]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/zram/zram_drv.c
Merge tag 'master-2014-12-01' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[karo-tx-linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name)                                              \
47 static ssize_t zram_attr_##name##_show(struct device *d,                \
48                                 struct device_attribute *attr, char *b) \
49 {                                                                       \
50         struct zram *zram = dev_to_zram(d);                             \
51         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
52                 (u64)atomic64_read(&zram->stats.name));                 \
53 }                                                                       \
54 static struct device_attribute dev_attr_##name =                        \
55         __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56
57 static inline int init_done(struct zram *zram)
58 {
59         return zram->meta != NULL;
60 }
61
62 static inline struct zram *dev_to_zram(struct device *dev)
63 {
64         return (struct zram *)dev_to_disk(dev)->private_data;
65 }
66
67 static ssize_t disksize_show(struct device *dev,
68                 struct device_attribute *attr, char *buf)
69 {
70         struct zram *zram = dev_to_zram(dev);
71
72         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
73 }
74
75 static ssize_t initstate_show(struct device *dev,
76                 struct device_attribute *attr, char *buf)
77 {
78         u32 val;
79         struct zram *zram = dev_to_zram(dev);
80
81         down_read(&zram->init_lock);
82         val = init_done(zram);
83         up_read(&zram->init_lock);
84
85         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
86 }
87
88 static ssize_t orig_data_size_show(struct device *dev,
89                 struct device_attribute *attr, char *buf)
90 {
91         struct zram *zram = dev_to_zram(dev);
92
93         return scnprintf(buf, PAGE_SIZE, "%llu\n",
94                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
95 }
96
97 static ssize_t mem_used_total_show(struct device *dev,
98                 struct device_attribute *attr, char *buf)
99 {
100         u64 val = 0;
101         struct zram *zram = dev_to_zram(dev);
102
103         down_read(&zram->init_lock);
104         if (init_done(zram)) {
105                 struct zram_meta *meta = zram->meta;
106                 val = zs_get_total_pages(meta->mem_pool);
107         }
108         up_read(&zram->init_lock);
109
110         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
111 }
112
113 static ssize_t max_comp_streams_show(struct device *dev,
114                 struct device_attribute *attr, char *buf)
115 {
116         int val;
117         struct zram *zram = dev_to_zram(dev);
118
119         down_read(&zram->init_lock);
120         val = zram->max_comp_streams;
121         up_read(&zram->init_lock);
122
123         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
124 }
125
126 static ssize_t mem_limit_show(struct device *dev,
127                 struct device_attribute *attr, char *buf)
128 {
129         u64 val;
130         struct zram *zram = dev_to_zram(dev);
131
132         down_read(&zram->init_lock);
133         val = zram->limit_pages;
134         up_read(&zram->init_lock);
135
136         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
137 }
138
139 static ssize_t mem_limit_store(struct device *dev,
140                 struct device_attribute *attr, const char *buf, size_t len)
141 {
142         u64 limit;
143         char *tmp;
144         struct zram *zram = dev_to_zram(dev);
145
146         limit = memparse(buf, &tmp);
147         if (buf == tmp) /* no chars parsed, invalid input */
148                 return -EINVAL;
149
150         down_write(&zram->init_lock);
151         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
152         up_write(&zram->init_lock);
153
154         return len;
155 }
156
157 static ssize_t mem_used_max_show(struct device *dev,
158                 struct device_attribute *attr, char *buf)
159 {
160         u64 val = 0;
161         struct zram *zram = dev_to_zram(dev);
162
163         down_read(&zram->init_lock);
164         if (init_done(zram))
165                 val = atomic_long_read(&zram->stats.max_used_pages);
166         up_read(&zram->init_lock);
167
168         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
169 }
170
171 static ssize_t mem_used_max_store(struct device *dev,
172                 struct device_attribute *attr, const char *buf, size_t len)
173 {
174         int err;
175         unsigned long val;
176         struct zram *zram = dev_to_zram(dev);
177
178         err = kstrtoul(buf, 10, &val);
179         if (err || val != 0)
180                 return -EINVAL;
181
182         down_read(&zram->init_lock);
183         if (init_done(zram)) {
184                 struct zram_meta *meta = zram->meta;
185                 atomic_long_set(&zram->stats.max_used_pages,
186                                 zs_get_total_pages(meta->mem_pool));
187         }
188         up_read(&zram->init_lock);
189
190         return len;
191 }
192
193 static ssize_t max_comp_streams_store(struct device *dev,
194                 struct device_attribute *attr, const char *buf, size_t len)
195 {
196         int num;
197         struct zram *zram = dev_to_zram(dev);
198         int ret;
199
200         ret = kstrtoint(buf, 0, &num);
201         if (ret < 0)
202                 return ret;
203         if (num < 1)
204                 return -EINVAL;
205
206         down_write(&zram->init_lock);
207         if (init_done(zram)) {
208                 if (!zcomp_set_max_streams(zram->comp, num)) {
209                         pr_info("Cannot change max compression streams\n");
210                         ret = -EINVAL;
211                         goto out;
212                 }
213         }
214
215         zram->max_comp_streams = num;
216         ret = len;
217 out:
218         up_write(&zram->init_lock);
219         return ret;
220 }
221
222 static ssize_t comp_algorithm_show(struct device *dev,
223                 struct device_attribute *attr, char *buf)
224 {
225         size_t sz;
226         struct zram *zram = dev_to_zram(dev);
227
228         down_read(&zram->init_lock);
229         sz = zcomp_available_show(zram->compressor, buf);
230         up_read(&zram->init_lock);
231
232         return sz;
233 }
234
235 static ssize_t comp_algorithm_store(struct device *dev,
236                 struct device_attribute *attr, const char *buf, size_t len)
237 {
238         struct zram *zram = dev_to_zram(dev);
239         down_write(&zram->init_lock);
240         if (init_done(zram)) {
241                 up_write(&zram->init_lock);
242                 pr_info("Can't change algorithm for initialized device\n");
243                 return -EBUSY;
244         }
245         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
246         up_write(&zram->init_lock);
247         return len;
248 }
249
250 /* flag operations needs meta->tb_lock */
251 static int zram_test_flag(struct zram_meta *meta, u32 index,
252                         enum zram_pageflags flag)
253 {
254         return meta->table[index].value & BIT(flag);
255 }
256
257 static void zram_set_flag(struct zram_meta *meta, u32 index,
258                         enum zram_pageflags flag)
259 {
260         meta->table[index].value |= BIT(flag);
261 }
262
263 static void zram_clear_flag(struct zram_meta *meta, u32 index,
264                         enum zram_pageflags flag)
265 {
266         meta->table[index].value &= ~BIT(flag);
267 }
268
269 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
270 {
271         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
272 }
273
274 static void zram_set_obj_size(struct zram_meta *meta,
275                                         u32 index, size_t size)
276 {
277         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
278
279         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
280 }
281
282 static inline int is_partial_io(struct bio_vec *bvec)
283 {
284         return bvec->bv_len != PAGE_SIZE;
285 }
286
287 /*
288  * Check if request is within bounds and aligned on zram logical blocks.
289  */
290 static inline int valid_io_request(struct zram *zram, struct bio *bio)
291 {
292         u64 start, end, bound;
293
294         /* unaligned request */
295         if (unlikely(bio->bi_iter.bi_sector &
296                      (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
297                 return 0;
298         if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
299                 return 0;
300
301         start = bio->bi_iter.bi_sector;
302         end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
303         bound = zram->disksize >> SECTOR_SHIFT;
304         /* out of range range */
305         if (unlikely(start >= bound || end > bound || start > end))
306                 return 0;
307
308         /* I/O request is valid */
309         return 1;
310 }
311
312 static void zram_meta_free(struct zram_meta *meta)
313 {
314         zs_destroy_pool(meta->mem_pool);
315         vfree(meta->table);
316         kfree(meta);
317 }
318
319 static struct zram_meta *zram_meta_alloc(u64 disksize)
320 {
321         size_t num_pages;
322         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
323         if (!meta)
324                 goto out;
325
326         num_pages = disksize >> PAGE_SHIFT;
327         meta->table = vzalloc(num_pages * sizeof(*meta->table));
328         if (!meta->table) {
329                 pr_err("Error allocating zram address table\n");
330                 goto free_meta;
331         }
332
333         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
334         if (!meta->mem_pool) {
335                 pr_err("Error creating memory pool\n");
336                 goto free_table;
337         }
338
339         return meta;
340
341 free_table:
342         vfree(meta->table);
343 free_meta:
344         kfree(meta);
345         meta = NULL;
346 out:
347         return meta;
348 }
349
350 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
351 {
352         if (*offset + bvec->bv_len >= PAGE_SIZE)
353                 (*index)++;
354         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
355 }
356
357 static int page_zero_filled(void *ptr)
358 {
359         unsigned int pos;
360         unsigned long *page;
361
362         page = (unsigned long *)ptr;
363
364         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
365                 if (page[pos])
366                         return 0;
367         }
368
369         return 1;
370 }
371
372 static void handle_zero_page(struct bio_vec *bvec)
373 {
374         struct page *page = bvec->bv_page;
375         void *user_mem;
376
377         user_mem = kmap_atomic(page);
378         if (is_partial_io(bvec))
379                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
380         else
381                 clear_page(user_mem);
382         kunmap_atomic(user_mem);
383
384         flush_dcache_page(page);
385 }
386
387
388 /*
389  * To protect concurrent access to the same index entry,
390  * caller should hold this table index entry's bit_spinlock to
391  * indicate this index entry is accessing.
392  */
393 static void zram_free_page(struct zram *zram, size_t index)
394 {
395         struct zram_meta *meta = zram->meta;
396         unsigned long handle = meta->table[index].handle;
397
398         if (unlikely(!handle)) {
399                 /*
400                  * No memory is allocated for zero filled pages.
401                  * Simply clear zero page flag.
402                  */
403                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
404                         zram_clear_flag(meta, index, ZRAM_ZERO);
405                         atomic64_dec(&zram->stats.zero_pages);
406                 }
407                 return;
408         }
409
410         zs_free(meta->mem_pool, handle);
411
412         atomic64_sub(zram_get_obj_size(meta, index),
413                         &zram->stats.compr_data_size);
414         atomic64_dec(&zram->stats.pages_stored);
415
416         meta->table[index].handle = 0;
417         zram_set_obj_size(meta, index, 0);
418 }
419
420 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
421 {
422         int ret = 0;
423         unsigned char *cmem;
424         struct zram_meta *meta = zram->meta;
425         unsigned long handle;
426         size_t size;
427
428         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
429         handle = meta->table[index].handle;
430         size = zram_get_obj_size(meta, index);
431
432         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
433                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
434                 clear_page(mem);
435                 return 0;
436         }
437
438         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
439         if (size == PAGE_SIZE)
440                 copy_page(mem, cmem);
441         else
442                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
443         zs_unmap_object(meta->mem_pool, handle);
444         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
445
446         /* Should NEVER happen. Return bio error if it does. */
447         if (unlikely(ret)) {
448                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
449                 return ret;
450         }
451
452         return 0;
453 }
454
455 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
456                           u32 index, int offset, struct bio *bio)
457 {
458         int ret;
459         struct page *page;
460         unsigned char *user_mem, *uncmem = NULL;
461         struct zram_meta *meta = zram->meta;
462         page = bvec->bv_page;
463
464         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
465         if (unlikely(!meta->table[index].handle) ||
466                         zram_test_flag(meta, index, ZRAM_ZERO)) {
467                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
468                 handle_zero_page(bvec);
469                 return 0;
470         }
471         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
472
473         if (is_partial_io(bvec))
474                 /* Use  a temporary buffer to decompress the page */
475                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
476
477         user_mem = kmap_atomic(page);
478         if (!is_partial_io(bvec))
479                 uncmem = user_mem;
480
481         if (!uncmem) {
482                 pr_info("Unable to allocate temp memory\n");
483                 ret = -ENOMEM;
484                 goto out_cleanup;
485         }
486
487         ret = zram_decompress_page(zram, uncmem, index);
488         /* Should NEVER happen. Return bio error if it does. */
489         if (unlikely(ret))
490                 goto out_cleanup;
491
492         if (is_partial_io(bvec))
493                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
494                                 bvec->bv_len);
495
496         flush_dcache_page(page);
497         ret = 0;
498 out_cleanup:
499         kunmap_atomic(user_mem);
500         if (is_partial_io(bvec))
501                 kfree(uncmem);
502         return ret;
503 }
504
505 static inline void update_used_max(struct zram *zram,
506                                         const unsigned long pages)
507 {
508         int old_max, cur_max;
509
510         old_max = atomic_long_read(&zram->stats.max_used_pages);
511
512         do {
513                 cur_max = old_max;
514                 if (pages > cur_max)
515                         old_max = atomic_long_cmpxchg(
516                                 &zram->stats.max_used_pages, cur_max, pages);
517         } while (old_max != cur_max);
518 }
519
520 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
521                            int offset)
522 {
523         int ret = 0;
524         size_t clen;
525         unsigned long handle;
526         struct page *page;
527         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
528         struct zram_meta *meta = zram->meta;
529         struct zcomp_strm *zstrm;
530         bool locked = false;
531         unsigned long alloced_pages;
532
533         page = bvec->bv_page;
534         if (is_partial_io(bvec)) {
535                 /*
536                  * This is a partial IO. We need to read the full page
537                  * before to write the changes.
538                  */
539                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
540                 if (!uncmem) {
541                         ret = -ENOMEM;
542                         goto out;
543                 }
544                 ret = zram_decompress_page(zram, uncmem, index);
545                 if (ret)
546                         goto out;
547         }
548
549         zstrm = zcomp_strm_find(zram->comp);
550         locked = true;
551         user_mem = kmap_atomic(page);
552
553         if (is_partial_io(bvec)) {
554                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
555                        bvec->bv_len);
556                 kunmap_atomic(user_mem);
557                 user_mem = NULL;
558         } else {
559                 uncmem = user_mem;
560         }
561
562         if (page_zero_filled(uncmem)) {
563                 if (user_mem)
564                         kunmap_atomic(user_mem);
565                 /* Free memory associated with this sector now. */
566                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
567                 zram_free_page(zram, index);
568                 zram_set_flag(meta, index, ZRAM_ZERO);
569                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
570
571                 atomic64_inc(&zram->stats.zero_pages);
572                 ret = 0;
573                 goto out;
574         }
575
576         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
577         if (!is_partial_io(bvec)) {
578                 kunmap_atomic(user_mem);
579                 user_mem = NULL;
580                 uncmem = NULL;
581         }
582
583         if (unlikely(ret)) {
584                 pr_err("Compression failed! err=%d\n", ret);
585                 goto out;
586         }
587         src = zstrm->buffer;
588         if (unlikely(clen > max_zpage_size)) {
589                 clen = PAGE_SIZE;
590                 if (is_partial_io(bvec))
591                         src = uncmem;
592         }
593
594         handle = zs_malloc(meta->mem_pool, clen);
595         if (!handle) {
596                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
597                         index, clen);
598                 ret = -ENOMEM;
599                 goto out;
600         }
601
602         alloced_pages = zs_get_total_pages(meta->mem_pool);
603         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
604                 zs_free(meta->mem_pool, handle);
605                 ret = -ENOMEM;
606                 goto out;
607         }
608
609         update_used_max(zram, alloced_pages);
610
611         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
612
613         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
614                 src = kmap_atomic(page);
615                 copy_page(cmem, src);
616                 kunmap_atomic(src);
617         } else {
618                 memcpy(cmem, src, clen);
619         }
620
621         zcomp_strm_release(zram->comp, zstrm);
622         locked = false;
623         zs_unmap_object(meta->mem_pool, handle);
624
625         /*
626          * Free memory associated with this sector
627          * before overwriting unused sectors.
628          */
629         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
630         zram_free_page(zram, index);
631
632         meta->table[index].handle = handle;
633         zram_set_obj_size(meta, index, clen);
634         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
635
636         /* Update stats */
637         atomic64_add(clen, &zram->stats.compr_data_size);
638         atomic64_inc(&zram->stats.pages_stored);
639 out:
640         if (locked)
641                 zcomp_strm_release(zram->comp, zstrm);
642         if (is_partial_io(bvec))
643                 kfree(uncmem);
644         return ret;
645 }
646
647 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
648                         int offset, struct bio *bio)
649 {
650         int ret;
651         int rw = bio_data_dir(bio);
652
653         if (rw == READ) {
654                 atomic64_inc(&zram->stats.num_reads);
655                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
656         } else {
657                 atomic64_inc(&zram->stats.num_writes);
658                 ret = zram_bvec_write(zram, bvec, index, offset);
659         }
660
661         if (unlikely(ret)) {
662                 if (rw == READ)
663                         atomic64_inc(&zram->stats.failed_reads);
664                 else
665                         atomic64_inc(&zram->stats.failed_writes);
666         }
667
668         return ret;
669 }
670
671 /*
672  * zram_bio_discard - handler on discard request
673  * @index: physical block index in PAGE_SIZE units
674  * @offset: byte offset within physical block
675  */
676 static void zram_bio_discard(struct zram *zram, u32 index,
677                              int offset, struct bio *bio)
678 {
679         size_t n = bio->bi_iter.bi_size;
680         struct zram_meta *meta = zram->meta;
681
682         /*
683          * zram manages data in physical block size units. Because logical block
684          * size isn't identical with physical block size on some arch, we
685          * could get a discard request pointing to a specific offset within a
686          * certain physical block.  Although we can handle this request by
687          * reading that physiclal block and decompressing and partially zeroing
688          * and re-compressing and then re-storing it, this isn't reasonable
689          * because our intent with a discard request is to save memory.  So
690          * skipping this logical block is appropriate here.
691          */
692         if (offset) {
693                 if (n <= (PAGE_SIZE - offset))
694                         return;
695
696                 n -= (PAGE_SIZE - offset);
697                 index++;
698         }
699
700         while (n >= PAGE_SIZE) {
701                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
702                 zram_free_page(zram, index);
703                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
704                 atomic64_inc(&zram->stats.notify_free);
705                 index++;
706                 n -= PAGE_SIZE;
707         }
708 }
709
710 static void zram_reset_device(struct zram *zram, bool reset_capacity)
711 {
712         size_t index;
713         struct zram_meta *meta;
714
715         down_write(&zram->init_lock);
716
717         zram->limit_pages = 0;
718
719         if (!init_done(zram)) {
720                 up_write(&zram->init_lock);
721                 return;
722         }
723
724         meta = zram->meta;
725         /* Free all pages that are still in this zram device */
726         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
727                 unsigned long handle = meta->table[index].handle;
728                 if (!handle)
729                         continue;
730
731                 zs_free(meta->mem_pool, handle);
732         }
733
734         zcomp_destroy(zram->comp);
735         zram->max_comp_streams = 1;
736
737         zram_meta_free(zram->meta);
738         zram->meta = NULL;
739         /* Reset stats */
740         memset(&zram->stats, 0, sizeof(zram->stats));
741
742         zram->disksize = 0;
743         if (reset_capacity)
744                 set_capacity(zram->disk, 0);
745
746         up_write(&zram->init_lock);
747
748         /*
749          * Revalidate disk out of the init_lock to avoid lockdep splat.
750          * It's okay because disk's capacity is protected by init_lock
751          * so that revalidate_disk always sees up-to-date capacity.
752          */
753         if (reset_capacity)
754                 revalidate_disk(zram->disk);
755 }
756
757 static ssize_t disksize_store(struct device *dev,
758                 struct device_attribute *attr, const char *buf, size_t len)
759 {
760         u64 disksize;
761         struct zcomp *comp;
762         struct zram_meta *meta;
763         struct zram *zram = dev_to_zram(dev);
764         int err;
765
766         disksize = memparse(buf, NULL);
767         if (!disksize)
768                 return -EINVAL;
769
770         disksize = PAGE_ALIGN(disksize);
771         meta = zram_meta_alloc(disksize);
772         if (!meta)
773                 return -ENOMEM;
774
775         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
776         if (IS_ERR(comp)) {
777                 pr_info("Cannot initialise %s compressing backend\n",
778                                 zram->compressor);
779                 err = PTR_ERR(comp);
780                 goto out_free_meta;
781         }
782
783         down_write(&zram->init_lock);
784         if (init_done(zram)) {
785                 pr_info("Cannot change disksize for initialized device\n");
786                 err = -EBUSY;
787                 goto out_destroy_comp;
788         }
789
790         zram->meta = meta;
791         zram->comp = comp;
792         zram->disksize = disksize;
793         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
794         up_write(&zram->init_lock);
795
796         /*
797          * Revalidate disk out of the init_lock to avoid lockdep splat.
798          * It's okay because disk's capacity is protected by init_lock
799          * so that revalidate_disk always sees up-to-date capacity.
800          */
801         revalidate_disk(zram->disk);
802
803         return len;
804
805 out_destroy_comp:
806         up_write(&zram->init_lock);
807         zcomp_destroy(comp);
808 out_free_meta:
809         zram_meta_free(meta);
810         return err;
811 }
812
813 static ssize_t reset_store(struct device *dev,
814                 struct device_attribute *attr, const char *buf, size_t len)
815 {
816         int ret;
817         unsigned short do_reset;
818         struct zram *zram;
819         struct block_device *bdev;
820
821         zram = dev_to_zram(dev);
822         bdev = bdget_disk(zram->disk, 0);
823
824         if (!bdev)
825                 return -ENOMEM;
826
827         /* Do not reset an active device! */
828         if (bdev->bd_holders) {
829                 ret = -EBUSY;
830                 goto out;
831         }
832
833         ret = kstrtou16(buf, 10, &do_reset);
834         if (ret)
835                 goto out;
836
837         if (!do_reset) {
838                 ret = -EINVAL;
839                 goto out;
840         }
841
842         /* Make sure all pending I/O is finished */
843         fsync_bdev(bdev);
844         bdput(bdev);
845
846         zram_reset_device(zram, true);
847         return len;
848
849 out:
850         bdput(bdev);
851         return ret;
852 }
853
854 static void __zram_make_request(struct zram *zram, struct bio *bio)
855 {
856         int offset;
857         u32 index;
858         struct bio_vec bvec;
859         struct bvec_iter iter;
860
861         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
862         offset = (bio->bi_iter.bi_sector &
863                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
864
865         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
866                 zram_bio_discard(zram, index, offset, bio);
867                 bio_endio(bio, 0);
868                 return;
869         }
870
871         bio_for_each_segment(bvec, bio, iter) {
872                 int max_transfer_size = PAGE_SIZE - offset;
873
874                 if (bvec.bv_len > max_transfer_size) {
875                         /*
876                          * zram_bvec_rw() can only make operation on a single
877                          * zram page. Split the bio vector.
878                          */
879                         struct bio_vec bv;
880
881                         bv.bv_page = bvec.bv_page;
882                         bv.bv_len = max_transfer_size;
883                         bv.bv_offset = bvec.bv_offset;
884
885                         if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
886                                 goto out;
887
888                         bv.bv_len = bvec.bv_len - max_transfer_size;
889                         bv.bv_offset += max_transfer_size;
890                         if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
891                                 goto out;
892                 } else
893                         if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
894                                 goto out;
895
896                 update_position(&index, &offset, &bvec);
897         }
898
899         set_bit(BIO_UPTODATE, &bio->bi_flags);
900         bio_endio(bio, 0);
901         return;
902
903 out:
904         bio_io_error(bio);
905 }
906
907 /*
908  * Handler function for all zram I/O requests.
909  */
910 static void zram_make_request(struct request_queue *queue, struct bio *bio)
911 {
912         struct zram *zram = queue->queuedata;
913
914         down_read(&zram->init_lock);
915         if (unlikely(!init_done(zram)))
916                 goto error;
917
918         if (!valid_io_request(zram, bio)) {
919                 atomic64_inc(&zram->stats.invalid_io);
920                 goto error;
921         }
922
923         __zram_make_request(zram, bio);
924         up_read(&zram->init_lock);
925
926         return;
927
928 error:
929         up_read(&zram->init_lock);
930         bio_io_error(bio);
931 }
932
933 static void zram_slot_free_notify(struct block_device *bdev,
934                                 unsigned long index)
935 {
936         struct zram *zram;
937         struct zram_meta *meta;
938
939         zram = bdev->bd_disk->private_data;
940         meta = zram->meta;
941
942         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
943         zram_free_page(zram, index);
944         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
945         atomic64_inc(&zram->stats.notify_free);
946 }
947
948 static const struct block_device_operations zram_devops = {
949         .swap_slot_free_notify = zram_slot_free_notify,
950         .owner = THIS_MODULE
951 };
952
953 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
954                 disksize_show, disksize_store);
955 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
956 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
957 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
958 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
959 static DEVICE_ATTR(mem_limit, S_IRUGO | S_IWUSR, mem_limit_show,
960                 mem_limit_store);
961 static DEVICE_ATTR(mem_used_max, S_IRUGO | S_IWUSR, mem_used_max_show,
962                 mem_used_max_store);
963 static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
964                 max_comp_streams_show, max_comp_streams_store);
965 static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
966                 comp_algorithm_show, comp_algorithm_store);
967
968 ZRAM_ATTR_RO(num_reads);
969 ZRAM_ATTR_RO(num_writes);
970 ZRAM_ATTR_RO(failed_reads);
971 ZRAM_ATTR_RO(failed_writes);
972 ZRAM_ATTR_RO(invalid_io);
973 ZRAM_ATTR_RO(notify_free);
974 ZRAM_ATTR_RO(zero_pages);
975 ZRAM_ATTR_RO(compr_data_size);
976
977 static struct attribute *zram_disk_attrs[] = {
978         &dev_attr_disksize.attr,
979         &dev_attr_initstate.attr,
980         &dev_attr_reset.attr,
981         &dev_attr_num_reads.attr,
982         &dev_attr_num_writes.attr,
983         &dev_attr_failed_reads.attr,
984         &dev_attr_failed_writes.attr,
985         &dev_attr_invalid_io.attr,
986         &dev_attr_notify_free.attr,
987         &dev_attr_zero_pages.attr,
988         &dev_attr_orig_data_size.attr,
989         &dev_attr_compr_data_size.attr,
990         &dev_attr_mem_used_total.attr,
991         &dev_attr_mem_limit.attr,
992         &dev_attr_mem_used_max.attr,
993         &dev_attr_max_comp_streams.attr,
994         &dev_attr_comp_algorithm.attr,
995         NULL,
996 };
997
998 static struct attribute_group zram_disk_attr_group = {
999         .attrs = zram_disk_attrs,
1000 };
1001
1002 static int create_device(struct zram *zram, int device_id)
1003 {
1004         int ret = -ENOMEM;
1005
1006         init_rwsem(&zram->init_lock);
1007
1008         zram->queue = blk_alloc_queue(GFP_KERNEL);
1009         if (!zram->queue) {
1010                 pr_err("Error allocating disk queue for device %d\n",
1011                         device_id);
1012                 goto out;
1013         }
1014
1015         blk_queue_make_request(zram->queue, zram_make_request);
1016         zram->queue->queuedata = zram;
1017
1018          /* gendisk structure */
1019         zram->disk = alloc_disk(1);
1020         if (!zram->disk) {
1021                 pr_warn("Error allocating disk structure for device %d\n",
1022                         device_id);
1023                 goto out_free_queue;
1024         }
1025
1026         zram->disk->major = zram_major;
1027         zram->disk->first_minor = device_id;
1028         zram->disk->fops = &zram_devops;
1029         zram->disk->queue = zram->queue;
1030         zram->disk->private_data = zram;
1031         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1032
1033         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1034         set_capacity(zram->disk, 0);
1035         /* zram devices sort of resembles non-rotational disks */
1036         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1037         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1038         /*
1039          * To ensure that we always get PAGE_SIZE aligned
1040          * and n*PAGE_SIZED sized I/O requests.
1041          */
1042         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1043         blk_queue_logical_block_size(zram->disk->queue,
1044                                         ZRAM_LOGICAL_BLOCK_SIZE);
1045         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1046         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1047         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1048         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1049         /*
1050          * zram_bio_discard() will clear all logical blocks if logical block
1051          * size is identical with physical block size(PAGE_SIZE). But if it is
1052          * different, we will skip discarding some parts of logical blocks in
1053          * the part of the request range which isn't aligned to physical block
1054          * size.  So we can't ensure that all discarded logical blocks are
1055          * zeroed.
1056          */
1057         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1058                 zram->disk->queue->limits.discard_zeroes_data = 1;
1059         else
1060                 zram->disk->queue->limits.discard_zeroes_data = 0;
1061         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1062
1063         add_disk(zram->disk);
1064
1065         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1066                                 &zram_disk_attr_group);
1067         if (ret < 0) {
1068                 pr_warn("Error creating sysfs group");
1069                 goto out_free_disk;
1070         }
1071         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1072         zram->meta = NULL;
1073         zram->max_comp_streams = 1;
1074         return 0;
1075
1076 out_free_disk:
1077         del_gendisk(zram->disk);
1078         put_disk(zram->disk);
1079 out_free_queue:
1080         blk_cleanup_queue(zram->queue);
1081 out:
1082         return ret;
1083 }
1084
1085 static void destroy_device(struct zram *zram)
1086 {
1087         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1088                         &zram_disk_attr_group);
1089
1090         del_gendisk(zram->disk);
1091         put_disk(zram->disk);
1092
1093         blk_cleanup_queue(zram->queue);
1094 }
1095
1096 static int __init zram_init(void)
1097 {
1098         int ret, dev_id;
1099
1100         if (num_devices > max_num_devices) {
1101                 pr_warn("Invalid value for num_devices: %u\n",
1102                                 num_devices);
1103                 ret = -EINVAL;
1104                 goto out;
1105         }
1106
1107         zram_major = register_blkdev(0, "zram");
1108         if (zram_major <= 0) {
1109                 pr_warn("Unable to get major number\n");
1110                 ret = -EBUSY;
1111                 goto out;
1112         }
1113
1114         /* Allocate the device array and initialize each one */
1115         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1116         if (!zram_devices) {
1117                 ret = -ENOMEM;
1118                 goto unregister;
1119         }
1120
1121         for (dev_id = 0; dev_id < num_devices; dev_id++) {
1122                 ret = create_device(&zram_devices[dev_id], dev_id);
1123                 if (ret)
1124                         goto free_devices;
1125         }
1126
1127         pr_info("Created %u device(s) ...\n", num_devices);
1128
1129         return 0;
1130
1131 free_devices:
1132         while (dev_id)
1133                 destroy_device(&zram_devices[--dev_id]);
1134         kfree(zram_devices);
1135 unregister:
1136         unregister_blkdev(zram_major, "zram");
1137 out:
1138         return ret;
1139 }
1140
1141 static void __exit zram_exit(void)
1142 {
1143         int i;
1144         struct zram *zram;
1145
1146         for (i = 0; i < num_devices; i++) {
1147                 zram = &zram_devices[i];
1148
1149                 destroy_device(zram);
1150                 /*
1151                  * Shouldn't access zram->disk after destroy_device
1152                  * because destroy_device already released zram->disk.
1153                  */
1154                 zram_reset_device(zram, false);
1155         }
1156
1157         unregister_blkdev(zram_major, "zram");
1158
1159         kfree(zram_devices);
1160         pr_debug("Cleanup done!\n");
1161 }
1162
1163 module_init(zram_init);
1164 module_exit(zram_exit);
1165
1166 module_param(num_devices, uint, 0);
1167 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1168
1169 MODULE_LICENSE("Dual BSD/GPL");
1170 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1171 MODULE_DESCRIPTION("Compressed RAM Block Device");