 0) {
6053                 r = -EIO;
6054                 goto out8;
6055         }
6056
6057         if (boot_cpu_has(X86_FEATURE_NX))
6058                 kvm_enable_efer_bits(EFER_NX);
6059
6060         if (!cpu_has_vmx_vpid())
6061                 enable_vpid = 0;
6062         if (!cpu_has_vmx_shadow_vmcs())
6063                 enable_shadow_vmcs = 0;
6064         if (enable_shadow_vmcs)
6065                 init_vmcs_shadow_fields();
6066
6067         if (!cpu_has_vmx_ept() ||
6068             !cpu_has_vmx_ept_4levels()) {
6069                 enable_ept = 0;
6070                 enable_unrestricted_guest = 0;
6071                 enable_ept_ad_bits = 0;
6072         }
6073
6074         if (!cpu_has_vmx_ept_ad_bits())
6075                 enable_ept_ad_bits = 0;
6076
6077         if (!cpu_has_vmx_unrestricted_guest())
6078                 enable_unrestricted_guest = 0;
6079
6080         if (!cpu_has_vmx_flexpriority())
6081                 flexpriority_enabled = 0;
6082
6083         /*
6084          * set_apic_access_page_addr() is used to reload apic access
6085          * page upon invalidation.  No need to do anything if not
6086          * using the APIC_ACCESS_ADDR VMCS field.
6087          */
6088         if (!flexpriority_enabled)
6089                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6090
6091         if (!cpu_has_vmx_tpr_shadow())
6092                 kvm_x86_ops->update_cr8_intercept = NULL;
6093
6094         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6095                 kvm_disable_largepages();
6096
6097         if (!cpu_has_vmx_ple())
6098                 ple_gap = 0;
6099
6100         if (!cpu_has_vmx_apicv())
6101                 enable_apicv = 0;
6102
6103         if (enable_apicv)
6104                 kvm_x86_ops->update_cr8_intercept = NULL;
6105         else {
6106                 kvm_x86_ops->hwapic_irr_update = NULL;
6107                 kvm_x86_ops->hwapic_isr_update = NULL;
6108                 kvm_x86_ops->deliver_posted_interrupt = NULL;
6109                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6110         }
6111
6112         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6113         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6114         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6115         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6116         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6117         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6118         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6119
6120         memcpy(vmx_msr_bitmap_legacy_x2apic,
6121                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6122         memcpy(vmx_msr_bitmap_longmode_x2apic,
6123                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6124
6125         if (enable_apicv) {
6126                 for (msr = 0x800; msr <= 0x8ff; msr++)
6127                         vmx_disable_intercept_msr_read_x2apic(msr);
6128
6129                 /* According SDM, in x2apic mode, the whole id reg is used.
6130                  * But in KVM, it only use the highest eight bits. Need to
6131                  * intercept it */
6132                 vmx_enable_intercept_msr_read_x2apic(0x802);
6133                 /* TMCCT */
6134                 vmx_enable_intercept_msr_read_x2apic(0x839);
6135                 /* TPR */
6136                 vmx_disable_intercept_msr_write_x2apic(0x808);
6137                 /* EOI */
6138                 vmx_disable_intercept_msr_write_x2apic(0x80b);
6139                 /* SELF-IPI */
6140                 vmx_disable_intercept_msr_write_x2apic(0x83f);
6141         }
6142
6143         if (enable_ept) {
6144                 kvm_mmu_set_mask_ptes(0ull,
6145                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6146                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6147                         0ull, VMX_EPT_EXECUTABLE_MASK);
6148                 ept_set_mmio_spte_mask();
6149                 kvm_enable_tdp();
6150         } else
6151                 kvm_disable_tdp();
6152
6153         update_ple_window_actual_max();
6154
6155         /*
6156          * Only enable PML when hardware supports PML feature, and both EPT
6157          * and EPT A/D bit features are enabled -- PML depends on them to work.
6158          */
6159         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6160                 enable_pml = 0;
6161
6162         if (!enable_pml) {
6163                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6164                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6165                 kvm_x86_ops->flush_log_dirty = NULL;
6166                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6167         }
6168
6169         return alloc_kvm_area();
6170
6171 out8:
6172         free_page((unsigned long)vmx_vmwrite_bitmap);
6173 out7:
6174         free_page((unsigned long)vmx_vmread_bitmap);
6175 out6:
6176         if (nested)
6177                 free_page((unsigned long)vmx_msr_bitmap_nested);
6178 out5:
6179         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6180 out4:
6181         free_page((unsigned long)vmx_msr_bitmap_longmode);
6182 out3:
6183         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6184 out2:
6185         free_page((unsigned long)vmx_msr_bitmap_legacy);
6186 out1:
6187         free_page((unsigned long)vmx_io_bitmap_b);
6188 out:
6189         free_page((unsigned long)vmx_io_bitmap_a);
6190
6191     return r;
6192 }
6193
6194 static __exit void hardware_unsetup(void)
6195 {
6196         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6197         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6198         free_page((unsigned long)vmx_msr_bitmap_legacy);
6199         free_page((unsigned long)vmx_msr_bitmap_longmode);
6200         free_page((unsigned long)vmx_io_bitmap_b);
6201         free_page((unsigned long)vmx_io_bitmap_a);
6202         free_page((unsigned long)vmx_vmwrite_bitmap);
6203         free_page((unsigned long)vmx_vmread_bitmap);
6204         if (nested)
6205                 free_page((unsigned long)vmx_msr_bitmap_nested);
6206
6207         free_kvm_area();
6208 }
6209
6210 /*
6211  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6212  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6213  */
6214 static int handle_pause(struct kvm_vcpu *vcpu)
6215 {
6216         if (ple_gap)
6217                 grow_ple_window(vcpu);
6218
6219         skip_emulated_instruction(vcpu);
6220         kvm_vcpu_on_spin(vcpu);
6221
6222         return 1;
6223 }
6224
6225 static int handle_nop(struct kvm_vcpu *vcpu)
6226 {
6227         skip_emulated_instruction(vcpu);
6228         return 1;
6229 }
6230
6231 static int handle_mwait(struct kvm_vcpu *vcpu)
6232 {
6233         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6234         return handle_nop(vcpu);
6235 }
6236
6237 static int handle_monitor(struct kvm_vcpu *vcpu)
6238 {
6239         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6240         return handle_nop(vcpu);
6241 }
6242
6243 /*
6244  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6245  * We could reuse a single VMCS for all the L2 guests, but we also want the
6246  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6247  * allows keeping them loaded on the processor, and in the future will allow
6248  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6249  * every entry if they never change.
6250  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6251  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6252  *
6253  * The following functions allocate and free a vmcs02 in this pool.
6254  */
6255
6256 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6257 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6258 {
6259         struct vmcs02_list *item;
6260         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6261                 if (item->vmptr == vmx->nested.current_vmptr) {
6262                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6263                         return &item->vmcs02;
6264                 }
6265
6266         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6267                 /* Recycle the least recently used VMCS. */
6268                 item = list_entry(vmx->nested.vmcs02_pool.prev,
6269                         struct vmcs02_list, list);
6270                 item->vmptr = vmx->nested.current_vmptr;
6271                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6272                 return &item->vmcs02;
6273         }
6274
6275         /* Create a new VMCS */
6276         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6277         if (!item)
6278                 return NULL;
6279         item->vmcs02.vmcs = alloc_vmcs();
6280         if (!item->vmcs02.vmcs) {
6281                 kfree(item);
6282                 return NULL;
6283         }
6284         loaded_vmcs_init(&item->vmcs02);
6285         item->vmptr = vmx->nested.current_vmptr;
6286         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6287         vmx->nested.vmcs02_num++;
6288         return &item->vmcs02;
6289 }
6290
6291 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6292 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6293 {
6294         struct vmcs02_list *item;
6295         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6296                 if (item->vmptr == vmptr) {
6297                         free_loaded_vmcs(&item->vmcs02);
6298                         list_del(&item->list);
6299                         kfree(item);
6300                         vmx->nested.vmcs02_num--;
6301                         return;
6302                 }
6303 }
6304
6305 /*
6306  * Free all VMCSs saved for this vcpu, except the one pointed by
6307  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6308  * must be &vmx->vmcs01.
6309  */
6310 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6311 {
6312         struct vmcs02_list *item, *n;
6313
6314         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6315         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6316                 /*
6317                  * Something will leak if the above WARN triggers.  Better than
6318                  * a use-after-free.
6319                  */
6320                 if (vmx->loaded_vmcs == &item->vmcs02)
6321                         continue;
6322
6323                 free_loaded_vmcs(&item->vmcs02);
6324                 list_del(&item->list);
6325                 kfree(item);
6326                 vmx->nested.vmcs02_num--;
6327         }
6328 }
6329
6330 /*
6331  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6332  * set the success or error code of an emulated VMX instruction, as specified
6333  * by Vol 2B, VMX Instruction Reference, "Conventions".
6334  */
6335 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6336 {
6337         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6338                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6339                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6340 }
6341
6342 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6343 {
6344         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6345                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6346                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6347                         | X86_EFLAGS_CF);
6348 }
6349
6350 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6351                                         u32 vm_instruction_error)
6352 {
6353         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6354                 /*
6355                  * failValid writes the error number to the current VMCS, which
6356                  * can't be done there isn't a current VMCS.
6357                  */
6358                 nested_vmx_failInvalid(vcpu);
6359                 return;
6360         }
6361         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6362                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6363                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6364                         | X86_EFLAGS_ZF);
6365         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6366         /*
6367          * We don't need to force a shadow sync because
6368          * VM_INSTRUCTION_ERROR is not shadowed
6369          */
6370 }
6371
6372 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6373 {
6374         /* TODO: not to reset guest simply here. */
6375         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6376         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6377 }
6378
6379 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6380 {
6381         struct vcpu_vmx *vmx =
6382                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6383
6384         vmx->nested.preemption_timer_expired = true;
6385         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6386         kvm_vcpu_kick(&vmx->vcpu);
6387
6388         return HRTIMER_NORESTART;
6389 }
6390
6391 /*
6392  * Decode the memory-address operand of a vmx instruction, as recorded on an
6393  * exit caused by such an instruction (run by a guest hypervisor).
6394  * On success, returns 0. When the operand is invalid, returns 1 and throws
6395  * #UD or #GP.
6396  */
6397 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6398                                  unsigned long exit_qualification,
6399                                  u32 vmx_instruction_info, gva_t *ret)
6400 {
6401         /*
6402          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6403          * Execution", on an exit, vmx_instruction_info holds most of the
6404          * addressing components of the operand. Only the displacement part
6405          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6406          * For how an actual address is calculated from all these components,
6407          * refer to Vol. 1, "Operand Addressing".
6408          */
6409         int  scaling = vmx_instruction_info & 3;
6410         int  addr_size = (vmx_instruction_info >> 7) & 7;
6411         bool is_reg = vmx_instruction_info & (1u << 10);
6412         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6413         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6414         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6415         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6416         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6417
6418         if (is_reg) {
6419                 kvm_queue_exception(vcpu, UD_VECTOR);
6420                 return 1;
6421         }
6422
6423         /* Addr = segment_base + offset */
6424         /* offset = base + [index * scale] + displacement */
6425         *ret = vmx_get_segment_base(vcpu, seg_reg);
6426         if (base_is_valid)
6427                 *ret += kvm_register_read(vcpu, base_reg);
6428         if (index_is_valid)
6429                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6430         *ret += exit_qualification; /* holds the displacement */
6431
6432         if (addr_size == 1) /* 32 bit */
6433                 *ret &= 0xffffffff;
6434
6435         /*
6436          * TODO: throw #GP (and return 1) in various cases that the VM*
6437          * instructions require it - e.g., offset beyond segment limit,
6438          * unusable or unreadable/unwritable segment, non-canonical 64-bit
6439          * address, and so on. Currently these are not checked.
6440          */
6441         return 0;
6442 }
6443
6444 /*
6445  * This function performs the various checks including
6446  * - if it's 4KB aligned
6447  * - No bits beyond the physical address width are set
6448  * - Returns 0 on success or else 1
6449  * (Intel SDM Section 30.3)
6450  */
6451 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6452                                   gpa_t *vmpointer)
6453 {
6454         gva_t gva;
6455         gpa_t vmptr;
6456         struct x86_exception e;
6457         struct page *page;
6458         struct vcpu_vmx *vmx = to_vmx(vcpu);
6459         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6460
6461         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6462                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6463                 return 1;
6464
6465         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6466                                 sizeof(vmptr), &e)) {
6467                 kvm_inject_page_fault(vcpu, &e);
6468                 return 1;
6469         }
6470
6471         switch (exit_reason) {
6472         case EXIT_REASON_VMON:
6473                 /*
6474                  * SDM 3: 24.11.5
6475                  * The first 4 bytes of VMXON region contain the supported
6476                  * VMCS revision identifier
6477                  *
6478                  * Note - IA32_VMX_BASIC[48] will never be 1
6479                  * for the nested case;
6480                  * which replaces physical address width with 32
6481                  *
6482                  */
6483                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6484                         nested_vmx_failInvalid(vcpu);
6485                         skip_emulated_instruction(vcpu);
6486                         return 1;
6487                 }
6488
6489                 page = nested_get_page(vcpu, vmptr);
6490                 if (page == NULL ||
6491                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6492                         nested_vmx_failInvalid(vcpu);
6493                         kunmap(page);
6494                         skip_emulated_instruction(vcpu);
6495                         return 1;
6496                 }
6497                 kunmap(page);
6498                 vmx->nested.vmxon_ptr = vmptr;
6499                 break;
6500         case EXIT_REASON_VMCLEAR:
6501                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6502                         nested_vmx_failValid(vcpu,
6503                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6504                         skip_emulated_instruction(vcpu);
6505                         return 1;
6506                 }
6507
6508                 if (vmptr == vmx->nested.vmxon_ptr) {
6509                         nested_vmx_failValid(vcpu,
6510                                              VMXERR_VMCLEAR_VMXON_POINTER);
6511                         skip_emulated_instruction(vcpu);
6512                         return 1;
6513                 }
6514                 break;
6515         case EXIT_REASON_VMPTRLD:
6516                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6517                         nested_vmx_failValid(vcpu,
6518                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6519                         skip_emulated_instruction(vcpu);
6520                         return 1;
6521                 }
6522
6523                 if (vmptr == vmx->nested.vmxon_ptr) {
6524                         nested_vmx_failValid(vcpu,
6525                                              VMXERR_VMCLEAR_VMXON_POINTER);
6526                         skip_emulated_instruction(vcpu);
6527                         return 1;
6528                 }
6529                 break;
6530         default:
6531                 return 1; /* shouldn't happen */
6532         }
6533
6534         if (vmpointer)
6535                 *vmpointer = vmptr;
6536         return 0;
6537 }
6538
6539 /*
6540  * Emulate the VMXON instruction.
6541  * Currently, we just remember that VMX is active, and do not save or even
6542  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6543  * do not currently need to store anything in that guest-allocated memory
6544  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6545  * argument is different from the VMXON pointer (which the spec says they do).
6546  */
6547 static int handle_vmon(struct kvm_vcpu *vcpu)
6548 {
6549         struct kvm_segment cs;
6550         struct vcpu_vmx *vmx = to_vmx(vcpu);
6551         struct vmcs *shadow_vmcs;
6552         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6553                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6554
6555         /* The Intel VMX Instruction Reference lists a bunch of bits that
6556          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6557          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6558          * Otherwise, we should fail with #UD. We test these now:
6559          */
6560         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6561             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6562             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6563                 kvm_queue_exception(vcpu, UD_VECTOR);
6564                 return 1;
6565         }
6566
6567         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6568         if (is_long_mode(vcpu) && !cs.l) {
6569                 kvm_queue_exception(vcpu, UD_VECTOR);
6570                 return 1;
6571         }
6572
6573         if (vmx_get_cpl(vcpu)) {
6574                 kvm_inject_gp(vcpu, 0);
6575                 return 1;
6576         }
6577
6578         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6579                 return 1;
6580
6581         if (vmx->nested.vmxon) {
6582                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6583                 skip_emulated_instruction(vcpu);
6584                 return 1;
6585         }
6586
6587         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6588                         != VMXON_NEEDED_FEATURES) {
6589                 kvm_inject_gp(vcpu, 0);
6590                 return 1;
6591         }
6592
6593         if (enable_shadow_vmcs) {
6594                 shadow_vmcs = alloc_vmcs();
6595                 if (!shadow_vmcs)
6596                         return -ENOMEM;
6597                 /* mark vmcs as shadow */
6598                 shadow_vmcs->revision_id |= (1u << 31);
6599                 /* init shadow vmcs */
6600                 vmcs_clear(shadow_vmcs);
6601                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6602         }
6603
6604         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6605         vmx->nested.vmcs02_num = 0;
6606
6607         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6608                      HRTIMER_MODE_REL);
6609         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6610
6611         vmx->nested.vmxon = true;
6612
6613         skip_emulated_instruction(vcpu);
6614         nested_vmx_succeed(vcpu);
6615         return 1;
6616 }
6617
6618 /*
6619  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6620  * for running VMX instructions (except VMXON, whose prerequisites are
6621  * slightly different). It also specifies what exception to inject otherwise.
6622  */
6623 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6624 {
6625         struct kvm_segment cs;
6626         struct vcpu_vmx *vmx = to_vmx(vcpu);
6627
6628         if (!vmx->nested.vmxon) {
6629                 kvm_queue_exception(vcpu, UD_VECTOR);
6630                 return 0;
6631         }
6632
6633         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6634         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6635             (is_long_mode(vcpu) && !cs.l)) {
6636                 kvm_queue_exception(vcpu, UD_VECTOR);
6637                 return 0;
6638         }
6639
6640         if (vmx_get_cpl(vcpu)) {
6641                 kvm_inject_gp(vcpu, 0);
6642                 return 0;
6643         }
6644
6645         return 1;
6646 }
6647
6648 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6649 {
6650         u32 exec_control;
6651         if (vmx->nested.current_vmptr == -1ull)
6652                 return;
6653
6654         /* current_vmptr and current_vmcs12 are always set/reset together */
6655         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6656                 return;
6657
6658         if (enable_shadow_vmcs) {
6659                 /* copy to memory all shadowed fields in case
6660                    they were modified */
6661                 copy_shadow_to_vmcs12(vmx);
6662                 vmx->nested.sync_shadow_vmcs = false;
6663                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6664                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6665                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6666                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6667         }
6668         vmx->nested.posted_intr_nv = -1;
6669         kunmap(vmx->nested.current_vmcs12_page);
6670         nested_release_page(vmx->nested.current_vmcs12_page);
6671         vmx->nested.current_vmptr = -1ull;
6672         vmx->nested.current_vmcs12 = NULL;
6673 }
6674
6675 /*
6676  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6677  * just stops using VMX.
6678  */
6679 static void free_nested(struct vcpu_vmx *vmx)
6680 {
6681         if (!vmx->nested.vmxon)
6682                 return;
6683
6684         vmx->nested.vmxon = false;
6685         nested_release_vmcs12(vmx);
6686         if (enable_shadow_vmcs)
6687                 free_vmcs(vmx->nested.current_shadow_vmcs);
6688         /* Unpin physical memory we referred to in current vmcs02 */
6689         if (vmx->nested.apic_access_page) {
6690                 nested_release_page(vmx->nested.apic_access_page);
6691                 vmx->nested.apic_access_page = NULL;
6692         }
6693         if (vmx->nested.virtual_apic_page) {
6694                 nested_release_page(vmx->nested.virtual_apic_page);
6695                 vmx->nested.virtual_apic_page = NULL;
6696         }
6697         if (vmx->nested.pi_desc_page) {
6698                 kunmap(vmx->nested.pi_desc_page);
6699                 nested_release_page(vmx->nested.pi_desc_page);
6700                 vmx->nested.pi_desc_page = NULL;
6701                 vmx->nested.pi_desc = NULL;
6702         }
6703
6704         nested_free_all_saved_vmcss(vmx);
6705 }
6706
6707 /* Emulate the VMXOFF instruction */
6708 static int handle_vmoff(struct kvm_vcpu *vcpu)
6709 {
6710         if (!nested_vmx_check_permission(vcpu))
6711                 return 1;
6712         free_nested(to_vmx(vcpu));
6713         skip_emulated_instruction(vcpu);
6714         nested_vmx_succeed(vcpu);
6715         return 1;
6716 }
6717
6718 /* Emulate the VMCLEAR instruction */
6719 static int handle_vmclear(struct kvm_vcpu *vcpu)
6720 {
6721         struct vcpu_vmx *vmx = to_vmx(vcpu);
6722         gpa_t vmptr;
6723         struct vmcs12 *vmcs12;
6724         struct page *page;
6725
6726         if (!nested_vmx_check_permission(vcpu))
6727                 return 1;
6728
6729         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6730                 return 1;
6731
6732         if (vmptr == vmx->nested.current_vmptr)
6733                 nested_release_vmcs12(vmx);
6734
6735         page = nested_get_page(vcpu, vmptr);
6736         if (page == NULL) {
6737                 /*
6738                  * For accurate processor emulation, VMCLEAR beyond available
6739                  * physical memory should do nothing at all. However, it is
6740                  * possible that a nested vmx bug, not a guest hypervisor bug,
6741                  * resulted in this case, so let's shut down before doing any
6742                  * more damage:
6743                  */
6744                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6745                 return 1;
6746         }
6747         vmcs12 = kmap(page);
6748         vmcs12->launch_state = 0;
6749         kunmap(page);
6750         nested_release_page(page);
6751
6752         nested_free_vmcs02(vmx, vmptr);
6753
6754         skip_emulated_instruction(vcpu);
6755         nested_vmx_succeed(vcpu);
6756         return 1;
6757 }
6758
6759 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6760
6761 /* Emulate the VMLAUNCH instruction */
6762 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6763 {
6764         return nested_vmx_run(vcpu, true);
6765 }
6766
6767 /* Emulate the VMRESUME instruction */
6768 static int handle_vmresume(struct kvm_vcpu *vcpu)
6769 {
6770
6771         return nested_vmx_run(vcpu, false);
6772 }
6773
6774 enum vmcs_field_type {
6775         VMCS_FIELD_TYPE_U16 = 0,
6776         VMCS_FIELD_TYPE_U64 = 1,
6777         VMCS_FIELD_TYPE_U32 = 2,
6778         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6779 };
6780
6781 static inline int vmcs_field_type(unsigned long field)
6782 {
6783         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6784                 return VMCS_FIELD_TYPE_U32;
6785         return (field >> 13) & 0x3 ;
6786 }
6787
6788 static inline int vmcs_field_readonly(unsigned long field)
6789 {
6790         return (((field >> 10) & 0x3) == 1);
6791 }
6792
6793 /*
6794  * Read a vmcs12 field. Since these can have varying lengths and we return
6795  * one type, we chose the biggest type (u64) and zero-extend the return value
6796  * to that size. Note that the caller, handle_vmread, might need to use only
6797  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6798  * 64-bit fields are to be returned).
6799  */
6800 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6801                                   unsigned long field, u64 *ret)
6802 {
6803         short offset = vmcs_field_to_offset(field);
6804         char *p;
6805
6806         if (offset < 0)
6807                 return offset;
6808
6809         p = ((char *)(get_vmcs12(vcpu))) + offset;
6810
6811         switch (vmcs_field_type(field)) {
6812         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6813                 *ret = *((natural_width *)p);
6814                 return 0;
6815         case VMCS_FIELD_TYPE_U16:
6816                 *ret = *((u16 *)p);
6817                 return 0;
6818         case VMCS_FIELD_TYPE_U32:
6819                 *ret = *((u32 *)p);
6820                 return 0;
6821         case VMCS_FIELD_TYPE_U64:
6822                 *ret = *((u64 *)p);
6823                 return 0;
6824         default:
6825                 WARN_ON(1);
6826                 return -ENOENT;
6827         }
6828 }
6829
6830
6831 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6832                                    unsigned long field, u64 field_value){
6833         short offset = vmcs_field_to_offset(field);
6834         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6835         if (offset < 0)
6836                 return offset;
6837
6838         switch (vmcs_field_type(field)) {
6839         case VMCS_FIELD_TYPE_U16:
6840                 *(u16 *)p = field_value;
6841                 return 0;
6842         case VMCS_FIELD_TYPE_U32:
6843                 *(u32 *)p = field_value;
6844                 return 0;
6845         case VMCS_FIELD_TYPE_U64:
6846                 *(u64 *)p = field_value;
6847                 return 0;
6848         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6849                 *(natural_width *)p = field_value;
6850                 return 0;
6851         default:
6852                 WARN_ON(1);
6853                 return -ENOENT;
6854         }
6855
6856 }
6857
6858 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6859 {
6860         int i;
6861         unsigned long field;
6862         u64 field_value;
6863         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6864         const unsigned long *fields = shadow_read_write_fields;
6865         const int num_fields = max_shadow_read_write_fields;
6866
6867         preempt_disable();
6868
6869         vmcs_load(shadow_vmcs);
6870
6871         for (i = 0; i < num_fields; i++) {
6872                 field = fields[i];
6873                 switch (vmcs_field_type(field)) {
6874                 case VMCS_FIELD_TYPE_U16:
6875                         field_value = vmcs_read16(field);
6876                         break;
6877                 case VMCS_FIELD_TYPE_U32:
6878                         field_value = vmcs_read32(field);
6879                         break;
6880                 case VMCS_FIELD_TYPE_U64:
6881                         field_value = vmcs_read64(field);
6882                         break;
6883                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6884                         field_value = vmcs_readl(field);
6885                         break;
6886                 default:
6887                         WARN_ON(1);
6888                         continue;
6889                 }
6890                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6891         }
6892
6893         vmcs_clear(shadow_vmcs);
6894         vmcs_load(vmx->loaded_vmcs->vmcs);
6895
6896         preempt_enable();
6897 }
6898
6899 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6900 {
6901         const unsigned long *fields[] = {
6902                 shadow_read_write_fields,
6903                 shadow_read_only_fields
6904         };
6905         const int max_fields[] = {
6906                 max_shadow_read_write_fields,
6907                 max_shadow_read_only_fields
6908         };
6909         int i, q;
6910         unsigned long field;
6911         u64 field_value = 0;
6912         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6913
6914         vmcs_load(shadow_vmcs);
6915
6916         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6917                 for (i = 0; i < max_fields[q]; i++) {
6918                         field = fields[q][i];
6919                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6920
6921                         switch (vmcs_field_type(field)) {
6922                         case VMCS_FIELD_TYPE_U16:
6923                                 vmcs_write16(field, (u16)field_value);
6924                                 break;
6925                         case VMCS_FIELD_TYPE_U32:
6926                                 vmcs_write32(field, (u32)field_value);
6927                                 break;
6928                         case VMCS_FIELD_TYPE_U64:
6929                                 vmcs_write64(field, (u64)field_value);
6930                                 break;
6931                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6932                                 vmcs_writel(field, (long)field_value);
6933                                 break;
6934                         default:
6935                                 WARN_ON(1);
6936                                 break;
6937                         }
6938                 }
6939         }
6940
6941         vmcs_clear(shadow_vmcs);
6942         vmcs_load(vmx->loaded_vmcs->vmcs);
6943 }
6944
6945 /*
6946  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6947  * used before) all generate the same failure when it is missing.
6948  */
6949 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6950 {
6951         struct vcpu_vmx *vmx = to_vmx(vcpu);
6952         if (vmx->nested.current_vmptr == -1ull) {
6953                 nested_vmx_failInvalid(vcpu);
6954                 skip_emulated_instruction(vcpu);
6955                 return 0;
6956         }
6957         return 1;
6958 }
6959
6960 static int handle_vmread(struct kvm_vcpu *vcpu)
6961 {
6962         unsigned long field;
6963         u64 field_value;
6964         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6965         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6966         gva_t gva = 0;
6967
6968         if (!nested_vmx_check_permission(vcpu) ||
6969             !nested_vmx_check_vmcs12(vcpu))
6970                 return 1;
6971
6972         /* Decode instruction info and find the field to read */
6973         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6974         /* Read the field, zero-extended to a u64 field_value */
6975         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6976                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6977                 skip_emulated_instruction(vcpu);
6978                 return 1;
6979         }
6980         /*
6981          * Now copy part of this value to register or memory, as requested.
6982          * Note that the number of bits actually copied is 32 or 64 depending
6983          * on the guest's mode (32 or 64 bit), not on the given field's length.
6984          */
6985         if (vmx_instruction_info & (1u << 10)) {
6986                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6987                         field_value);
6988         } else {
6989                 if (get_vmx_mem_address(vcpu, exit_qualification,
6990                                 vmx_instruction_info, &gva))
6991                         return 1;
6992                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6993                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6994                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6995         }
6996
6997         nested_vmx_succeed(vcpu);
6998         skip_emulated_instruction(vcpu);
6999         return 1;
7000 }
7001
7002
7003 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7004 {
7005         unsigned long field;
7006         gva_t gva;
7007         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7008         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7009         /* The value to write might be 32 or 64 bits, depending on L1's long
7010          * mode, and eventually we need to write that into a field of several
7011          * possible lengths. The code below first zero-extends the value to 64
7012          * bit (field_value), and then copies only the approriate number of
7013          * bits into the vmcs12 field.
7014          */
7015         u64 field_value = 0;
7016         struct x86_exception e;
7017
7018         if (!nested_vmx_check_permission(vcpu) ||
7019             !nested_vmx_check_vmcs12(vcpu))
7020                 return 1;
7021
7022         if (vmx_instruction_info & (1u << 10))
7023                 field_value = kvm_register_readl(vcpu,
7024                         (((vmx_instruction_info) >> 3) & 0xf));
7025         else {
7026                 if (get_vmx_mem_address(vcpu, exit_qualification,
7027                                 vmx_instruction_info, &gva))
7028                         return 1;
7029                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7030                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7031                         kvm_inject_page_fault(vcpu, &e);
7032                         return 1;
7033                 }
7034         }
7035
7036
7037         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7038         if (vmcs_field_readonly(field)) {
7039                 nested_vmx_failValid(vcpu,
7040                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7041                 skip_emulated_instruction(vcpu);
7042                 return 1;
7043         }
7044
7045         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7046                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7047                 skip_emulated_instruction(vcpu);
7048                 return 1;
7049         }
7050
7051         nested_vmx_succeed(vcpu);
7052         skip_emulated_instruction(vcpu);
7053         return 1;
7054 }
7055
7056 /* Emulate the VMPTRLD instruction */
7057 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7058 {
7059         struct vcpu_vmx *vmx = to_vmx(vcpu);
7060         gpa_t vmptr;
7061         u32 exec_control;
7062
7063         if (!nested_vmx_check_permission(vcpu))
7064                 return 1;
7065
7066         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7067                 return 1;
7068
7069         if (vmx->nested.current_vmptr != vmptr) {
7070                 struct vmcs12 *new_vmcs12;
7071                 struct page *page;
7072                 page = nested_get_page(vcpu, vmptr);
7073                 if (page == NULL) {
7074                         nested_vmx_failInvalid(vcpu);
7075                         skip_emulated_instruction(vcpu);
7076                         return 1;
7077                 }
7078                 new_vmcs12 = kmap(page);
7079                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7080                         kunmap(page);
7081                         nested_release_page_clean(page);
7082                         nested_vmx_failValid(vcpu,
7083                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7084                         skip_emulated_instruction(vcpu);
7085                         return 1;
7086                 }
7087
7088                 nested_release_vmcs12(vmx);
7089                 vmx->nested.current_vmptr = vmptr;
7090                 vmx->nested.current_vmcs12 = new_vmcs12;
7091                 vmx->nested.current_vmcs12_page = page;
7092                 if (enable_shadow_vmcs) {
7093                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7094                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7095                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7096                         vmcs_write64(VMCS_LINK_POINTER,
7097                                      __pa(vmx->nested.current_shadow_vmcs));
7098                         vmx->nested.sync_shadow_vmcs = true;
7099                 }
7100         }
7101
7102         nested_vmx_succeed(vcpu);
7103         skip_emulated_instruction(vcpu);
7104         return 1;
7105 }
7106
7107 /* Emulate the VMPTRST instruction */
7108 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7109 {
7110         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7111         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7112         gva_t vmcs_gva;
7113         struct x86_exception e;
7114
7115         if (!nested_vmx_check_permission(vcpu))
7116                 return 1;
7117
7118         if (get_vmx_mem_address(vcpu, exit_qualification,
7119                         vmx_instruction_info, &vmcs_gva))
7120                 return 1;
7121         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7122         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7123                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7124                                  sizeof(u64), &e)) {
7125                 kvm_inject_page_fault(vcpu, &e);
7126                 return 1;
7127         }
7128         nested_vmx_succeed(vcpu);
7129         skip_emulated_instruction(vcpu);
7130         return 1;
7131 }
7132
7133 /* Emulate the INVEPT instruction */
7134 static int handle_invept(struct kvm_vcpu *vcpu)
7135 {
7136         struct vcpu_vmx *vmx = to_vmx(vcpu);
7137         u32 vmx_instruction_info, types;
7138         unsigned long type;
7139         gva_t gva;
7140         struct x86_exception e;
7141         struct {
7142                 u64 eptp, gpa;
7143         } operand;
7144
7145         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7146               SECONDARY_EXEC_ENABLE_EPT) ||
7147             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7148                 kvm_queue_exception(vcpu, UD_VECTOR);
7149                 return 1;
7150         }
7151
7152         if (!nested_vmx_check_permission(vcpu))
7153                 return 1;
7154
7155         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7156                 kvm_queue_exception(vcpu, UD_VECTOR);
7157                 return 1;
7158         }
7159
7160         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7161         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7162
7163         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7164
7165         if (!(types & (1UL << type))) {
7166                 nested_vmx_failValid(vcpu,
7167                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7168                 return 1;
7169         }
7170
7171         /* According to the Intel VMX instruction reference, the memory
7172          * operand is read even if it isn't needed (e.g., for type==global)
7173          */
7174         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7175                         vmx_instruction_info, &gva))
7176                 return 1;
7177         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7178                                 sizeof(operand), &e)) {
7179                 kvm_inject_page_fault(vcpu, &e);
7180                 return 1;
7181         }
7182
7183         switch (type) {
7184         case VMX_EPT_EXTENT_GLOBAL:
7185                 kvm_mmu_sync_roots(vcpu);
7186                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7187                 nested_vmx_succeed(vcpu);
7188                 break;
7189         default:
7190                 /* Trap single context invalidation invept calls */
7191                 BUG_ON(1);
7192                 break;
7193         }
7194
7195         skip_emulated_instruction(vcpu);
7196         return 1;
7197 }
7198
7199 static int handle_invvpid(struct kvm_vcpu *vcpu)
7200 {
7201         kvm_queue_exception(vcpu, UD_VECTOR);
7202         return 1;
7203 }
7204
7205 static int handle_pml_full(struct kvm_vcpu *vcpu)
7206 {
7207         unsigned long exit_qualification;
7208
7209         trace_kvm_pml_full(vcpu->vcpu_id);
7210
7211         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7212
7213         /*
7214          * PML buffer FULL happened while executing iret from NMI,
7215          * "blocked by NMI" bit has to be set before next VM entry.
7216          */
7217         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7218                         cpu_has_virtual_nmis() &&
7219                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7220                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7221                                 GUEST_INTR_STATE_NMI);
7222
7223         /*
7224          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7225          * here.., and there's no userspace involvement needed for PML.
7226          */
7227         return 1;
7228 }
7229
7230 /*
7231  * The exit handlers return 1 if the exit was handled fully and guest execution
7232  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7233  * to be done to userspace and return 0.
7234  */
7235 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7236         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7237         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7238         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7239         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7240         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7241         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7242         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7243         [EXIT_REASON_CPUID]                   = handle_cpuid,
7244         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7245         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7246         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7247         [EXIT_REASON_HLT]                     = handle_halt,
7248         [EXIT_REASON_INVD]                    = handle_invd,
7249         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7250         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7251         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7252         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7253         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7254         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7255         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7256         [EXIT_REASON_VMREAD]                  = handle_vmread,
7257         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7258         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7259         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7260         [EXIT_REASON_VMON]                    = handle_vmon,
7261         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7262         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7263         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7264         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7265         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7266         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7267         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7268         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7269         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7270         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7271         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7272         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7273         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7274         [EXIT_REASON_INVEPT]                  = handle_invept,
7275         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7276         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7277         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7278         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7279 };
7280
7281 static const int kvm_vmx_max_exit_handlers =
7282         ARRAY_SIZE(kvm_vmx_exit_handlers);
7283
7284 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7285                                        struct vmcs12 *vmcs12)
7286 {
7287         unsigned long exit_qualification;
7288         gpa_t bitmap, last_bitmap;
7289         unsigned int port;
7290         int size;
7291         u8 b;
7292
7293         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7294                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7295
7296         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7297
7298         port = exit_qualification >> 16;
7299         size = (exit_qualification & 7) + 1;
7300
7301         last_bitmap = (gpa_t)-1;
7302         b = -1;
7303
7304         while (size > 0) {
7305                 if (port < 0x8000)
7306                         bitmap = vmcs12->io_bitmap_a;
7307                 else if (port < 0x10000)
7308                         bitmap = vmcs12->io_bitmap_b;
7309                 else
7310                         return 1;
7311                 bitmap += (port & 0x7fff) / 8;
7312
7313                 if (last_bitmap != bitmap)
7314                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7315                                 return 1;
7316                 if (b & (1 << (port & 7)))
7317                         return 1;
7318
7319                 port++;
7320                 size--;
7321                 last_bitmap = bitmap;
7322         }
7323
7324         return 0;
7325 }
7326
7327 /*
7328  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7329  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7330  * disinterest in the current event (read or write a specific MSR) by using an
7331  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7332  */
7333 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7334         struct vmcs12 *vmcs12, u32 exit_reason)
7335 {
7336         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7337         gpa_t bitmap;
7338
7339         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7340                 return 1;
7341
7342         /*
7343          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7344          * for the four combinations of read/write and low/high MSR numbers.
7345          * First we need to figure out which of the four to use:
7346          */
7347         bitmap = vmcs12->msr_bitmap;
7348         if (exit_reason == EXIT_REASON_MSR_WRITE)
7349                 bitmap += 2048;
7350         if (msr_index >= 0xc0000000) {
7351                 msr_index -= 0xc0000000;
7352                 bitmap += 1024;
7353         }
7354
7355         /* Then read the msr_index'th bit from this bitmap: */
7356         if (msr_index < 1024*8) {
7357                 unsigned char b;
7358                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7359                         return 1;
7360                 return 1 & (b >> (msr_index & 7));
7361         } else
7362                 return 1; /* let L1 handle the wrong parameter */
7363 }
7364
7365 /*
7366  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7367  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7368  * intercept (via guest_host_mask etc.) the current event.
7369  */
7370 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7371         struct vmcs12 *vmcs12)
7372 {
7373         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7374         int cr = exit_qualification & 15;
7375         int reg = (exit_qualification >> 8) & 15;
7376         unsigned long val = kvm_register_readl(vcpu, reg);
7377
7378         switch ((exit_qualification >> 4) & 3) {
7379         case 0: /* mov to cr */
7380                 switch (cr) {
7381                 case 0:
7382                         if (vmcs12->cr0_guest_host_mask &
7383                             (val ^ vmcs12->cr0_read_shadow))
7384                                 return 1;
7385                         break;
7386                 case 3:
7387                         if ((vmcs12->cr3_target_count >= 1 &&
7388                                         vmcs12->cr3_target_value0 == val) ||
7389                                 (vmcs12->cr3_target_count >= 2 &&
7390                                         vmcs12->cr3_target_value1 == val) ||
7391                                 (vmcs12->cr3_target_count >= 3 &&
7392                                         vmcs12->cr3_target_value2 == val) ||
7393                                 (vmcs12->cr3_target_count >= 4 &&
7394                                         vmcs12->cr3_target_value3 == val))
7395                                 return 0;
7396                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7397                                 return 1;
7398                         break;
7399                 case 4:
7400                         if (vmcs12->cr4_guest_host_mask &
7401                             (vmcs12->cr4_read_shadow ^ val))
7402                                 return 1;
7403                         break;
7404                 case 8:
7405                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7406                                 return 1;
7407                         break;
7408                 }
7409                 break;
7410         case 2: /* clts */
7411                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7412                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7413                         return 1;
7414                 break;
7415         case 1: /* mov from cr */
7416                 switch (cr) {
7417                 case 3:
7418                         if (vmcs12->cpu_based_vm_exec_control &
7419                             CPU_BASED_CR3_STORE_EXITING)
7420                                 return 1;
7421                         break;
7422                 case 8:
7423                         if (vmcs12->cpu_based_vm_exec_control &
7424                             CPU_BASED_CR8_STORE_EXITING)
7425                                 return 1;
7426                         break;
7427                 }
7428                 break;
7429         case 3: /* lmsw */
7430                 /*
7431                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7432                  * cr0. Other attempted changes are ignored, with no exit.
7433                  */
7434                 if (vmcs12->cr0_guest_host_mask & 0xe &
7435                     (val ^ vmcs12->cr0_read_shadow))
7436                         return 1;
7437                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7438                     !(vmcs12->cr0_read_shadow & 0x1) &&
7439                     (val & 0x1))
7440                         return 1;
7441                 break;
7442         }
7443         return 0;
7444 }
7445
7446 /*
7447  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7448  * should handle it ourselves in L0 (and then continue L2). Only call this
7449  * when in is_guest_mode (L2).
7450  */
7451 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7452 {
7453         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7454         struct vcpu_vmx *vmx = to_vmx(vcpu);
7455         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7456         u32 exit_reason = vmx->exit_reason;
7457
7458         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7459                                 vmcs_readl(EXIT_QUALIFICATION),
7460                                 vmx->idt_vectoring_info,
7461                                 intr_info,
7462                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7463                                 KVM_ISA_VMX);
7464
7465         if (vmx->nested.nested_run_pending)
7466                 return 0;
7467
7468         if (unlikely(vmx->fail)) {
7469                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7470                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7471                 return 1;
7472         }
7473
7474         switch (exit_reason) {
7475         case EXIT_REASON_EXCEPTION_NMI:
7476                 if (!is_exception(intr_info))
7477                         return 0;
7478                 else if (is_page_fault(intr_info))
7479                         return enable_ept;
7480                 else if (is_no_device(intr_info) &&
7481                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7482                         return 0;
7483                 return vmcs12->exception_bitmap &
7484                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7485         case EXIT_REASON_EXTERNAL_INTERRUPT:
7486                 return 0;
7487         case EXIT_REASON_TRIPLE_FAULT:
7488                 return 1;
7489         case EXIT_REASON_PENDING_INTERRUPT:
7490                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7491         case EXIT_REASON_NMI_WINDOW:
7492                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7493         case EXIT_REASON_TASK_SWITCH:
7494                 return 1;
7495         case EXIT_REASON_CPUID:
7496                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7497                         return 0;
7498                 return 1;
7499         case EXIT_REASON_HLT:
7500                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7501         case EXIT_REASON_INVD:
7502                 return 1;
7503         case EXIT_REASON_INVLPG:
7504                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7505         case EXIT_REASON_RDPMC:
7506                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7507         case EXIT_REASON_RDTSC:
7508                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7509         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7510         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7511         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7512         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7513         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7514         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7515                 /*
7516                  * VMX instructions trap unconditionally. This allows L1 to
7517                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7518                  */
7519                 return 1;
7520         case EXIT_REASON_CR_ACCESS:
7521                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7522         case EXIT_REASON_DR_ACCESS:
7523                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7524         case EXIT_REASON_IO_INSTRUCTION:
7525                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7526         case EXIT_REASON_MSR_READ:
7527         case EXIT_REASON_MSR_WRITE:
7528                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7529         case EXIT_REASON_INVALID_STATE:
7530                 return 1;
7531         case EXIT_REASON_MWAIT_INSTRUCTION:
7532                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7533         case EXIT_REASON_MONITOR_INSTRUCTION:
7534                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7535         case EXIT_REASON_PAUSE_INSTRUCTION:
7536                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7537                         nested_cpu_has2(vmcs12,
7538                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7539         case EXIT_REASON_MCE_DURING_VMENTRY:
7540                 return 0;
7541         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7542                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7543         case EXIT_REASON_APIC_ACCESS:
7544                 return nested_cpu_has2(vmcs12,
7545                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7546         case EXIT_REASON_APIC_WRITE:
7547         case EXIT_REASON_EOI_INDUCED:
7548                 /* apic_write and eoi_induced should exit unconditionally. */
7549                 return 1;
7550         case EXIT_REASON_EPT_VIOLATION:
7551                 /*
7552                  * L0 always deals with the EPT violation. If nested EPT is
7553                  * used, and the nested mmu code discovers that the address is
7554                  * missing in the guest EPT table (EPT12), the EPT violation
7555                  * will be injected with nested_ept_inject_page_fault()
7556                  */
7557                 return 0;
7558         case EXIT_REASON_EPT_MISCONFIG:
7559                 /*
7560                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7561                  * table (shadow on EPT) or a merged EPT table that L0 built
7562                  * (EPT on EPT). So any problems with the structure of the
7563                  * table is L0's fault.
7564                  */
7565                 return 0;
7566         case EXIT_REASON_WBINVD:
7567                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7568         case EXIT_REASON_XSETBV:
7569                 return 1;
7570         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7571                 /*
7572                  * This should never happen, since it is not possible to
7573                  * set XSS to a non-zero value---neither in L1 nor in L2.
7574                  * If if it were, XSS would have to be checked against
7575                  * the XSS exit bitmap in vmcs12.
7576                  */
7577                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7578         default:
7579                 return 1;
7580         }
7581 }
7582
7583 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7584 {
7585         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7586         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7587 }
7588
7589 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7590 {
7591         struct page *pml_pg;
7592         u32 exec_control;
7593
7594         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7595         if (!pml_pg)
7596                 return -ENOMEM;
7597
7598         vmx->pml_pg = pml_pg;
7599
7600         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7601         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7602
7603         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7604         exec_control |= SECONDARY_EXEC_ENABLE_PML;
7605         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7606
7607         return 0;
7608 }
7609
7610 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7611 {
7612         u32 exec_control;
7613
7614         ASSERT(vmx->pml_pg);
7615         __free_page(vmx->pml_pg);
7616         vmx->pml_pg = NULL;
7617
7618         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7619         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7620         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7621 }
7622
7623 static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx)
7624 {
7625         struct kvm *kvm = vmx->vcpu.kvm;
7626         u64 *pml_buf;
7627         u16 pml_idx;
7628
7629         pml_idx = vmcs_read16(GUEST_PML_INDEX);
7630
7631         /* Do nothing if PML buffer is empty */
7632         if (pml_idx == (PML_ENTITY_NUM - 1))
7633                 return;
7634
7635         /* PML index always points to next available PML buffer entity */
7636         if (pml_idx >= PML_ENTITY_NUM)
7637                 pml_idx = 0;
7638         else
7639                 pml_idx++;
7640
7641         pml_buf = page_address(vmx->pml_pg);
7642         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7643                 u64 gpa;
7644
7645                 gpa = pml_buf[pml_idx];
7646                 WARN_ON(gpa & (PAGE_SIZE - 1));
7647                 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
7648         }
7649
7650         /* reset PML index */
7651         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7652 }
7653
7654 /*
7655  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7656  * Called before reporting dirty_bitmap to userspace.
7657  */
7658 static void kvm_flush_pml_buffers(struct kvm *kvm)
7659 {
7660         int i;
7661         struct kvm_vcpu *vcpu;
7662         /*
7663          * We only need to kick vcpu out of guest mode here, as PML buffer
7664          * is flushed at beginning of all VMEXITs, and it's obvious that only
7665          * vcpus running in guest are possible to have unflushed GPAs in PML
7666          * buffer.
7667          */
7668         kvm_for_each_vcpu(i, vcpu, kvm)
7669                 kvm_vcpu_kick(vcpu);
7670 }
7671
7672 /*
7673  * The guest has exited.  See if we can fix it or if we need userspace
7674  * assistance.
7675  */
7676 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7677 {
7678         struct vcpu_vmx *vmx = to_vmx(vcpu);
7679         u32 exit_reason = vmx->exit_reason;
7680         u32 vectoring_info = vmx->idt_vectoring_info;
7681
7682         /*
7683          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7684          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7685          * querying dirty_bitmap, we only need to kick all vcpus out of guest
7686          * mode as if vcpus is in root mode, the PML buffer must has been
7687          * flushed already.
7688          */
7689         if (enable_pml)
7690                 vmx_flush_pml_buffer(vmx);
7691
7692         /* If guest state is invalid, start emulating */
7693         if (vmx->emulation_required)
7694                 return handle_invalid_guest_state(vcpu);
7695
7696         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7697                 nested_vmx_vmexit(vcpu, exit_reason,
7698                                   vmcs_read32(VM_EXIT_INTR_INFO),
7699                                   vmcs_readl(EXIT_QUALIFICATION));
7700                 return 1;
7701         }
7702
7703         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7704                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7705                 vcpu->run->fail_entry.hardware_entry_failure_reason
7706                         = exit_reason;
7707                 return 0;
7708         }
7709
7710         if (unlikely(vmx->fail)) {
7711                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7712                 vcpu->run->fail_entry.hardware_entry_failure_reason
7713                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7714                 return 0;
7715         }
7716
7717         /*
7718          * Note:
7719          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7720          * delivery event since it indicates guest is accessing MMIO.
7721          * The vm-exit can be triggered again after return to guest that
7722          * will cause infinite loop.
7723          */
7724         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7725                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7726                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7727                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7728                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7729                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7730                 vcpu->run->internal.ndata = 2;
7731                 vcpu->run->internal.data[0] = vectoring_info;
7732                 vcpu->run->internal.data[1] = exit_reason;
7733                 return 0;
7734         }
7735
7736         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7737             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7738                                         get_vmcs12(vcpu))))) {
7739                 if (vmx_interrupt_allowed(vcpu)) {
7740                         vmx->soft_vnmi_blocked = 0;
7741                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7742                            vcpu->arch.nmi_pending) {
7743                         /*
7744                          * This CPU don't support us in finding the end of an
7745                          * NMI-blocked window if the guest runs with IRQs
7746                          * disabled. So we pull the trigger after 1 s of
7747                          * futile waiting, but inform the user about this.
7748                          */
7749                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7750                                "state on VCPU %d after 1 s timeout\n",
7751                                __func__, vcpu->vcpu_id);
7752                         vmx->soft_vnmi_blocked = 0;
7753                 }
7754         }
7755
7756         if (exit_reason < kvm_vmx_max_exit_handlers
7757             && kvm_vmx_exit_handlers[exit_reason])
7758                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7759         else {
7760                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7761                 kvm_queue_exception(vcpu, UD_VECTOR);
7762                 return 1;
7763         }
7764 }
7765
7766 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7767 {
7768         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7769
7770         if (is_guest_mode(vcpu) &&
7771                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7772                 return;
7773
7774         if (irr == -1 || tpr < irr) {
7775                 vmcs_write32(TPR_THRESHOLD, 0);
7776                 return;
7777         }
7778
7779         vmcs_write32(TPR_THRESHOLD, irr);
7780 }
7781
7782 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7783 {
7784         u32 sec_exec_control;
7785
7786         /*
7787          * There is not point to enable virtualize x2apic without enable
7788          * apicv
7789          */
7790         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7791                                 !vmx_vm_has_apicv(vcpu->kvm))
7792                 return;
7793
7794         if (!vm_need_tpr_shadow(vcpu->kvm))
7795                 return;
7796
7797         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7798
7799         if (set) {
7800                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7801                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7802         } else {
7803                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7804                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7805         }
7806         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7807
7808         vmx_set_msr_bitmap(vcpu);
7809 }
7810
7811 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7812 {
7813         struct vcpu_vmx *vmx = to_vmx(vcpu);
7814
7815         /*
7816          * Currently we do not handle the nested case where L2 has an
7817          * APIC access page of its own; that page is still pinned.
7818          * Hence, we skip the case where the VCPU is in guest mode _and_
7819          * L1 prepared an APIC access page for L2.
7820          *
7821          * For the case where L1 and L2 share the same APIC access page
7822          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7823          * in the vmcs12), this function will only update either the vmcs01
7824          * or the vmcs02.  If the former, the vmcs02 will be updated by
7825          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7826          * the next L2->L1 exit.
7827          */
7828         if (!is_guest_mode(vcpu) ||
7829             !nested_cpu_has2(vmx->nested.current_vmcs12,
7830                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7831                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7832 }
7833
7834 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7835 {
7836         u16 status;
7837         u8 old;
7838
7839         if (isr == -1)
7840                 isr = 0;
7841
7842         status = vmcs_read16(GUEST_INTR_STATUS);
7843         old = status >> 8;
7844         if (isr != old) {
7845                 status &= 0xff;
7846                 status |= isr << 8;
7847                 vmcs_write16(GUEST_INTR_STATUS, status);
7848         }
7849 }
7850
7851 static void vmx_set_rvi(int vector)
7852 {
7853         u16 status;
7854         u8 old;
7855
7856         if (vector == -1)
7857                 vector = 0;
7858
7859         status = vmcs_read16(GUEST_INTR_STATUS);
7860         old = (u8)status & 0xff;
7861         if ((u8)vector != old) {
7862                 status &= ~0xff;
7863                 status |= (u8)vector;
7864                 vmcs_write16(GUEST_INTR_STATUS, status);
7865         }
7866 }
7867
7868 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7869 {
7870         if (!is_guest_mode(vcpu)) {
7871                 vmx_set_rvi(max_irr);
7872                 return;
7873         }
7874
7875         if (max_irr == -1)
7876                 return;
7877
7878         /*
7879          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
7880          * handles it.
7881          */
7882         if (nested_exit_on_intr(vcpu))
7883                 return;
7884
7885         /*
7886          * Else, fall back to pre-APICv interrupt injection since L2
7887          * is run without virtual interrupt delivery.
7888          */
7889         if (!kvm_event_needs_reinjection(vcpu) &&
7890             vmx_interrupt_allowed(vcpu)) {
7891                 kvm_queue_interrupt(vcpu, max_irr, false);
7892                 vmx_inject_irq(vcpu);
7893         }
7894 }
7895
7896 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7897 {
7898         if (!vmx_vm_has_apicv(vcpu->kvm))
7899                 return;
7900
7901         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7902         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7903         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7904         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7905 }
7906
7907 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7908 {
7909         u32 exit_intr_info;
7910
7911         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7912               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7913                 return;
7914
7915         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7916         exit_intr_info = vmx->exit_intr_info;
7917
7918         /* Handle machine checks before interrupts are enabled */
7919         if (is_machine_check(exit_intr_info))
7920                 kvm_machine_check();
7921
7922         /* We need to handle NMIs before interrupts are enabled */
7923         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7924             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7925                 kvm_before_handle_nmi(&vmx->vcpu);
7926                 asm("int $2");
7927                 kvm_after_handle_nmi(&vmx->vcpu);
7928         }
7929 }
7930
7931 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7932 {
7933         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7934
7935         /*
7936          * If external interrupt exists, IF bit is set in rflags/eflags on the
7937          * interrupt stack frame, and interrupt will be enabled on a return
7938          * from interrupt handler.
7939          */
7940         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7941                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7942                 unsigned int vector;
7943                 unsigned long entry;
7944                 gate_desc *desc;
7945                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7946 #ifdef CONFIG_X86_64
7947                 unsigned long tmp;
7948 #endif
7949
7950                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7951                 desc = (gate_desc *)vmx->host_idt_base + vector;
7952                 entry = gate_offset(*desc);
7953                 asm volatile(
7954 #ifdef CONFIG_X86_64
7955                         "mov %%" _ASM_SP ", %[sp]\n\t"
7956                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7957                         "push $%c[ss]\n\t"
7958                         "push %[sp]\n\t"
7959 #endif
7960                         "pushf\n\t"
7961                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7962                         __ASM_SIZE(push) " $%c[cs]\n\t"
7963                         "call *%[entry]\n\t"
7964                         :
7965 #ifdef CONFIG_X86_64
7966                         [sp]"=&r"(tmp)
7967 #endif
7968                         :
7969                         [entry]"r"(entry),
7970                         [ss]"i"(__KERNEL_DS),
7971                         [cs]"i"(__KERNEL_CS)
7972                         );
7973         } else
7974                 local_irq_enable();
7975 }
7976
7977 static bool vmx_mpx_supported(void)
7978 {
7979         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7980                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7981 }
7982
7983 static bool vmx_xsaves_supported(void)
7984 {
7985         return vmcs_config.cpu_based_2nd_exec_ctrl &
7986                 SECONDARY_EXEC_XSAVES;
7987 }
7988
7989 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7990 {
7991         u32 exit_intr_info;
7992         bool unblock_nmi;
7993         u8 vector;
7994         bool idtv_info_valid;
7995
7996         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7997
7998         if (cpu_has_virtual_nmis()) {
7999                 if (vmx->nmi_known_unmasked)
8000                         return;
8001                 /*
8002                  * Can't use vmx->exit_intr_info since we're not sure what
8003                  * the exit reason is.
8004                  */
8005                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8006                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8007                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8008                 /*
8009                  * SDM 3: 27.7.1.2 (September 2008)
8010                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8011                  * a guest IRET fault.
8012                  * SDM 3: 23.2.2 (September 2008)
8013                  * Bit 12 is undefined in any of the following cases:
8014                  *  If the VM exit sets the valid bit in the IDT-vectoring
8015                  *   information field.
8016                  *  If the VM exit is due to a double fault.
8017                  */
8018                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8019                     vector != DF_VECTOR && !idtv_info_valid)
8020                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8021                                       GUEST_INTR_STATE_NMI);
8022                 else
8023                         vmx->nmi_known_unmasked =
8024                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8025                                   & GUEST_INTR_STATE_NMI);
8026         } else if (unlikely(vmx->soft_vnmi_blocked))
8027                 vmx->vnmi_blocked_time +=
8028                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8029 }
8030
8031 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8032                                       u32 idt_vectoring_info,
8033                                       int instr_len_field,
8034                                       int error_code_field)
8035 {
8036         u8 vector;
8037         int type;
8038         bool idtv_info_valid;
8039
8040         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8041
8042         vcpu->arch.nmi_injected = false;
8043         kvm_clear_exception_queue(vcpu);
8044         kvm_clear_interrupt_queue(vcpu);
8045
8046         if (!idtv_info_valid)
8047                 return;
8048
8049         kvm_make_request(KVM_REQ_EVENT, vcpu);
8050
8051         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8052         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8053
8054         switch (type) {
8055         case INTR_TYPE_NMI_INTR:
8056                 vcpu->arch.nmi_injected = true;
8057                 /*
8058                  * SDM 3: 27.7.1.2 (September 2008)
8059                  * Clear bit "block by NMI" before VM entry if a NMI
8060                  * delivery faulted.
8061                  */
8062                 vmx_set_nmi_mask(vcpu, false);
8063                 break;
8064         case INTR_TYPE_SOFT_EXCEPTION:
8065                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8066                 /* fall through */
8067         case INTR_TYPE_HARD_EXCEPTION:
8068                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8069                         u32 err = vmcs_read32(error_code_field);
8070                         kvm_requeue_exception_e(vcpu, vector, err);
8071                 } else
8072                         kvm_requeue_exception(vcpu, vector);
8073                 break;
8074         case INTR_TYPE_SOFT_INTR:
8075                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8076                 /* fall through */
8077         case INTR_TYPE_EXT_INTR:
8078                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8079                 break;
8080         default:
8081                 break;
8082         }
8083 }
8084
8085 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8086 {
8087         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8088                                   VM_EXIT_INSTRUCTION_LEN,
8089                                   IDT_VECTORING_ERROR_CODE);
8090 }
8091
8092 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8093 {
8094         __vmx_complete_interrupts(vcpu,
8095                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8096                                   VM_ENTRY_INSTRUCTION_LEN,
8097                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8098
8099         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8100 }
8101
8102 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8103 {
8104         int i, nr_msrs;
8105         struct perf_guest_switch_msr *msrs;
8106
8107         msrs = perf_guest_get_msrs(&nr_msrs);
8108
8109         if (!msrs)
8110                 return;
8111
8112         for (i = 0; i < nr_msrs; i++)
8113                 if (msrs[i].host == msrs[i].guest)
8114                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8115                 else
8116                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8117                                         msrs[i].host);
8118 }
8119
8120 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8121 {
8122         struct vcpu_vmx *vmx = to_vmx(vcpu);
8123         unsigned long debugctlmsr, cr4;
8124
8125         /* Record the guest's net vcpu time for enforced NMI injections. */
8126         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8127                 vmx->entry_time = ktime_get();
8128
8129         /* Don't enter VMX if guest state is invalid, let the exit handler
8130            start emulation until we arrive back to a valid state */
8131         if (vmx->emulation_required)
8132                 return;
8133
8134         if (vmx->ple_window_dirty) {
8135                 vmx->ple_window_dirty = false;
8136                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8137         }
8138
8139         if (vmx->nested.sync_shadow_vmcs) {
8140                 copy_vmcs12_to_shadow(vmx);
8141                 vmx->nested.sync_shadow_vmcs = false;
8142         }
8143
8144         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8145                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8146         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8147                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8148
8149         cr4 = cr4_read_shadow();
8150         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8151                 vmcs_writel(HOST_CR4, cr4);
8152                 vmx->host_state.vmcs_host_cr4 = cr4;
8153         }
8154
8155         /* When single-stepping over STI and MOV SS, we must clear the
8156          * corresponding interruptibility bits in the guest state. Otherwise
8157          * vmentry fails as it then expects bit 14 (BS) in pending debug
8158          * exceptions being set, but that's not correct for the guest debugging
8159          * case. */
8160         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8161                 vmx_set_interrupt_shadow(vcpu, 0);
8162
8163         atomic_switch_perf_msrs(vmx);
8164         debugctlmsr = get_debugctlmsr();
8165
8166         vmx->__launched = vmx->loaded_vmcs->launched;
8167         asm(
8168                 /* Store host registers */
8169                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8170                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8171                 "push %%" _ASM_CX " \n\t"
8172                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8173                 "je 1f \n\t"
8174                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8175                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8176                 "1: \n\t"
8177                 /* Reload cr2 if changed */
8178                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8179                 "mov %%cr2, %%" _ASM_DX " \n\t"
8180                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8181                 "je 2f \n\t"
8182                 "mov %%" _ASM_AX", %%cr2 \n\t"
8183                 "2: \n\t"
8184                 /* Check if vmlaunch of vmresume is needed */
8185                 "cmpl $0, %c[launched](%0) \n\t"
8186                 /* Load guest registers.  Don't clobber flags. */
8187                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8188                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8189                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8190                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8191                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8192                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8193 #ifdef CONFIG_X86_64
8194                 "mov %c[r8](%0),  %%r8  \n\t"
8195                 "mov %c[r9](%0),  %%r9  \n\t"
8196                 "mov %c[r10](%0), %%r10 \n\t"
8197                 "mov %c[r11](%0), %%r11 \n\t"
8198                 "mov %c[r12](%0), %%r12 \n\t"
8199                 "mov %c[r13](%0), %%r13 \n\t"
8200                 "mov %c[r14](%0), %%r14 \n\t"
8201                 "mov %c[r15](%0), %%r15 \n\t"
8202 #endif
8203                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8204
8205                 /* Enter guest mode */
8206                 "jne 1f \n\t"
8207                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8208                 "jmp 2f \n\t"
8209                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8210                 "2: "
8211                 /* Save guest registers, load host registers, keep flags */
8212                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8213                 "pop %0 \n\t"
8214                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8215                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8216                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8217                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8218                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8219                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8220                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8221 #ifdef CONFIG_X86_64
8222                 "mov %%r8,  %c[r8](%0) \n\t"
8223                 "mov %%r9,  %c[r9](%0) \n\t"
8224                 "mov %%r10, %c[r10](%0) \n\t"
8225                 "mov %%r11, %c[r11](%0) \n\t"
8226                 "mov %%r12, %c[r12](%0) \n\t"
8227                 "mov %%r13, %c[r13](%0) \n\t"
8228                 "mov %%r14, %c[r14](%0) \n\t"
8229                 "mov %%r15, %c[r15](%0) \n\t"
8230 #endif
8231                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8232                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8233
8234                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8235                 "setbe %c[fail](%0) \n\t"
8236                 ".pushsection .rodata \n\t"
8237                 ".global vmx_return \n\t"
8238                 "vmx_return: " _ASM_PTR " 2b \n\t"
8239                 ".popsection"
8240               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8241                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8242                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8243                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8244                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8245                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8246                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8247                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8248                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8249                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8250                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8251 #ifdef CONFIG_X86_64
8252                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8253                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8254                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8255                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8256                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8257                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8258                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8259                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8260 #endif
8261                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8262                 [wordsize]"i"(sizeof(ulong))
8263               : "cc", "memory"
8264 #ifdef CONFIG_X86_64
8265                 , "rax", "rbx", "rdi", "rsi"
8266                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8267 #else
8268                 , "eax", "ebx", "edi", "esi"
8269 #endif
8270               );
8271
8272         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8273         if (debugctlmsr)
8274                 update_debugctlmsr(debugctlmsr);
8275
8276 #ifndef CONFIG_X86_64
8277         /*
8278          * The sysexit path does not restore ds/es, so we must set them to
8279          * a reasonable value ourselves.
8280          *
8281          * We can't defer this to vmx_load_host_state() since that function
8282          * may be executed in interrupt context, which saves and restore segments
8283          * around it, nullifying its effect.
8284          */
8285         loadsegment(ds, __USER_DS);
8286         loadsegment(es, __USER_DS);
8287 #endif
8288
8289         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8290                                   | (1 << VCPU_EXREG_RFLAGS)
8291                                   | (1 << VCPU_EXREG_PDPTR)
8292                                   | (1 << VCPU_EXREG_SEGMENTS)
8293                                   | (1 << VCPU_EXREG_CR3));
8294         vcpu->arch.regs_dirty = 0;
8295
8296         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8297
8298         vmx->loaded_vmcs->launched = 1;
8299
8300         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8301         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8302
8303         /*
8304          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8305          * we did not inject a still-pending event to L1 now because of
8306          * nested_run_pending, we need to re-enable this bit.
8307          */
8308         if (vmx->nested.nested_run_pending)
8309                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8310
8311         vmx->nested.nested_run_pending = 0;
8312
8313         vmx_complete_atomic_exit(vmx);
8314         vmx_recover_nmi_blocking(vmx);
8315         vmx_complete_interrupts(vmx);
8316 }
8317
8318 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8319 {
8320         struct vcpu_vmx *vmx = to_vmx(vcpu);
8321         int cpu;
8322
8323         if (vmx->loaded_vmcs == &vmx->vmcs01)
8324                 return;
8325
8326         cpu = get_cpu();
8327         vmx->loaded_vmcs = &vmx->vmcs01;
8328         vmx_vcpu_put(vcpu);
8329         vmx_vcpu_load(vcpu, cpu);
8330         vcpu->cpu = cpu;
8331         put_cpu();
8332 }
8333
8334 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8335 {
8336         struct vcpu_vmx *vmx = to_vmx(vcpu);
8337
8338         if (enable_pml)
8339                 vmx_disable_pml(vmx);
8340         free_vpid(vmx);
8341         leave_guest_mode(vcpu);
8342         vmx_load_vmcs01(vcpu);
8343         free_nested(vmx);
8344         free_loaded_vmcs(vmx->loaded_vmcs);
8345         kfree(vmx->guest_msrs);
8346         kvm_vcpu_uninit(vcpu);
8347         kmem_cache_free(kvm_vcpu_cache, vmx);
8348 }
8349
8350 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8351 {
8352         int err;
8353         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8354         int cpu;
8355
8356         if (!vmx)
8357                 return ERR_PTR(-ENOMEM);
8358
8359         allocate_vpid(vmx);
8360
8361         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8362         if (err)
8363                 goto free_vcpu;
8364
8365         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8366         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8367                      > PAGE_SIZE);
8368
8369         err = -ENOMEM;
8370         if (!vmx->guest_msrs) {
8371                 goto uninit_vcpu;
8372         }
8373
8374         vmx->loaded_vmcs = &vmx->vmcs01;
8375         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8376         if (!vmx->loaded_vmcs->vmcs)
8377                 goto free_msrs;
8378         if (!vmm_exclusive)
8379                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8380         loaded_vmcs_init(vmx->loaded_vmcs);
8381         if (!vmm_exclusive)
8382                 kvm_cpu_vmxoff();
8383
8384         cpu = get_cpu();
8385         vmx_vcpu_load(&vmx->vcpu, cpu);
8386         vmx->vcpu.cpu = cpu;
8387         err = vmx_vcpu_setup(vmx);
8388         vmx_vcpu_put(&vmx->vcpu);
8389         put_cpu();
8390         if (err)
8391                 goto free_vmcs;
8392         if (vm_need_virtualize_apic_accesses(kvm)) {
8393                 err = alloc_apic_access_page(kvm);
8394                 if (err)
8395                         goto free_vmcs;
8396         }
8397
8398         if (enable_ept) {
8399                 if (!kvm->arch.ept_identity_map_addr)
8400                         kvm->arch.ept_identity_map_addr =
8401                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8402                 err = init_rmode_identity_map(kvm);
8403                 if (err)
8404                         goto free_vmcs;
8405         }
8406
8407         if (nested)
8408                 nested_vmx_setup_ctls_msrs(vmx);
8409
8410         vmx->nested.posted_intr_nv = -1;
8411         vmx->nested.current_vmptr = -1ull;
8412         vmx->nested.current_vmcs12 = NULL;
8413
8414         /*
8415          * If PML is turned on, failure on enabling PML just results in failure
8416          * of creating the vcpu, therefore we can simplify PML logic (by
8417          * avoiding dealing with cases, such as enabling PML partially on vcpus
8418          * for the guest, etc.
8419          */
8420         if (enable_pml) {
8421                 err = vmx_enable_pml(vmx);
8422                 if (err)
8423                         goto free_vmcs;
8424         }
8425
8426         return &vmx->vcpu;
8427
8428 free_vmcs:
8429         free_loaded_vmcs(vmx->loaded_vmcs);
8430 free_msrs:
8431         kfree(vmx->guest_msrs);
8432 uninit_vcpu:
8433         kvm_vcpu_uninit(&vmx->vcpu);
8434 free_vcpu:
8435         free_vpid(vmx);
8436         kmem_cache_free(kvm_vcpu_cache, vmx);
8437         return ERR_PTR(err);
8438 }
8439
8440 static void __init vmx_check_processor_compat(void *rtn)
8441 {
8442         struct vmcs_config vmcs_conf;
8443
8444         *(int *)rtn = 0;
8445         if (setup_vmcs_config(&vmcs_conf) < 0)
8446                 *(int *)rtn = -EIO;
8447         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8448                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8449                                 smp_processor_id());
8450                 *(int *)rtn = -EIO;
8451         }
8452 }
8453
8454 static int get_ept_level(void)
8455 {
8456         return VMX_EPT_DEFAULT_GAW + 1;
8457 }
8458
8459 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8460 {
8461         u64 ret;
8462
8463         /* For VT-d and EPT combination
8464          * 1. MMIO: always map as UC
8465          * 2. EPT with VT-d:
8466          *   a. VT-d without snooping control feature: can't guarantee the
8467          *      result, try to trust guest.
8468          *   b. VT-d with snooping control feature: snooping control feature of
8469          *      VT-d engine can guarantee the cache correctness. Just set it
8470          *      to WB to keep consistent with host. So the same as item 3.
8471          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8472          *    consistent with host MTRR
8473          */
8474         if (is_mmio)
8475                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8476         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8477                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8478                       VMX_EPT_MT_EPTE_SHIFT;
8479         else
8480                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8481                         | VMX_EPT_IPAT_BIT;
8482
8483         return ret;
8484 }
8485
8486 static int vmx_get_lpage_level(void)
8487 {
8488         if (enable_ept && !cpu_has_vmx_ept_1g_page())
8489                 return PT_DIRECTORY_LEVEL;
8490         else
8491                 /* For shadow and EPT supported 1GB page */
8492                 return PT_PDPE_LEVEL;
8493 }
8494
8495 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8496 {
8497         struct kvm_cpuid_entry2 *best;
8498         struct vcpu_vmx *vmx = to_vmx(vcpu);
8499         u32 exec_control;
8500
8501         vmx->rdtscp_enabled = false;
8502         if (vmx_rdtscp_supported()) {
8503                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8504                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8505                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8506                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8507                                 vmx->rdtscp_enabled = true;
8508                         else {
8509                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8510                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8511                                                 exec_control);
8512                         }
8513                 }
8514         }
8515
8516         /* Exposing INVPCID only when PCID is exposed */
8517         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8518         if (vmx_invpcid_supported() &&
8519             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8520             guest_cpuid_has_pcid(vcpu)) {
8521                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8522                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8523                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8524                              exec_control);
8525         } else {
8526                 if (cpu_has_secondary_exec_ctrls()) {
8527                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8528                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8529                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8530                                      exec_control);
8531                 }
8532                 if (best)
8533                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
8534         }
8535 }
8536
8537 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8538 {
8539         if (func == 1 && nested)
8540                 entry->ecx |= bit(X86_FEATURE_VMX);
8541 }
8542
8543 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8544                 struct x86_exception *fault)
8545 {
8546         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8547         u32 exit_reason;
8548
8549         if (fault->error_code & PFERR_RSVD_MASK)
8550                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8551         else
8552                 exit_reason = EXIT_REASON_EPT_VIOLATION;
8553         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8554         vmcs12->guest_physical_address = fault->address;
8555 }
8556
8557 /* Callbacks for nested_ept_init_mmu_context: */
8558
8559 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8560 {
8561         /* return the page table to be shadowed - in our case, EPT12 */
8562         return get_vmcs12(vcpu)->ept_pointer;
8563 }
8564
8565 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8566 {
8567         WARN_ON(mmu_is_nested(vcpu));
8568         kvm_init_shadow_ept_mmu(vcpu,
8569                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8570                         VMX_EPT_EXECUTE_ONLY_BIT);
8571         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8572         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8573         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8574
8575         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8576 }
8577
8578 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8579 {
8580         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8581 }
8582
8583 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8584                                             u16 error_code)
8585 {
8586         bool inequality, bit;
8587
8588         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8589         inequality =
8590                 (error_code & vmcs12->page_fault_error_code_mask) !=
8591                  vmcs12->page_fault_error_code_match;
8592         return inequality ^ bit;
8593 }
8594
8595 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8596                 struct x86_exception *fault)
8597 {
8598         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8599
8600         WARN_ON(!is_guest_mode(vcpu));
8601
8602         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8603                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8604                                   vmcs_read32(VM_EXIT_INTR_INFO),
8605                                   vmcs_readl(EXIT_QUALIFICATION));
8606         else
8607                 kvm_inject_page_fault(vcpu, fault);
8608 }
8609
8610 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8611                                         struct vmcs12 *vmcs12)
8612 {
8613         struct vcpu_vmx *vmx = to_vmx(vcpu);
8614
8615         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8616                 /* TODO: Also verify bits beyond physical address width are 0 */
8617                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
8618                         return false;
8619
8620                 /*
8621                  * Translate L1 physical address to host physical
8622                  * address for vmcs02. Keep the page pinned, so this
8623                  * physical address remains valid. We keep a reference
8624                  * to it so we can release it later.
8625                  */
8626                 if (vmx->nested.apic_access_page) /* shouldn't happen */
8627                         nested_release_page(vmx->nested.apic_access_page);
8628                 vmx->nested.apic_access_page =
8629                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8630         }
8631
8632         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8633                 /* TODO: Also verify bits beyond physical address width are 0 */
8634                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8635                         return false;
8636
8637                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8638                         nested_release_page(vmx->nested.virtual_apic_page);
8639                 vmx->nested.virtual_apic_page =
8640                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8641
8642                 /*
8643                  * Failing the vm entry is _not_ what the processor does
8644                  * but it's basically the only possibility we have.
8645                  * We could still enter the guest if CR8 load exits are
8646                  * enabled, CR8 store exits are enabled, and virtualize APIC
8647                  * access is disabled; in this case the processor would never
8648                  * use the TPR shadow and we could simply clear the bit from
8649                  * the execution control.  But such a configuration is useless,
8650                  * so let's keep the code simple.
8651                  */
8652                 if (!vmx->nested.virtual_apic_page)
8653                         return false;
8654         }
8655
8656         if (nested_cpu_has_posted_intr(vmcs12)) {
8657                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64))
8658                         return false;
8659
8660                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8661                         kunmap(vmx->nested.pi_desc_page);
8662                         nested_release_page(vmx->nested.pi_desc_page);
8663                 }
8664                 vmx->nested.pi_desc_page =
8665                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8666                 if (!vmx->nested.pi_desc_page)
8667                         return false;
8668
8669                 vmx->nested.pi_desc =
8670                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8671                 if (!vmx->nested.pi_desc) {
8672                         nested_release_page_clean(vmx->nested.pi_desc_page);
8673                         return false;
8674                 }
8675                 vmx->nested.pi_desc =
8676                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
8677                         (unsigned long)(vmcs12->posted_intr_desc_addr &
8678                         (PAGE_SIZE - 1)));
8679         }
8680
8681         return true;
8682 }
8683
8684 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8685 {
8686         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8687         struct vcpu_vmx *vmx = to_vmx(vcpu);
8688
8689         if (vcpu->arch.virtual_tsc_khz == 0)
8690                 return;
8691
8692         /* Make sure short timeouts reliably trigger an immediate vmexit.
8693          * hrtimer_start does not guarantee this. */
8694         if (preemption_timeout <= 1) {
8695                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8696                 return;
8697         }
8698
8699         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8700         preemption_timeout *= 1000000;
8701         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8702         hrtimer_start(&vmx->nested.preemption_timer,
8703                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8704 }
8705
8706 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8707                                                 struct vmcs12 *vmcs12)
8708 {
8709         int maxphyaddr;
8710         u64 addr;
8711
8712         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8713                 return 0;
8714
8715         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8716                 WARN_ON(1);
8717                 return -EINVAL;
8718         }
8719         maxphyaddr = cpuid_maxphyaddr(vcpu);
8720
8721         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8722            ((addr + PAGE_SIZE) >> maxphyaddr))
8723                 return -EINVAL;
8724
8725         return 0;
8726 }
8727
8728 /*
8729  * Merge L0's and L1's MSR bitmap, return false to indicate that
8730  * we do not use the hardware.
8731  */
8732 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8733                                                struct vmcs12 *vmcs12)
8734 {
8735         int msr;
8736         struct page *page;
8737         unsigned long *msr_bitmap;
8738
8739         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8740                 return false;
8741
8742         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8743         if (!page) {
8744                 WARN_ON(1);
8745                 return false;
8746         }
8747         msr_bitmap = (unsigned long *)kmap(page);
8748         if (!msr_bitmap) {
8749                 nested_release_page_clean(page);
8750                 WARN_ON(1);
8751                 return false;
8752         }
8753
8754         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8755                 if (nested_cpu_has_apic_reg_virt(vmcs12))
8756                         for (msr = 0x800; msr <= 0x8ff; msr++)
8757                                 nested_vmx_disable_intercept_for_msr(
8758                                         msr_bitmap,
8759                                         vmx_msr_bitmap_nested,
8760                                         msr, MSR_TYPE_R);
8761                 /* TPR is allowed */
8762                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8763                                 vmx_msr_bitmap_nested,
8764                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8765                                 MSR_TYPE_R | MSR_TYPE_W);
8766                 if (nested_cpu_has_vid(vmcs12)) {
8767                         /* EOI and self-IPI are allowed */
8768                         nested_vmx_disable_intercept_for_msr(
8769                                 msr_bitmap,
8770                                 vmx_msr_bitmap_nested,
8771                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8772                                 MSR_TYPE_W);
8773                         nested_vmx_disable_intercept_for_msr(
8774                                 msr_bitmap,
8775                                 vmx_msr_bitmap_nested,
8776                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8777                                 MSR_TYPE_W);
8778                 }
8779         } else {
8780                 /*
8781                  * Enable reading intercept of all the x2apic
8782                  * MSRs. We should not rely on vmcs12 to do any
8783                  * optimizations here, it may have been modified
8784                  * by L1.
8785                  */
8786                 for (msr = 0x800; msr <= 0x8ff; msr++)
8787                         __vmx_enable_intercept_for_msr(
8788                                 vmx_msr_bitmap_nested,
8789                                 msr,
8790                                 MSR_TYPE_R);
8791
8792                 __vmx_enable_intercept_for_msr(
8793                                 vmx_msr_bitmap_nested,
8794                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8795                                 MSR_TYPE_W);
8796                 __vmx_enable_intercept_for_msr(
8797                                 vmx_msr_bitmap_nested,
8798                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8799                                 MSR_TYPE_W);
8800                 __vmx_enable_intercept_for_msr(
8801                                 vmx_msr_bitmap_nested,
8802                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8803                                 MSR_TYPE_W);
8804         }
8805         kunmap(page);
8806         nested_release_page_clean(page);
8807
8808         return true;
8809 }
8810
8811 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8812                                            struct vmcs12 *vmcs12)
8813 {
8814         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8815             !nested_cpu_has_apic_reg_virt(vmcs12) &&
8816             !nested_cpu_has_vid(vmcs12) &&
8817             !nested_cpu_has_posted_intr(vmcs12))
8818                 return 0;
8819
8820         /*
8821          * If virtualize x2apic mode is enabled,
8822          * virtualize apic access must be disabled.
8823          */
8824         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8825             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8826                 return -EINVAL;
8827
8828         /*
8829          * If virtual interrupt delivery is enabled,
8830          * we must exit on external interrupts.
8831          */
8832         if (nested_cpu_has_vid(vmcs12) &&
8833            !nested_exit_on_intr(vcpu))
8834                 return -EINVAL;
8835
8836         /*
8837          * bits 15:8 should be zero in posted_intr_nv,
8838          * the descriptor address has been already checked
8839          * in nested_get_vmcs12_pages.
8840          */
8841         if (nested_cpu_has_posted_intr(vmcs12) &&
8842            (!nested_cpu_has_vid(vmcs12) ||
8843             !nested_exit_intr_ack_set(vcpu) ||
8844             vmcs12->posted_intr_nv & 0xff00))
8845                 return -EINVAL;
8846
8847         /* tpr shadow is needed by all apicv features. */
8848         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8849                 return -EINVAL;
8850
8851         return 0;
8852 }
8853
8854 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
8855                                        unsigned long count_field,
8856                                        unsigned long addr_field,
8857                                        int maxphyaddr)
8858 {
8859         u64 count, addr;
8860
8861         if (vmcs12_read_any(vcpu, count_field, &count) ||
8862             vmcs12_read_any(vcpu, addr_field, &addr)) {
8863                 WARN_ON(1);
8864                 return -EINVAL;
8865         }
8866         if (count == 0)
8867                 return 0;
8868         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
8869             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
8870                 pr_warn_ratelimited(
8871                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
8872                         addr_field, maxphyaddr, count, addr);
8873                 return -EINVAL;
8874         }
8875         return 0;
8876 }
8877
8878 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
8879                                                 struct vmcs12 *vmcs12)
8880 {
8881         int maxphyaddr;
8882
8883         if (vmcs12->vm_exit_msr_load_count == 0 &&
8884             vmcs12->vm_exit_msr_store_count == 0 &&
8885             vmcs12->vm_entry_msr_load_count == 0)
8886                 return 0; /* Fast path */
8887         maxphyaddr = cpuid_maxphyaddr(vcpu);
8888         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
8889                                         VM_EXIT_MSR_LOAD_ADDR, maxphyaddr) ||
8890             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
8891                                         VM_EXIT_MSR_STORE_ADDR, maxphyaddr) ||
8892             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
8893                                         VM_ENTRY_MSR_LOAD_ADDR, maxphyaddr))
8894                 return -EINVAL;
8895         return 0;
8896 }
8897
8898 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
8899                                        struct vmx_msr_entry *e)
8900 {
8901         /* x2APIC MSR accesses are not allowed */
8902         if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8)
8903                 return -EINVAL;
8904         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
8905             e->index == MSR_IA32_UCODE_REV)
8906                 return -EINVAL;
8907         if (e->reserved != 0)
8908                 return -EINVAL;
8909         return 0;
8910 }
8911
8912 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
8913                                      struct vmx_msr_entry *e)
8914 {
8915         if (e->index == MSR_FS_BASE ||
8916             e->index == MSR_GS_BASE ||
8917             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
8918             nested_vmx_msr_check_common(vcpu, e))
8919                 return -EINVAL;
8920         return 0;
8921 }
8922
8923 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
8924                                       struct vmx_msr_entry *e)
8925 {
8926         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
8927             nested_vmx_msr_check_common(vcpu, e))
8928                 return -EINVAL;
8929         return 0;
8930 }
8931
8932 /*
8933  * Load guest's/host's msr at nested entry/exit.
8934  * return 0 for success, entry index for failure.
8935  */
8936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8937 {
8938         u32 i;
8939         struct vmx_msr_entry e;
8940         struct msr_data msr;
8941
8942         msr.host_initiated = false;
8943         for (i = 0; i < count; i++) {
8944                 if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
8945                                    &e, sizeof(e))) {
8946                         pr_warn_ratelimited(
8947                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8948                                 __func__, i, gpa + i * sizeof(e));
8949                         goto fail;
8950                 }
8951                 if (nested_vmx_load_msr_check(vcpu, &e)) {
8952                         pr_warn_ratelimited(
8953                                 "%s check failed (%u, 0x%x, 0x%x)\n",
8954                                 __func__, i, e.index, e.reserved);
8955                         goto fail;
8956                 }
8957                 msr.index = e.index;
8958                 msr.data = e.value;
8959                 if (kvm_set_msr(vcpu, &msr)) {
8960                         pr_warn_ratelimited(
8961                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
8962                                 __func__, i, e.index, e.value);
8963                         goto fail;
8964                 }
8965         }
8966         return 0;
8967 fail:
8968         return i + 1;
8969 }
8970
8971 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8972 {
8973         u32 i;
8974         struct vmx_msr_entry e;
8975
8976         for (i = 0; i < count; i++) {
8977                 if (kvm_read_guest(vcpu->kvm,
8978                                    gpa + i * sizeof(e),
8979                                    &e, 2 * sizeof(u32))) {
8980                         pr_warn_ratelimited(
8981                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8982                                 __func__, i, gpa + i * sizeof(e));
8983                         return -EINVAL;
8984                 }
8985                 if (nested_vmx_store_msr_check(vcpu, &e)) {
8986                         pr_warn_ratelimited(
8987                                 "%s check failed (%u, 0x%x, 0x%x)\n",
8988                                 __func__, i, e.index, e.reserved);
8989                         return -EINVAL;
8990                 }
8991                 if (kvm_get_msr(vcpu, e.index, &e.value)) {
8992                         pr_warn_ratelimited(
8993                                 "%s cannot read MSR (%u, 0x%x)\n",
8994                                 __func__, i, e.index);
8995                         return -EINVAL;
8996                 }
8997                 if (kvm_write_guest(vcpu->kvm,
8998                                     gpa + i * sizeof(e) +
8999                                         offsetof(struct vmx_msr_entry, value),
9000                                     &e.value, sizeof(e.value))) {
9001                         pr_warn_ratelimited(
9002                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9003                                 __func__, i, e.index, e.value);
9004                         return -EINVAL;
9005                 }
9006         }
9007         return 0;
9008 }
9009
9010 /*
9011  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9012  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9013  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9014  * guest in a way that will both be appropriate to L1's requests, and our
9015  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9016  * function also has additional necessary side-effects, like setting various
9017  * vcpu->arch fields.
9018  */
9019 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9020 {
9021         struct vcpu_vmx *vmx = to_vmx(vcpu);
9022         u32 exec_control;
9023
9024         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9025         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9026         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9027         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9028         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9029         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9030         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9031         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9032         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9033         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9034         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9035         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9036         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9037         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9038         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9039         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9040         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9041         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9042         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9043         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9044         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9045         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9046         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9047         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9048         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9049         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9050         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9051         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9052         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9053         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9054         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9055         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9056         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9057         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9058         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9059         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9060
9061         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9062                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9063                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9064         } else {
9065                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9066                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9067         }
9068         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9069                 vmcs12->vm_entry_intr_info_field);
9070         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9071                 vmcs12->vm_entry_exception_error_code);
9072         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9073                 vmcs12->vm_entry_instruction_len);
9074         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9075                 vmcs12->guest_interruptibility_info);
9076         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9077         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9078         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9079                 vmcs12->guest_pending_dbg_exceptions);
9080         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9081         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9082
9083         if (nested_cpu_has_xsaves(vmcs12))
9084                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9085         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9086
9087         exec_control = vmcs12->pin_based_vm_exec_control;
9088         exec_control |= vmcs_config.pin_based_exec_ctrl;
9089         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9090
9091         if (nested_cpu_has_posted_intr(vmcs12)) {
9092                 /*
9093                  * Note that we use L0's vector here and in
9094                  * vmx_deliver_nested_posted_interrupt.
9095                  */
9096                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9097                 vmx->nested.pi_pending = false;
9098                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9099                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9100                         page_to_phys(vmx->nested.pi_desc_page) +
9101                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9102                         (PAGE_SIZE - 1)));
9103         } else
9104                 exec_control &= ~PIN_BASED_POSTED_INTR;
9105
9106         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9107
9108         vmx->nested.preemption_timer_expired = false;
9109         if (nested_cpu_has_preemption_timer(vmcs12))
9110                 vmx_start_preemption_timer(vcpu);
9111
9112         /*
9113          * Whether page-faults are trapped is determined by a combination of
9114          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9115          * If enable_ept, L0 doesn't care about page faults and we should
9116          * set all of these to L1's desires. However, if !enable_ept, L0 does
9117          * care about (at least some) page faults, and because it is not easy
9118          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9119          * to exit on each and every L2 page fault. This is done by setting
9120          * MASK=MATCH=0 and (see below) EB.PF=1.
9121          * Note that below we don't need special code to set EB.PF beyond the
9122          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9123          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9124          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9125          *
9126          * A problem with this approach (when !enable_ept) is that L1 may be
9127          * injected with more page faults than it asked for. This could have
9128          * caused problems, but in practice existing hypervisors don't care.
9129          * To fix this, we will need to emulate the PFEC checking (on the L1
9130          * page tables), using walk_addr(), when injecting PFs to L1.
9131          */
9132         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9133                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9134         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9135                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9136
9137         if (cpu_has_secondary_exec_ctrls()) {
9138                 exec_control = vmx_secondary_exec_control(vmx);
9139                 if (!vmx->rdtscp_enabled)
9140                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
9141                 /* Take the following fields only from vmcs12 */
9142                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9143                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9144                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
9145                 if (nested_cpu_has(vmcs12,
9146                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9147                         exec_control |= vmcs12->secondary_vm_exec_control;
9148
9149                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9150                         /*
9151                          * If translation failed, no matter: This feature asks
9152                          * to exit when accessing the given address, and if it
9153                          * can never be accessed, this feature won't do
9154                          * anything anyway.
9155                          */
9156                         if (!vmx->nested.apic_access_page)
9157                                 exec_control &=
9158                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9159                         else
9160                                 vmcs_write64(APIC_ACCESS_ADDR,
9161                                   page_to_phys(vmx->nested.apic_access_page));
9162                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9163                             (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9164                         exec_control |=
9165                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9166                         kvm_vcpu_reload_apic_access_page(vcpu);
9167                 }
9168
9169                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9170                         vmcs_write64(EOI_EXIT_BITMAP0,
9171                                 vmcs12->eoi_exit_bitmap0);
9172                         vmcs_write64(EOI_EXIT_BITMAP1,
9173                                 vmcs12->eoi_exit_bitmap1);
9174                         vmcs_write64(EOI_EXIT_BITMAP2,
9175                                 vmcs12->eoi_exit_bitmap2);
9176                         vmcs_write64(EOI_EXIT_BITMAP3,
9177                                 vmcs12->eoi_exit_bitmap3);
9178                         vmcs_write16(GUEST_INTR_STATUS,
9179                                 vmcs12->guest_intr_status);
9180                 }
9181
9182                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9183         }
9184
9185
9186         /*
9187          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9188          * Some constant fields are set here by vmx_set_constant_host_state().
9189          * Other fields are different per CPU, and will be set later when
9190          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9191          */
9192         vmx_set_constant_host_state(vmx);
9193
9194         /*
9195          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9196          * entry, but only if the current (host) sp changed from the value
9197          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9198          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9199          * here we just force the write to happen on entry.
9200          */
9201         vmx->host_rsp = 0;
9202
9203         exec_control = vmx_exec_control(vmx); /* L0's desires */
9204         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9205         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9206         exec_control &= ~CPU_BASED_TPR_SHADOW;
9207         exec_control |= vmcs12->cpu_based_vm_exec_control;
9208
9209         if (exec_control & CPU_BASED_TPR_SHADOW) {
9210                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9211                                 page_to_phys(vmx->nested.virtual_apic_page));
9212                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9213         }
9214
9215         if (cpu_has_vmx_msr_bitmap() &&
9216             exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9217             nested_vmx_merge_msr_bitmap(vcpu, vmcs12)) {
9218                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_nested));
9219         } else
9220                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9221
9222         /*
9223          * Merging of IO bitmap not currently supported.
9224          * Rather, exit every time.
9225          */
9226         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9227         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9228
9229         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9230
9231         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9232          * bitwise-or of what L1 wants to trap for L2, and what we want to
9233          * trap. Note that CR0.TS also needs updating - we do this later.
9234          */
9235         update_exception_bitmap(vcpu);
9236         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9237         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9238
9239         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9240          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9241          * bits are further modified by vmx_set_efer() below.
9242          */
9243         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9244
9245         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9246          * emulated by vmx_set_efer(), below.
9247          */
9248         vm_entry_controls_init(vmx, 
9249                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9250                         ~VM_ENTRY_IA32E_MODE) |
9251                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9252
9253         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9254                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9255                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9256         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9257                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9258
9259
9260         set_cr4_guest_host_mask(vmx);
9261
9262         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9263                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9264
9265         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9266                 vmcs_write64(TSC_OFFSET,
9267                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9268         else
9269                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9270
9271         if (enable_vpid) {
9272                 /*
9273                  * Trivially support vpid by letting L2s share their parent
9274                  * L1's vpid. TODO: move to a more elaborate solution, giving
9275                  * each L2 its own vpid and exposing the vpid feature to L1.
9276                  */
9277                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9278                 vmx_flush_tlb(vcpu);
9279         }
9280
9281         if (nested_cpu_has_ept(vmcs12)) {
9282                 kvm_mmu_unload(vcpu);
9283                 nested_ept_init_mmu_context(vcpu);
9284         }
9285
9286         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9287                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9288         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9289                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9290         else
9291                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9292         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9293         vmx_set_efer(vcpu, vcpu->arch.efer);
9294
9295         /*
9296          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9297          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9298          * The CR0_READ_SHADOW is what L2 should have expected to read given
9299          * the specifications by L1; It's not enough to take
9300          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9301          * have more bits than L1 expected.
9302          */
9303         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9304         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9305
9306         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9307         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9308
9309         /* shadow page tables on either EPT or shadow page tables */
9310         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9311         kvm_mmu_reset_context(vcpu);
9312
9313         if (!enable_ept)
9314                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9315
9316         /*
9317          * L1 may access the L2's PDPTR, so save them to construct vmcs12
9318          */
9319         if (enable_ept) {
9320                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9321                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9322                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9323                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9324         }
9325
9326         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9327         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9328 }
9329
9330 /*
9331  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9332  * for running an L2 nested guest.
9333  */
9334 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9335 {
9336         struct vmcs12 *vmcs12;
9337         struct vcpu_vmx *vmx = to_vmx(vcpu);
9338         int cpu;
9339         struct loaded_vmcs *vmcs02;
9340         bool ia32e;
9341         u32 msr_entry_idx;
9342
9343         if (!nested_vmx_check_permission(vcpu) ||
9344             !nested_vmx_check_vmcs12(vcpu))
9345                 return 1;
9346
9347         skip_emulated_instruction(vcpu);
9348         vmcs12 = get_vmcs12(vcpu);
9349
9350         if (enable_shadow_vmcs)
9351                 copy_shadow_to_vmcs12(vmx);
9352
9353         /*
9354          * The nested entry process starts with enforcing various prerequisites
9355          * on vmcs12 as required by the Intel SDM, and act appropriately when
9356          * they fail: As the SDM explains, some conditions should cause the
9357          * instruction to fail, while others will cause the instruction to seem
9358          * to succeed, but return an EXIT_REASON_INVALID_STATE.
9359          * To speed up the normal (success) code path, we should avoid checking
9360          * for misconfigurations which will anyway be caught by the processor
9361          * when using the merged vmcs02.
9362          */
9363         if (vmcs12->launch_state == launch) {
9364                 nested_vmx_failValid(vcpu,
9365                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9366                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9367                 return 1;
9368         }
9369
9370         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9371             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9372                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9373                 return 1;
9374         }
9375
9376         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9377                 /*TODO: Also verify bits beyond physical address width are 0*/
9378                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9379                 return 1;
9380         }
9381
9382         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9383                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9384                 return 1;
9385         }
9386
9387         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9388                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9389                 return 1;
9390         }
9391
9392         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9393                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9394                 return 1;
9395         }
9396
9397         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9398                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
9399                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
9400             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9401                                 vmx->nested.nested_vmx_secondary_ctls_low,
9402                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
9403             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9404                                 vmx->nested.nested_vmx_pinbased_ctls_low,
9405                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9406             !vmx_control_verify(vmcs12->vm_exit_controls,
9407                                 vmx->nested.nested_vmx_true_exit_ctls_low,
9408                                 vmx->nested.nested_vmx_exit_ctls_high) ||
9409             !vmx_control_verify(vmcs12->vm_entry_controls,
9410                                 vmx->nested.nested_vmx_true_entry_ctls_low,
9411                                 vmx->nested.nested_vmx_entry_ctls_high))
9412         {
9413                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9414                 return 1;
9415         }
9416
9417         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9418             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9419                 nested_vmx_failValid(vcpu,
9420                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9421                 return 1;
9422         }
9423
9424         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9425             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9426                 nested_vmx_entry_failure(vcpu, vmcs12,
9427                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9428                 return 1;
9429         }
9430         if (vmcs12->vmcs_link_pointer != -1ull) {
9431                 nested_vmx_entry_failure(vcpu, vmcs12,
9432                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9433                 return 1;
9434         }
9435
9436         /*
9437          * If the load IA32_EFER VM-entry control is 1, the following checks
9438          * are performed on the field for the IA32_EFER MSR:
9439          * - Bits reserved in the IA32_EFER MSR must be 0.
9440          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9441          *   the IA-32e mode guest VM-exit control. It must also be identical
9442          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9443          *   CR0.PG) is 1.
9444          */
9445         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9446                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9447                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9448                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9449                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9450                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9451                         nested_vmx_entry_failure(vcpu, vmcs12,
9452                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9453                         return 1;
9454                 }
9455         }
9456
9457         /*
9458          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9459          * IA32_EFER MSR must be 0 in the field for that register. In addition,
9460          * the values of the LMA and LME bits in the field must each be that of
9461          * the host address-space size VM-exit control.
9462          */
9463         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9464                 ia32e = (vmcs12->vm_exit_controls &
9465                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9466                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9467                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9468                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9469                         nested_vmx_entry_failure(vcpu, vmcs12,
9470                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9471                         return 1;
9472                 }
9473         }
9474
9475         /*
9476          * We're finally done with prerequisite checking, and can start with
9477          * the nested entry.
9478          */
9479
9480         vmcs02 = nested_get_current_vmcs02(vmx);
9481         if (!vmcs02)
9482                 return -ENOMEM;
9483
9484         enter_guest_mode(vcpu);
9485
9486         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9487
9488         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9489                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9490
9491         cpu = get_cpu();
9492         vmx->loaded_vmcs = vmcs02;
9493         vmx_vcpu_put(vcpu);
9494         vmx_vcpu_load(vcpu, cpu);
9495         vcpu->cpu = cpu;
9496         put_cpu();
9497
9498         vmx_segment_cache_clear(vmx);
9499
9500         prepare_vmcs02(vcpu, vmcs12);
9501
9502         msr_entry_idx = nested_vmx_load_msr(vcpu,
9503                                             vmcs12->vm_entry_msr_load_addr,
9504                                             vmcs12->vm_entry_msr_load_count);
9505         if (msr_entry_idx) {
9506                 leave_guest_mode(vcpu);
9507                 vmx_load_vmcs01(vcpu);
9508                 nested_vmx_entry_failure(vcpu, vmcs12,
9509                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9510                 return 1;
9511         }
9512
9513         vmcs12->launch_state = 1;
9514
9515         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9516                 return kvm_emulate_halt(vcpu);
9517
9518         vmx->nested.nested_run_pending = 1;
9519
9520         /*
9521          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9522          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9523          * returned as far as L1 is concerned. It will only return (and set
9524          * the success flag) when L2 exits (see nested_vmx_vmexit()).
9525          */
9526         return 1;
9527 }
9528
9529 /*
9530  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9531  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9532  * This function returns the new value we should put in vmcs12.guest_cr0.
9533  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9534  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9535  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9536  *     didn't trap the bit, because if L1 did, so would L0).
9537  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9538  *     been modified by L2, and L1 knows it. So just leave the old value of
9539  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9540  *     isn't relevant, because if L0 traps this bit it can set it to anything.
9541  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9542  *     changed these bits, and therefore they need to be updated, but L0
9543  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9544  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9545  */
9546 static inline unsigned long
9547 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9548 {
9549         return
9550         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9551         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9552         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9553                         vcpu->arch.cr0_guest_owned_bits));
9554 }
9555
9556 static inline unsigned long
9557 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9558 {
9559         return
9560         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9561         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9562         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9563                         vcpu->arch.cr4_guest_owned_bits));
9564 }
9565
9566 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9567                                        struct vmcs12 *vmcs12)
9568 {
9569         u32 idt_vectoring;
9570         unsigned int nr;
9571
9572         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9573                 nr = vcpu->arch.exception.nr;
9574                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9575
9576                 if (kvm_exception_is_soft(nr)) {
9577                         vmcs12->vm_exit_instruction_len =
9578                                 vcpu->arch.event_exit_inst_len;
9579                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9580                 } else
9581                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9582
9583                 if (vcpu->arch.exception.has_error_code) {
9584                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9585                         vmcs12->idt_vectoring_error_code =
9586                                 vcpu->arch.exception.error_code;
9587                 }
9588
9589                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9590         } else if (vcpu->arch.nmi_injected) {
9591                 vmcs12->idt_vectoring_info_field =
9592                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9593         } else if (vcpu->arch.interrupt.pending) {
9594                 nr = vcpu->arch.interrupt.nr;
9595                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9596
9597                 if (vcpu->arch.interrupt.soft) {
9598                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
9599                         vmcs12->vm_entry_instruction_len =
9600                                 vcpu->arch.event_exit_inst_len;
9601                 } else
9602                         idt_vectoring |= INTR_TYPE_EXT_INTR;
9603
9604                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9605         }
9606 }
9607
9608 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9609 {
9610         struct vcpu_vmx *vmx = to_vmx(vcpu);
9611
9612         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9613             vmx->nested.preemption_timer_expired) {
9614                 if (vmx->nested.nested_run_pending)
9615                         return -EBUSY;
9616                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9617                 return 0;
9618         }
9619
9620         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9621                 if (vmx->nested.nested_run_pending ||
9622                     vcpu->arch.interrupt.pending)
9623                         return -EBUSY;
9624                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9625                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
9626                                   INTR_INFO_VALID_MASK, 0);
9627                 /*
9628                  * The NMI-triggered VM exit counts as injection:
9629                  * clear this one and block further NMIs.
9630                  */
9631                 vcpu->arch.nmi_pending = 0;
9632                 vmx_set_nmi_mask(vcpu, true);
9633                 return 0;
9634         }
9635
9636         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9637             nested_exit_on_intr(vcpu)) {
9638                 if (vmx->nested.nested_run_pending)
9639                         return -EBUSY;
9640                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9641                 return 0;
9642         }
9643
9644         return vmx_complete_nested_posted_interrupt(vcpu);
9645 }
9646
9647 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9648 {
9649         ktime_t remaining =
9650                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9651         u64 value;
9652
9653         if (ktime_to_ns(remaining) <= 0)
9654                 return 0;
9655
9656         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9657         do_div(value, 1000000);
9658         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9659 }
9660
9661 /*
9662  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9663  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9664  * and this function updates it to reflect the changes to the guest state while
9665  * L2 was running (and perhaps made some exits which were handled directly by L0
9666  * without going back to L1), and to reflect the exit reason.
9667  * Note that we do not have to copy here all VMCS fields, just those that
9668  * could have changed by the L2 guest or the exit - i.e., the guest-state and
9669  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9670  * which already writes to vmcs12 directly.
9671  */
9672 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9673                            u32 exit_reason, u32 exit_intr_info,
9674                            unsigned long exit_qualification)
9675 {
9676         /* update guest state fields: */
9677         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9678         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9679
9680         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9681         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9682         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9683
9684         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9685         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9686         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9687         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9688         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9689         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9690         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9691         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9692         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9693         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9694         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9695         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9696         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9697         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9698         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9699         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9700         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9701         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9702         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9703         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9704         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9705         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9706         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9707         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9708         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9709         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9710         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9711         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9712         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9713         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9714         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9715         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9716         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9717         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9718         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9719         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9720
9721         vmcs12->guest_interruptibility_info =
9722                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9723         vmcs12->guest_pending_dbg_exceptions =
9724                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9725         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9726                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9727         else
9728                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9729
9730         if (nested_cpu_has_preemption_timer(vmcs12)) {
9731                 if (vmcs12->vm_exit_controls &
9732                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9733                         vmcs12->vmx_preemption_timer_value =
9734                                 vmx_get_preemption_timer_value(vcpu);
9735                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9736         }
9737
9738         /*
9739          * In some cases (usually, nested EPT), L2 is allowed to change its
9740          * own CR3 without exiting. If it has changed it, we must keep it.
9741          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9742          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9743          *
9744          * Additionally, restore L2's PDPTR to vmcs12.
9745          */
9746         if (enable_ept) {
9747                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9748                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9749                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9750                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9751                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9752         }
9753
9754         if (nested_cpu_has_vid(vmcs12))
9755                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9756
9757         vmcs12->vm_entry_controls =
9758                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9759                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9760
9761         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9762                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9763                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9764         }
9765
9766         /* TODO: These cannot have changed unless we have MSR bitmaps and
9767          * the relevant bit asks not to trap the change */
9768         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9769                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9770         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9771                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9772         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9773         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9774         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9775         if (vmx_mpx_supported())
9776                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9777         if (nested_cpu_has_xsaves(vmcs12))
9778                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9779
9780         /* update exit information fields: */
9781
9782         vmcs12->vm_exit_reason = exit_reason;
9783         vmcs12->exit_qualification = exit_qualification;
9784
9785         vmcs12->vm_exit_intr_info = exit_intr_info;
9786         if ((vmcs12->vm_exit_intr_info &
9787              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9788             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9789                 vmcs12->vm_exit_intr_error_code =
9790                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9791         vmcs12->idt_vectoring_info_field = 0;
9792         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9793         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9794
9795         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9796                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9797                  * instead of reading the real value. */
9798                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9799
9800                 /*
9801                  * Transfer the event that L0 or L1 may wanted to inject into
9802                  * L2 to IDT_VECTORING_INFO_FIELD.
9803                  */
9804                 vmcs12_save_pending_event(vcpu, vmcs12);
9805         }
9806
9807         /*
9808          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9809          * preserved above and would only end up incorrectly in L1.
9810          */
9811         vcpu->arch.nmi_injected = false;
9812         kvm_clear_exception_queue(vcpu);
9813         kvm_clear_interrupt_queue(vcpu);
9814 }
9815
9816 /*
9817  * A part of what we need to when the nested L2 guest exits and we want to
9818  * run its L1 parent, is to reset L1's guest state to the host state specified
9819  * in vmcs12.
9820  * This function is to be called not only on normal nested exit, but also on
9821  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9822  * Failures During or After Loading Guest State").
9823  * This function should be called when the active VMCS is L1's (vmcs01).
9824  */
9825 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9826                                    struct vmcs12 *vmcs12)
9827 {
9828         struct kvm_segment seg;
9829
9830         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9831                 vcpu->arch.efer = vmcs12->host_ia32_efer;
9832         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9833                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9834         else
9835                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9836         vmx_set_efer(vcpu, vcpu->arch.efer);
9837
9838         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9839         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
9840         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
9841         /*
9842          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9843          * actually changed, because it depends on the current state of
9844          * fpu_active (which may have changed).
9845          * Note that vmx_set_cr0 refers to efer set above.
9846          */
9847         vmx_set_cr0(vcpu, vmcs12->host_cr0);
9848         /*
9849          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9850          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9851          * but we also need to update cr0_guest_host_mask and exception_bitmap.
9852          */
9853         update_exception_bitmap(vcpu);
9854         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9855         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9856
9857         /*
9858          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9859          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9860          */
9861         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9862         kvm_set_cr4(vcpu, vmcs12->host_cr4);
9863
9864         nested_ept_uninit_mmu_context(vcpu);
9865
9866         kvm_set_cr3(vcpu, vmcs12->host_cr3);
9867         kvm_mmu_reset_context(vcpu);
9868
9869         if (!enable_ept)
9870                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9871
9872         if (enable_vpid) {
9873                 /*
9874                  * Trivially support vpid by letting L2s share their parent
9875                  * L1's vpid. TODO: move to a more elaborate solution, giving
9876                  * each L2 its own vpid and exposing the vpid feature to L1.
9877                  */
9878                 vmx_flush_tlb(vcpu);
9879         }
9880
9881
9882         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9883         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9884         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9885         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9886         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9887
9888         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
9889         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9890                 vmcs_write64(GUEST_BNDCFGS, 0);
9891
9892         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9893                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9894                 vcpu->arch.pat = vmcs12->host_ia32_pat;
9895         }
9896         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9897                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9898                         vmcs12->host_ia32_perf_global_ctrl);
9899
9900         /* Set L1 segment info according to Intel SDM
9901             27.5.2 Loading Host Segment and Descriptor-Table Registers */
9902         seg = (struct kvm_segment) {
9903                 .base = 0,
9904                 .limit = 0xFFFFFFFF,
9905                 .selector = vmcs12->host_cs_selector,
9906                 .type = 11,
9907                 .present = 1,
9908                 .s = 1,
9909                 .g = 1
9910         };
9911         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9912                 seg.l = 1;
9913         else
9914                 seg.db = 1;
9915         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9916         seg = (struct kvm_segment) {
9917                 .base = 0,
9918                 .limit = 0xFFFFFFFF,
9919                 .type = 3,
9920                 .present = 1,
9921                 .s = 1,
9922                 .db = 1,
9923                 .g = 1
9924         };
9925         seg.selector = vmcs12->host_ds_selector;
9926         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9927         seg.selector = vmcs12->host_es_selector;
9928         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9929         seg.selector = vmcs12->host_ss_selector;
9930         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9931         seg.selector = vmcs12->host_fs_selector;
9932         seg.base = vmcs12->host_fs_base;
9933         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9934         seg.selector = vmcs12->host_gs_selector;
9935         seg.base = vmcs12->host_gs_base;
9936         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9937         seg = (struct kvm_segment) {
9938                 .base = vmcs12->host_tr_base,
9939                 .limit = 0x67,
9940                 .selector = vmcs12->host_tr_selector,
9941                 .type = 11,
9942                 .present = 1
9943         };
9944         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9945
9946         kvm_set_dr(vcpu, 7, 0x400);
9947         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9948
9949         if (cpu_has_vmx_msr_bitmap())
9950                 vmx_set_msr_bitmap(vcpu);
9951
9952         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
9953                                 vmcs12->vm_exit_msr_load_count))
9954                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
9955 }
9956
9957 /*
9958  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9959  * and modify vmcs12 to make it see what it would expect to see there if
9960  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9961  */
9962 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9963                               u32 exit_intr_info,
9964                               unsigned long exit_qualification)
9965 {
9966         struct vcpu_vmx *vmx = to_vmx(vcpu);
9967         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9968
9969         /* trying to cancel vmlaunch/vmresume is a bug */
9970         WARN_ON_ONCE(vmx->nested.nested_run_pending);
9971
9972         leave_guest_mode(vcpu);
9973         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9974                        exit_qualification);
9975
9976         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
9977                                  vmcs12->vm_exit_msr_store_count))
9978                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
9979
9980         vmx_load_vmcs01(vcpu);
9981
9982         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9983             && nested_exit_intr_ack_set(vcpu)) {
9984                 int irq = kvm_cpu_get_interrupt(vcpu);
9985                 WARN_ON(irq < 0);
9986                 vmcs12->vm_exit_intr_info = irq |
9987                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9988         }
9989
9990         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
9991                                        vmcs12->exit_qualification,
9992                                        vmcs12->idt_vectoring_info_field,
9993                                        vmcs12->vm_exit_intr_info,
9994                                        vmcs12->vm_exit_intr_error_code,
9995                                        KVM_ISA_VMX);
9996
9997         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
9998         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
9999         vmx_segment_cache_clear(vmx);
10000
10001         /* if no vmcs02 cache requested, remove the one we used */
10002         if (VMCS02_POOL_SIZE == 0)
10003                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10004
10005         load_vmcs12_host_state(vcpu, vmcs12);
10006
10007         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10008         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10009
10010         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10011         vmx->host_rsp = 0;
10012
10013         /* Unpin physical memory we referred to in vmcs02 */
10014         if (vmx->nested.apic_access_page) {
10015                 nested_release_page(vmx->nested.apic_access_page);
10016                 vmx->nested.apic_access_page = NULL;
10017         }
10018         if (vmx->nested.virtual_apic_page) {
10019                 nested_release_page(vmx->nested.virtual_apic_page);
10020                 vmx->nested.virtual_apic_page = NULL;
10021         }
10022         if (vmx->nested.pi_desc_page) {
10023                 kunmap(vmx->nested.pi_desc_page);
10024                 nested_release_page(vmx->nested.pi_desc_page);
10025                 vmx->nested.pi_desc_page = NULL;
10026                 vmx->nested.pi_desc = NULL;
10027         }
10028
10029         /*
10030          * We are now running in L2, mmu_notifier will force to reload the
10031          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10032          */
10033         kvm_vcpu_reload_apic_access_page(vcpu);
10034
10035         /*
10036          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10037          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10038          * success or failure flag accordingly.
10039          */
10040         if (unlikely(vmx->fail)) {
10041                 vmx->fail = 0;
10042                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10043         } else
10044                 nested_vmx_succeed(vcpu);
10045         if (enable_shadow_vmcs)
10046                 vmx->nested.sync_shadow_vmcs = true;
10047
10048         /* in case we halted in L2 */
10049         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10050 }
10051
10052 /*
10053  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10054  */
10055 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10056 {
10057         if (is_guest_mode(vcpu))
10058                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10059         free_nested(to_vmx(vcpu));
10060 }
10061
10062 /*
10063  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10064  * 23.7 "VM-entry failures during or after loading guest state" (this also
10065  * lists the acceptable exit-reason and exit-qualification parameters).
10066  * It should only be called before L2 actually succeeded to run, and when
10067  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10068  */
10069 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10070                         struct vmcs12 *vmcs12,
10071                         u32 reason, unsigned long qualification)
10072 {
10073         load_vmcs12_host_state(vcpu, vmcs12);
10074         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10075         vmcs12->exit_qualification = qualification;
10076         nested_vmx_succeed(vcpu);
10077         if (enable_shadow_vmcs)
10078                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10079 }
10080
10081 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10082                                struct x86_instruction_info *info,
10083                                enum x86_intercept_stage stage)
10084 {
10085         return X86EMUL_CONTINUE;
10086 }
10087
10088 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10089 {
10090         if (ple_gap)
10091                 shrink_ple_window(vcpu);
10092 }
10093
10094 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10095                                      struct kvm_memory_slot *slot)
10096 {
10097         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10098         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10099 }
10100
10101 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10102                                        struct kvm_memory_slot *slot)
10103 {
10104         kvm_mmu_slot_set_dirty(kvm, slot);
10105 }
10106
10107 static void vmx_flush_log_dirty(struct kvm *kvm)
10108 {
10109         kvm_flush_pml_buffers(kvm);
10110 }
10111
10112 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10113                                            struct kvm_memory_slot *memslot,
10114                                            gfn_t offset, unsigned long mask)
10115 {
10116         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10117 }
10118
10119 static struct kvm_x86_ops vmx_x86_ops = {
10120         .cpu_has_kvm_support = cpu_has_kvm_support,
10121         .disabled_by_bios = vmx_disabled_by_bios,
10122         .hardware_setup = hardware_setup,
10123         .hardware_unsetup = hardware_unsetup,
10124         .check_processor_compatibility = vmx_check_processor_compat,
10125         .hardware_enable = hardware_enable,
10126         .hardware_disable = hardware_disable,
10127         .cpu_has_accelerated_tpr = report_flexpriority,
10128
10129         .vcpu_create = vmx_create_vcpu,
10130         .vcpu_free = vmx_free_vcpu,
10131         .vcpu_reset = vmx_vcpu_reset,
10132
10133         .prepare_guest_switch = vmx_save_host_state,
10134         .vcpu_load = vmx_vcpu_load,
10135         .vcpu_put = vmx_vcpu_put,
10136
10137         .update_db_bp_intercept = update_exception_bitmap,
10138         .get_msr = vmx_get_msr,
10139         .set_msr = vmx_set_msr,
10140         .get_segment_base = vmx_get_segment_base,
10141         .get_segment = vmx_get_segment,
10142         .set_segment = vmx_set_segment,
10143         .get_cpl = vmx_get_cpl,
10144         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10145         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10146         .decache_cr3 = vmx_decache_cr3,
10147         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10148         .set_cr0 = vmx_set_cr0,
10149         .set_cr3 = vmx_set_cr3,
10150         .set_cr4 = vmx_set_cr4,
10151         .set_efer = vmx_set_efer,
10152         .get_idt = vmx_get_idt,
10153         .set_idt = vmx_set_idt,
10154         .get_gdt = vmx_get_gdt,
10155         .set_gdt = vmx_set_gdt,
10156         .get_dr6 = vmx_get_dr6,
10157         .set_dr6 = vmx_set_dr6,
10158         .set_dr7 = vmx_set_dr7,
10159         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10160         .cache_reg = vmx_cache_reg,
10161         .get_rflags = vmx_get_rflags,
10162         .set_rflags = vmx_set_rflags,
10163         .fpu_deactivate = vmx_fpu_deactivate,
10164
10165         .tlb_flush = vmx_flush_tlb,
10166
10167         .run = vmx_vcpu_run,
10168         .handle_exit = vmx_handle_exit,
10169         .skip_emulated_instruction = skip_emulated_instruction,
10170         .set_interrupt_shadow = vmx_set_interrupt_shadow,
10171         .get_interrupt_shadow = vmx_get_interrupt_shadow,
10172         .patch_hypercall = vmx_patch_hypercall,
10173         .set_irq = vmx_inject_irq,
10174         .set_nmi = vmx_inject_nmi,
10175         .queue_exception = vmx_queue_exception,
10176         .cancel_injection = vmx_cancel_injection,
10177         .interrupt_allowed = vmx_interrupt_allowed,
10178         .nmi_allowed = vmx_nmi_allowed,
10179         .get_nmi_mask = vmx_get_nmi_mask,
10180         .set_nmi_mask = vmx_set_nmi_mask,
10181         .enable_nmi_window = enable_nmi_window,
10182         .enable_irq_window = enable_irq_window,
10183         .update_cr8_intercept = update_cr8_intercept,
10184         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10185         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10186         .vm_has_apicv = vmx_vm_has_apicv,
10187         .load_eoi_exitmap = vmx_load_eoi_exitmap,
10188         .hwapic_irr_update = vmx_hwapic_irr_update,
10189         .hwapic_isr_update = vmx_hwapic_isr_update,
10190         .sync_pir_to_irr = vmx_sync_pir_to_irr,
10191         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10192
10193         .set_tss_addr = vmx_set_tss_addr,
10194         .get_tdp_level = get_ept_level,
10195         .get_mt_mask = vmx_get_mt_mask,
10196
10197         .get_exit_info = vmx_get_exit_info,
10198
10199         .get_lpage_level = vmx_get_lpage_level,
10200
10201         .cpuid_update = vmx_cpuid_update,
10202
10203         .rdtscp_supported = vmx_rdtscp_supported,
10204         .invpcid_supported = vmx_invpcid_supported,
10205
10206         .set_supported_cpuid = vmx_set_supported_cpuid,
10207
10208         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10209
10210         .set_tsc_khz = vmx_set_tsc_khz,
10211         .read_tsc_offset = vmx_read_tsc_offset,
10212         .write_tsc_offset = vmx_write_tsc_offset,
10213         .adjust_tsc_offset = vmx_adjust_tsc_offset,
10214         .compute_tsc_offset = vmx_compute_tsc_offset,
10215         .read_l1_tsc = vmx_read_l1_tsc,
10216
10217         .set_tdp_cr3 = vmx_set_cr3,
10218
10219         .check_intercept = vmx_check_intercept,
10220         .handle_external_intr = vmx_handle_external_intr,
10221         .mpx_supported = vmx_mpx_supported,
10222         .xsaves_supported = vmx_xsaves_supported,
10223
10224         .check_nested_events = vmx_check_nested_events,
10225
10226         .sched_in = vmx_sched_in,
10227
10228         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10229         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10230         .flush_log_dirty = vmx_flush_log_dirty,
10231         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10232 };
10233
10234 static int __init vmx_init(void)
10235 {
10236         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10237                      __alignof__(struct vcpu_vmx), THIS_MODULE);
10238         if (r)
10239                 return r;
10240
10241 #ifdef CONFIG_KEXEC
10242         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10243                            crash_vmclear_local_loaded_vmcss);
10244 #endif
10245
10246         return 0;
10247 }
10248
10249 static void __exit vmx_exit(void)
10250 {
10251 #ifdef CONFIG_KEXEC
10252         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10253         synchronize_rcu();
10254 #endif
10255
10256         kvm_exit();
10257 }
10258
10259 module_init(vmx_init)
10260 module_exit(vmx_exit)