]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/mm/init_64.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61                            unsigned long addr, unsigned long end)
62 {
63         addr &= PMD_MASK;
64         for (; addr < end; addr += PMD_SIZE) {
65                 pmd_t *pmd = pmd_page + pmd_index(addr);
66
67                 if (!pmd_present(*pmd))
68                         set_pmd(pmd, __pmd(addr | pmd_flag));
69         }
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72                           unsigned long addr, unsigned long end)
73 {
74         unsigned long next;
75
76         for (; addr < end; addr = next) {
77                 pud_t *pud = pud_page + pud_index(addr);
78                 pmd_t *pmd;
79
80                 next = (addr & PUD_MASK) + PUD_SIZE;
81                 if (next > end)
82                         next = end;
83
84                 if (pud_present(*pud)) {
85                         pmd = pmd_offset(pud, 0);
86                         ident_pmd_init(info->pmd_flag, pmd, addr, next);
87                         continue;
88                 }
89                 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90                 if (!pmd)
91                         return -ENOMEM;
92                 ident_pmd_init(info->pmd_flag, pmd, addr, next);
93                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94         }
95
96         return 0;
97 }
98
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100                               unsigned long addr, unsigned long end)
101 {
102         unsigned long next;
103         int result;
104         int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105
106         for (; addr < end; addr = next) {
107                 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108                 pud_t *pud;
109
110                 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111                 if (next > end)
112                         next = end;
113
114                 if (pgd_present(*pgd)) {
115                         pud = pud_offset(pgd, 0);
116                         result = ident_pud_init(info, pud, addr, next);
117                         if (result)
118                                 return result;
119                         continue;
120                 }
121
122                 pud = (pud_t *)info->alloc_pgt_page(info->context);
123                 if (!pud)
124                         return -ENOMEM;
125                 result = ident_pud_init(info, pud, addr, next);
126                 if (result)
127                         return result;
128                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129         }
130
131         return 0;
132 }
133
134 static int __init parse_direct_gbpages_off(char *arg)
135 {
136         direct_gbpages = 0;
137         return 0;
138 }
139 early_param("nogbpages", parse_direct_gbpages_off);
140
141 static int __init parse_direct_gbpages_on(char *arg)
142 {
143         direct_gbpages = 1;
144         return 0;
145 }
146 early_param("gbpages", parse_direct_gbpages_on);
147
148 /*
149  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
150  * physical space so we can cache the place of the first one and move
151  * around without checking the pgd every time.
152  */
153
154 pteval_t __supported_pte_mask __read_mostly = ~0;
155 EXPORT_SYMBOL_GPL(__supported_pte_mask);
156
157 int force_personality32;
158
159 /*
160  * noexec32=on|off
161  * Control non executable heap for 32bit processes.
162  * To control the stack too use noexec=off
163  *
164  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
165  * off  PROT_READ implies PROT_EXEC
166  */
167 static int __init nonx32_setup(char *str)
168 {
169         if (!strcmp(str, "on"))
170                 force_personality32 &= ~READ_IMPLIES_EXEC;
171         else if (!strcmp(str, "off"))
172                 force_personality32 |= READ_IMPLIES_EXEC;
173         return 1;
174 }
175 __setup("noexec32=", nonx32_setup);
176
177 /*
178  * When memory was added/removed make sure all the processes MM have
179  * suitable PGD entries in the local PGD level page.
180  */
181 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
182 {
183         unsigned long address;
184
185         for (address = start; address <= end; address += PGDIR_SIZE) {
186                 const pgd_t *pgd_ref = pgd_offset_k(address);
187                 struct page *page;
188
189                 /*
190                  * When it is called after memory hot remove, pgd_none()
191                  * returns true. In this case (removed == 1), we must clear
192                  * the PGD entries in the local PGD level page.
193                  */
194                 if (pgd_none(*pgd_ref) && !removed)
195                         continue;
196
197                 spin_lock(&pgd_lock);
198                 list_for_each_entry(page, &pgd_list, lru) {
199                         pgd_t *pgd;
200                         spinlock_t *pgt_lock;
201
202                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
203                         /* the pgt_lock only for Xen */
204                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
205                         spin_lock(pgt_lock);
206
207                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
208                                 BUG_ON(pgd_page_vaddr(*pgd)
209                                        != pgd_page_vaddr(*pgd_ref));
210
211                         if (removed) {
212                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
213                                         pgd_clear(pgd);
214                         } else {
215                                 if (pgd_none(*pgd))
216                                         set_pgd(pgd, *pgd_ref);
217                         }
218
219                         spin_unlock(pgt_lock);
220                 }
221                 spin_unlock(&pgd_lock);
222         }
223 }
224
225 /*
226  * NOTE: This function is marked __ref because it calls __init function
227  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
228  */
229 static __ref void *spp_getpage(void)
230 {
231         void *ptr;
232
233         if (after_bootmem)
234                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
235         else
236                 ptr = alloc_bootmem_pages(PAGE_SIZE);
237
238         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
239                 panic("set_pte_phys: cannot allocate page data %s\n",
240                         after_bootmem ? "after bootmem" : "");
241         }
242
243         pr_debug("spp_getpage %p\n", ptr);
244
245         return ptr;
246 }
247
248 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
249 {
250         if (pgd_none(*pgd)) {
251                 pud_t *pud = (pud_t *)spp_getpage();
252                 pgd_populate(&init_mm, pgd, pud);
253                 if (pud != pud_offset(pgd, 0))
254                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
255                                pud, pud_offset(pgd, 0));
256         }
257         return pud_offset(pgd, vaddr);
258 }
259
260 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
261 {
262         if (pud_none(*pud)) {
263                 pmd_t *pmd = (pmd_t *) spp_getpage();
264                 pud_populate(&init_mm, pud, pmd);
265                 if (pmd != pmd_offset(pud, 0))
266                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
267                                pmd, pmd_offset(pud, 0));
268         }
269         return pmd_offset(pud, vaddr);
270 }
271
272 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
273 {
274         if (pmd_none(*pmd)) {
275                 pte_t *pte = (pte_t *) spp_getpage();
276                 pmd_populate_kernel(&init_mm, pmd, pte);
277                 if (pte != pte_offset_kernel(pmd, 0))
278                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
279         }
280         return pte_offset_kernel(pmd, vaddr);
281 }
282
283 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
284 {
285         pud_t *pud;
286         pmd_t *pmd;
287         pte_t *pte;
288
289         pud = pud_page + pud_index(vaddr);
290         pmd = fill_pmd(pud, vaddr);
291         pte = fill_pte(pmd, vaddr);
292
293         set_pte(pte, new_pte);
294
295         /*
296          * It's enough to flush this one mapping.
297          * (PGE mappings get flushed as well)
298          */
299         __flush_tlb_one(vaddr);
300 }
301
302 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
303 {
304         pgd_t *pgd;
305         pud_t *pud_page;
306
307         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
308
309         pgd = pgd_offset_k(vaddr);
310         if (pgd_none(*pgd)) {
311                 printk(KERN_ERR
312                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
313                 return;
314         }
315         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
316         set_pte_vaddr_pud(pud_page, vaddr, pteval);
317 }
318
319 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
320 {
321         pgd_t *pgd;
322         pud_t *pud;
323
324         pgd = pgd_offset_k(vaddr);
325         pud = fill_pud(pgd, vaddr);
326         return fill_pmd(pud, vaddr);
327 }
328
329 pte_t * __init populate_extra_pte(unsigned long vaddr)
330 {
331         pmd_t *pmd;
332
333         pmd = populate_extra_pmd(vaddr);
334         return fill_pte(pmd, vaddr);
335 }
336
337 /*
338  * Create large page table mappings for a range of physical addresses.
339  */
340 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
341                                                 pgprot_t prot)
342 {
343         pgd_t *pgd;
344         pud_t *pud;
345         pmd_t *pmd;
346
347         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
348         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
349                 pgd = pgd_offset_k((unsigned long)__va(phys));
350                 if (pgd_none(*pgd)) {
351                         pud = (pud_t *) spp_getpage();
352                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
353                                                 _PAGE_USER));
354                 }
355                 pud = pud_offset(pgd, (unsigned long)__va(phys));
356                 if (pud_none(*pud)) {
357                         pmd = (pmd_t *) spp_getpage();
358                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
359                                                 _PAGE_USER));
360                 }
361                 pmd = pmd_offset(pud, phys);
362                 BUG_ON(!pmd_none(*pmd));
363                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
364         }
365 }
366
367 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
368 {
369         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
370 }
371
372 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
373 {
374         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
375 }
376
377 /*
378  * The head.S code sets up the kernel high mapping:
379  *
380  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
381  *
382  * phys_base holds the negative offset to the kernel, which is added
383  * to the compile time generated pmds. This results in invalid pmds up
384  * to the point where we hit the physaddr 0 mapping.
385  *
386  * We limit the mappings to the region from _text to _brk_end.  _brk_end
387  * is rounded up to the 2MB boundary. This catches the invalid pmds as
388  * well, as they are located before _text:
389  */
390 void __init cleanup_highmap(void)
391 {
392         unsigned long vaddr = __START_KERNEL_map;
393         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
394         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
395         pmd_t *pmd = level2_kernel_pgt;
396
397         /*
398          * Native path, max_pfn_mapped is not set yet.
399          * Xen has valid max_pfn_mapped set in
400          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
401          */
402         if (max_pfn_mapped)
403                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
404
405         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
406                 if (pmd_none(*pmd))
407                         continue;
408                 if (vaddr < (unsigned long) _text || vaddr > end)
409                         set_pmd(pmd, __pmd(0));
410         }
411 }
412
413 static unsigned long __meminit
414 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
415               pgprot_t prot)
416 {
417         unsigned long pages = 0, next;
418         unsigned long last_map_addr = end;
419         int i;
420
421         pte_t *pte = pte_page + pte_index(addr);
422
423         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
424                 next = (addr & PAGE_MASK) + PAGE_SIZE;
425                 if (addr >= end) {
426                         if (!after_bootmem &&
427                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
428                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
429                                 set_pte(pte, __pte(0));
430                         continue;
431                 }
432
433                 /*
434                  * We will re-use the existing mapping.
435                  * Xen for example has some special requirements, like mapping
436                  * pagetable pages as RO. So assume someone who pre-setup
437                  * these mappings are more intelligent.
438                  */
439                 if (pte_val(*pte)) {
440                         if (!after_bootmem)
441                                 pages++;
442                         continue;
443                 }
444
445                 if (0)
446                         printk("   pte=%p addr=%lx pte=%016lx\n",
447                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
448                 pages++;
449                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
450                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
451         }
452
453         update_page_count(PG_LEVEL_4K, pages);
454
455         return last_map_addr;
456 }
457
458 static unsigned long __meminit
459 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
460               unsigned long page_size_mask, pgprot_t prot)
461 {
462         unsigned long pages = 0, next;
463         unsigned long last_map_addr = end;
464
465         int i = pmd_index(address);
466
467         for (; i < PTRS_PER_PMD; i++, address = next) {
468                 pmd_t *pmd = pmd_page + pmd_index(address);
469                 pte_t *pte;
470                 pgprot_t new_prot = prot;
471
472                 next = (address & PMD_MASK) + PMD_SIZE;
473                 if (address >= end) {
474                         if (!after_bootmem &&
475                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
476                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
477                                 set_pmd(pmd, __pmd(0));
478                         continue;
479                 }
480
481                 if (pmd_val(*pmd)) {
482                         if (!pmd_large(*pmd)) {
483                                 spin_lock(&init_mm.page_table_lock);
484                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
485                                 last_map_addr = phys_pte_init(pte, address,
486                                                                 end, prot);
487                                 spin_unlock(&init_mm.page_table_lock);
488                                 continue;
489                         }
490                         /*
491                          * If we are ok with PG_LEVEL_2M mapping, then we will
492                          * use the existing mapping,
493                          *
494                          * Otherwise, we will split the large page mapping but
495                          * use the same existing protection bits except for
496                          * large page, so that we don't violate Intel's TLB
497                          * Application note (317080) which says, while changing
498                          * the page sizes, new and old translations should
499                          * not differ with respect to page frame and
500                          * attributes.
501                          */
502                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
503                                 if (!after_bootmem)
504                                         pages++;
505                                 last_map_addr = next;
506                                 continue;
507                         }
508                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
509                 }
510
511                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
512                         pages++;
513                         spin_lock(&init_mm.page_table_lock);
514                         set_pte((pte_t *)pmd,
515                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
516                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
517                         spin_unlock(&init_mm.page_table_lock);
518                         last_map_addr = next;
519                         continue;
520                 }
521
522                 pte = alloc_low_page();
523                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
524
525                 spin_lock(&init_mm.page_table_lock);
526                 pmd_populate_kernel(&init_mm, pmd, pte);
527                 spin_unlock(&init_mm.page_table_lock);
528         }
529         update_page_count(PG_LEVEL_2M, pages);
530         return last_map_addr;
531 }
532
533 static unsigned long __meminit
534 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
535                          unsigned long page_size_mask)
536 {
537         unsigned long pages = 0, next;
538         unsigned long last_map_addr = end;
539         int i = pud_index(addr);
540
541         for (; i < PTRS_PER_PUD; i++, addr = next) {
542                 pud_t *pud = pud_page + pud_index(addr);
543                 pmd_t *pmd;
544                 pgprot_t prot = PAGE_KERNEL;
545
546                 next = (addr & PUD_MASK) + PUD_SIZE;
547                 if (addr >= end) {
548                         if (!after_bootmem &&
549                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
550                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
551                                 set_pud(pud, __pud(0));
552                         continue;
553                 }
554
555                 if (pud_val(*pud)) {
556                         if (!pud_large(*pud)) {
557                                 pmd = pmd_offset(pud, 0);
558                                 last_map_addr = phys_pmd_init(pmd, addr, end,
559                                                          page_size_mask, prot);
560                                 __flush_tlb_all();
561                                 continue;
562                         }
563                         /*
564                          * If we are ok with PG_LEVEL_1G mapping, then we will
565                          * use the existing mapping.
566                          *
567                          * Otherwise, we will split the gbpage mapping but use
568                          * the same existing protection  bits except for large
569                          * page, so that we don't violate Intel's TLB
570                          * Application note (317080) which says, while changing
571                          * the page sizes, new and old translations should
572                          * not differ with respect to page frame and
573                          * attributes.
574                          */
575                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
576                                 if (!after_bootmem)
577                                         pages++;
578                                 last_map_addr = next;
579                                 continue;
580                         }
581                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
582                 }
583
584                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
585                         pages++;
586                         spin_lock(&init_mm.page_table_lock);
587                         set_pte((pte_t *)pud,
588                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
589                                         PAGE_KERNEL_LARGE));
590                         spin_unlock(&init_mm.page_table_lock);
591                         last_map_addr = next;
592                         continue;
593                 }
594
595                 pmd = alloc_low_page();
596                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
597                                               prot);
598
599                 spin_lock(&init_mm.page_table_lock);
600                 pud_populate(&init_mm, pud, pmd);
601                 spin_unlock(&init_mm.page_table_lock);
602         }
603         __flush_tlb_all();
604
605         update_page_count(PG_LEVEL_1G, pages);
606
607         return last_map_addr;
608 }
609
610 unsigned long __meminit
611 kernel_physical_mapping_init(unsigned long start,
612                              unsigned long end,
613                              unsigned long page_size_mask)
614 {
615         bool pgd_changed = false;
616         unsigned long next, last_map_addr = end;
617         unsigned long addr;
618
619         start = (unsigned long)__va(start);
620         end = (unsigned long)__va(end);
621         addr = start;
622
623         for (; start < end; start = next) {
624                 pgd_t *pgd = pgd_offset_k(start);
625                 pud_t *pud;
626
627                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
628
629                 if (pgd_val(*pgd)) {
630                         pud = (pud_t *)pgd_page_vaddr(*pgd);
631                         last_map_addr = phys_pud_init(pud, __pa(start),
632                                                  __pa(end), page_size_mask);
633                         continue;
634                 }
635
636                 pud = alloc_low_page();
637                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
638                                                  page_size_mask);
639
640                 spin_lock(&init_mm.page_table_lock);
641                 pgd_populate(&init_mm, pgd, pud);
642                 spin_unlock(&init_mm.page_table_lock);
643                 pgd_changed = true;
644         }
645
646         if (pgd_changed)
647                 sync_global_pgds(addr, end - 1, 0);
648
649         __flush_tlb_all();
650
651         return last_map_addr;
652 }
653
654 #ifndef CONFIG_NUMA
655 void __init initmem_init(void)
656 {
657         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
658 }
659 #endif
660
661 void __init paging_init(void)
662 {
663         sparse_memory_present_with_active_regions(MAX_NUMNODES);
664         sparse_init();
665
666         /*
667          * clear the default setting with node 0
668          * note: don't use nodes_clear here, that is really clearing when
669          *       numa support is not compiled in, and later node_set_state
670          *       will not set it back.
671          */
672         node_clear_state(0, N_MEMORY);
673         if (N_MEMORY != N_NORMAL_MEMORY)
674                 node_clear_state(0, N_NORMAL_MEMORY);
675
676         zone_sizes_init();
677 }
678
679 /*
680  * Memory hotplug specific functions
681  */
682 #ifdef CONFIG_MEMORY_HOTPLUG
683 /*
684  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
685  * updating.
686  */
687 static void  update_end_of_memory_vars(u64 start, u64 size)
688 {
689         unsigned long end_pfn = PFN_UP(start + size);
690
691         if (end_pfn > max_pfn) {
692                 max_pfn = end_pfn;
693                 max_low_pfn = end_pfn;
694                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
695         }
696 }
697
698 /*
699  * Memory is added always to NORMAL zone. This means you will never get
700  * additional DMA/DMA32 memory.
701  */
702 int arch_add_memory(int nid, u64 start, u64 size)
703 {
704         struct pglist_data *pgdat = NODE_DATA(nid);
705         struct zone *zone = pgdat->node_zones +
706                 zone_for_memory(nid, start, size, ZONE_NORMAL);
707         unsigned long start_pfn = start >> PAGE_SHIFT;
708         unsigned long nr_pages = size >> PAGE_SHIFT;
709         int ret;
710
711         init_memory_mapping(start, start + size);
712
713         ret = __add_pages(nid, zone, start_pfn, nr_pages);
714         WARN_ON_ONCE(ret);
715
716         /* update max_pfn, max_low_pfn and high_memory */
717         update_end_of_memory_vars(start, size);
718
719         return ret;
720 }
721 EXPORT_SYMBOL_GPL(arch_add_memory);
722
723 #define PAGE_INUSE 0xFD
724
725 static void __meminit free_pagetable(struct page *page, int order)
726 {
727         unsigned long magic;
728         unsigned int nr_pages = 1 << order;
729
730         /* bootmem page has reserved flag */
731         if (PageReserved(page)) {
732                 __ClearPageReserved(page);
733
734                 magic = (unsigned long)page->lru.next;
735                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
736                         while (nr_pages--)
737                                 put_page_bootmem(page++);
738                 } else
739                         while (nr_pages--)
740                                 free_reserved_page(page++);
741         } else
742                 free_pages((unsigned long)page_address(page), order);
743 }
744
745 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
746 {
747         pte_t *pte;
748         int i;
749
750         for (i = 0; i < PTRS_PER_PTE; i++) {
751                 pte = pte_start + i;
752                 if (pte_val(*pte))
753                         return;
754         }
755
756         /* free a pte talbe */
757         free_pagetable(pmd_page(*pmd), 0);
758         spin_lock(&init_mm.page_table_lock);
759         pmd_clear(pmd);
760         spin_unlock(&init_mm.page_table_lock);
761 }
762
763 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
764 {
765         pmd_t *pmd;
766         int i;
767
768         for (i = 0; i < PTRS_PER_PMD; i++) {
769                 pmd = pmd_start + i;
770                 if (pmd_val(*pmd))
771                         return;
772         }
773
774         /* free a pmd talbe */
775         free_pagetable(pud_page(*pud), 0);
776         spin_lock(&init_mm.page_table_lock);
777         pud_clear(pud);
778         spin_unlock(&init_mm.page_table_lock);
779 }
780
781 /* Return true if pgd is changed, otherwise return false. */
782 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
783 {
784         pud_t *pud;
785         int i;
786
787         for (i = 0; i < PTRS_PER_PUD; i++) {
788                 pud = pud_start + i;
789                 if (pud_val(*pud))
790                         return false;
791         }
792
793         /* free a pud table */
794         free_pagetable(pgd_page(*pgd), 0);
795         spin_lock(&init_mm.page_table_lock);
796         pgd_clear(pgd);
797         spin_unlock(&init_mm.page_table_lock);
798
799         return true;
800 }
801
802 static void __meminit
803 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
804                  bool direct)
805 {
806         unsigned long next, pages = 0;
807         pte_t *pte;
808         void *page_addr;
809         phys_addr_t phys_addr;
810
811         pte = pte_start + pte_index(addr);
812         for (; addr < end; addr = next, pte++) {
813                 next = (addr + PAGE_SIZE) & PAGE_MASK;
814                 if (next > end)
815                         next = end;
816
817                 if (!pte_present(*pte))
818                         continue;
819
820                 /*
821                  * We mapped [0,1G) memory as identity mapping when
822                  * initializing, in arch/x86/kernel/head_64.S. These
823                  * pagetables cannot be removed.
824                  */
825                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
826                 if (phys_addr < (phys_addr_t)0x40000000)
827                         return;
828
829                 if (IS_ALIGNED(addr, PAGE_SIZE) &&
830                     IS_ALIGNED(next, PAGE_SIZE)) {
831                         /*
832                          * Do not free direct mapping pages since they were
833                          * freed when offlining, or simplely not in use.
834                          */
835                         if (!direct)
836                                 free_pagetable(pte_page(*pte), 0);
837
838                         spin_lock(&init_mm.page_table_lock);
839                         pte_clear(&init_mm, addr, pte);
840                         spin_unlock(&init_mm.page_table_lock);
841
842                         /* For non-direct mapping, pages means nothing. */
843                         pages++;
844                 } else {
845                         /*
846                          * If we are here, we are freeing vmemmap pages since
847                          * direct mapped memory ranges to be freed are aligned.
848                          *
849                          * If we are not removing the whole page, it means
850                          * other page structs in this page are being used and
851                          * we canot remove them. So fill the unused page_structs
852                          * with 0xFD, and remove the page when it is wholly
853                          * filled with 0xFD.
854                          */
855                         memset((void *)addr, PAGE_INUSE, next - addr);
856
857                         page_addr = page_address(pte_page(*pte));
858                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
859                                 free_pagetable(pte_page(*pte), 0);
860
861                                 spin_lock(&init_mm.page_table_lock);
862                                 pte_clear(&init_mm, addr, pte);
863                                 spin_unlock(&init_mm.page_table_lock);
864                         }
865                 }
866         }
867
868         /* Call free_pte_table() in remove_pmd_table(). */
869         flush_tlb_all();
870         if (direct)
871                 update_page_count(PG_LEVEL_4K, -pages);
872 }
873
874 static void __meminit
875 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
876                  bool direct)
877 {
878         unsigned long next, pages = 0;
879         pte_t *pte_base;
880         pmd_t *pmd;
881         void *page_addr;
882
883         pmd = pmd_start + pmd_index(addr);
884         for (; addr < end; addr = next, pmd++) {
885                 next = pmd_addr_end(addr, end);
886
887                 if (!pmd_present(*pmd))
888                         continue;
889
890                 if (pmd_large(*pmd)) {
891                         if (IS_ALIGNED(addr, PMD_SIZE) &&
892                             IS_ALIGNED(next, PMD_SIZE)) {
893                                 if (!direct)
894                                         free_pagetable(pmd_page(*pmd),
895                                                        get_order(PMD_SIZE));
896
897                                 spin_lock(&init_mm.page_table_lock);
898                                 pmd_clear(pmd);
899                                 spin_unlock(&init_mm.page_table_lock);
900                                 pages++;
901                         } else {
902                                 /* If here, we are freeing vmemmap pages. */
903                                 memset((void *)addr, PAGE_INUSE, next - addr);
904
905                                 page_addr = page_address(pmd_page(*pmd));
906                                 if (!memchr_inv(page_addr, PAGE_INUSE,
907                                                 PMD_SIZE)) {
908                                         free_pagetable(pmd_page(*pmd),
909                                                        get_order(PMD_SIZE));
910
911                                         spin_lock(&init_mm.page_table_lock);
912                                         pmd_clear(pmd);
913                                         spin_unlock(&init_mm.page_table_lock);
914                                 }
915                         }
916
917                         continue;
918                 }
919
920                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
921                 remove_pte_table(pte_base, addr, next, direct);
922                 free_pte_table(pte_base, pmd);
923         }
924
925         /* Call free_pmd_table() in remove_pud_table(). */
926         if (direct)
927                 update_page_count(PG_LEVEL_2M, -pages);
928 }
929
930 static void __meminit
931 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
932                  bool direct)
933 {
934         unsigned long next, pages = 0;
935         pmd_t *pmd_base;
936         pud_t *pud;
937         void *page_addr;
938
939         pud = pud_start + pud_index(addr);
940         for (; addr < end; addr = next, pud++) {
941                 next = pud_addr_end(addr, end);
942
943                 if (!pud_present(*pud))
944                         continue;
945
946                 if (pud_large(*pud)) {
947                         if (IS_ALIGNED(addr, PUD_SIZE) &&
948                             IS_ALIGNED(next, PUD_SIZE)) {
949                                 if (!direct)
950                                         free_pagetable(pud_page(*pud),
951                                                        get_order(PUD_SIZE));
952
953                                 spin_lock(&init_mm.page_table_lock);
954                                 pud_clear(pud);
955                                 spin_unlock(&init_mm.page_table_lock);
956                                 pages++;
957                         } else {
958                                 /* If here, we are freeing vmemmap pages. */
959                                 memset((void *)addr, PAGE_INUSE, next - addr);
960
961                                 page_addr = page_address(pud_page(*pud));
962                                 if (!memchr_inv(page_addr, PAGE_INUSE,
963                                                 PUD_SIZE)) {
964                                         free_pagetable(pud_page(*pud),
965                                                        get_order(PUD_SIZE));
966
967                                         spin_lock(&init_mm.page_table_lock);
968                                         pud_clear(pud);
969                                         spin_unlock(&init_mm.page_table_lock);
970                                 }
971                         }
972
973                         continue;
974                 }
975
976                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
977                 remove_pmd_table(pmd_base, addr, next, direct);
978                 free_pmd_table(pmd_base, pud);
979         }
980
981         if (direct)
982                 update_page_count(PG_LEVEL_1G, -pages);
983 }
984
985 /* start and end are both virtual address. */
986 static void __meminit
987 remove_pagetable(unsigned long start, unsigned long end, bool direct)
988 {
989         unsigned long next;
990         unsigned long addr;
991         pgd_t *pgd;
992         pud_t *pud;
993         bool pgd_changed = false;
994
995         for (addr = start; addr < end; addr = next) {
996                 next = pgd_addr_end(addr, end);
997
998                 pgd = pgd_offset_k(addr);
999                 if (!pgd_present(*pgd))
1000                         continue;
1001
1002                 pud = (pud_t *)pgd_page_vaddr(*pgd);
1003                 remove_pud_table(pud, addr, next, direct);
1004                 if (free_pud_table(pud, pgd))
1005                         pgd_changed = true;
1006         }
1007
1008         if (pgd_changed)
1009                 sync_global_pgds(start, end - 1, 1);
1010
1011         flush_tlb_all();
1012 }
1013
1014 void __ref vmemmap_free(unsigned long start, unsigned long end)
1015 {
1016         remove_pagetable(start, end, false);
1017 }
1018
1019 #ifdef CONFIG_MEMORY_HOTREMOVE
1020 static void __meminit
1021 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1022 {
1023         start = (unsigned long)__va(start);
1024         end = (unsigned long)__va(end);
1025
1026         remove_pagetable(start, end, true);
1027 }
1028
1029 int __ref arch_remove_memory(u64 start, u64 size)
1030 {
1031         unsigned long start_pfn = start >> PAGE_SHIFT;
1032         unsigned long nr_pages = size >> PAGE_SHIFT;
1033         struct zone *zone;
1034         int ret;
1035
1036         zone = page_zone(pfn_to_page(start_pfn));
1037         kernel_physical_mapping_remove(start, start + size);
1038         ret = __remove_pages(zone, start_pfn, nr_pages);
1039         WARN_ON_ONCE(ret);
1040
1041         return ret;
1042 }
1043 #endif
1044 #endif /* CONFIG_MEMORY_HOTPLUG */
1045
1046 static struct kcore_list kcore_vsyscall;
1047
1048 static void __init register_page_bootmem_info(void)
1049 {
1050 #ifdef CONFIG_NUMA
1051         int i;
1052
1053         for_each_online_node(i)
1054                 register_page_bootmem_info_node(NODE_DATA(i));
1055 #endif
1056 }
1057
1058 void __init mem_init(void)
1059 {
1060         pci_iommu_alloc();
1061
1062         /* clear_bss() already clear the empty_zero_page */
1063
1064         register_page_bootmem_info();
1065
1066         /* this will put all memory onto the freelists */
1067         free_all_bootmem();
1068         after_bootmem = 1;
1069
1070         /* Register memory areas for /proc/kcore */
1071         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1072                          PAGE_SIZE, KCORE_OTHER);
1073
1074         mem_init_print_info(NULL);
1075 }
1076
1077 #ifdef CONFIG_DEBUG_RODATA
1078 const int rodata_test_data = 0xC3;
1079 EXPORT_SYMBOL_GPL(rodata_test_data);
1080
1081 int kernel_set_to_readonly;
1082
1083 void set_kernel_text_rw(void)
1084 {
1085         unsigned long start = PFN_ALIGN(_text);
1086         unsigned long end = PFN_ALIGN(__stop___ex_table);
1087
1088         if (!kernel_set_to_readonly)
1089                 return;
1090
1091         pr_debug("Set kernel text: %lx - %lx for read write\n",
1092                  start, end);
1093
1094         /*
1095          * Make the kernel identity mapping for text RW. Kernel text
1096          * mapping will always be RO. Refer to the comment in
1097          * static_protections() in pageattr.c
1098          */
1099         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100 }
1101
1102 void set_kernel_text_ro(void)
1103 {
1104         unsigned long start = PFN_ALIGN(_text);
1105         unsigned long end = PFN_ALIGN(__stop___ex_table);
1106
1107         if (!kernel_set_to_readonly)
1108                 return;
1109
1110         pr_debug("Set kernel text: %lx - %lx for read only\n",
1111                  start, end);
1112
1113         /*
1114          * Set the kernel identity mapping for text RO.
1115          */
1116         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117 }
1118
1119 void mark_rodata_ro(void)
1120 {
1121         unsigned long start = PFN_ALIGN(_text);
1122         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126         unsigned long all_end;
1127
1128         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129                (end - start) >> 10);
1130         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131
1132         kernel_set_to_readonly = 1;
1133
1134         /*
1135          * The rodata/data/bss/brk section (but not the kernel text!)
1136          * should also be not-executable.
1137          *
1138          * We align all_end to PMD_SIZE because the existing mapping
1139          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1140          * split the PMD and the reminder between _brk_end and the end
1141          * of the PMD will remain mapped executable.
1142          *
1143          * Any PMD which was setup after the one which covers _brk_end
1144          * has been zapped already via cleanup_highmem().
1145          */
1146         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1147         set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1148
1149         rodata_test();
1150
1151 #ifdef CONFIG_CPA_DEBUG
1152         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1153         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1154
1155         printk(KERN_INFO "Testing CPA: again\n");
1156         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1157 #endif
1158
1159         free_init_pages("unused kernel",
1160                         (unsigned long) __va(__pa_symbol(text_end)),
1161                         (unsigned long) __va(__pa_symbol(rodata_start)));
1162         free_init_pages("unused kernel",
1163                         (unsigned long) __va(__pa_symbol(rodata_end)),
1164                         (unsigned long) __va(__pa_symbol(_sdata)));
1165 }
1166
1167 #endif
1168
1169 int kern_addr_valid(unsigned long addr)
1170 {
1171         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1172         pgd_t *pgd;
1173         pud_t *pud;
1174         pmd_t *pmd;
1175         pte_t *pte;
1176
1177         if (above != 0 && above != -1UL)
1178                 return 0;
1179
1180         pgd = pgd_offset_k(addr);
1181         if (pgd_none(*pgd))
1182                 return 0;
1183
1184         pud = pud_offset(pgd, addr);
1185         if (pud_none(*pud))
1186                 return 0;
1187
1188         if (pud_large(*pud))
1189                 return pfn_valid(pud_pfn(*pud));
1190
1191         pmd = pmd_offset(pud, addr);
1192         if (pmd_none(*pmd))
1193                 return 0;
1194
1195         if (pmd_large(*pmd))
1196                 return pfn_valid(pmd_pfn(*pmd));
1197
1198         pte = pte_offset_kernel(pmd, addr);
1199         if (pte_none(*pte))
1200                 return 0;
1201
1202         return pfn_valid(pte_pfn(*pte));
1203 }
1204
1205 /*
1206  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1207  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1208  * not need special handling anymore:
1209  */
1210 static const char *gate_vma_name(struct vm_area_struct *vma)
1211 {
1212         return "[vsyscall]";
1213 }
1214 static struct vm_operations_struct gate_vma_ops = {
1215         .name = gate_vma_name,
1216 };
1217 static struct vm_area_struct gate_vma = {
1218         .vm_start       = VSYSCALL_ADDR,
1219         .vm_end         = VSYSCALL_ADDR + PAGE_SIZE,
1220         .vm_page_prot   = PAGE_READONLY_EXEC,
1221         .vm_flags       = VM_READ | VM_EXEC,
1222         .vm_ops         = &gate_vma_ops,
1223 };
1224
1225 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1226 {
1227 #ifdef CONFIG_IA32_EMULATION
1228         if (!mm || mm->context.ia32_compat)
1229                 return NULL;
1230 #endif
1231         return &gate_vma;
1232 }
1233
1234 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1235 {
1236         struct vm_area_struct *vma = get_gate_vma(mm);
1237
1238         if (!vma)
1239                 return 0;
1240
1241         return (addr >= vma->vm_start) && (addr < vma->vm_end);
1242 }
1243
1244 /*
1245  * Use this when you have no reliable mm, typically from interrupt
1246  * context. It is less reliable than using a task's mm and may give
1247  * false positives.
1248  */
1249 int in_gate_area_no_mm(unsigned long addr)
1250 {
1251         return (addr & PAGE_MASK) == VSYSCALL_ADDR;
1252 }
1253
1254 static unsigned long probe_memory_block_size(void)
1255 {
1256         /* start from 2g */
1257         unsigned long bz = 1UL<<31;
1258
1259 #ifdef CONFIG_X86_UV
1260         if (is_uv_system()) {
1261                 printk(KERN_INFO "UV: memory block size 2GB\n");
1262                 return 2UL * 1024 * 1024 * 1024;
1263         }
1264 #endif
1265
1266         /* less than 64g installed */
1267         if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1268                 return MIN_MEMORY_BLOCK_SIZE;
1269
1270         /* get the tail size */
1271         while (bz > MIN_MEMORY_BLOCK_SIZE) {
1272                 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1273                         break;
1274                 bz >>= 1;
1275         }
1276
1277         printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1278
1279         return bz;
1280 }
1281
1282 static unsigned long memory_block_size_probed;
1283 unsigned long memory_block_size_bytes(void)
1284 {
1285         if (!memory_block_size_probed)
1286                 memory_block_size_probed = probe_memory_block_size();
1287
1288         return memory_block_size_probed;
1289 }
1290
1291 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1292 /*
1293  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1294  */
1295 static long __meminitdata addr_start, addr_end;
1296 static void __meminitdata *p_start, *p_end;
1297 static int __meminitdata node_start;
1298
1299 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1300                                                 unsigned long end, int node)
1301 {
1302         unsigned long addr;
1303         unsigned long next;
1304         pgd_t *pgd;
1305         pud_t *pud;
1306         pmd_t *pmd;
1307
1308         for (addr = start; addr < end; addr = next) {
1309                 next = pmd_addr_end(addr, end);
1310
1311                 pgd = vmemmap_pgd_populate(addr, node);
1312                 if (!pgd)
1313                         return -ENOMEM;
1314
1315                 pud = vmemmap_pud_populate(pgd, addr, node);
1316                 if (!pud)
1317                         return -ENOMEM;
1318
1319                 pmd = pmd_offset(pud, addr);
1320                 if (pmd_none(*pmd)) {
1321                         void *p;
1322
1323                         p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1324                         if (p) {
1325                                 pte_t entry;
1326
1327                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1328                                                 PAGE_KERNEL_LARGE);
1329                                 set_pmd(pmd, __pmd(pte_val(entry)));
1330
1331                                 /* check to see if we have contiguous blocks */
1332                                 if (p_end != p || node_start != node) {
1333                                         if (p_start)
1334                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1335                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1336                                         addr_start = addr;
1337                                         node_start = node;
1338                                         p_start = p;
1339                                 }
1340
1341                                 addr_end = addr + PMD_SIZE;
1342                                 p_end = p + PMD_SIZE;
1343                                 continue;
1344                         }
1345                 } else if (pmd_large(*pmd)) {
1346                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1347                         continue;
1348                 }
1349                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1350                 if (vmemmap_populate_basepages(addr, next, node))
1351                         return -ENOMEM;
1352         }
1353         return 0;
1354 }
1355
1356 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1357 {
1358         int err;
1359
1360         if (cpu_has_pse)
1361                 err = vmemmap_populate_hugepages(start, end, node);
1362         else
1363                 err = vmemmap_populate_basepages(start, end, node);
1364         if (!err)
1365                 sync_global_pgds(start, end - 1, 0);
1366         return err;
1367 }
1368
1369 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1370 void register_page_bootmem_memmap(unsigned long section_nr,
1371                                   struct page *start_page, unsigned long size)
1372 {
1373         unsigned long addr = (unsigned long)start_page;
1374         unsigned long end = (unsigned long)(start_page + size);
1375         unsigned long next;
1376         pgd_t *pgd;
1377         pud_t *pud;
1378         pmd_t *pmd;
1379         unsigned int nr_pages;
1380         struct page *page;
1381
1382         for (; addr < end; addr = next) {
1383                 pte_t *pte = NULL;
1384
1385                 pgd = pgd_offset_k(addr);
1386                 if (pgd_none(*pgd)) {
1387                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1388                         continue;
1389                 }
1390                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1391
1392                 pud = pud_offset(pgd, addr);
1393                 if (pud_none(*pud)) {
1394                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1395                         continue;
1396                 }
1397                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1398
1399                 if (!cpu_has_pse) {
1400                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1401                         pmd = pmd_offset(pud, addr);
1402                         if (pmd_none(*pmd))
1403                                 continue;
1404                         get_page_bootmem(section_nr, pmd_page(*pmd),
1405                                          MIX_SECTION_INFO);
1406
1407                         pte = pte_offset_kernel(pmd, addr);
1408                         if (pte_none(*pte))
1409                                 continue;
1410                         get_page_bootmem(section_nr, pte_page(*pte),
1411                                          SECTION_INFO);
1412                 } else {
1413                         next = pmd_addr_end(addr, end);
1414
1415                         pmd = pmd_offset(pud, addr);
1416                         if (pmd_none(*pmd))
1417                                 continue;
1418
1419                         nr_pages = 1 << (get_order(PMD_SIZE));
1420                         page = pmd_page(*pmd);
1421                         while (nr_pages--)
1422                                 get_page_bootmem(section_nr, page++,
1423                                                  SECTION_INFO);
1424                 }
1425         }
1426 }
1427 #endif
1428
1429 void __meminit vmemmap_populate_print_last(void)
1430 {
1431         if (p_start) {
1432                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1433                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1434                 p_start = NULL;
1435                 p_end = NULL;
1436                 node_start = 0;
1437         }
1438 }
1439 #endif