]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
Merge branch 'linux-4.3' of git://anongit.freedesktop.org/nouveau/linux-2.6 into...
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN   \
101                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME      "-"
106
107 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX    64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX  64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING    (1<<0)
118 #define RBD_FEATURE_STRIPINGV2  (1<<1)
119 #define RBD_FEATURES_ALL \
120             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
125
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN            32
133 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139         /* These six fields never change for a given rbd image */
140         char *object_prefix;
141         __u8 obj_order;
142         __u8 crypt_type;
143         __u8 comp_type;
144         u64 stripe_unit;
145         u64 stripe_count;
146         u64 features;           /* Might be changeable someday? */
147
148         /* The remaining fields need to be updated occasionally */
149         u64 image_size;
150         struct ceph_snap_context *snapc;
151         char *snap_names;       /* format 1 only */
152         u64 *snap_sizes;        /* format 1 only */
153 };
154
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181         u64             pool_id;
182         const char      *pool_name;
183
184         const char      *image_id;
185         const char      *image_name;
186
187         u64             snap_id;
188         const char      *snap_name;
189
190         struct kref     kref;
191 };
192
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197         struct ceph_client      *client;
198         struct kref             kref;
199         struct list_head        node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215         OBJ_OP_WRITE,
216         OBJ_OP_READ,
217         OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
222         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
223         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
224         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228         const char              *object_name;
229         u64                     offset;         /* object start byte */
230         u64                     length;         /* bytes from offset */
231         unsigned long           flags;
232
233         /*
234          * An object request associated with an image will have its
235          * img_data flag set; a standalone object request will not.
236          *
237          * A standalone object request will have which == BAD_WHICH
238          * and a null obj_request pointer.
239          *
240          * An object request initiated in support of a layered image
241          * object (to check for its existence before a write) will
242          * have which == BAD_WHICH and a non-null obj_request pointer.
243          *
244          * Finally, an object request for rbd image data will have
245          * which != BAD_WHICH, and will have a non-null img_request
246          * pointer.  The value of which will be in the range
247          * 0..(img_request->obj_request_count-1).
248          */
249         union {
250                 struct rbd_obj_request  *obj_request;   /* STAT op */
251                 struct {
252                         struct rbd_img_request  *img_request;
253                         u64                     img_offset;
254                         /* links for img_request->obj_requests list */
255                         struct list_head        links;
256                 };
257         };
258         u32                     which;          /* posn image request list */
259
260         enum obj_request_type   type;
261         union {
262                 struct bio      *bio_list;
263                 struct {
264                         struct page     **pages;
265                         u32             page_count;
266                 };
267         };
268         struct page             **copyup_pages;
269         u32                     copyup_page_count;
270
271         struct ceph_osd_request *osd_req;
272
273         u64                     xferred;        /* bytes transferred */
274         int                     result;
275
276         rbd_obj_callback_t      callback;
277         struct completion       completion;
278
279         struct kref             kref;
280 };
281
282 enum img_req_flags {
283         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
284         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
285         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
286         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290         struct rbd_device       *rbd_dev;
291         u64                     offset; /* starting image byte offset */
292         u64                     length; /* byte count from offset */
293         unsigned long           flags;
294         union {
295                 u64                     snap_id;        /* for reads */
296                 struct ceph_snap_context *snapc;        /* for writes */
297         };
298         union {
299                 struct request          *rq;            /* block request */
300                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
301         };
302         struct page             **copyup_pages;
303         u32                     copyup_page_count;
304         spinlock_t              completion_lock;/* protects next_completion */
305         u32                     next_completion;
306         rbd_img_callback_t      callback;
307         u64                     xferred;/* aggregate bytes transferred */
308         int                     result; /* first nonzero obj_request result */
309
310         u32                     obj_request_count;
311         struct list_head        obj_requests;   /* rbd_obj_request structs */
312
313         struct kref             kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326         bool                    read_only;
327 };
328
329 /*
330  * a single device
331  */
332 struct rbd_device {
333         int                     dev_id;         /* blkdev unique id */
334
335         int                     major;          /* blkdev assigned major */
336         int                     minor;
337         struct gendisk          *disk;          /* blkdev's gendisk and rq */
338
339         u32                     image_format;   /* Either 1 or 2 */
340         struct rbd_client       *rbd_client;
341
342         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344         spinlock_t              lock;           /* queue, flags, open_count */
345
346         struct rbd_image_header header;
347         unsigned long           flags;          /* possibly lock protected */
348         struct rbd_spec         *spec;
349         struct rbd_options      *opts;
350
351         char                    *header_name;
352
353         struct ceph_file_layout layout;
354
355         struct ceph_osd_event   *watch_event;
356         struct rbd_obj_request  *watch_request;
357
358         struct rbd_spec         *parent_spec;
359         u64                     parent_overlap;
360         atomic_t                parent_ref;
361         struct rbd_device       *parent;
362
363         /* Block layer tags. */
364         struct blk_mq_tag_set   tag_set;
365
366         /* protects updating the header */
367         struct rw_semaphore     header_rwsem;
368
369         struct rbd_mapping      mapping;
370
371         struct list_head        node;
372
373         /* sysfs related */
374         struct device           dev;
375         unsigned long           open_count;     /* protected by lock */
376 };
377
378 /*
379  * Flag bits for rbd_dev->flags.  If atomicity is required,
380  * rbd_dev->lock is used to protect access.
381  *
382  * Currently, only the "removing" flag (which is coupled with the
383  * "open_count" field) requires atomic access.
384  */
385 enum rbd_dev_flags {
386         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
387         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
388 };
389
390 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
391
392 static LIST_HEAD(rbd_dev_list);    /* devices */
393 static DEFINE_SPINLOCK(rbd_dev_list_lock);
394
395 static LIST_HEAD(rbd_client_list);              /* clients */
396 static DEFINE_SPINLOCK(rbd_client_list_lock);
397
398 /* Slab caches for frequently-allocated structures */
399
400 static struct kmem_cache        *rbd_img_request_cache;
401 static struct kmem_cache        *rbd_obj_request_cache;
402 static struct kmem_cache        *rbd_segment_name_cache;
403
404 static int rbd_major;
405 static DEFINE_IDA(rbd_dev_id_ida);
406
407 static struct workqueue_struct *rbd_wq;
408
409 /*
410  * Default to false for now, as single-major requires >= 0.75 version of
411  * userspace rbd utility.
412  */
413 static bool single_major = false;
414 module_param(single_major, bool, S_IRUGO);
415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
416
417 static int rbd_img_request_submit(struct rbd_img_request *img_request);
418
419 static void rbd_dev_device_release(struct device *dev);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422                        size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424                           size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426                                     size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428                                        size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448         &bus_attr_add.attr,
449         &bus_attr_remove.attr,
450         &bus_attr_add_single_major.attr,
451         &bus_attr_remove_single_major.attr,
452         NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456                                   struct attribute *attr, int index)
457 {
458         if (!single_major &&
459             (attr == &bus_attr_add_single_major.attr ||
460              attr == &bus_attr_remove_single_major.attr))
461                 return 0;
462
463         return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467         .attrs = rbd_bus_attrs,
468         .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473         .name           = "rbd",
474         .bus_groups     = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482         .init_name =    "rbd",
483         .release =      rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489         struct va_format vaf;
490         va_list args;
491
492         va_start(args, fmt);
493         vaf.fmt = fmt;
494         vaf.va = &args;
495
496         if (!rbd_dev)
497                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498         else if (rbd_dev->disk)
499                 printk(KERN_WARNING "%s: %s: %pV\n",
500                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501         else if (rbd_dev->spec && rbd_dev->spec->image_name)
502                 printk(KERN_WARNING "%s: image %s: %pV\n",
503                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504         else if (rbd_dev->spec && rbd_dev->spec->image_id)
505                 printk(KERN_WARNING "%s: id %s: %pV\n",
506                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507         else    /* punt */
508                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509                         RBD_DRV_NAME, rbd_dev, &vaf);
510         va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)                                                \
515                 if (unlikely(!(expr))) {                                \
516                         printk(KERN_ERR "\nAssertion failure in %s() "  \
517                                                 "at line %d:\n\n"       \
518                                         "\trbd_assert(%s);\n\n",        \
519                                         __func__, __LINE__, #expr);     \
520                         BUG();                                          \
521                 }
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)      ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536                                         u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538                                 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540                 u64 *snap_features);
541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
542
543 static int rbd_open(struct block_device *bdev, fmode_t mode)
544 {
545         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
546         bool removing = false;
547
548         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
549                 return -EROFS;
550
551         spin_lock_irq(&rbd_dev->lock);
552         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
553                 removing = true;
554         else
555                 rbd_dev->open_count++;
556         spin_unlock_irq(&rbd_dev->lock);
557         if (removing)
558                 return -ENOENT;
559
560         (void) get_device(&rbd_dev->dev);
561
562         return 0;
563 }
564
565 static void rbd_release(struct gendisk *disk, fmode_t mode)
566 {
567         struct rbd_device *rbd_dev = disk->private_data;
568         unsigned long open_count_before;
569
570         spin_lock_irq(&rbd_dev->lock);
571         open_count_before = rbd_dev->open_count--;
572         spin_unlock_irq(&rbd_dev->lock);
573         rbd_assert(open_count_before > 0);
574
575         put_device(&rbd_dev->dev);
576 }
577
578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
579 {
580         int ret = 0;
581         int val;
582         bool ro;
583         bool ro_changed = false;
584
585         /* get_user() may sleep, so call it before taking rbd_dev->lock */
586         if (get_user(val, (int __user *)(arg)))
587                 return -EFAULT;
588
589         ro = val ? true : false;
590         /* Snapshot doesn't allow to write*/
591         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
592                 return -EROFS;
593
594         spin_lock_irq(&rbd_dev->lock);
595         /* prevent others open this device */
596         if (rbd_dev->open_count > 1) {
597                 ret = -EBUSY;
598                 goto out;
599         }
600
601         if (rbd_dev->mapping.read_only != ro) {
602                 rbd_dev->mapping.read_only = ro;
603                 ro_changed = true;
604         }
605
606 out:
607         spin_unlock_irq(&rbd_dev->lock);
608         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609         if (ret == 0 && ro_changed)
610                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
611
612         return ret;
613 }
614
615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
616                         unsigned int cmd, unsigned long arg)
617 {
618         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
619         int ret = 0;
620
621         switch (cmd) {
622         case BLKROSET:
623                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
624                 break;
625         default:
626                 ret = -ENOTTY;
627         }
628
629         return ret;
630 }
631
632 #ifdef CONFIG_COMPAT
633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
634                                 unsigned int cmd, unsigned long arg)
635 {
636         return rbd_ioctl(bdev, mode, cmd, arg);
637 }
638 #endif /* CONFIG_COMPAT */
639
640 static const struct block_device_operations rbd_bd_ops = {
641         .owner                  = THIS_MODULE,
642         .open                   = rbd_open,
643         .release                = rbd_release,
644         .ioctl                  = rbd_ioctl,
645 #ifdef CONFIG_COMPAT
646         .compat_ioctl           = rbd_compat_ioctl,
647 #endif
648 };
649
650 /*
651  * Initialize an rbd client instance.  Success or not, this function
652  * consumes ceph_opts.  Caller holds client_mutex.
653  */
654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
655 {
656         struct rbd_client *rbdc;
657         int ret = -ENOMEM;
658
659         dout("%s:\n", __func__);
660         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
661         if (!rbdc)
662                 goto out_opt;
663
664         kref_init(&rbdc->kref);
665         INIT_LIST_HEAD(&rbdc->node);
666
667         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
668         if (IS_ERR(rbdc->client))
669                 goto out_rbdc;
670         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
671
672         ret = ceph_open_session(rbdc->client);
673         if (ret < 0)
674                 goto out_client;
675
676         spin_lock(&rbd_client_list_lock);
677         list_add_tail(&rbdc->node, &rbd_client_list);
678         spin_unlock(&rbd_client_list_lock);
679
680         dout("%s: rbdc %p\n", __func__, rbdc);
681
682         return rbdc;
683 out_client:
684         ceph_destroy_client(rbdc->client);
685 out_rbdc:
686         kfree(rbdc);
687 out_opt:
688         if (ceph_opts)
689                 ceph_destroy_options(ceph_opts);
690         dout("%s: error %d\n", __func__, ret);
691
692         return ERR_PTR(ret);
693 }
694
695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
696 {
697         kref_get(&rbdc->kref);
698
699         return rbdc;
700 }
701
702 /*
703  * Find a ceph client with specific addr and configuration.  If
704  * found, bump its reference count.
705  */
706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
707 {
708         struct rbd_client *client_node;
709         bool found = false;
710
711         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
712                 return NULL;
713
714         spin_lock(&rbd_client_list_lock);
715         list_for_each_entry(client_node, &rbd_client_list, node) {
716                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
717                         __rbd_get_client(client_node);
718
719                         found = true;
720                         break;
721                 }
722         }
723         spin_unlock(&rbd_client_list_lock);
724
725         return found ? client_node : NULL;
726 }
727
728 /*
729  * (Per device) rbd map options
730  */
731 enum {
732         Opt_queue_depth,
733         Opt_last_int,
734         /* int args above */
735         Opt_last_string,
736         /* string args above */
737         Opt_read_only,
738         Opt_read_write,
739         Opt_err
740 };
741
742 static match_table_t rbd_opts_tokens = {
743         {Opt_queue_depth, "queue_depth=%d"},
744         /* int args above */
745         /* string args above */
746         {Opt_read_only, "read_only"},
747         {Opt_read_only, "ro"},          /* Alternate spelling */
748         {Opt_read_write, "read_write"},
749         {Opt_read_write, "rw"},         /* Alternate spelling */
750         {Opt_err, NULL}
751 };
752
753 struct rbd_options {
754         int     queue_depth;
755         bool    read_only;
756 };
757
758 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT   false
760
761 static int parse_rbd_opts_token(char *c, void *private)
762 {
763         struct rbd_options *rbd_opts = private;
764         substring_t argstr[MAX_OPT_ARGS];
765         int token, intval, ret;
766
767         token = match_token(c, rbd_opts_tokens, argstr);
768         if (token < Opt_last_int) {
769                 ret = match_int(&argstr[0], &intval);
770                 if (ret < 0) {
771                         pr_err("bad mount option arg (not int) at '%s'\n", c);
772                         return ret;
773                 }
774                 dout("got int token %d val %d\n", token, intval);
775         } else if (token > Opt_last_int && token < Opt_last_string) {
776                 dout("got string token %d val %s\n", token, argstr[0].from);
777         } else {
778                 dout("got token %d\n", token);
779         }
780
781         switch (token) {
782         case Opt_queue_depth:
783                 if (intval < 1) {
784                         pr_err("queue_depth out of range\n");
785                         return -EINVAL;
786                 }
787                 rbd_opts->queue_depth = intval;
788                 break;
789         case Opt_read_only:
790                 rbd_opts->read_only = true;
791                 break;
792         case Opt_read_write:
793                 rbd_opts->read_only = false;
794                 break;
795         default:
796                 /* libceph prints "bad option" msg */
797                 return -EINVAL;
798         }
799
800         return 0;
801 }
802
803 static char* obj_op_name(enum obj_operation_type op_type)
804 {
805         switch (op_type) {
806         case OBJ_OP_READ:
807                 return "read";
808         case OBJ_OP_WRITE:
809                 return "write";
810         case OBJ_OP_DISCARD:
811                 return "discard";
812         default:
813                 return "???";
814         }
815 }
816
817 /*
818  * Get a ceph client with specific addr and configuration, if one does
819  * not exist create it.  Either way, ceph_opts is consumed by this
820  * function.
821  */
822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
823 {
824         struct rbd_client *rbdc;
825
826         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
827         rbdc = rbd_client_find(ceph_opts);
828         if (rbdc)       /* using an existing client */
829                 ceph_destroy_options(ceph_opts);
830         else
831                 rbdc = rbd_client_create(ceph_opts);
832         mutex_unlock(&client_mutex);
833
834         return rbdc;
835 }
836
837 /*
838  * Destroy ceph client
839  *
840  * Caller must hold rbd_client_list_lock.
841  */
842 static void rbd_client_release(struct kref *kref)
843 {
844         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
845
846         dout("%s: rbdc %p\n", __func__, rbdc);
847         spin_lock(&rbd_client_list_lock);
848         list_del(&rbdc->node);
849         spin_unlock(&rbd_client_list_lock);
850
851         ceph_destroy_client(rbdc->client);
852         kfree(rbdc);
853 }
854
855 /*
856  * Drop reference to ceph client node. If it's not referenced anymore, release
857  * it.
858  */
859 static void rbd_put_client(struct rbd_client *rbdc)
860 {
861         if (rbdc)
862                 kref_put(&rbdc->kref, rbd_client_release);
863 }
864
865 static bool rbd_image_format_valid(u32 image_format)
866 {
867         return image_format == 1 || image_format == 2;
868 }
869
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
871 {
872         size_t size;
873         u32 snap_count;
874
875         /* The header has to start with the magic rbd header text */
876         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
877                 return false;
878
879         /* The bio layer requires at least sector-sized I/O */
880
881         if (ondisk->options.order < SECTOR_SHIFT)
882                 return false;
883
884         /* If we use u64 in a few spots we may be able to loosen this */
885
886         if (ondisk->options.order > 8 * sizeof (int) - 1)
887                 return false;
888
889         /*
890          * The size of a snapshot header has to fit in a size_t, and
891          * that limits the number of snapshots.
892          */
893         snap_count = le32_to_cpu(ondisk->snap_count);
894         size = SIZE_MAX - sizeof (struct ceph_snap_context);
895         if (snap_count > size / sizeof (__le64))
896                 return false;
897
898         /*
899          * Not only that, but the size of the entire the snapshot
900          * header must also be representable in a size_t.
901          */
902         size -= snap_count * sizeof (__le64);
903         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
904                 return false;
905
906         return true;
907 }
908
909 /*
910  * Fill an rbd image header with information from the given format 1
911  * on-disk header.
912  */
913 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
914                                  struct rbd_image_header_ondisk *ondisk)
915 {
916         struct rbd_image_header *header = &rbd_dev->header;
917         bool first_time = header->object_prefix == NULL;
918         struct ceph_snap_context *snapc;
919         char *object_prefix = NULL;
920         char *snap_names = NULL;
921         u64 *snap_sizes = NULL;
922         u32 snap_count;
923         size_t size;
924         int ret = -ENOMEM;
925         u32 i;
926
927         /* Allocate this now to avoid having to handle failure below */
928
929         if (first_time) {
930                 size_t len;
931
932                 len = strnlen(ondisk->object_prefix,
933                                 sizeof (ondisk->object_prefix));
934                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
935                 if (!object_prefix)
936                         return -ENOMEM;
937                 memcpy(object_prefix, ondisk->object_prefix, len);
938                 object_prefix[len] = '\0';
939         }
940
941         /* Allocate the snapshot context and fill it in */
942
943         snap_count = le32_to_cpu(ondisk->snap_count);
944         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
945         if (!snapc)
946                 goto out_err;
947         snapc->seq = le64_to_cpu(ondisk->snap_seq);
948         if (snap_count) {
949                 struct rbd_image_snap_ondisk *snaps;
950                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
951
952                 /* We'll keep a copy of the snapshot names... */
953
954                 if (snap_names_len > (u64)SIZE_MAX)
955                         goto out_2big;
956                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
957                 if (!snap_names)
958                         goto out_err;
959
960                 /* ...as well as the array of their sizes. */
961
962                 size = snap_count * sizeof (*header->snap_sizes);
963                 snap_sizes = kmalloc(size, GFP_KERNEL);
964                 if (!snap_sizes)
965                         goto out_err;
966
967                 /*
968                  * Copy the names, and fill in each snapshot's id
969                  * and size.
970                  *
971                  * Note that rbd_dev_v1_header_info() guarantees the
972                  * ondisk buffer we're working with has
973                  * snap_names_len bytes beyond the end of the
974                  * snapshot id array, this memcpy() is safe.
975                  */
976                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
977                 snaps = ondisk->snaps;
978                 for (i = 0; i < snap_count; i++) {
979                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
980                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
981                 }
982         }
983
984         /* We won't fail any more, fill in the header */
985
986         if (first_time) {
987                 header->object_prefix = object_prefix;
988                 header->obj_order = ondisk->options.order;
989                 header->crypt_type = ondisk->options.crypt_type;
990                 header->comp_type = ondisk->options.comp_type;
991                 /* The rest aren't used for format 1 images */
992                 header->stripe_unit = 0;
993                 header->stripe_count = 0;
994                 header->features = 0;
995         } else {
996                 ceph_put_snap_context(header->snapc);
997                 kfree(header->snap_names);
998                 kfree(header->snap_sizes);
999         }
1000
1001         /* The remaining fields always get updated (when we refresh) */
1002
1003         header->image_size = le64_to_cpu(ondisk->image_size);
1004         header->snapc = snapc;
1005         header->snap_names = snap_names;
1006         header->snap_sizes = snap_sizes;
1007
1008         return 0;
1009 out_2big:
1010         ret = -EIO;
1011 out_err:
1012         kfree(snap_sizes);
1013         kfree(snap_names);
1014         ceph_put_snap_context(snapc);
1015         kfree(object_prefix);
1016
1017         return ret;
1018 }
1019
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1021 {
1022         const char *snap_name;
1023
1024         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1025
1026         /* Skip over names until we find the one we are looking for */
1027
1028         snap_name = rbd_dev->header.snap_names;
1029         while (which--)
1030                 snap_name += strlen(snap_name) + 1;
1031
1032         return kstrdup(snap_name, GFP_KERNEL);
1033 }
1034
1035 /*
1036  * Snapshot id comparison function for use with qsort()/bsearch().
1037  * Note that result is for snapshots in *descending* order.
1038  */
1039 static int snapid_compare_reverse(const void *s1, const void *s2)
1040 {
1041         u64 snap_id1 = *(u64 *)s1;
1042         u64 snap_id2 = *(u64 *)s2;
1043
1044         if (snap_id1 < snap_id2)
1045                 return 1;
1046         return snap_id1 == snap_id2 ? 0 : -1;
1047 }
1048
1049 /*
1050  * Search a snapshot context to see if the given snapshot id is
1051  * present.
1052  *
1053  * Returns the position of the snapshot id in the array if it's found,
1054  * or BAD_SNAP_INDEX otherwise.
1055  *
1056  * Note: The snapshot array is in kept sorted (by the osd) in
1057  * reverse order, highest snapshot id first.
1058  */
1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1060 {
1061         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1062         u64 *found;
1063
1064         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1065                                 sizeof (snap_id), snapid_compare_reverse);
1066
1067         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1068 }
1069
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1071                                         u64 snap_id)
1072 {
1073         u32 which;
1074         const char *snap_name;
1075
1076         which = rbd_dev_snap_index(rbd_dev, snap_id);
1077         if (which == BAD_SNAP_INDEX)
1078                 return ERR_PTR(-ENOENT);
1079
1080         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1081         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1082 }
1083
1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1085 {
1086         if (snap_id == CEPH_NOSNAP)
1087                 return RBD_SNAP_HEAD_NAME;
1088
1089         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1090         if (rbd_dev->image_format == 1)
1091                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1092
1093         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1094 }
1095
1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1097                                 u64 *snap_size)
1098 {
1099         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100         if (snap_id == CEPH_NOSNAP) {
1101                 *snap_size = rbd_dev->header.image_size;
1102         } else if (rbd_dev->image_format == 1) {
1103                 u32 which;
1104
1105                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1106                 if (which == BAD_SNAP_INDEX)
1107                         return -ENOENT;
1108
1109                 *snap_size = rbd_dev->header.snap_sizes[which];
1110         } else {
1111                 u64 size = 0;
1112                 int ret;
1113
1114                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115                 if (ret)
1116                         return ret;
1117
1118                 *snap_size = size;
1119         }
1120         return 0;
1121 }
1122
1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1124                         u64 *snap_features)
1125 {
1126         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1127         if (snap_id == CEPH_NOSNAP) {
1128                 *snap_features = rbd_dev->header.features;
1129         } else if (rbd_dev->image_format == 1) {
1130                 *snap_features = 0;     /* No features for format 1 */
1131         } else {
1132                 u64 features = 0;
1133                 int ret;
1134
1135                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1136                 if (ret)
1137                         return ret;
1138
1139                 *snap_features = features;
1140         }
1141         return 0;
1142 }
1143
1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1145 {
1146         u64 snap_id = rbd_dev->spec->snap_id;
1147         u64 size = 0;
1148         u64 features = 0;
1149         int ret;
1150
1151         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1152         if (ret)
1153                 return ret;
1154         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1155         if (ret)
1156                 return ret;
1157
1158         rbd_dev->mapping.size = size;
1159         rbd_dev->mapping.features = features;
1160
1161         return 0;
1162 }
1163
1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1165 {
1166         rbd_dev->mapping.size = 0;
1167         rbd_dev->mapping.features = 0;
1168 }
1169
1170 static void rbd_segment_name_free(const char *name)
1171 {
1172         /* The explicit cast here is needed to drop the const qualifier */
1173
1174         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1175 }
1176
1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1178 {
1179         char *name;
1180         u64 segment;
1181         int ret;
1182         char *name_format;
1183
1184         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1185         if (!name)
1186                 return NULL;
1187         segment = offset >> rbd_dev->header.obj_order;
1188         name_format = "%s.%012llx";
1189         if (rbd_dev->image_format == 2)
1190                 name_format = "%s.%016llx";
1191         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1192                         rbd_dev->header.object_prefix, segment);
1193         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1194                 pr_err("error formatting segment name for #%llu (%d)\n",
1195                         segment, ret);
1196                 rbd_segment_name_free(name);
1197                 name = NULL;
1198         }
1199
1200         return name;
1201 }
1202
1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1204 {
1205         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206
1207         return offset & (segment_size - 1);
1208 }
1209
1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1211                                 u64 offset, u64 length)
1212 {
1213         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1214
1215         offset &= segment_size - 1;
1216
1217         rbd_assert(length <= U64_MAX - offset);
1218         if (offset + length > segment_size)
1219                 length = segment_size - offset;
1220
1221         return length;
1222 }
1223
1224 /*
1225  * returns the size of an object in the image
1226  */
1227 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1228 {
1229         return 1 << header->obj_order;
1230 }
1231
1232 /*
1233  * bio helpers
1234  */
1235
1236 static void bio_chain_put(struct bio *chain)
1237 {
1238         struct bio *tmp;
1239
1240         while (chain) {
1241                 tmp = chain;
1242                 chain = chain->bi_next;
1243                 bio_put(tmp);
1244         }
1245 }
1246
1247 /*
1248  * zeros a bio chain, starting at specific offset
1249  */
1250 static void zero_bio_chain(struct bio *chain, int start_ofs)
1251 {
1252         struct bio_vec bv;
1253         struct bvec_iter iter;
1254         unsigned long flags;
1255         void *buf;
1256         int pos = 0;
1257
1258         while (chain) {
1259                 bio_for_each_segment(bv, chain, iter) {
1260                         if (pos + bv.bv_len > start_ofs) {
1261                                 int remainder = max(start_ofs - pos, 0);
1262                                 buf = bvec_kmap_irq(&bv, &flags);
1263                                 memset(buf + remainder, 0,
1264                                        bv.bv_len - remainder);
1265                                 flush_dcache_page(bv.bv_page);
1266                                 bvec_kunmap_irq(buf, &flags);
1267                         }
1268                         pos += bv.bv_len;
1269                 }
1270
1271                 chain = chain->bi_next;
1272         }
1273 }
1274
1275 /*
1276  * similar to zero_bio_chain(), zeros data defined by a page array,
1277  * starting at the given byte offset from the start of the array and
1278  * continuing up to the given end offset.  The pages array is
1279  * assumed to be big enough to hold all bytes up to the end.
1280  */
1281 static void zero_pages(struct page **pages, u64 offset, u64 end)
1282 {
1283         struct page **page = &pages[offset >> PAGE_SHIFT];
1284
1285         rbd_assert(end > offset);
1286         rbd_assert(end - offset <= (u64)SIZE_MAX);
1287         while (offset < end) {
1288                 size_t page_offset;
1289                 size_t length;
1290                 unsigned long flags;
1291                 void *kaddr;
1292
1293                 page_offset = offset & ~PAGE_MASK;
1294                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1295                 local_irq_save(flags);
1296                 kaddr = kmap_atomic(*page);
1297                 memset(kaddr + page_offset, 0, length);
1298                 flush_dcache_page(*page);
1299                 kunmap_atomic(kaddr);
1300                 local_irq_restore(flags);
1301
1302                 offset += length;
1303                 page++;
1304         }
1305 }
1306
1307 /*
1308  * Clone a portion of a bio, starting at the given byte offset
1309  * and continuing for the number of bytes indicated.
1310  */
1311 static struct bio *bio_clone_range(struct bio *bio_src,
1312                                         unsigned int offset,
1313                                         unsigned int len,
1314                                         gfp_t gfpmask)
1315 {
1316         struct bio *bio;
1317
1318         bio = bio_clone(bio_src, gfpmask);
1319         if (!bio)
1320                 return NULL;    /* ENOMEM */
1321
1322         bio_advance(bio, offset);
1323         bio->bi_iter.bi_size = len;
1324
1325         return bio;
1326 }
1327
1328 /*
1329  * Clone a portion of a bio chain, starting at the given byte offset
1330  * into the first bio in the source chain and continuing for the
1331  * number of bytes indicated.  The result is another bio chain of
1332  * exactly the given length, or a null pointer on error.
1333  *
1334  * The bio_src and offset parameters are both in-out.  On entry they
1335  * refer to the first source bio and the offset into that bio where
1336  * the start of data to be cloned is located.
1337  *
1338  * On return, bio_src is updated to refer to the bio in the source
1339  * chain that contains first un-cloned byte, and *offset will
1340  * contain the offset of that byte within that bio.
1341  */
1342 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1343                                         unsigned int *offset,
1344                                         unsigned int len,
1345                                         gfp_t gfpmask)
1346 {
1347         struct bio *bi = *bio_src;
1348         unsigned int off = *offset;
1349         struct bio *chain = NULL;
1350         struct bio **end;
1351
1352         /* Build up a chain of clone bios up to the limit */
1353
1354         if (!bi || off >= bi->bi_iter.bi_size || !len)
1355                 return NULL;            /* Nothing to clone */
1356
1357         end = &chain;
1358         while (len) {
1359                 unsigned int bi_size;
1360                 struct bio *bio;
1361
1362                 if (!bi) {
1363                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1364                         goto out_err;   /* EINVAL; ran out of bio's */
1365                 }
1366                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1367                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1368                 if (!bio)
1369                         goto out_err;   /* ENOMEM */
1370
1371                 *end = bio;
1372                 end = &bio->bi_next;
1373
1374                 off += bi_size;
1375                 if (off == bi->bi_iter.bi_size) {
1376                         bi = bi->bi_next;
1377                         off = 0;
1378                 }
1379                 len -= bi_size;
1380         }
1381         *bio_src = bi;
1382         *offset = off;
1383
1384         return chain;
1385 out_err:
1386         bio_chain_put(chain);
1387
1388         return NULL;
1389 }
1390
1391 /*
1392  * The default/initial value for all object request flags is 0.  For
1393  * each flag, once its value is set to 1 it is never reset to 0
1394  * again.
1395  */
1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1397 {
1398         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1399                 struct rbd_device *rbd_dev;
1400
1401                 rbd_dev = obj_request->img_request->rbd_dev;
1402                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1403                         obj_request);
1404         }
1405 }
1406
1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1408 {
1409         smp_mb();
1410         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1411 }
1412
1413 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1414 {
1415         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1416                 struct rbd_device *rbd_dev = NULL;
1417
1418                 if (obj_request_img_data_test(obj_request))
1419                         rbd_dev = obj_request->img_request->rbd_dev;
1420                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1421                         obj_request);
1422         }
1423 }
1424
1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1426 {
1427         smp_mb();
1428         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1429 }
1430
1431 /*
1432  * This sets the KNOWN flag after (possibly) setting the EXISTS
1433  * flag.  The latter is set based on the "exists" value provided.
1434  *
1435  * Note that for our purposes once an object exists it never goes
1436  * away again.  It's possible that the response from two existence
1437  * checks are separated by the creation of the target object, and
1438  * the first ("doesn't exist") response arrives *after* the second
1439  * ("does exist").  In that case we ignore the second one.
1440  */
1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1442                                 bool exists)
1443 {
1444         if (exists)
1445                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1446         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1447         smp_mb();
1448 }
1449
1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1451 {
1452         smp_mb();
1453         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1454 }
1455
1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1457 {
1458         smp_mb();
1459         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1460 }
1461
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1463 {
1464         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1465
1466         return obj_request->img_offset <
1467             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1468 }
1469
1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1471 {
1472         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473                 atomic_read(&obj_request->kref.refcount));
1474         kref_get(&obj_request->kref);
1475 }
1476
1477 static void rbd_obj_request_destroy(struct kref *kref);
1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1479 {
1480         rbd_assert(obj_request != NULL);
1481         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1482                 atomic_read(&obj_request->kref.refcount));
1483         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1484 }
1485
1486 static void rbd_img_request_get(struct rbd_img_request *img_request)
1487 {
1488         dout("%s: img %p (was %d)\n", __func__, img_request,
1489              atomic_read(&img_request->kref.refcount));
1490         kref_get(&img_request->kref);
1491 }
1492
1493 static bool img_request_child_test(struct rbd_img_request *img_request);
1494 static void rbd_parent_request_destroy(struct kref *kref);
1495 static void rbd_img_request_destroy(struct kref *kref);
1496 static void rbd_img_request_put(struct rbd_img_request *img_request)
1497 {
1498         rbd_assert(img_request != NULL);
1499         dout("%s: img %p (was %d)\n", __func__, img_request,
1500                 atomic_read(&img_request->kref.refcount));
1501         if (img_request_child_test(img_request))
1502                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1503         else
1504                 kref_put(&img_request->kref, rbd_img_request_destroy);
1505 }
1506
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1508                                         struct rbd_obj_request *obj_request)
1509 {
1510         rbd_assert(obj_request->img_request == NULL);
1511
1512         /* Image request now owns object's original reference */
1513         obj_request->img_request = img_request;
1514         obj_request->which = img_request->obj_request_count;
1515         rbd_assert(!obj_request_img_data_test(obj_request));
1516         obj_request_img_data_set(obj_request);
1517         rbd_assert(obj_request->which != BAD_WHICH);
1518         img_request->obj_request_count++;
1519         list_add_tail(&obj_request->links, &img_request->obj_requests);
1520         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521                 obj_request->which);
1522 }
1523
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1525                                         struct rbd_obj_request *obj_request)
1526 {
1527         rbd_assert(obj_request->which != BAD_WHICH);
1528
1529         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1530                 obj_request->which);
1531         list_del(&obj_request->links);
1532         rbd_assert(img_request->obj_request_count > 0);
1533         img_request->obj_request_count--;
1534         rbd_assert(obj_request->which == img_request->obj_request_count);
1535         obj_request->which = BAD_WHICH;
1536         rbd_assert(obj_request_img_data_test(obj_request));
1537         rbd_assert(obj_request->img_request == img_request);
1538         obj_request->img_request = NULL;
1539         obj_request->callback = NULL;
1540         rbd_obj_request_put(obj_request);
1541 }
1542
1543 static bool obj_request_type_valid(enum obj_request_type type)
1544 {
1545         switch (type) {
1546         case OBJ_REQUEST_NODATA:
1547         case OBJ_REQUEST_BIO:
1548         case OBJ_REQUEST_PAGES:
1549                 return true;
1550         default:
1551                 return false;
1552         }
1553 }
1554
1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1556                                 struct rbd_obj_request *obj_request)
1557 {
1558         dout("%s %p\n", __func__, obj_request);
1559         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1560 }
1561
1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1563 {
1564         dout("%s %p\n", __func__, obj_request);
1565         ceph_osdc_cancel_request(obj_request->osd_req);
1566 }
1567
1568 /*
1569  * Wait for an object request to complete.  If interrupted, cancel the
1570  * underlying osd request.
1571  *
1572  * @timeout: in jiffies, 0 means "wait forever"
1573  */
1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1575                                   unsigned long timeout)
1576 {
1577         long ret;
1578
1579         dout("%s %p\n", __func__, obj_request);
1580         ret = wait_for_completion_interruptible_timeout(
1581                                         &obj_request->completion,
1582                                         ceph_timeout_jiffies(timeout));
1583         if (ret <= 0) {
1584                 if (ret == 0)
1585                         ret = -ETIMEDOUT;
1586                 rbd_obj_request_end(obj_request);
1587         } else {
1588                 ret = 0;
1589         }
1590
1591         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1592         return ret;
1593 }
1594
1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1596 {
1597         return __rbd_obj_request_wait(obj_request, 0);
1598 }
1599
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1601                                         unsigned long timeout)
1602 {
1603         return __rbd_obj_request_wait(obj_request, timeout);
1604 }
1605
1606 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1607 {
1608
1609         dout("%s: img %p\n", __func__, img_request);
1610
1611         /*
1612          * If no error occurred, compute the aggregate transfer
1613          * count for the image request.  We could instead use
1614          * atomic64_cmpxchg() to update it as each object request
1615          * completes; not clear which way is better off hand.
1616          */
1617         if (!img_request->result) {
1618                 struct rbd_obj_request *obj_request;
1619                 u64 xferred = 0;
1620
1621                 for_each_obj_request(img_request, obj_request)
1622                         xferred += obj_request->xferred;
1623                 img_request->xferred = xferred;
1624         }
1625
1626         if (img_request->callback)
1627                 img_request->callback(img_request);
1628         else
1629                 rbd_img_request_put(img_request);
1630 }
1631
1632 /*
1633  * The default/initial value for all image request flags is 0.  Each
1634  * is conditionally set to 1 at image request initialization time
1635  * and currently never change thereafter.
1636  */
1637 static void img_request_write_set(struct rbd_img_request *img_request)
1638 {
1639         set_bit(IMG_REQ_WRITE, &img_request->flags);
1640         smp_mb();
1641 }
1642
1643 static bool img_request_write_test(struct rbd_img_request *img_request)
1644 {
1645         smp_mb();
1646         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1647 }
1648
1649 /*
1650  * Set the discard flag when the img_request is an discard request
1651  */
1652 static void img_request_discard_set(struct rbd_img_request *img_request)
1653 {
1654         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1655         smp_mb();
1656 }
1657
1658 static bool img_request_discard_test(struct rbd_img_request *img_request)
1659 {
1660         smp_mb();
1661         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1662 }
1663
1664 static void img_request_child_set(struct rbd_img_request *img_request)
1665 {
1666         set_bit(IMG_REQ_CHILD, &img_request->flags);
1667         smp_mb();
1668 }
1669
1670 static void img_request_child_clear(struct rbd_img_request *img_request)
1671 {
1672         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1673         smp_mb();
1674 }
1675
1676 static bool img_request_child_test(struct rbd_img_request *img_request)
1677 {
1678         smp_mb();
1679         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1680 }
1681
1682 static void img_request_layered_set(struct rbd_img_request *img_request)
1683 {
1684         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1685         smp_mb();
1686 }
1687
1688 static void img_request_layered_clear(struct rbd_img_request *img_request)
1689 {
1690         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1691         smp_mb();
1692 }
1693
1694 static bool img_request_layered_test(struct rbd_img_request *img_request)
1695 {
1696         smp_mb();
1697         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1698 }
1699
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request *img_request)
1702 {
1703         if (img_request_write_test(img_request))
1704                 return OBJ_OP_WRITE;
1705         else if (img_request_discard_test(img_request))
1706                 return OBJ_OP_DISCARD;
1707         else
1708                 return OBJ_OP_READ;
1709 }
1710
1711 static void
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1713 {
1714         u64 xferred = obj_request->xferred;
1715         u64 length = obj_request->length;
1716
1717         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1718                 obj_request, obj_request->img_request, obj_request->result,
1719                 xferred, length);
1720         /*
1721          * ENOENT means a hole in the image.  We zero-fill the entire
1722          * length of the request.  A short read also implies zero-fill
1723          * to the end of the request.  An error requires the whole
1724          * length of the request to be reported finished with an error
1725          * to the block layer.  In each case we update the xferred
1726          * count to indicate the whole request was satisfied.
1727          */
1728         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1729         if (obj_request->result == -ENOENT) {
1730                 if (obj_request->type == OBJ_REQUEST_BIO)
1731                         zero_bio_chain(obj_request->bio_list, 0);
1732                 else
1733                         zero_pages(obj_request->pages, 0, length);
1734                 obj_request->result = 0;
1735         } else if (xferred < length && !obj_request->result) {
1736                 if (obj_request->type == OBJ_REQUEST_BIO)
1737                         zero_bio_chain(obj_request->bio_list, xferred);
1738                 else
1739                         zero_pages(obj_request->pages, xferred, length);
1740         }
1741         obj_request->xferred = length;
1742         obj_request_done_set(obj_request);
1743 }
1744
1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1746 {
1747         dout("%s: obj %p cb %p\n", __func__, obj_request,
1748                 obj_request->callback);
1749         if (obj_request->callback)
1750                 obj_request->callback(obj_request);
1751         else
1752                 complete_all(&obj_request->completion);
1753 }
1754
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1756 {
1757         dout("%s: obj %p\n", __func__, obj_request);
1758         obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1762 {
1763         struct rbd_img_request *img_request = NULL;
1764         struct rbd_device *rbd_dev = NULL;
1765         bool layered = false;
1766
1767         if (obj_request_img_data_test(obj_request)) {
1768                 img_request = obj_request->img_request;
1769                 layered = img_request && img_request_layered_test(img_request);
1770                 rbd_dev = img_request->rbd_dev;
1771         }
1772
1773         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1774                 obj_request, img_request, obj_request->result,
1775                 obj_request->xferred, obj_request->length);
1776         if (layered && obj_request->result == -ENOENT &&
1777                         obj_request->img_offset < rbd_dev->parent_overlap)
1778                 rbd_img_parent_read(obj_request);
1779         else if (img_request)
1780                 rbd_img_obj_request_read_callback(obj_request);
1781         else
1782                 obj_request_done_set(obj_request);
1783 }
1784
1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1786 {
1787         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1788                 obj_request->result, obj_request->length);
1789         /*
1790          * There is no such thing as a successful short write.  Set
1791          * it to our originally-requested length.
1792          */
1793         obj_request->xferred = obj_request->length;
1794         obj_request_done_set(obj_request);
1795 }
1796
1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1798 {
1799         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1800                 obj_request->result, obj_request->length);
1801         /*
1802          * There is no such thing as a successful short discard.  Set
1803          * it to our originally-requested length.
1804          */
1805         obj_request->xferred = obj_request->length;
1806         /* discarding a non-existent object is not a problem */
1807         if (obj_request->result == -ENOENT)
1808                 obj_request->result = 0;
1809         obj_request_done_set(obj_request);
1810 }
1811
1812 /*
1813  * For a simple stat call there's nothing to do.  We'll do more if
1814  * this is part of a write sequence for a layered image.
1815  */
1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1817 {
1818         dout("%s: obj %p\n", __func__, obj_request);
1819         obj_request_done_set(obj_request);
1820 }
1821
1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1823 {
1824         dout("%s: obj %p\n", __func__, obj_request);
1825
1826         if (obj_request_img_data_test(obj_request))
1827                 rbd_osd_copyup_callback(obj_request);
1828         else
1829                 obj_request_done_set(obj_request);
1830 }
1831
1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1833                                 struct ceph_msg *msg)
1834 {
1835         struct rbd_obj_request *obj_request = osd_req->r_priv;
1836         u16 opcode;
1837
1838         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1839         rbd_assert(osd_req == obj_request->osd_req);
1840         if (obj_request_img_data_test(obj_request)) {
1841                 rbd_assert(obj_request->img_request);
1842                 rbd_assert(obj_request->which != BAD_WHICH);
1843         } else {
1844                 rbd_assert(obj_request->which == BAD_WHICH);
1845         }
1846
1847         if (osd_req->r_result < 0)
1848                 obj_request->result = osd_req->r_result;
1849
1850         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1851
1852         /*
1853          * We support a 64-bit length, but ultimately it has to be
1854          * passed to the block layer, which just supports a 32-bit
1855          * length field.
1856          */
1857         obj_request->xferred = osd_req->r_reply_op_len[0];
1858         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1859
1860         opcode = osd_req->r_ops[0].op;
1861         switch (opcode) {
1862         case CEPH_OSD_OP_READ:
1863                 rbd_osd_read_callback(obj_request);
1864                 break;
1865         case CEPH_OSD_OP_SETALLOCHINT:
1866                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1867                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1868                 /* fall through */
1869         case CEPH_OSD_OP_WRITE:
1870         case CEPH_OSD_OP_WRITEFULL:
1871                 rbd_osd_write_callback(obj_request);
1872                 break;
1873         case CEPH_OSD_OP_STAT:
1874                 rbd_osd_stat_callback(obj_request);
1875                 break;
1876         case CEPH_OSD_OP_DELETE:
1877         case CEPH_OSD_OP_TRUNCATE:
1878         case CEPH_OSD_OP_ZERO:
1879                 rbd_osd_discard_callback(obj_request);
1880                 break;
1881         case CEPH_OSD_OP_CALL:
1882                 rbd_osd_call_callback(obj_request);
1883                 break;
1884         case CEPH_OSD_OP_NOTIFY_ACK:
1885         case CEPH_OSD_OP_WATCH:
1886                 rbd_osd_trivial_callback(obj_request);
1887                 break;
1888         default:
1889                 rbd_warn(NULL, "%s: unsupported op %hu",
1890                         obj_request->object_name, (unsigned short) opcode);
1891                 break;
1892         }
1893
1894         if (obj_request_done_test(obj_request))
1895                 rbd_obj_request_complete(obj_request);
1896 }
1897
1898 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1899 {
1900         struct rbd_img_request *img_request = obj_request->img_request;
1901         struct ceph_osd_request *osd_req = obj_request->osd_req;
1902         u64 snap_id;
1903
1904         rbd_assert(osd_req != NULL);
1905
1906         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1907         ceph_osdc_build_request(osd_req, obj_request->offset,
1908                         NULL, snap_id, NULL);
1909 }
1910
1911 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1912 {
1913         struct rbd_img_request *img_request = obj_request->img_request;
1914         struct ceph_osd_request *osd_req = obj_request->osd_req;
1915         struct ceph_snap_context *snapc;
1916         struct timespec mtime = CURRENT_TIME;
1917
1918         rbd_assert(osd_req != NULL);
1919
1920         snapc = img_request ? img_request->snapc : NULL;
1921         ceph_osdc_build_request(osd_req, obj_request->offset,
1922                         snapc, CEPH_NOSNAP, &mtime);
1923 }
1924
1925 /*
1926  * Create an osd request.  A read request has one osd op (read).
1927  * A write request has either one (watch) or two (hint+write) osd ops.
1928  * (All rbd data writes are prefixed with an allocation hint op, but
1929  * technically osd watch is a write request, hence this distinction.)
1930  */
1931 static struct ceph_osd_request *rbd_osd_req_create(
1932                                         struct rbd_device *rbd_dev,
1933                                         enum obj_operation_type op_type,
1934                                         unsigned int num_ops,
1935                                         struct rbd_obj_request *obj_request)
1936 {
1937         struct ceph_snap_context *snapc = NULL;
1938         struct ceph_osd_client *osdc;
1939         struct ceph_osd_request *osd_req;
1940
1941         if (obj_request_img_data_test(obj_request) &&
1942                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1943                 struct rbd_img_request *img_request = obj_request->img_request;
1944                 if (op_type == OBJ_OP_WRITE) {
1945                         rbd_assert(img_request_write_test(img_request));
1946                 } else {
1947                         rbd_assert(img_request_discard_test(img_request));
1948                 }
1949                 snapc = img_request->snapc;
1950         }
1951
1952         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1953
1954         /* Allocate and initialize the request, for the num_ops ops */
1955
1956         osdc = &rbd_dev->rbd_client->client->osdc;
1957         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1958                                           GFP_ATOMIC);
1959         if (!osd_req)
1960                 return NULL;    /* ENOMEM */
1961
1962         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1963                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1964         else
1965                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1966
1967         osd_req->r_callback = rbd_osd_req_callback;
1968         osd_req->r_priv = obj_request;
1969
1970         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1971         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1972
1973         return osd_req;
1974 }
1975
1976 /*
1977  * Create a copyup osd request based on the information in the object
1978  * request supplied.  A copyup request has two or three osd ops, a
1979  * copyup method call, potentially a hint op, and a write or truncate
1980  * or zero op.
1981  */
1982 static struct ceph_osd_request *
1983 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1984 {
1985         struct rbd_img_request *img_request;
1986         struct ceph_snap_context *snapc;
1987         struct rbd_device *rbd_dev;
1988         struct ceph_osd_client *osdc;
1989         struct ceph_osd_request *osd_req;
1990         int num_osd_ops = 3;
1991
1992         rbd_assert(obj_request_img_data_test(obj_request));
1993         img_request = obj_request->img_request;
1994         rbd_assert(img_request);
1995         rbd_assert(img_request_write_test(img_request) ||
1996                         img_request_discard_test(img_request));
1997
1998         if (img_request_discard_test(img_request))
1999                 num_osd_ops = 2;
2000
2001         /* Allocate and initialize the request, for all the ops */
2002
2003         snapc = img_request->snapc;
2004         rbd_dev = img_request->rbd_dev;
2005         osdc = &rbd_dev->rbd_client->client->osdc;
2006         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2007                                                 false, GFP_ATOMIC);
2008         if (!osd_req)
2009                 return NULL;    /* ENOMEM */
2010
2011         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2012         osd_req->r_callback = rbd_osd_req_callback;
2013         osd_req->r_priv = obj_request;
2014
2015         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2016         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2017
2018         return osd_req;
2019 }
2020
2021
2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2023 {
2024         ceph_osdc_put_request(osd_req);
2025 }
2026
2027 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2028
2029 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2030                                                 u64 offset, u64 length,
2031                                                 enum obj_request_type type)
2032 {
2033         struct rbd_obj_request *obj_request;
2034         size_t size;
2035         char *name;
2036
2037         rbd_assert(obj_request_type_valid(type));
2038
2039         size = strlen(object_name) + 1;
2040         name = kmalloc(size, GFP_NOIO);
2041         if (!name)
2042                 return NULL;
2043
2044         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2045         if (!obj_request) {
2046                 kfree(name);
2047                 return NULL;
2048         }
2049
2050         obj_request->object_name = memcpy(name, object_name, size);
2051         obj_request->offset = offset;
2052         obj_request->length = length;
2053         obj_request->flags = 0;
2054         obj_request->which = BAD_WHICH;
2055         obj_request->type = type;
2056         INIT_LIST_HEAD(&obj_request->links);
2057         init_completion(&obj_request->completion);
2058         kref_init(&obj_request->kref);
2059
2060         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2061                 offset, length, (int)type, obj_request);
2062
2063         return obj_request;
2064 }
2065
2066 static void rbd_obj_request_destroy(struct kref *kref)
2067 {
2068         struct rbd_obj_request *obj_request;
2069
2070         obj_request = container_of(kref, struct rbd_obj_request, kref);
2071
2072         dout("%s: obj %p\n", __func__, obj_request);
2073
2074         rbd_assert(obj_request->img_request == NULL);
2075         rbd_assert(obj_request->which == BAD_WHICH);
2076
2077         if (obj_request->osd_req)
2078                 rbd_osd_req_destroy(obj_request->osd_req);
2079
2080         rbd_assert(obj_request_type_valid(obj_request->type));
2081         switch (obj_request->type) {
2082         case OBJ_REQUEST_NODATA:
2083                 break;          /* Nothing to do */
2084         case OBJ_REQUEST_BIO:
2085                 if (obj_request->bio_list)
2086                         bio_chain_put(obj_request->bio_list);
2087                 break;
2088         case OBJ_REQUEST_PAGES:
2089                 if (obj_request->pages)
2090                         ceph_release_page_vector(obj_request->pages,
2091                                                 obj_request->page_count);
2092                 break;
2093         }
2094
2095         kfree(obj_request->object_name);
2096         obj_request->object_name = NULL;
2097         kmem_cache_free(rbd_obj_request_cache, obj_request);
2098 }
2099
2100 /* It's OK to call this for a device with no parent */
2101
2102 static void rbd_spec_put(struct rbd_spec *spec);
2103 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2104 {
2105         rbd_dev_remove_parent(rbd_dev);
2106         rbd_spec_put(rbd_dev->parent_spec);
2107         rbd_dev->parent_spec = NULL;
2108         rbd_dev->parent_overlap = 0;
2109 }
2110
2111 /*
2112  * Parent image reference counting is used to determine when an
2113  * image's parent fields can be safely torn down--after there are no
2114  * more in-flight requests to the parent image.  When the last
2115  * reference is dropped, cleaning them up is safe.
2116  */
2117 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2118 {
2119         int counter;
2120
2121         if (!rbd_dev->parent_spec)
2122                 return;
2123
2124         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2125         if (counter > 0)
2126                 return;
2127
2128         /* Last reference; clean up parent data structures */
2129
2130         if (!counter)
2131                 rbd_dev_unparent(rbd_dev);
2132         else
2133                 rbd_warn(rbd_dev, "parent reference underflow");
2134 }
2135
2136 /*
2137  * If an image has a non-zero parent overlap, get a reference to its
2138  * parent.
2139  *
2140  * Returns true if the rbd device has a parent with a non-zero
2141  * overlap and a reference for it was successfully taken, or
2142  * false otherwise.
2143  */
2144 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2145 {
2146         int counter = 0;
2147
2148         if (!rbd_dev->parent_spec)
2149                 return false;
2150
2151         down_read(&rbd_dev->header_rwsem);
2152         if (rbd_dev->parent_overlap)
2153                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2154         up_read(&rbd_dev->header_rwsem);
2155
2156         if (counter < 0)
2157                 rbd_warn(rbd_dev, "parent reference overflow");
2158
2159         return counter > 0;
2160 }
2161
2162 /*
2163  * Caller is responsible for filling in the list of object requests
2164  * that comprises the image request, and the Linux request pointer
2165  * (if there is one).
2166  */
2167 static struct rbd_img_request *rbd_img_request_create(
2168                                         struct rbd_device *rbd_dev,
2169                                         u64 offset, u64 length,
2170                                         enum obj_operation_type op_type,
2171                                         struct ceph_snap_context *snapc)
2172 {
2173         struct rbd_img_request *img_request;
2174
2175         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2176         if (!img_request)
2177                 return NULL;
2178
2179         img_request->rq = NULL;
2180         img_request->rbd_dev = rbd_dev;
2181         img_request->offset = offset;
2182         img_request->length = length;
2183         img_request->flags = 0;
2184         if (op_type == OBJ_OP_DISCARD) {
2185                 img_request_discard_set(img_request);
2186                 img_request->snapc = snapc;
2187         } else if (op_type == OBJ_OP_WRITE) {
2188                 img_request_write_set(img_request);
2189                 img_request->snapc = snapc;
2190         } else {
2191                 img_request->snap_id = rbd_dev->spec->snap_id;
2192         }
2193         if (rbd_dev_parent_get(rbd_dev))
2194                 img_request_layered_set(img_request);
2195         spin_lock_init(&img_request->completion_lock);
2196         img_request->next_completion = 0;
2197         img_request->callback = NULL;
2198         img_request->result = 0;
2199         img_request->obj_request_count = 0;
2200         INIT_LIST_HEAD(&img_request->obj_requests);
2201         kref_init(&img_request->kref);
2202
2203         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2204                 obj_op_name(op_type), offset, length, img_request);
2205
2206         return img_request;
2207 }
2208
2209 static void rbd_img_request_destroy(struct kref *kref)
2210 {
2211         struct rbd_img_request *img_request;
2212         struct rbd_obj_request *obj_request;
2213         struct rbd_obj_request *next_obj_request;
2214
2215         img_request = container_of(kref, struct rbd_img_request, kref);
2216
2217         dout("%s: img %p\n", __func__, img_request);
2218
2219         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2220                 rbd_img_obj_request_del(img_request, obj_request);
2221         rbd_assert(img_request->obj_request_count == 0);
2222
2223         if (img_request_layered_test(img_request)) {
2224                 img_request_layered_clear(img_request);
2225                 rbd_dev_parent_put(img_request->rbd_dev);
2226         }
2227
2228         if (img_request_write_test(img_request) ||
2229                 img_request_discard_test(img_request))
2230                 ceph_put_snap_context(img_request->snapc);
2231
2232         kmem_cache_free(rbd_img_request_cache, img_request);
2233 }
2234
2235 static struct rbd_img_request *rbd_parent_request_create(
2236                                         struct rbd_obj_request *obj_request,
2237                                         u64 img_offset, u64 length)
2238 {
2239         struct rbd_img_request *parent_request;
2240         struct rbd_device *rbd_dev;
2241
2242         rbd_assert(obj_request->img_request);
2243         rbd_dev = obj_request->img_request->rbd_dev;
2244
2245         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2246                                                 length, OBJ_OP_READ, NULL);
2247         if (!parent_request)
2248                 return NULL;
2249
2250         img_request_child_set(parent_request);
2251         rbd_obj_request_get(obj_request);
2252         parent_request->obj_request = obj_request;
2253
2254         return parent_request;
2255 }
2256
2257 static void rbd_parent_request_destroy(struct kref *kref)
2258 {
2259         struct rbd_img_request *parent_request;
2260         struct rbd_obj_request *orig_request;
2261
2262         parent_request = container_of(kref, struct rbd_img_request, kref);
2263         orig_request = parent_request->obj_request;
2264
2265         parent_request->obj_request = NULL;
2266         rbd_obj_request_put(orig_request);
2267         img_request_child_clear(parent_request);
2268
2269         rbd_img_request_destroy(kref);
2270 }
2271
2272 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2273 {
2274         struct rbd_img_request *img_request;
2275         unsigned int xferred;
2276         int result;
2277         bool more;
2278
2279         rbd_assert(obj_request_img_data_test(obj_request));
2280         img_request = obj_request->img_request;
2281
2282         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2283         xferred = (unsigned int)obj_request->xferred;
2284         result = obj_request->result;
2285         if (result) {
2286                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2287                 enum obj_operation_type op_type;
2288
2289                 if (img_request_discard_test(img_request))
2290                         op_type = OBJ_OP_DISCARD;
2291                 else if (img_request_write_test(img_request))
2292                         op_type = OBJ_OP_WRITE;
2293                 else
2294                         op_type = OBJ_OP_READ;
2295
2296                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2297                         obj_op_name(op_type), obj_request->length,
2298                         obj_request->img_offset, obj_request->offset);
2299                 rbd_warn(rbd_dev, "  result %d xferred %x",
2300                         result, xferred);
2301                 if (!img_request->result)
2302                         img_request->result = result;
2303                 /*
2304                  * Need to end I/O on the entire obj_request worth of
2305                  * bytes in case of error.
2306                  */
2307                 xferred = obj_request->length;
2308         }
2309
2310         /* Image object requests don't own their page array */
2311
2312         if (obj_request->type == OBJ_REQUEST_PAGES) {
2313                 obj_request->pages = NULL;
2314                 obj_request->page_count = 0;
2315         }
2316
2317         if (img_request_child_test(img_request)) {
2318                 rbd_assert(img_request->obj_request != NULL);
2319                 more = obj_request->which < img_request->obj_request_count - 1;
2320         } else {
2321                 rbd_assert(img_request->rq != NULL);
2322
2323                 more = blk_update_request(img_request->rq, result, xferred);
2324                 if (!more)
2325                         __blk_mq_end_request(img_request->rq, result);
2326         }
2327
2328         return more;
2329 }
2330
2331 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2332 {
2333         struct rbd_img_request *img_request;
2334         u32 which = obj_request->which;
2335         bool more = true;
2336
2337         rbd_assert(obj_request_img_data_test(obj_request));
2338         img_request = obj_request->img_request;
2339
2340         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2341         rbd_assert(img_request != NULL);
2342         rbd_assert(img_request->obj_request_count > 0);
2343         rbd_assert(which != BAD_WHICH);
2344         rbd_assert(which < img_request->obj_request_count);
2345
2346         spin_lock_irq(&img_request->completion_lock);
2347         if (which != img_request->next_completion)
2348                 goto out;
2349
2350         for_each_obj_request_from(img_request, obj_request) {
2351                 rbd_assert(more);
2352                 rbd_assert(which < img_request->obj_request_count);
2353
2354                 if (!obj_request_done_test(obj_request))
2355                         break;
2356                 more = rbd_img_obj_end_request(obj_request);
2357                 which++;
2358         }
2359
2360         rbd_assert(more ^ (which == img_request->obj_request_count));
2361         img_request->next_completion = which;
2362 out:
2363         spin_unlock_irq(&img_request->completion_lock);
2364         rbd_img_request_put(img_request);
2365
2366         if (!more)
2367                 rbd_img_request_complete(img_request);
2368 }
2369
2370 /*
2371  * Add individual osd ops to the given ceph_osd_request and prepare
2372  * them for submission. num_ops is the current number of
2373  * osd operations already to the object request.
2374  */
2375 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2376                                 struct ceph_osd_request *osd_request,
2377                                 enum obj_operation_type op_type,
2378                                 unsigned int num_ops)
2379 {
2380         struct rbd_img_request *img_request = obj_request->img_request;
2381         struct rbd_device *rbd_dev = img_request->rbd_dev;
2382         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2383         u64 offset = obj_request->offset;
2384         u64 length = obj_request->length;
2385         u64 img_end;
2386         u16 opcode;
2387
2388         if (op_type == OBJ_OP_DISCARD) {
2389                 if (!offset && length == object_size &&
2390                     (!img_request_layered_test(img_request) ||
2391                      !obj_request_overlaps_parent(obj_request))) {
2392                         opcode = CEPH_OSD_OP_DELETE;
2393                 } else if ((offset + length == object_size)) {
2394                         opcode = CEPH_OSD_OP_TRUNCATE;
2395                 } else {
2396                         down_read(&rbd_dev->header_rwsem);
2397                         img_end = rbd_dev->header.image_size;
2398                         up_read(&rbd_dev->header_rwsem);
2399
2400                         if (obj_request->img_offset + length == img_end)
2401                                 opcode = CEPH_OSD_OP_TRUNCATE;
2402                         else
2403                                 opcode = CEPH_OSD_OP_ZERO;
2404                 }
2405         } else if (op_type == OBJ_OP_WRITE) {
2406                 if (!offset && length == object_size)
2407                         opcode = CEPH_OSD_OP_WRITEFULL;
2408                 else
2409                         opcode = CEPH_OSD_OP_WRITE;
2410                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2411                                         object_size, object_size);
2412                 num_ops++;
2413         } else {
2414                 opcode = CEPH_OSD_OP_READ;
2415         }
2416
2417         if (opcode == CEPH_OSD_OP_DELETE)
2418                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2419         else
2420                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2421                                        offset, length, 0, 0);
2422
2423         if (obj_request->type == OBJ_REQUEST_BIO)
2424                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2425                                         obj_request->bio_list, length);
2426         else if (obj_request->type == OBJ_REQUEST_PAGES)
2427                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2428                                         obj_request->pages, length,
2429                                         offset & ~PAGE_MASK, false, false);
2430
2431         /* Discards are also writes */
2432         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2433                 rbd_osd_req_format_write(obj_request);
2434         else
2435                 rbd_osd_req_format_read(obj_request);
2436 }
2437
2438 /*
2439  * Split up an image request into one or more object requests, each
2440  * to a different object.  The "type" parameter indicates whether
2441  * "data_desc" is the pointer to the head of a list of bio
2442  * structures, or the base of a page array.  In either case this
2443  * function assumes data_desc describes memory sufficient to hold
2444  * all data described by the image request.
2445  */
2446 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2447                                         enum obj_request_type type,
2448                                         void *data_desc)
2449 {
2450         struct rbd_device *rbd_dev = img_request->rbd_dev;
2451         struct rbd_obj_request *obj_request = NULL;
2452         struct rbd_obj_request *next_obj_request;
2453         struct bio *bio_list = NULL;
2454         unsigned int bio_offset = 0;
2455         struct page **pages = NULL;
2456         enum obj_operation_type op_type;
2457         u64 img_offset;
2458         u64 resid;
2459
2460         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2461                 (int)type, data_desc);
2462
2463         img_offset = img_request->offset;
2464         resid = img_request->length;
2465         rbd_assert(resid > 0);
2466         op_type = rbd_img_request_op_type(img_request);
2467
2468         if (type == OBJ_REQUEST_BIO) {
2469                 bio_list = data_desc;
2470                 rbd_assert(img_offset ==
2471                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2472         } else if (type == OBJ_REQUEST_PAGES) {
2473                 pages = data_desc;
2474         }
2475
2476         while (resid) {
2477                 struct ceph_osd_request *osd_req;
2478                 const char *object_name;
2479                 u64 offset;
2480                 u64 length;
2481
2482                 object_name = rbd_segment_name(rbd_dev, img_offset);
2483                 if (!object_name)
2484                         goto out_unwind;
2485                 offset = rbd_segment_offset(rbd_dev, img_offset);
2486                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2487                 obj_request = rbd_obj_request_create(object_name,
2488                                                 offset, length, type);
2489                 /* object request has its own copy of the object name */
2490                 rbd_segment_name_free(object_name);
2491                 if (!obj_request)
2492                         goto out_unwind;
2493
2494                 /*
2495                  * set obj_request->img_request before creating the
2496                  * osd_request so that it gets the right snapc
2497                  */
2498                 rbd_img_obj_request_add(img_request, obj_request);
2499
2500                 if (type == OBJ_REQUEST_BIO) {
2501                         unsigned int clone_size;
2502
2503                         rbd_assert(length <= (u64)UINT_MAX);
2504                         clone_size = (unsigned int)length;
2505                         obj_request->bio_list =
2506                                         bio_chain_clone_range(&bio_list,
2507                                                                 &bio_offset,
2508                                                                 clone_size,
2509                                                                 GFP_ATOMIC);
2510                         if (!obj_request->bio_list)
2511                                 goto out_unwind;
2512                 } else if (type == OBJ_REQUEST_PAGES) {
2513                         unsigned int page_count;
2514
2515                         obj_request->pages = pages;
2516                         page_count = (u32)calc_pages_for(offset, length);
2517                         obj_request->page_count = page_count;
2518                         if ((offset + length) & ~PAGE_MASK)
2519                                 page_count--;   /* more on last page */
2520                         pages += page_count;
2521                 }
2522
2523                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2524                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2525                                         obj_request);
2526                 if (!osd_req)
2527                         goto out_unwind;
2528
2529                 obj_request->osd_req = osd_req;
2530                 obj_request->callback = rbd_img_obj_callback;
2531                 obj_request->img_offset = img_offset;
2532
2533                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2534
2535                 rbd_img_request_get(img_request);
2536
2537                 img_offset += length;
2538                 resid -= length;
2539         }
2540
2541         return 0;
2542
2543 out_unwind:
2544         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2545                 rbd_img_obj_request_del(img_request, obj_request);
2546
2547         return -ENOMEM;
2548 }
2549
2550 static void
2551 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2552 {
2553         struct rbd_img_request *img_request;
2554         struct rbd_device *rbd_dev;
2555         struct page **pages;
2556         u32 page_count;
2557
2558         dout("%s: obj %p\n", __func__, obj_request);
2559
2560         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2561                 obj_request->type == OBJ_REQUEST_NODATA);
2562         rbd_assert(obj_request_img_data_test(obj_request));
2563         img_request = obj_request->img_request;
2564         rbd_assert(img_request);
2565
2566         rbd_dev = img_request->rbd_dev;
2567         rbd_assert(rbd_dev);
2568
2569         pages = obj_request->copyup_pages;
2570         rbd_assert(pages != NULL);
2571         obj_request->copyup_pages = NULL;
2572         page_count = obj_request->copyup_page_count;
2573         rbd_assert(page_count);
2574         obj_request->copyup_page_count = 0;
2575         ceph_release_page_vector(pages, page_count);
2576
2577         /*
2578          * We want the transfer count to reflect the size of the
2579          * original write request.  There is no such thing as a
2580          * successful short write, so if the request was successful
2581          * we can just set it to the originally-requested length.
2582          */
2583         if (!obj_request->result)
2584                 obj_request->xferred = obj_request->length;
2585
2586         obj_request_done_set(obj_request);
2587 }
2588
2589 static void
2590 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2591 {
2592         struct rbd_obj_request *orig_request;
2593         struct ceph_osd_request *osd_req;
2594         struct ceph_osd_client *osdc;
2595         struct rbd_device *rbd_dev;
2596         struct page **pages;
2597         enum obj_operation_type op_type;
2598         u32 page_count;
2599         int img_result;
2600         u64 parent_length;
2601
2602         rbd_assert(img_request_child_test(img_request));
2603
2604         /* First get what we need from the image request */
2605
2606         pages = img_request->copyup_pages;
2607         rbd_assert(pages != NULL);
2608         img_request->copyup_pages = NULL;
2609         page_count = img_request->copyup_page_count;
2610         rbd_assert(page_count);
2611         img_request->copyup_page_count = 0;
2612
2613         orig_request = img_request->obj_request;
2614         rbd_assert(orig_request != NULL);
2615         rbd_assert(obj_request_type_valid(orig_request->type));
2616         img_result = img_request->result;
2617         parent_length = img_request->length;
2618         rbd_assert(parent_length == img_request->xferred);
2619         rbd_img_request_put(img_request);
2620
2621         rbd_assert(orig_request->img_request);
2622         rbd_dev = orig_request->img_request->rbd_dev;
2623         rbd_assert(rbd_dev);
2624
2625         /*
2626          * If the overlap has become 0 (most likely because the
2627          * image has been flattened) we need to free the pages
2628          * and re-submit the original write request.
2629          */
2630         if (!rbd_dev->parent_overlap) {
2631                 struct ceph_osd_client *osdc;
2632
2633                 ceph_release_page_vector(pages, page_count);
2634                 osdc = &rbd_dev->rbd_client->client->osdc;
2635                 img_result = rbd_obj_request_submit(osdc, orig_request);
2636                 if (!img_result)
2637                         return;
2638         }
2639
2640         if (img_result)
2641                 goto out_err;
2642
2643         /*
2644          * The original osd request is of no use to use any more.
2645          * We need a new one that can hold the three ops in a copyup
2646          * request.  Allocate the new copyup osd request for the
2647          * original request, and release the old one.
2648          */
2649         img_result = -ENOMEM;
2650         osd_req = rbd_osd_req_create_copyup(orig_request);
2651         if (!osd_req)
2652                 goto out_err;
2653         rbd_osd_req_destroy(orig_request->osd_req);
2654         orig_request->osd_req = osd_req;
2655         orig_request->copyup_pages = pages;
2656         orig_request->copyup_page_count = page_count;
2657
2658         /* Initialize the copyup op */
2659
2660         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2661         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2662                                                 false, false);
2663
2664         /* Add the other op(s) */
2665
2666         op_type = rbd_img_request_op_type(orig_request->img_request);
2667         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2668
2669         /* All set, send it off. */
2670
2671         osdc = &rbd_dev->rbd_client->client->osdc;
2672         img_result = rbd_obj_request_submit(osdc, orig_request);
2673         if (!img_result)
2674                 return;
2675 out_err:
2676         /* Record the error code and complete the request */
2677
2678         orig_request->result = img_result;
2679         orig_request->xferred = 0;
2680         obj_request_done_set(orig_request);
2681         rbd_obj_request_complete(orig_request);
2682 }
2683
2684 /*
2685  * Read from the parent image the range of data that covers the
2686  * entire target of the given object request.  This is used for
2687  * satisfying a layered image write request when the target of an
2688  * object request from the image request does not exist.
2689  *
2690  * A page array big enough to hold the returned data is allocated
2691  * and supplied to rbd_img_request_fill() as the "data descriptor."
2692  * When the read completes, this page array will be transferred to
2693  * the original object request for the copyup operation.
2694  *
2695  * If an error occurs, record it as the result of the original
2696  * object request and mark it done so it gets completed.
2697  */
2698 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2699 {
2700         struct rbd_img_request *img_request = NULL;
2701         struct rbd_img_request *parent_request = NULL;
2702         struct rbd_device *rbd_dev;
2703         u64 img_offset;
2704         u64 length;
2705         struct page **pages = NULL;
2706         u32 page_count;
2707         int result;
2708
2709         rbd_assert(obj_request_img_data_test(obj_request));
2710         rbd_assert(obj_request_type_valid(obj_request->type));
2711
2712         img_request = obj_request->img_request;
2713         rbd_assert(img_request != NULL);
2714         rbd_dev = img_request->rbd_dev;
2715         rbd_assert(rbd_dev->parent != NULL);
2716
2717         /*
2718          * Determine the byte range covered by the object in the
2719          * child image to which the original request was to be sent.
2720          */
2721         img_offset = obj_request->img_offset - obj_request->offset;
2722         length = (u64)1 << rbd_dev->header.obj_order;
2723
2724         /*
2725          * There is no defined parent data beyond the parent
2726          * overlap, so limit what we read at that boundary if
2727          * necessary.
2728          */
2729         if (img_offset + length > rbd_dev->parent_overlap) {
2730                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2731                 length = rbd_dev->parent_overlap - img_offset;
2732         }
2733
2734         /*
2735          * Allocate a page array big enough to receive the data read
2736          * from the parent.
2737          */
2738         page_count = (u32)calc_pages_for(0, length);
2739         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2740         if (IS_ERR(pages)) {
2741                 result = PTR_ERR(pages);
2742                 pages = NULL;
2743                 goto out_err;
2744         }
2745
2746         result = -ENOMEM;
2747         parent_request = rbd_parent_request_create(obj_request,
2748                                                 img_offset, length);
2749         if (!parent_request)
2750                 goto out_err;
2751
2752         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2753         if (result)
2754                 goto out_err;
2755         parent_request->copyup_pages = pages;
2756         parent_request->copyup_page_count = page_count;
2757
2758         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2759         result = rbd_img_request_submit(parent_request);
2760         if (!result)
2761                 return 0;
2762
2763         parent_request->copyup_pages = NULL;
2764         parent_request->copyup_page_count = 0;
2765         parent_request->obj_request = NULL;
2766         rbd_obj_request_put(obj_request);
2767 out_err:
2768         if (pages)
2769                 ceph_release_page_vector(pages, page_count);
2770         if (parent_request)
2771                 rbd_img_request_put(parent_request);
2772         obj_request->result = result;
2773         obj_request->xferred = 0;
2774         obj_request_done_set(obj_request);
2775
2776         return result;
2777 }
2778
2779 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2780 {
2781         struct rbd_obj_request *orig_request;
2782         struct rbd_device *rbd_dev;
2783         int result;
2784
2785         rbd_assert(!obj_request_img_data_test(obj_request));
2786
2787         /*
2788          * All we need from the object request is the original
2789          * request and the result of the STAT op.  Grab those, then
2790          * we're done with the request.
2791          */
2792         orig_request = obj_request->obj_request;
2793         obj_request->obj_request = NULL;
2794         rbd_obj_request_put(orig_request);
2795         rbd_assert(orig_request);
2796         rbd_assert(orig_request->img_request);
2797
2798         result = obj_request->result;
2799         obj_request->result = 0;
2800
2801         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2802                 obj_request, orig_request, result,
2803                 obj_request->xferred, obj_request->length);
2804         rbd_obj_request_put(obj_request);
2805
2806         /*
2807          * If the overlap has become 0 (most likely because the
2808          * image has been flattened) we need to free the pages
2809          * and re-submit the original write request.
2810          */
2811         rbd_dev = orig_request->img_request->rbd_dev;
2812         if (!rbd_dev->parent_overlap) {
2813                 struct ceph_osd_client *osdc;
2814
2815                 osdc = &rbd_dev->rbd_client->client->osdc;
2816                 result = rbd_obj_request_submit(osdc, orig_request);
2817                 if (!result)
2818                         return;
2819         }
2820
2821         /*
2822          * Our only purpose here is to determine whether the object
2823          * exists, and we don't want to treat the non-existence as
2824          * an error.  If something else comes back, transfer the
2825          * error to the original request and complete it now.
2826          */
2827         if (!result) {
2828                 obj_request_existence_set(orig_request, true);
2829         } else if (result == -ENOENT) {
2830                 obj_request_existence_set(orig_request, false);
2831         } else if (result) {
2832                 orig_request->result = result;
2833                 goto out;
2834         }
2835
2836         /*
2837          * Resubmit the original request now that we have recorded
2838          * whether the target object exists.
2839          */
2840         orig_request->result = rbd_img_obj_request_submit(orig_request);
2841 out:
2842         if (orig_request->result)
2843                 rbd_obj_request_complete(orig_request);
2844 }
2845
2846 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2847 {
2848         struct rbd_obj_request *stat_request;
2849         struct rbd_device *rbd_dev;
2850         struct ceph_osd_client *osdc;
2851         struct page **pages = NULL;
2852         u32 page_count;
2853         size_t size;
2854         int ret;
2855
2856         /*
2857          * The response data for a STAT call consists of:
2858          *     le64 length;
2859          *     struct {
2860          *         le32 tv_sec;
2861          *         le32 tv_nsec;
2862          *     } mtime;
2863          */
2864         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2865         page_count = (u32)calc_pages_for(0, size);
2866         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2867         if (IS_ERR(pages))
2868                 return PTR_ERR(pages);
2869
2870         ret = -ENOMEM;
2871         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2872                                                         OBJ_REQUEST_PAGES);
2873         if (!stat_request)
2874                 goto out;
2875
2876         rbd_obj_request_get(obj_request);
2877         stat_request->obj_request = obj_request;
2878         stat_request->pages = pages;
2879         stat_request->page_count = page_count;
2880
2881         rbd_assert(obj_request->img_request);
2882         rbd_dev = obj_request->img_request->rbd_dev;
2883         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2884                                                    stat_request);
2885         if (!stat_request->osd_req)
2886                 goto out;
2887         stat_request->callback = rbd_img_obj_exists_callback;
2888
2889         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2890         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2891                                         false, false);
2892         rbd_osd_req_format_read(stat_request);
2893
2894         osdc = &rbd_dev->rbd_client->client->osdc;
2895         ret = rbd_obj_request_submit(osdc, stat_request);
2896 out:
2897         if (ret)
2898                 rbd_obj_request_put(obj_request);
2899
2900         return ret;
2901 }
2902
2903 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2904 {
2905         struct rbd_img_request *img_request;
2906         struct rbd_device *rbd_dev;
2907
2908         rbd_assert(obj_request_img_data_test(obj_request));
2909
2910         img_request = obj_request->img_request;
2911         rbd_assert(img_request);
2912         rbd_dev = img_request->rbd_dev;
2913
2914         /* Reads */
2915         if (!img_request_write_test(img_request) &&
2916             !img_request_discard_test(img_request))
2917                 return true;
2918
2919         /* Non-layered writes */
2920         if (!img_request_layered_test(img_request))
2921                 return true;
2922
2923         /*
2924          * Layered writes outside of the parent overlap range don't
2925          * share any data with the parent.
2926          */
2927         if (!obj_request_overlaps_parent(obj_request))
2928                 return true;
2929
2930         /*
2931          * Entire-object layered writes - we will overwrite whatever
2932          * parent data there is anyway.
2933          */
2934         if (!obj_request->offset &&
2935             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2936                 return true;
2937
2938         /*
2939          * If the object is known to already exist, its parent data has
2940          * already been copied.
2941          */
2942         if (obj_request_known_test(obj_request) &&
2943             obj_request_exists_test(obj_request))
2944                 return true;
2945
2946         return false;
2947 }
2948
2949 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2950 {
2951         if (img_obj_request_simple(obj_request)) {
2952                 struct rbd_device *rbd_dev;
2953                 struct ceph_osd_client *osdc;
2954
2955                 rbd_dev = obj_request->img_request->rbd_dev;
2956                 osdc = &rbd_dev->rbd_client->client->osdc;
2957
2958                 return rbd_obj_request_submit(osdc, obj_request);
2959         }
2960
2961         /*
2962          * It's a layered write.  The target object might exist but
2963          * we may not know that yet.  If we know it doesn't exist,
2964          * start by reading the data for the full target object from
2965          * the parent so we can use it for a copyup to the target.
2966          */
2967         if (obj_request_known_test(obj_request))
2968                 return rbd_img_obj_parent_read_full(obj_request);
2969
2970         /* We don't know whether the target exists.  Go find out. */
2971
2972         return rbd_img_obj_exists_submit(obj_request);
2973 }
2974
2975 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2976 {
2977         struct rbd_obj_request *obj_request;
2978         struct rbd_obj_request *next_obj_request;
2979
2980         dout("%s: img %p\n", __func__, img_request);
2981         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2982                 int ret;
2983
2984                 ret = rbd_img_obj_request_submit(obj_request);
2985                 if (ret)
2986                         return ret;
2987         }
2988
2989         return 0;
2990 }
2991
2992 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2993 {
2994         struct rbd_obj_request *obj_request;
2995         struct rbd_device *rbd_dev;
2996         u64 obj_end;
2997         u64 img_xferred;
2998         int img_result;
2999
3000         rbd_assert(img_request_child_test(img_request));
3001
3002         /* First get what we need from the image request and release it */
3003
3004         obj_request = img_request->obj_request;
3005         img_xferred = img_request->xferred;
3006         img_result = img_request->result;
3007         rbd_img_request_put(img_request);
3008
3009         /*
3010          * If the overlap has become 0 (most likely because the
3011          * image has been flattened) we need to re-submit the
3012          * original request.
3013          */
3014         rbd_assert(obj_request);
3015         rbd_assert(obj_request->img_request);
3016         rbd_dev = obj_request->img_request->rbd_dev;
3017         if (!rbd_dev->parent_overlap) {
3018                 struct ceph_osd_client *osdc;
3019
3020                 osdc = &rbd_dev->rbd_client->client->osdc;
3021                 img_result = rbd_obj_request_submit(osdc, obj_request);
3022                 if (!img_result)
3023                         return;
3024         }
3025
3026         obj_request->result = img_result;
3027         if (obj_request->result)
3028                 goto out;
3029
3030         /*
3031          * We need to zero anything beyond the parent overlap
3032          * boundary.  Since rbd_img_obj_request_read_callback()
3033          * will zero anything beyond the end of a short read, an
3034          * easy way to do this is to pretend the data from the
3035          * parent came up short--ending at the overlap boundary.
3036          */
3037         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3038         obj_end = obj_request->img_offset + obj_request->length;
3039         if (obj_end > rbd_dev->parent_overlap) {
3040                 u64 xferred = 0;
3041
3042                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3043                         xferred = rbd_dev->parent_overlap -
3044                                         obj_request->img_offset;
3045
3046                 obj_request->xferred = min(img_xferred, xferred);
3047         } else {
3048                 obj_request->xferred = img_xferred;
3049         }
3050 out:
3051         rbd_img_obj_request_read_callback(obj_request);
3052         rbd_obj_request_complete(obj_request);
3053 }
3054
3055 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3056 {
3057         struct rbd_img_request *img_request;
3058         int result;
3059
3060         rbd_assert(obj_request_img_data_test(obj_request));
3061         rbd_assert(obj_request->img_request != NULL);
3062         rbd_assert(obj_request->result == (s32) -ENOENT);
3063         rbd_assert(obj_request_type_valid(obj_request->type));
3064
3065         /* rbd_read_finish(obj_request, obj_request->length); */
3066         img_request = rbd_parent_request_create(obj_request,
3067                                                 obj_request->img_offset,
3068                                                 obj_request->length);
3069         result = -ENOMEM;
3070         if (!img_request)
3071                 goto out_err;
3072
3073         if (obj_request->type == OBJ_REQUEST_BIO)
3074                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3075                                                 obj_request->bio_list);
3076         else
3077                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3078                                                 obj_request->pages);
3079         if (result)
3080                 goto out_err;
3081
3082         img_request->callback = rbd_img_parent_read_callback;
3083         result = rbd_img_request_submit(img_request);
3084         if (result)
3085                 goto out_err;
3086
3087         return;
3088 out_err:
3089         if (img_request)
3090                 rbd_img_request_put(img_request);
3091         obj_request->result = result;
3092         obj_request->xferred = 0;
3093         obj_request_done_set(obj_request);
3094 }
3095
3096 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3097 {
3098         struct rbd_obj_request *obj_request;
3099         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3100         int ret;
3101
3102         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3103                                                         OBJ_REQUEST_NODATA);
3104         if (!obj_request)
3105                 return -ENOMEM;
3106
3107         ret = -ENOMEM;
3108         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3109                                                   obj_request);
3110         if (!obj_request->osd_req)
3111                 goto out;
3112
3113         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3114                                         notify_id, 0, 0);
3115         rbd_osd_req_format_read(obj_request);
3116
3117         ret = rbd_obj_request_submit(osdc, obj_request);
3118         if (ret)
3119                 goto out;
3120         ret = rbd_obj_request_wait(obj_request);
3121 out:
3122         rbd_obj_request_put(obj_request);
3123
3124         return ret;
3125 }
3126
3127 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3128 {
3129         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3130         int ret;
3131
3132         if (!rbd_dev)
3133                 return;
3134
3135         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3136                 rbd_dev->header_name, (unsigned long long)notify_id,
3137                 (unsigned int)opcode);
3138
3139         /*
3140          * Until adequate refresh error handling is in place, there is
3141          * not much we can do here, except warn.
3142          *
3143          * See http://tracker.ceph.com/issues/5040
3144          */
3145         ret = rbd_dev_refresh(rbd_dev);
3146         if (ret)
3147                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3148
3149         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3150         if (ret)
3151                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3152 }
3153
3154 /*
3155  * Send a (un)watch request and wait for the ack.  Return a request
3156  * with a ref held on success or error.
3157  */
3158 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3159                                                 struct rbd_device *rbd_dev,
3160                                                 bool watch)
3161 {
3162         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3163         struct ceph_options *opts = osdc->client->options;
3164         struct rbd_obj_request *obj_request;
3165         int ret;
3166
3167         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3168                                              OBJ_REQUEST_NODATA);
3169         if (!obj_request)
3170                 return ERR_PTR(-ENOMEM);
3171
3172         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3173                                                   obj_request);
3174         if (!obj_request->osd_req) {
3175                 ret = -ENOMEM;
3176                 goto out;
3177         }
3178
3179         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3180                               rbd_dev->watch_event->cookie, 0, watch);
3181         rbd_osd_req_format_write(obj_request);
3182
3183         if (watch)
3184                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3185
3186         ret = rbd_obj_request_submit(osdc, obj_request);
3187         if (ret)
3188                 goto out;
3189
3190         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3191         if (ret)
3192                 goto out;
3193
3194         ret = obj_request->result;
3195         if (ret) {
3196                 if (watch)
3197                         rbd_obj_request_end(obj_request);
3198                 goto out;
3199         }
3200
3201         return obj_request;
3202
3203 out:
3204         rbd_obj_request_put(obj_request);
3205         return ERR_PTR(ret);
3206 }
3207
3208 /*
3209  * Initiate a watch request, synchronously.
3210  */
3211 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3212 {
3213         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3214         struct rbd_obj_request *obj_request;
3215         int ret;
3216
3217         rbd_assert(!rbd_dev->watch_event);
3218         rbd_assert(!rbd_dev->watch_request);
3219
3220         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3221                                      &rbd_dev->watch_event);
3222         if (ret < 0)
3223                 return ret;
3224
3225         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3226         if (IS_ERR(obj_request)) {
3227                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3228                 rbd_dev->watch_event = NULL;
3229                 return PTR_ERR(obj_request);
3230         }
3231
3232         /*
3233          * A watch request is set to linger, so the underlying osd
3234          * request won't go away until we unregister it.  We retain
3235          * a pointer to the object request during that time (in
3236          * rbd_dev->watch_request), so we'll keep a reference to it.
3237          * We'll drop that reference after we've unregistered it in
3238          * rbd_dev_header_unwatch_sync().
3239          */
3240         rbd_dev->watch_request = obj_request;
3241
3242         return 0;
3243 }
3244
3245 /*
3246  * Tear down a watch request, synchronously.
3247  */
3248 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3249 {
3250         struct rbd_obj_request *obj_request;
3251
3252         rbd_assert(rbd_dev->watch_event);
3253         rbd_assert(rbd_dev->watch_request);
3254
3255         rbd_obj_request_end(rbd_dev->watch_request);
3256         rbd_obj_request_put(rbd_dev->watch_request);
3257         rbd_dev->watch_request = NULL;
3258
3259         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3260         if (!IS_ERR(obj_request))
3261                 rbd_obj_request_put(obj_request);
3262         else
3263                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3264                          PTR_ERR(obj_request));
3265
3266         ceph_osdc_cancel_event(rbd_dev->watch_event);
3267         rbd_dev->watch_event = NULL;
3268 }
3269
3270 /*
3271  * Synchronous osd object method call.  Returns the number of bytes
3272  * returned in the outbound buffer, or a negative error code.
3273  */
3274 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3275                              const char *object_name,
3276                              const char *class_name,
3277                              const char *method_name,
3278                              const void *outbound,
3279                              size_t outbound_size,
3280                              void *inbound,
3281                              size_t inbound_size)
3282 {
3283         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3284         struct rbd_obj_request *obj_request;
3285         struct page **pages;
3286         u32 page_count;
3287         int ret;
3288
3289         /*
3290          * Method calls are ultimately read operations.  The result
3291          * should placed into the inbound buffer provided.  They
3292          * also supply outbound data--parameters for the object
3293          * method.  Currently if this is present it will be a
3294          * snapshot id.
3295          */
3296         page_count = (u32)calc_pages_for(0, inbound_size);
3297         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3298         if (IS_ERR(pages))
3299                 return PTR_ERR(pages);
3300
3301         ret = -ENOMEM;
3302         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3303                                                         OBJ_REQUEST_PAGES);
3304         if (!obj_request)
3305                 goto out;
3306
3307         obj_request->pages = pages;
3308         obj_request->page_count = page_count;
3309
3310         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3311                                                   obj_request);
3312         if (!obj_request->osd_req)
3313                 goto out;
3314
3315         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3316                                         class_name, method_name);
3317         if (outbound_size) {
3318                 struct ceph_pagelist *pagelist;
3319
3320                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3321                 if (!pagelist)
3322                         goto out;
3323
3324                 ceph_pagelist_init(pagelist);
3325                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3326                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3327                                                 pagelist);
3328         }
3329         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3330                                         obj_request->pages, inbound_size,
3331                                         0, false, false);
3332         rbd_osd_req_format_read(obj_request);
3333
3334         ret = rbd_obj_request_submit(osdc, obj_request);
3335         if (ret)
3336                 goto out;
3337         ret = rbd_obj_request_wait(obj_request);
3338         if (ret)
3339                 goto out;
3340
3341         ret = obj_request->result;
3342         if (ret < 0)
3343                 goto out;
3344
3345         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3346         ret = (int)obj_request->xferred;
3347         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3348 out:
3349         if (obj_request)
3350                 rbd_obj_request_put(obj_request);
3351         else
3352                 ceph_release_page_vector(pages, page_count);
3353
3354         return ret;
3355 }
3356
3357 static void rbd_queue_workfn(struct work_struct *work)
3358 {
3359         struct request *rq = blk_mq_rq_from_pdu(work);
3360         struct rbd_device *rbd_dev = rq->q->queuedata;
3361         struct rbd_img_request *img_request;
3362         struct ceph_snap_context *snapc = NULL;
3363         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3364         u64 length = blk_rq_bytes(rq);
3365         enum obj_operation_type op_type;
3366         u64 mapping_size;
3367         int result;
3368
3369         if (rq->cmd_type != REQ_TYPE_FS) {
3370                 dout("%s: non-fs request type %d\n", __func__,
3371                         (int) rq->cmd_type);
3372                 result = -EIO;
3373                 goto err;
3374         }
3375
3376         if (rq->cmd_flags & REQ_DISCARD)
3377                 op_type = OBJ_OP_DISCARD;
3378         else if (rq->cmd_flags & REQ_WRITE)
3379                 op_type = OBJ_OP_WRITE;
3380         else
3381                 op_type = OBJ_OP_READ;
3382
3383         /* Ignore/skip any zero-length requests */
3384
3385         if (!length) {
3386                 dout("%s: zero-length request\n", __func__);
3387                 result = 0;
3388                 goto err_rq;
3389         }
3390
3391         /* Only reads are allowed to a read-only device */
3392
3393         if (op_type != OBJ_OP_READ) {
3394                 if (rbd_dev->mapping.read_only) {
3395                         result = -EROFS;
3396                         goto err_rq;
3397                 }
3398                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3399         }
3400
3401         /*
3402          * Quit early if the mapped snapshot no longer exists.  It's
3403          * still possible the snapshot will have disappeared by the
3404          * time our request arrives at the osd, but there's no sense in
3405          * sending it if we already know.
3406          */
3407         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3408                 dout("request for non-existent snapshot");
3409                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3410                 result = -ENXIO;
3411                 goto err_rq;
3412         }
3413
3414         if (offset && length > U64_MAX - offset + 1) {
3415                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3416                          length);
3417                 result = -EINVAL;
3418                 goto err_rq;    /* Shouldn't happen */
3419         }
3420
3421         blk_mq_start_request(rq);
3422
3423         down_read(&rbd_dev->header_rwsem);
3424         mapping_size = rbd_dev->mapping.size;
3425         if (op_type != OBJ_OP_READ) {
3426                 snapc = rbd_dev->header.snapc;
3427                 ceph_get_snap_context(snapc);
3428         }
3429         up_read(&rbd_dev->header_rwsem);
3430
3431         if (offset + length > mapping_size) {
3432                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3433                          length, mapping_size);
3434                 result = -EIO;
3435                 goto err_rq;
3436         }
3437
3438         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3439                                              snapc);
3440         if (!img_request) {
3441                 result = -ENOMEM;
3442                 goto err_rq;
3443         }
3444         img_request->rq = rq;
3445
3446         if (op_type == OBJ_OP_DISCARD)
3447                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3448                                               NULL);
3449         else
3450                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3451                                               rq->bio);
3452         if (result)
3453                 goto err_img_request;
3454
3455         result = rbd_img_request_submit(img_request);
3456         if (result)
3457                 goto err_img_request;
3458
3459         return;
3460
3461 err_img_request:
3462         rbd_img_request_put(img_request);
3463 err_rq:
3464         if (result)
3465                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3466                          obj_op_name(op_type), length, offset, result);
3467         ceph_put_snap_context(snapc);
3468 err:
3469         blk_mq_end_request(rq, result);
3470 }
3471
3472 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3473                 const struct blk_mq_queue_data *bd)
3474 {
3475         struct request *rq = bd->rq;
3476         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3477
3478         queue_work(rbd_wq, work);
3479         return BLK_MQ_RQ_QUEUE_OK;
3480 }
3481
3482 static void rbd_free_disk(struct rbd_device *rbd_dev)
3483 {
3484         struct gendisk *disk = rbd_dev->disk;
3485
3486         if (!disk)
3487                 return;
3488
3489         rbd_dev->disk = NULL;
3490         if (disk->flags & GENHD_FL_UP) {
3491                 del_gendisk(disk);
3492                 if (disk->queue)
3493                         blk_cleanup_queue(disk->queue);
3494                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3495         }
3496         put_disk(disk);
3497 }
3498
3499 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3500                                 const char *object_name,
3501                                 u64 offset, u64 length, void *buf)
3502
3503 {
3504         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3505         struct rbd_obj_request *obj_request;
3506         struct page **pages = NULL;
3507         u32 page_count;
3508         size_t size;
3509         int ret;
3510
3511         page_count = (u32) calc_pages_for(offset, length);
3512         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3513         if (IS_ERR(pages))
3514                 return PTR_ERR(pages);
3515
3516         ret = -ENOMEM;
3517         obj_request = rbd_obj_request_create(object_name, offset, length,
3518                                                         OBJ_REQUEST_PAGES);
3519         if (!obj_request)
3520                 goto out;
3521
3522         obj_request->pages = pages;
3523         obj_request->page_count = page_count;
3524
3525         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3526                                                   obj_request);
3527         if (!obj_request->osd_req)
3528                 goto out;
3529
3530         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3531                                         offset, length, 0, 0);
3532         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3533                                         obj_request->pages,
3534                                         obj_request->length,
3535                                         obj_request->offset & ~PAGE_MASK,
3536                                         false, false);
3537         rbd_osd_req_format_read(obj_request);
3538
3539         ret = rbd_obj_request_submit(osdc, obj_request);
3540         if (ret)
3541                 goto out;
3542         ret = rbd_obj_request_wait(obj_request);
3543         if (ret)
3544                 goto out;
3545
3546         ret = obj_request->result;
3547         if (ret < 0)
3548                 goto out;
3549
3550         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3551         size = (size_t) obj_request->xferred;
3552         ceph_copy_from_page_vector(pages, buf, 0, size);
3553         rbd_assert(size <= (size_t)INT_MAX);
3554         ret = (int)size;
3555 out:
3556         if (obj_request)
3557                 rbd_obj_request_put(obj_request);
3558         else
3559                 ceph_release_page_vector(pages, page_count);
3560
3561         return ret;
3562 }
3563
3564 /*
3565  * Read the complete header for the given rbd device.  On successful
3566  * return, the rbd_dev->header field will contain up-to-date
3567  * information about the image.
3568  */
3569 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3570 {
3571         struct rbd_image_header_ondisk *ondisk = NULL;
3572         u32 snap_count = 0;
3573         u64 names_size = 0;
3574         u32 want_count;
3575         int ret;
3576
3577         /*
3578          * The complete header will include an array of its 64-bit
3579          * snapshot ids, followed by the names of those snapshots as
3580          * a contiguous block of NUL-terminated strings.  Note that
3581          * the number of snapshots could change by the time we read
3582          * it in, in which case we re-read it.
3583          */
3584         do {
3585                 size_t size;
3586
3587                 kfree(ondisk);
3588
3589                 size = sizeof (*ondisk);
3590                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3591                 size += names_size;
3592                 ondisk = kmalloc(size, GFP_KERNEL);
3593                 if (!ondisk)
3594                         return -ENOMEM;
3595
3596                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3597                                        0, size, ondisk);
3598                 if (ret < 0)
3599                         goto out;
3600                 if ((size_t)ret < size) {
3601                         ret = -ENXIO;
3602                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3603                                 size, ret);
3604                         goto out;
3605                 }
3606                 if (!rbd_dev_ondisk_valid(ondisk)) {
3607                         ret = -ENXIO;
3608                         rbd_warn(rbd_dev, "invalid header");
3609                         goto out;
3610                 }
3611
3612                 names_size = le64_to_cpu(ondisk->snap_names_len);
3613                 want_count = snap_count;
3614                 snap_count = le32_to_cpu(ondisk->snap_count);
3615         } while (snap_count != want_count);
3616
3617         ret = rbd_header_from_disk(rbd_dev, ondisk);
3618 out:
3619         kfree(ondisk);
3620
3621         return ret;
3622 }
3623
3624 /*
3625  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3626  * has disappeared from the (just updated) snapshot context.
3627  */
3628 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3629 {
3630         u64 snap_id;
3631
3632         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3633                 return;
3634
3635         snap_id = rbd_dev->spec->snap_id;
3636         if (snap_id == CEPH_NOSNAP)
3637                 return;
3638
3639         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3640                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3641 }
3642
3643 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3644 {
3645         sector_t size;
3646         bool removing;
3647
3648         /*
3649          * Don't hold the lock while doing disk operations,
3650          * or lock ordering will conflict with the bdev mutex via:
3651          * rbd_add() -> blkdev_get() -> rbd_open()
3652          */
3653         spin_lock_irq(&rbd_dev->lock);
3654         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3655         spin_unlock_irq(&rbd_dev->lock);
3656         /*
3657          * If the device is being removed, rbd_dev->disk has
3658          * been destroyed, so don't try to update its size
3659          */
3660         if (!removing) {
3661                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3662                 dout("setting size to %llu sectors", (unsigned long long)size);
3663                 set_capacity(rbd_dev->disk, size);
3664                 revalidate_disk(rbd_dev->disk);
3665         }
3666 }
3667
3668 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3669 {
3670         u64 mapping_size;
3671         int ret;
3672
3673         down_write(&rbd_dev->header_rwsem);
3674         mapping_size = rbd_dev->mapping.size;
3675
3676         ret = rbd_dev_header_info(rbd_dev);
3677         if (ret)
3678                 goto out;
3679
3680         /*
3681          * If there is a parent, see if it has disappeared due to the
3682          * mapped image getting flattened.
3683          */
3684         if (rbd_dev->parent) {
3685                 ret = rbd_dev_v2_parent_info(rbd_dev);
3686                 if (ret)
3687                         goto out;
3688         }
3689
3690         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3691                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3692         } else {
3693                 /* validate mapped snapshot's EXISTS flag */
3694                 rbd_exists_validate(rbd_dev);
3695         }
3696
3697 out:
3698         up_write(&rbd_dev->header_rwsem);
3699         if (!ret && mapping_size != rbd_dev->mapping.size)
3700                 rbd_dev_update_size(rbd_dev);
3701
3702         return ret;
3703 }
3704
3705 static int rbd_init_request(void *data, struct request *rq,
3706                 unsigned int hctx_idx, unsigned int request_idx,
3707                 unsigned int numa_node)
3708 {
3709         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3710
3711         INIT_WORK(work, rbd_queue_workfn);
3712         return 0;
3713 }
3714
3715 static struct blk_mq_ops rbd_mq_ops = {
3716         .queue_rq       = rbd_queue_rq,
3717         .map_queue      = blk_mq_map_queue,
3718         .init_request   = rbd_init_request,
3719 };
3720
3721 static int rbd_init_disk(struct rbd_device *rbd_dev)
3722 {
3723         struct gendisk *disk;
3724         struct request_queue *q;
3725         u64 segment_size;
3726         int err;
3727
3728         /* create gendisk info */
3729         disk = alloc_disk(single_major ?
3730                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3731                           RBD_MINORS_PER_MAJOR);
3732         if (!disk)
3733                 return -ENOMEM;
3734
3735         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3736                  rbd_dev->dev_id);
3737         disk->major = rbd_dev->major;
3738         disk->first_minor = rbd_dev->minor;
3739         if (single_major)
3740                 disk->flags |= GENHD_FL_EXT_DEVT;
3741         disk->fops = &rbd_bd_ops;
3742         disk->private_data = rbd_dev;
3743
3744         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3745         rbd_dev->tag_set.ops = &rbd_mq_ops;
3746         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3747         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3748         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3749         rbd_dev->tag_set.nr_hw_queues = 1;
3750         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3751
3752         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3753         if (err)
3754                 goto out_disk;
3755
3756         q = blk_mq_init_queue(&rbd_dev->tag_set);
3757         if (IS_ERR(q)) {
3758                 err = PTR_ERR(q);
3759                 goto out_tag_set;
3760         }
3761
3762         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3763         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3764
3765         /* set io sizes to object size */
3766         segment_size = rbd_obj_bytes(&rbd_dev->header);
3767         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3768         q->limits.max_sectors = queue_max_hw_sectors(q);
3769         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3770         blk_queue_max_segment_size(q, segment_size);
3771         blk_queue_io_min(q, segment_size);
3772         blk_queue_io_opt(q, segment_size);
3773
3774         /* enable the discard support */
3775         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3776         q->limits.discard_granularity = segment_size;
3777         q->limits.discard_alignment = segment_size;
3778         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3779         q->limits.discard_zeroes_data = 1;
3780
3781         disk->queue = q;
3782
3783         q->queuedata = rbd_dev;
3784
3785         rbd_dev->disk = disk;
3786
3787         return 0;
3788 out_tag_set:
3789         blk_mq_free_tag_set(&rbd_dev->tag_set);
3790 out_disk:
3791         put_disk(disk);
3792         return err;
3793 }
3794
3795 /*
3796   sysfs
3797 */
3798
3799 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3800 {
3801         return container_of(dev, struct rbd_device, dev);
3802 }
3803
3804 static ssize_t rbd_size_show(struct device *dev,
3805                              struct device_attribute *attr, char *buf)
3806 {
3807         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3808
3809         return sprintf(buf, "%llu\n",
3810                 (unsigned long long)rbd_dev->mapping.size);
3811 }
3812
3813 /*
3814  * Note this shows the features for whatever's mapped, which is not
3815  * necessarily the base image.
3816  */
3817 static ssize_t rbd_features_show(struct device *dev,
3818                              struct device_attribute *attr, char *buf)
3819 {
3820         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3821
3822         return sprintf(buf, "0x%016llx\n",
3823                         (unsigned long long)rbd_dev->mapping.features);
3824 }
3825
3826 static ssize_t rbd_major_show(struct device *dev,
3827                               struct device_attribute *attr, char *buf)
3828 {
3829         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3830
3831         if (rbd_dev->major)
3832                 return sprintf(buf, "%d\n", rbd_dev->major);
3833
3834         return sprintf(buf, "(none)\n");
3835 }
3836
3837 static ssize_t rbd_minor_show(struct device *dev,
3838                               struct device_attribute *attr, char *buf)
3839 {
3840         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3841
3842         return sprintf(buf, "%d\n", rbd_dev->minor);
3843 }
3844
3845 static ssize_t rbd_client_id_show(struct device *dev,
3846                                   struct device_attribute *attr, char *buf)
3847 {
3848         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3849
3850         return sprintf(buf, "client%lld\n",
3851                         ceph_client_id(rbd_dev->rbd_client->client));
3852 }
3853
3854 static ssize_t rbd_pool_show(struct device *dev,
3855                              struct device_attribute *attr, char *buf)
3856 {
3857         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3858
3859         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3860 }
3861
3862 static ssize_t rbd_pool_id_show(struct device *dev,
3863                              struct device_attribute *attr, char *buf)
3864 {
3865         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3866
3867         return sprintf(buf, "%llu\n",
3868                         (unsigned long long) rbd_dev->spec->pool_id);
3869 }
3870
3871 static ssize_t rbd_name_show(struct device *dev,
3872                              struct device_attribute *attr, char *buf)
3873 {
3874         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3875
3876         if (rbd_dev->spec->image_name)
3877                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3878
3879         return sprintf(buf, "(unknown)\n");
3880 }
3881
3882 static ssize_t rbd_image_id_show(struct device *dev,
3883                              struct device_attribute *attr, char *buf)
3884 {
3885         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3886
3887         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3888 }
3889
3890 /*
3891  * Shows the name of the currently-mapped snapshot (or
3892  * RBD_SNAP_HEAD_NAME for the base image).
3893  */
3894 static ssize_t rbd_snap_show(struct device *dev,
3895                              struct device_attribute *attr,
3896                              char *buf)
3897 {
3898         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3899
3900         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3901 }
3902
3903 /*
3904  * For a v2 image, shows the chain of parent images, separated by empty
3905  * lines.  For v1 images or if there is no parent, shows "(no parent
3906  * image)".
3907  */
3908 static ssize_t rbd_parent_show(struct device *dev,
3909                                struct device_attribute *attr,
3910                                char *buf)
3911 {
3912         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3913         ssize_t count = 0;
3914
3915         if (!rbd_dev->parent)
3916                 return sprintf(buf, "(no parent image)\n");
3917
3918         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3919                 struct rbd_spec *spec = rbd_dev->parent_spec;
3920
3921                 count += sprintf(&buf[count], "%s"
3922                             "pool_id %llu\npool_name %s\n"
3923                             "image_id %s\nimage_name %s\n"
3924                             "snap_id %llu\nsnap_name %s\n"
3925                             "overlap %llu\n",
3926                             !count ? "" : "\n", /* first? */
3927                             spec->pool_id, spec->pool_name,
3928                             spec->image_id, spec->image_name ?: "(unknown)",
3929                             spec->snap_id, spec->snap_name,
3930                             rbd_dev->parent_overlap);
3931         }
3932
3933         return count;
3934 }
3935
3936 static ssize_t rbd_image_refresh(struct device *dev,
3937                                  struct device_attribute *attr,
3938                                  const char *buf,
3939                                  size_t size)
3940 {
3941         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3942         int ret;
3943
3944         ret = rbd_dev_refresh(rbd_dev);
3945         if (ret)
3946                 return ret;
3947
3948         return size;
3949 }
3950
3951 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3952 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3953 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3954 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3955 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3956 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3957 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3958 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3959 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3960 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3961 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3962 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3963
3964 static struct attribute *rbd_attrs[] = {
3965         &dev_attr_size.attr,
3966         &dev_attr_features.attr,
3967         &dev_attr_major.attr,
3968         &dev_attr_minor.attr,
3969         &dev_attr_client_id.attr,
3970         &dev_attr_pool.attr,
3971         &dev_attr_pool_id.attr,
3972         &dev_attr_name.attr,
3973         &dev_attr_image_id.attr,
3974         &dev_attr_current_snap.attr,
3975         &dev_attr_parent.attr,
3976         &dev_attr_refresh.attr,
3977         NULL
3978 };
3979
3980 static struct attribute_group rbd_attr_group = {
3981         .attrs = rbd_attrs,
3982 };
3983
3984 static const struct attribute_group *rbd_attr_groups[] = {
3985         &rbd_attr_group,
3986         NULL
3987 };
3988
3989 static void rbd_sysfs_dev_release(struct device *dev)
3990 {
3991 }
3992
3993 static struct device_type rbd_device_type = {
3994         .name           = "rbd",
3995         .groups         = rbd_attr_groups,
3996         .release        = rbd_sysfs_dev_release,
3997 };
3998
3999 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4000 {
4001         kref_get(&spec->kref);
4002
4003         return spec;
4004 }
4005
4006 static void rbd_spec_free(struct kref *kref);
4007 static void rbd_spec_put(struct rbd_spec *spec)
4008 {
4009         if (spec)
4010                 kref_put(&spec->kref, rbd_spec_free);
4011 }
4012
4013 static struct rbd_spec *rbd_spec_alloc(void)
4014 {
4015         struct rbd_spec *spec;
4016
4017         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4018         if (!spec)
4019                 return NULL;
4020
4021         spec->pool_id = CEPH_NOPOOL;
4022         spec->snap_id = CEPH_NOSNAP;
4023         kref_init(&spec->kref);
4024
4025         return spec;
4026 }
4027
4028 static void rbd_spec_free(struct kref *kref)
4029 {
4030         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4031
4032         kfree(spec->pool_name);
4033         kfree(spec->image_id);
4034         kfree(spec->image_name);
4035         kfree(spec->snap_name);
4036         kfree(spec);
4037 }
4038
4039 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4040                                          struct rbd_spec *spec,
4041                                          struct rbd_options *opts)
4042 {
4043         struct rbd_device *rbd_dev;
4044
4045         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4046         if (!rbd_dev)
4047                 return NULL;
4048
4049         spin_lock_init(&rbd_dev->lock);
4050         rbd_dev->flags = 0;
4051         atomic_set(&rbd_dev->parent_ref, 0);
4052         INIT_LIST_HEAD(&rbd_dev->node);
4053         init_rwsem(&rbd_dev->header_rwsem);
4054
4055         rbd_dev->rbd_client = rbdc;
4056         rbd_dev->spec = spec;
4057         rbd_dev->opts = opts;
4058
4059         /* Initialize the layout used for all rbd requests */
4060
4061         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4062         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4063         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4064         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4065
4066         return rbd_dev;
4067 }
4068
4069 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4070 {
4071         rbd_put_client(rbd_dev->rbd_client);
4072         rbd_spec_put(rbd_dev->spec);
4073         kfree(rbd_dev->opts);
4074         kfree(rbd_dev);
4075 }
4076
4077 /*
4078  * Get the size and object order for an image snapshot, or if
4079  * snap_id is CEPH_NOSNAP, gets this information for the base
4080  * image.
4081  */
4082 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4083                                 u8 *order, u64 *snap_size)
4084 {
4085         __le64 snapid = cpu_to_le64(snap_id);
4086         int ret;
4087         struct {
4088                 u8 order;
4089                 __le64 size;
4090         } __attribute__ ((packed)) size_buf = { 0 };
4091
4092         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4093                                 "rbd", "get_size",
4094                                 &snapid, sizeof (snapid),
4095                                 &size_buf, sizeof (size_buf));
4096         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4097         if (ret < 0)
4098                 return ret;
4099         if (ret < sizeof (size_buf))
4100                 return -ERANGE;
4101
4102         if (order) {
4103                 *order = size_buf.order;
4104                 dout("  order %u", (unsigned int)*order);
4105         }
4106         *snap_size = le64_to_cpu(size_buf.size);
4107
4108         dout("  snap_id 0x%016llx snap_size = %llu\n",
4109                 (unsigned long long)snap_id,
4110                 (unsigned long long)*snap_size);
4111
4112         return 0;
4113 }
4114
4115 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4116 {
4117         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4118                                         &rbd_dev->header.obj_order,
4119                                         &rbd_dev->header.image_size);
4120 }
4121
4122 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4123 {
4124         void *reply_buf;
4125         int ret;
4126         void *p;
4127
4128         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4129         if (!reply_buf)
4130                 return -ENOMEM;
4131
4132         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4133                                 "rbd", "get_object_prefix", NULL, 0,
4134                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4135         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4136         if (ret < 0)
4137                 goto out;
4138
4139         p = reply_buf;
4140         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4141                                                 p + ret, NULL, GFP_NOIO);
4142         ret = 0;
4143
4144         if (IS_ERR(rbd_dev->header.object_prefix)) {
4145                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4146                 rbd_dev->header.object_prefix = NULL;
4147         } else {
4148                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4149         }
4150 out:
4151         kfree(reply_buf);
4152
4153         return ret;
4154 }
4155
4156 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4157                 u64 *snap_features)
4158 {
4159         __le64 snapid = cpu_to_le64(snap_id);
4160         struct {
4161                 __le64 features;
4162                 __le64 incompat;
4163         } __attribute__ ((packed)) features_buf = { 0 };
4164         u64 incompat;
4165         int ret;
4166
4167         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4168                                 "rbd", "get_features",
4169                                 &snapid, sizeof (snapid),
4170                                 &features_buf, sizeof (features_buf));
4171         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4172         if (ret < 0)
4173                 return ret;
4174         if (ret < sizeof (features_buf))
4175                 return -ERANGE;
4176
4177         incompat = le64_to_cpu(features_buf.incompat);
4178         if (incompat & ~RBD_FEATURES_SUPPORTED)
4179                 return -ENXIO;
4180
4181         *snap_features = le64_to_cpu(features_buf.features);
4182
4183         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4184                 (unsigned long long)snap_id,
4185                 (unsigned long long)*snap_features,
4186                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4187
4188         return 0;
4189 }
4190
4191 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4192 {
4193         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4194                                                 &rbd_dev->header.features);
4195 }
4196
4197 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4198 {
4199         struct rbd_spec *parent_spec;
4200         size_t size;
4201         void *reply_buf = NULL;
4202         __le64 snapid;
4203         void *p;
4204         void *end;
4205         u64 pool_id;
4206         char *image_id;
4207         u64 snap_id;
4208         u64 overlap;
4209         int ret;
4210
4211         parent_spec = rbd_spec_alloc();
4212         if (!parent_spec)
4213                 return -ENOMEM;
4214
4215         size = sizeof (__le64) +                                /* pool_id */
4216                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4217                 sizeof (__le64) +                               /* snap_id */
4218                 sizeof (__le64);                                /* overlap */
4219         reply_buf = kmalloc(size, GFP_KERNEL);
4220         if (!reply_buf) {
4221                 ret = -ENOMEM;
4222                 goto out_err;
4223         }
4224
4225         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4226         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4227                                 "rbd", "get_parent",
4228                                 &snapid, sizeof (snapid),
4229                                 reply_buf, size);
4230         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4231         if (ret < 0)
4232                 goto out_err;
4233
4234         p = reply_buf;
4235         end = reply_buf + ret;
4236         ret = -ERANGE;
4237         ceph_decode_64_safe(&p, end, pool_id, out_err);
4238         if (pool_id == CEPH_NOPOOL) {
4239                 /*
4240                  * Either the parent never existed, or we have
4241                  * record of it but the image got flattened so it no
4242                  * longer has a parent.  When the parent of a
4243                  * layered image disappears we immediately set the
4244                  * overlap to 0.  The effect of this is that all new
4245                  * requests will be treated as if the image had no
4246                  * parent.
4247                  */
4248                 if (rbd_dev->parent_overlap) {
4249                         rbd_dev->parent_overlap = 0;
4250                         rbd_dev_parent_put(rbd_dev);
4251                         pr_info("%s: clone image has been flattened\n",
4252                                 rbd_dev->disk->disk_name);
4253                 }
4254
4255                 goto out;       /* No parent?  No problem. */
4256         }
4257
4258         /* The ceph file layout needs to fit pool id in 32 bits */
4259
4260         ret = -EIO;
4261         if (pool_id > (u64)U32_MAX) {
4262                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4263                         (unsigned long long)pool_id, U32_MAX);
4264                 goto out_err;
4265         }
4266
4267         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4268         if (IS_ERR(image_id)) {
4269                 ret = PTR_ERR(image_id);
4270                 goto out_err;
4271         }
4272         ceph_decode_64_safe(&p, end, snap_id, out_err);
4273         ceph_decode_64_safe(&p, end, overlap, out_err);
4274
4275         /*
4276          * The parent won't change (except when the clone is
4277          * flattened, already handled that).  So we only need to
4278          * record the parent spec we have not already done so.
4279          */
4280         if (!rbd_dev->parent_spec) {
4281                 parent_spec->pool_id = pool_id;
4282                 parent_spec->image_id = image_id;
4283                 parent_spec->snap_id = snap_id;
4284                 rbd_dev->parent_spec = parent_spec;
4285                 parent_spec = NULL;     /* rbd_dev now owns this */
4286         } else {
4287                 kfree(image_id);
4288         }
4289
4290         /*
4291          * We always update the parent overlap.  If it's zero we issue
4292          * a warning, as we will proceed as if there was no parent.
4293          */
4294         if (!overlap) {
4295                 if (parent_spec) {
4296                         /* refresh, careful to warn just once */
4297                         if (rbd_dev->parent_overlap)
4298                                 rbd_warn(rbd_dev,
4299                                     "clone now standalone (overlap became 0)");
4300                 } else {
4301                         /* initial probe */
4302                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4303                 }
4304         }
4305         rbd_dev->parent_overlap = overlap;
4306
4307 out:
4308         ret = 0;
4309 out_err:
4310         kfree(reply_buf);
4311         rbd_spec_put(parent_spec);
4312
4313         return ret;
4314 }
4315
4316 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4317 {
4318         struct {
4319                 __le64 stripe_unit;
4320                 __le64 stripe_count;
4321         } __attribute__ ((packed)) striping_info_buf = { 0 };
4322         size_t size = sizeof (striping_info_buf);
4323         void *p;
4324         u64 obj_size;
4325         u64 stripe_unit;
4326         u64 stripe_count;
4327         int ret;
4328
4329         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4330                                 "rbd", "get_stripe_unit_count", NULL, 0,
4331                                 (char *)&striping_info_buf, size);
4332         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4333         if (ret < 0)
4334                 return ret;
4335         if (ret < size)
4336                 return -ERANGE;
4337
4338         /*
4339          * We don't actually support the "fancy striping" feature
4340          * (STRIPINGV2) yet, but if the striping sizes are the
4341          * defaults the behavior is the same as before.  So find
4342          * out, and only fail if the image has non-default values.
4343          */
4344         ret = -EINVAL;
4345         obj_size = (u64)1 << rbd_dev->header.obj_order;
4346         p = &striping_info_buf;
4347         stripe_unit = ceph_decode_64(&p);
4348         if (stripe_unit != obj_size) {
4349                 rbd_warn(rbd_dev, "unsupported stripe unit "
4350                                 "(got %llu want %llu)",
4351                                 stripe_unit, obj_size);
4352                 return -EINVAL;
4353         }
4354         stripe_count = ceph_decode_64(&p);
4355         if (stripe_count != 1) {
4356                 rbd_warn(rbd_dev, "unsupported stripe count "
4357                                 "(got %llu want 1)", stripe_count);
4358                 return -EINVAL;
4359         }
4360         rbd_dev->header.stripe_unit = stripe_unit;
4361         rbd_dev->header.stripe_count = stripe_count;
4362
4363         return 0;
4364 }
4365
4366 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4367 {
4368         size_t image_id_size;
4369         char *image_id;
4370         void *p;
4371         void *end;
4372         size_t size;
4373         void *reply_buf = NULL;
4374         size_t len = 0;
4375         char *image_name = NULL;
4376         int ret;
4377
4378         rbd_assert(!rbd_dev->spec->image_name);
4379
4380         len = strlen(rbd_dev->spec->image_id);
4381         image_id_size = sizeof (__le32) + len;
4382         image_id = kmalloc(image_id_size, GFP_KERNEL);
4383         if (!image_id)
4384                 return NULL;
4385
4386         p = image_id;
4387         end = image_id + image_id_size;
4388         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4389
4390         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4391         reply_buf = kmalloc(size, GFP_KERNEL);
4392         if (!reply_buf)
4393                 goto out;
4394
4395         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4396                                 "rbd", "dir_get_name",
4397                                 image_id, image_id_size,
4398                                 reply_buf, size);
4399         if (ret < 0)
4400                 goto out;
4401         p = reply_buf;
4402         end = reply_buf + ret;
4403
4404         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4405         if (IS_ERR(image_name))
4406                 image_name = NULL;
4407         else
4408                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4409 out:
4410         kfree(reply_buf);
4411         kfree(image_id);
4412
4413         return image_name;
4414 }
4415
4416 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4417 {
4418         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4419         const char *snap_name;
4420         u32 which = 0;
4421
4422         /* Skip over names until we find the one we are looking for */
4423
4424         snap_name = rbd_dev->header.snap_names;
4425         while (which < snapc->num_snaps) {
4426                 if (!strcmp(name, snap_name))
4427                         return snapc->snaps[which];
4428                 snap_name += strlen(snap_name) + 1;
4429                 which++;
4430         }
4431         return CEPH_NOSNAP;
4432 }
4433
4434 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4435 {
4436         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4437         u32 which;
4438         bool found = false;
4439         u64 snap_id;
4440
4441         for (which = 0; !found && which < snapc->num_snaps; which++) {
4442                 const char *snap_name;
4443
4444                 snap_id = snapc->snaps[which];
4445                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4446                 if (IS_ERR(snap_name)) {
4447                         /* ignore no-longer existing snapshots */
4448                         if (PTR_ERR(snap_name) == -ENOENT)
4449                                 continue;
4450                         else
4451                                 break;
4452                 }
4453                 found = !strcmp(name, snap_name);
4454                 kfree(snap_name);
4455         }
4456         return found ? snap_id : CEPH_NOSNAP;
4457 }
4458
4459 /*
4460  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4461  * no snapshot by that name is found, or if an error occurs.
4462  */
4463 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4464 {
4465         if (rbd_dev->image_format == 1)
4466                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4467
4468         return rbd_v2_snap_id_by_name(rbd_dev, name);
4469 }
4470
4471 /*
4472  * An image being mapped will have everything but the snap id.
4473  */
4474 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4475 {
4476         struct rbd_spec *spec = rbd_dev->spec;
4477
4478         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4479         rbd_assert(spec->image_id && spec->image_name);
4480         rbd_assert(spec->snap_name);
4481
4482         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4483                 u64 snap_id;
4484
4485                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4486                 if (snap_id == CEPH_NOSNAP)
4487                         return -ENOENT;
4488
4489                 spec->snap_id = snap_id;
4490         } else {
4491                 spec->snap_id = CEPH_NOSNAP;
4492         }
4493
4494         return 0;
4495 }
4496
4497 /*
4498  * A parent image will have all ids but none of the names.
4499  *
4500  * All names in an rbd spec are dynamically allocated.  It's OK if we
4501  * can't figure out the name for an image id.
4502  */
4503 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4504 {
4505         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4506         struct rbd_spec *spec = rbd_dev->spec;
4507         const char *pool_name;
4508         const char *image_name;
4509         const char *snap_name;
4510         int ret;
4511
4512         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4513         rbd_assert(spec->image_id);
4514         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4515
4516         /* Get the pool name; we have to make our own copy of this */
4517
4518         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4519         if (!pool_name) {
4520                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4521                 return -EIO;
4522         }
4523         pool_name = kstrdup(pool_name, GFP_KERNEL);
4524         if (!pool_name)
4525                 return -ENOMEM;
4526
4527         /* Fetch the image name; tolerate failure here */
4528
4529         image_name = rbd_dev_image_name(rbd_dev);
4530         if (!image_name)
4531                 rbd_warn(rbd_dev, "unable to get image name");
4532
4533         /* Fetch the snapshot name */
4534
4535         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4536         if (IS_ERR(snap_name)) {
4537                 ret = PTR_ERR(snap_name);
4538                 goto out_err;
4539         }
4540
4541         spec->pool_name = pool_name;
4542         spec->image_name = image_name;
4543         spec->snap_name = snap_name;
4544
4545         return 0;
4546
4547 out_err:
4548         kfree(image_name);
4549         kfree(pool_name);
4550         return ret;
4551 }
4552
4553 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4554 {
4555         size_t size;
4556         int ret;
4557         void *reply_buf;
4558         void *p;
4559         void *end;
4560         u64 seq;
4561         u32 snap_count;
4562         struct ceph_snap_context *snapc;
4563         u32 i;
4564
4565         /*
4566          * We'll need room for the seq value (maximum snapshot id),
4567          * snapshot count, and array of that many snapshot ids.
4568          * For now we have a fixed upper limit on the number we're
4569          * prepared to receive.
4570          */
4571         size = sizeof (__le64) + sizeof (__le32) +
4572                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4573         reply_buf = kzalloc(size, GFP_KERNEL);
4574         if (!reply_buf)
4575                 return -ENOMEM;
4576
4577         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4578                                 "rbd", "get_snapcontext", NULL, 0,
4579                                 reply_buf, size);
4580         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4581         if (ret < 0)
4582                 goto out;
4583
4584         p = reply_buf;
4585         end = reply_buf + ret;
4586         ret = -ERANGE;
4587         ceph_decode_64_safe(&p, end, seq, out);
4588         ceph_decode_32_safe(&p, end, snap_count, out);
4589
4590         /*
4591          * Make sure the reported number of snapshot ids wouldn't go
4592          * beyond the end of our buffer.  But before checking that,
4593          * make sure the computed size of the snapshot context we
4594          * allocate is representable in a size_t.
4595          */
4596         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4597                                  / sizeof (u64)) {
4598                 ret = -EINVAL;
4599                 goto out;
4600         }
4601         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4602                 goto out;
4603         ret = 0;
4604
4605         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4606         if (!snapc) {
4607                 ret = -ENOMEM;
4608                 goto out;
4609         }
4610         snapc->seq = seq;
4611         for (i = 0; i < snap_count; i++)
4612                 snapc->snaps[i] = ceph_decode_64(&p);
4613
4614         ceph_put_snap_context(rbd_dev->header.snapc);
4615         rbd_dev->header.snapc = snapc;
4616
4617         dout("  snap context seq = %llu, snap_count = %u\n",
4618                 (unsigned long long)seq, (unsigned int)snap_count);
4619 out:
4620         kfree(reply_buf);
4621
4622         return ret;
4623 }
4624
4625 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4626                                         u64 snap_id)
4627 {
4628         size_t size;
4629         void *reply_buf;
4630         __le64 snapid;
4631         int ret;
4632         void *p;
4633         void *end;
4634         char *snap_name;
4635
4636         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4637         reply_buf = kmalloc(size, GFP_KERNEL);
4638         if (!reply_buf)
4639                 return ERR_PTR(-ENOMEM);
4640
4641         snapid = cpu_to_le64(snap_id);
4642         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4643                                 "rbd", "get_snapshot_name",
4644                                 &snapid, sizeof (snapid),
4645                                 reply_buf, size);
4646         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4647         if (ret < 0) {
4648                 snap_name = ERR_PTR(ret);
4649                 goto out;
4650         }
4651
4652         p = reply_buf;
4653         end = reply_buf + ret;
4654         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4655         if (IS_ERR(snap_name))
4656                 goto out;
4657
4658         dout("  snap_id 0x%016llx snap_name = %s\n",
4659                 (unsigned long long)snap_id, snap_name);
4660 out:
4661         kfree(reply_buf);
4662
4663         return snap_name;
4664 }
4665
4666 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4667 {
4668         bool first_time = rbd_dev->header.object_prefix == NULL;
4669         int ret;
4670
4671         ret = rbd_dev_v2_image_size(rbd_dev);
4672         if (ret)
4673                 return ret;
4674
4675         if (first_time) {
4676                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4677                 if (ret)
4678                         return ret;
4679         }
4680
4681         ret = rbd_dev_v2_snap_context(rbd_dev);
4682         if (ret && first_time) {
4683                 kfree(rbd_dev->header.object_prefix);
4684                 rbd_dev->header.object_prefix = NULL;
4685         }
4686
4687         return ret;
4688 }
4689
4690 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4691 {
4692         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4693
4694         if (rbd_dev->image_format == 1)
4695                 return rbd_dev_v1_header_info(rbd_dev);
4696
4697         return rbd_dev_v2_header_info(rbd_dev);
4698 }
4699
4700 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4701 {
4702         struct device *dev;
4703         int ret;
4704
4705         dev = &rbd_dev->dev;
4706         dev->bus = &rbd_bus_type;
4707         dev->type = &rbd_device_type;
4708         dev->parent = &rbd_root_dev;
4709         dev->release = rbd_dev_device_release;
4710         dev_set_name(dev, "%d", rbd_dev->dev_id);
4711         ret = device_register(dev);
4712
4713         return ret;
4714 }
4715
4716 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4717 {
4718         device_unregister(&rbd_dev->dev);
4719 }
4720
4721 /*
4722  * Get a unique rbd identifier for the given new rbd_dev, and add
4723  * the rbd_dev to the global list.
4724  */
4725 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4726 {
4727         int new_dev_id;
4728
4729         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4730                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4731                                     GFP_KERNEL);
4732         if (new_dev_id < 0)
4733                 return new_dev_id;
4734
4735         rbd_dev->dev_id = new_dev_id;
4736
4737         spin_lock(&rbd_dev_list_lock);
4738         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4739         spin_unlock(&rbd_dev_list_lock);
4740
4741         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4742
4743         return 0;
4744 }
4745
4746 /*
4747  * Remove an rbd_dev from the global list, and record that its
4748  * identifier is no longer in use.
4749  */
4750 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4751 {
4752         spin_lock(&rbd_dev_list_lock);
4753         list_del_init(&rbd_dev->node);
4754         spin_unlock(&rbd_dev_list_lock);
4755
4756         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4757
4758         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4759 }
4760
4761 /*
4762  * Skips over white space at *buf, and updates *buf to point to the
4763  * first found non-space character (if any). Returns the length of
4764  * the token (string of non-white space characters) found.  Note
4765  * that *buf must be terminated with '\0'.
4766  */
4767 static inline size_t next_token(const char **buf)
4768 {
4769         /*
4770         * These are the characters that produce nonzero for
4771         * isspace() in the "C" and "POSIX" locales.
4772         */
4773         const char *spaces = " \f\n\r\t\v";
4774
4775         *buf += strspn(*buf, spaces);   /* Find start of token */
4776
4777         return strcspn(*buf, spaces);   /* Return token length */
4778 }
4779
4780 /*
4781  * Finds the next token in *buf, dynamically allocates a buffer big
4782  * enough to hold a copy of it, and copies the token into the new
4783  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4784  * that a duplicate buffer is created even for a zero-length token.
4785  *
4786  * Returns a pointer to the newly-allocated duplicate, or a null
4787  * pointer if memory for the duplicate was not available.  If
4788  * the lenp argument is a non-null pointer, the length of the token
4789  * (not including the '\0') is returned in *lenp.
4790  *
4791  * If successful, the *buf pointer will be updated to point beyond
4792  * the end of the found token.
4793  *
4794  * Note: uses GFP_KERNEL for allocation.
4795  */
4796 static inline char *dup_token(const char **buf, size_t *lenp)
4797 {
4798         char *dup;
4799         size_t len;
4800
4801         len = next_token(buf);
4802         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4803         if (!dup)
4804                 return NULL;
4805         *(dup + len) = '\0';
4806         *buf += len;
4807
4808         if (lenp)
4809                 *lenp = len;
4810
4811         return dup;
4812 }
4813
4814 /*
4815  * Parse the options provided for an "rbd add" (i.e., rbd image
4816  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4817  * and the data written is passed here via a NUL-terminated buffer.
4818  * Returns 0 if successful or an error code otherwise.
4819  *
4820  * The information extracted from these options is recorded in
4821  * the other parameters which return dynamically-allocated
4822  * structures:
4823  *  ceph_opts
4824  *      The address of a pointer that will refer to a ceph options
4825  *      structure.  Caller must release the returned pointer using
4826  *      ceph_destroy_options() when it is no longer needed.
4827  *  rbd_opts
4828  *      Address of an rbd options pointer.  Fully initialized by
4829  *      this function; caller must release with kfree().
4830  *  spec
4831  *      Address of an rbd image specification pointer.  Fully
4832  *      initialized by this function based on parsed options.
4833  *      Caller must release with rbd_spec_put().
4834  *
4835  * The options passed take this form:
4836  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4837  * where:
4838  *  <mon_addrs>
4839  *      A comma-separated list of one or more monitor addresses.
4840  *      A monitor address is an ip address, optionally followed
4841  *      by a port number (separated by a colon).
4842  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4843  *  <options>
4844  *      A comma-separated list of ceph and/or rbd options.
4845  *  <pool_name>
4846  *      The name of the rados pool containing the rbd image.
4847  *  <image_name>
4848  *      The name of the image in that pool to map.
4849  *  <snap_id>
4850  *      An optional snapshot id.  If provided, the mapping will
4851  *      present data from the image at the time that snapshot was
4852  *      created.  The image head is used if no snapshot id is
4853  *      provided.  Snapshot mappings are always read-only.
4854  */
4855 static int rbd_add_parse_args(const char *buf,
4856                                 struct ceph_options **ceph_opts,
4857                                 struct rbd_options **opts,
4858                                 struct rbd_spec **rbd_spec)
4859 {
4860         size_t len;
4861         char *options;
4862         const char *mon_addrs;
4863         char *snap_name;
4864         size_t mon_addrs_size;
4865         struct rbd_spec *spec = NULL;
4866         struct rbd_options *rbd_opts = NULL;
4867         struct ceph_options *copts;
4868         int ret;
4869
4870         /* The first four tokens are required */
4871
4872         len = next_token(&buf);
4873         if (!len) {
4874                 rbd_warn(NULL, "no monitor address(es) provided");
4875                 return -EINVAL;
4876         }
4877         mon_addrs = buf;
4878         mon_addrs_size = len + 1;
4879         buf += len;
4880
4881         ret = -EINVAL;
4882         options = dup_token(&buf, NULL);
4883         if (!options)
4884                 return -ENOMEM;
4885         if (!*options) {
4886                 rbd_warn(NULL, "no options provided");
4887                 goto out_err;
4888         }
4889
4890         spec = rbd_spec_alloc();
4891         if (!spec)
4892                 goto out_mem;
4893
4894         spec->pool_name = dup_token(&buf, NULL);
4895         if (!spec->pool_name)
4896                 goto out_mem;
4897         if (!*spec->pool_name) {
4898                 rbd_warn(NULL, "no pool name provided");
4899                 goto out_err;
4900         }
4901
4902         spec->image_name = dup_token(&buf, NULL);
4903         if (!spec->image_name)
4904                 goto out_mem;
4905         if (!*spec->image_name) {
4906                 rbd_warn(NULL, "no image name provided");
4907                 goto out_err;
4908         }
4909
4910         /*
4911          * Snapshot name is optional; default is to use "-"
4912          * (indicating the head/no snapshot).
4913          */
4914         len = next_token(&buf);
4915         if (!len) {
4916                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4917                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4918         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4919                 ret = -ENAMETOOLONG;
4920                 goto out_err;
4921         }
4922         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4923         if (!snap_name)
4924                 goto out_mem;
4925         *(snap_name + len) = '\0';
4926         spec->snap_name = snap_name;
4927
4928         /* Initialize all rbd options to the defaults */
4929
4930         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4931         if (!rbd_opts)
4932                 goto out_mem;
4933
4934         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4935         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4936
4937         copts = ceph_parse_options(options, mon_addrs,
4938                                         mon_addrs + mon_addrs_size - 1,
4939                                         parse_rbd_opts_token, rbd_opts);
4940         if (IS_ERR(copts)) {
4941                 ret = PTR_ERR(copts);
4942                 goto out_err;
4943         }
4944         kfree(options);
4945
4946         *ceph_opts = copts;
4947         *opts = rbd_opts;
4948         *rbd_spec = spec;
4949
4950         return 0;
4951 out_mem:
4952         ret = -ENOMEM;
4953 out_err:
4954         kfree(rbd_opts);
4955         rbd_spec_put(spec);
4956         kfree(options);
4957
4958         return ret;
4959 }
4960
4961 /*
4962  * Return pool id (>= 0) or a negative error code.
4963  */
4964 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4965 {
4966         struct ceph_options *opts = rbdc->client->options;
4967         u64 newest_epoch;
4968         int tries = 0;
4969         int ret;
4970
4971 again:
4972         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4973         if (ret == -ENOENT && tries++ < 1) {
4974                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4975                                                &newest_epoch);
4976                 if (ret < 0)
4977                         return ret;
4978
4979                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4980                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4981                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4982                                                      newest_epoch,
4983                                                      opts->mount_timeout);
4984                         goto again;
4985                 } else {
4986                         /* the osdmap we have is new enough */
4987                         return -ENOENT;
4988                 }
4989         }
4990
4991         return ret;
4992 }
4993
4994 /*
4995  * An rbd format 2 image has a unique identifier, distinct from the
4996  * name given to it by the user.  Internally, that identifier is
4997  * what's used to specify the names of objects related to the image.
4998  *
4999  * A special "rbd id" object is used to map an rbd image name to its
5000  * id.  If that object doesn't exist, then there is no v2 rbd image
5001  * with the supplied name.
5002  *
5003  * This function will record the given rbd_dev's image_id field if
5004  * it can be determined, and in that case will return 0.  If any
5005  * errors occur a negative errno will be returned and the rbd_dev's
5006  * image_id field will be unchanged (and should be NULL).
5007  */
5008 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5009 {
5010         int ret;
5011         size_t size;
5012         char *object_name;
5013         void *response;
5014         char *image_id;
5015
5016         /*
5017          * When probing a parent image, the image id is already
5018          * known (and the image name likely is not).  There's no
5019          * need to fetch the image id again in this case.  We
5020          * do still need to set the image format though.
5021          */
5022         if (rbd_dev->spec->image_id) {
5023                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5024
5025                 return 0;
5026         }
5027
5028         /*
5029          * First, see if the format 2 image id file exists, and if
5030          * so, get the image's persistent id from it.
5031          */
5032         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5033         object_name = kmalloc(size, GFP_NOIO);
5034         if (!object_name)
5035                 return -ENOMEM;
5036         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5037         dout("rbd id object name is %s\n", object_name);
5038
5039         /* Response will be an encoded string, which includes a length */
5040
5041         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5042         response = kzalloc(size, GFP_NOIO);
5043         if (!response) {
5044                 ret = -ENOMEM;
5045                 goto out;
5046         }
5047
5048         /* If it doesn't exist we'll assume it's a format 1 image */
5049
5050         ret = rbd_obj_method_sync(rbd_dev, object_name,
5051                                 "rbd", "get_id", NULL, 0,
5052                                 response, RBD_IMAGE_ID_LEN_MAX);
5053         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5054         if (ret == -ENOENT) {
5055                 image_id = kstrdup("", GFP_KERNEL);
5056                 ret = image_id ? 0 : -ENOMEM;
5057                 if (!ret)
5058                         rbd_dev->image_format = 1;
5059         } else if (ret >= 0) {
5060                 void *p = response;
5061
5062                 image_id = ceph_extract_encoded_string(&p, p + ret,
5063                                                 NULL, GFP_NOIO);
5064                 ret = PTR_ERR_OR_ZERO(image_id);
5065                 if (!ret)
5066                         rbd_dev->image_format = 2;
5067         }
5068
5069         if (!ret) {
5070                 rbd_dev->spec->image_id = image_id;
5071                 dout("image_id is %s\n", image_id);
5072         }
5073 out:
5074         kfree(response);
5075         kfree(object_name);
5076
5077         return ret;
5078 }
5079
5080 /*
5081  * Undo whatever state changes are made by v1 or v2 header info
5082  * call.
5083  */
5084 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5085 {
5086         struct rbd_image_header *header;
5087
5088         rbd_dev_parent_put(rbd_dev);
5089
5090         /* Free dynamic fields from the header, then zero it out */
5091
5092         header = &rbd_dev->header;
5093         ceph_put_snap_context(header->snapc);
5094         kfree(header->snap_sizes);
5095         kfree(header->snap_names);
5096         kfree(header->object_prefix);
5097         memset(header, 0, sizeof (*header));
5098 }
5099
5100 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5101 {
5102         int ret;
5103
5104         ret = rbd_dev_v2_object_prefix(rbd_dev);
5105         if (ret)
5106                 goto out_err;
5107
5108         /*
5109          * Get the and check features for the image.  Currently the
5110          * features are assumed to never change.
5111          */
5112         ret = rbd_dev_v2_features(rbd_dev);
5113         if (ret)
5114                 goto out_err;
5115
5116         /* If the image supports fancy striping, get its parameters */
5117
5118         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5119                 ret = rbd_dev_v2_striping_info(rbd_dev);
5120                 if (ret < 0)
5121                         goto out_err;
5122         }
5123         /* No support for crypto and compression type format 2 images */
5124
5125         return 0;
5126 out_err:
5127         rbd_dev->header.features = 0;
5128         kfree(rbd_dev->header.object_prefix);
5129         rbd_dev->header.object_prefix = NULL;
5130
5131         return ret;
5132 }
5133
5134 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5135 {
5136         struct rbd_device *parent = NULL;
5137         struct rbd_spec *parent_spec;
5138         struct rbd_client *rbdc;
5139         int ret;
5140
5141         if (!rbd_dev->parent_spec)
5142                 return 0;
5143         /*
5144          * We need to pass a reference to the client and the parent
5145          * spec when creating the parent rbd_dev.  Images related by
5146          * parent/child relationships always share both.
5147          */
5148         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5149         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5150
5151         ret = -ENOMEM;
5152         parent = rbd_dev_create(rbdc, parent_spec, NULL);
5153         if (!parent)
5154                 goto out_err;
5155
5156         ret = rbd_dev_image_probe(parent, false);
5157         if (ret < 0)
5158                 goto out_err;
5159         rbd_dev->parent = parent;
5160         atomic_set(&rbd_dev->parent_ref, 1);
5161
5162         return 0;
5163 out_err:
5164         if (parent) {
5165                 rbd_dev_unparent(rbd_dev);
5166                 rbd_dev_destroy(parent);
5167         } else {
5168                 rbd_put_client(rbdc);
5169                 rbd_spec_put(parent_spec);
5170         }
5171
5172         return ret;
5173 }
5174
5175 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5176 {
5177         int ret;
5178
5179         /* Get an id and fill in device name. */
5180
5181         ret = rbd_dev_id_get(rbd_dev);
5182         if (ret)
5183                 return ret;
5184
5185         BUILD_BUG_ON(DEV_NAME_LEN
5186                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5187         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5188
5189         /* Record our major and minor device numbers. */
5190
5191         if (!single_major) {
5192                 ret = register_blkdev(0, rbd_dev->name);
5193                 if (ret < 0)
5194                         goto err_out_id;
5195
5196                 rbd_dev->major = ret;
5197                 rbd_dev->minor = 0;
5198         } else {
5199                 rbd_dev->major = rbd_major;
5200                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5201         }
5202
5203         /* Set up the blkdev mapping. */
5204
5205         ret = rbd_init_disk(rbd_dev);
5206         if (ret)
5207                 goto err_out_blkdev;
5208
5209         ret = rbd_dev_mapping_set(rbd_dev);
5210         if (ret)
5211                 goto err_out_disk;
5212
5213         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5214         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5215
5216         ret = rbd_bus_add_dev(rbd_dev);
5217         if (ret)
5218                 goto err_out_mapping;
5219
5220         /* Everything's ready.  Announce the disk to the world. */
5221
5222         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5223         add_disk(rbd_dev->disk);
5224
5225         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5226                 (unsigned long long) rbd_dev->mapping.size);
5227
5228         return ret;
5229
5230 err_out_mapping:
5231         rbd_dev_mapping_clear(rbd_dev);
5232 err_out_disk:
5233         rbd_free_disk(rbd_dev);
5234 err_out_blkdev:
5235         if (!single_major)
5236                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5237 err_out_id:
5238         rbd_dev_id_put(rbd_dev);
5239         rbd_dev_mapping_clear(rbd_dev);
5240
5241         return ret;
5242 }
5243
5244 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5245 {
5246         struct rbd_spec *spec = rbd_dev->spec;
5247         size_t size;
5248
5249         /* Record the header object name for this rbd image. */
5250
5251         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5252
5253         if (rbd_dev->image_format == 1)
5254                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5255         else
5256                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5257
5258         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5259         if (!rbd_dev->header_name)
5260                 return -ENOMEM;
5261
5262         if (rbd_dev->image_format == 1)
5263                 sprintf(rbd_dev->header_name, "%s%s",
5264                         spec->image_name, RBD_SUFFIX);
5265         else
5266                 sprintf(rbd_dev->header_name, "%s%s",
5267                         RBD_HEADER_PREFIX, spec->image_id);
5268         return 0;
5269 }
5270
5271 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5272 {
5273         rbd_dev_unprobe(rbd_dev);
5274         kfree(rbd_dev->header_name);
5275         rbd_dev->header_name = NULL;
5276         rbd_dev->image_format = 0;
5277         kfree(rbd_dev->spec->image_id);
5278         rbd_dev->spec->image_id = NULL;
5279
5280         rbd_dev_destroy(rbd_dev);
5281 }
5282
5283 /*
5284  * Probe for the existence of the header object for the given rbd
5285  * device.  If this image is the one being mapped (i.e., not a
5286  * parent), initiate a watch on its header object before using that
5287  * object to get detailed information about the rbd image.
5288  */
5289 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5290 {
5291         int ret;
5292
5293         /*
5294          * Get the id from the image id object.  Unless there's an
5295          * error, rbd_dev->spec->image_id will be filled in with
5296          * a dynamically-allocated string, and rbd_dev->image_format
5297          * will be set to either 1 or 2.
5298          */
5299         ret = rbd_dev_image_id(rbd_dev);
5300         if (ret)
5301                 return ret;
5302
5303         ret = rbd_dev_header_name(rbd_dev);
5304         if (ret)
5305                 goto err_out_format;
5306
5307         if (mapping) {
5308                 ret = rbd_dev_header_watch_sync(rbd_dev);
5309                 if (ret) {
5310                         if (ret == -ENOENT)
5311                                 pr_info("image %s/%s does not exist\n",
5312                                         rbd_dev->spec->pool_name,
5313                                         rbd_dev->spec->image_name);
5314                         goto out_header_name;
5315                 }
5316         }
5317
5318         ret = rbd_dev_header_info(rbd_dev);
5319         if (ret)
5320                 goto err_out_watch;
5321
5322         /*
5323          * If this image is the one being mapped, we have pool name and
5324          * id, image name and id, and snap name - need to fill snap id.
5325          * Otherwise this is a parent image, identified by pool, image
5326          * and snap ids - need to fill in names for those ids.
5327          */
5328         if (mapping)
5329                 ret = rbd_spec_fill_snap_id(rbd_dev);
5330         else
5331                 ret = rbd_spec_fill_names(rbd_dev);
5332         if (ret) {
5333                 if (ret == -ENOENT)
5334                         pr_info("snap %s/%s@%s does not exist\n",
5335                                 rbd_dev->spec->pool_name,
5336                                 rbd_dev->spec->image_name,
5337                                 rbd_dev->spec->snap_name);
5338                 goto err_out_probe;
5339         }
5340
5341         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5342                 ret = rbd_dev_v2_parent_info(rbd_dev);
5343                 if (ret)
5344                         goto err_out_probe;
5345
5346                 /*
5347                  * Need to warn users if this image is the one being
5348                  * mapped and has a parent.
5349                  */
5350                 if (mapping && rbd_dev->parent_spec)
5351                         rbd_warn(rbd_dev,
5352                                  "WARNING: kernel layering is EXPERIMENTAL!");
5353         }
5354
5355         ret = rbd_dev_probe_parent(rbd_dev);
5356         if (ret)
5357                 goto err_out_probe;
5358
5359         dout("discovered format %u image, header name is %s\n",
5360                 rbd_dev->image_format, rbd_dev->header_name);
5361         return 0;
5362
5363 err_out_probe:
5364         rbd_dev_unprobe(rbd_dev);
5365 err_out_watch:
5366         if (mapping)
5367                 rbd_dev_header_unwatch_sync(rbd_dev);
5368 out_header_name:
5369         kfree(rbd_dev->header_name);
5370         rbd_dev->header_name = NULL;
5371 err_out_format:
5372         rbd_dev->image_format = 0;
5373         kfree(rbd_dev->spec->image_id);
5374         rbd_dev->spec->image_id = NULL;
5375         return ret;
5376 }
5377
5378 static ssize_t do_rbd_add(struct bus_type *bus,
5379                           const char *buf,
5380                           size_t count)
5381 {
5382         struct rbd_device *rbd_dev = NULL;
5383         struct ceph_options *ceph_opts = NULL;
5384         struct rbd_options *rbd_opts = NULL;
5385         struct rbd_spec *spec = NULL;
5386         struct rbd_client *rbdc;
5387         bool read_only;
5388         int rc = -ENOMEM;
5389
5390         if (!try_module_get(THIS_MODULE))
5391                 return -ENODEV;
5392
5393         /* parse add command */
5394         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5395         if (rc < 0)
5396                 goto err_out_module;
5397
5398         rbdc = rbd_get_client(ceph_opts);
5399         if (IS_ERR(rbdc)) {
5400                 rc = PTR_ERR(rbdc);
5401                 goto err_out_args;
5402         }
5403
5404         /* pick the pool */
5405         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5406         if (rc < 0) {
5407                 if (rc == -ENOENT)
5408                         pr_info("pool %s does not exist\n", spec->pool_name);
5409                 goto err_out_client;
5410         }
5411         spec->pool_id = (u64)rc;
5412
5413         /* The ceph file layout needs to fit pool id in 32 bits */
5414
5415         if (spec->pool_id > (u64)U32_MAX) {
5416                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5417                                 (unsigned long long)spec->pool_id, U32_MAX);
5418                 rc = -EIO;
5419                 goto err_out_client;
5420         }
5421
5422         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5423         if (!rbd_dev)
5424                 goto err_out_client;
5425         rbdc = NULL;            /* rbd_dev now owns this */
5426         spec = NULL;            /* rbd_dev now owns this */
5427         rbd_opts = NULL;        /* rbd_dev now owns this */
5428
5429         rc = rbd_dev_image_probe(rbd_dev, true);
5430         if (rc < 0)
5431                 goto err_out_rbd_dev;
5432
5433         /* If we are mapping a snapshot it must be marked read-only */
5434
5435         read_only = rbd_dev->opts->read_only;
5436         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5437                 read_only = true;
5438         rbd_dev->mapping.read_only = read_only;
5439
5440         rc = rbd_dev_device_setup(rbd_dev);
5441         if (rc) {
5442                 /*
5443                  * rbd_dev_header_unwatch_sync() can't be moved into
5444                  * rbd_dev_image_release() without refactoring, see
5445                  * commit 1f3ef78861ac.
5446                  */
5447                 rbd_dev_header_unwatch_sync(rbd_dev);
5448                 rbd_dev_image_release(rbd_dev);
5449                 goto err_out_module;
5450         }
5451
5452         return count;
5453
5454 err_out_rbd_dev:
5455         rbd_dev_destroy(rbd_dev);
5456 err_out_client:
5457         rbd_put_client(rbdc);
5458 err_out_args:
5459         rbd_spec_put(spec);
5460         kfree(rbd_opts);
5461 err_out_module:
5462         module_put(THIS_MODULE);
5463
5464         dout("Error adding device %s\n", buf);
5465
5466         return (ssize_t)rc;
5467 }
5468
5469 static ssize_t rbd_add(struct bus_type *bus,
5470                        const char *buf,
5471                        size_t count)
5472 {
5473         if (single_major)
5474                 return -EINVAL;
5475
5476         return do_rbd_add(bus, buf, count);
5477 }
5478
5479 static ssize_t rbd_add_single_major(struct bus_type *bus,
5480                                     const char *buf,
5481                                     size_t count)
5482 {
5483         return do_rbd_add(bus, buf, count);
5484 }
5485
5486 static void rbd_dev_device_release(struct device *dev)
5487 {
5488         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5489
5490         rbd_free_disk(rbd_dev);
5491         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5492         rbd_dev_mapping_clear(rbd_dev);
5493         if (!single_major)
5494                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5495         rbd_dev_id_put(rbd_dev);
5496         rbd_dev_mapping_clear(rbd_dev);
5497 }
5498
5499 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5500 {
5501         while (rbd_dev->parent) {
5502                 struct rbd_device *first = rbd_dev;
5503                 struct rbd_device *second = first->parent;
5504                 struct rbd_device *third;
5505
5506                 /*
5507                  * Follow to the parent with no grandparent and
5508                  * remove it.
5509                  */
5510                 while (second && (third = second->parent)) {
5511                         first = second;
5512                         second = third;
5513                 }
5514                 rbd_assert(second);
5515                 rbd_dev_image_release(second);
5516                 first->parent = NULL;
5517                 first->parent_overlap = 0;
5518
5519                 rbd_assert(first->parent_spec);
5520                 rbd_spec_put(first->parent_spec);
5521                 first->parent_spec = NULL;
5522         }
5523 }
5524
5525 static ssize_t do_rbd_remove(struct bus_type *bus,
5526                              const char *buf,
5527                              size_t count)
5528 {
5529         struct rbd_device *rbd_dev = NULL;
5530         struct list_head *tmp;
5531         int dev_id;
5532         unsigned long ul;
5533         bool already = false;
5534         int ret;
5535
5536         ret = kstrtoul(buf, 10, &ul);
5537         if (ret)
5538                 return ret;
5539
5540         /* convert to int; abort if we lost anything in the conversion */
5541         dev_id = (int)ul;
5542         if (dev_id != ul)
5543                 return -EINVAL;
5544
5545         ret = -ENOENT;
5546         spin_lock(&rbd_dev_list_lock);
5547         list_for_each(tmp, &rbd_dev_list) {
5548                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5549                 if (rbd_dev->dev_id == dev_id) {
5550                         ret = 0;
5551                         break;
5552                 }
5553         }
5554         if (!ret) {
5555                 spin_lock_irq(&rbd_dev->lock);
5556                 if (rbd_dev->open_count)
5557                         ret = -EBUSY;
5558                 else
5559                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5560                                                         &rbd_dev->flags);
5561                 spin_unlock_irq(&rbd_dev->lock);
5562         }
5563         spin_unlock(&rbd_dev_list_lock);
5564         if (ret < 0 || already)
5565                 return ret;
5566
5567         rbd_dev_header_unwatch_sync(rbd_dev);
5568         /*
5569          * flush remaining watch callbacks - these must be complete
5570          * before the osd_client is shutdown
5571          */
5572         dout("%s: flushing notifies", __func__);
5573         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5574
5575         /*
5576          * Don't free anything from rbd_dev->disk until after all
5577          * notifies are completely processed. Otherwise
5578          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5579          * in a potential use after free of rbd_dev->disk or rbd_dev.
5580          */
5581         rbd_bus_del_dev(rbd_dev);
5582         rbd_dev_image_release(rbd_dev);
5583         module_put(THIS_MODULE);
5584
5585         return count;
5586 }
5587
5588 static ssize_t rbd_remove(struct bus_type *bus,
5589                           const char *buf,
5590                           size_t count)
5591 {
5592         if (single_major)
5593                 return -EINVAL;
5594
5595         return do_rbd_remove(bus, buf, count);
5596 }
5597
5598 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5599                                        const char *buf,
5600                                        size_t count)
5601 {
5602         return do_rbd_remove(bus, buf, count);
5603 }
5604
5605 /*
5606  * create control files in sysfs
5607  * /sys/bus/rbd/...
5608  */
5609 static int rbd_sysfs_init(void)
5610 {
5611         int ret;
5612
5613         ret = device_register(&rbd_root_dev);
5614         if (ret < 0)
5615                 return ret;
5616
5617         ret = bus_register(&rbd_bus_type);
5618         if (ret < 0)
5619                 device_unregister(&rbd_root_dev);
5620
5621         return ret;
5622 }
5623
5624 static void rbd_sysfs_cleanup(void)
5625 {
5626         bus_unregister(&rbd_bus_type);
5627         device_unregister(&rbd_root_dev);
5628 }
5629
5630 static int rbd_slab_init(void)
5631 {
5632         rbd_assert(!rbd_img_request_cache);
5633         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5634                                         sizeof (struct rbd_img_request),
5635                                         __alignof__(struct rbd_img_request),
5636                                         0, NULL);
5637         if (!rbd_img_request_cache)
5638                 return -ENOMEM;
5639
5640         rbd_assert(!rbd_obj_request_cache);
5641         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5642                                         sizeof (struct rbd_obj_request),
5643                                         __alignof__(struct rbd_obj_request),
5644                                         0, NULL);
5645         if (!rbd_obj_request_cache)
5646                 goto out_err;
5647
5648         rbd_assert(!rbd_segment_name_cache);
5649         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5650                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5651         if (rbd_segment_name_cache)
5652                 return 0;
5653 out_err:
5654         if (rbd_obj_request_cache) {
5655                 kmem_cache_destroy(rbd_obj_request_cache);
5656                 rbd_obj_request_cache = NULL;
5657         }
5658
5659         kmem_cache_destroy(rbd_img_request_cache);
5660         rbd_img_request_cache = NULL;
5661
5662         return -ENOMEM;
5663 }
5664
5665 static void rbd_slab_exit(void)
5666 {
5667         rbd_assert(rbd_segment_name_cache);
5668         kmem_cache_destroy(rbd_segment_name_cache);
5669         rbd_segment_name_cache = NULL;
5670
5671         rbd_assert(rbd_obj_request_cache);
5672         kmem_cache_destroy(rbd_obj_request_cache);
5673         rbd_obj_request_cache = NULL;
5674
5675         rbd_assert(rbd_img_request_cache);
5676         kmem_cache_destroy(rbd_img_request_cache);
5677         rbd_img_request_cache = NULL;
5678 }
5679
5680 static int __init rbd_init(void)
5681 {
5682         int rc;
5683
5684         if (!libceph_compatible(NULL)) {
5685                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5686                 return -EINVAL;
5687         }
5688
5689         rc = rbd_slab_init();
5690         if (rc)
5691                 return rc;
5692
5693         /*
5694          * The number of active work items is limited by the number of
5695          * rbd devices * queue depth, so leave @max_active at default.
5696          */
5697         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5698         if (!rbd_wq) {
5699                 rc = -ENOMEM;
5700                 goto err_out_slab;
5701         }
5702
5703         if (single_major) {
5704                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5705                 if (rbd_major < 0) {
5706                         rc = rbd_major;
5707                         goto err_out_wq;
5708                 }
5709         }
5710
5711         rc = rbd_sysfs_init();
5712         if (rc)
5713                 goto err_out_blkdev;
5714
5715         if (single_major)
5716                 pr_info("loaded (major %d)\n", rbd_major);
5717         else
5718                 pr_info("loaded\n");
5719
5720         return 0;
5721
5722 err_out_blkdev:
5723         if (single_major)
5724                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5725 err_out_wq:
5726         destroy_workqueue(rbd_wq);
5727 err_out_slab:
5728         rbd_slab_exit();
5729         return rc;
5730 }
5731
5732 static void __exit rbd_exit(void)
5733 {
5734         ida_destroy(&rbd_dev_id_ida);
5735         rbd_sysfs_cleanup();
5736         if (single_major)
5737                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5738         destroy_workqueue(rbd_wq);
5739         rbd_slab_exit();
5740 }
5741
5742 module_init(rbd_init);
5743 module_exit(rbd_exit);
5744
5745 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5746 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5747 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5748 /* following authorship retained from original osdblk.c */
5749 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5750
5751 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5752 MODULE_LICENSE("GPL");