]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'driver-core-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/module.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <trace/events/kvm.h>
54
55 #define CREATE_TRACE_POINTS
56 #include "trace.h"
57
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100
101 static bool __read_mostly kvmclock_periodic_sync = true;
102 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
103
104 bool kvm_has_tsc_control;
105 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
106 u32  kvm_max_guest_tsc_khz;
107 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
108
109 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
110 static u32 tsc_tolerance_ppm = 250;
111 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
112
113 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
114 unsigned int lapic_timer_advance_ns = 0;
115 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
116
117 static bool backwards_tsc_observed = false;
118
119 #define KVM_NR_SHARED_MSRS 16
120
121 struct kvm_shared_msrs_global {
122         int nr;
123         u32 msrs[KVM_NR_SHARED_MSRS];
124 };
125
126 struct kvm_shared_msrs {
127         struct user_return_notifier urn;
128         bool registered;
129         struct kvm_shared_msr_values {
130                 u64 host;
131                 u64 curr;
132         } values[KVM_NR_SHARED_MSRS];
133 };
134
135 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
136 static struct kvm_shared_msrs __percpu *shared_msrs;
137
138 struct kvm_stats_debugfs_item debugfs_entries[] = {
139         { "pf_fixed", VCPU_STAT(pf_fixed) },
140         { "pf_guest", VCPU_STAT(pf_guest) },
141         { "tlb_flush", VCPU_STAT(tlb_flush) },
142         { "invlpg", VCPU_STAT(invlpg) },
143         { "exits", VCPU_STAT(exits) },
144         { "io_exits", VCPU_STAT(io_exits) },
145         { "mmio_exits", VCPU_STAT(mmio_exits) },
146         { "signal_exits", VCPU_STAT(signal_exits) },
147         { "irq_window", VCPU_STAT(irq_window_exits) },
148         { "nmi_window", VCPU_STAT(nmi_window_exits) },
149         { "halt_exits", VCPU_STAT(halt_exits) },
150         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
151         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
152         { "hypercalls", VCPU_STAT(hypercalls) },
153         { "request_irq", VCPU_STAT(request_irq_exits) },
154         { "irq_exits", VCPU_STAT(irq_exits) },
155         { "host_state_reload", VCPU_STAT(host_state_reload) },
156         { "efer_reload", VCPU_STAT(efer_reload) },
157         { "fpu_reload", VCPU_STAT(fpu_reload) },
158         { "insn_emulation", VCPU_STAT(insn_emulation) },
159         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
160         { "irq_injections", VCPU_STAT(irq_injections) },
161         { "nmi_injections", VCPU_STAT(nmi_injections) },
162         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
163         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
164         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
165         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
166         { "mmu_flooded", VM_STAT(mmu_flooded) },
167         { "mmu_recycled", VM_STAT(mmu_recycled) },
168         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
169         { "mmu_unsync", VM_STAT(mmu_unsync) },
170         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
171         { "largepages", VM_STAT(lpages) },
172         { NULL }
173 };
174
175 u64 __read_mostly host_xcr0;
176
177 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
178
179 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
180 {
181         int i;
182         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
183                 vcpu->arch.apf.gfns[i] = ~0;
184 }
185
186 static void kvm_on_user_return(struct user_return_notifier *urn)
187 {
188         unsigned slot;
189         struct kvm_shared_msrs *locals
190                 = container_of(urn, struct kvm_shared_msrs, urn);
191         struct kvm_shared_msr_values *values;
192
193         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
194                 values = &locals->values[slot];
195                 if (values->host != values->curr) {
196                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
197                         values->curr = values->host;
198                 }
199         }
200         locals->registered = false;
201         user_return_notifier_unregister(urn);
202 }
203
204 static void shared_msr_update(unsigned slot, u32 msr)
205 {
206         u64 value;
207         unsigned int cpu = smp_processor_id();
208         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
209
210         /* only read, and nobody should modify it at this time,
211          * so don't need lock */
212         if (slot >= shared_msrs_global.nr) {
213                 printk(KERN_ERR "kvm: invalid MSR slot!");
214                 return;
215         }
216         rdmsrl_safe(msr, &value);
217         smsr->values[slot].host = value;
218         smsr->values[slot].curr = value;
219 }
220
221 void kvm_define_shared_msr(unsigned slot, u32 msr)
222 {
223         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
224         if (slot >= shared_msrs_global.nr)
225                 shared_msrs_global.nr = slot + 1;
226         shared_msrs_global.msrs[slot] = msr;
227         /* we need ensured the shared_msr_global have been updated */
228         smp_wmb();
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234         unsigned i;
235
236         for (i = 0; i < shared_msrs_global.nr; ++i)
237                 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242         unsigned int cpu = smp_processor_id();
243         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244         int err;
245
246         if (((value ^ smsr->values[slot].curr) & mask) == 0)
247                 return 0;
248         smsr->values[slot].curr = value;
249         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250         if (err)
251                 return 1;
252
253         if (!smsr->registered) {
254                 smsr->urn.on_user_return = kvm_on_user_return;
255                 user_return_notifier_register(&smsr->urn);
256                 smsr->registered = true;
257         }
258         return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264         unsigned int cpu = smp_processor_id();
265         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267         if (smsr->registered)
268                 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273         return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279         u64 old_state = vcpu->arch.apic_base &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 new_state = msr_info->data &
282                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286         if (!msr_info->host_initiated &&
287             ((msr_info->data & reserved_bits) != 0 ||
288              new_state == X2APIC_ENABLE ||
289              (new_state == MSR_IA32_APICBASE_ENABLE &&
290               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292               old_state == 0)))
293                 return 1;
294
295         kvm_lapic_set_base(vcpu, msr_info->data);
296         return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302         /* Fault while not rebooting.  We want the trace. */
303         BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN            0
308 #define EXCPT_CONTRIBUTORY      1
309 #define EXCPT_PF                2
310
311 static int exception_class(int vector)
312 {
313         switch (vector) {
314         case PF_VECTOR:
315                 return EXCPT_PF;
316         case DE_VECTOR:
317         case TS_VECTOR:
318         case NP_VECTOR:
319         case SS_VECTOR:
320         case GP_VECTOR:
321                 return EXCPT_CONTRIBUTORY;
322         default:
323                 break;
324         }
325         return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT             0
329 #define EXCPT_TRAP              1
330 #define EXCPT_ABORT             2
331 #define EXCPT_INTERRUPT         3
332
333 static int exception_type(int vector)
334 {
335         unsigned int mask;
336
337         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338                 return EXCPT_INTERRUPT;
339
340         mask = 1 << vector;
341
342         /* #DB is trap, as instruction watchpoints are handled elsewhere */
343         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344                 return EXCPT_TRAP;
345
346         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347                 return EXCPT_ABORT;
348
349         /* Reserved exceptions will result in fault */
350         return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354                 unsigned nr, bool has_error, u32 error_code,
355                 bool reinject)
356 {
357         u32 prev_nr;
358         int class1, class2;
359
360         kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362         if (!vcpu->arch.exception.pending) {
363         queue:
364                 if (has_error && !is_protmode(vcpu))
365                         has_error = false;
366                 vcpu->arch.exception.pending = true;
367                 vcpu->arch.exception.has_error_code = has_error;
368                 vcpu->arch.exception.nr = nr;
369                 vcpu->arch.exception.error_code = error_code;
370                 vcpu->arch.exception.reinject = reinject;
371                 return;
372         }
373
374         /* to check exception */
375         prev_nr = vcpu->arch.exception.nr;
376         if (prev_nr == DF_VECTOR) {
377                 /* triple fault -> shutdown */
378                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379                 return;
380         }
381         class1 = exception_class(prev_nr);
382         class2 = exception_class(nr);
383         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385                 /* generate double fault per SDM Table 5-5 */
386                 vcpu->arch.exception.pending = true;
387                 vcpu->arch.exception.has_error_code = true;
388                 vcpu->arch.exception.nr = DF_VECTOR;
389                 vcpu->arch.exception.error_code = 0;
390         } else
391                 /* replace previous exception with a new one in a hope
392                    that instruction re-execution will regenerate lost
393                    exception */
394                 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399         kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405         kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411         if (err)
412                 kvm_inject_gp(vcpu, 0);
413         else
414                 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420         ++vcpu->stat.pf_guest;
421         vcpu->arch.cr2 = fault->address;
422         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430         else
431                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433         return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438         atomic_inc(&vcpu->arch.nmi_queued);
439         kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445         kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451         kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
457  * a #GP and return false.
458  */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462                 return true;
463         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464         return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471                 return true;
472
473         kvm_queue_exception(vcpu, UD_VECTOR);
474         return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479  * This function will be used to read from the physical memory of the currently
480  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481  * can read from guest physical or from the guest's guest physical memory.
482  */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484                             gfn_t ngfn, void *data, int offset, int len,
485                             u32 access)
486 {
487         struct x86_exception exception;
488         gfn_t real_gfn;
489         gpa_t ngpa;
490
491         ngpa     = gfn_to_gpa(ngfn);
492         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493         if (real_gfn == UNMAPPED_GVA)
494                 return -EFAULT;
495
496         real_gfn = gpa_to_gfn(real_gfn);
497
498         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503                                void *data, int offset, int len, u32 access)
504 {
505         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506                                        data, offset, len, access);
507 }
508
509 /*
510  * Load the pae pdptrs.  Return true is they are all valid.
511  */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516         int i;
517         int ret;
518         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521                                       offset * sizeof(u64), sizeof(pdpte),
522                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
523         if (ret < 0) {
524                 ret = 0;
525                 goto out;
526         }
527         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528                 if (is_present_gpte(pdpte[i]) &&
529                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
530                         ret = 0;
531                         goto out;
532                 }
533         }
534         ret = 1;
535
536         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_avail);
539         __set_bit(VCPU_EXREG_PDPTR,
540                   (unsigned long *)&vcpu->arch.regs_dirty);
541 out:
542
543         return ret;
544 }
545 EXPORT_SYMBOL_GPL(load_pdptrs);
546
547 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
548 {
549         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
550         bool changed = true;
551         int offset;
552         gfn_t gfn;
553         int r;
554
555         if (is_long_mode(vcpu) || !is_pae(vcpu))
556                 return false;
557
558         if (!test_bit(VCPU_EXREG_PDPTR,
559                       (unsigned long *)&vcpu->arch.regs_avail))
560                 return true;
561
562         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
563         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
564         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
565                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
566         if (r < 0)
567                 goto out;
568         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
569 out:
570
571         return changed;
572 }
573
574 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
575 {
576         unsigned long old_cr0 = kvm_read_cr0(vcpu);
577         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
578
579         cr0 |= X86_CR0_ET;
580
581 #ifdef CONFIG_X86_64
582         if (cr0 & 0xffffffff00000000UL)
583                 return 1;
584 #endif
585
586         cr0 &= ~CR0_RESERVED_BITS;
587
588         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
589                 return 1;
590
591         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
592                 return 1;
593
594         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
595 #ifdef CONFIG_X86_64
596                 if ((vcpu->arch.efer & EFER_LME)) {
597                         int cs_db, cs_l;
598
599                         if (!is_pae(vcpu))
600                                 return 1;
601                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
602                         if (cs_l)
603                                 return 1;
604                 } else
605 #endif
606                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607                                                  kvm_read_cr3(vcpu)))
608                         return 1;
609         }
610
611         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
612                 return 1;
613
614         kvm_x86_ops->set_cr0(vcpu, cr0);
615
616         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
617                 kvm_clear_async_pf_completion_queue(vcpu);
618                 kvm_async_pf_hash_reset(vcpu);
619         }
620
621         if ((cr0 ^ old_cr0) & update_bits)
622                 kvm_mmu_reset_context(vcpu);
623
624         if ((cr0 ^ old_cr0) & X86_CR0_CD)
625                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
626
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr0);
630
631 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
632 {
633         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
634 }
635 EXPORT_SYMBOL_GPL(kvm_lmsw);
636
637 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
640                         !vcpu->guest_xcr0_loaded) {
641                 /* kvm_set_xcr() also depends on this */
642                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
643                 vcpu->guest_xcr0_loaded = 1;
644         }
645 }
646
647 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
648 {
649         if (vcpu->guest_xcr0_loaded) {
650                 if (vcpu->arch.xcr0 != host_xcr0)
651                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
652                 vcpu->guest_xcr0_loaded = 0;
653         }
654 }
655
656 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
657 {
658         u64 xcr0 = xcr;
659         u64 old_xcr0 = vcpu->arch.xcr0;
660         u64 valid_bits;
661
662         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
663         if (index != XCR_XFEATURE_ENABLED_MASK)
664                 return 1;
665         if (!(xcr0 & XSTATE_FP))
666                 return 1;
667         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
668                 return 1;
669
670         /*
671          * Do not allow the guest to set bits that we do not support
672          * saving.  However, xcr0 bit 0 is always set, even if the
673          * emulated CPU does not support XSAVE (see fx_init).
674          */
675         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
676         if (xcr0 & ~valid_bits)
677                 return 1;
678
679         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
680                 return 1;
681
682         if (xcr0 & XSTATE_AVX512) {
683                 if (!(xcr0 & XSTATE_YMM))
684                         return 1;
685                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
686                         return 1;
687         }
688         kvm_put_guest_xcr0(vcpu);
689         vcpu->arch.xcr0 = xcr0;
690
691         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
692                 kvm_update_cpuid(vcpu);
693         return 0;
694 }
695
696 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
697 {
698         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
699             __kvm_set_xcr(vcpu, index, xcr)) {
700                 kvm_inject_gp(vcpu, 0);
701                 return 1;
702         }
703         return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_xcr);
706
707 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
708 {
709         unsigned long old_cr4 = kvm_read_cr4(vcpu);
710         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
711                                    X86_CR4_SMEP | X86_CR4_SMAP;
712
713         if (cr4 & CR4_RESERVED_BITS)
714                 return 1;
715
716         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
717                 return 1;
718
719         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
720                 return 1;
721
722         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
723                 return 1;
724
725         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
726                 return 1;
727
728         if (is_long_mode(vcpu)) {
729                 if (!(cr4 & X86_CR4_PAE))
730                         return 1;
731         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
732                    && ((cr4 ^ old_cr4) & pdptr_bits)
733                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
734                                    kvm_read_cr3(vcpu)))
735                 return 1;
736
737         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
738                 if (!guest_cpuid_has_pcid(vcpu))
739                         return 1;
740
741                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
742                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
743                         return 1;
744         }
745
746         if (kvm_x86_ops->set_cr4(vcpu, cr4))
747                 return 1;
748
749         if (((cr4 ^ old_cr4) & pdptr_bits) ||
750             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
751                 kvm_mmu_reset_context(vcpu);
752
753         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
754                 kvm_update_cpuid(vcpu);
755
756         return 0;
757 }
758 EXPORT_SYMBOL_GPL(kvm_set_cr4);
759
760 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
761 {
762 #ifdef CONFIG_X86_64
763         cr3 &= ~CR3_PCID_INVD;
764 #endif
765
766         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
767                 kvm_mmu_sync_roots(vcpu);
768                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
769                 return 0;
770         }
771
772         if (is_long_mode(vcpu)) {
773                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
774                         return 1;
775         } else if (is_pae(vcpu) && is_paging(vcpu) &&
776                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
777                 return 1;
778
779         vcpu->arch.cr3 = cr3;
780         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
781         kvm_mmu_new_cr3(vcpu);
782         return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_cr3);
785
786 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
787 {
788         if (cr8 & CR8_RESERVED_BITS)
789                 return 1;
790         if (irqchip_in_kernel(vcpu->kvm))
791                 kvm_lapic_set_tpr(vcpu, cr8);
792         else
793                 vcpu->arch.cr8 = cr8;
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr8);
797
798 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
799 {
800         if (irqchip_in_kernel(vcpu->kvm))
801                 return kvm_lapic_get_cr8(vcpu);
802         else
803                 return vcpu->arch.cr8;
804 }
805 EXPORT_SYMBOL_GPL(kvm_get_cr8);
806
807 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
808 {
809         int i;
810
811         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
812                 for (i = 0; i < KVM_NR_DB_REGS; i++)
813                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
814                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
815         }
816 }
817
818 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
819 {
820         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
821                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
822 }
823
824 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
825 {
826         unsigned long dr7;
827
828         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
829                 dr7 = vcpu->arch.guest_debug_dr7;
830         else
831                 dr7 = vcpu->arch.dr7;
832         kvm_x86_ops->set_dr7(vcpu, dr7);
833         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
834         if (dr7 & DR7_BP_EN_MASK)
835                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
836 }
837
838 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
839 {
840         u64 fixed = DR6_FIXED_1;
841
842         if (!guest_cpuid_has_rtm(vcpu))
843                 fixed |= DR6_RTM;
844         return fixed;
845 }
846
847 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
848 {
849         switch (dr) {
850         case 0 ... 3:
851                 vcpu->arch.db[dr] = val;
852                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
853                         vcpu->arch.eff_db[dr] = val;
854                 break;
855         case 4:
856                 /* fall through */
857         case 6:
858                 if (val & 0xffffffff00000000ULL)
859                         return -1; /* #GP */
860                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
861                 kvm_update_dr6(vcpu);
862                 break;
863         case 5:
864                 /* fall through */
865         default: /* 7 */
866                 if (val & 0xffffffff00000000ULL)
867                         return -1; /* #GP */
868                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
869                 kvm_update_dr7(vcpu);
870                 break;
871         }
872
873         return 0;
874 }
875
876 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
877 {
878         if (__kvm_set_dr(vcpu, dr, val)) {
879                 kvm_inject_gp(vcpu, 0);
880                 return 1;
881         }
882         return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_set_dr);
885
886 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
887 {
888         switch (dr) {
889         case 0 ... 3:
890                 *val = vcpu->arch.db[dr];
891                 break;
892         case 4:
893                 /* fall through */
894         case 6:
895                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
896                         *val = vcpu->arch.dr6;
897                 else
898                         *val = kvm_x86_ops->get_dr6(vcpu);
899                 break;
900         case 5:
901                 /* fall through */
902         default: /* 7 */
903                 *val = vcpu->arch.dr7;
904                 break;
905         }
906         return 0;
907 }
908 EXPORT_SYMBOL_GPL(kvm_get_dr);
909
910 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
911 {
912         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
913         u64 data;
914         int err;
915
916         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
917         if (err)
918                 return err;
919         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
920         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
921         return err;
922 }
923 EXPORT_SYMBOL_GPL(kvm_rdpmc);
924
925 /*
926  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
927  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
928  *
929  * This list is modified at module load time to reflect the
930  * capabilities of the host cpu. This capabilities test skips MSRs that are
931  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
932  * may depend on host virtualization features rather than host cpu features.
933  */
934
935 static u32 msrs_to_save[] = {
936         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937         MSR_STAR,
938 #ifdef CONFIG_X86_64
939         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static u32 emulated_msrs[] = {
948         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
949         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
950         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
951         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
952         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
953         MSR_KVM_PV_EOI_EN,
954
955         MSR_IA32_TSC_ADJUST,
956         MSR_IA32_TSCDEADLINE,
957         MSR_IA32_MISC_ENABLE,
958         MSR_IA32_MCG_STATUS,
959         MSR_IA32_MCG_CTL,
960         MSR_IA32_SMBASE,
961 };
962
963 static unsigned num_emulated_msrs;
964
965 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
966 {
967         if (efer & efer_reserved_bits)
968                 return false;
969
970         if (efer & EFER_FFXSR) {
971                 struct kvm_cpuid_entry2 *feat;
972
973                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
974                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
975                         return false;
976         }
977
978         if (efer & EFER_SVME) {
979                 struct kvm_cpuid_entry2 *feat;
980
981                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
982                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
983                         return false;
984         }
985
986         return true;
987 }
988 EXPORT_SYMBOL_GPL(kvm_valid_efer);
989
990 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992         u64 old_efer = vcpu->arch.efer;
993
994         if (!kvm_valid_efer(vcpu, efer))
995                 return 1;
996
997         if (is_paging(vcpu)
998             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
999                 return 1;
1000
1001         efer &= ~EFER_LMA;
1002         efer |= vcpu->arch.efer & EFER_LMA;
1003
1004         kvm_x86_ops->set_efer(vcpu, efer);
1005
1006         /* Update reserved bits */
1007         if ((efer ^ old_efer) & EFER_NX)
1008                 kvm_mmu_reset_context(vcpu);
1009
1010         return 0;
1011 }
1012
1013 void kvm_enable_efer_bits(u64 mask)
1014 {
1015        efer_reserved_bits &= ~mask;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1018
1019 /*
1020  * Writes msr value into into the appropriate "register".
1021  * Returns 0 on success, non-0 otherwise.
1022  * Assumes vcpu_load() was already called.
1023  */
1024 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1025 {
1026         switch (msr->index) {
1027         case MSR_FS_BASE:
1028         case MSR_GS_BASE:
1029         case MSR_KERNEL_GS_BASE:
1030         case MSR_CSTAR:
1031         case MSR_LSTAR:
1032                 if (is_noncanonical_address(msr->data))
1033                         return 1;
1034                 break;
1035         case MSR_IA32_SYSENTER_EIP:
1036         case MSR_IA32_SYSENTER_ESP:
1037                 /*
1038                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1039                  * non-canonical address is written on Intel but not on
1040                  * AMD (which ignores the top 32-bits, because it does
1041                  * not implement 64-bit SYSENTER).
1042                  *
1043                  * 64-bit code should hence be able to write a non-canonical
1044                  * value on AMD.  Making the address canonical ensures that
1045                  * vmentry does not fail on Intel after writing a non-canonical
1046                  * value, and that something deterministic happens if the guest
1047                  * invokes 64-bit SYSENTER.
1048                  */
1049                 msr->data = get_canonical(msr->data);
1050         }
1051         return kvm_x86_ops->set_msr(vcpu, msr);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_set_msr);
1054
1055 /*
1056  * Adapt set_msr() to msr_io()'s calling convention
1057  */
1058 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1059 {
1060         struct msr_data msr;
1061         int r;
1062
1063         msr.index = index;
1064         msr.host_initiated = true;
1065         r = kvm_get_msr(vcpu, &msr);
1066         if (r)
1067                 return r;
1068
1069         *data = msr.data;
1070         return 0;
1071 }
1072
1073 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1074 {
1075         struct msr_data msr;
1076
1077         msr.data = *data;
1078         msr.index = index;
1079         msr.host_initiated = true;
1080         return kvm_set_msr(vcpu, &msr);
1081 }
1082
1083 #ifdef CONFIG_X86_64
1084 struct pvclock_gtod_data {
1085         seqcount_t      seq;
1086
1087         struct { /* extract of a clocksource struct */
1088                 int vclock_mode;
1089                 cycle_t cycle_last;
1090                 cycle_t mask;
1091                 u32     mult;
1092                 u32     shift;
1093         } clock;
1094
1095         u64             boot_ns;
1096         u64             nsec_base;
1097 };
1098
1099 static struct pvclock_gtod_data pvclock_gtod_data;
1100
1101 static void update_pvclock_gtod(struct timekeeper *tk)
1102 {
1103         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1104         u64 boot_ns;
1105
1106         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1107
1108         write_seqcount_begin(&vdata->seq);
1109
1110         /* copy pvclock gtod data */
1111         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1112         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1113         vdata->clock.mask               = tk->tkr_mono.mask;
1114         vdata->clock.mult               = tk->tkr_mono.mult;
1115         vdata->clock.shift              = tk->tkr_mono.shift;
1116
1117         vdata->boot_ns                  = boot_ns;
1118         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1119
1120         write_seqcount_end(&vdata->seq);
1121 }
1122 #endif
1123
1124 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1125 {
1126         /*
1127          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1128          * vcpu_enter_guest.  This function is only called from
1129          * the physical CPU that is running vcpu.
1130          */
1131         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1132 }
1133
1134 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1135 {
1136         int version;
1137         int r;
1138         struct pvclock_wall_clock wc;
1139         struct timespec boot;
1140
1141         if (!wall_clock)
1142                 return;
1143
1144         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1145         if (r)
1146                 return;
1147
1148         if (version & 1)
1149                 ++version;  /* first time write, random junk */
1150
1151         ++version;
1152
1153         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1154
1155         /*
1156          * The guest calculates current wall clock time by adding
1157          * system time (updated by kvm_guest_time_update below) to the
1158          * wall clock specified here.  guest system time equals host
1159          * system time for us, thus we must fill in host boot time here.
1160          */
1161         getboottime(&boot);
1162
1163         if (kvm->arch.kvmclock_offset) {
1164                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1165                 boot = timespec_sub(boot, ts);
1166         }
1167         wc.sec = boot.tv_sec;
1168         wc.nsec = boot.tv_nsec;
1169         wc.version = version;
1170
1171         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1172
1173         version++;
1174         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1175 }
1176
1177 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1178 {
1179         uint32_t quotient, remainder;
1180
1181         /* Don't try to replace with do_div(), this one calculates
1182          * "(dividend << 32) / divisor" */
1183         __asm__ ( "divl %4"
1184                   : "=a" (quotient), "=d" (remainder)
1185                   : "0" (0), "1" (dividend), "r" (divisor) );
1186         return quotient;
1187 }
1188
1189 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1190                                s8 *pshift, u32 *pmultiplier)
1191 {
1192         uint64_t scaled64;
1193         int32_t  shift = 0;
1194         uint64_t tps64;
1195         uint32_t tps32;
1196
1197         tps64 = base_khz * 1000LL;
1198         scaled64 = scaled_khz * 1000LL;
1199         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1200                 tps64 >>= 1;
1201                 shift--;
1202         }
1203
1204         tps32 = (uint32_t)tps64;
1205         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1206                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1207                         scaled64 >>= 1;
1208                 else
1209                         tps32 <<= 1;
1210                 shift++;
1211         }
1212
1213         *pshift = shift;
1214         *pmultiplier = div_frac(scaled64, tps32);
1215
1216         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1217                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1218 }
1219
1220 static inline u64 get_kernel_ns(void)
1221 {
1222         return ktime_get_boot_ns();
1223 }
1224
1225 #ifdef CONFIG_X86_64
1226 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1227 #endif
1228
1229 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1230 static unsigned long max_tsc_khz;
1231
1232 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1233 {
1234         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1235                                    vcpu->arch.virtual_tsc_shift);
1236 }
1237
1238 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1239 {
1240         u64 v = (u64)khz * (1000000 + ppm);
1241         do_div(v, 1000000);
1242         return v;
1243 }
1244
1245 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1246 {
1247         u32 thresh_lo, thresh_hi;
1248         int use_scaling = 0;
1249
1250         /* tsc_khz can be zero if TSC calibration fails */
1251         if (this_tsc_khz == 0)
1252                 return;
1253
1254         /* Compute a scale to convert nanoseconds in TSC cycles */
1255         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1256                            &vcpu->arch.virtual_tsc_shift,
1257                            &vcpu->arch.virtual_tsc_mult);
1258         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1259
1260         /*
1261          * Compute the variation in TSC rate which is acceptable
1262          * within the range of tolerance and decide if the
1263          * rate being applied is within that bounds of the hardware
1264          * rate.  If so, no scaling or compensation need be done.
1265          */
1266         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1267         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1268         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1269                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1270                 use_scaling = 1;
1271         }
1272         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1273 }
1274
1275 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1276 {
1277         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1278                                       vcpu->arch.virtual_tsc_mult,
1279                                       vcpu->arch.virtual_tsc_shift);
1280         tsc += vcpu->arch.this_tsc_write;
1281         return tsc;
1282 }
1283
1284 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1285 {
1286 #ifdef CONFIG_X86_64
1287         bool vcpus_matched;
1288         struct kvm_arch *ka = &vcpu->kvm->arch;
1289         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1290
1291         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1292                          atomic_read(&vcpu->kvm->online_vcpus));
1293
1294         /*
1295          * Once the masterclock is enabled, always perform request in
1296          * order to update it.
1297          *
1298          * In order to enable masterclock, the host clocksource must be TSC
1299          * and the vcpus need to have matched TSCs.  When that happens,
1300          * perform request to enable masterclock.
1301          */
1302         if (ka->use_master_clock ||
1303             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1304                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1305
1306         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1307                             atomic_read(&vcpu->kvm->online_vcpus),
1308                             ka->use_master_clock, gtod->clock.vclock_mode);
1309 #endif
1310 }
1311
1312 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1313 {
1314         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1315         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1316 }
1317
1318 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1319 {
1320         struct kvm *kvm = vcpu->kvm;
1321         u64 offset, ns, elapsed;
1322         unsigned long flags;
1323         s64 usdiff;
1324         bool matched;
1325         bool already_matched;
1326         u64 data = msr->data;
1327
1328         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1329         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1330         ns = get_kernel_ns();
1331         elapsed = ns - kvm->arch.last_tsc_nsec;
1332
1333         if (vcpu->arch.virtual_tsc_khz) {
1334                 int faulted = 0;
1335
1336                 /* n.b - signed multiplication and division required */
1337                 usdiff = data - kvm->arch.last_tsc_write;
1338 #ifdef CONFIG_X86_64
1339                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1340 #else
1341                 /* do_div() only does unsigned */
1342                 asm("1: idivl %[divisor]\n"
1343                     "2: xor %%edx, %%edx\n"
1344                     "   movl $0, %[faulted]\n"
1345                     "3:\n"
1346                     ".section .fixup,\"ax\"\n"
1347                     "4: movl $1, %[faulted]\n"
1348                     "   jmp  3b\n"
1349                     ".previous\n"
1350
1351                 _ASM_EXTABLE(1b, 4b)
1352
1353                 : "=A"(usdiff), [faulted] "=r" (faulted)
1354                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1355
1356 #endif
1357                 do_div(elapsed, 1000);
1358                 usdiff -= elapsed;
1359                 if (usdiff < 0)
1360                         usdiff = -usdiff;
1361
1362                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1363                 if (faulted)
1364                         usdiff = USEC_PER_SEC;
1365         } else
1366                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1367
1368         /*
1369          * Special case: TSC write with a small delta (1 second) of virtual
1370          * cycle time against real time is interpreted as an attempt to
1371          * synchronize the CPU.
1372          *
1373          * For a reliable TSC, we can match TSC offsets, and for an unstable
1374          * TSC, we add elapsed time in this computation.  We could let the
1375          * compensation code attempt to catch up if we fall behind, but
1376          * it's better to try to match offsets from the beginning.
1377          */
1378         if (usdiff < USEC_PER_SEC &&
1379             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1380                 if (!check_tsc_unstable()) {
1381                         offset = kvm->arch.cur_tsc_offset;
1382                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1383                 } else {
1384                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1385                         data += delta;
1386                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1387                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1388                 }
1389                 matched = true;
1390                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1391         } else {
1392                 /*
1393                  * We split periods of matched TSC writes into generations.
1394                  * For each generation, we track the original measured
1395                  * nanosecond time, offset, and write, so if TSCs are in
1396                  * sync, we can match exact offset, and if not, we can match
1397                  * exact software computation in compute_guest_tsc()
1398                  *
1399                  * These values are tracked in kvm->arch.cur_xxx variables.
1400                  */
1401                 kvm->arch.cur_tsc_generation++;
1402                 kvm->arch.cur_tsc_nsec = ns;
1403                 kvm->arch.cur_tsc_write = data;
1404                 kvm->arch.cur_tsc_offset = offset;
1405                 matched = false;
1406                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1407                          kvm->arch.cur_tsc_generation, data);
1408         }
1409
1410         /*
1411          * We also track th most recent recorded KHZ, write and time to
1412          * allow the matching interval to be extended at each write.
1413          */
1414         kvm->arch.last_tsc_nsec = ns;
1415         kvm->arch.last_tsc_write = data;
1416         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1417
1418         vcpu->arch.last_guest_tsc = data;
1419
1420         /* Keep track of which generation this VCPU has synchronized to */
1421         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1422         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1423         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1424
1425         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1426                 update_ia32_tsc_adjust_msr(vcpu, offset);
1427         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1429
1430         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1431         if (!matched) {
1432                 kvm->arch.nr_vcpus_matched_tsc = 0;
1433         } else if (!already_matched) {
1434                 kvm->arch.nr_vcpus_matched_tsc++;
1435         }
1436
1437         kvm_track_tsc_matching(vcpu);
1438         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1439 }
1440
1441 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1442
1443 #ifdef CONFIG_X86_64
1444
1445 static cycle_t read_tsc(void)
1446 {
1447         cycle_t ret;
1448         u64 last;
1449
1450         /*
1451          * Empirically, a fence (of type that depends on the CPU)
1452          * before rdtsc is enough to ensure that rdtsc is ordered
1453          * with respect to loads.  The various CPU manuals are unclear
1454          * as to whether rdtsc can be reordered with later loads,
1455          * but no one has ever seen it happen.
1456          */
1457         rdtsc_barrier();
1458         ret = (cycle_t)vget_cycles();
1459
1460         last = pvclock_gtod_data.clock.cycle_last;
1461
1462         if (likely(ret >= last))
1463                 return ret;
1464
1465         /*
1466          * GCC likes to generate cmov here, but this branch is extremely
1467          * predictable (it's just a funciton of time and the likely is
1468          * very likely) and there's a data dependence, so force GCC
1469          * to generate a branch instead.  I don't barrier() because
1470          * we don't actually need a barrier, and if this function
1471          * ever gets inlined it will generate worse code.
1472          */
1473         asm volatile ("");
1474         return last;
1475 }
1476
1477 static inline u64 vgettsc(cycle_t *cycle_now)
1478 {
1479         long v;
1480         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1481
1482         *cycle_now = read_tsc();
1483
1484         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1485         return v * gtod->clock.mult;
1486 }
1487
1488 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1489 {
1490         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1491         unsigned long seq;
1492         int mode;
1493         u64 ns;
1494
1495         do {
1496                 seq = read_seqcount_begin(&gtod->seq);
1497                 mode = gtod->clock.vclock_mode;
1498                 ns = gtod->nsec_base;
1499                 ns += vgettsc(cycle_now);
1500                 ns >>= gtod->clock.shift;
1501                 ns += gtod->boot_ns;
1502         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1503         *t = ns;
1504
1505         return mode;
1506 }
1507
1508 /* returns true if host is using tsc clocksource */
1509 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1510 {
1511         /* checked again under seqlock below */
1512         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1513                 return false;
1514
1515         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1516 }
1517 #endif
1518
1519 /*
1520  *
1521  * Assuming a stable TSC across physical CPUS, and a stable TSC
1522  * across virtual CPUs, the following condition is possible.
1523  * Each numbered line represents an event visible to both
1524  * CPUs at the next numbered event.
1525  *
1526  * "timespecX" represents host monotonic time. "tscX" represents
1527  * RDTSC value.
1528  *
1529  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1530  *
1531  * 1.  read timespec0,tsc0
1532  * 2.                                   | timespec1 = timespec0 + N
1533  *                                      | tsc1 = tsc0 + M
1534  * 3. transition to guest               | transition to guest
1535  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1536  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1537  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1538  *
1539  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1540  *
1541  *      - ret0 < ret1
1542  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1543  *              ...
1544  *      - 0 < N - M => M < N
1545  *
1546  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1547  * always the case (the difference between two distinct xtime instances
1548  * might be smaller then the difference between corresponding TSC reads,
1549  * when updating guest vcpus pvclock areas).
1550  *
1551  * To avoid that problem, do not allow visibility of distinct
1552  * system_timestamp/tsc_timestamp values simultaneously: use a master
1553  * copy of host monotonic time values. Update that master copy
1554  * in lockstep.
1555  *
1556  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1557  *
1558  */
1559
1560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1561 {
1562 #ifdef CONFIG_X86_64
1563         struct kvm_arch *ka = &kvm->arch;
1564         int vclock_mode;
1565         bool host_tsc_clocksource, vcpus_matched;
1566
1567         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1568                         atomic_read(&kvm->online_vcpus));
1569
1570         /*
1571          * If the host uses TSC clock, then passthrough TSC as stable
1572          * to the guest.
1573          */
1574         host_tsc_clocksource = kvm_get_time_and_clockread(
1575                                         &ka->master_kernel_ns,
1576                                         &ka->master_cycle_now);
1577
1578         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1579                                 && !backwards_tsc_observed
1580                                 && !ka->boot_vcpu_runs_old_kvmclock;
1581
1582         if (ka->use_master_clock)
1583                 atomic_set(&kvm_guest_has_master_clock, 1);
1584
1585         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1586         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1587                                         vcpus_matched);
1588 #endif
1589 }
1590
1591 static void kvm_gen_update_masterclock(struct kvm *kvm)
1592 {
1593 #ifdef CONFIG_X86_64
1594         int i;
1595         struct kvm_vcpu *vcpu;
1596         struct kvm_arch *ka = &kvm->arch;
1597
1598         spin_lock(&ka->pvclock_gtod_sync_lock);
1599         kvm_make_mclock_inprogress_request(kvm);
1600         /* no guest entries from this point */
1601         pvclock_update_vm_gtod_copy(kvm);
1602
1603         kvm_for_each_vcpu(i, vcpu, kvm)
1604                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1605
1606         /* guest entries allowed */
1607         kvm_for_each_vcpu(i, vcpu, kvm)
1608                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1609
1610         spin_unlock(&ka->pvclock_gtod_sync_lock);
1611 #endif
1612 }
1613
1614 static int kvm_guest_time_update(struct kvm_vcpu *v)
1615 {
1616         unsigned long flags, this_tsc_khz;
1617         struct kvm_vcpu_arch *vcpu = &v->arch;
1618         struct kvm_arch *ka = &v->kvm->arch;
1619         s64 kernel_ns;
1620         u64 tsc_timestamp, host_tsc;
1621         struct pvclock_vcpu_time_info guest_hv_clock;
1622         u8 pvclock_flags;
1623         bool use_master_clock;
1624
1625         kernel_ns = 0;
1626         host_tsc = 0;
1627
1628         /*
1629          * If the host uses TSC clock, then passthrough TSC as stable
1630          * to the guest.
1631          */
1632         spin_lock(&ka->pvclock_gtod_sync_lock);
1633         use_master_clock = ka->use_master_clock;
1634         if (use_master_clock) {
1635                 host_tsc = ka->master_cycle_now;
1636                 kernel_ns = ka->master_kernel_ns;
1637         }
1638         spin_unlock(&ka->pvclock_gtod_sync_lock);
1639
1640         /* Keep irq disabled to prevent changes to the clock */
1641         local_irq_save(flags);
1642         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1643         if (unlikely(this_tsc_khz == 0)) {
1644                 local_irq_restore(flags);
1645                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1646                 return 1;
1647         }
1648         if (!use_master_clock) {
1649                 host_tsc = native_read_tsc();
1650                 kernel_ns = get_kernel_ns();
1651         }
1652
1653         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1654
1655         /*
1656          * We may have to catch up the TSC to match elapsed wall clock
1657          * time for two reasons, even if kvmclock is used.
1658          *   1) CPU could have been running below the maximum TSC rate
1659          *   2) Broken TSC compensation resets the base at each VCPU
1660          *      entry to avoid unknown leaps of TSC even when running
1661          *      again on the same CPU.  This may cause apparent elapsed
1662          *      time to disappear, and the guest to stand still or run
1663          *      very slowly.
1664          */
1665         if (vcpu->tsc_catchup) {
1666                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1667                 if (tsc > tsc_timestamp) {
1668                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1669                         tsc_timestamp = tsc;
1670                 }
1671         }
1672
1673         local_irq_restore(flags);
1674
1675         if (!vcpu->pv_time_enabled)
1676                 return 0;
1677
1678         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1679                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1680                                    &vcpu->hv_clock.tsc_shift,
1681                                    &vcpu->hv_clock.tsc_to_system_mul);
1682                 vcpu->hw_tsc_khz = this_tsc_khz;
1683         }
1684
1685         /* With all the info we got, fill in the values */
1686         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1687         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1688         vcpu->last_guest_tsc = tsc_timestamp;
1689
1690         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1691                 &guest_hv_clock, sizeof(guest_hv_clock))))
1692                 return 0;
1693
1694         /* This VCPU is paused, but it's legal for a guest to read another
1695          * VCPU's kvmclock, so we really have to follow the specification where
1696          * it says that version is odd if data is being modified, and even after
1697          * it is consistent.
1698          *
1699          * Version field updates must be kept separate.  This is because
1700          * kvm_write_guest_cached might use a "rep movs" instruction, and
1701          * writes within a string instruction are weakly ordered.  So there
1702          * are three writes overall.
1703          *
1704          * As a small optimization, only write the version field in the first
1705          * and third write.  The vcpu->pv_time cache is still valid, because the
1706          * version field is the first in the struct.
1707          */
1708         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1709
1710         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1711         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712                                 &vcpu->hv_clock,
1713                                 sizeof(vcpu->hv_clock.version));
1714
1715         smp_wmb();
1716
1717         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1718         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1719
1720         if (vcpu->pvclock_set_guest_stopped_request) {
1721                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1722                 vcpu->pvclock_set_guest_stopped_request = false;
1723         }
1724
1725         pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1726
1727         /* If the host uses TSC clocksource, then it is stable */
1728         if (use_master_clock)
1729                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1730
1731         vcpu->hv_clock.flags = pvclock_flags;
1732
1733         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1734
1735         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1736                                 &vcpu->hv_clock,
1737                                 sizeof(vcpu->hv_clock));
1738
1739         smp_wmb();
1740
1741         vcpu->hv_clock.version++;
1742         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1743                                 &vcpu->hv_clock,
1744                                 sizeof(vcpu->hv_clock.version));
1745         return 0;
1746 }
1747
1748 /*
1749  * kvmclock updates which are isolated to a given vcpu, such as
1750  * vcpu->cpu migration, should not allow system_timestamp from
1751  * the rest of the vcpus to remain static. Otherwise ntp frequency
1752  * correction applies to one vcpu's system_timestamp but not
1753  * the others.
1754  *
1755  * So in those cases, request a kvmclock update for all vcpus.
1756  * We need to rate-limit these requests though, as they can
1757  * considerably slow guests that have a large number of vcpus.
1758  * The time for a remote vcpu to update its kvmclock is bound
1759  * by the delay we use to rate-limit the updates.
1760  */
1761
1762 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1763
1764 static void kvmclock_update_fn(struct work_struct *work)
1765 {
1766         int i;
1767         struct delayed_work *dwork = to_delayed_work(work);
1768         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1769                                            kvmclock_update_work);
1770         struct kvm *kvm = container_of(ka, struct kvm, arch);
1771         struct kvm_vcpu *vcpu;
1772
1773         kvm_for_each_vcpu(i, vcpu, kvm) {
1774                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775                 kvm_vcpu_kick(vcpu);
1776         }
1777 }
1778
1779 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1780 {
1781         struct kvm *kvm = v->kvm;
1782
1783         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1784         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1785                                         KVMCLOCK_UPDATE_DELAY);
1786 }
1787
1788 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1789
1790 static void kvmclock_sync_fn(struct work_struct *work)
1791 {
1792         struct delayed_work *dwork = to_delayed_work(work);
1793         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1794                                            kvmclock_sync_work);
1795         struct kvm *kvm = container_of(ka, struct kvm, arch);
1796
1797         if (!kvmclock_periodic_sync)
1798                 return;
1799
1800         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1801         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1802                                         KVMCLOCK_SYNC_PERIOD);
1803 }
1804
1805 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1806 {
1807         u64 mcg_cap = vcpu->arch.mcg_cap;
1808         unsigned bank_num = mcg_cap & 0xff;
1809
1810         switch (msr) {
1811         case MSR_IA32_MCG_STATUS:
1812                 vcpu->arch.mcg_status = data;
1813                 break;
1814         case MSR_IA32_MCG_CTL:
1815                 if (!(mcg_cap & MCG_CTL_P))
1816                         return 1;
1817                 if (data != 0 && data != ~(u64)0)
1818                         return -1;
1819                 vcpu->arch.mcg_ctl = data;
1820                 break;
1821         default:
1822                 if (msr >= MSR_IA32_MC0_CTL &&
1823                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1824                         u32 offset = msr - MSR_IA32_MC0_CTL;
1825                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1826                          * some Linux kernels though clear bit 10 in bank 4 to
1827                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1828                          * this to avoid an uncatched #GP in the guest
1829                          */
1830                         if ((offset & 0x3) == 0 &&
1831                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1832                                 return -1;
1833                         vcpu->arch.mce_banks[offset] = data;
1834                         break;
1835                 }
1836                 return 1;
1837         }
1838         return 0;
1839 }
1840
1841 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1842 {
1843         struct kvm *kvm = vcpu->kvm;
1844         int lm = is_long_mode(vcpu);
1845         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1846                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1847         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1848                 : kvm->arch.xen_hvm_config.blob_size_32;
1849         u32 page_num = data & ~PAGE_MASK;
1850         u64 page_addr = data & PAGE_MASK;
1851         u8 *page;
1852         int r;
1853
1854         r = -E2BIG;
1855         if (page_num >= blob_size)
1856                 goto out;
1857         r = -ENOMEM;
1858         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1859         if (IS_ERR(page)) {
1860                 r = PTR_ERR(page);
1861                 goto out;
1862         }
1863         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1864                 goto out_free;
1865         r = 0;
1866 out_free:
1867         kfree(page);
1868 out:
1869         return r;
1870 }
1871
1872 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1873 {
1874         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1875 }
1876
1877 static bool kvm_hv_msr_partition_wide(u32 msr)
1878 {
1879         bool r = false;
1880         switch (msr) {
1881         case HV_X64_MSR_GUEST_OS_ID:
1882         case HV_X64_MSR_HYPERCALL:
1883         case HV_X64_MSR_REFERENCE_TSC:
1884         case HV_X64_MSR_TIME_REF_COUNT:
1885                 r = true;
1886                 break;
1887         }
1888
1889         return r;
1890 }
1891
1892 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1893 {
1894         struct kvm *kvm = vcpu->kvm;
1895
1896         switch (msr) {
1897         case HV_X64_MSR_GUEST_OS_ID:
1898                 kvm->arch.hv_guest_os_id = data;
1899                 /* setting guest os id to zero disables hypercall page */
1900                 if (!kvm->arch.hv_guest_os_id)
1901                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1902                 break;
1903         case HV_X64_MSR_HYPERCALL: {
1904                 u64 gfn;
1905                 unsigned long addr;
1906                 u8 instructions[4];
1907
1908                 /* if guest os id is not set hypercall should remain disabled */
1909                 if (!kvm->arch.hv_guest_os_id)
1910                         break;
1911                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1912                         kvm->arch.hv_hypercall = data;
1913                         break;
1914                 }
1915                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1916                 addr = gfn_to_hva(kvm, gfn);
1917                 if (kvm_is_error_hva(addr))
1918                         return 1;
1919                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1920                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1921                 if (__copy_to_user((void __user *)addr, instructions, 4))
1922                         return 1;
1923                 kvm->arch.hv_hypercall = data;
1924                 mark_page_dirty(kvm, gfn);
1925                 break;
1926         }
1927         case HV_X64_MSR_REFERENCE_TSC: {
1928                 u64 gfn;
1929                 HV_REFERENCE_TSC_PAGE tsc_ref;
1930                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1931                 kvm->arch.hv_tsc_page = data;
1932                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1933                         break;
1934                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1935                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1936                         &tsc_ref, sizeof(tsc_ref)))
1937                         return 1;
1938                 mark_page_dirty(kvm, gfn);
1939                 break;
1940         }
1941         default:
1942                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1943                             "data 0x%llx\n", msr, data);
1944                 return 1;
1945         }
1946         return 0;
1947 }
1948
1949 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1950 {
1951         switch (msr) {
1952         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1953                 u64 gfn;
1954                 unsigned long addr;
1955
1956                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1957                         vcpu->arch.hv_vapic = data;
1958                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1959                                 return 1;
1960                         break;
1961                 }
1962                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1963                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1964                 if (kvm_is_error_hva(addr))
1965                         return 1;
1966                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1967                         return 1;
1968                 vcpu->arch.hv_vapic = data;
1969                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1970                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1971                         return 1;
1972                 break;
1973         }
1974         case HV_X64_MSR_EOI:
1975                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1976         case HV_X64_MSR_ICR:
1977                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1978         case HV_X64_MSR_TPR:
1979                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1980         default:
1981                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1982                             "data 0x%llx\n", msr, data);
1983                 return 1;
1984         }
1985
1986         return 0;
1987 }
1988
1989 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1990 {
1991         gpa_t gpa = data & ~0x3f;
1992
1993         /* Bits 2:5 are reserved, Should be zero */
1994         if (data & 0x3c)
1995                 return 1;
1996
1997         vcpu->arch.apf.msr_val = data;
1998
1999         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2000                 kvm_clear_async_pf_completion_queue(vcpu);
2001                 kvm_async_pf_hash_reset(vcpu);
2002                 return 0;
2003         }
2004
2005         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2006                                         sizeof(u32)))
2007                 return 1;
2008
2009         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2010         kvm_async_pf_wakeup_all(vcpu);
2011         return 0;
2012 }
2013
2014 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2015 {
2016         vcpu->arch.pv_time_enabled = false;
2017 }
2018
2019 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2020 {
2021         u64 delta;
2022
2023         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2024                 return;
2025
2026         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2027         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028         vcpu->arch.st.accum_steal = delta;
2029 }
2030
2031 static void record_steal_time(struct kvm_vcpu *vcpu)
2032 {
2033         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2034                 return;
2035
2036         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2038                 return;
2039
2040         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2041         vcpu->arch.st.steal.version += 2;
2042         vcpu->arch.st.accum_steal = 0;
2043
2044         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2045                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2046 }
2047
2048 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2049 {
2050         bool pr = false;
2051         u32 msr = msr_info->index;
2052         u64 data = msr_info->data;
2053
2054         switch (msr) {
2055         case MSR_AMD64_NB_CFG:
2056         case MSR_IA32_UCODE_REV:
2057         case MSR_IA32_UCODE_WRITE:
2058         case MSR_VM_HSAVE_PA:
2059         case MSR_AMD64_PATCH_LOADER:
2060         case MSR_AMD64_BU_CFG2:
2061                 break;
2062
2063         case MSR_EFER:
2064                 return set_efer(vcpu, data);
2065         case MSR_K7_HWCR:
2066                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2067                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2068                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2069                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2070                 if (data != 0) {
2071                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2072                                     data);
2073                         return 1;
2074                 }
2075                 break;
2076         case MSR_FAM10H_MMIO_CONF_BASE:
2077                 if (data != 0) {
2078                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2079                                     "0x%llx\n", data);
2080                         return 1;
2081                 }
2082                 break;
2083         case MSR_IA32_DEBUGCTLMSR:
2084                 if (!data) {
2085                         /* We support the non-activated case already */
2086                         break;
2087                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2088                         /* Values other than LBR and BTF are vendor-specific,
2089                            thus reserved and should throw a #GP */
2090                         return 1;
2091                 }
2092                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2093                             __func__, data);
2094                 break;
2095         case 0x200 ... 0x2ff:
2096                 return kvm_mtrr_set_msr(vcpu, msr, data);
2097         case MSR_IA32_APICBASE:
2098                 return kvm_set_apic_base(vcpu, msr_info);
2099         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2100                 return kvm_x2apic_msr_write(vcpu, msr, data);
2101         case MSR_IA32_TSCDEADLINE:
2102                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2103                 break;
2104         case MSR_IA32_TSC_ADJUST:
2105                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2106                         if (!msr_info->host_initiated) {
2107                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2108                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2109                         }
2110                         vcpu->arch.ia32_tsc_adjust_msr = data;
2111                 }
2112                 break;
2113         case MSR_IA32_MISC_ENABLE:
2114                 vcpu->arch.ia32_misc_enable_msr = data;
2115                 break;
2116         case MSR_IA32_SMBASE:
2117                 if (!msr_info->host_initiated)
2118                         return 1;
2119                 vcpu->arch.smbase = data;
2120                 break;
2121         case MSR_KVM_WALL_CLOCK_NEW:
2122         case MSR_KVM_WALL_CLOCK:
2123                 vcpu->kvm->arch.wall_clock = data;
2124                 kvm_write_wall_clock(vcpu->kvm, data);
2125                 break;
2126         case MSR_KVM_SYSTEM_TIME_NEW:
2127         case MSR_KVM_SYSTEM_TIME: {
2128                 u64 gpa_offset;
2129                 struct kvm_arch *ka = &vcpu->kvm->arch;
2130
2131                 kvmclock_reset(vcpu);
2132
2133                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2134                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2135
2136                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2137                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2138                                         &vcpu->requests);
2139
2140                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2141
2142                         ka->kvmclock_offset = -get_kernel_ns();
2143                 }
2144
2145                 vcpu->arch.time = data;
2146                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2147
2148                 /* we verify if the enable bit is set... */
2149                 if (!(data & 1))
2150                         break;
2151
2152                 gpa_offset = data & ~(PAGE_MASK | 1);
2153
2154                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2155                      &vcpu->arch.pv_time, data & ~1ULL,
2156                      sizeof(struct pvclock_vcpu_time_info)))
2157                         vcpu->arch.pv_time_enabled = false;
2158                 else
2159                         vcpu->arch.pv_time_enabled = true;
2160
2161                 break;
2162         }
2163         case MSR_KVM_ASYNC_PF_EN:
2164                 if (kvm_pv_enable_async_pf(vcpu, data))
2165                         return 1;
2166                 break;
2167         case MSR_KVM_STEAL_TIME:
2168
2169                 if (unlikely(!sched_info_on()))
2170                         return 1;
2171
2172                 if (data & KVM_STEAL_RESERVED_MASK)
2173                         return 1;
2174
2175                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2176                                                 data & KVM_STEAL_VALID_BITS,
2177                                                 sizeof(struct kvm_steal_time)))
2178                         return 1;
2179
2180                 vcpu->arch.st.msr_val = data;
2181
2182                 if (!(data & KVM_MSR_ENABLED))
2183                         break;
2184
2185                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2186
2187                 preempt_disable();
2188                 accumulate_steal_time(vcpu);
2189                 preempt_enable();
2190
2191                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2192
2193                 break;
2194         case MSR_KVM_PV_EOI_EN:
2195                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2196                         return 1;
2197                 break;
2198
2199         case MSR_IA32_MCG_CTL:
2200         case MSR_IA32_MCG_STATUS:
2201         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2202                 return set_msr_mce(vcpu, msr, data);
2203
2204         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2205         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2206                 pr = true; /* fall through */
2207         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2208         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2209                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2210                         return kvm_pmu_set_msr(vcpu, msr_info);
2211
2212                 if (pr || data != 0)
2213                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2214                                     "0x%x data 0x%llx\n", msr, data);
2215                 break;
2216         case MSR_K7_CLK_CTL:
2217                 /*
2218                  * Ignore all writes to this no longer documented MSR.
2219                  * Writes are only relevant for old K7 processors,
2220                  * all pre-dating SVM, but a recommended workaround from
2221                  * AMD for these chips. It is possible to specify the
2222                  * affected processor models on the command line, hence
2223                  * the need to ignore the workaround.
2224                  */
2225                 break;
2226         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2227                 if (kvm_hv_msr_partition_wide(msr)) {
2228                         int r;
2229                         mutex_lock(&vcpu->kvm->lock);
2230                         r = set_msr_hyperv_pw(vcpu, msr, data);
2231                         mutex_unlock(&vcpu->kvm->lock);
2232                         return r;
2233                 } else
2234                         return set_msr_hyperv(vcpu, msr, data);
2235                 break;
2236         case MSR_IA32_BBL_CR_CTL3:
2237                 /* Drop writes to this legacy MSR -- see rdmsr
2238                  * counterpart for further detail.
2239                  */
2240                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2241                 break;
2242         case MSR_AMD64_OSVW_ID_LENGTH:
2243                 if (!guest_cpuid_has_osvw(vcpu))
2244                         return 1;
2245                 vcpu->arch.osvw.length = data;
2246                 break;
2247         case MSR_AMD64_OSVW_STATUS:
2248                 if (!guest_cpuid_has_osvw(vcpu))
2249                         return 1;
2250                 vcpu->arch.osvw.status = data;
2251                 break;
2252         default:
2253                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2254                         return xen_hvm_config(vcpu, data);
2255                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2256                         return kvm_pmu_set_msr(vcpu, msr_info);
2257                 if (!ignore_msrs) {
2258                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2259                                     msr, data);
2260                         return 1;
2261                 } else {
2262                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2263                                     msr, data);
2264                         break;
2265                 }
2266         }
2267         return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2270
2271
2272 /*
2273  * Reads an msr value (of 'msr_index') into 'pdata'.
2274  * Returns 0 on success, non-0 otherwise.
2275  * Assumes vcpu_load() was already called.
2276  */
2277 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2278 {
2279         return kvm_x86_ops->get_msr(vcpu, msr);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_get_msr);
2282
2283 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2284 {
2285         u64 data;
2286         u64 mcg_cap = vcpu->arch.mcg_cap;
2287         unsigned bank_num = mcg_cap & 0xff;
2288
2289         switch (msr) {
2290         case MSR_IA32_P5_MC_ADDR:
2291         case MSR_IA32_P5_MC_TYPE:
2292                 data = 0;
2293                 break;
2294         case MSR_IA32_MCG_CAP:
2295                 data = vcpu->arch.mcg_cap;
2296                 break;
2297         case MSR_IA32_MCG_CTL:
2298                 if (!(mcg_cap & MCG_CTL_P))
2299                         return 1;
2300                 data = vcpu->arch.mcg_ctl;
2301                 break;
2302         case MSR_IA32_MCG_STATUS:
2303                 data = vcpu->arch.mcg_status;
2304                 break;
2305         default:
2306                 if (msr >= MSR_IA32_MC0_CTL &&
2307                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2308                         u32 offset = msr - MSR_IA32_MC0_CTL;
2309                         data = vcpu->arch.mce_banks[offset];
2310                         break;
2311                 }
2312                 return 1;
2313         }
2314         *pdata = data;
2315         return 0;
2316 }
2317
2318 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320         u64 data = 0;
2321         struct kvm *kvm = vcpu->kvm;
2322
2323         switch (msr) {
2324         case HV_X64_MSR_GUEST_OS_ID:
2325                 data = kvm->arch.hv_guest_os_id;
2326                 break;
2327         case HV_X64_MSR_HYPERCALL:
2328                 data = kvm->arch.hv_hypercall;
2329                 break;
2330         case HV_X64_MSR_TIME_REF_COUNT: {
2331                 data =
2332                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2333                 break;
2334         }
2335         case HV_X64_MSR_REFERENCE_TSC:
2336                 data = kvm->arch.hv_tsc_page;
2337                 break;
2338         default:
2339                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2340                 return 1;
2341         }
2342
2343         *pdata = data;
2344         return 0;
2345 }
2346
2347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2348 {
2349         u64 data = 0;
2350
2351         switch (msr) {
2352         case HV_X64_MSR_VP_INDEX: {
2353                 int r;
2354                 struct kvm_vcpu *v;
2355                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2356                         if (v == vcpu) {
2357                                 data = r;
2358                                 break;
2359                         }
2360                 }
2361                 break;
2362         }
2363         case HV_X64_MSR_EOI:
2364                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2365         case HV_X64_MSR_ICR:
2366                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2367         case HV_X64_MSR_TPR:
2368                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2369         case HV_X64_MSR_APIC_ASSIST_PAGE:
2370                 data = vcpu->arch.hv_vapic;
2371                 break;
2372         default:
2373                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2374                 return 1;
2375         }
2376         *pdata = data;
2377         return 0;
2378 }
2379
2380 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2381 {
2382         u64 data;
2383
2384         switch (msr_info->index) {
2385         case MSR_IA32_PLATFORM_ID:
2386         case MSR_IA32_EBL_CR_POWERON:
2387         case MSR_IA32_DEBUGCTLMSR:
2388         case MSR_IA32_LASTBRANCHFROMIP:
2389         case MSR_IA32_LASTBRANCHTOIP:
2390         case MSR_IA32_LASTINTFROMIP:
2391         case MSR_IA32_LASTINTTOIP:
2392         case MSR_K8_SYSCFG:
2393         case MSR_K7_HWCR:
2394         case MSR_VM_HSAVE_PA:
2395         case MSR_K8_INT_PENDING_MSG:
2396         case MSR_AMD64_NB_CFG:
2397         case MSR_FAM10H_MMIO_CONF_BASE:
2398         case MSR_AMD64_BU_CFG2:
2399                 msr_info->data = 0;
2400                 break;
2401         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2402         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2403         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2404         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2405                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2406                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2407                 msr_info->data = 0;
2408                 break;
2409         case MSR_IA32_UCODE_REV:
2410                 msr_info->data = 0x100000000ULL;
2411                 break;
2412         case MSR_MTRRcap:
2413         case 0x200 ... 0x2ff:
2414                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2415         case 0xcd: /* fsb frequency */
2416                 msr_info->data = 3;
2417                 break;
2418                 /*
2419                  * MSR_EBC_FREQUENCY_ID
2420                  * Conservative value valid for even the basic CPU models.
2421                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2422                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2423                  * and 266MHz for model 3, or 4. Set Core Clock
2424                  * Frequency to System Bus Frequency Ratio to 1 (bits
2425                  * 31:24) even though these are only valid for CPU
2426                  * models > 2, however guests may end up dividing or
2427                  * multiplying by zero otherwise.
2428                  */
2429         case MSR_EBC_FREQUENCY_ID:
2430                 msr_info->data = 1 << 24;
2431                 break;
2432         case MSR_IA32_APICBASE:
2433                 msr_info->data = kvm_get_apic_base(vcpu);
2434                 break;
2435         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2436                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2437                 break;
2438         case MSR_IA32_TSCDEADLINE:
2439                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2440                 break;
2441         case MSR_IA32_TSC_ADJUST:
2442                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2443                 break;
2444         case MSR_IA32_MISC_ENABLE:
2445                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2446                 break;
2447         case MSR_IA32_SMBASE:
2448                 if (!msr_info->host_initiated)
2449                         return 1;
2450                 msr_info->data = vcpu->arch.smbase;
2451                 break;
2452         case MSR_IA32_PERF_STATUS:
2453                 /* TSC increment by tick */
2454                 msr_info->data = 1000ULL;
2455                 /* CPU multiplier */
2456                 data |= (((uint64_t)4ULL) << 40);
2457                 break;
2458         case MSR_EFER:
2459                 msr_info->data = vcpu->arch.efer;
2460                 break;
2461         case MSR_KVM_WALL_CLOCK:
2462         case MSR_KVM_WALL_CLOCK_NEW:
2463                 msr_info->data = vcpu->kvm->arch.wall_clock;
2464                 break;
2465         case MSR_KVM_SYSTEM_TIME:
2466         case MSR_KVM_SYSTEM_TIME_NEW:
2467                 msr_info->data = vcpu->arch.time;
2468                 break;
2469         case MSR_KVM_ASYNC_PF_EN:
2470                 msr_info->data = vcpu->arch.apf.msr_val;
2471                 break;
2472         case MSR_KVM_STEAL_TIME:
2473                 msr_info->data = vcpu->arch.st.msr_val;
2474                 break;
2475         case MSR_KVM_PV_EOI_EN:
2476                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2477                 break;
2478         case MSR_IA32_P5_MC_ADDR:
2479         case MSR_IA32_P5_MC_TYPE:
2480         case MSR_IA32_MCG_CAP:
2481         case MSR_IA32_MCG_CTL:
2482         case MSR_IA32_MCG_STATUS:
2483         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2484                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2485         case MSR_K7_CLK_CTL:
2486                 /*
2487                  * Provide expected ramp-up count for K7. All other
2488                  * are set to zero, indicating minimum divisors for
2489                  * every field.
2490                  *
2491                  * This prevents guest kernels on AMD host with CPU
2492                  * type 6, model 8 and higher from exploding due to
2493                  * the rdmsr failing.
2494                  */
2495                 msr_info->data = 0x20000000;
2496                 break;
2497         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2498                 if (kvm_hv_msr_partition_wide(msr_info->index)) {
2499                         int r;
2500                         mutex_lock(&vcpu->kvm->lock);
2501                         r = get_msr_hyperv_pw(vcpu, msr_info->index, &msr_info->data);
2502                         mutex_unlock(&vcpu->kvm->lock);
2503                         return r;
2504                 } else
2505                         return get_msr_hyperv(vcpu, msr_info->index, &msr_info->data);
2506                 break;
2507         case MSR_IA32_BBL_CR_CTL3:
2508                 /* This legacy MSR exists but isn't fully documented in current
2509                  * silicon.  It is however accessed by winxp in very narrow
2510                  * scenarios where it sets bit #19, itself documented as
2511                  * a "reserved" bit.  Best effort attempt to source coherent
2512                  * read data here should the balance of the register be
2513                  * interpreted by the guest:
2514                  *
2515                  * L2 cache control register 3: 64GB range, 256KB size,
2516                  * enabled, latency 0x1, configured
2517                  */
2518                 msr_info->data = 0xbe702111;
2519                 break;
2520         case MSR_AMD64_OSVW_ID_LENGTH:
2521                 if (!guest_cpuid_has_osvw(vcpu))
2522                         return 1;
2523                 msr_info->data = vcpu->arch.osvw.length;
2524                 break;
2525         case MSR_AMD64_OSVW_STATUS:
2526                 if (!guest_cpuid_has_osvw(vcpu))
2527                         return 1;
2528                 msr_info->data = vcpu->arch.osvw.status;
2529                 break;
2530         default:
2531                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2532                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2533                 if (!ignore_msrs) {
2534                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2535                         return 1;
2536                 } else {
2537                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2538                         msr_info->data = 0;
2539                 }
2540                 break;
2541         }
2542         return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2545
2546 /*
2547  * Read or write a bunch of msrs. All parameters are kernel addresses.
2548  *
2549  * @return number of msrs set successfully.
2550  */
2551 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2552                     struct kvm_msr_entry *entries,
2553                     int (*do_msr)(struct kvm_vcpu *vcpu,
2554                                   unsigned index, u64 *data))
2555 {
2556         int i, idx;
2557
2558         idx = srcu_read_lock(&vcpu->kvm->srcu);
2559         for (i = 0; i < msrs->nmsrs; ++i)
2560                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2561                         break;
2562         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2563
2564         return i;
2565 }
2566
2567 /*
2568  * Read or write a bunch of msrs. Parameters are user addresses.
2569  *
2570  * @return number of msrs set successfully.
2571  */
2572 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2573                   int (*do_msr)(struct kvm_vcpu *vcpu,
2574                                 unsigned index, u64 *data),
2575                   int writeback)
2576 {
2577         struct kvm_msrs msrs;
2578         struct kvm_msr_entry *entries;
2579         int r, n;
2580         unsigned size;
2581
2582         r = -EFAULT;
2583         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2584                 goto out;
2585
2586         r = -E2BIG;
2587         if (msrs.nmsrs >= MAX_IO_MSRS)
2588                 goto out;
2589
2590         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2591         entries = memdup_user(user_msrs->entries, size);
2592         if (IS_ERR(entries)) {
2593                 r = PTR_ERR(entries);
2594                 goto out;
2595         }
2596
2597         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2598         if (r < 0)
2599                 goto out_free;
2600
2601         r = -EFAULT;
2602         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2603                 goto out_free;
2604
2605         r = n;
2606
2607 out_free:
2608         kfree(entries);
2609 out:
2610         return r;
2611 }
2612
2613 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2614 {
2615         int r;
2616
2617         switch (ext) {
2618         case KVM_CAP_IRQCHIP:
2619         case KVM_CAP_HLT:
2620         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2621         case KVM_CAP_SET_TSS_ADDR:
2622         case KVM_CAP_EXT_CPUID:
2623         case KVM_CAP_EXT_EMUL_CPUID:
2624         case KVM_CAP_CLOCKSOURCE:
2625         case KVM_CAP_PIT:
2626         case KVM_CAP_NOP_IO_DELAY:
2627         case KVM_CAP_MP_STATE:
2628         case KVM_CAP_SYNC_MMU:
2629         case KVM_CAP_USER_NMI:
2630         case KVM_CAP_REINJECT_CONTROL:
2631         case KVM_CAP_IRQ_INJECT_STATUS:
2632         case KVM_CAP_IOEVENTFD:
2633         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2634         case KVM_CAP_PIT2:
2635         case KVM_CAP_PIT_STATE2:
2636         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2637         case KVM_CAP_XEN_HVM:
2638         case KVM_CAP_ADJUST_CLOCK:
2639         case KVM_CAP_VCPU_EVENTS:
2640         case KVM_CAP_HYPERV:
2641         case KVM_CAP_HYPERV_VAPIC:
2642         case KVM_CAP_HYPERV_SPIN:
2643         case KVM_CAP_PCI_SEGMENT:
2644         case KVM_CAP_DEBUGREGS:
2645         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2646         case KVM_CAP_XSAVE:
2647         case KVM_CAP_ASYNC_PF:
2648         case KVM_CAP_GET_TSC_KHZ:
2649         case KVM_CAP_KVMCLOCK_CTRL:
2650         case KVM_CAP_READONLY_MEM:
2651         case KVM_CAP_HYPERV_TIME:
2652         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2653         case KVM_CAP_TSC_DEADLINE_TIMER:
2654         case KVM_CAP_ENABLE_CAP_VM:
2655         case KVM_CAP_DISABLE_QUIRKS:
2656 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2657         case KVM_CAP_ASSIGN_DEV_IRQ:
2658         case KVM_CAP_PCI_2_3:
2659 #endif
2660                 r = 1;
2661                 break;
2662         case KVM_CAP_X86_SMM:
2663                 /* SMBASE is usually relocated above 1M on modern chipsets,
2664                  * and SMM handlers might indeed rely on 4G segment limits,
2665                  * so do not report SMM to be available if real mode is
2666                  * emulated via vm86 mode.  Still, do not go to great lengths
2667                  * to avoid userspace's usage of the feature, because it is a
2668                  * fringe case that is not enabled except via specific settings
2669                  * of the module parameters.
2670                  */
2671                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2672                 break;
2673         case KVM_CAP_COALESCED_MMIO:
2674                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2675                 break;
2676         case KVM_CAP_VAPIC:
2677                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2678                 break;
2679         case KVM_CAP_NR_VCPUS:
2680                 r = KVM_SOFT_MAX_VCPUS;
2681                 break;
2682         case KVM_CAP_MAX_VCPUS:
2683                 r = KVM_MAX_VCPUS;
2684                 break;
2685         case KVM_CAP_NR_MEMSLOTS:
2686                 r = KVM_USER_MEM_SLOTS;
2687                 break;
2688         case KVM_CAP_PV_MMU:    /* obsolete */
2689                 r = 0;
2690                 break;
2691 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2692         case KVM_CAP_IOMMU:
2693                 r = iommu_present(&pci_bus_type);
2694                 break;
2695 #endif
2696         case KVM_CAP_MCE:
2697                 r = KVM_MAX_MCE_BANKS;
2698                 break;
2699         case KVM_CAP_XCRS:
2700                 r = cpu_has_xsave;
2701                 break;
2702         case KVM_CAP_TSC_CONTROL:
2703                 r = kvm_has_tsc_control;
2704                 break;
2705         default:
2706                 r = 0;
2707                 break;
2708         }
2709         return r;
2710
2711 }
2712
2713 long kvm_arch_dev_ioctl(struct file *filp,
2714                         unsigned int ioctl, unsigned long arg)
2715 {
2716         void __user *argp = (void __user *)arg;
2717         long r;
2718
2719         switch (ioctl) {
2720         case KVM_GET_MSR_INDEX_LIST: {
2721                 struct kvm_msr_list __user *user_msr_list = argp;
2722                 struct kvm_msr_list msr_list;
2723                 unsigned n;
2724
2725                 r = -EFAULT;
2726                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2727                         goto out;
2728                 n = msr_list.nmsrs;
2729                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2730                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2731                         goto out;
2732                 r = -E2BIG;
2733                 if (n < msr_list.nmsrs)
2734                         goto out;
2735                 r = -EFAULT;
2736                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2737                                  num_msrs_to_save * sizeof(u32)))
2738                         goto out;
2739                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2740                                  &emulated_msrs,
2741                                  num_emulated_msrs * sizeof(u32)))
2742                         goto out;
2743                 r = 0;
2744                 break;
2745         }
2746         case KVM_GET_SUPPORTED_CPUID:
2747         case KVM_GET_EMULATED_CPUID: {
2748                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2749                 struct kvm_cpuid2 cpuid;
2750
2751                 r = -EFAULT;
2752                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2753                         goto out;
2754
2755                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2756                                             ioctl);
2757                 if (r)
2758                         goto out;
2759
2760                 r = -EFAULT;
2761                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2762                         goto out;
2763                 r = 0;
2764                 break;
2765         }
2766         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2767                 u64 mce_cap;
2768
2769                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2770                 r = -EFAULT;
2771                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2772                         goto out;
2773                 r = 0;
2774                 break;
2775         }
2776         default:
2777                 r = -EINVAL;
2778         }
2779 out:
2780         return r;
2781 }
2782
2783 static void wbinvd_ipi(void *garbage)
2784 {
2785         wbinvd();
2786 }
2787
2788 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2789 {
2790         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2791 }
2792
2793 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2794 {
2795         /* Address WBINVD may be executed by guest */
2796         if (need_emulate_wbinvd(vcpu)) {
2797                 if (kvm_x86_ops->has_wbinvd_exit())
2798                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2799                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2800                         smp_call_function_single(vcpu->cpu,
2801                                         wbinvd_ipi, NULL, 1);
2802         }
2803
2804         kvm_x86_ops->vcpu_load(vcpu, cpu);
2805
2806         /* Apply any externally detected TSC adjustments (due to suspend) */
2807         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2808                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2809                 vcpu->arch.tsc_offset_adjustment = 0;
2810                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2811         }
2812
2813         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2814                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2815                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2816                 if (tsc_delta < 0)
2817                         mark_tsc_unstable("KVM discovered backwards TSC");
2818                 if (check_tsc_unstable()) {
2819                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2820                                                 vcpu->arch.last_guest_tsc);
2821                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2822                         vcpu->arch.tsc_catchup = 1;
2823                 }
2824                 /*
2825                  * On a host with synchronized TSC, there is no need to update
2826                  * kvmclock on vcpu->cpu migration
2827                  */
2828                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2829                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2830                 if (vcpu->cpu != cpu)
2831                         kvm_migrate_timers(vcpu);
2832                 vcpu->cpu = cpu;
2833         }
2834
2835         accumulate_steal_time(vcpu);
2836         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2837 }
2838
2839 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2840 {
2841         kvm_x86_ops->vcpu_put(vcpu);
2842         kvm_put_guest_fpu(vcpu);
2843         vcpu->arch.last_host_tsc = native_read_tsc();
2844 }
2845
2846 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2847                                     struct kvm_lapic_state *s)
2848 {
2849         kvm_x86_ops->sync_pir_to_irr(vcpu);
2850         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2851
2852         return 0;
2853 }
2854
2855 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2856                                     struct kvm_lapic_state *s)
2857 {
2858         kvm_apic_post_state_restore(vcpu, s);
2859         update_cr8_intercept(vcpu);
2860
2861         return 0;
2862 }
2863
2864 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2865                                     struct kvm_interrupt *irq)
2866 {
2867         if (irq->irq >= KVM_NR_INTERRUPTS)
2868                 return -EINVAL;
2869         if (irqchip_in_kernel(vcpu->kvm))
2870                 return -ENXIO;
2871
2872         kvm_queue_interrupt(vcpu, irq->irq, false);
2873         kvm_make_request(KVM_REQ_EVENT, vcpu);
2874
2875         return 0;
2876 }
2877
2878 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2879 {
2880         kvm_inject_nmi(vcpu);
2881
2882         return 0;
2883 }
2884
2885 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2886 {
2887         kvm_make_request(KVM_REQ_SMI, vcpu);
2888
2889         return 0;
2890 }
2891
2892 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2893                                            struct kvm_tpr_access_ctl *tac)
2894 {
2895         if (tac->flags)
2896                 return -EINVAL;
2897         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2898         return 0;
2899 }
2900
2901 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2902                                         u64 mcg_cap)
2903 {
2904         int r;
2905         unsigned bank_num = mcg_cap & 0xff, bank;
2906
2907         r = -EINVAL;
2908         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2909                 goto out;
2910         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2911                 goto out;
2912         r = 0;
2913         vcpu->arch.mcg_cap = mcg_cap;
2914         /* Init IA32_MCG_CTL to all 1s */
2915         if (mcg_cap & MCG_CTL_P)
2916                 vcpu->arch.mcg_ctl = ~(u64)0;
2917         /* Init IA32_MCi_CTL to all 1s */
2918         for (bank = 0; bank < bank_num; bank++)
2919                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2920 out:
2921         return r;
2922 }
2923
2924 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2925                                       struct kvm_x86_mce *mce)
2926 {
2927         u64 mcg_cap = vcpu->arch.mcg_cap;
2928         unsigned bank_num = mcg_cap & 0xff;
2929         u64 *banks = vcpu->arch.mce_banks;
2930
2931         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2932                 return -EINVAL;
2933         /*
2934          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2935          * reporting is disabled
2936          */
2937         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2938             vcpu->arch.mcg_ctl != ~(u64)0)
2939                 return 0;
2940         banks += 4 * mce->bank;
2941         /*
2942          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2943          * reporting is disabled for the bank
2944          */
2945         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2946                 return 0;
2947         if (mce->status & MCI_STATUS_UC) {
2948                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2949                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2950                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2951                         return 0;
2952                 }
2953                 if (banks[1] & MCI_STATUS_VAL)
2954                         mce->status |= MCI_STATUS_OVER;
2955                 banks[2] = mce->addr;
2956                 banks[3] = mce->misc;
2957                 vcpu->arch.mcg_status = mce->mcg_status;
2958                 banks[1] = mce->status;
2959                 kvm_queue_exception(vcpu, MC_VECTOR);
2960         } else if (!(banks[1] & MCI_STATUS_VAL)
2961                    || !(banks[1] & MCI_STATUS_UC)) {
2962                 if (banks[1] & MCI_STATUS_VAL)
2963                         mce->status |= MCI_STATUS_OVER;
2964                 banks[2] = mce->addr;
2965                 banks[3] = mce->misc;
2966                 banks[1] = mce->status;
2967         } else
2968                 banks[1] |= MCI_STATUS_OVER;
2969         return 0;
2970 }
2971
2972 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2973                                                struct kvm_vcpu_events *events)
2974 {
2975         process_nmi(vcpu);
2976         events->exception.injected =
2977                 vcpu->arch.exception.pending &&
2978                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2979         events->exception.nr = vcpu->arch.exception.nr;
2980         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2981         events->exception.pad = 0;
2982         events->exception.error_code = vcpu->arch.exception.error_code;
2983
2984         events->interrupt.injected =
2985                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2986         events->interrupt.nr = vcpu->arch.interrupt.nr;
2987         events->interrupt.soft = 0;
2988         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2989
2990         events->nmi.injected = vcpu->arch.nmi_injected;
2991         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2992         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2993         events->nmi.pad = 0;
2994
2995         events->sipi_vector = 0; /* never valid when reporting to user space */
2996
2997         events->smi.smm = is_smm(vcpu);
2998         events->smi.pending = vcpu->arch.smi_pending;
2999         events->smi.smm_inside_nmi =
3000                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3001         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3002
3003         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3004                          | KVM_VCPUEVENT_VALID_SHADOW
3005                          | KVM_VCPUEVENT_VALID_SMM);
3006         memset(&events->reserved, 0, sizeof(events->reserved));
3007 }
3008
3009 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3010                                               struct kvm_vcpu_events *events)
3011 {
3012         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3013                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3014                               | KVM_VCPUEVENT_VALID_SHADOW
3015                               | KVM_VCPUEVENT_VALID_SMM))
3016                 return -EINVAL;
3017
3018         process_nmi(vcpu);
3019         vcpu->arch.exception.pending = events->exception.injected;
3020         vcpu->arch.exception.nr = events->exception.nr;
3021         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3022         vcpu->arch.exception.error_code = events->exception.error_code;
3023
3024         vcpu->arch.interrupt.pending = events->interrupt.injected;
3025         vcpu->arch.interrupt.nr = events->interrupt.nr;
3026         vcpu->arch.interrupt.soft = events->interrupt.soft;
3027         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3028                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3029                                                   events->interrupt.shadow);
3030
3031         vcpu->arch.nmi_injected = events->nmi.injected;
3032         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3033                 vcpu->arch.nmi_pending = events->nmi.pending;
3034         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3035
3036         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3037             kvm_vcpu_has_lapic(vcpu))
3038                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3039
3040         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3041                 if (events->smi.smm)
3042                         vcpu->arch.hflags |= HF_SMM_MASK;
3043                 else
3044                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3045                 vcpu->arch.smi_pending = events->smi.pending;
3046                 if (events->smi.smm_inside_nmi)
3047                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3048                 else
3049                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3050                 if (kvm_vcpu_has_lapic(vcpu)) {
3051                         if (events->smi.latched_init)
3052                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3053                         else
3054                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3055                 }
3056         }
3057
3058         kvm_make_request(KVM_REQ_EVENT, vcpu);
3059
3060         return 0;
3061 }
3062
3063 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3064                                              struct kvm_debugregs *dbgregs)
3065 {
3066         unsigned long val;
3067
3068         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3069         kvm_get_dr(vcpu, 6, &val);
3070         dbgregs->dr6 = val;
3071         dbgregs->dr7 = vcpu->arch.dr7;
3072         dbgregs->flags = 0;
3073         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3074 }
3075
3076 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3077                                             struct kvm_debugregs *dbgregs)
3078 {
3079         if (dbgregs->flags)
3080                 return -EINVAL;
3081
3082         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3083         kvm_update_dr0123(vcpu);
3084         vcpu->arch.dr6 = dbgregs->dr6;
3085         kvm_update_dr6(vcpu);
3086         vcpu->arch.dr7 = dbgregs->dr7;
3087         kvm_update_dr7(vcpu);
3088
3089         return 0;
3090 }
3091
3092 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3093
3094 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3095 {
3096         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3097         u64 xstate_bv = xsave->header.xfeatures;
3098         u64 valid;
3099
3100         /*
3101          * Copy legacy XSAVE area, to avoid complications with CPUID
3102          * leaves 0 and 1 in the loop below.
3103          */
3104         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3105
3106         /* Set XSTATE_BV */
3107         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3108
3109         /*
3110          * Copy each region from the possibly compacted offset to the
3111          * non-compacted offset.
3112          */
3113         valid = xstate_bv & ~XSTATE_FPSSE;
3114         while (valid) {
3115                 u64 feature = valid & -valid;
3116                 int index = fls64(feature) - 1;
3117                 void *src = get_xsave_addr(xsave, feature);
3118
3119                 if (src) {
3120                         u32 size, offset, ecx, edx;
3121                         cpuid_count(XSTATE_CPUID, index,
3122                                     &size, &offset, &ecx, &edx);
3123                         memcpy(dest + offset, src, size);
3124                 }
3125
3126                 valid -= feature;
3127         }
3128 }
3129
3130 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3131 {
3132         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3133         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3134         u64 valid;
3135
3136         /*
3137          * Copy legacy XSAVE area, to avoid complications with CPUID
3138          * leaves 0 and 1 in the loop below.
3139          */
3140         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3141
3142         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3143         xsave->header.xfeatures = xstate_bv;
3144         if (cpu_has_xsaves)
3145                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3146
3147         /*
3148          * Copy each region from the non-compacted offset to the
3149          * possibly compacted offset.
3150          */
3151         valid = xstate_bv & ~XSTATE_FPSSE;
3152         while (valid) {
3153                 u64 feature = valid & -valid;
3154                 int index = fls64(feature) - 1;
3155                 void *dest = get_xsave_addr(xsave, feature);
3156
3157                 if (dest) {
3158                         u32 size, offset, ecx, edx;
3159                         cpuid_count(XSTATE_CPUID, index,
3160                                     &size, &offset, &ecx, &edx);
3161                         memcpy(dest, src + offset, size);
3162                 } else
3163                         WARN_ON_ONCE(1);
3164
3165                 valid -= feature;
3166         }
3167 }
3168
3169 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3170                                          struct kvm_xsave *guest_xsave)
3171 {
3172         if (cpu_has_xsave) {
3173                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3174                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3175         } else {
3176                 memcpy(guest_xsave->region,
3177                         &vcpu->arch.guest_fpu.state.fxsave,
3178                         sizeof(struct fxregs_state));
3179                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3180                         XSTATE_FPSSE;
3181         }
3182 }
3183
3184 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3185                                         struct kvm_xsave *guest_xsave)
3186 {
3187         u64 xstate_bv =
3188                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3189
3190         if (cpu_has_xsave) {
3191                 /*
3192                  * Here we allow setting states that are not present in
3193                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3194                  * with old userspace.
3195                  */
3196                 if (xstate_bv & ~kvm_supported_xcr0())
3197                         return -EINVAL;
3198                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3199         } else {
3200                 if (xstate_bv & ~XSTATE_FPSSE)
3201                         return -EINVAL;
3202                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3203                         guest_xsave->region, sizeof(struct fxregs_state));
3204         }
3205         return 0;
3206 }
3207
3208 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3209                                         struct kvm_xcrs *guest_xcrs)
3210 {
3211         if (!cpu_has_xsave) {
3212                 guest_xcrs->nr_xcrs = 0;
3213                 return;
3214         }
3215
3216         guest_xcrs->nr_xcrs = 1;
3217         guest_xcrs->flags = 0;
3218         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3219         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3220 }
3221
3222 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3223                                        struct kvm_xcrs *guest_xcrs)
3224 {
3225         int i, r = 0;
3226
3227         if (!cpu_has_xsave)
3228                 return -EINVAL;
3229
3230         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3231                 return -EINVAL;
3232
3233         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3234                 /* Only support XCR0 currently */
3235                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3236                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3237                                 guest_xcrs->xcrs[i].value);
3238                         break;
3239                 }
3240         if (r)
3241                 r = -EINVAL;
3242         return r;
3243 }
3244
3245 /*
3246  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3247  * stopped by the hypervisor.  This function will be called from the host only.
3248  * EINVAL is returned when the host attempts to set the flag for a guest that
3249  * does not support pv clocks.
3250  */
3251 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3252 {
3253         if (!vcpu->arch.pv_time_enabled)
3254                 return -EINVAL;
3255         vcpu->arch.pvclock_set_guest_stopped_request = true;
3256         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3257         return 0;
3258 }
3259
3260 long kvm_arch_vcpu_ioctl(struct file *filp,
3261                          unsigned int ioctl, unsigned long arg)
3262 {
3263         struct kvm_vcpu *vcpu = filp->private_data;
3264         void __user *argp = (void __user *)arg;
3265         int r;
3266         union {
3267                 struct kvm_lapic_state *lapic;
3268                 struct kvm_xsave *xsave;
3269                 struct kvm_xcrs *xcrs;
3270                 void *buffer;
3271         } u;
3272
3273         u.buffer = NULL;
3274         switch (ioctl) {
3275         case KVM_GET_LAPIC: {
3276                 r = -EINVAL;
3277                 if (!vcpu->arch.apic)
3278                         goto out;
3279                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3280
3281                 r = -ENOMEM;
3282                 if (!u.lapic)
3283                         goto out;
3284                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3285                 if (r)
3286                         goto out;
3287                 r = -EFAULT;
3288                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3289                         goto out;
3290                 r = 0;
3291                 break;
3292         }
3293         case KVM_SET_LAPIC: {
3294                 r = -EINVAL;
3295                 if (!vcpu->arch.apic)
3296                         goto out;
3297                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3298                 if (IS_ERR(u.lapic))
3299                         return PTR_ERR(u.lapic);
3300
3301                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3302                 break;
3303         }
3304         case KVM_INTERRUPT: {
3305                 struct kvm_interrupt irq;
3306
3307                 r = -EFAULT;
3308                 if (copy_from_user(&irq, argp, sizeof irq))
3309                         goto out;
3310                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3311                 break;
3312         }
3313         case KVM_NMI: {
3314                 r = kvm_vcpu_ioctl_nmi(vcpu);
3315                 break;
3316         }
3317         case KVM_SMI: {
3318                 r = kvm_vcpu_ioctl_smi(vcpu);
3319                 break;
3320         }
3321         case KVM_SET_CPUID: {
3322                 struct kvm_cpuid __user *cpuid_arg = argp;
3323                 struct kvm_cpuid cpuid;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3327                         goto out;
3328                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3329                 break;
3330         }
3331         case KVM_SET_CPUID2: {
3332                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3333                 struct kvm_cpuid2 cpuid;
3334
3335                 r = -EFAULT;
3336                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3337                         goto out;
3338                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3339                                               cpuid_arg->entries);
3340                 break;
3341         }
3342         case KVM_GET_CPUID2: {
3343                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3344                 struct kvm_cpuid2 cpuid;
3345
3346                 r = -EFAULT;
3347                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3348                         goto out;
3349                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3350                                               cpuid_arg->entries);
3351                 if (r)
3352                         goto out;
3353                 r = -EFAULT;
3354                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3355                         goto out;
3356                 r = 0;
3357                 break;
3358         }
3359         case KVM_GET_MSRS:
3360                 r = msr_io(vcpu, argp, do_get_msr, 1);
3361                 break;
3362         case KVM_SET_MSRS:
3363                 r = msr_io(vcpu, argp, do_set_msr, 0);
3364                 break;
3365         case KVM_TPR_ACCESS_REPORTING: {
3366                 struct kvm_tpr_access_ctl tac;
3367
3368                 r = -EFAULT;
3369                 if (copy_from_user(&tac, argp, sizeof tac))
3370                         goto out;
3371                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3372                 if (r)
3373                         goto out;
3374                 r = -EFAULT;
3375                 if (copy_to_user(argp, &tac, sizeof tac))
3376                         goto out;
3377                 r = 0;
3378                 break;
3379         };
3380         case KVM_SET_VAPIC_ADDR: {
3381                 struct kvm_vapic_addr va;
3382
3383                 r = -EINVAL;
3384                 if (!irqchip_in_kernel(vcpu->kvm))
3385                         goto out;
3386                 r = -EFAULT;
3387                 if (copy_from_user(&va, argp, sizeof va))
3388                         goto out;
3389                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3390                 break;
3391         }
3392         case KVM_X86_SETUP_MCE: {
3393                 u64 mcg_cap;
3394
3395                 r = -EFAULT;
3396                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3397                         goto out;
3398                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3399                 break;
3400         }
3401         case KVM_X86_SET_MCE: {
3402                 struct kvm_x86_mce mce;
3403
3404                 r = -EFAULT;
3405                 if (copy_from_user(&mce, argp, sizeof mce))
3406                         goto out;
3407                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3408                 break;
3409         }
3410         case KVM_GET_VCPU_EVENTS: {
3411                 struct kvm_vcpu_events events;
3412
3413                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3414
3415                 r = -EFAULT;
3416                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3417                         break;
3418                 r = 0;
3419                 break;
3420         }
3421         case KVM_SET_VCPU_EVENTS: {
3422                 struct kvm_vcpu_events events;
3423
3424                 r = -EFAULT;
3425                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3426                         break;
3427
3428                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3429                 break;
3430         }
3431         case KVM_GET_DEBUGREGS: {
3432                 struct kvm_debugregs dbgregs;
3433
3434                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3435
3436                 r = -EFAULT;
3437                 if (copy_to_user(argp, &dbgregs,
3438                                  sizeof(struct kvm_debugregs)))
3439                         break;
3440                 r = 0;
3441                 break;
3442         }
3443         case KVM_SET_DEBUGREGS: {
3444                 struct kvm_debugregs dbgregs;
3445
3446                 r = -EFAULT;
3447                 if (copy_from_user(&dbgregs, argp,
3448                                    sizeof(struct kvm_debugregs)))
3449                         break;
3450
3451                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3452                 break;
3453         }
3454         case KVM_GET_XSAVE: {
3455                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3456                 r = -ENOMEM;
3457                 if (!u.xsave)
3458                         break;
3459
3460                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3461
3462                 r = -EFAULT;
3463                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3464                         break;
3465                 r = 0;
3466                 break;
3467         }
3468         case KVM_SET_XSAVE: {
3469                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3470                 if (IS_ERR(u.xsave))
3471                         return PTR_ERR(u.xsave);
3472
3473                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3474                 break;
3475         }
3476         case KVM_GET_XCRS: {
3477                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3478                 r = -ENOMEM;
3479                 if (!u.xcrs)
3480                         break;
3481
3482                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3483
3484                 r = -EFAULT;
3485                 if (copy_to_user(argp, u.xcrs,
3486                                  sizeof(struct kvm_xcrs)))
3487                         break;
3488                 r = 0;
3489                 break;
3490         }
3491         case KVM_SET_XCRS: {
3492                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3493                 if (IS_ERR(u.xcrs))
3494                         return PTR_ERR(u.xcrs);
3495
3496                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3497                 break;
3498         }
3499         case KVM_SET_TSC_KHZ: {
3500                 u32 user_tsc_khz;
3501
3502                 r = -EINVAL;
3503                 user_tsc_khz = (u32)arg;
3504
3505                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3506                         goto out;
3507
3508                 if (user_tsc_khz == 0)
3509                         user_tsc_khz = tsc_khz;
3510
3511                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3512
3513                 r = 0;
3514                 goto out;
3515         }
3516         case KVM_GET_TSC_KHZ: {
3517                 r = vcpu->arch.virtual_tsc_khz;
3518                 goto out;
3519         }
3520         case KVM_KVMCLOCK_CTRL: {
3521                 r = kvm_set_guest_paused(vcpu);
3522                 goto out;
3523         }
3524         default:
3525                 r = -EINVAL;
3526         }
3527 out:
3528         kfree(u.buffer);
3529         return r;
3530 }
3531
3532 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3533 {
3534         return VM_FAULT_SIGBUS;
3535 }
3536
3537 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3538 {
3539         int ret;
3540
3541         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3542                 return -EINVAL;
3543         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3544         return ret;
3545 }
3546
3547 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3548                                               u64 ident_addr)
3549 {
3550         kvm->arch.ept_identity_map_addr = ident_addr;
3551         return 0;
3552 }
3553
3554 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3555                                           u32 kvm_nr_mmu_pages)
3556 {
3557         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3558                 return -EINVAL;
3559
3560         mutex_lock(&kvm->slots_lock);
3561
3562         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3563         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3564
3565         mutex_unlock(&kvm->slots_lock);
3566         return 0;
3567 }
3568
3569 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3570 {
3571         return kvm->arch.n_max_mmu_pages;
3572 }
3573
3574 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3575 {
3576         int r;
3577
3578         r = 0;
3579         switch (chip->chip_id) {
3580         case KVM_IRQCHIP_PIC_MASTER:
3581                 memcpy(&chip->chip.pic,
3582                         &pic_irqchip(kvm)->pics[0],
3583                         sizeof(struct kvm_pic_state));
3584                 break;
3585         case KVM_IRQCHIP_PIC_SLAVE:
3586                 memcpy(&chip->chip.pic,
3587                         &pic_irqchip(kvm)->pics[1],
3588                         sizeof(struct kvm_pic_state));
3589                 break;
3590         case KVM_IRQCHIP_IOAPIC:
3591                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3592                 break;
3593         default:
3594                 r = -EINVAL;
3595                 break;
3596         }
3597         return r;
3598 }
3599
3600 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3601 {
3602         int r;
3603
3604         r = 0;
3605         switch (chip->chip_id) {
3606         case KVM_IRQCHIP_PIC_MASTER:
3607                 spin_lock(&pic_irqchip(kvm)->lock);
3608                 memcpy(&pic_irqchip(kvm)->pics[0],
3609                         &chip->chip.pic,
3610                         sizeof(struct kvm_pic_state));
3611                 spin_unlock(&pic_irqchip(kvm)->lock);
3612                 break;
3613         case KVM_IRQCHIP_PIC_SLAVE:
3614                 spin_lock(&pic_irqchip(kvm)->lock);
3615                 memcpy(&pic_irqchip(kvm)->pics[1],
3616                         &chip->chip.pic,
3617                         sizeof(struct kvm_pic_state));
3618                 spin_unlock(&pic_irqchip(kvm)->lock);
3619                 break;
3620         case KVM_IRQCHIP_IOAPIC:
3621                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3622                 break;
3623         default:
3624                 r = -EINVAL;
3625                 break;
3626         }
3627         kvm_pic_update_irq(pic_irqchip(kvm));
3628         return r;
3629 }
3630
3631 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3632 {
3633         int r = 0;
3634
3635         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3636         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3637         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3638         return r;
3639 }
3640
3641 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3642 {
3643         int r = 0;
3644
3645         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3646         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3647         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3648         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3649         return r;
3650 }
3651
3652 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3653 {
3654         int r = 0;
3655
3656         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3657         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3658                 sizeof(ps->channels));
3659         ps->flags = kvm->arch.vpit->pit_state.flags;
3660         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3661         memset(&ps->reserved, 0, sizeof(ps->reserved));
3662         return r;
3663 }
3664
3665 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3666 {
3667         int r = 0, start = 0;
3668         u32 prev_legacy, cur_legacy;
3669         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3670         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3671         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3672         if (!prev_legacy && cur_legacy)
3673                 start = 1;
3674         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3675                sizeof(kvm->arch.vpit->pit_state.channels));
3676         kvm->arch.vpit->pit_state.flags = ps->flags;
3677         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3678         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3679         return r;
3680 }
3681
3682 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3683                                  struct kvm_reinject_control *control)
3684 {
3685         if (!kvm->arch.vpit)
3686                 return -ENXIO;
3687         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3688         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3689         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3690         return 0;
3691 }
3692
3693 /**
3694  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3695  * @kvm: kvm instance
3696  * @log: slot id and address to which we copy the log
3697  *
3698  * Steps 1-4 below provide general overview of dirty page logging. See
3699  * kvm_get_dirty_log_protect() function description for additional details.
3700  *
3701  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3702  * always flush the TLB (step 4) even if previous step failed  and the dirty
3703  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3704  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3705  * writes will be marked dirty for next log read.
3706  *
3707  *   1. Take a snapshot of the bit and clear it if needed.
3708  *   2. Write protect the corresponding page.
3709  *   3. Copy the snapshot to the userspace.
3710  *   4. Flush TLB's if needed.
3711  */
3712 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3713 {
3714         bool is_dirty = false;
3715         int r;
3716
3717         mutex_lock(&kvm->slots_lock);
3718
3719         /*
3720          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3721          */
3722         if (kvm_x86_ops->flush_log_dirty)
3723                 kvm_x86_ops->flush_log_dirty(kvm);
3724
3725         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3726
3727         /*
3728          * All the TLBs can be flushed out of mmu lock, see the comments in
3729          * kvm_mmu_slot_remove_write_access().
3730          */
3731         lockdep_assert_held(&kvm->slots_lock);
3732         if (is_dirty)
3733                 kvm_flush_remote_tlbs(kvm);
3734
3735         mutex_unlock(&kvm->slots_lock);
3736         return r;
3737 }
3738
3739 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3740                         bool line_status)
3741 {
3742         if (!irqchip_in_kernel(kvm))
3743                 return -ENXIO;
3744
3745         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3746                                         irq_event->irq, irq_event->level,
3747                                         line_status);
3748         return 0;
3749 }
3750
3751 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3752                                    struct kvm_enable_cap *cap)
3753 {
3754         int r;
3755
3756         if (cap->flags)
3757                 return -EINVAL;
3758
3759         switch (cap->cap) {
3760         case KVM_CAP_DISABLE_QUIRKS:
3761                 kvm->arch.disabled_quirks = cap->args[0];
3762                 r = 0;
3763                 break;
3764         default:
3765                 r = -EINVAL;
3766                 break;
3767         }
3768         return r;
3769 }
3770
3771 long kvm_arch_vm_ioctl(struct file *filp,
3772                        unsigned int ioctl, unsigned long arg)
3773 {
3774         struct kvm *kvm = filp->private_data;
3775         void __user *argp = (void __user *)arg;
3776         int r = -ENOTTY;
3777         /*
3778          * This union makes it completely explicit to gcc-3.x
3779          * that these two variables' stack usage should be
3780          * combined, not added together.
3781          */
3782         union {
3783                 struct kvm_pit_state ps;
3784                 struct kvm_pit_state2 ps2;
3785                 struct kvm_pit_config pit_config;
3786         } u;
3787
3788         switch (ioctl) {
3789         case KVM_SET_TSS_ADDR:
3790                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3791                 break;
3792         case KVM_SET_IDENTITY_MAP_ADDR: {
3793                 u64 ident_addr;
3794
3795                 r = -EFAULT;
3796                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3797                         goto out;
3798                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3799                 break;
3800         }
3801         case KVM_SET_NR_MMU_PAGES:
3802                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3803                 break;
3804         case KVM_GET_NR_MMU_PAGES:
3805                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3806                 break;
3807         case KVM_CREATE_IRQCHIP: {
3808                 struct kvm_pic *vpic;
3809
3810                 mutex_lock(&kvm->lock);
3811                 r = -EEXIST;
3812                 if (kvm->arch.vpic)
3813                         goto create_irqchip_unlock;
3814                 r = -EINVAL;
3815                 if (atomic_read(&kvm->online_vcpus))
3816                         goto create_irqchip_unlock;
3817                 r = -ENOMEM;
3818                 vpic = kvm_create_pic(kvm);
3819                 if (vpic) {
3820                         r = kvm_ioapic_init(kvm);
3821                         if (r) {
3822                                 mutex_lock(&kvm->slots_lock);
3823                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3824                                                           &vpic->dev_master);
3825                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3826                                                           &vpic->dev_slave);
3827                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3828                                                           &vpic->dev_eclr);
3829                                 mutex_unlock(&kvm->slots_lock);
3830                                 kfree(vpic);
3831                                 goto create_irqchip_unlock;
3832                         }
3833                 } else
3834                         goto create_irqchip_unlock;
3835                 smp_wmb();
3836                 kvm->arch.vpic = vpic;
3837                 smp_wmb();
3838                 r = kvm_setup_default_irq_routing(kvm);
3839                 if (r) {
3840                         mutex_lock(&kvm->slots_lock);
3841                         mutex_lock(&kvm->irq_lock);
3842                         kvm_ioapic_destroy(kvm);
3843                         kvm_destroy_pic(kvm);
3844                         mutex_unlock(&kvm->irq_lock);
3845                         mutex_unlock(&kvm->slots_lock);
3846                 }
3847         create_irqchip_unlock:
3848                 mutex_unlock(&kvm->lock);
3849                 break;
3850         }
3851         case KVM_CREATE_PIT:
3852                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3853                 goto create_pit;
3854         case KVM_CREATE_PIT2:
3855                 r = -EFAULT;
3856                 if (copy_from_user(&u.pit_config, argp,
3857                                    sizeof(struct kvm_pit_config)))
3858                         goto out;
3859         create_pit:
3860                 mutex_lock(&kvm->slots_lock);
3861                 r = -EEXIST;
3862                 if (kvm->arch.vpit)
3863                         goto create_pit_unlock;
3864                 r = -ENOMEM;
3865                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3866                 if (kvm->arch.vpit)
3867                         r = 0;
3868         create_pit_unlock:
3869                 mutex_unlock(&kvm->slots_lock);
3870                 break;
3871         case KVM_GET_IRQCHIP: {
3872                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3873                 struct kvm_irqchip *chip;
3874
3875                 chip = memdup_user(argp, sizeof(*chip));
3876                 if (IS_ERR(chip)) {
3877                         r = PTR_ERR(chip);
3878                         goto out;
3879                 }
3880
3881                 r = -ENXIO;
3882                 if (!irqchip_in_kernel(kvm))
3883                         goto get_irqchip_out;
3884                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3885                 if (r)
3886                         goto get_irqchip_out;
3887                 r = -EFAULT;
3888                 if (copy_to_user(argp, chip, sizeof *chip))
3889                         goto get_irqchip_out;
3890                 r = 0;
3891         get_irqchip_out:
3892                 kfree(chip);
3893                 break;
3894         }
3895         case KVM_SET_IRQCHIP: {
3896                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3897                 struct kvm_irqchip *chip;
3898
3899                 chip = memdup_user(argp, sizeof(*chip));
3900                 if (IS_ERR(chip)) {
3901                         r = PTR_ERR(chip);
3902                         goto out;
3903                 }
3904
3905                 r = -ENXIO;
3906                 if (!irqchip_in_kernel(kvm))
3907                         goto set_irqchip_out;
3908                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3909                 if (r)
3910                         goto set_irqchip_out;
3911                 r = 0;
3912         set_irqchip_out:
3913                 kfree(chip);
3914                 break;
3915         }
3916         case KVM_GET_PIT: {
3917                 r = -EFAULT;
3918                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3919                         goto out;
3920                 r = -ENXIO;
3921                 if (!kvm->arch.vpit)
3922                         goto out;
3923                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3924                 if (r)
3925                         goto out;
3926                 r = -EFAULT;
3927                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3928                         goto out;
3929                 r = 0;
3930                 break;
3931         }
3932         case KVM_SET_PIT: {
3933                 r = -EFAULT;
3934                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3935                         goto out;
3936                 r = -ENXIO;
3937                 if (!kvm->arch.vpit)
3938                         goto out;
3939                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3940                 break;
3941         }
3942         case KVM_GET_PIT2: {
3943                 r = -ENXIO;
3944                 if (!kvm->arch.vpit)
3945                         goto out;
3946                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3947                 if (r)
3948                         goto out;
3949                 r = -EFAULT;
3950                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3951                         goto out;
3952                 r = 0;
3953                 break;
3954         }
3955         case KVM_SET_PIT2: {
3956                 r = -EFAULT;
3957                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3958                         goto out;
3959                 r = -ENXIO;
3960                 if (!kvm->arch.vpit)
3961                         goto out;
3962                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3963                 break;
3964         }
3965         case KVM_REINJECT_CONTROL: {
3966                 struct kvm_reinject_control control;
3967                 r =  -EFAULT;
3968                 if (copy_from_user(&control, argp, sizeof(control)))
3969                         goto out;
3970                 r = kvm_vm_ioctl_reinject(kvm, &control);
3971                 break;
3972         }
3973         case KVM_XEN_HVM_CONFIG: {
3974                 r = -EFAULT;
3975                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3976                                    sizeof(struct kvm_xen_hvm_config)))
3977                         goto out;
3978                 r = -EINVAL;
3979                 if (kvm->arch.xen_hvm_config.flags)
3980                         goto out;
3981                 r = 0;
3982                 break;
3983         }
3984         case KVM_SET_CLOCK: {
3985                 struct kvm_clock_data user_ns;
3986                 u64 now_ns;
3987                 s64 delta;
3988
3989                 r = -EFAULT;
3990                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3991                         goto out;
3992
3993                 r = -EINVAL;
3994                 if (user_ns.flags)
3995                         goto out;
3996
3997                 r = 0;
3998                 local_irq_disable();
3999                 now_ns = get_kernel_ns();
4000                 delta = user_ns.clock - now_ns;
4001                 local_irq_enable();
4002                 kvm->arch.kvmclock_offset = delta;
4003                 kvm_gen_update_masterclock(kvm);
4004                 break;
4005         }
4006         case KVM_GET_CLOCK: {
4007                 struct kvm_clock_data user_ns;
4008                 u64 now_ns;
4009
4010                 local_irq_disable();
4011                 now_ns = get_kernel_ns();
4012                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4013                 local_irq_enable();
4014                 user_ns.flags = 0;
4015                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4016
4017                 r = -EFAULT;
4018                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4019                         goto out;
4020                 r = 0;
4021                 break;
4022         }
4023         case KVM_ENABLE_CAP: {
4024                 struct kvm_enable_cap cap;
4025
4026                 r = -EFAULT;
4027                 if (copy_from_user(&cap, argp, sizeof(cap)))
4028                         goto out;
4029                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4030                 break;
4031         }
4032         default:
4033                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4034         }
4035 out:
4036         return r;
4037 }
4038
4039 static void kvm_init_msr_list(void)
4040 {
4041         u32 dummy[2];
4042         unsigned i, j;
4043
4044         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4045                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4046                         continue;
4047
4048                 /*
4049                  * Even MSRs that are valid in the host may not be exposed
4050                  * to the guests in some cases.  We could work around this
4051                  * in VMX with the generic MSR save/load machinery, but it
4052                  * is not really worthwhile since it will really only
4053                  * happen with nested virtualization.
4054                  */
4055                 switch (msrs_to_save[i]) {
4056                 case MSR_IA32_BNDCFGS:
4057                         if (!kvm_x86_ops->mpx_supported())
4058                                 continue;
4059                         break;
4060                 default:
4061                         break;
4062                 }
4063
4064                 if (j < i)
4065                         msrs_to_save[j] = msrs_to_save[i];
4066                 j++;
4067         }
4068         num_msrs_to_save = j;
4069
4070         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4071                 switch (emulated_msrs[i]) {
4072                 case MSR_IA32_SMBASE:
4073                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4074                                 continue;
4075                         break;
4076                 default:
4077                         break;
4078                 }
4079
4080                 if (j < i)
4081                         emulated_msrs[j] = emulated_msrs[i];
4082                 j++;
4083         }
4084         num_emulated_msrs = j;
4085 }
4086
4087 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4088                            const void *v)
4089 {
4090         int handled = 0;
4091         int n;
4092
4093         do {
4094                 n = min(len, 8);
4095                 if (!(vcpu->arch.apic &&
4096                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4097                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4098                         break;
4099                 handled += n;
4100                 addr += n;
4101                 len -= n;
4102                 v += n;
4103         } while (len);
4104
4105         return handled;
4106 }
4107
4108 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4109 {
4110         int handled = 0;
4111         int n;
4112
4113         do {
4114                 n = min(len, 8);
4115                 if (!(vcpu->arch.apic &&
4116                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4117                                          addr, n, v))
4118                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4119                         break;
4120                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4121                 handled += n;
4122                 addr += n;
4123                 len -= n;
4124                 v += n;
4125         } while (len);
4126
4127         return handled;
4128 }
4129
4130 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4131                         struct kvm_segment *var, int seg)
4132 {
4133         kvm_x86_ops->set_segment(vcpu, var, seg);
4134 }
4135
4136 void kvm_get_segment(struct kvm_vcpu *vcpu,
4137                      struct kvm_segment *var, int seg)
4138 {
4139         kvm_x86_ops->get_segment(vcpu, var, seg);
4140 }
4141
4142 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4143                            struct x86_exception *exception)
4144 {
4145         gpa_t t_gpa;
4146
4147         BUG_ON(!mmu_is_nested(vcpu));
4148
4149         /* NPT walks are always user-walks */
4150         access |= PFERR_USER_MASK;
4151         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4152
4153         return t_gpa;
4154 }
4155
4156 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4157                               struct x86_exception *exception)
4158 {
4159         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4160         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4161 }
4162
4163  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4164                                 struct x86_exception *exception)
4165 {
4166         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4167         access |= PFERR_FETCH_MASK;
4168         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4169 }
4170
4171 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4172                                struct x86_exception *exception)
4173 {
4174         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4175         access |= PFERR_WRITE_MASK;
4176         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4177 }
4178
4179 /* uses this to access any guest's mapped memory without checking CPL */
4180 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4181                                 struct x86_exception *exception)
4182 {
4183         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4184 }
4185
4186 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4187                                       struct kvm_vcpu *vcpu, u32 access,
4188                                       struct x86_exception *exception)
4189 {
4190         void *data = val;
4191         int r = X86EMUL_CONTINUE;
4192
4193         while (bytes) {
4194                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4195                                                             exception);
4196                 unsigned offset = addr & (PAGE_SIZE-1);
4197                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4198                 int ret;
4199
4200                 if (gpa == UNMAPPED_GVA)
4201                         return X86EMUL_PROPAGATE_FAULT;
4202                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4203                                                offset, toread);
4204                 if (ret < 0) {
4205                         r = X86EMUL_IO_NEEDED;
4206                         goto out;
4207                 }
4208
4209                 bytes -= toread;
4210                 data += toread;
4211                 addr += toread;
4212         }
4213 out:
4214         return r;
4215 }
4216
4217 /* used for instruction fetching */
4218 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4219                                 gva_t addr, void *val, unsigned int bytes,
4220                                 struct x86_exception *exception)
4221 {
4222         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4223         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4224         unsigned offset;
4225         int ret;
4226
4227         /* Inline kvm_read_guest_virt_helper for speed.  */
4228         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4229                                                     exception);
4230         if (unlikely(gpa == UNMAPPED_GVA))
4231                 return X86EMUL_PROPAGATE_FAULT;
4232
4233         offset = addr & (PAGE_SIZE-1);
4234         if (WARN_ON(offset + bytes > PAGE_SIZE))
4235                 bytes = (unsigned)PAGE_SIZE - offset;
4236         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4237                                        offset, bytes);
4238         if (unlikely(ret < 0))
4239                 return X86EMUL_IO_NEEDED;
4240
4241         return X86EMUL_CONTINUE;
4242 }
4243
4244 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4245                                gva_t addr, void *val, unsigned int bytes,
4246                                struct x86_exception *exception)
4247 {
4248         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4250
4251         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4252                                           exception);
4253 }
4254 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4255
4256 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4257                                       gva_t addr, void *val, unsigned int bytes,
4258                                       struct x86_exception *exception)
4259 {
4260         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4261         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4262 }
4263
4264 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4265                                        gva_t addr, void *val,
4266                                        unsigned int bytes,
4267                                        struct x86_exception *exception)
4268 {
4269         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4270         void *data = val;
4271         int r = X86EMUL_CONTINUE;
4272
4273         while (bytes) {
4274                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4275                                                              PFERR_WRITE_MASK,
4276                                                              exception);
4277                 unsigned offset = addr & (PAGE_SIZE-1);
4278                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4279                 int ret;
4280
4281                 if (gpa == UNMAPPED_GVA)
4282                         return X86EMUL_PROPAGATE_FAULT;
4283                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4284                 if (ret < 0) {
4285                         r = X86EMUL_IO_NEEDED;
4286                         goto out;
4287                 }
4288
4289                 bytes -= towrite;
4290                 data += towrite;
4291                 addr += towrite;
4292         }
4293 out:
4294         return r;
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4297
4298 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4299                                 gpa_t *gpa, struct x86_exception *exception,
4300                                 bool write)
4301 {
4302         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4303                 | (write ? PFERR_WRITE_MASK : 0);
4304
4305         if (vcpu_match_mmio_gva(vcpu, gva)
4306             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4307                                  vcpu->arch.access, access)) {
4308                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4309                                         (gva & (PAGE_SIZE - 1));
4310                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4311                 return 1;
4312         }
4313
4314         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4315
4316         if (*gpa == UNMAPPED_GVA)
4317                 return -1;
4318
4319         /* For APIC access vmexit */
4320         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4321                 return 1;
4322
4323         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4324                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4325                 return 1;
4326         }
4327
4328         return 0;
4329 }
4330
4331 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4332                         const void *val, int bytes)
4333 {
4334         int ret;
4335
4336         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4337         if (ret < 0)
4338                 return 0;
4339         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4340         return 1;
4341 }
4342
4343 struct read_write_emulator_ops {
4344         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4345                                   int bytes);
4346         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4347                                   void *val, int bytes);
4348         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4349                                int bytes, void *val);
4350         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4351                                     void *val, int bytes);
4352         bool write;
4353 };
4354
4355 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4356 {
4357         if (vcpu->mmio_read_completed) {
4358                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4359                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4360                 vcpu->mmio_read_completed = 0;
4361                 return 1;
4362         }
4363
4364         return 0;
4365 }
4366
4367 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4368                         void *val, int bytes)
4369 {
4370         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4371 }
4372
4373 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4374                          void *val, int bytes)
4375 {
4376         return emulator_write_phys(vcpu, gpa, val, bytes);
4377 }
4378
4379 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4380 {
4381         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4382         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4383 }
4384
4385 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4386                           void *val, int bytes)
4387 {
4388         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4389         return X86EMUL_IO_NEEDED;
4390 }
4391
4392 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4393                            void *val, int bytes)
4394 {
4395         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4396
4397         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4398         return X86EMUL_CONTINUE;
4399 }
4400
4401 static const struct read_write_emulator_ops read_emultor = {
4402         .read_write_prepare = read_prepare,
4403         .read_write_emulate = read_emulate,
4404         .read_write_mmio = vcpu_mmio_read,
4405         .read_write_exit_mmio = read_exit_mmio,
4406 };
4407
4408 static const struct read_write_emulator_ops write_emultor = {
4409         .read_write_emulate = write_emulate,
4410         .read_write_mmio = write_mmio,
4411         .read_write_exit_mmio = write_exit_mmio,
4412         .write = true,
4413 };
4414
4415 static int emulator_read_write_onepage(unsigned long addr, void *val,
4416                                        unsigned int bytes,
4417                                        struct x86_exception *exception,
4418                                        struct kvm_vcpu *vcpu,
4419                                        const struct read_write_emulator_ops *ops)
4420 {
4421         gpa_t gpa;
4422         int handled, ret;
4423         bool write = ops->write;
4424         struct kvm_mmio_fragment *frag;
4425
4426         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4427
4428         if (ret < 0)
4429                 return X86EMUL_PROPAGATE_FAULT;
4430
4431         /* For APIC access vmexit */
4432         if (ret)
4433                 goto mmio;
4434
4435         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4436                 return X86EMUL_CONTINUE;
4437
4438 mmio:
4439         /*
4440          * Is this MMIO handled locally?
4441          */
4442         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4443         if (handled == bytes)
4444                 return X86EMUL_CONTINUE;
4445
4446         gpa += handled;
4447         bytes -= handled;
4448         val += handled;
4449
4450         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4451         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4452         frag->gpa = gpa;
4453         frag->data = val;
4454         frag->len = bytes;
4455         return X86EMUL_CONTINUE;
4456 }
4457
4458 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4459                         unsigned long addr,
4460                         void *val, unsigned int bytes,
4461                         struct x86_exception *exception,
4462                         const struct read_write_emulator_ops *ops)
4463 {
4464         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465         gpa_t gpa;
4466         int rc;
4467
4468         if (ops->read_write_prepare &&
4469                   ops->read_write_prepare(vcpu, val, bytes))
4470                 return X86EMUL_CONTINUE;
4471
4472         vcpu->mmio_nr_fragments = 0;
4473
4474         /* Crossing a page boundary? */
4475         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4476                 int now;
4477
4478                 now = -addr & ~PAGE_MASK;
4479                 rc = emulator_read_write_onepage(addr, val, now, exception,
4480                                                  vcpu, ops);
4481
4482                 if (rc != X86EMUL_CONTINUE)
4483                         return rc;
4484                 addr += now;
4485                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4486                         addr = (u32)addr;
4487                 val += now;
4488                 bytes -= now;
4489         }
4490
4491         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4492                                          vcpu, ops);
4493         if (rc != X86EMUL_CONTINUE)
4494                 return rc;
4495
4496         if (!vcpu->mmio_nr_fragments)
4497                 return rc;
4498
4499         gpa = vcpu->mmio_fragments[0].gpa;
4500
4501         vcpu->mmio_needed = 1;
4502         vcpu->mmio_cur_fragment = 0;
4503
4504         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4505         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4506         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4507         vcpu->run->mmio.phys_addr = gpa;
4508
4509         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4510 }
4511
4512 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4513                                   unsigned long addr,
4514                                   void *val,
4515                                   unsigned int bytes,
4516                                   struct x86_exception *exception)
4517 {
4518         return emulator_read_write(ctxt, addr, val, bytes,
4519                                    exception, &read_emultor);
4520 }
4521
4522 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4523                             unsigned long addr,
4524                             const void *val,
4525                             unsigned int bytes,
4526                             struct x86_exception *exception)
4527 {
4528         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4529                                    exception, &write_emultor);
4530 }
4531
4532 #define CMPXCHG_TYPE(t, ptr, old, new) \
4533         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4534
4535 #ifdef CONFIG_X86_64
4536 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4537 #else
4538 #  define CMPXCHG64(ptr, old, new) \
4539         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4540 #endif
4541
4542 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4543                                      unsigned long addr,
4544                                      const void *old,
4545                                      const void *new,
4546                                      unsigned int bytes,
4547                                      struct x86_exception *exception)
4548 {
4549         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4550         gpa_t gpa;
4551         struct page *page;
4552         char *kaddr;
4553         bool exchanged;
4554
4555         /* guests cmpxchg8b have to be emulated atomically */
4556         if (bytes > 8 || (bytes & (bytes - 1)))
4557                 goto emul_write;
4558
4559         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4560
4561         if (gpa == UNMAPPED_GVA ||
4562             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4563                 goto emul_write;
4564
4565         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4566                 goto emul_write;
4567
4568         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4569         if (is_error_page(page))
4570                 goto emul_write;
4571
4572         kaddr = kmap_atomic(page);
4573         kaddr += offset_in_page(gpa);
4574         switch (bytes) {
4575         case 1:
4576                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4577                 break;
4578         case 2:
4579                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4580                 break;
4581         case 4:
4582                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4583                 break;
4584         case 8:
4585                 exchanged = CMPXCHG64(kaddr, old, new);
4586                 break;
4587         default:
4588                 BUG();
4589         }
4590         kunmap_atomic(kaddr);
4591         kvm_release_page_dirty(page);
4592
4593         if (!exchanged)
4594                 return X86EMUL_CMPXCHG_FAILED;
4595
4596         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4597         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4598
4599         return X86EMUL_CONTINUE;
4600
4601 emul_write:
4602         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4603
4604         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4605 }
4606
4607 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4608 {
4609         /* TODO: String I/O for in kernel device */
4610         int r;
4611
4612         if (vcpu->arch.pio.in)
4613                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4614                                     vcpu->arch.pio.size, pd);
4615         else
4616                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4617                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4618                                      pd);
4619         return r;
4620 }
4621
4622 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4623                                unsigned short port, void *val,
4624                                unsigned int count, bool in)
4625 {
4626         vcpu->arch.pio.port = port;
4627         vcpu->arch.pio.in = in;
4628         vcpu->arch.pio.count  = count;
4629         vcpu->arch.pio.size = size;
4630
4631         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4632                 vcpu->arch.pio.count = 0;
4633                 return 1;
4634         }
4635
4636         vcpu->run->exit_reason = KVM_EXIT_IO;
4637         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4638         vcpu->run->io.size = size;
4639         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4640         vcpu->run->io.count = count;
4641         vcpu->run->io.port = port;
4642
4643         return 0;
4644 }
4645
4646 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4647                                     int size, unsigned short port, void *val,
4648                                     unsigned int count)
4649 {
4650         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4651         int ret;
4652
4653         if (vcpu->arch.pio.count)
4654                 goto data_avail;
4655
4656         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4657         if (ret) {
4658 data_avail:
4659                 memcpy(val, vcpu->arch.pio_data, size * count);
4660                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4661                 vcpu->arch.pio.count = 0;
4662                 return 1;
4663         }
4664
4665         return 0;
4666 }
4667
4668 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4669                                      int size, unsigned short port,
4670                                      const void *val, unsigned int count)
4671 {
4672         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4673
4674         memcpy(vcpu->arch.pio_data, val, size * count);
4675         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4676         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4677 }
4678
4679 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4680 {
4681         return kvm_x86_ops->get_segment_base(vcpu, seg);
4682 }
4683
4684 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4685 {
4686         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4687 }
4688
4689 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4690 {
4691         if (!need_emulate_wbinvd(vcpu))
4692                 return X86EMUL_CONTINUE;
4693
4694         if (kvm_x86_ops->has_wbinvd_exit()) {
4695                 int cpu = get_cpu();
4696
4697                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4698                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4699                                 wbinvd_ipi, NULL, 1);
4700                 put_cpu();
4701                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4702         } else
4703                 wbinvd();
4704         return X86EMUL_CONTINUE;
4705 }
4706
4707 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4708 {
4709         kvm_x86_ops->skip_emulated_instruction(vcpu);
4710         return kvm_emulate_wbinvd_noskip(vcpu);
4711 }
4712 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4713
4714
4715
4716 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4717 {
4718         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4719 }
4720
4721 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4722                            unsigned long *dest)
4723 {
4724         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4725 }
4726
4727 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4728                            unsigned long value)
4729 {
4730
4731         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4732 }
4733
4734 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4735 {
4736         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4737 }
4738
4739 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4740 {
4741         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4742         unsigned long value;
4743
4744         switch (cr) {
4745         case 0:
4746                 value = kvm_read_cr0(vcpu);
4747                 break;
4748         case 2:
4749                 value = vcpu->arch.cr2;
4750                 break;
4751         case 3:
4752                 value = kvm_read_cr3(vcpu);
4753                 break;
4754         case 4:
4755                 value = kvm_read_cr4(vcpu);
4756                 break;
4757         case 8:
4758                 value = kvm_get_cr8(vcpu);
4759                 break;
4760         default:
4761                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4762                 return 0;
4763         }
4764
4765         return value;
4766 }
4767
4768 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4769 {
4770         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4771         int res = 0;
4772
4773         switch (cr) {
4774         case 0:
4775                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4776                 break;
4777         case 2:
4778                 vcpu->arch.cr2 = val;
4779                 break;
4780         case 3:
4781                 res = kvm_set_cr3(vcpu, val);
4782                 break;
4783         case 4:
4784                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4785                 break;
4786         case 8:
4787                 res = kvm_set_cr8(vcpu, val);
4788                 break;
4789         default:
4790                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4791                 res = -1;
4792         }
4793
4794         return res;
4795 }
4796
4797 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4798 {
4799         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4800 }
4801
4802 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4803 {
4804         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4805 }
4806
4807 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4808 {
4809         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4810 }
4811
4812 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4813 {
4814         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4815 }
4816
4817 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4818 {
4819         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4820 }
4821
4822 static unsigned long emulator_get_cached_segment_base(
4823         struct x86_emulate_ctxt *ctxt, int seg)
4824 {
4825         return get_segment_base(emul_to_vcpu(ctxt), seg);
4826 }
4827
4828 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4829                                  struct desc_struct *desc, u32 *base3,
4830                                  int seg)
4831 {
4832         struct kvm_segment var;
4833
4834         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4835         *selector = var.selector;
4836
4837         if (var.unusable) {
4838                 memset(desc, 0, sizeof(*desc));
4839                 return false;
4840         }
4841
4842         if (var.g)
4843                 var.limit >>= 12;
4844         set_desc_limit(desc, var.limit);
4845         set_desc_base(desc, (unsigned long)var.base);
4846 #ifdef CONFIG_X86_64
4847         if (base3)
4848                 *base3 = var.base >> 32;
4849 #endif
4850         desc->type = var.type;
4851         desc->s = var.s;
4852         desc->dpl = var.dpl;
4853         desc->p = var.present;
4854         desc->avl = var.avl;
4855         desc->l = var.l;
4856         desc->d = var.db;
4857         desc->g = var.g;
4858
4859         return true;
4860 }
4861
4862 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4863                                  struct desc_struct *desc, u32 base3,
4864                                  int seg)
4865 {
4866         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4867         struct kvm_segment var;
4868
4869         var.selector = selector;
4870         var.base = get_desc_base(desc);
4871 #ifdef CONFIG_X86_64
4872         var.base |= ((u64)base3) << 32;
4873 #endif
4874         var.limit = get_desc_limit(desc);
4875         if (desc->g)
4876                 var.limit = (var.limit << 12) | 0xfff;
4877         var.type = desc->type;
4878         var.dpl = desc->dpl;
4879         var.db = desc->d;
4880         var.s = desc->s;
4881         var.l = desc->l;
4882         var.g = desc->g;
4883         var.avl = desc->avl;
4884         var.present = desc->p;
4885         var.unusable = !var.present;
4886         var.padding = 0;
4887
4888         kvm_set_segment(vcpu, &var, seg);
4889         return;
4890 }
4891
4892 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4893                             u32 msr_index, u64 *pdata)
4894 {
4895         struct msr_data msr;
4896         int r;
4897
4898         msr.index = msr_index;
4899         msr.host_initiated = false;
4900         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4901         if (r)
4902                 return r;
4903
4904         *pdata = msr.data;
4905         return 0;
4906 }
4907
4908 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4909                             u32 msr_index, u64 data)
4910 {
4911         struct msr_data msr;
4912
4913         msr.data = data;
4914         msr.index = msr_index;
4915         msr.host_initiated = false;
4916         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4917 }
4918
4919 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4920 {
4921         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4922
4923         return vcpu->arch.smbase;
4924 }
4925
4926 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4927 {
4928         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4929
4930         vcpu->arch.smbase = smbase;
4931 }
4932
4933 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4934                               u32 pmc)
4935 {
4936         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4937 }
4938
4939 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4940                              u32 pmc, u64 *pdata)
4941 {
4942         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4943 }
4944
4945 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4946 {
4947         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4948 }
4949
4950 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4951 {
4952         preempt_disable();
4953         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4954         /*
4955          * CR0.TS may reference the host fpu state, not the guest fpu state,
4956          * so it may be clear at this point.
4957          */
4958         clts();
4959 }
4960
4961 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4962 {
4963         preempt_enable();
4964 }
4965
4966 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4967                               struct x86_instruction_info *info,
4968                               enum x86_intercept_stage stage)
4969 {
4970         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4971 }
4972
4973 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4974                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4975 {
4976         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4977 }
4978
4979 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4980 {
4981         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4982 }
4983
4984 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4985 {
4986         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4987 }
4988
4989 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4990 {
4991         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4992 }
4993
4994 static const struct x86_emulate_ops emulate_ops = {
4995         .read_gpr            = emulator_read_gpr,
4996         .write_gpr           = emulator_write_gpr,
4997         .read_std            = kvm_read_guest_virt_system,
4998         .write_std           = kvm_write_guest_virt_system,
4999         .fetch               = kvm_fetch_guest_virt,
5000         .read_emulated       = emulator_read_emulated,
5001         .write_emulated      = emulator_write_emulated,
5002         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5003         .invlpg              = emulator_invlpg,
5004         .pio_in_emulated     = emulator_pio_in_emulated,
5005         .pio_out_emulated    = emulator_pio_out_emulated,
5006         .get_segment         = emulator_get_segment,
5007         .set_segment         = emulator_set_segment,
5008         .get_cached_segment_base = emulator_get_cached_segment_base,
5009         .get_gdt             = emulator_get_gdt,
5010         .get_idt             = emulator_get_idt,
5011         .set_gdt             = emulator_set_gdt,
5012         .set_idt             = emulator_set_idt,
5013         .get_cr              = emulator_get_cr,
5014         .set_cr              = emulator_set_cr,
5015         .cpl                 = emulator_get_cpl,
5016         .get_dr              = emulator_get_dr,
5017         .set_dr              = emulator_set_dr,
5018         .get_smbase          = emulator_get_smbase,
5019         .set_smbase          = emulator_set_smbase,
5020         .set_msr             = emulator_set_msr,
5021         .get_msr             = emulator_get_msr,
5022         .check_pmc           = emulator_check_pmc,
5023         .read_pmc            = emulator_read_pmc,
5024         .halt                = emulator_halt,
5025         .wbinvd              = emulator_wbinvd,
5026         .fix_hypercall       = emulator_fix_hypercall,
5027         .get_fpu             = emulator_get_fpu,
5028         .put_fpu             = emulator_put_fpu,
5029         .intercept           = emulator_intercept,
5030         .get_cpuid           = emulator_get_cpuid,
5031         .set_nmi_mask        = emulator_set_nmi_mask,
5032 };
5033
5034 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5035 {
5036         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5037         /*
5038          * an sti; sti; sequence only disable interrupts for the first
5039          * instruction. So, if the last instruction, be it emulated or
5040          * not, left the system with the INT_STI flag enabled, it
5041          * means that the last instruction is an sti. We should not
5042          * leave the flag on in this case. The same goes for mov ss
5043          */
5044         if (int_shadow & mask)
5045                 mask = 0;
5046         if (unlikely(int_shadow || mask)) {
5047                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5048                 if (!mask)
5049                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5050         }
5051 }
5052
5053 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5054 {
5055         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5056         if (ctxt->exception.vector == PF_VECTOR)
5057                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5058
5059         if (ctxt->exception.error_code_valid)
5060                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5061                                       ctxt->exception.error_code);
5062         else
5063                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5064         return false;
5065 }
5066
5067 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5068 {
5069         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5070         int cs_db, cs_l;
5071
5072         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5073
5074         ctxt->eflags = kvm_get_rflags(vcpu);
5075         ctxt->eip = kvm_rip_read(vcpu);
5076         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5077                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5078                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5079                      cs_db                              ? X86EMUL_MODE_PROT32 :
5080                                                           X86EMUL_MODE_PROT16;
5081         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5082         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5083         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5084         ctxt->emul_flags = vcpu->arch.hflags;
5085
5086         init_decode_cache(ctxt);
5087         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5088 }
5089
5090 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5091 {
5092         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5093         int ret;
5094
5095         init_emulate_ctxt(vcpu);
5096
5097         ctxt->op_bytes = 2;
5098         ctxt->ad_bytes = 2;
5099         ctxt->_eip = ctxt->eip + inc_eip;
5100         ret = emulate_int_real(ctxt, irq);
5101
5102         if (ret != X86EMUL_CONTINUE)
5103                 return EMULATE_FAIL;
5104
5105         ctxt->eip = ctxt->_eip;
5106         kvm_rip_write(vcpu, ctxt->eip);
5107         kvm_set_rflags(vcpu, ctxt->eflags);
5108
5109         if (irq == NMI_VECTOR)
5110                 vcpu->arch.nmi_pending = 0;
5111         else
5112                 vcpu->arch.interrupt.pending = false;
5113
5114         return EMULATE_DONE;
5115 }
5116 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5117
5118 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5119 {
5120         int r = EMULATE_DONE;
5121
5122         ++vcpu->stat.insn_emulation_fail;
5123         trace_kvm_emulate_insn_failed(vcpu);
5124         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5125                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5126                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5127                 vcpu->run->internal.ndata = 0;
5128                 r = EMULATE_FAIL;
5129         }
5130         kvm_queue_exception(vcpu, UD_VECTOR);
5131
5132         return r;
5133 }
5134
5135 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5136                                   bool write_fault_to_shadow_pgtable,
5137                                   int emulation_type)
5138 {
5139         gpa_t gpa = cr2;
5140         pfn_t pfn;
5141
5142         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5143                 return false;
5144
5145         if (!vcpu->arch.mmu.direct_map) {
5146                 /*
5147                  * Write permission should be allowed since only
5148                  * write access need to be emulated.
5149                  */
5150                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5151
5152                 /*
5153                  * If the mapping is invalid in guest, let cpu retry
5154                  * it to generate fault.
5155                  */
5156                 if (gpa == UNMAPPED_GVA)
5157                         return true;
5158         }
5159
5160         /*
5161          * Do not retry the unhandleable instruction if it faults on the
5162          * readonly host memory, otherwise it will goto a infinite loop:
5163          * retry instruction -> write #PF -> emulation fail -> retry
5164          * instruction -> ...
5165          */
5166         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5167
5168         /*
5169          * If the instruction failed on the error pfn, it can not be fixed,
5170          * report the error to userspace.
5171          */
5172         if (is_error_noslot_pfn(pfn))
5173                 return false;
5174
5175         kvm_release_pfn_clean(pfn);
5176
5177         /* The instructions are well-emulated on direct mmu. */
5178         if (vcpu->arch.mmu.direct_map) {
5179                 unsigned int indirect_shadow_pages;
5180
5181                 spin_lock(&vcpu->kvm->mmu_lock);
5182                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5183                 spin_unlock(&vcpu->kvm->mmu_lock);
5184
5185                 if (indirect_shadow_pages)
5186                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5187
5188                 return true;
5189         }
5190
5191         /*
5192          * if emulation was due to access to shadowed page table
5193          * and it failed try to unshadow page and re-enter the
5194          * guest to let CPU execute the instruction.
5195          */
5196         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5197
5198         /*
5199          * If the access faults on its page table, it can not
5200          * be fixed by unprotecting shadow page and it should
5201          * be reported to userspace.
5202          */
5203         return !write_fault_to_shadow_pgtable;
5204 }
5205
5206 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5207                               unsigned long cr2,  int emulation_type)
5208 {
5209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5210         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5211
5212         last_retry_eip = vcpu->arch.last_retry_eip;
5213         last_retry_addr = vcpu->arch.last_retry_addr;
5214
5215         /*
5216          * If the emulation is caused by #PF and it is non-page_table
5217          * writing instruction, it means the VM-EXIT is caused by shadow
5218          * page protected, we can zap the shadow page and retry this
5219          * instruction directly.
5220          *
5221          * Note: if the guest uses a non-page-table modifying instruction
5222          * on the PDE that points to the instruction, then we will unmap
5223          * the instruction and go to an infinite loop. So, we cache the
5224          * last retried eip and the last fault address, if we meet the eip
5225          * and the address again, we can break out of the potential infinite
5226          * loop.
5227          */
5228         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5229
5230         if (!(emulation_type & EMULTYPE_RETRY))
5231                 return false;
5232
5233         if (x86_page_table_writing_insn(ctxt))
5234                 return false;
5235
5236         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5237                 return false;
5238
5239         vcpu->arch.last_retry_eip = ctxt->eip;
5240         vcpu->arch.last_retry_addr = cr2;
5241
5242         if (!vcpu->arch.mmu.direct_map)
5243                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5244
5245         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5246
5247         return true;
5248 }
5249
5250 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5251 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5252
5253 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5254 {
5255         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5256                 /* This is a good place to trace that we are exiting SMM.  */
5257                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5258
5259                 if (unlikely(vcpu->arch.smi_pending)) {
5260                         kvm_make_request(KVM_REQ_SMI, vcpu);
5261                         vcpu->arch.smi_pending = 0;
5262                 } else {
5263                         /* Process a latched INIT, if any.  */
5264                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5265                 }
5266         }
5267
5268         kvm_mmu_reset_context(vcpu);
5269 }
5270
5271 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5272 {
5273         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5274
5275         vcpu->arch.hflags = emul_flags;
5276
5277         if (changed & HF_SMM_MASK)
5278                 kvm_smm_changed(vcpu);
5279 }
5280
5281 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5282                                 unsigned long *db)
5283 {
5284         u32 dr6 = 0;
5285         int i;
5286         u32 enable, rwlen;
5287
5288         enable = dr7;
5289         rwlen = dr7 >> 16;
5290         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5291                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5292                         dr6 |= (1 << i);
5293         return dr6;
5294 }
5295
5296 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5297 {
5298         struct kvm_run *kvm_run = vcpu->run;
5299
5300         /*
5301          * rflags is the old, "raw" value of the flags.  The new value has
5302          * not been saved yet.
5303          *
5304          * This is correct even for TF set by the guest, because "the
5305          * processor will not generate this exception after the instruction
5306          * that sets the TF flag".
5307          */
5308         if (unlikely(rflags & X86_EFLAGS_TF)) {
5309                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5310                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5311                                                   DR6_RTM;
5312                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5313                         kvm_run->debug.arch.exception = DB_VECTOR;
5314                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5315                         *r = EMULATE_USER_EXIT;
5316                 } else {
5317                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5318                         /*
5319                          * "Certain debug exceptions may clear bit 0-3.  The
5320                          * remaining contents of the DR6 register are never
5321                          * cleared by the processor".
5322                          */
5323                         vcpu->arch.dr6 &= ~15;
5324                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5325                         kvm_queue_exception(vcpu, DB_VECTOR);
5326                 }
5327         }
5328 }
5329
5330 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5331 {
5332         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5333             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5334                 struct kvm_run *kvm_run = vcpu->run;
5335                 unsigned long eip = kvm_get_linear_rip(vcpu);
5336                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5337                                            vcpu->arch.guest_debug_dr7,
5338                                            vcpu->arch.eff_db);
5339
5340                 if (dr6 != 0) {
5341                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5342                         kvm_run->debug.arch.pc = eip;
5343                         kvm_run->debug.arch.exception = DB_VECTOR;
5344                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5345                         *r = EMULATE_USER_EXIT;
5346                         return true;
5347                 }
5348         }
5349
5350         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5351             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5352                 unsigned long eip = kvm_get_linear_rip(vcpu);
5353                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5354                                            vcpu->arch.dr7,
5355                                            vcpu->arch.db);
5356
5357                 if (dr6 != 0) {
5358                         vcpu->arch.dr6 &= ~15;
5359                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5360                         kvm_queue_exception(vcpu, DB_VECTOR);
5361                         *r = EMULATE_DONE;
5362                         return true;
5363                 }
5364         }
5365
5366         return false;
5367 }
5368
5369 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5370                             unsigned long cr2,
5371                             int emulation_type,
5372                             void *insn,
5373                             int insn_len)
5374 {
5375         int r;
5376         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5377         bool writeback = true;
5378         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5379
5380         /*
5381          * Clear write_fault_to_shadow_pgtable here to ensure it is
5382          * never reused.
5383          */
5384         vcpu->arch.write_fault_to_shadow_pgtable = false;
5385         kvm_clear_exception_queue(vcpu);
5386
5387         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5388                 init_emulate_ctxt(vcpu);
5389
5390                 /*
5391                  * We will reenter on the same instruction since
5392                  * we do not set complete_userspace_io.  This does not
5393                  * handle watchpoints yet, those would be handled in
5394                  * the emulate_ops.
5395                  */
5396                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5397                         return r;
5398
5399                 ctxt->interruptibility = 0;
5400                 ctxt->have_exception = false;
5401                 ctxt->exception.vector = -1;
5402                 ctxt->perm_ok = false;
5403
5404                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5405
5406                 r = x86_decode_insn(ctxt, insn, insn_len);
5407
5408                 trace_kvm_emulate_insn_start(vcpu);
5409                 ++vcpu->stat.insn_emulation;
5410                 if (r != EMULATION_OK)  {
5411                         if (emulation_type & EMULTYPE_TRAP_UD)
5412                                 return EMULATE_FAIL;
5413                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5414                                                 emulation_type))
5415                                 return EMULATE_DONE;
5416                         if (emulation_type & EMULTYPE_SKIP)
5417                                 return EMULATE_FAIL;
5418                         return handle_emulation_failure(vcpu);
5419                 }
5420         }
5421
5422         if (emulation_type & EMULTYPE_SKIP) {
5423                 kvm_rip_write(vcpu, ctxt->_eip);
5424                 if (ctxt->eflags & X86_EFLAGS_RF)
5425                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5426                 return EMULATE_DONE;
5427         }
5428
5429         if (retry_instruction(ctxt, cr2, emulation_type))
5430                 return EMULATE_DONE;
5431
5432         /* this is needed for vmware backdoor interface to work since it
5433            changes registers values  during IO operation */
5434         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5435                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5436                 emulator_invalidate_register_cache(ctxt);
5437         }
5438
5439 restart:
5440         r = x86_emulate_insn(ctxt);
5441
5442         if (r == EMULATION_INTERCEPTED)
5443                 return EMULATE_DONE;
5444
5445         if (r == EMULATION_FAILED) {
5446                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5447                                         emulation_type))
5448                         return EMULATE_DONE;
5449
5450                 return handle_emulation_failure(vcpu);
5451         }
5452
5453         if (ctxt->have_exception) {
5454                 r = EMULATE_DONE;
5455                 if (inject_emulated_exception(vcpu))
5456                         return r;
5457         } else if (vcpu->arch.pio.count) {
5458                 if (!vcpu->arch.pio.in) {
5459                         /* FIXME: return into emulator if single-stepping.  */
5460                         vcpu->arch.pio.count = 0;
5461                 } else {
5462                         writeback = false;
5463                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5464                 }
5465                 r = EMULATE_USER_EXIT;
5466         } else if (vcpu->mmio_needed) {
5467                 if (!vcpu->mmio_is_write)
5468                         writeback = false;
5469                 r = EMULATE_USER_EXIT;
5470                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5471         } else if (r == EMULATION_RESTART)
5472                 goto restart;
5473         else
5474                 r = EMULATE_DONE;
5475
5476         if (writeback) {
5477                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5478                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5479                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5480                 if (vcpu->arch.hflags != ctxt->emul_flags)
5481                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5482                 kvm_rip_write(vcpu, ctxt->eip);
5483                 if (r == EMULATE_DONE)
5484                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5485                 if (!ctxt->have_exception ||
5486                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5487                         __kvm_set_rflags(vcpu, ctxt->eflags);
5488
5489                 /*
5490                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5491                  * do nothing, and it will be requested again as soon as
5492                  * the shadow expires.  But we still need to check here,
5493                  * because POPF has no interrupt shadow.
5494                  */
5495                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5496                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5497         } else
5498                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5499
5500         return r;
5501 }
5502 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5503
5504 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5505 {
5506         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5507         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5508                                             size, port, &val, 1);
5509         /* do not return to emulator after return from userspace */
5510         vcpu->arch.pio.count = 0;
5511         return ret;
5512 }
5513 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5514
5515 static void tsc_bad(void *info)
5516 {
5517         __this_cpu_write(cpu_tsc_khz, 0);
5518 }
5519
5520 static void tsc_khz_changed(void *data)
5521 {
5522         struct cpufreq_freqs *freq = data;
5523         unsigned long khz = 0;
5524
5525         if (data)
5526                 khz = freq->new;
5527         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5528                 khz = cpufreq_quick_get(raw_smp_processor_id());
5529         if (!khz)
5530                 khz = tsc_khz;
5531         __this_cpu_write(cpu_tsc_khz, khz);
5532 }
5533
5534 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5535                                      void *data)
5536 {
5537         struct cpufreq_freqs *freq = data;
5538         struct kvm *kvm;
5539         struct kvm_vcpu *vcpu;
5540         int i, send_ipi = 0;
5541
5542         /*
5543          * We allow guests to temporarily run on slowing clocks,
5544          * provided we notify them after, or to run on accelerating
5545          * clocks, provided we notify them before.  Thus time never
5546          * goes backwards.
5547          *
5548          * However, we have a problem.  We can't atomically update
5549          * the frequency of a given CPU from this function; it is
5550          * merely a notifier, which can be called from any CPU.
5551          * Changing the TSC frequency at arbitrary points in time
5552          * requires a recomputation of local variables related to
5553          * the TSC for each VCPU.  We must flag these local variables
5554          * to be updated and be sure the update takes place with the
5555          * new frequency before any guests proceed.
5556          *
5557          * Unfortunately, the combination of hotplug CPU and frequency
5558          * change creates an intractable locking scenario; the order
5559          * of when these callouts happen is undefined with respect to
5560          * CPU hotplug, and they can race with each other.  As such,
5561          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5562          * undefined; you can actually have a CPU frequency change take
5563          * place in between the computation of X and the setting of the
5564          * variable.  To protect against this problem, all updates of
5565          * the per_cpu tsc_khz variable are done in an interrupt
5566          * protected IPI, and all callers wishing to update the value
5567          * must wait for a synchronous IPI to complete (which is trivial
5568          * if the caller is on the CPU already).  This establishes the
5569          * necessary total order on variable updates.
5570          *
5571          * Note that because a guest time update may take place
5572          * anytime after the setting of the VCPU's request bit, the
5573          * correct TSC value must be set before the request.  However,
5574          * to ensure the update actually makes it to any guest which
5575          * starts running in hardware virtualization between the set
5576          * and the acquisition of the spinlock, we must also ping the
5577          * CPU after setting the request bit.
5578          *
5579          */
5580
5581         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5582                 return 0;
5583         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5584                 return 0;
5585
5586         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5587
5588         spin_lock(&kvm_lock);
5589         list_for_each_entry(kvm, &vm_list, vm_list) {
5590                 kvm_for_each_vcpu(i, vcpu, kvm) {
5591                         if (vcpu->cpu != freq->cpu)
5592                                 continue;
5593                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5594                         if (vcpu->cpu != smp_processor_id())
5595                                 send_ipi = 1;
5596                 }
5597         }
5598         spin_unlock(&kvm_lock);
5599
5600         if (freq->old < freq->new && send_ipi) {
5601                 /*
5602                  * We upscale the frequency.  Must make the guest
5603                  * doesn't see old kvmclock values while running with
5604                  * the new frequency, otherwise we risk the guest sees
5605                  * time go backwards.
5606                  *
5607                  * In case we update the frequency for another cpu
5608                  * (which might be in guest context) send an interrupt
5609                  * to kick the cpu out of guest context.  Next time
5610                  * guest context is entered kvmclock will be updated,
5611                  * so the guest will not see stale values.
5612                  */
5613                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5614         }
5615         return 0;
5616 }
5617
5618 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5619         .notifier_call  = kvmclock_cpufreq_notifier
5620 };
5621
5622 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5623                                         unsigned long action, void *hcpu)
5624 {
5625         unsigned int cpu = (unsigned long)hcpu;
5626
5627         switch (action) {
5628                 case CPU_ONLINE:
5629                 case CPU_DOWN_FAILED:
5630                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5631                         break;
5632                 case CPU_DOWN_PREPARE:
5633                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5634                         break;
5635         }
5636         return NOTIFY_OK;
5637 }
5638
5639 static struct notifier_block kvmclock_cpu_notifier_block = {
5640         .notifier_call  = kvmclock_cpu_notifier,
5641         .priority = -INT_MAX
5642 };
5643
5644 static void kvm_timer_init(void)
5645 {
5646         int cpu;
5647
5648         max_tsc_khz = tsc_khz;
5649
5650         cpu_notifier_register_begin();
5651         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5652 #ifdef CONFIG_CPU_FREQ
5653                 struct cpufreq_policy policy;
5654                 memset(&policy, 0, sizeof(policy));
5655                 cpu = get_cpu();
5656                 cpufreq_get_policy(&policy, cpu);
5657                 if (policy.cpuinfo.max_freq)
5658                         max_tsc_khz = policy.cpuinfo.max_freq;
5659                 put_cpu();
5660 #endif
5661                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5662                                           CPUFREQ_TRANSITION_NOTIFIER);
5663         }
5664         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5665         for_each_online_cpu(cpu)
5666                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5667
5668         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5669         cpu_notifier_register_done();
5670
5671 }
5672
5673 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5674
5675 int kvm_is_in_guest(void)
5676 {
5677         return __this_cpu_read(current_vcpu) != NULL;
5678 }
5679
5680 static int kvm_is_user_mode(void)
5681 {
5682         int user_mode = 3;
5683
5684         if (__this_cpu_read(current_vcpu))
5685                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5686
5687         return user_mode != 0;
5688 }
5689
5690 static unsigned long kvm_get_guest_ip(void)
5691 {
5692         unsigned long ip = 0;
5693
5694         if (__this_cpu_read(current_vcpu))
5695                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5696
5697         return ip;
5698 }
5699
5700 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5701         .is_in_guest            = kvm_is_in_guest,
5702         .is_user_mode           = kvm_is_user_mode,
5703         .get_guest_ip           = kvm_get_guest_ip,
5704 };
5705
5706 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5707 {
5708         __this_cpu_write(current_vcpu, vcpu);
5709 }
5710 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5711
5712 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5713 {
5714         __this_cpu_write(current_vcpu, NULL);
5715 }
5716 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5717
5718 static void kvm_set_mmio_spte_mask(void)
5719 {
5720         u64 mask;
5721         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5722
5723         /*
5724          * Set the reserved bits and the present bit of an paging-structure
5725          * entry to generate page fault with PFER.RSV = 1.
5726          */
5727          /* Mask the reserved physical address bits. */
5728         mask = rsvd_bits(maxphyaddr, 51);
5729
5730         /* Bit 62 is always reserved for 32bit host. */
5731         mask |= 0x3ull << 62;
5732
5733         /* Set the present bit. */
5734         mask |= 1ull;
5735
5736 #ifdef CONFIG_X86_64
5737         /*
5738          * If reserved bit is not supported, clear the present bit to disable
5739          * mmio page fault.
5740          */
5741         if (maxphyaddr == 52)
5742                 mask &= ~1ull;
5743 #endif
5744
5745         kvm_mmu_set_mmio_spte_mask(mask);
5746 }
5747
5748 #ifdef CONFIG_X86_64
5749 static void pvclock_gtod_update_fn(struct work_struct *work)
5750 {
5751         struct kvm *kvm;
5752
5753         struct kvm_vcpu *vcpu;
5754         int i;
5755
5756         spin_lock(&kvm_lock);
5757         list_for_each_entry(kvm, &vm_list, vm_list)
5758                 kvm_for_each_vcpu(i, vcpu, kvm)
5759                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5760         atomic_set(&kvm_guest_has_master_clock, 0);
5761         spin_unlock(&kvm_lock);
5762 }
5763
5764 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5765
5766 /*
5767  * Notification about pvclock gtod data update.
5768  */
5769 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5770                                void *priv)
5771 {
5772         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5773         struct timekeeper *tk = priv;
5774
5775         update_pvclock_gtod(tk);
5776
5777         /* disable master clock if host does not trust, or does not
5778          * use, TSC clocksource
5779          */
5780         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5781             atomic_read(&kvm_guest_has_master_clock) != 0)
5782                 queue_work(system_long_wq, &pvclock_gtod_work);
5783
5784         return 0;
5785 }
5786
5787 static struct notifier_block pvclock_gtod_notifier = {
5788         .notifier_call = pvclock_gtod_notify,
5789 };
5790 #endif
5791
5792 int kvm_arch_init(void *opaque)
5793 {
5794         int r;
5795         struct kvm_x86_ops *ops = opaque;
5796
5797         if (kvm_x86_ops) {
5798                 printk(KERN_ERR "kvm: already loaded the other module\n");
5799                 r = -EEXIST;
5800                 goto out;
5801         }
5802
5803         if (!ops->cpu_has_kvm_support()) {
5804                 printk(KERN_ERR "kvm: no hardware support\n");
5805                 r = -EOPNOTSUPP;
5806                 goto out;
5807         }
5808         if (ops->disabled_by_bios()) {
5809                 printk(KERN_ERR "kvm: disabled by bios\n");
5810                 r = -EOPNOTSUPP;
5811                 goto out;
5812         }
5813
5814         r = -ENOMEM;
5815         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5816         if (!shared_msrs) {
5817                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5818                 goto out;
5819         }
5820
5821         r = kvm_mmu_module_init();
5822         if (r)
5823                 goto out_free_percpu;
5824
5825         kvm_set_mmio_spte_mask();
5826
5827         kvm_x86_ops = ops;
5828
5829         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5830                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5831
5832         kvm_timer_init();
5833
5834         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5835
5836         if (cpu_has_xsave)
5837                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5838
5839         kvm_lapic_init();
5840 #ifdef CONFIG_X86_64
5841         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5842 #endif
5843
5844         return 0;
5845
5846 out_free_percpu:
5847         free_percpu(shared_msrs);
5848 out:
5849         return r;
5850 }
5851
5852 void kvm_arch_exit(void)
5853 {
5854         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5855
5856         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5857                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5858                                             CPUFREQ_TRANSITION_NOTIFIER);
5859         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5860 #ifdef CONFIG_X86_64
5861         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5862 #endif
5863         kvm_x86_ops = NULL;
5864         kvm_mmu_module_exit();
5865         free_percpu(shared_msrs);
5866 }
5867
5868 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5869 {
5870         ++vcpu->stat.halt_exits;
5871         if (irqchip_in_kernel(vcpu->kvm)) {
5872                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5873                 return 1;
5874         } else {
5875                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5876                 return 0;
5877         }
5878 }
5879 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5880
5881 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5882 {
5883         kvm_x86_ops->skip_emulated_instruction(vcpu);
5884         return kvm_vcpu_halt(vcpu);
5885 }
5886 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5887
5888 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5889 {
5890         u64 param, ingpa, outgpa, ret;
5891         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5892         bool fast, longmode;
5893
5894         /*
5895          * hypercall generates UD from non zero cpl and real mode
5896          * per HYPER-V spec
5897          */
5898         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5899                 kvm_queue_exception(vcpu, UD_VECTOR);
5900                 return 0;
5901         }
5902
5903         longmode = is_64_bit_mode(vcpu);
5904
5905         if (!longmode) {
5906                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5907                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5908                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5909                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5910                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5911                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5912         }
5913 #ifdef CONFIG_X86_64
5914         else {
5915                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5916                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5917                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5918         }
5919 #endif
5920
5921         code = param & 0xffff;
5922         fast = (param >> 16) & 0x1;
5923         rep_cnt = (param >> 32) & 0xfff;
5924         rep_idx = (param >> 48) & 0xfff;
5925
5926         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5927
5928         switch (code) {
5929         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5930                 kvm_vcpu_on_spin(vcpu);
5931                 break;
5932         default:
5933                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5934                 break;
5935         }
5936
5937         ret = res | (((u64)rep_done & 0xfff) << 32);
5938         if (longmode) {
5939                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5940         } else {
5941                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5942                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5943         }
5944
5945         return 1;
5946 }
5947
5948 /*
5949  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5950  *
5951  * @apicid - apicid of vcpu to be kicked.
5952  */
5953 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5954 {
5955         struct kvm_lapic_irq lapic_irq;
5956
5957         lapic_irq.shorthand = 0;
5958         lapic_irq.dest_mode = 0;
5959         lapic_irq.dest_id = apicid;
5960         lapic_irq.msi_redir_hint = false;
5961
5962         lapic_irq.delivery_mode = APIC_DM_REMRD;
5963         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5964 }
5965
5966 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5967 {
5968         unsigned long nr, a0, a1, a2, a3, ret;
5969         int op_64_bit, r = 1;
5970
5971         kvm_x86_ops->skip_emulated_instruction(vcpu);
5972
5973         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5974                 return kvm_hv_hypercall(vcpu);
5975
5976         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5977         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5978         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5979         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5980         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5981
5982         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5983
5984         op_64_bit = is_64_bit_mode(vcpu);
5985         if (!op_64_bit) {
5986                 nr &= 0xFFFFFFFF;
5987                 a0 &= 0xFFFFFFFF;
5988                 a1 &= 0xFFFFFFFF;
5989                 a2 &= 0xFFFFFFFF;
5990                 a3 &= 0xFFFFFFFF;
5991         }
5992
5993         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5994                 ret = -KVM_EPERM;
5995                 goto out;
5996         }
5997
5998         switch (nr) {
5999         case KVM_HC_VAPIC_POLL_IRQ:
6000                 ret = 0;
6001                 break;
6002         case KVM_HC_KICK_CPU:
6003                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6004                 ret = 0;
6005                 break;
6006         default:
6007                 ret = -KVM_ENOSYS;
6008                 break;
6009         }
6010 out:
6011         if (!op_64_bit)
6012                 ret = (u32)ret;
6013         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6014         ++vcpu->stat.hypercalls;
6015         return r;
6016 }
6017 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6018
6019 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6020 {
6021         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6022         char instruction[3];
6023         unsigned long rip = kvm_rip_read(vcpu);
6024
6025         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6026
6027         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6028 }
6029
6030 /*
6031  * Check if userspace requested an interrupt window, and that the
6032  * interrupt window is open.
6033  *
6034  * No need to exit to userspace if we already have an interrupt queued.
6035  */
6036 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6037 {
6038         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6039                 vcpu->run->request_interrupt_window &&
6040                 kvm_arch_interrupt_allowed(vcpu));
6041 }
6042
6043 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6044 {
6045         struct kvm_run *kvm_run = vcpu->run;
6046
6047         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6048         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6049         kvm_run->cr8 = kvm_get_cr8(vcpu);
6050         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6051         if (irqchip_in_kernel(vcpu->kvm))
6052                 kvm_run->ready_for_interrupt_injection = 1;
6053         else
6054                 kvm_run->ready_for_interrupt_injection =
6055                         kvm_arch_interrupt_allowed(vcpu) &&
6056                         !kvm_cpu_has_interrupt(vcpu) &&
6057                         !kvm_event_needs_reinjection(vcpu);
6058 }
6059
6060 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6061 {
6062         int max_irr, tpr;
6063
6064         if (!kvm_x86_ops->update_cr8_intercept)
6065                 return;
6066
6067         if (!vcpu->arch.apic)
6068                 return;
6069
6070         if (!vcpu->arch.apic->vapic_addr)
6071                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6072         else
6073                 max_irr = -1;
6074
6075         if (max_irr != -1)
6076                 max_irr >>= 4;
6077
6078         tpr = kvm_lapic_get_cr8(vcpu);
6079
6080         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6081 }
6082
6083 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6084 {
6085         int r;
6086
6087         /* try to reinject previous events if any */
6088         if (vcpu->arch.exception.pending) {
6089                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6090                                         vcpu->arch.exception.has_error_code,
6091                                         vcpu->arch.exception.error_code);
6092
6093                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6094                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6095                                              X86_EFLAGS_RF);
6096
6097                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6098                     (vcpu->arch.dr7 & DR7_GD)) {
6099                         vcpu->arch.dr7 &= ~DR7_GD;
6100                         kvm_update_dr7(vcpu);
6101                 }
6102
6103                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6104                                           vcpu->arch.exception.has_error_code,
6105                                           vcpu->arch.exception.error_code,
6106                                           vcpu->arch.exception.reinject);
6107                 return 0;
6108         }
6109
6110         if (vcpu->arch.nmi_injected) {
6111                 kvm_x86_ops->set_nmi(vcpu);
6112                 return 0;
6113         }
6114
6115         if (vcpu->arch.interrupt.pending) {
6116                 kvm_x86_ops->set_irq(vcpu);
6117                 return 0;
6118         }
6119
6120         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6121                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6122                 if (r != 0)
6123                         return r;
6124         }
6125
6126         /* try to inject new event if pending */
6127         if (vcpu->arch.nmi_pending) {
6128                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6129                         --vcpu->arch.nmi_pending;
6130                         vcpu->arch.nmi_injected = true;
6131                         kvm_x86_ops->set_nmi(vcpu);
6132                 }
6133         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6134                 /*
6135                  * Because interrupts can be injected asynchronously, we are
6136                  * calling check_nested_events again here to avoid a race condition.
6137                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6138                  * proposal and current concerns.  Perhaps we should be setting
6139                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6140                  */
6141                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6142                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6143                         if (r != 0)
6144                                 return r;
6145                 }
6146                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6147                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6148                                             false);
6149                         kvm_x86_ops->set_irq(vcpu);
6150                 }
6151         }
6152         return 0;
6153 }
6154
6155 static void process_nmi(struct kvm_vcpu *vcpu)
6156 {
6157         unsigned limit = 2;
6158
6159         /*
6160          * x86 is limited to one NMI running, and one NMI pending after it.
6161          * If an NMI is already in progress, limit further NMIs to just one.
6162          * Otherwise, allow two (and we'll inject the first one immediately).
6163          */
6164         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6165                 limit = 1;
6166
6167         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6168         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6169         kvm_make_request(KVM_REQ_EVENT, vcpu);
6170 }
6171
6172 #define put_smstate(type, buf, offset, val)                       \
6173         *(type *)((buf) + (offset) - 0x7e00) = val
6174
6175 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6176 {
6177         u32 flags = 0;
6178         flags |= seg->g       << 23;
6179         flags |= seg->db      << 22;
6180         flags |= seg->l       << 21;
6181         flags |= seg->avl     << 20;
6182         flags |= seg->present << 15;
6183         flags |= seg->dpl     << 13;
6184         flags |= seg->s       << 12;
6185         flags |= seg->type    << 8;
6186         return flags;
6187 }
6188
6189 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6190 {
6191         struct kvm_segment seg;
6192         int offset;
6193
6194         kvm_get_segment(vcpu, &seg, n);
6195         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6196
6197         if (n < 3)
6198                 offset = 0x7f84 + n * 12;
6199         else
6200                 offset = 0x7f2c + (n - 3) * 12;
6201
6202         put_smstate(u32, buf, offset + 8, seg.base);
6203         put_smstate(u32, buf, offset + 4, seg.limit);
6204         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6205 }
6206
6207 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6208 {
6209         struct kvm_segment seg;
6210         int offset;
6211         u16 flags;
6212
6213         kvm_get_segment(vcpu, &seg, n);
6214         offset = 0x7e00 + n * 16;
6215
6216         flags = process_smi_get_segment_flags(&seg) >> 8;
6217         put_smstate(u16, buf, offset, seg.selector);
6218         put_smstate(u16, buf, offset + 2, flags);
6219         put_smstate(u32, buf, offset + 4, seg.limit);
6220         put_smstate(u64, buf, offset + 8, seg.base);
6221 }
6222
6223 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6224 {
6225         struct desc_ptr dt;
6226         struct kvm_segment seg;
6227         unsigned long val;
6228         int i;
6229
6230         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6231         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6232         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6233         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6234
6235         for (i = 0; i < 8; i++)
6236                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6237
6238         kvm_get_dr(vcpu, 6, &val);
6239         put_smstate(u32, buf, 0x7fcc, (u32)val);
6240         kvm_get_dr(vcpu, 7, &val);
6241         put_smstate(u32, buf, 0x7fc8, (u32)val);
6242
6243         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6244         put_smstate(u32, buf, 0x7fc4, seg.selector);
6245         put_smstate(u32, buf, 0x7f64, seg.base);
6246         put_smstate(u32, buf, 0x7f60, seg.limit);
6247         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6248
6249         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6250         put_smstate(u32, buf, 0x7fc0, seg.selector);
6251         put_smstate(u32, buf, 0x7f80, seg.base);
6252         put_smstate(u32, buf, 0x7f7c, seg.limit);
6253         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6254
6255         kvm_x86_ops->get_gdt(vcpu, &dt);
6256         put_smstate(u32, buf, 0x7f74, dt.address);
6257         put_smstate(u32, buf, 0x7f70, dt.size);
6258
6259         kvm_x86_ops->get_idt(vcpu, &dt);
6260         put_smstate(u32, buf, 0x7f58, dt.address);
6261         put_smstate(u32, buf, 0x7f54, dt.size);
6262
6263         for (i = 0; i < 6; i++)
6264                 process_smi_save_seg_32(vcpu, buf, i);
6265
6266         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6267
6268         /* revision id */
6269         put_smstate(u32, buf, 0x7efc, 0x00020000);
6270         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6271 }
6272
6273 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6274 {
6275 #ifdef CONFIG_X86_64
6276         struct desc_ptr dt;
6277         struct kvm_segment seg;
6278         unsigned long val;
6279         int i;
6280
6281         for (i = 0; i < 16; i++)
6282                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6283
6284         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6285         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6286
6287         kvm_get_dr(vcpu, 6, &val);
6288         put_smstate(u64, buf, 0x7f68, val);
6289         kvm_get_dr(vcpu, 7, &val);
6290         put_smstate(u64, buf, 0x7f60, val);
6291
6292         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6293         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6294         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6295
6296         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6297
6298         /* revision id */
6299         put_smstate(u32, buf, 0x7efc, 0x00020064);
6300
6301         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6302
6303         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6304         put_smstate(u16, buf, 0x7e90, seg.selector);
6305         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6306         put_smstate(u32, buf, 0x7e94, seg.limit);
6307         put_smstate(u64, buf, 0x7e98, seg.base);
6308
6309         kvm_x86_ops->get_idt(vcpu, &dt);
6310         put_smstate(u32, buf, 0x7e84, dt.size);
6311         put_smstate(u64, buf, 0x7e88, dt.address);
6312
6313         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6314         put_smstate(u16, buf, 0x7e70, seg.selector);
6315         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6316         put_smstate(u32, buf, 0x7e74, seg.limit);
6317         put_smstate(u64, buf, 0x7e78, seg.base);
6318
6319         kvm_x86_ops->get_gdt(vcpu, &dt);
6320         put_smstate(u32, buf, 0x7e64, dt.size);
6321         put_smstate(u64, buf, 0x7e68, dt.address);
6322
6323         for (i = 0; i < 6; i++)
6324                 process_smi_save_seg_64(vcpu, buf, i);
6325 #else
6326         WARN_ON_ONCE(1);
6327 #endif
6328 }
6329
6330 static void process_smi(struct kvm_vcpu *vcpu)
6331 {
6332         struct kvm_segment cs, ds;
6333         char buf[512];
6334         u32 cr0;
6335
6336         if (is_smm(vcpu)) {
6337                 vcpu->arch.smi_pending = true;
6338                 return;
6339         }
6340
6341         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6342         vcpu->arch.hflags |= HF_SMM_MASK;
6343         memset(buf, 0, 512);
6344         if (guest_cpuid_has_longmode(vcpu))
6345                 process_smi_save_state_64(vcpu, buf);
6346         else
6347                 process_smi_save_state_32(vcpu, buf);
6348
6349         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6350
6351         if (kvm_x86_ops->get_nmi_mask(vcpu))
6352                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6353         else
6354                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6355
6356         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6357         kvm_rip_write(vcpu, 0x8000);
6358
6359         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6360         kvm_x86_ops->set_cr0(vcpu, cr0);
6361         vcpu->arch.cr0 = cr0;
6362
6363         kvm_x86_ops->set_cr4(vcpu, 0);
6364
6365         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6366
6367         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6368         cs.base = vcpu->arch.smbase;
6369
6370         ds.selector = 0;
6371         ds.base = 0;
6372
6373         cs.limit    = ds.limit = 0xffffffff;
6374         cs.type     = ds.type = 0x3;
6375         cs.dpl      = ds.dpl = 0;
6376         cs.db       = ds.db = 0;
6377         cs.s        = ds.s = 1;
6378         cs.l        = ds.l = 0;
6379         cs.g        = ds.g = 1;
6380         cs.avl      = ds.avl = 0;
6381         cs.present  = ds.present = 1;
6382         cs.unusable = ds.unusable = 0;
6383         cs.padding  = ds.padding = 0;
6384
6385         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6386         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6387         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6388         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6389         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6390         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6391
6392         if (guest_cpuid_has_longmode(vcpu))
6393                 kvm_x86_ops->set_efer(vcpu, 0);
6394
6395         kvm_update_cpuid(vcpu);
6396         kvm_mmu_reset_context(vcpu);
6397 }
6398
6399 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6400 {
6401         u64 eoi_exit_bitmap[4];
6402         u32 tmr[8];
6403
6404         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6405                 return;
6406
6407         memset(eoi_exit_bitmap, 0, 32);
6408         memset(tmr, 0, 32);
6409
6410         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6411         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6412         kvm_apic_update_tmr(vcpu, tmr);
6413 }
6414
6415 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6416 {
6417         ++vcpu->stat.tlb_flush;
6418         kvm_x86_ops->tlb_flush(vcpu);
6419 }
6420
6421 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6422 {
6423         struct page *page = NULL;
6424
6425         if (!irqchip_in_kernel(vcpu->kvm))
6426                 return;
6427
6428         if (!kvm_x86_ops->set_apic_access_page_addr)
6429                 return;
6430
6431         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6432         if (is_error_page(page))
6433                 return;
6434         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6435
6436         /*
6437          * Do not pin apic access page in memory, the MMU notifier
6438          * will call us again if it is migrated or swapped out.
6439          */
6440         put_page(page);
6441 }
6442 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6443
6444 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6445                                            unsigned long address)
6446 {
6447         /*
6448          * The physical address of apic access page is stored in the VMCS.
6449          * Update it when it becomes invalid.
6450          */
6451         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6452                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6453 }
6454
6455 /*
6456  * Returns 1 to let vcpu_run() continue the guest execution loop without
6457  * exiting to the userspace.  Otherwise, the value will be returned to the
6458  * userspace.
6459  */
6460 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6461 {
6462         int r;
6463         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6464                 vcpu->run->request_interrupt_window;
6465         bool req_immediate_exit = false;
6466
6467         if (vcpu->requests) {
6468                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6469                         kvm_mmu_unload(vcpu);
6470                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6471                         __kvm_migrate_timers(vcpu);
6472                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6473                         kvm_gen_update_masterclock(vcpu->kvm);
6474                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6475                         kvm_gen_kvmclock_update(vcpu);
6476                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6477                         r = kvm_guest_time_update(vcpu);
6478                         if (unlikely(r))
6479                                 goto out;
6480                 }
6481                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6482                         kvm_mmu_sync_roots(vcpu);
6483                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6484                         kvm_vcpu_flush_tlb(vcpu);
6485                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6486                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6487                         r = 0;
6488                         goto out;
6489                 }
6490                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6491                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6492                         r = 0;
6493                         goto out;
6494                 }
6495                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6496                         vcpu->fpu_active = 0;
6497                         kvm_x86_ops->fpu_deactivate(vcpu);
6498                 }
6499                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6500                         /* Page is swapped out. Do synthetic halt */
6501                         vcpu->arch.apf.halted = true;
6502                         r = 1;
6503                         goto out;
6504                 }
6505                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6506                         record_steal_time(vcpu);
6507                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6508                         process_smi(vcpu);
6509                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6510                         process_nmi(vcpu);
6511                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6512                         kvm_pmu_handle_event(vcpu);
6513                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6514                         kvm_pmu_deliver_pmi(vcpu);
6515                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6516                         vcpu_scan_ioapic(vcpu);
6517                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6518                         kvm_vcpu_reload_apic_access_page(vcpu);
6519         }
6520
6521         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6522                 kvm_apic_accept_events(vcpu);
6523                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6524                         r = 1;
6525                         goto out;
6526                 }
6527
6528                 if (inject_pending_event(vcpu, req_int_win) != 0)
6529                         req_immediate_exit = true;
6530                 /* enable NMI/IRQ window open exits if needed */
6531                 else if (vcpu->arch.nmi_pending)
6532                         kvm_x86_ops->enable_nmi_window(vcpu);
6533                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6534                         kvm_x86_ops->enable_irq_window(vcpu);
6535
6536                 if (kvm_lapic_enabled(vcpu)) {
6537                         /*
6538                          * Update architecture specific hints for APIC
6539                          * virtual interrupt delivery.
6540                          */
6541                         if (kvm_x86_ops->hwapic_irr_update)
6542                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6543                                         kvm_lapic_find_highest_irr(vcpu));
6544                         update_cr8_intercept(vcpu);
6545                         kvm_lapic_sync_to_vapic(vcpu);
6546                 }
6547         }
6548
6549         r = kvm_mmu_reload(vcpu);
6550         if (unlikely(r)) {
6551                 goto cancel_injection;
6552         }
6553
6554         preempt_disable();
6555
6556         kvm_x86_ops->prepare_guest_switch(vcpu);
6557         if (vcpu->fpu_active)
6558                 kvm_load_guest_fpu(vcpu);
6559         kvm_load_guest_xcr0(vcpu);
6560
6561         vcpu->mode = IN_GUEST_MODE;
6562
6563         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6564
6565         /* We should set ->mode before check ->requests,
6566          * see the comment in make_all_cpus_request.
6567          */
6568         smp_mb__after_srcu_read_unlock();
6569
6570         local_irq_disable();
6571
6572         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6573             || need_resched() || signal_pending(current)) {
6574                 vcpu->mode = OUTSIDE_GUEST_MODE;
6575                 smp_wmb();
6576                 local_irq_enable();
6577                 preempt_enable();
6578                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6579                 r = 1;
6580                 goto cancel_injection;
6581         }
6582
6583         if (req_immediate_exit)
6584                 smp_send_reschedule(vcpu->cpu);
6585
6586         __kvm_guest_enter();
6587
6588         if (unlikely(vcpu->arch.switch_db_regs)) {
6589                 set_debugreg(0, 7);
6590                 set_debugreg(vcpu->arch.eff_db[0], 0);
6591                 set_debugreg(vcpu->arch.eff_db[1], 1);
6592                 set_debugreg(vcpu->arch.eff_db[2], 2);
6593                 set_debugreg(vcpu->arch.eff_db[3], 3);
6594                 set_debugreg(vcpu->arch.dr6, 6);
6595                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6596         }
6597
6598         trace_kvm_entry(vcpu->vcpu_id);
6599         wait_lapic_expire(vcpu);
6600         kvm_x86_ops->run(vcpu);
6601
6602         /*
6603          * Do this here before restoring debug registers on the host.  And
6604          * since we do this before handling the vmexit, a DR access vmexit
6605          * can (a) read the correct value of the debug registers, (b) set
6606          * KVM_DEBUGREG_WONT_EXIT again.
6607          */
6608         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6609                 int i;
6610
6611                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6612                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6613                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6614                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6615         }
6616
6617         /*
6618          * If the guest has used debug registers, at least dr7
6619          * will be disabled while returning to the host.
6620          * If we don't have active breakpoints in the host, we don't
6621          * care about the messed up debug address registers. But if
6622          * we have some of them active, restore the old state.
6623          */
6624         if (hw_breakpoint_active())
6625                 hw_breakpoint_restore();
6626
6627         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6628                                                            native_read_tsc());
6629
6630         vcpu->mode = OUTSIDE_GUEST_MODE;
6631         smp_wmb();
6632
6633         /* Interrupt is enabled by handle_external_intr() */
6634         kvm_x86_ops->handle_external_intr(vcpu);
6635
6636         ++vcpu->stat.exits;
6637
6638         /*
6639          * We must have an instruction between local_irq_enable() and
6640          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6641          * the interrupt shadow.  The stat.exits increment will do nicely.
6642          * But we need to prevent reordering, hence this barrier():
6643          */
6644         barrier();
6645
6646         kvm_guest_exit();
6647
6648         preempt_enable();
6649
6650         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6651
6652         /*
6653          * Profile KVM exit RIPs:
6654          */
6655         if (unlikely(prof_on == KVM_PROFILING)) {
6656                 unsigned long rip = kvm_rip_read(vcpu);
6657                 profile_hit(KVM_PROFILING, (void *)rip);
6658         }
6659
6660         if (unlikely(vcpu->arch.tsc_always_catchup))
6661                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6662
6663         if (vcpu->arch.apic_attention)
6664                 kvm_lapic_sync_from_vapic(vcpu);
6665
6666         r = kvm_x86_ops->handle_exit(vcpu);
6667         return r;
6668
6669 cancel_injection:
6670         kvm_x86_ops->cancel_injection(vcpu);
6671         if (unlikely(vcpu->arch.apic_attention))
6672                 kvm_lapic_sync_from_vapic(vcpu);
6673 out:
6674         return r;
6675 }
6676
6677 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6678 {
6679         if (!kvm_arch_vcpu_runnable(vcpu)) {
6680                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6681                 kvm_vcpu_block(vcpu);
6682                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6683                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6684                         return 1;
6685         }
6686
6687         kvm_apic_accept_events(vcpu);
6688         switch(vcpu->arch.mp_state) {
6689         case KVM_MP_STATE_HALTED:
6690                 vcpu->arch.pv.pv_unhalted = false;
6691                 vcpu->arch.mp_state =
6692                         KVM_MP_STATE_RUNNABLE;
6693         case KVM_MP_STATE_RUNNABLE:
6694                 vcpu->arch.apf.halted = false;
6695                 break;
6696         case KVM_MP_STATE_INIT_RECEIVED:
6697                 break;
6698         default:
6699                 return -EINTR;
6700                 break;
6701         }
6702         return 1;
6703 }
6704
6705 static int vcpu_run(struct kvm_vcpu *vcpu)
6706 {
6707         int r;
6708         struct kvm *kvm = vcpu->kvm;
6709
6710         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6711
6712         for (;;) {
6713                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6714                     !vcpu->arch.apf.halted)
6715                         r = vcpu_enter_guest(vcpu);
6716                 else
6717                         r = vcpu_block(kvm, vcpu);
6718                 if (r <= 0)
6719                         break;
6720
6721                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6722                 if (kvm_cpu_has_pending_timer(vcpu))
6723                         kvm_inject_pending_timer_irqs(vcpu);
6724
6725                 if (dm_request_for_irq_injection(vcpu)) {
6726                         r = -EINTR;
6727                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6728                         ++vcpu->stat.request_irq_exits;
6729                         break;
6730                 }
6731
6732                 kvm_check_async_pf_completion(vcpu);
6733
6734                 if (signal_pending(current)) {
6735                         r = -EINTR;
6736                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6737                         ++vcpu->stat.signal_exits;
6738                         break;
6739                 }
6740                 if (need_resched()) {
6741                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6742                         cond_resched();
6743                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6744                 }
6745         }
6746
6747         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6748
6749         return r;
6750 }
6751
6752 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6753 {
6754         int r;
6755         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6756         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6757         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6758         if (r != EMULATE_DONE)
6759                 return 0;
6760         return 1;
6761 }
6762
6763 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6764 {
6765         BUG_ON(!vcpu->arch.pio.count);
6766
6767         return complete_emulated_io(vcpu);
6768 }
6769
6770 /*
6771  * Implements the following, as a state machine:
6772  *
6773  * read:
6774  *   for each fragment
6775  *     for each mmio piece in the fragment
6776  *       write gpa, len
6777  *       exit
6778  *       copy data
6779  *   execute insn
6780  *
6781  * write:
6782  *   for each fragment
6783  *     for each mmio piece in the fragment
6784  *       write gpa, len
6785  *       copy data
6786  *       exit
6787  */
6788 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6789 {
6790         struct kvm_run *run = vcpu->run;
6791         struct kvm_mmio_fragment *frag;
6792         unsigned len;
6793
6794         BUG_ON(!vcpu->mmio_needed);
6795
6796         /* Complete previous fragment */
6797         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6798         len = min(8u, frag->len);
6799         if (!vcpu->mmio_is_write)
6800                 memcpy(frag->data, run->mmio.data, len);
6801
6802         if (frag->len <= 8) {
6803                 /* Switch to the next fragment. */
6804                 frag++;
6805                 vcpu->mmio_cur_fragment++;
6806         } else {
6807                 /* Go forward to the next mmio piece. */
6808                 frag->data += len;
6809                 frag->gpa += len;
6810                 frag->len -= len;
6811         }
6812
6813         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6814                 vcpu->mmio_needed = 0;
6815
6816                 /* FIXME: return into emulator if single-stepping.  */
6817                 if (vcpu->mmio_is_write)
6818                         return 1;
6819                 vcpu->mmio_read_completed = 1;
6820                 return complete_emulated_io(vcpu);
6821         }
6822
6823         run->exit_reason = KVM_EXIT_MMIO;
6824         run->mmio.phys_addr = frag->gpa;
6825         if (vcpu->mmio_is_write)
6826                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6827         run->mmio.len = min(8u, frag->len);
6828         run->mmio.is_write = vcpu->mmio_is_write;
6829         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6830         return 0;
6831 }
6832
6833
6834 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6835 {
6836         struct fpu *fpu = &current->thread.fpu;
6837         int r;
6838         sigset_t sigsaved;
6839
6840         fpu__activate_curr(fpu);
6841
6842         if (vcpu->sigset_active)
6843                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6844
6845         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6846                 kvm_vcpu_block(vcpu);
6847                 kvm_apic_accept_events(vcpu);
6848                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6849                 r = -EAGAIN;
6850                 goto out;
6851         }
6852
6853         /* re-sync apic's tpr */
6854         if (!irqchip_in_kernel(vcpu->kvm)) {
6855                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6856                         r = -EINVAL;
6857                         goto out;
6858                 }
6859         }
6860
6861         if (unlikely(vcpu->arch.complete_userspace_io)) {
6862                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6863                 vcpu->arch.complete_userspace_io = NULL;
6864                 r = cui(vcpu);
6865                 if (r <= 0)
6866                         goto out;
6867         } else
6868                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6869
6870         r = vcpu_run(vcpu);
6871
6872 out:
6873         post_kvm_run_save(vcpu);
6874         if (vcpu->sigset_active)
6875                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6876
6877         return r;
6878 }
6879
6880 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6881 {
6882         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6883                 /*
6884                  * We are here if userspace calls get_regs() in the middle of
6885                  * instruction emulation. Registers state needs to be copied
6886                  * back from emulation context to vcpu. Userspace shouldn't do
6887                  * that usually, but some bad designed PV devices (vmware
6888                  * backdoor interface) need this to work
6889                  */
6890                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6891                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6892         }
6893         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6894         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6895         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6896         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6897         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6898         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6899         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6900         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6901 #ifdef CONFIG_X86_64
6902         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6903         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6904         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6905         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6906         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6907         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6908         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6909         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6910 #endif
6911
6912         regs->rip = kvm_rip_read(vcpu);
6913         regs->rflags = kvm_get_rflags(vcpu);
6914
6915         return 0;
6916 }
6917
6918 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6919 {
6920         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6921         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6922
6923         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6924         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6925         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6926         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6927         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6928         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6929         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6930         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6931 #ifdef CONFIG_X86_64
6932         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6933         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6934         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6935         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6936         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6937         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6938         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6939         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6940 #endif
6941
6942         kvm_rip_write(vcpu, regs->rip);
6943         kvm_set_rflags(vcpu, regs->rflags);
6944
6945         vcpu->arch.exception.pending = false;
6946
6947         kvm_make_request(KVM_REQ_EVENT, vcpu);
6948
6949         return 0;
6950 }
6951
6952 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6953 {
6954         struct kvm_segment cs;
6955
6956         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6957         *db = cs.db;
6958         *l = cs.l;
6959 }
6960 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6961
6962 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6963                                   struct kvm_sregs *sregs)
6964 {
6965         struct desc_ptr dt;
6966
6967         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6968         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6969         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6970         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6971         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6972         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6973
6974         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6975         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6976
6977         kvm_x86_ops->get_idt(vcpu, &dt);
6978         sregs->idt.limit = dt.size;
6979         sregs->idt.base = dt.address;
6980         kvm_x86_ops->get_gdt(vcpu, &dt);
6981         sregs->gdt.limit = dt.size;
6982         sregs->gdt.base = dt.address;
6983
6984         sregs->cr0 = kvm_read_cr0(vcpu);
6985         sregs->cr2 = vcpu->arch.cr2;
6986         sregs->cr3 = kvm_read_cr3(vcpu);
6987         sregs->cr4 = kvm_read_cr4(vcpu);
6988         sregs->cr8 = kvm_get_cr8(vcpu);
6989         sregs->efer = vcpu->arch.efer;
6990         sregs->apic_base = kvm_get_apic_base(vcpu);
6991
6992         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6993
6994         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6995                 set_bit(vcpu->arch.interrupt.nr,
6996                         (unsigned long *)sregs->interrupt_bitmap);
6997
6998         return 0;
6999 }
7000
7001 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7002                                     struct kvm_mp_state *mp_state)
7003 {
7004         kvm_apic_accept_events(vcpu);
7005         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7006                                         vcpu->arch.pv.pv_unhalted)
7007                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7008         else
7009                 mp_state->mp_state = vcpu->arch.mp_state;
7010
7011         return 0;
7012 }
7013
7014 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7015                                     struct kvm_mp_state *mp_state)
7016 {
7017         if (!kvm_vcpu_has_lapic(vcpu) &&
7018             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7019                 return -EINVAL;
7020
7021         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7022                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7023                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7024         } else
7025                 vcpu->arch.mp_state = mp_state->mp_state;
7026         kvm_make_request(KVM_REQ_EVENT, vcpu);
7027         return 0;
7028 }
7029
7030 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7031                     int reason, bool has_error_code, u32 error_code)
7032 {
7033         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7034         int ret;
7035
7036         init_emulate_ctxt(vcpu);
7037
7038         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7039                                    has_error_code, error_code);
7040
7041         if (ret)
7042                 return EMULATE_FAIL;
7043
7044         kvm_rip_write(vcpu, ctxt->eip);
7045         kvm_set_rflags(vcpu, ctxt->eflags);
7046         kvm_make_request(KVM_REQ_EVENT, vcpu);
7047         return EMULATE_DONE;
7048 }
7049 EXPORT_SYMBOL_GPL(kvm_task_switch);
7050
7051 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7052                                   struct kvm_sregs *sregs)
7053 {
7054         struct msr_data apic_base_msr;
7055         int mmu_reset_needed = 0;
7056         int pending_vec, max_bits, idx;
7057         struct desc_ptr dt;
7058
7059         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7060                 return -EINVAL;
7061
7062         dt.size = sregs->idt.limit;
7063         dt.address = sregs->idt.base;
7064         kvm_x86_ops->set_idt(vcpu, &dt);
7065         dt.size = sregs->gdt.limit;
7066         dt.address = sregs->gdt.base;
7067         kvm_x86_ops->set_gdt(vcpu, &dt);
7068
7069         vcpu->arch.cr2 = sregs->cr2;
7070         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7071         vcpu->arch.cr3 = sregs->cr3;
7072         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7073
7074         kvm_set_cr8(vcpu, sregs->cr8);
7075
7076         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7077         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7078         apic_base_msr.data = sregs->apic_base;
7079         apic_base_msr.host_initiated = true;
7080         kvm_set_apic_base(vcpu, &apic_base_msr);
7081
7082         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7083         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7084         vcpu->arch.cr0 = sregs->cr0;
7085
7086         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7087         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7088         if (sregs->cr4 & X86_CR4_OSXSAVE)
7089                 kvm_update_cpuid(vcpu);
7090
7091         idx = srcu_read_lock(&vcpu->kvm->srcu);
7092         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7093                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7094                 mmu_reset_needed = 1;
7095         }
7096         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7097
7098         if (mmu_reset_needed)
7099                 kvm_mmu_reset_context(vcpu);
7100
7101         max_bits = KVM_NR_INTERRUPTS;
7102         pending_vec = find_first_bit(
7103                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7104         if (pending_vec < max_bits) {
7105                 kvm_queue_interrupt(vcpu, pending_vec, false);
7106                 pr_debug("Set back pending irq %d\n", pending_vec);
7107         }
7108
7109         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7110         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7111         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7112         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7113         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7114         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7115
7116         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7117         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7118
7119         update_cr8_intercept(vcpu);
7120
7121         /* Older userspace won't unhalt the vcpu on reset. */
7122         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7123             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7124             !is_protmode(vcpu))
7125                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7126
7127         kvm_make_request(KVM_REQ_EVENT, vcpu);
7128
7129         return 0;
7130 }
7131
7132 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7133                                         struct kvm_guest_debug *dbg)
7134 {
7135         unsigned long rflags;
7136         int i, r;
7137
7138         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7139                 r = -EBUSY;
7140                 if (vcpu->arch.exception.pending)
7141                         goto out;
7142                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7143                         kvm_queue_exception(vcpu, DB_VECTOR);
7144                 else
7145                         kvm_queue_exception(vcpu, BP_VECTOR);
7146         }
7147
7148         /*
7149          * Read rflags as long as potentially injected trace flags are still
7150          * filtered out.
7151          */
7152         rflags = kvm_get_rflags(vcpu);
7153
7154         vcpu->guest_debug = dbg->control;
7155         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7156                 vcpu->guest_debug = 0;
7157
7158         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7159                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7160                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7161                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7162         } else {
7163                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7164                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7165         }
7166         kvm_update_dr7(vcpu);
7167
7168         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7169                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7170                         get_segment_base(vcpu, VCPU_SREG_CS);
7171
7172         /*
7173          * Trigger an rflags update that will inject or remove the trace
7174          * flags.
7175          */
7176         kvm_set_rflags(vcpu, rflags);
7177
7178         kvm_x86_ops->update_db_bp_intercept(vcpu);
7179
7180         r = 0;
7181
7182 out:
7183
7184         return r;
7185 }
7186
7187 /*
7188  * Translate a guest virtual address to a guest physical address.
7189  */
7190 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7191                                     struct kvm_translation *tr)
7192 {
7193         unsigned long vaddr = tr->linear_address;
7194         gpa_t gpa;
7195         int idx;
7196
7197         idx = srcu_read_lock(&vcpu->kvm->srcu);
7198         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7199         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7200         tr->physical_address = gpa;
7201         tr->valid = gpa != UNMAPPED_GVA;
7202         tr->writeable = 1;
7203         tr->usermode = 0;
7204
7205         return 0;
7206 }
7207
7208 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7209 {
7210         struct fxregs_state *fxsave =
7211                         &vcpu->arch.guest_fpu.state.fxsave;
7212
7213         memcpy(fpu->fpr, fxsave->st_space, 128);
7214         fpu->fcw = fxsave->cwd;
7215         fpu->fsw = fxsave->swd;
7216         fpu->ftwx = fxsave->twd;
7217         fpu->last_opcode = fxsave->fop;
7218         fpu->last_ip = fxsave->rip;
7219         fpu->last_dp = fxsave->rdp;
7220         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7221
7222         return 0;
7223 }
7224
7225 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7226 {
7227         struct fxregs_state *fxsave =
7228                         &vcpu->arch.guest_fpu.state.fxsave;
7229
7230         memcpy(fxsave->st_space, fpu->fpr, 128);
7231         fxsave->cwd = fpu->fcw;
7232         fxsave->swd = fpu->fsw;
7233         fxsave->twd = fpu->ftwx;
7234         fxsave->fop = fpu->last_opcode;
7235         fxsave->rip = fpu->last_ip;
7236         fxsave->rdp = fpu->last_dp;
7237         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7238
7239         return 0;
7240 }
7241
7242 static void fx_init(struct kvm_vcpu *vcpu)
7243 {
7244         fpstate_init(&vcpu->arch.guest_fpu.state);
7245         if (cpu_has_xsaves)
7246                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7247                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7248
7249         /*
7250          * Ensure guest xcr0 is valid for loading
7251          */
7252         vcpu->arch.xcr0 = XSTATE_FP;
7253
7254         vcpu->arch.cr0 |= X86_CR0_ET;
7255 }
7256
7257 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7258 {
7259         if (vcpu->guest_fpu_loaded)
7260                 return;
7261
7262         /*
7263          * Restore all possible states in the guest,
7264          * and assume host would use all available bits.
7265          * Guest xcr0 would be loaded later.
7266          */
7267         kvm_put_guest_xcr0(vcpu);
7268         vcpu->guest_fpu_loaded = 1;
7269         __kernel_fpu_begin();
7270         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7271         trace_kvm_fpu(1);
7272 }
7273
7274 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7275 {
7276         kvm_put_guest_xcr0(vcpu);
7277
7278         if (!vcpu->guest_fpu_loaded) {
7279                 vcpu->fpu_counter = 0;
7280                 return;
7281         }
7282
7283         vcpu->guest_fpu_loaded = 0;
7284         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7285         __kernel_fpu_end();
7286         ++vcpu->stat.fpu_reload;
7287         /*
7288          * If using eager FPU mode, or if the guest is a frequent user
7289          * of the FPU, just leave the FPU active for next time.
7290          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7291          * the FPU in bursts will revert to loading it on demand.
7292          */
7293         if (!vcpu->arch.eager_fpu) {
7294                 if (++vcpu->fpu_counter < 5)
7295                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7296         }
7297         trace_kvm_fpu(0);
7298 }
7299
7300 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7301 {
7302         kvmclock_reset(vcpu);
7303
7304         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7305         kvm_x86_ops->vcpu_free(vcpu);
7306 }
7307
7308 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7309                                                 unsigned int id)
7310 {
7311         struct kvm_vcpu *vcpu;
7312
7313         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7314                 printk_once(KERN_WARNING
7315                 "kvm: SMP vm created on host with unstable TSC; "
7316                 "guest TSC will not be reliable\n");
7317
7318         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7319
7320         /*
7321          * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
7322          * deactivated soon if it doesn't.
7323          */
7324         kvm_x86_ops->fpu_activate(vcpu);
7325         return vcpu;
7326 }
7327
7328 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7329 {
7330         int r;
7331
7332         kvm_vcpu_mtrr_init(vcpu);
7333         r = vcpu_load(vcpu);
7334         if (r)
7335                 return r;
7336         kvm_vcpu_reset(vcpu, false);
7337         kvm_mmu_setup(vcpu);
7338         vcpu_put(vcpu);
7339         return r;
7340 }
7341
7342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7343 {
7344         struct msr_data msr;
7345         struct kvm *kvm = vcpu->kvm;
7346
7347         if (vcpu_load(vcpu))
7348                 return;
7349         msr.data = 0x0;
7350         msr.index = MSR_IA32_TSC;
7351         msr.host_initiated = true;
7352         kvm_write_tsc(vcpu, &msr);
7353         vcpu_put(vcpu);
7354
7355         if (!kvmclock_periodic_sync)
7356                 return;
7357
7358         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7359                                         KVMCLOCK_SYNC_PERIOD);
7360 }
7361
7362 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7363 {
7364         int r;
7365         vcpu->arch.apf.msr_val = 0;
7366
7367         r = vcpu_load(vcpu);
7368         BUG_ON(r);
7369         kvm_mmu_unload(vcpu);
7370         vcpu_put(vcpu);
7371
7372         kvm_x86_ops->vcpu_free(vcpu);
7373 }
7374
7375 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7376 {
7377         vcpu->arch.hflags = 0;
7378
7379         atomic_set(&vcpu->arch.nmi_queued, 0);
7380         vcpu->arch.nmi_pending = 0;
7381         vcpu->arch.nmi_injected = false;
7382         kvm_clear_interrupt_queue(vcpu);
7383         kvm_clear_exception_queue(vcpu);
7384
7385         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7386         kvm_update_dr0123(vcpu);
7387         vcpu->arch.dr6 = DR6_INIT;
7388         kvm_update_dr6(vcpu);
7389         vcpu->arch.dr7 = DR7_FIXED_1;
7390         kvm_update_dr7(vcpu);
7391
7392         vcpu->arch.cr2 = 0;
7393
7394         kvm_make_request(KVM_REQ_EVENT, vcpu);
7395         vcpu->arch.apf.msr_val = 0;
7396         vcpu->arch.st.msr_val = 0;
7397
7398         kvmclock_reset(vcpu);
7399
7400         kvm_clear_async_pf_completion_queue(vcpu);
7401         kvm_async_pf_hash_reset(vcpu);
7402         vcpu->arch.apf.halted = false;
7403
7404         if (!init_event) {
7405                 kvm_pmu_reset(vcpu);
7406                 vcpu->arch.smbase = 0x30000;
7407         }
7408
7409         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7410         vcpu->arch.regs_avail = ~0;
7411         vcpu->arch.regs_dirty = ~0;
7412
7413         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7414 }
7415
7416 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7417 {
7418         struct kvm_segment cs;
7419
7420         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7421         cs.selector = vector << 8;
7422         cs.base = vector << 12;
7423         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7424         kvm_rip_write(vcpu, 0);
7425 }
7426
7427 int kvm_arch_hardware_enable(void)
7428 {
7429         struct kvm *kvm;
7430         struct kvm_vcpu *vcpu;
7431         int i;
7432         int ret;
7433         u64 local_tsc;
7434         u64 max_tsc = 0;
7435         bool stable, backwards_tsc = false;
7436
7437         kvm_shared_msr_cpu_online();
7438         ret = kvm_x86_ops->hardware_enable();
7439         if (ret != 0)
7440                 return ret;
7441
7442         local_tsc = native_read_tsc();
7443         stable = !check_tsc_unstable();
7444         list_for_each_entry(kvm, &vm_list, vm_list) {
7445                 kvm_for_each_vcpu(i, vcpu, kvm) {
7446                         if (!stable && vcpu->cpu == smp_processor_id())
7447                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7448                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7449                                 backwards_tsc = true;
7450                                 if (vcpu->arch.last_host_tsc > max_tsc)
7451                                         max_tsc = vcpu->arch.last_host_tsc;
7452                         }
7453                 }
7454         }
7455
7456         /*
7457          * Sometimes, even reliable TSCs go backwards.  This happens on
7458          * platforms that reset TSC during suspend or hibernate actions, but
7459          * maintain synchronization.  We must compensate.  Fortunately, we can
7460          * detect that condition here, which happens early in CPU bringup,
7461          * before any KVM threads can be running.  Unfortunately, we can't
7462          * bring the TSCs fully up to date with real time, as we aren't yet far
7463          * enough into CPU bringup that we know how much real time has actually
7464          * elapsed; our helper function, get_kernel_ns() will be using boot
7465          * variables that haven't been updated yet.
7466          *
7467          * So we simply find the maximum observed TSC above, then record the
7468          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7469          * the adjustment will be applied.  Note that we accumulate
7470          * adjustments, in case multiple suspend cycles happen before some VCPU
7471          * gets a chance to run again.  In the event that no KVM threads get a
7472          * chance to run, we will miss the entire elapsed period, as we'll have
7473          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7474          * loose cycle time.  This isn't too big a deal, since the loss will be
7475          * uniform across all VCPUs (not to mention the scenario is extremely
7476          * unlikely). It is possible that a second hibernate recovery happens
7477          * much faster than a first, causing the observed TSC here to be
7478          * smaller; this would require additional padding adjustment, which is
7479          * why we set last_host_tsc to the local tsc observed here.
7480          *
7481          * N.B. - this code below runs only on platforms with reliable TSC,
7482          * as that is the only way backwards_tsc is set above.  Also note
7483          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7484          * have the same delta_cyc adjustment applied if backwards_tsc
7485          * is detected.  Note further, this adjustment is only done once,
7486          * as we reset last_host_tsc on all VCPUs to stop this from being
7487          * called multiple times (one for each physical CPU bringup).
7488          *
7489          * Platforms with unreliable TSCs don't have to deal with this, they
7490          * will be compensated by the logic in vcpu_load, which sets the TSC to
7491          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7492          * guarantee that they stay in perfect synchronization.
7493          */
7494         if (backwards_tsc) {
7495                 u64 delta_cyc = max_tsc - local_tsc;
7496                 backwards_tsc_observed = true;
7497                 list_for_each_entry(kvm, &vm_list, vm_list) {
7498                         kvm_for_each_vcpu(i, vcpu, kvm) {
7499                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7500                                 vcpu->arch.last_host_tsc = local_tsc;
7501                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7502                         }
7503
7504                         /*
7505                          * We have to disable TSC offset matching.. if you were
7506                          * booting a VM while issuing an S4 host suspend....
7507                          * you may have some problem.  Solving this issue is
7508                          * left as an exercise to the reader.
7509                          */
7510                         kvm->arch.last_tsc_nsec = 0;
7511                         kvm->arch.last_tsc_write = 0;
7512                 }
7513
7514         }
7515         return 0;
7516 }
7517
7518 void kvm_arch_hardware_disable(void)
7519 {
7520         kvm_x86_ops->hardware_disable();
7521         drop_user_return_notifiers();
7522 }
7523
7524 int kvm_arch_hardware_setup(void)
7525 {
7526         int r;
7527
7528         r = kvm_x86_ops->hardware_setup();
7529         if (r != 0)
7530                 return r;
7531
7532         kvm_init_msr_list();
7533         return 0;
7534 }
7535
7536 void kvm_arch_hardware_unsetup(void)
7537 {
7538         kvm_x86_ops->hardware_unsetup();
7539 }
7540
7541 void kvm_arch_check_processor_compat(void *rtn)
7542 {
7543         kvm_x86_ops->check_processor_compatibility(rtn);
7544 }
7545
7546 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7547 {
7548         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7549 }
7550
7551 struct static_key kvm_no_apic_vcpu __read_mostly;
7552
7553 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7554 {
7555         struct page *page;
7556         struct kvm *kvm;
7557         int r;
7558
7559         BUG_ON(vcpu->kvm == NULL);
7560         kvm = vcpu->kvm;
7561
7562         vcpu->arch.pv.pv_unhalted = false;
7563         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7564         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7565                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7566         else
7567                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7568
7569         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7570         if (!page) {
7571                 r = -ENOMEM;
7572                 goto fail;
7573         }
7574         vcpu->arch.pio_data = page_address(page);
7575
7576         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7577
7578         r = kvm_mmu_create(vcpu);
7579         if (r < 0)
7580                 goto fail_free_pio_data;
7581
7582         if (irqchip_in_kernel(kvm)) {
7583                 r = kvm_create_lapic(vcpu);
7584                 if (r < 0)
7585                         goto fail_mmu_destroy;
7586         } else
7587                 static_key_slow_inc(&kvm_no_apic_vcpu);
7588
7589         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7590                                        GFP_KERNEL);
7591         if (!vcpu->arch.mce_banks) {
7592                 r = -ENOMEM;
7593                 goto fail_free_lapic;
7594         }
7595         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7596
7597         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7598                 r = -ENOMEM;
7599                 goto fail_free_mce_banks;
7600         }
7601
7602         fx_init(vcpu);
7603
7604         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7605         vcpu->arch.pv_time_enabled = false;
7606
7607         vcpu->arch.guest_supported_xcr0 = 0;
7608         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7609
7610         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7611
7612         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7613
7614         kvm_async_pf_hash_reset(vcpu);
7615         kvm_pmu_init(vcpu);
7616
7617         return 0;
7618
7619 fail_free_mce_banks:
7620         kfree(vcpu->arch.mce_banks);
7621 fail_free_lapic:
7622         kvm_free_lapic(vcpu);
7623 fail_mmu_destroy:
7624         kvm_mmu_destroy(vcpu);
7625 fail_free_pio_data:
7626         free_page((unsigned long)vcpu->arch.pio_data);
7627 fail:
7628         return r;
7629 }
7630
7631 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7632 {
7633         int idx;
7634
7635         kvm_pmu_destroy(vcpu);
7636         kfree(vcpu->arch.mce_banks);
7637         kvm_free_lapic(vcpu);
7638         idx = srcu_read_lock(&vcpu->kvm->srcu);
7639         kvm_mmu_destroy(vcpu);
7640         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7641         free_page((unsigned long)vcpu->arch.pio_data);
7642         if (!irqchip_in_kernel(vcpu->kvm))
7643                 static_key_slow_dec(&kvm_no_apic_vcpu);
7644 }
7645
7646 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7647 {
7648         kvm_x86_ops->sched_in(vcpu, cpu);
7649 }
7650
7651 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7652 {
7653         if (type)
7654                 return -EINVAL;
7655
7656         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7657         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7658         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7659         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7660         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7661
7662         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7663         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7664         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7665         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7666                 &kvm->arch.irq_sources_bitmap);
7667
7668         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7669         mutex_init(&kvm->arch.apic_map_lock);
7670         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7671
7672         pvclock_update_vm_gtod_copy(kvm);
7673
7674         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7675         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7676
7677         return 0;
7678 }
7679
7680 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7681 {
7682         int r;
7683         r = vcpu_load(vcpu);
7684         BUG_ON(r);
7685         kvm_mmu_unload(vcpu);
7686         vcpu_put(vcpu);
7687 }
7688
7689 static void kvm_free_vcpus(struct kvm *kvm)
7690 {
7691         unsigned int i;
7692         struct kvm_vcpu *vcpu;
7693
7694         /*
7695          * Unpin any mmu pages first.
7696          */
7697         kvm_for_each_vcpu(i, vcpu, kvm) {
7698                 kvm_clear_async_pf_completion_queue(vcpu);
7699                 kvm_unload_vcpu_mmu(vcpu);
7700         }
7701         kvm_for_each_vcpu(i, vcpu, kvm)
7702                 kvm_arch_vcpu_free(vcpu);
7703
7704         mutex_lock(&kvm->lock);
7705         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7706                 kvm->vcpus[i] = NULL;
7707
7708         atomic_set(&kvm->online_vcpus, 0);
7709         mutex_unlock(&kvm->lock);
7710 }
7711
7712 void kvm_arch_sync_events(struct kvm *kvm)
7713 {
7714         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7715         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7716         kvm_free_all_assigned_devices(kvm);
7717         kvm_free_pit(kvm);
7718 }
7719
7720 int __x86_set_memory_region(struct kvm *kvm,
7721                             const struct kvm_userspace_memory_region *mem)
7722 {
7723         int i, r;
7724
7725         /* Called with kvm->slots_lock held.  */
7726         BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7727
7728         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7729                 struct kvm_userspace_memory_region m = *mem;
7730
7731                 m.slot |= i << 16;
7732                 r = __kvm_set_memory_region(kvm, &m);
7733                 if (r < 0)
7734                         return r;
7735         }
7736
7737         return 0;
7738 }
7739 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7740
7741 int x86_set_memory_region(struct kvm *kvm,
7742                           const struct kvm_userspace_memory_region *mem)
7743 {
7744         int r;
7745
7746         mutex_lock(&kvm->slots_lock);
7747         r = __x86_set_memory_region(kvm, mem);
7748         mutex_unlock(&kvm->slots_lock);
7749
7750         return r;
7751 }
7752 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7753
7754 void kvm_arch_destroy_vm(struct kvm *kvm)
7755 {
7756         if (current->mm == kvm->mm) {
7757                 /*
7758                  * Free memory regions allocated on behalf of userspace,
7759                  * unless the the memory map has changed due to process exit
7760                  * or fd copying.
7761                  */
7762                 struct kvm_userspace_memory_region mem;
7763                 memset(&mem, 0, sizeof(mem));
7764                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7765                 x86_set_memory_region(kvm, &mem);
7766
7767                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7768                 x86_set_memory_region(kvm, &mem);
7769
7770                 mem.slot = TSS_PRIVATE_MEMSLOT;
7771                 x86_set_memory_region(kvm, &mem);
7772         }
7773         kvm_iommu_unmap_guest(kvm);
7774         kfree(kvm->arch.vpic);
7775         kfree(kvm->arch.vioapic);
7776         kvm_free_vcpus(kvm);
7777         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7778 }
7779
7780 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7781                            struct kvm_memory_slot *dont)
7782 {
7783         int i;
7784
7785         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7786                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7787                         kvfree(free->arch.rmap[i]);
7788                         free->arch.rmap[i] = NULL;
7789                 }
7790                 if (i == 0)
7791                         continue;
7792
7793                 if (!dont || free->arch.lpage_info[i - 1] !=
7794                              dont->arch.lpage_info[i - 1]) {
7795                         kvfree(free->arch.lpage_info[i - 1]);
7796                         free->arch.lpage_info[i - 1] = NULL;
7797                 }
7798         }
7799 }
7800
7801 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7802                             unsigned long npages)
7803 {
7804         int i;
7805
7806         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7807                 unsigned long ugfn;
7808                 int lpages;
7809                 int level = i + 1;
7810
7811                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7812                                       slot->base_gfn, level) + 1;
7813
7814                 slot->arch.rmap[i] =
7815                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7816                 if (!slot->arch.rmap[i])
7817                         goto out_free;
7818                 if (i == 0)
7819                         continue;
7820
7821                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7822                                         sizeof(*slot->arch.lpage_info[i - 1]));
7823                 if (!slot->arch.lpage_info[i - 1])
7824                         goto out_free;
7825
7826                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7827                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7828                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7829                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7830                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7831                 /*
7832                  * If the gfn and userspace address are not aligned wrt each
7833                  * other, or if explicitly asked to, disable large page
7834                  * support for this slot
7835                  */
7836                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7837                     !kvm_largepages_enabled()) {
7838                         unsigned long j;
7839
7840                         for (j = 0; j < lpages; ++j)
7841                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7842                 }
7843         }
7844
7845         return 0;
7846
7847 out_free:
7848         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7849                 kvfree(slot->arch.rmap[i]);
7850                 slot->arch.rmap[i] = NULL;
7851                 if (i == 0)
7852                         continue;
7853
7854                 kvfree(slot->arch.lpage_info[i - 1]);
7855                 slot->arch.lpage_info[i - 1] = NULL;
7856         }
7857         return -ENOMEM;
7858 }
7859
7860 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7861 {
7862         /*
7863          * memslots->generation has been incremented.
7864          * mmio generation may have reached its maximum value.
7865          */
7866         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7867 }
7868
7869 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7870                                 struct kvm_memory_slot *memslot,
7871                                 const struct kvm_userspace_memory_region *mem,
7872                                 enum kvm_mr_change change)
7873 {
7874         /*
7875          * Only private memory slots need to be mapped here since
7876          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7877          */
7878         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7879                 unsigned long userspace_addr;
7880
7881                 /*
7882                  * MAP_SHARED to prevent internal slot pages from being moved
7883                  * by fork()/COW.
7884                  */
7885                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7886                                          PROT_READ | PROT_WRITE,
7887                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7888
7889                 if (IS_ERR((void *)userspace_addr))
7890                         return PTR_ERR((void *)userspace_addr);
7891
7892                 memslot->userspace_addr = userspace_addr;
7893         }
7894
7895         return 0;
7896 }
7897
7898 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7899                                      struct kvm_memory_slot *new)
7900 {
7901         /* Still write protect RO slot */
7902         if (new->flags & KVM_MEM_READONLY) {
7903                 kvm_mmu_slot_remove_write_access(kvm, new);
7904                 return;
7905         }
7906
7907         /*
7908          * Call kvm_x86_ops dirty logging hooks when they are valid.
7909          *
7910          * kvm_x86_ops->slot_disable_log_dirty is called when:
7911          *
7912          *  - KVM_MR_CREATE with dirty logging is disabled
7913          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7914          *
7915          * The reason is, in case of PML, we need to set D-bit for any slots
7916          * with dirty logging disabled in order to eliminate unnecessary GPA
7917          * logging in PML buffer (and potential PML buffer full VMEXT). This
7918          * guarantees leaving PML enabled during guest's lifetime won't have
7919          * any additonal overhead from PML when guest is running with dirty
7920          * logging disabled for memory slots.
7921          *
7922          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7923          * to dirty logging mode.
7924          *
7925          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7926          *
7927          * In case of write protect:
7928          *
7929          * Write protect all pages for dirty logging.
7930          *
7931          * All the sptes including the large sptes which point to this
7932          * slot are set to readonly. We can not create any new large
7933          * spte on this slot until the end of the logging.
7934          *
7935          * See the comments in fast_page_fault().
7936          */
7937         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7938                 if (kvm_x86_ops->slot_enable_log_dirty)
7939                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7940                 else
7941                         kvm_mmu_slot_remove_write_access(kvm, new);
7942         } else {
7943                 if (kvm_x86_ops->slot_disable_log_dirty)
7944                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7945         }
7946 }
7947
7948 void kvm_arch_commit_memory_region(struct kvm *kvm,
7949                                 const struct kvm_userspace_memory_region *mem,
7950                                 const struct kvm_memory_slot *old,
7951                                 const struct kvm_memory_slot *new,
7952                                 enum kvm_mr_change change)
7953 {
7954         int nr_mmu_pages = 0;
7955
7956         if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7957                 int ret;
7958
7959                 ret = vm_munmap(old->userspace_addr,
7960                                 old->npages * PAGE_SIZE);
7961                 if (ret < 0)
7962                         printk(KERN_WARNING
7963                                "kvm_vm_ioctl_set_memory_region: "
7964                                "failed to munmap memory\n");
7965         }
7966
7967         if (!kvm->arch.n_requested_mmu_pages)
7968                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7969
7970         if (nr_mmu_pages)
7971                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7972
7973         /*
7974          * Dirty logging tracks sptes in 4k granularity, meaning that large
7975          * sptes have to be split.  If live migration is successful, the guest
7976          * in the source machine will be destroyed and large sptes will be
7977          * created in the destination. However, if the guest continues to run
7978          * in the source machine (for example if live migration fails), small
7979          * sptes will remain around and cause bad performance.
7980          *
7981          * Scan sptes if dirty logging has been stopped, dropping those
7982          * which can be collapsed into a single large-page spte.  Later
7983          * page faults will create the large-page sptes.
7984          */
7985         if ((change != KVM_MR_DELETE) &&
7986                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7987                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7988                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7989
7990         /*
7991          * Set up write protection and/or dirty logging for the new slot.
7992          *
7993          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7994          * been zapped so no dirty logging staff is needed for old slot. For
7995          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7996          * new and it's also covered when dealing with the new slot.
7997          *
7998          * FIXME: const-ify all uses of struct kvm_memory_slot.
7999          */
8000         if (change != KVM_MR_DELETE)
8001                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8002 }
8003
8004 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8005 {
8006         kvm_mmu_invalidate_zap_all_pages(kvm);
8007 }
8008
8009 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8010                                    struct kvm_memory_slot *slot)
8011 {
8012         kvm_mmu_invalidate_zap_all_pages(kvm);
8013 }
8014
8015 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8016 {
8017         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8018                 kvm_x86_ops->check_nested_events(vcpu, false);
8019
8020         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8021                 !vcpu->arch.apf.halted)
8022                 || !list_empty_careful(&vcpu->async_pf.done)
8023                 || kvm_apic_has_events(vcpu)
8024                 || vcpu->arch.pv.pv_unhalted
8025                 || atomic_read(&vcpu->arch.nmi_queued) ||
8026                 (kvm_arch_interrupt_allowed(vcpu) &&
8027                  kvm_cpu_has_interrupt(vcpu));
8028 }
8029
8030 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8031 {
8032         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8033 }
8034
8035 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8036 {
8037         return kvm_x86_ops->interrupt_allowed(vcpu);
8038 }
8039
8040 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8041 {
8042         if (is_64_bit_mode(vcpu))
8043                 return kvm_rip_read(vcpu);
8044         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8045                      kvm_rip_read(vcpu));
8046 }
8047 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8048
8049 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8050 {
8051         return kvm_get_linear_rip(vcpu) == linear_rip;
8052 }
8053 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8054
8055 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8056 {
8057         unsigned long rflags;
8058
8059         rflags = kvm_x86_ops->get_rflags(vcpu);
8060         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8061                 rflags &= ~X86_EFLAGS_TF;
8062         return rflags;
8063 }
8064 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8065
8066 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8067 {
8068         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8069             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8070                 rflags |= X86_EFLAGS_TF;
8071         kvm_x86_ops->set_rflags(vcpu, rflags);
8072 }
8073
8074 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8075 {
8076         __kvm_set_rflags(vcpu, rflags);
8077         kvm_make_request(KVM_REQ_EVENT, vcpu);
8078 }
8079 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8080
8081 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8082 {
8083         int r;
8084
8085         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8086               work->wakeup_all)
8087                 return;
8088
8089         r = kvm_mmu_reload(vcpu);
8090         if (unlikely(r))
8091                 return;
8092
8093         if (!vcpu->arch.mmu.direct_map &&
8094               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8095                 return;
8096
8097         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8098 }
8099
8100 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8101 {
8102         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8103 }
8104
8105 static inline u32 kvm_async_pf_next_probe(u32 key)
8106 {
8107         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8108 }
8109
8110 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8111 {
8112         u32 key = kvm_async_pf_hash_fn(gfn);
8113
8114         while (vcpu->arch.apf.gfns[key] != ~0)
8115                 key = kvm_async_pf_next_probe(key);
8116
8117         vcpu->arch.apf.gfns[key] = gfn;
8118 }
8119
8120 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8121 {
8122         int i;
8123         u32 key = kvm_async_pf_hash_fn(gfn);
8124
8125         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8126                      (vcpu->arch.apf.gfns[key] != gfn &&
8127                       vcpu->arch.apf.gfns[key] != ~0); i++)
8128                 key = kvm_async_pf_next_probe(key);
8129
8130         return key;
8131 }
8132
8133 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8134 {
8135         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8136 }
8137
8138 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8139 {
8140         u32 i, j, k;
8141
8142         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8143         while (true) {
8144                 vcpu->arch.apf.gfns[i] = ~0;
8145                 do {
8146                         j = kvm_async_pf_next_probe(j);
8147                         if (vcpu->arch.apf.gfns[j] == ~0)
8148                                 return;
8149                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8150                         /*
8151                          * k lies cyclically in ]i,j]
8152                          * |    i.k.j |
8153                          * |....j i.k.| or  |.k..j i...|
8154                          */
8155                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8156                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8157                 i = j;
8158         }
8159 }
8160
8161 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8162 {
8163
8164         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8165                                       sizeof(val));
8166 }
8167
8168 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8169                                      struct kvm_async_pf *work)
8170 {
8171         struct x86_exception fault;
8172
8173         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8174         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8175
8176         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8177             (vcpu->arch.apf.send_user_only &&
8178              kvm_x86_ops->get_cpl(vcpu) == 0))
8179                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8180         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8181                 fault.vector = PF_VECTOR;
8182                 fault.error_code_valid = true;
8183                 fault.error_code = 0;
8184                 fault.nested_page_fault = false;
8185                 fault.address = work->arch.token;
8186                 kvm_inject_page_fault(vcpu, &fault);
8187         }
8188 }
8189
8190 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8191                                  struct kvm_async_pf *work)
8192 {
8193         struct x86_exception fault;
8194
8195         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8196         if (work->wakeup_all)
8197                 work->arch.token = ~0; /* broadcast wakeup */
8198         else
8199                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8200
8201         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8202             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8203                 fault.vector = PF_VECTOR;
8204                 fault.error_code_valid = true;
8205                 fault.error_code = 0;
8206                 fault.nested_page_fault = false;
8207                 fault.address = work->arch.token;
8208                 kvm_inject_page_fault(vcpu, &fault);
8209         }
8210         vcpu->arch.apf.halted = false;
8211         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8212 }
8213
8214 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8215 {
8216         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8217                 return true;
8218         else
8219                 return !kvm_event_needs_reinjection(vcpu) &&
8220                         kvm_x86_ops->interrupt_allowed(vcpu);
8221 }
8222
8223 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8224 {
8225         atomic_inc(&kvm->arch.noncoherent_dma_count);
8226 }
8227 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8228
8229 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8230 {
8231         atomic_dec(&kvm->arch.noncoherent_dma_count);
8232 }
8233 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8234
8235 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8236 {
8237         return atomic_read(&kvm->arch.noncoherent_dma_count);
8238 }
8239 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8240
8241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8248 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8249 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8250 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8251 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8252 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8253 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8254 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);